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The Memory Model and the C++4 Library, Non-Memory Actions etc.

1.0. Introduction

This is an attempt to describe how various actions can be bound to the C++ memory model. The
wording in this document is a complete crock, because the author is neither a C++ programmer nor familiar
with C++ standard notation, so please do not regard it as a good draft of an actual specification.

It includes wording that is intended to cover more than is in the current C++ standard. This is because
it is essential to give guidance to those extending C++ if those extensions are not to conflict with each other,
and even the intent of the C++ standard. Existing, important uses and proposed extensions include LIA-1,
IEEE 754, POSIX, MPI, OpenMP and many others that the author knows about but is not familiar with,
such as database interfaces.

Most of these are in the form of external libraries, and add few problems that are not already in C++,
except as for the following aspects:

e They very often use C++ features that are not currently used in the C++ Standard Library interfaces.

e Asynchronicity, including asynchronous I/O (POSIX and other), message passing (including MPI non-
blocking calls), and so on, almost always of the sort where the asynchronous action can be bound either
to a flow of control (a thread) or to a specific object.

[ Experience is that such controlled asynchronicity is manageable; the general case is much harder and is
ignored in this document. The author has implementation experience of it in the context of a von Neumann
language, and baulks at adding it to a CPL-derived language standard.

One must also not forget the buffer passed to setbuf and setvbuf, which has memory consistency semantics
as if it were being used asynchronously. ]

e Exceptions in the normal computer science sense, including LIA-1 and IEEE 754R floating-point flags
and traps, POSIX signals, their equivalents on other systems (e.g. zOS abends), and so on.

Obviously, this document does not propose that those extensions should be added to C++, but it seems
reasonable to have a framework of how they should map to the C++ memory model, for guidance to
implementors that wish to do so. Also, in many of those cases, there are proposals for such extensions and
groups working on them, and POSIX is used from a great many important C++ programs.

[ Let’s not get started on GUI interfaces, which are often used from C++, and would be ideal candidates
for threading if they were not so unspeakable. Some kind of a C++ framework could only help to improve
them, but adapting C++ enough to permit them would destroy much of C++. For example, many objects in
important GUI interfaces may be accessed both from synchronous (main thread) code and from asynchronous
event handlers, with no requirement for any explicit synchronisation actions. At this point, one may laugh,
cry or scream, to taste. Here, I merely close my eyes to that issue and hope that it will go away. |

Unless stated otherwise, all references are to ISO/IEC 14882:1998 (C++), IEEE Std 1003.1 2004 (POSIX)
or ISO/IEC 9899:1999 (C99). LIA-1, (ISO/IEC 10967), IEEE 754 (ISO/IEC 10559), MPI (see
http://www.mpi.org) and OpenMP (see http://www.openmp.org) are also referred to.
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1.1. Basics of the Approach

Library function calls, dynamic library actions, other state access and changes, non-memory actions and
even exceptions are mapped to (possibly composite) virtual memory actions, for the purpose of defining
threading consistency. Unless stated otherwise, all such actions have sequenced-before constraints and re-
lations exactly as if they were memory actions of a similar type (i.e. an ordinary read or update).

A non-memory action will behave like a read only if it is permitted to occur multiple times between a pair
of sequence points, and this is more restrictive than being a “read-like” action. This has to be flannelled a
bit, because the sequence point specification is such a mess, but indicates the intent.

[ This does not seem to be required by current C++, but the condition is critical if there is ever to be a C++
binding to certain other standards. For example, catching an exception (such as a POSIX signal) is not a
read-like action. |

This document distinguishes between the C++ standard library functions that are not in the C Library
and those that are. To give some flexibility to implementors, it also distinguishes between those included
via the headers in C++ sections C.2 and D.5. See under the section on the C Library for why; it is not a
pretty problem.

For sanity, it assumes that the memory model will define the following concepts, and that any specification
of an API will include at least the latter two (though that may be naive):

1. A full simplex synchronisation action between threads A and B, such that everything in thread A that is
sequenced before the action happens before everything in thread B that is sequenced after the action.

2. A full duplex synchronisation action between threads A and B, such that everything in either thread
that is sequenced before the action happens before everything in either thread that is sequenced after the
action.

3. A full barrier synchronisation action between all threads, such that everything in any thread that is
sequenced before the action happens before everything in any thread that is sequenced after the action.

