Pablo Halpern Towards a Better Allocator Model N1850=05-0110

JTC1/SC22/WG21 N1850=05-0110
2005-08-25

Towards a Better Allocator Model
Pablo Halpern < phal pern@halper nwightsoftware.com>
ABSTRACT

In drafting the 1998 SO C++ language standard, the standards committee did not
consider, or did not consider important, that the all ocator type parameter used to
instantiate a container template affects the container’ s type, thereby making it
incompatible with containers employing a different allocation policy, but which
otherwise have identical type. In our work, we have found it desirable, and often
necessary, to customize the memory allocation for our containersand stringson a
per-instance basis, without affecting the compile-time type of those containers or
strings. Proper control over memory also required that objects within a container
share an allocator with the container itself. Using an existing implementation of the
C++ standard library as a base, we made backward-compatible modifications to
enable such per-instance allocators. Our experience is that, once implemented,
these modifications allowed us to use allocators in a wide range of situations to
facilitate testing, efficient memory utilization, and even the prevention of memory
leaks. This paper describes our allocator model and proposes changesto the
upcoming revision of the standard library based on our experience.

Copyright and Disclaimer

© 2005 Bloomberg L.P. Permission is granted to copy, distribute, and display this paper, and to make
derivative works and commercial use of it. The information in this paper is provided “AS1S’, without
warranty of any kind. Neither Bloomberg nor any employee guarantees the correctness or completeness of
such information. Bloomberg, its employees, and its affiliated entities and persons shall not be liable, directly
or indirectly, in any way, for any inaccuracies, errors or omissions in such information. Nothing herein
should be interpreted as stating the opinions, policies, recommendations, or positions of Bloomberg.

Table of Contents

1 VLI 11 O 1 1]\ 2
1.1 [1S 1) =22 2
1.2 TERMINOLOGY ..vveieteiiitieiiiiesteisssesasessasesseessssssasesssessasssstessssssssessasessassssessnssssssessasesseessssssnssssasessasssssssassssasessasessensanes 3

2 THE LAKOS ALLOCATOR MODEL ...ttiieiiiceee ettt sttt st s s ste s srae s e s sbe s sea s sae s srasssbassabessanssrasansassnsessneas 3
21 THE BDE::ALLOCATOR CLASS HIERARCHY ..ottiiitiiiieiiiteistessstssssesssessstessssssssessasesstessssssssessasessassssessssessasessasessarssnes 3
2.2 PER-INSTANCE ALLOCATORSttiiiteeieeireeasesssessessssesstesassessssesasessassassesassessssesastsssssasssssssesssessasssssessssessssssasesssessnes 4
2.3 CONTAINED-ELEMENT ALLOCATORS .. uviieiiiiteeirtristessssesseessseesssessssesssrssssesssesassessasessnsssssssssessssessssessssssressssessssessns 5
24 ALLOCATORS ASAN EXTENSION OF STORAGE CLASS ..cocveieieiiieseee s stessstessstsssessstessseessessasesssnssstessssssssessassssarsanes 6

3 THE 1998 STANDARD ALLOCATOR MODEL ..ottt st s st srassbas st s sre s sra s snba s s s 7
31 ALLOCATOR CLASS TEMPLATES ...ttt ittt iettetteissteissasssresstessssessstsssstssassssesssssssssessasesstesssssssssssasessassssssssssssasessasesseesanes 7
3.2 (=] 1 V] 8

4 DIFFICULTIESWITH THE 1998 STANDARD ALLOCATOR MODEL ...cooiiiiieieire s 8

8/25/2005 Page 1 of 24

Pablo Halpern Towards a Better Allocator Model N1850=05-0110

4.1 THE INCOMPLETE STANDARDuciitiieieiteeesteisstesssessarssssessssesassssasessassssssssssssasessasesssesssssssssssssessassssssssssssssessasesseesanes 8
4.2 Y1232 1Y 0] o =1 I 9
4.3 TEMPLATE IMPLEMENTATION POLICY . veicetiitiei sttt sttt s bt s s st s sraesabassabe s sane s seesaneesabessabessarnanes 9
44 VWHO' S GOT MY ALLOCATOR . ettt ietiestetesteisstessitssstssstessssesastssastssasssstesassesastssassssbesassesastssasessasssssesansensnsesssesssseas 11

5 THE BEST OF BOTH WORLDS ..ottt st sttt sts st sts st s st st s she st sbes b e sbesat s bessessbearessbessessnene 13
51 MERGING THE ALLOCATOR IMODELS......oeiitiiitiiiie s steesreestesssbessesssesassessssesssbesssesshesassessssesssessssesssesansessnsesaneessenas 13
511 WAPPING DAE. AT TOCATON ..o sressessir s ssessississ sttt st sttt st ssnssssssssnes 13

512 Modified COpy-CONSIUCIOr SEMANTICS.civereurrerirerreeiresires st s sess s s ee et s s ses s 13

513 Container and Contained Elements Using the Same AIOCALOc.cocuererieerinsene e 14

52 MOV E-SEMANTIC OPERATIONS. ... tiiieeecteresreesssessseesstesssesassessssessstesssesshessssessssesssssshesassessssessstesssesssesassessnsesaesssseas 15
521 Copying ValuesSVs. MOVING ODJECES.........cccrieriuirerirerirereesires s s s ses e et ses s er e s 15

Lo . T o LT 15

523 Elided COPY CONSITUCIONS......cveurerieereresereseseseseseressressss e sses e st ses s ses s es st es st st ses s s es e ssessss s 17

oI R = V= BTSN 2= (= = 41, 18

53 REAPING THE BENEFITS .. cteiitiietie it s seeesteeessesssbessbesstesshesassesssbesasesssssassessssessnsesssssshesansessssessssesasesssesansensnsesaseessenas 18

6 FORMAL PROPOSAL ...ttt sttt ettt et te s et es et s b st sb e st e abesstesbessessstasat st e sat s besabsabesbesabebesnssabearessbessensreese 19
7 [@(@ N[O LS 1] 23
8 SN S RO 2 Y AN o 72T 23

1 Introduction

1.1 History

Before the STL portion of the C++ Standard Library was adopted by our organization, we began
creating our own assortment of containers. Like the STL containers, our containers could be fitted
with alocators to customize their use of memory. At the most conceptual level, an allocator is an
object that supplies raw memory for use by other objects, especially containers. The specifics of our
container/design scheme, however, were different from STL’sdesign in anumber of important
ways, as described in the succeeding sections of this paper.

As we moved to more modern compilers that were capable of handling the demands of STL
templates, we decided to migrate away from our proprietary containers and towards STL in order to
improve interoperability with other software libraries and avoid maintaining a redundant set of
classes. In the process of migrating, we discovered that we were unable to cleanly adapt our use of
allocatorsto the standard alocator scheme. In particular, we needed to be able to customize
memory allocation for a specific instance of acontainer or string without affecting the type of that
container or string (through an allocator template parameter). Our alocator semantics were simply
more powerful and flexible than the standard’ s and were based on theoretical principles that we
believed to be more cohesive.

We serioudy considered abandoning STL containersin order to retain the benefits of our alocator
design, but the benefits of interoperability and standard-compliance were too great to give up. In
the end, we decided to extend an existing implementation of the C++ Standard Library so that it
would support both the standard allocator semantics and our alocator semantics. Having
successfully accomplished this marriage and reaping the benefits, we believe that our extensions
deserve serious consideration for adoption into the next C++ standard.