I don’t think that it is necessary to forbid actions that are sequenced after the synchronisation actions
from being brought forward, except as forbidden by the main memory model, but that needs more checking.

1.2. Aggregate Objects

The first one is a slight conflict between the body of the language and the library, and shows up in
a similar conflict between Hans Boehm’s document and this one. It is whether aggregate objects (usually
arrays) passed as arguments to library functions should be treated as unitary or as a collection of subobjects.
There are three main arguments:

e The traditional C (and C++) model is that the basic operations are on basic types, and their object
model uses that assumption.

e This was changed, both explicitly and implicitly, by ISO C and C++, for good software-engineering and
performance reasons.

e It seems a bad idea to have wildly separate semantics for containers, opaque aggregates and aggregates
with a visible type (see below).

Let’s consider just the issue for floating-point arrays (created by valarray). Most current hardware
does the simple cases and expects the harder ones to be fixed up by emulation. One of the traditional and
efficient implementations of array operations is to check once at the end, and emulate the action on the
whole array if needed. Now, this means that data may be stored twice. There are similar possibilities in
<basic_string.h>.

In Hans Boehm’s model, any program that can detect that is undefined, unless the basic type is atomic
(i.e. __async volatile); not a major problem. But it seems to be a bad idea to add an unnecessary trap
for programmers and implementors, so this document takes the approach that actions on aggregate objects
act on the whole object, as far as memory synchronisation rules are concerned. Fortran uses that model,
very successfully.
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The alternative approach would be possible, but it would mean a lot more wording for some library calls,
and introduces data-dependent memory synchronisation conditions within library calls — e.g. exactly how
many bytes are strcat, fprintf, fscanf and (worse) strtok specified to access, and how, as far as the
memory model is concerned?

1.3. Containers and Similar

Consider structures like the one created by the following:
typedef struct { double *ptr; int len; } fred;
fred joe[100];

for (1 = 0; i < 100; ++i) {
joel[il.len = rand()+1;
joe[i].ptr = (double *)malloc(joe[i].len*sizeof (double));

3

Hans Boehm’s memory model makes it clear that operations on joe may be performed in parallel, provide
that they don’t clash on the actual elements referred to. So far, so good. But should that still apply when
joe is a container with an opaque implementation (such as those in the C++ Standard Library)? And
should the semantics be permitted to be different if, say, the vector class is implemented as an array or as
a height-balanced tree? If so, we have one of two choices:

o Whether programs have defined behaviour or not depends on unspecified properties of the implementation.
e The specification must state exactly how the implementation behaves.

Neither solution is good — indeed, in my view, neither is acceptable. This leaves us with two choices,
where the decision could be made separately for each container class, or even each method within a class:

e The actions are on the container as a whole, and unserialised incompatible actions (e.g. two updates) on
the same container object in two threads is undefined behaviour.
e The class is required to implement the actions as if they were atomic (i.e. to use locking where needed).

The first is likely to be considerably faster, but the second is considerably more useful. In fact, it would
be perfectly reasonable to either replicate the classes or use the template mechanism to provide both sets of
semantics.

My understanding of C++ is that it would be natural to choose the first (unconditionally) for the general
utilities, strings and numerics libraries (see below for streams and stream buffers), and the real issue is what
to do about the containers library. The iterators library would use the semantics of the construct it was
iterating over, I assume, but that needs checking.

1.4. Templates

This includes anything with class arguments, if there are any other such constructions in C++. My
understanding of such things is inadequate to suggest any approach — there may be nothing to specify,
but I mention them merely because I cannot convince myself that such things as the initialisation of static
members have no threading implications beyond the obvious.

1.5. Streams

I defer a discussion of these until later.

2.0. Specific Proposals

While the following may be controversial, I think that there is less choice than might appear, and the
following proposals follow almost inevitably from the existing C++ model, Hans Boehm’s memory model,
and the assumed requirement to make some kind of sense in combination with POSIX-style threading.
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POSIX is not used as a model, for reasons described in my other document and summarised later, but
this should be compatible with the defined aspects of POSIX threads.

2.1. Thread Safety in the C++ Library

Absolutely thread safe is when a function is defined to operate using solely thread-local data and state,
objects accessed by its arguments or specified named objects. Whether two such functions can be called
concurrently in different threads is determined solely by the memory consistency rules on those objects.

Conditionally thread safe is when a function is defined to behave as it it were absolutely thread safe in
the absence of exceptional conditions. However, calling two such functions in two threads may cause either
or both to fail, whether by returning an error indication, throwing exceptions or otherwise.

Not thread safe is when a function is not defined to be either absolutely or conditionally thread safe.

Two hidden objects are connected if they are the same hidden object, or sub-objects of a single hidden
object, which may be internal or external (see under External Actions). Two functions are connected if they
access the same object or two connected objects. Connected functions are never absolutely thread safe.

[ Global data that is set up before any program code is entered and is never changed is ignored. ]

For example, any function that may use memory allocation internally, or may use any variable global
state, can be at most conditionally thread safe.

Some functions in the C Library return objects that other standards specify may be either reused or may
be new in each call (e.g. getenv); these are classed as not thread safe, following POSIX.

Unless otherwise specified, the following will hold:

1. A program that accesses two connected objects, of which either access is an update, in two threads without
separating them by a full duplex synchronisation action is ill-formed.

2. A program that calls a not thread safe function, or two connected functions either of which is not thread
safe, in two threads without separating them by a full duplex synchronisation action is ill-formed.

[ The last two conditions may seem draconian, but could make a massive difference to implementability. |
The main connexions in the C++ library are:

3. The stored global locale is a single atomic hidden object, which is read in its entirety, precisely once per
call, by all functions that use any aspect of that stored locale. global from <locale> and setlocale
from <clocale.h> and <locale.h> update that object, writing to it precisely once per call.

[ It would be better to make all functions that use the stored locale not thread safe, but that would be a major
clash with POSIX. The loss of efficiency for locale-using functions is tolerable, unlike that for cin, cout etc.
Note that the above means that updating it in parallel is not defined but using it in parallel with an update
will get either the old or the new value. ]

4. The <iostream> objects cin and wcin and the <cstdio.h>/<stdio.h> object stdin are connected,
as are cout, wcout and stdout, and cerr, clog, wcerr, wclog and stderr.

6. All file-based streams, FILE objects and functions that take a file name as an argument that refer to the
same file are connected by their external object (see under External Actions).

There is one nasty but important omission from the above: asynchronous signals. That is discussed in
the relevant section.

2.2. Default C++4 Standard Library Call Semantics

Unless otherwise specified, the specification of a library function call or similar action is mapped to virtual
memory actions as if the function behaved in the following way, irrespective of its actual behaviour in any
particular call:

1. All const argument and named objects are read in their entirety. In the case of an argument that is a
pointer but the object pointed to is used, the latter is read.
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2. All other argument and named objects are updated in their entirety. In the case of an argument that is
a pointer but the object pointed to is used, the latter is updated.

3. All accesses to argument and named non-atomic objects occur simultaneously.

4. All accesses to argument or named atomic objects occur an indefinite number of times in an indefinite
order. If the permissible variations affect the results in any way, except as explicitly permitted by the
specification, the program is ill-formed.

[ This is currently unnecessary, but it is trying to define a model which allows for future expansion, including

the includion of an atomic library! Note that this requires a very precise specification of any library function

that uses atomic objects. |

5. No other form of sequencing or thread locking is performed within the function.

6. Where a call is specified to set a state that changes the behaviour of another call or language feature, or
save an rvalue for later use, it updates a hidden object.

7. Where a call is specified to save an lvalue for later use, it updates both a hidden object and the object
defined by that lvalue.

[ This is needed because the C++ standard allows the the implementation to copy read-only objects. ]

8. Where the order of calling two such functions is specified to be significant, explicitly or by implication,
on subsequent function calls, they update (possibly sub-objects of) the same hidden object.

9. Where a call uses such a saved state or rvalue, it accesses that hidden object.

10. Where a call uses such a saved lvalue, it accesses both that hidden object and the object defined by that
lvalue.

11. Where such calls may be used an arbitrary number of times between sequence points, the access is a read
action, otherwise it is an update.

[ Note that, as far as the above condition is concerned, f()+g() invokes two calls between a pair of
sequence points. The intent of the C and C++ standard is almost certainly that they are sequenced in an
unspecified order (though its wording is ambiguous), but this condition assumes that they may be interleaved
for the purposes of exposition. |

2.3. Allocation, Deallocation etc.

1. Implicit allocation and deallocation of memory behaves as if it were performed by calls to the appropriate
library functions with the calls from the appropriate thread, and sequenced like a normal operation.