8/25/2005 Page 2 of 24

Pablo Halpern Towards a Better Allocator Model N1850=05-0110

1.2 Terminology

Templates introduce ametalevel into the C++ language. That is, they don’t describe run-time
constructs but rather describe classes and functions, which, in turn, describe run-time constructs. As
with al discussions of meta concepts, the terminology can get confusing. In this paper, | am
concerned mostly with containers and allocators. Y et the term, container is ambiguous; it might
refer to aclass template, a specific instantiation of a class template, or an object created from such
an instantiation. | will attempt to avoid confusion by using the terms container template, container
instantiation, or container object whenever an ambiguity may arise. Similarly, | use the terms
allocator template, allocator instantiation, or allocator object whenever allocator alone might be
ambiguous. For example, in the following definition:

std: :vector<int> v;

| will refer to the parts as follows:

std: :vector is a container template,
std: :vector<int> isa container instantiation, and
v is a container object.

The standard introduces a second level of meta-concept in the form of requirements. Requirements
specify the interface for afamily of templates, which can be used to create an unbounded set of
instantiations, which in turn can be used to construct an unbounded set of objects.

| use the term STL to refer to the containers and allocators section of the C++ Standard Library —
those portions that have their origins in the Standard Template Library created by Alexander
Stepanov et a. [Stepanov95]. Although character strings were not originally part of the STL, |
include them when | talk about STL because they share the qualities of STL containers.

2 The Lakos Allocator Model

The allocators and containers described in this section form part of a project known as BDE (Basic
Development Environment) at Bloomberg LP. The allocator model presented here was brought to
my attention by fellow Bloomberg employee John Lakos. Most of the work of unifying his allocator
model with the STL allocator model was performed by me at Bloomberg, and will be described
later in this paper.

2.1 Thebde::Allocator Class Hierarchy

If you are already very familiar with the STL approach to allocators, | ask you to set that knowledge
aside for amoment as | discuss the way BDE allocators work. An allocator type in BDE isaclass
derived from the bde: : A11ocator abstract base class, which has the following interface:

class bde::Allocator {
public:
virtual void* allocate(size_t bytes)
virtual void deallocate(void* ptr) =
virtual ~Allocator();

= 0;

0;

This allocator interface is similar to those defined by anumber of different companiesin the pre-
STL days and even today (for example, in the Xerces XML parser).

BDE supplies anumber of allocator classes for various purposes:

8/25/2005 Page 3 of 24

Pablo Halpern Towards a Better Allocator Model N1850=05-0110

New/delete allocator Allocates memory using operator new and freesit using
operator delete

Shared-memory allocator Allocates memory from a shared memory region.

Limit allocator Keeps track of the number of bytes that have been allocated
from the allocator. Throws an exception if too much memory is
used. Useful for preventing denial-of-service attacks that would
otherwise cause excessive memory consumption.

Buffer Allocator Allocates memory from a fixed-sized buffer provided at
construction.

Arena Allocator Very fast alocator in which al | ocat e simply increments a
pointer within alarge, contiguous block of memory and in
which deal | ocat e isano-op. Thisallocator savestime by
avoiding the bookkeeping needed to free individualy-allocated
blocks of memory. The allocator’s destructor releases one or
more large blocks of memory to the heagp all at once.

Test Allocator Keeps track of allocated bytes and blocks. Checks for memory
leaks. Can be configured to throw an exception on the n™
allocation attempt. Useful in unit-test driversto compare actua
memory use against expected memory use and to test exception
safety of components that allocate memory.

Some of these allocator types can be chained together so that, for example, alimit allocator can
manage memory provided by a shared-memory allocator.

2.2 Per-instance Allocators

Every constructor declared in each container class template takes an optional allocator pointer
argument. For example, the bde: : Array template, which isroughly equivaent to std: :vector,
has constructors declared like this:
template <typename T>
class bde::Array {
public:
Array(bde::Allocator* allocator = 0);
Array(const Array& rhs, bde::Allocator* allocator = 0);

The container obtains the memory it needs for itsinternal data structures by calling the alocator’s
allocate function and releasesit when it is done by calling the allocator’s deallocate function.
The default arguments allow the first constructor to be recognized as the default constructor and the
second constructor to be recognized as the copy constructor. If no alocator pointer is passed to the

constructor, the container uses the default allocator, which is the instance of the new/delete allocator
returned by a static singleton function.

With the exception of the new/delete allocator, al of the allocators listed above contain state
information that differs from instance to instance. This means, for example, that two buffer

8/25/2005 Page 4 of 24

Pablo Halpern Towards a Better Allocator Model N1850=05-0110

allocator instances will manage memory from two different buffers. The BDE allocator mechanism
was designed to support per-instance allocators, whereby two container objects of the same type
can get their memory from different sources.

The alocator pointer, which is held (but not owned) by each container (or string), is an
implementation mechanism and is not part of the container’s value. Concretely, the alocator
pointers’ not being part of the value means that they are not tested as part of the container’s
operator==, nor copied in its copy constructor or assignment operator. This clean separation
between a container’ s value and its allocation mechanism is key to effective use of alocatorsin
practice.

2.3 Contained-Element Allocators

A container will often contain other containers. One can have, for example, avector of vectors,
or aset of strings (astring having dl of the qualities of a container of char). In general, we want
all of the parts of such compound containers to get their memory from acommon source. Thus, a
critical feature of the Lakos allocator model is the automatic use of a container’ s alocator to
construct its contained elements. When an object isinserted into a container, the address of the
container’s allocator is passed as a second argument to the object’s copy constructor (see

bde: :Array example, previously). A bde::Array of bde: :string (think vector of string) can
be visualized asin Figure 1.

Internal data
structure holds

Container uses strings
allocator to allocate
its internal data
structure

Strings also
allocate memory

Container

allocator

Allocator
manages memory

Allocator-managed memory

Figure 1: A container and its contained objects use the same allocator

8/25/2005 Page 5 of 24

Pablo Halpern Towards a Better Allocator Model N1850=05-0110

The challenge of this approach is that the container template must be able, at compile time, to
determine whether it is being instantiated with an e ement type that uses allocators. For example, a
bde: :Array<int> cannot passits allocator to the int constructor, whereas

bde: :Array<bde: :string> must passits allocator to the bde: : string constructor. In order to
give the container knowledge of its contained element type, we introduced atrait, similar in concept
to Boost traits [MaddockO1] and TR1 traits[TR1]. The new traitis called

bde: :usesBdeAllocator and applies to each class that takes an (optional) BDE-style allocator
pointer argument for both its default and copy constructors. Container types take advantage of
generic algorithms, which work differently depending on whether their argument does or does not
have thistrait. For example, code to insert anew el ement into a container looks something like this:

template <typename T>
void bde::Array: :append(const T& value) {

T* newElement = elements + length(Q);
copyConstruct(newElement, value, getAllocator());

The copyconstruct agorithmis declared as follows:

template <typename T>]
void copyConstruct(T* p, const T& orig, bde::Allocator* alloc);

If type T hasthe bde: :usesBdeAllocator trait, then this function’s implementation resolves to:
new (p) T(orig, alloc);

Otherwisg, it resolves to:
new (p) T(orig);

A defaultconstruct function template works the same way, except without the orig argument.
The use of traits classes to selectively instantiate different algorithm implementations is covered in
depth in [Alexandrescu01].

2.4 Allocators as an Extension of Storage Class

When the C language was standardized in 1989, the standardization committee was careful to
distinguish the concept of storage duration (static, automatic, and dynamically-all ocated) from the
concept of type qualifier (const and volatile). Although both concepts may be part of an object’s
definition (storage duration is sometimes explicitly specified viaan extern, static, or auto
storage class specifier), atype qualifier aters the type of an object, whereas its storage duration
does not. Thereisno need to think twice before initializing an automatic object with the value of a
static object of the same type. There is no concern that objects might not be compatible because
they have different storage duration, nor is there a concern that the local copy of the object becomes
static simply because it was initialized from a static value.

A general principle that has emerged from our examination of alocatorsis that an allocator should
be more like a storage class than like atype qualifier. Specificaly, the following principles hold for
L akos-model alocators:

1. Anobject’sallocator (assupplied to its constructor) does not change during that
object’slifetime.

2. Theallocator supplied to an object does not affect that object’stype.

8/25/2005 Page 6 of 24

Pablo Halpern Towards a Better Allocator Model N1850=05-0110

3. Allocatorsare not transferred implicitly on copy-construction. Instead, an allocator can
be supplied explicitly to the copy. The copy uses the default (new/delete) allocator if oneis
not supplied.

4. Containerssupply their own allocator to the objects they contain. Thisprinciple
provides a clean semantic and is analogous to the C precept that array elements have the
same storage class as the array itself.

The overall alocator system used in BDE is consistent. The allocator is neither part of the type nor
part of the value of a container or string. The resulting system has proven itself in practice to be
extremely easy to use and to extend.

3 The 1998 Standard Allocator Model

3.1 Allocator Class Templates

The alocator model described in the C++ Standard is very different from the one | have just
described. All of the container templates described in the standard library have an optional template
parameter for specifying an optiona allocator type. For example, the 1ist classtemplateis
declared like this:

template <typename T, typename Alloc = std::allocator<T> > class list;

The standard sets forth allocator requirements and container requirements that describe minimal
interfaces for alocator templates and container templates. The standard a so provides a specific
alocator template (std: :allocator<Ts), and anumber of container templates
(std::vector<T,Alloc>, std::set<T,Comp,Alloc>, etc.) A programmer may supply his/her
own allocator template for use with the standard containers, provided it adheres to the all ocator
requirements. Similarly, a programmer may create additional container templates that adhere to the
container requirements.

If we wish to control the way in which 11st uses memory, we can create our own allocator template
that meets the requirements set in the Standard:

template <typename TYPE> class MyAllocator

public:
typedef TYPE value_type;
typedef TYPE* pointer;
typedef const TYPE* const_pointer;
typedef TYPE& reference;

typedef const TYPE& const_reference;
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
template <typename U> class rebind

typedef MyAllocator<U> other;
MyAlTlocator();
template <typename U>

MyAlTocator(const MyAllocator<U>& y);
~MyAlTlocator();

pointer address(reference x) const { return &x; }

8/25/2005 Page 7 of 24

Pablo Halpern Towards a Better Allocator Model N1850=05-0110

const_pointer address(const_reference x) const { return &x; }

TYPE* allocate(size_type n, const void* hint = 0);
void deallocate(TYPE* p, size_type n);
size_type max_size() const;

void construct(pointer p,
const TYPE& t) const { new ((void*) p) TYPE(t); }
void destroy(pointer p) const { p->~TYPEQ); }

1

template <typename T1l, typename T2>
bool operator==(const MyAllocator<T1>& al, const MyAllocator<T2>& a2);
temq]ate <typename T1l, typename T2>
bool operator!=(const MyAllocator<T1>& al, const MyAllocator<T2>& a2);

Although MmyAlTocator isnot part of the standard, anybody intending to write a standard-compliant
allocator would do well to copy it, change its name, and implement those member functions whose
implementation is not already provided. The core of each allocator template — the thing that makes
it different from other allocator templates—isthe allocate and deallocate functions. The
allocate and deallocate functions manage raw memory and do not call TYPE’s constructor or
destructor. Even so, the nargument to both functions isacount of objects being managed, not
the number of bytes. Instantiating Tist asstd: : Tist<int, MyAllocator<int> > will cause

11 st to use the custom alocator mechanism instead of the default one.

3.2 Rebind

L et me draw your atention to the rebind class and to the templated constructor in MyAllocator.
Most containers, with the possible exception of vector and deque, do not directly use the allocator
with which they are instantiated. The 11st template, for example, will typically be implemented as
alinked list of nodes, where each node is an instantiation of atemplate class that |ooks something
like this:
template <typename T> struct ListNode {
ListNode* prev;
ListNode* next;
T data;
b
A Tist of intswould not need to allocate objects of type int but rather ListNode<int>.
Unfortunately, within our 11 st instantiation, the name A11oc isbound to MyATlocator<int> and
cannot be used directly to allocate ListNode<int> objects. That iswhere rebind comesin. The
type, typename Alloc::template rebind<ListNode<T> >::other, will resolveto
MyAlTlocator<ListNode<T> >, which isexactly what is needed within 1ist. The templated
constructor of MyAllocator lets usconstruct aMmyAllocator<ListNode<T> > object froma
MyAllocator<int> object. This clever trick has some interesting consequences, as we will see
later.

4 Difficulties with the 1998 Standard Allocator Model

4.1 The Incomplete Standard

According to the standard, two alocator objects of the same type may compare equal only if
memory allocated using one can be de-allocated using the other. Section 20.1.5, paragraph 4 of the
1998 standard states that an implementation may assume that all instances of a given alocator type

8/25/2005 Page 8 of 24

Pablo Halpern Towards a Better Allocator Model N1850=05-0110

compare equa and are therefore interchangeable. (I refer to this as the equal-allocator assumption.)
The constant-time, semantics of swap and Tist::splice pose aparticular problem when allocators
have state and can compare unequal [I1ssue431]. A conforming program must assume that any
memory allocated with one allocator might be de-allocated using a different allocator of the same
type, making per-instance allocators effectively useless except perhaps as performance hints. By
including a normative note encouraging implementations to specify reasonable behavior in the
presence of unequa (per-instance) allocators, the members of the standards committee, to their
credit, effectively admitted that the allocator model was incomplete. Also to their credit, they chose
not to delay the standard while waiting for a more complete proposal.

At the time that the equal-allocator assumption was added to the 1998 standard, it was almost
certain that it would be removed in the next revision of the standard. In fact, even the 1998 standard
describes attributes of allocators (such as the meaning of operator== and the behavior of copying a
container) that have meaning only in the absence of the equal-allocator assumption. For the
remainder of this paper, | will take for granted that the equal-allocator assumption will be removed,
resulting in an allocator model does alow per-instance alocators, but with significant deficiencies,
as described in the next few sections.

4.2 Memory Models

Memory allocators were originally added into the Standard Template Library for the purpose of
supporting Intel x86 mixed-model (near and far) pointers and other non-flat memory models
[LoRusso01]. The theory was that memory could be allocated from either the local data segment,
producing a“near pointer”, or from a different memory segment, producing a“far pointer”. The
poi nt er type declared within the allocator would allow the container to use the results
appropriately. In practice, however, st d: : al | ocat or <T>: : poi nt er cannot be other than
T*, and this realization was codified in the standard itself (section 20.1.5, table 32). Most
compilerstargeted for the Intel architecture have moved on to the flat memory model anyway.