[ Yes, I know that the C++ standard already says this! |
2. All memory allocation and deallocation (destruction) actions are conditionally thread-safe in the sense

defined below, except that one thread’s allocation of memory may cause it to be inaccessible to other
threads until it is both deallocated and that fact is communicated to other threads.

3. At a full global barrier action, all deallocated memory becomes available for use by any thread. When
thread A performs a full simplex or duplex synchronisation action with thread B, then all memory that
has been deallocated by thread A since becomes available for use by thread B. Obviously, ‘deallocated’ in
this context refers only to memory that has not been reallocated since deallocation.

[ This one is often forgotten. Many standards and implementations have temporary dynamic leaks — which
s unavoidable — but do not specify any method of clearing them! It is a very heavy implementation penalty
to insist that it becomes available immediately upon deallocation. The above is an arbitrary set of rules, and
many others would work. ]

2.4. Exceptions and Events

The following conditions refer to C++ exceptions, as defined in chapter 15 of the C++ standard, whether
they are raised by a throw statement, by compiled code or the standard library.

1. All exceptions shall be thrown in the thread where the action causing the exception occurred, and se-
quenced as part of that action.
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[ The IBM System/390, the DEC Alpha, the Intel/HP Itanium and many other architectures may raise
exceptions asynchronously, unless the implementation takes special action to stop that. |

2. There is a sequence point between all actions (including all memory accesses) between the point the
exception is thrown and the calling of the handler. Also, from the viewpoint of thread safety, a function
call terminates when it returns or throws an exception.

[ Without this, there is a ghastly problem deciding when accesses will complete, if ever. Because exception
handling (even the C++ form) is potentially out-of-band, the sequence point rules in C++ 1.9 paragraph 17
are not enough. Actually, they are not enough even at present, because throwing an exception in a function
with a handler outside it means that no returned value is copied, so footnote 11 does not apply.

See below for a discussion on asynchronous signals. |
3. A program that accesses the exception object from any thread except the one that created it is ill-formed.

[ While this may be unnecessary, one really does not want to worry about threading, exception handling and
deconstructors simultaneously, let alone garbage collection. ]

The following refers to more general exception and event handling, including such mechanisms as IEEE
754 or LIA-1 traps, POSIX signals etc., and is necessarily in the form of recommendations:

4. Where an exception or event is raised because of an action in a specific thread, an implementation should
attempt to handle it in the same way as a C++ exception, where possible.

5. An implementation may define circumstances under which an exception or event is thrown in one thread
because of an action in another, raised against the program as a whole, or raised asynchronously, and
shall then define the semantics of such exceptions and events and their handling,.

[ This is necessary because one of POSIX’s modes allows the nomination of a thread to receive signals, and
forbidding such behaviour would prevent a C++ implementation from supporting both threads and exceptions
on such a system. There are also circumstances where an exception may occur with no identifiable thread
causing it, and it is critical if anyone were ever to develop a high-performance, high-RAS streams or I/0
capability. |

2.5. Asynchronous Signals and Events

Note that these include signals sent from other processes, kernel generated signals like SIGCHILD, events
raised by several GUI interfaces, MPI one-sided communication, and the message passing mechanisms used
in several threading models.

Since time immemorial, the safest and most portable way of receiving asynchronous signals and events in
applications has been to trap them, set a flag, and continue. The main thread then checks the flag at places
it is safe to abandon what it is doing, and does what is appropriate. A huge number of very important
daemons and other applications rely on this. Let us call this interrupt handling.

The alternative was to mask off all signals in critical code, which was (and is) the favoured approach in
device drivers and similar kernel threads, but it introduces major problems when used in applications. For
various reasons, POSIX chose to canonise this model and deprecate the other — it has been fairly successful
in privileged daemon code, but not as much as its proponents claim. However, POSIX still supports the
interrupt model and, as said, it is heavily used.

Many languages and systems have had a composite exception, signal and event model, with the differ-
ence between interrupt handling and C++-style exception handling being whether the handler cancels the
exception and returns transparently, or whether it aborts the execution stack up to a certain level. While
I am not proposing that C++ should support such use, there is a question of whether the C++ Standard
should forbid implementations from extending exception handling in that way.