4.3 Template Implementation Policy

The first problem most people see with the allocator mechanism as specified in the Standard is that
the choice of allocator affects the type of a container. Consider, for example, the following type
and object definitions:

typedef std::list<int, std::allocator<int> > NormIntList;
typedef std::list<int, MyAllocator<int> > MyIntList;

NormIntList Tistl(5, 3);

MyIntList Tist2(5, 3);
Tistl and Tist2 are both lists of integers, and both contain five copies of the number 3. Most
people would say that they have the same value. Y et they belong to different types and you cannot
substitute one for the other. For example, assume we have a function that builds up alist:

int build(std::Tist<int>& theList);

Because we did not specify an alocator parameter for the argument type, the default,
std::allocator<int>isused. Thus, theList isareferenceto the sametype as 1ist1l. We can
use build to put valuesinto 1ist1, but we cannot use it to put valuesinto 1ist2 because
MyIntList isnot compatible with std::1ist<int>. The following operations are also not
supported:

8/25/2005 Page 9 of 24

Pablo Halpern Towards a Better Allocator Model N1850=05-0110

Tistl == Tist2

Tistl = Tist2

MyIntList list3(listl);
NormIntList* p = &list2;
// etc.

Now, some would argue that the solution to the bui | d function problem is to templatize bui1d:

template <typename Alloc>
int build(std::Tist<int, Alloc>& theList);

or, better yet:

template <typename OutputIterator>

int build(outputIterator theIter);
Both of these templatized solutions have their place, but both add substantial complexity to the
development process. Templates, if overused, lead to long compile times and, sometimes, bloated
code. If build were atemplate and passed its arguments on to other functions, those functions
would also need to be templates. This chained instantiation of templates produces a deep compile-
time dependency such that a change to any of those modules would result in a recompilation of a
significant part of the system. For thorough coverage of the benefits of reducing physical
dependencies, see [Lakos96].

Even if the templatization solution were acceptable, once a nested container (e.g. alist of strings) is
involved, even the simplest operations require many layers of code to bridge the type-
interoperablity gap. Consider trying to compare a shared list of shared strings with aregular list of
regular strings:
typedef std::basic_string<
char,
std: :char_traits<char>,

shared_alloc<char>
> shared_string;

std::list<shared_string, shared_alloc<shared_string> > SharedList;
std::Tist<std::string> TestList;
Not only will operator== fail to compile, but employing iterators and standard a gorithms will not
work either:

bool same = std::range_equal(SharedList.begin(), SharedList.end(),
TestList.begin(), TestList.end());
The typesto which the iterators refer are not equality-compatible (std: : string vs.
shared_string). The interoperability barrier caused by the use of template implementation policies
impedes the straightforward use of vocabulary types— ubiquitous types used throughout the internal
interfaces of a program. For example, to declare a string, s using MyAlTlocator we would need to
write

std: :basic_string<char, std::char_traits<char>, MyAllocator<char> > s;

Many people find this hard to read, but the more important fact isthat s isnot an std: : string
object and cannot be used wherever std: : string isexpected. Similar problems exist for other
common types like std: : vector<int>. The use of awell-defined set of vocabulary types like
string and vector lends simplicity and clarity to apiece of code. Unfortunately, their use hinders
the effective use of STL-style allocators and vice-versa.

8/25/2005 Page 10 of 24

Pablo Halpern Towards a Better Allocator Model N1850=05-0110

Finally, template code is much harder to test than non-template code. Templates do not produce
executable machine code until instantiated. Since there are an unbounded number of possible
instantiations for any given template, the number of test cases needed to ensure that every path is
covered can grow by an order of magnitude for each template parameter. Subtle assumptions that
the template writer makes about the template’ s parameters may not become apparent until someone
instantiates the template with an innocent-looking, but not-quite-compatible parameter, long after
the engineer who created the template has left the project.

Template implementation policies can be very useful when constructing mechanisms, asin the case
of a function object (functor) type being used to specify an implementation policy for a standard
algorithm template. Alexandrescu makes a compelling case for the use of template class policiesin
situations where instantiations are not expected to interoperate. However, template implementation
policies are detrimenta when used to control the memory allocation mechanisms of basic types that
could otherwise interoperate.

4.4 Who’'s Got My Allocator?

When an allocator object is copied, the new object presumably compares equal to the original and
thus must refer to the same memory resource as the original. The rebind template described earlier
strengthens this requirement. Sometimes a single container will need to allocate memory for more
than one object type. Rather than keep multiple allocators around, the container will typically keep
one allocator member and rebind it each time a different allocator type is needed. For example, a
deque<T> will typically need to alocate arrays of T and an array of pointer-to-T. If it hasa
member, alloc, of type MyA1loc<T>, then it may use the following statement to allocate an array
of pointers:

typename MyAlloc::template rebind<T*>::other ptrAlloc(alloc);

ptrArray = ptrAlloc.allocate(n);
Thefirst line creates a pointer allocator from the non-pointer allocator. The second line actualy
alocatesthe array. Presumably, ptrAlloc isalocal variable that will go out of scope as soon the
block exits. However, the memory allocated in the second statement needs to be freed eventually,
say, using asimilar sequence in the destructor:

typename MyAlloc::template rebind<T*>::other ptrAlloc(alloc);

ptrAlloc.deallocate(ptrArray);
In order for this allocation strategy to work, ptrAlToc must access the same memory resource in
both code fragments. Thus, we must be able to assume that constructing one allocator from another
produces the same results every time. If the allocator has per-instance state, then it would most
likely be implemented as a small class containing asingle pointer to some data structure that is
shared across al allocator objects that are direct or indirect copies of one another. Thus, when
considering the impact of per-instance alocators, it is useful to think of each allocator object asif it
were a pointer.

In section 32.1 (container requirements) the 1998 standard says that two container objects, c1 and
c2, of the same type, T, compare equal if the following expression returns true:

cl.size() == c2.size() && std::equal(cl.begin(), cl.end(), c2.begin())

Notice that the allocator used to construct c1 and c2 is not mentioned. The allocator is, by
implication, an implementation detail and is not part of each container’svalue. Thisisentirely
reasonable, but the standard is not consistent on this point. Although the assignment operation,

8/25/2005 Page 11 of 24

Pablo Halpern Towards a Better Allocator Model N1850=05-0110

cl = c2;
does not copy c2’s alocator to c1, the copy constructor,
T c3(c2);

does copy c2’s allocator to c3! Thisinconsistency plays havoc with the programmer’ s choice of
allocator instance.

Consider the process of inserting elements into a vector of integer vectors. The inner vector type
uses a per-instance custom alocator, which is constructed using an enumerated value. Let’s start by
creating two such allocators and two integer vectors:

CustomAlloc<int> allocl(SYSTEM_MEM);
CcustomAlloc<int> alloc2 (LOCAL_MEM) ;

typedef std::vector<int, CustomAlloc<int> > IntvVecType;

IntVecType vl(allocl);
IntVecType v2(alloc2);

Our first insertion into an empty vector of vectors is predictable:

std: :vector<IntVecType> vv;

vv.push_back(vl);
The push_back operation will copy construct vv[0] from v1 causing vv[0] to use the same
alocator asv1 (i.e. allocl), which by itself can be problematic. The al1oc1 object may be holding
on to resources that you want to release, but you cannot release them until vv goes out of scope. If
vv[0] iscopied again, you can easily lose control over where the allocator isbeing used. The
problem is made worse if we use an insert operation:

vv.insert(vv.begin(), v2);

The new first element, vw[0], isacopy of v2, but what alocator doesit use? The answer is not
specified by the standard. Depending on the capacity of vv at the time of insert, the state of vv[0]
may have been set by either copy construction or by assignment and may thus use a copy of alloc?2
or of allocl. We have lost control of our alocators and defeated the whole point of using
alocatorsin the first place: to maintain explicit control over memory.

Some peopl e see allocators as away to improve the efficiency of memory management within their
program and believe that per-instance all ocators are not needed for this purpose. The theory isthat,
by selecting an allocator type that is tuned to the type objects being allocated, substantia
performance improvements can be realized. Studies [Berger02] and personal experience have
shown, however, that such per-class alocators produce little gain in performance over state-of-the
art general -purpose alocators. The Berger study shows that consistent performance benefits are
seen only when using region (or arena) allocators — alocators that use memory from within one or
more large regions that alow all of the memory to be freed at once. Our own experience with large
multi-threaded applications showed that thread-specific allocators can aso provide dramatic
performance benefits by reducing contention on the common heap (although not all multithreaded
allocators have contention problems). Both arena allocators and thread-specific alocators rely on
our ability to control what objects use the alocator and our ability to be able to determine reliably
when an alocator is no longer in use. Because the standard allocator model does not give us
sufficient control over per-instance allocators and because globa allocators have limited utility,
there seems to be little benefit to using all ocators according to the standard model.

8/25/2005 Page 12 of 24

Pablo Halpern Towards a Better Allocator Model N1850=05-0110

5 The Best of Both Worlds

5.1 Merging the Allocator Models

Our experience with BDE shows that per-instance allocators are much more useful than per-type
alocators. The effort that has gone into solving issue 431 indicates that we are not the only ones
who want to be able to use per-instance alocators. The challenge before us was to find away to
extend the STL allocator mechanism to support BDE-style allocation semantics while retaining
compatibility with existing standard-compliant code. For our starting point, we chose an existing
implementation of the C++ Standard Library with good compliance with the standard and excellent
portability to all of our platforms. We then went about making changes to the library in such away
that it remained compliant with the 1998 standard, but also supported the Lakos allocator model.

51.1 Wrapping bde: :Allocator

The obvious first step in bringing the STL and BDE allocator worlds together was to create an STL
alocator template that was implemented as a simple wrapper around abde: : Allocator pointer.
We debated whether to modify std: :allocator or to create an entirely separate allocator template.
In the end, the need for vocabulary typeslike string and vector<int> aswell as our desire for the
new allocator to interoperate with existing third-party libraries convinced us that modifying the
implementation of std: :allocator and retaining the type name was the preferred approach.

Theresulting std: :allocator template looks like the MmyA1Tocator template described above. Its
default constructor has the following signature:

allocator(bde: :Allocator *baseAllocator = 0);

Note that this constructor acts as a conversion operator, automatically converting a

bde: :AlTlocator pointer to astd: :allocator object. Thebde: :AlTlocator pointer isstored in a
member variable and the standard allocate and deallocate functions are implemented as simple
pass-through calls to the corresponding (virtual) functionsin bde: : A11ocator. If no pointer is
specified, the constructor obtains a pointer to the new/delete alocator singleton, thus making the
behavior identical to the standard behavior for code that is unaware of this change.

5.1.2 Modified Copy-Constructor Semantics

Because our modified allocator template now carries state, we must concern ourselves with the
semantics of container copying. As described previously, the copy construction of a container
should not cause the allocator to be copied, but we want control over the new container’s alocator.
We accomplish this objective by defining two constructors that can be used to copy each container
(exampleisfor std: :vector.):

vector(const vector& original, const allocator_type& alloc);

vector(const vector& original);
Thefirst constructor allows the caller to set the alocator explicitly. The second constructor uses
allocator_type(), i.e., the default value of the allocator. Neither constructor copies the allocator
fromoriginal. Unfortunately, this modification is technically incompatible with existing code that
uses STL-style allocators. We remedied this incompatibility by specializing the second constructor
such that original.get_allocator() iscopied (as per the 1998 standard) for any old-style (non-

8/25/2005 Page 13 of 24

Pablo Halpern Towards a Better Allocator Model N1850=05-0110

BDE) dlocators. (Seethe proposal section for details on the traits-based declarations that make this
compile-time selection of behaviors possible.)

Note that our modified std: :allocator isconsidered a BDE-style allocator and thus triggers the
new copy semantics. For exigting (third-party) code that is ignorant of this enhancement, the
behavior will not gppear to have changed, since such code would never explicitly pass an allocator
object to acontainer that uses std: :allocator and would therefore always get the default
operator new/operator delete behavior. Such code can aso manipulate a container through a
pointer or reference, oblivious to whether or not the container is using the default allocator:

void uintToString(std::string* s, unsigned i); // existing3"partyfunction

char buffer[200]; // Short-term memory for string

bde: :BufferAllocator alloc(buffer);

std::string s(&alloc); // stringwill allocate memory frombuffer
uintTostring(&s, 15); // uintToStringdoesn'tcarethat s hasa non-default allocator

In the example above, string s has allocator type std: :allocator<char>. However, thereisan
automatic conversion from bde: :Allocator* to std: :allocator<T>, so theinitialization of s is
equivalent to

std::string s(std::allocator<char>(&alloc));

In thisway, we are able to supply, at construction time, a BDE-style allocator for any string or
container that was instantiated with the default allocator. The compile-time type of the string or
container is unaffected.

5.1.3 Container and Contained Elements Using the Same Allocator

We then set about changing the containers so that they share their alocators with their contained
elements using the same type traits system described previously. The new semantic was applied
only if both the container and the contained elements were instantiated using the same new style
alocator. For most container types, this transformation involved modifying only afew pointsin the
logic where the item’ s copy constructor was being used. However, because of the way the library
was origindly written, we had to completely rewrite vector and deque in order to get this piece of
functionality.

Ideadlly, any user-defined class that needs to allocate memory (directly or via acontainer member)
should use an allocator. We made it a habit to put an optiona bde: :Al1locator* argument at the
end of the constructor arguments (including the copy constructor arguments) of any class that
allocates memory. This constructor argument can be used to initialize the alocator for any STL
container member. For example, acalendar class might be declared like this:

class calendar {
private:
iﬁd::vector<std::t1me_t> holidays;
public:
// Default constructor:
explicit calendar(bde::Allocator* basicAllocator = 0);

// Copy constructor:
calendar(const calendar& other,
bde::Allocator* basicAllocator = 0);

// Another constructor

Calendar(std::time_t startDate, std::time_t_endDate,
bde::Allocator* basicAllocator = 0);

8/25/2005 Page 14 of 24

Pablo Halpern Towards a Better Allocator Model N1850=05-0110

3
The default constructor would pass the allocator through to its container member(s):

Calendar::calendar(bde::Allocator* basicAllocator)
: holidays(basicAllocator)

// ...
}
Thislogic is the same for the other constructors. We take advantage of the automatic conversion
frombde: :Allocator* to std: :allocator<size_t> and the fact that this conversion
automatically uses the new/delete allocator if it is passed anull pointer.

5.2 Move-Semantic Operations

5.2.1 Copying Values vs. Moving Objects

We say that atype has value semanticsif it has awell-defined notion of value, typically defined
operationally by operator==, that is copied by the copy-constructor and assignment operator. STL
container types are value-semantic types, as are strings, built-in types, pointers and enumeration
types. Two containers compare equal if each of their elements compare equa — the containers
allocators are not examined by operator== because the allocators are not part of the containers
values.