There is essentially only one issue: whether functions are required to clean up before calling a handler
or are permitted to do so afterwards. The former is needed if the handler is to do anything significant, and
the latter is needed if it is to return transparently, as implementors who have done it can witness. My view
is that the current zeitgeist is such that it would be a bad idea to even permit C++ extensions to mix
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interrupt and C++-style exception handling, which is why it was locked out above. But there is a case for
adding the following:

1. An implementation may define a mechanism by which asynchronous signals and events are trapped, the
execution of a thread is interrupted, the handler sets an atomic flag or flags, and execution continues at
the point of interruption with the program state unchanged except for the setting of the atomic flag or
flags. In such a case, the memory model will ignore the call to the handler, and treat the update of the
atomic flags as if it had been done by some other, unsynchronised, thread.

2.6. External Actions, plus Asynchronicity

Interactions with the environment (including all actions on objects created by constructors or functions
in C++ section 27.8, the I/O functions in <cwchar.h>, and getenv, system etc.) should be implemented
as if they consist of a normal C++ class that handles the internal aspects, which is a derived from an opaque
class that handles the external aspects.

An implementation shall support the normal C++ semantics for the first component, entirely within
the invoking thread (without prejudice to the decision on what a thread is), and should do so as far as is
reasonable for the second one. The following are some specific recommendations on how to handle particular
issues.

1. Where it makes sense, the external action should be handled synchronously and entirely within the
invoking thread.

Where it does not, an implementation should attempt to use the following approach:

2. If the action is asynchronous or can have multiple, simultaneous instances, a handle should be defined for
the action, preferably an object. A concrete example might be a FILE object.

3. Actions and events (including exceptions) should be serialised on that handle. For example, an asyn-
chronous exception should be raised when the next action on that handle takes place, in the thread that
invoked that action, as if it were detected by polling and not interrupt.

4. A well-formed program shall call all functions using such an asynchronous handle as if they were not
thread safe.

[ This is to allow an implementation o decent degree of flexibility, for performance. |

5. An implementation should provide some action on a handle that synchronises all its outstanding asyn-
chronous actions and raises any resulting exceptions and events.

6. Where an action is asynchronous and applies to an object (i.e. one with an lvalue), the consistency
constraints on a program are as if that object were being read or updated in its entirety continually
during that period. Note that the object and the handle may be different (e.g. an I/O buffer, and its
FILE object or a request handle).

[ Ezperience is that the above level of controlled asynchronicity is both manageable and implementable. True,
general asynchronicity is beyond the mindset of most programmers and even most implementors, despite the
fact that GUIs use it. |

External operations used for communication, such as I/0O, signalling and message passing, should be
implemented in such a way as to provide synchronize-with constraints that are compatible with causality.
In particular:

7. Where an external action reads the state of an external entity, it should be associated with memory
acquire semantics.

8. Where an external action changes the state of an external entity, it should be associated with memory
release semantics.

9. Where thread A changes the state of an external entity to a value different from the previous one, thread
B reads the state of that external entity and receives the new value, then thread A synchronizes-with
thread B.

[ A stronger condition would be nice, but it would also cause implementations real headaches. ]
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10. The above rule should be applied to cases where thread A changes the state of external entity X, one or
more external agents use that change to change the state of external entity Y and thread B reads the
changed state of Y.

2.7. Streams

This is a problem area. As those with mainframe experience can confirm, the key to decent streaming
I/0 performance is to permit asynchronicity. This is done largely by removing any semantic meaning from
transfer boundaries; it is possible using the transfer operations in C <stdio.h>, but not with POSIX read
and write. I have not convinced myself what the semantic model of the C++ streams library is yet.

In particular, one traditional, natural and efficient way of implementing streaming output on a threaded
system is for the main thread to feed data into a FIFO and for an auxilary thread to remove data from that
and write it to whereever it is going. And similarly for input, with the auxiliary thread reading ahead far
enough to keep the FIFO full.

There is a problem with exceptions that occur in the auxiliary thread, especially when the speculatively
read data is not in fact read by the main thread, but that is soluble by binding such exceptions to the stream,
as described under External Actions above. Given that, it is possible to achieve near-optimal throughput,
using only moderate buffers, and with excellent reliability of exceptions.

However, it is critical not to introduce synchronisation by accident, as a single synchronised stage in a
long asynchronous pipeline can destroy the efficiency of the whole pipeline.