Value semantic types are closely associated with copy-semantic operations — operations that copy
the value of an object without modifying the object being copied. However, the C++ language and
library define certain operations which have what we call move-semantics. A move-semantic
operation is an operation on an object that conceptually moves the entire object, including its non-
value attributes, to anew location. Examples of move-semantic operations are std: : swap, Copy-
avoidance optimizations (including the RV O), and some uses of the proposed rval ue reference
[N1690]. After amove operation, an object’s identity appears to have moved to a new address.
Most uses of move-semantic operations are optimizations to reduce the number of copy operations.

Move-semantic operations do not invalidate our allocator principlesif our notion of “object” is
flexible enough to include the possibility that the object may be moved. We must be extra careful,
however, because the optimizations provided by move-semantic operations makes it tempting to
apply them where they could cause unintended effects. (Note that this issue isnot limited to
allocators. There are other examples of non-value attributes that are not expected to be copied when
the value is copied: Imagine amutex member of a thread-safe object.) The purpose of this section
isto explore the interaction between move semantics and non-value attributes (especialy alocators)
and propose some algorithms and practices that can be applied to improve the chances of writing
correct code.

5.2.2 Swap

The 1998 standard requires that swap, when invoked on standard containers, must be a constant
time operation and must never throw. Thisisaccomplished by re-assigning pointers within the
container data structure, without actually copying any elements. This becomes a problem when the
containers being swapped have different allocators, since it would separate allocated memory from

8/25/2005 Page 15 of 24

Pablo Halpern Towards a Better Allocator Model N1850=05-0110

the allocator needed to de-allocate it, as described in issue number 431 of the Library Active Issues
List [Issued31].

Some favor resolving issue 431 by swapping the allocators a ong with the values when swap is
called to exchange the contents of two containers with unequal alocators[N1599]. Thisresolution
allows swap to remain an O(1) operation, retains the nothrow guarantee, and prevents invaidation
of iterators and references. An unstated consequence of this changeis that swap becomes a move-
semantic operation for standard containers — the containers being swapped effectively trade places
rather than just trade values. Thisis reasonable behavior for most current uses of swap. For
example, it is probably appropriate for algorithms like std: :sort and std: : reverse, to
conceptualy move elements around, and the performance benefit can be substantial .

Other uses of swap may require extracare. Swap is often used to provide a strong exception-safety
guarantee. For example, the following function uses swap to atomically replace the value of a string:

void uintToString(std::string* s, unsigned 1)

jtd%:string temp;

o
te?p.insert(o, 1, i %10 + '0'); // might throw
i /= 10;

} while (i 1= 0);

s->swap(temp); // never throws

For this use of swap, the main criteriais that swap must not throw an exception. However, the swap
operation in the code above might change the allocator type used by *s, with undesirable
consequences. This problem is easily remedied by carefully choosing the allocator when
constructing the temporary variable:

void uintToString(std::string* s, unsigned 1)

jtd%:string temp(s->get_allocator());
o
temp.insert(0, 1, i % 10 + '0');
i /= 10;
} while (i 1= 0);
s->swap(temp);

With the above change, the swap operation is guaranteed to be invoked on two objects with the
same allocator, making the distinction between move semantics vs. copy semantics mute.
Explicitly setting the alocator of the object to be swapped is good practice, even if this proposal is
not accepted into the standard.

The most dangerous (and, fortunately, least common) use of swap isto exchange the values of two
unrelated objects. The user in this case would amost certainly be adversely affected by the alocator
change caused a move-semantic swap. Rather than leave this as atrap for the unsuspecting novice,
we propose to create a second algorithm, swap_value which, by default, isimplemented as the
standard three copy operations (temp = a, a= b, b = temp). The swap_value agorithm has neither
the complexity guarantee nor the nothrow guarantee of swap. (Note that swap is only guaranteed
O(1) and nothrow for standard containers and other classes that make this guarantee explicitly.)
Trivia though it is, there are good reasons to make swap_value a part of the standard:

8/25/2005 Page 16 of 24

Pablo Halpern Towards a Better Allocator Model N1850=05-0110

e Having std: : swap_value along with (and aphabetically adjacent to) std: : swap should cause
the casua user to ponder a moment before selecting the algorithm that is appropriate to the
situation.

e Containers can optimize swap_value to be as fast as swap in the case of equal allocators, and to
use only two copies rather than three in the case of unequa allocators:

template <ty?ename T, typename Alloc>
void swap_value(vector<T,Alloc>& a, vector<T,Alloc>& b) {
if (a.get_allocator() == b.get_allocator()) {
a.swap(b);

else {
vector<T Alloc> temp(a, b.get_allocator(Q));

b swap(temp), // Avoid third copy operation

}

If one desires a copy-semantic swap operation with the strong exception safety guarantee, this can
be achieved at the cost of additional memory using the following algorithm (“Halpern’s
Algorithm”):

temp]ate <ty?ename T, typename Alloc>
void swap_value_atomic(vector<T,Alloc>& a, vector<T,Alloc>& b) {
// Exception-safe swap of two vectors using Ha]pern s Algorithm
if (a.get_allocator() == b.get_allocator()) {
a.swap(b);

else {
// Unequal allocators. Copy each vector using the other
// one’s allocator. An exception will leave both a and b
// unmodified.
vector<T,Alloc> temp_a(a, b.get_allocator()); // might throw
vector<T,AlToc> temp_b(b, a.get_allocator()); // might throw
a.swap(temp_b); // nothrow
b.swap(temp_a); // nothrow

}
}

At thistime, we are not proposing swap_value_atomic for inclusion in the standard.

5.2.3 Elided Copy Constructors

An implementation is permitted avoid calling a copy constructor for making a copy of atemporary
variable or for creating atemporary variable from the return value of afunction (the return-value
optimization). In each of these cases, the origina object and the would-be copy are treated as the
same object. These optimizations have the qualities of move-semantic operations; in particular, the
allocator and other non-val ue attributes are determined not by the new object’ s copy constructor,
but by the constructor of a conceptually different object elsewhere in the program. The presence of
these optimizations are theoretically problematic, but the problems can be easily avoided with
simple programming conventions. To illustrate the problem, consider this function:
std::string tellMe(int time) {

char buffer[200]; // temporary buffer

buffer_allocator alloc(buffer, 200); // temporary allocator

std::string temg(&a]]oc), // uses temporary allocator

temp = "I'm telling you for the ";

switch (time) {

case 1: temp += "first"; break;
case 2: temp += "second"; break;

8/25/2005 Page 17 of 24

Pablo Halpern Towards a Better Allocator Model N1850=05-0110

case 3: temp += "third"; break;
temp += " time!";
return temp;

std::string told = tellme(2);

Section 12.8, paragraph 15 of the standard says that a copy constructor does not need to be invoked
to copy temp to the return value of tel1me, nor does a copy constructor need to be invoked to copy
the return of tel1Mme into tol1d. Instead, temp can be constructed directly into to1d, avoiding two
copies. Unfortunately, this means that the allocator for to1d is determined not by the constructor
for to1d, but by the constructor for temp. To make matters worse, temp uses atemporary allocator
that goes out of scope before to1d isdestroyed. The solution to this problem is to simply get into
the habit of always using the default allocator instance for any returned value, either by constructing
it that way:

std::string temp; // use default allocator instance

or by an explicitly copying it (using the extended copy constructor) on return:
return std::string(temp, std::allocator());

524 Rvalue References

A proposal for rvalue references [N1690] provides away to explicitly modify temporary variables,
often by “pilfering” their contents using swap. Once again, care must be taken to ensure that the
desired allocator semantics are preserved. For example, the optimization enabled by the rvaue
reference could be disabled for unequal alocators:

void myclass::setvalue(std::string&& v) {

if (v.get_allocator() == value.get_allocator())
] value.swap(v); // pilfer temporary variable
else
value = v; // slow copy, preserve value’s allocator

}
Thislogic can aso be incorporated into an rvalue extended copy constructor:

template <typename T, typename Alloc>
X::X(X&& other, a11ocator_ty?e alloc) {
if (alloc == other.get_allocator) {
] // pilfer contents of other
else
// copy the contents of other

}
5.3 Reaping the Benefits

The BDE system of per-instance allocators has had a profound impact on the way we manage
memory. The original STL allocators were used only in very specialized corners of an application,
where per-type allocators did not pose a problem. The new allocators, conversely, are used
throughout our code to give us more control over memory use. Some of the ways we use allocators
are:

¢ Inavery large system, we share objects across processes simply and efficiently using a shared-

memory allocator. Because containers propagate their allocators to their contained elements,
only the root of a complex data structure needs special treatment in order to be shared.

8/25/2005 Page 18 of 24

Pablo Halpern Towards a Better Allocator Model N1850=05-0110

¢ Inamodule that reads data from an external source, we use alimit allocator to prevent denial-
of-service attacks.

¢ Inamessaging module, we build up acomplex container-within-container data structure using a
very fast arenaallocator (allocate simply returnsthe next sequential memory block,
deallocate does nothing). When the message is complete and has been transmitted, we delete
the allocator, releasing all memory at once, without ever calling adestructor. (This approach
requires that the objects in question not acquire any resources except for memory and that they
alocate al of their memory using the allocator. The destructors must not have any side effects.)

e Hundreds of unit-test drivers use atest allocator to ensure that the components under test neither
leak memory nor use it extravagantly. The test drivers also use the test allocator to simulate out-
of-memory conditions in order to prove that the components under test are robust in the face of
exceptions.

6 Formal Proposal

Everything I’ ve written up to this point constitutes the motivation for a proposed change to the
containers and allocators section in the emerging revision of the C++ standard. What followsisa
preliminary draft of aformal proposal for enhancements to the C++ standard library for C++0x.
This proposal basically promotes the BDE modificationsto the STL allocator mechanism (with
names and other details changed to be more standard-like). The BDE project, as described above,
provides an example of an existing implementation and invaluable source of experience.

1. Add anew abstract classallocator_implementation tothe <memory> header and a concrete
derived class newdelete_allocator_implementation as follows:
class allocator_implementation {

public:]]
typedef size_t size_type;

virtual void* allocate(size_type n, void* hint = 0) = 0;
virtual void deallocate(void* p) = 0;
virtual ~allocator_implementation();

1

class newdelete_allocator_implementation
: public allocator_implementation {
public:
static newdelete_allocator_implementation* singleton();

void* allocate(size_type n, void* hint = 0);

void deallocate(void* p);
To make these classes easier to use, overload placement new and delete operators for the base
class:

void* operator new(allocator_implementation& a, size_t bytes);
Void operator delete(allocator_implementation a, void* p);

Effects. operator new returnsa->allocate(bytes, 0).
operator delete calsa->deallocate(p).

Note: The placement-style operator delete described hereiscalled only when an exception
is thrown from a constructor while using the corresponding placement-style operator new.

8/25/2005 Page 19 of 24

Pablo Halpern Towards a Better Allocator Model N1850=05-0110

Our proposal does not present a one-step method for destroying and de-allocating an object that
was successfully created using the operator new described here.

2. Modify the constructor and add members to the default allocator template as follows:

template <typename TYPE>

class allocator {
g}]ocator_imp]ementation* imp; // exposition only
ublic:

P allocator(allocator_implementation* i = 0);
allocator_implementation get_implementation() const;
void swap(al l:I)ocator& other) throw();

// rest of template remains the same

Constructor effects: If i is non-zero, initialize imp to i, otherwise initialize imp to
newdelete_allocator_implementation::singleton().

Allocate effects. Returnsimp->allocate(n * sizeof(value_type)).
Deallocate effects: Calls imp->deallocate(p).
Swap effects: swap(this->imp, other.imp).

3. Add to the allocator requirements that for any alocator type, A, there must be a function
swap (A&, A&) throw() toexchange the mechanisms of two allocators such that after the call
each allocator controls the memory previously controlled by the other. Add the following
definition to <memory>:

template <typename Type>
void swap(allocator<Type>& a, allocator<Type>& b) throw();

Effects: a.swap(b).

4. Declaretwo traits classes (see TR1 traits) as follows. [The library working group may choose a
better name than new_allocator to describe the Lakos allocator model.] Thesetraitsallow
container classesto share their allocators with their contained elements automatically:

template <typename Alloc> struct is_new_allocator : false_type;
template <typename Type> struct uses_new_allocator : false_type;

With partial specidizations asfollows:

template <typename Type>
struct is_new_allocator<allocator<Type> > : true_type { };

template <typename Type, typename Alloc>
struct uses_new_allocator<vector<Type, Alloc> >
: is_new_allocator<Alloc> { };

Specialize similarly for other container and string class templates.

In general, aclass should speciadize uses_new_allocator to evaluate to true_type if it uses
an allocator for which is_new_allocator<allocator_type>::valueistrueandif it hasa
copy constructor that takes an (optional) allocator. A class should specidize
is_new_allocator if itisan alocator that isintended to be used with the semantics described
in this paper (i.e., propagated to contained elements and not copied when container is copied).

8/25/2005 Page 20 of 24

Pablo Halpern Towards a Better Allocator Model N1850=05-0110

Note: If the concepts proposal [N1758] is accepted into the standard, these traits could be
expressed as concepts instead.

5. For each standard container, container adaptor, or string template class, container, add an
“extended copy constructor”:

Container(const Container& c, const allocator_type& alloc);

The allocator, alloc, isused by the container for internal memory alocations.

6. For each standard container, container adaptor, or string template class, container, change the
meaning of the normal copy constructor (Container(const Container& c)) as follows!

If is_new_allocator<allocator_type>: :value iStrue, then construct the container as
though it were constructed with container(c, allocator_type()). l.e, theallocator from c
IS not copied.

Otherwise, construct the container as though it were constructed with container(c,
c.get_allocator()). Thisbehavior conformsto the 1998 standard.

7. For each standard container or container adaptor, container, add an “extended default
constructor”

explicit Container(const allocator_type& a);

(vector, deque, and 11 st already have a constructor like this.) Since this proposal isintended
to make per-instance all ocators more useful, this constructor is intended to make them more
convenient aswell. In addition, for stack, queue and other container adaptors, it is necessary
to provide away to specify an alocator in the first place, since the allocator is not necessarily
copied from the underlying container.

8. Each non-container class defined in the standard, T, that is copy-constructible and assignable
and which alocates memory (e.g., TR1: : function) must use an allocator. The trait
uses_new_allocator<T>::value must betrue. The semantics of T's copy constructor must
match the description in item 6. T must also have an extended copy constructor as described in
item 5. If T has adefault constructor, then it must also have an extended default constructor as
described initem 7.

9. For each standard container, Container, enhance the meaning of insert, push_back, and
other functions that construct new e ements within the container as follows:

If uses_new_allocator<value_type>::valueistrueand if
is_new_allocator<allocator_type>::valueistrueandif allocator_type isconvertible
to value_type: :allocator_type, then construct a new element with vaue v by caling the
constructor value_type(v, get_allocator()). Thislogic propagates the container's
allocator to each contained element.