My question is whether C++ regards allowing threaded implementations to do that with C++ streams is a
desirable objective. Whether or not that is so, then there will probably be some consequential changes to the
wording, to clarify the intent. But there may need to be some changes of specification if full, asynchronous
streaming is to be supported.

What is the C++ viewpoint? Is streaming performance a major objective?

2.8. File-based Streams and Diagnostics

There are a few things that are not obvious (except to an implementor), but are essential:

1. For the purposes of the memory model, FILE objects are not atomic, and are updated by every access
whether or not it can change their state.

2. For the purposes of the memory model, the external object associated with the actual file is not atomic,
and is updated by every access whether or not it can change its state.

The above conditions say that two threads writing to cerr in parallel is undefined behaviour (unlike what
POSIX says for C Library calls). However, there is a case for providing a simple, inefficient, serialised way of
producing diagnostic output. Experience indicates that such a mechanism is almost essential for debugging,
and that many users have difficulty in writing such a thing.

The minimum requirement is that each thread can write a short, single line, message in such a way that
the actual lines remain intact. This is easy to specify as a single function call, but it is messy if one starts
from the C++ file-based stream model. However, it could be done.

3.0. The C Library

This describes what should be done about the C Library as included in C++ — which I know rather
better than the rest of C++! It specifically does not refer to Standard C, as that has a huge number of
extra problems (at least when we get to C99).

One of its targets is to tolerate implementations of C++ that use the native POSIX/C library, either for
all functions called via headers in C++ sections C.2 and D.5 or for only those called via ones in D.5. I
believe that is essential.
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3.1. POSIX 2003

POSIX is, at best, unhelpful. The most relevant definitions seem to be:

Thread-Safe: A function that may be safely invoked concurrently by multiple threads. Fach function defined

in the System Interfaces volume of IEEE Std 1003.1-2001 is thread-safe unless explicitly stated otherwise.

Examples are any “pure” function, a function which holds a mutex locked while it is accessing static storage,

or objects shared among threads.

Concurrent Ezecution: Functions that suspend the execution of the calling thread shall not cause the execu-

tion of other threads to be indefinitely suspended.

To keep this short, this document will not go into the assumptions that the above is making, why they
are unreasonable and even incorrect, and other consequences (including that the question of whether any
particular function is thread safe is indeterminable, even in theory). There is another document on those.
It will make only three points in summary:

e POSIX-style thread safety is not absolute, and implies only that the concurrent execution of thread safe
functions is not undefined behaviour (though it may well be unspecified behaviour, and may cause program
failure).

e By requiring almost all functions to be thread-safe, it is turning its back on scalable performance. This
is a repeat of mistakes made previously with other facilities, like I/O, asynchronous I/O and threading
itself.

e There are internal inconsistencies, ambiguities and insanities, including where several functions are de-
scribed as thread safe when they are clearly not.

As a result, this document maintains consistency with POSIX only where POSIX looks plausible in a
C++ context: “as close to POSIX as possible, but no closer.”

3.2. Choice of Boundaries

POSIX thread-safety is close to conditional thread safety, but there are the issues described above, as
well as several potential implementation nightmares. For example, consider a C and a C++ thread, each
allocating memory or performing I/0O on the same stream with no explicit synchronisation between the two.
For this reason, there are only three alternatives:

e To let POSIX (and C99) impose semantics on C++ — this cannot easily be limited to the C Library, but
will affect the remainder of the library and even the base language.

e To have the C++ standard specify that all of the functions in the C Library have different and potentially
incompatible threading and memory model semantics to POSIX.

e To separate the C++ Standard Library into three sections: the C Library headers described in C++
section D.5, those described in C++ section C.2 and the native C++ library (the rest).

[ Different implementations maintain their C++ and C interoperability in different ways, so that it is essential

to distinguish all three sections. Frankly, any program that mixes any two of these without separating them

properly is asking for trouble, and will probably get it. ]

This document takes the last approach. In the paragraphs below, the term “uses an entity” refers to
calling a function or accessing an object. Objects and functions are connected as described elsewhere.
The following constraints apply to the C Library (whether included by the recommended headers or the
deprecated ones), and are in addition to any implied by the rest of this document:

1. A program is ill-formed if it uses a C Library entity and a connected C++ Standard Library entity (not in
the C Library) in different threads without separating the two by a full duplex synchronisation function.
2. A program is ill-formed if it uses a C Library entity included by a header in C++ section C.2 and

a connected C Library entity included by a header in C++ section D.5 in different threads without

separating the two by a full duplex synchronisation function.

3. These constraints apply even when the C++ standard refers to C++ and C library functions being
equivalent.
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3.3. Specific Conditions on the C Library

The following applies to the headers in C++ section D.5 as well as those in C++ section C.2.

1. All macros and functions from headers defined in C4++ section D.5 are connected to the ones of the same
name from headers defined in C++ section C.2.

2. All macros and functions from <cassert.h>, <cctype.h>, <cerrno.h>, <cfloat.h>,
<ciso646.h>, <climits.h>, <cmath.h>, <cstdarg.h>, <cstddef.h> and <cwctype.h>,
all except wescoll, wesxfrm and the I/O functions from <cwchar.h>, all except strcoll,
strerror, strtok and strxfrm from <cstring.h>, abs, bsearch, div, labs, 1div, gsort,
strtod, strtol and strtoul from <cstdlib.h>, and clock, difftime, mktime and time from
<ctime.h> are absolutely thread safe.

[ I/0 functions are those that have a FILE * argument, return a FILE * result, use stdin, stderr or stdout
or refer to an external file by name. Note that the logic of the above is to exclude anything that depends on
locales or external actions. The former is necessary in case a global locale is used and one thread corrupts
it. The above wording absolutely must not be extended to C99, as some of the new facilities in <fenv.h>
have cross-thread implications on <math.h> on many systems, and there are probably other ‘gotchas’. |

3. The functions localeconv from <clocale.h>, raise and signal from <csignal.h>, tmpnam from
<cstdio.h>, abort, atexit, exit, getenv, mblen, mbtowc, rand, srand, system, wcstombs
and wctomb from <cstdlib.h>, strerror and strtok from <cstring.h> and asctime, ctime,
gmtime and localtime from <ctime.h> are not thread safe.

[ This includes fixes to POSIX’s list: abort, exit, mblen, mbtowc, srand and tmpnam. We need to
include raise, signal and system because, while a POSIX system might just behave sanely with them, it
is an intolerable requirement in general. Calling abort and exit (or either of them and atexit) in parallel
is obviously insane. |

4. All other functions in headers in C++ sections C.2 and D.5 are conditionally thread safe.
5. There is a separate copy of errno in each thread, and it is initialised to zero at thread creation.
[ POSIX does not seem to say what its value is initially; it could be either inherited or cleared. ]

6. Using longjmp with a jmp_buf with contents created by a call to setjmp in a different thread is undefined
behaviour.

7. Using any function in <cstdarg.h> on an va_list object created in another thread is undefined be-
haviour, as is using.

[ Note that some threading models do have a decent concept of a thread being rooted at a point in another
thread’s call tree, so this is not automatically excluded by existing wording. But we really want to exclude
such tricks! |

The following are special rules for defining the objects used for deciding memory consistency, and apply
irrespective of the amount accessed in any particular call:

8. Where a function uses a pointer argument with a separately defined maximum length, the object is that
number of bytes starting at the argument address.

9. Where a function uses a null-terminated string argument defined as const char *, the object is the whole
of that string, including the terminating null character.

10. Where a function uses a void * or char * argument with no separately defined length, the object is the
number of bytes actually written starting at the argument address.

[ This is a performance nightmare on some systems, as it means that separate threads can write to consecutive
bytes of an array, and the implementation must get that right, penalising the sane programs that do not do
that. ]

11. With functions strcat and strncat from <cstdio.h> and wcscat and wesncat from <cwchar.h>, the
entirety of the first argument is treated as if it were updated.

12. With functions setbuf and setvbuf from <cstdio.h>, the buffer is treated as if it were being continually
updated from that point until the stream is closed or the buffer is replaced.
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13.

14.

With functions fprintf, fscanf, printf, scanf, sprintf, sscanf, vfprintf, vprintf and vsprintf
from <cstdio.h> and functions fwprintf, fwscanf, swprintf, swscanf, vfwprintf, vswprintf,
vwprintf, wprintf and wscanf from <cwchar.h>, only arguments used in the actual call are involved
in memory consistency, but are treated as described above when they are.

With the function strtok from <cstdio.h>, the first argument is treated as if it were updated in its
entirety, both for the initial call and for any subsequent calls using a null first argument.
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