Otherwise (if the above conditions are not al true), then construct the new element with
value_type (v). Thisbehavior conforms to the original 1998 standard.

10. Enhance pair<T1l, T2>inamanner similar to containers:

8/25/2005 Page 21 of 24

Pablo Halpern Towards a Better Allocator Model N1850=05-0110

11.

12

13.

14.

If uses_new_allocator<Tl>::value istrueor uses_new_allocator<T2>::value iStrue,
then uses_new_allocator<pair<Tl, T2> >::value shall aso betrue and the following
members will be added to the pai r class (in addition to the members already defined in the
current standard):

typedef see below allocator_type;

pair(const T1l& vl, const T2& v2, const allocator_type& alloc);

pair(const pair& p, const allocator_type& alloc);
For both of these constructors, alloc is used as the second argument of the extended copy
constructor for first or second or both. The allocator type is either typename
Tl::allocator_type: :rebind<void>::other or typename
T2::allocator_type: :rebind<void>::other, depending on which parameter has the
uses_new_allocator trait. If both T1 and T2 have the trait, then T1 is chosen. If both have the
trait but T1: :allocator_type isnot convertibleto T2: :allocator_type then the programis
ill-formed.

Note: this change isimportant for implementing the all ocator semanticsin map and mul1timap.

Add overloaded versions of the uninitialized_copy, uninitialized_fi11, and
uninitialized_f1i11_n agorithmsto make constructing contained elements easier:
template <typename InputIterator, typename ForwardIterator,
typename Allocator>

uninitialized_copy(InputIterator first, InputIterator last,
Forwarditerator result, const Allocator& alloc);

template_ <typename ForwardIterator, typename T, typename Allocator>
uninitialized_fill(ForwardIterator first, ForwardIterator Tast,
const T& x, const Allocator& alloc);

template <typename ForwardIterator, typename Size, typename T,
typename Allocator>
uninitialized_fill_n(ForwardIterator first, Size n,
const T& x, const Allocator& alloc);

In al of these functions, the meaning is the same as the corresponding a gorithm without the
allocator argument except that if uses_new_allocator<typename

ForwardIterator: :value_type>::valueistrueand Alloc isconvertibleto typename
ForwardIterator::value_type::allocator_type then Forwarditerator::value_typeiS
constructed using alocator alloc.

. Add an allocator argument to the constructors of stringbuf, stringstream,

istringstream, and ostringstream. (If any replacement iscreated for strstream, it, too,
must have an allocator argument.)

Add amutating algorithm:
template <typename T> void swap_value(T& a, T& b);

Effects. temp=a,a=Db; b =temp

swap_value shall be overloaded for each standard container and string class template:

template <typename T> void swap_value(Container<T>& a, Container<T>& b);

Effects. exchange the elements, but not the allocators of a and b.

8/25/2005 Page 22 of 24

Pablo Halpern Towards a Better Allocator Model N1850=05-0110

Complexity: constant timeif a.get_allocator() == b.get_allocator(),

a.size() + b.size() copy operationson T (each element is copied once) if
a.get_allocator() != b.get_allocator().

Throws:. nothing unless copy operation on a or b or one of their elements throw. a and b will
have indeterminate (but valid) valuesin case an exception is thrown

[Note: we could also add a swap_value_atomic(Container&,Container&) function that
would have no default declaration but would be defined for each standard container type. It
would add the guarantee that a and b would be unmodified in case of exception (e.g. using
Halpern’s agorithm).]

7 Conclusion

The 1998 C++ standard defines an alocator model in which alocation policy is specified as a
template parameter to container class templates. We found the standard’ s allocator model deficient
in anumber of respects: container types instantiated with one allocator do not interoperate with
otherwise identical container types instantiated with different allocators. Even when thisisnot an
issue, the semantics of copying allocators causes one to lose control over histher allocator objects,
making per-instance allocators impractica.

The BDE project uses a powerful model, developed by John Lakos, of per-instance alocators that
cleanly separate a container’s memory allocation policy from its type and value. BDE containers
automatically share their allocator with their contained elements, producing a single memory
allocation domain for each complex object. This mechanism proved very powerful, easy to use and
easy to extend. We were able to use it extensively to achieve data sharing, increase efficiency, and
facilitate testing.

Merging L akos's alocator model into an existing implementation of the C++ standard library, we
were able to get the best of both worlds. Our new STL continues to comply with the 1998 standard,
but we were able to get the benefits of per-instance allocators on which we had cometorely. In
addition, we implemented a solution to an outstanding standard library issue 431 (Swapping
containers with unequal allocators) that is consistent with our allocator philosophy. Our experience
provides an existing implementation and points the way to ageneral approach that can be
incorporated into the emerging revision of the standard.

8 Bibliography
[Alexandrescu01] Alexandrescu, Andrei, Modern C++ Design, Addison-Wesley 2001
[Berger02] Berger, Emery, McKinley, Kathryn and Zorn, Bengamin, Reconsidering

Custom Memory Allocation, ACM OOPSLA’02 2002.
http://www.cs.umass.edu/~emery/pubs/berger-oopsla2002.pdf

[Issue226] Abrahams, Dave (submitter), C++ Standard Library Active Issues List: User
supplied specializations or overloads of namespace std function templates.
ISO/IEC 2000.
http://www.open-std.org/jtcl/sc22/wg21/docs/Iwg-defects.html#226

8/25/2005 Page 23 of 24

Pablo Halpern

[Issue431]

[Lakos96]

[LoRusso01]

[N1599]

[N1690]

[N1758]

[Maddock01]

[Stepanovos]

[TR1]

8/25/2005

Towards a Better Allocator Model N1850=05-0110

Austern, Matt (submitter), C++ Standard Library Active Issues List:
Swapping container s with unequal allocators. 1ISO/IEC 2003.
http://www.open-std.org/jtcl/sc22/wg21/docs/Iwg-active.html#431

L akos, John, Large-Scale C++ Software Design, Addison-Wesley 1996

Lo Russo, Graziano, An Interview with A. Stepanov, Edizioni Infomediasrl.,
2001
http://www.stl port.org/resources/ StepanovU SA.html

Hinnant, Howard, Issue 431: Swapping containerswith unequal allocators
JTC1/SC22/WG21 N1599=04-0039, 2004
http://www.open-std.org/jtcl/sc22/wg21/docs/papers/2004/n1599.htmi

Hinnant, Howard, Abrahams, Dave and Dimov, Peter, A Proposal to Add
Rvalue Reference to the C+ Language. ISO/IEC JTC1/SC22/WG21
N1690=04-0130, 2004.
http://www.open-std.org/jtcl/sc22/wg21/docs/2004/n1690.htm

Jeremy Siek et al, Concepts for C++0x. ISO/IEC JTC1/SC22/WG21
N1758=05-0018, 2005.
http://www.open-std.org/jtcl/sc22/wg21/docs/2004/n1690.html

Maddock, John, Cleary, Steve, et al., Type Traits, boost.org 2001.
http://www.boost.org/libs/type traits/index.html

Stepanov, Alexander and Lee, Meng, HP Labs Technical Reports: The
Standard Template Library, Hewlett-Packard L aboratories 1995.
http://www.hpl.hp.com/techreports/95/HPL -95-11.html

Austern, Matt (editor), Proposed Draft Technical Report on C++ Library
Extensions, |SO/IEC 2005.
http://www.open-std.org/jtcl/sc22/wg21/docs/papers/2005/n1745.pdf

Page 24 of 24

