
Concepts for the C++0x Standard Library: Introduction

Douglas Gregor, Jeremiah Willcock, and Andrew Lumsdaine
Open Systems Laboratory

Indiana University
Bloomington, IN 47405

{dgregor, jewillco, lums}@cs.indiana.edu

Document number: N2037=06-0107
Date: 2006-06-21
Project: Programming Language C++, Library Working Group
Reply-to: Douglas Gregor<dgregor@cs.indiana.edu>

Introduction

This document proposes changes to Chapter 17 of the C++ Standard Library in order to make full use of concepts [1].
Unless otherwise specified, all changes in this document have been verified to work with ConceptGCC and its modified
Standard Library implementation. We make every attempt to provide complete backward compatibility with the pre-
concept Standard Library, and note each place where we have knowingly changed semantics.

This document is formatted in the same manner as the working draft of the C++ standard (N1804). Future versions
of this document will track the working draft and the concepts proposal as they evolve. Wherever the numbering of
a (sub)section matches a section of the working paper, the text in this document should be considered replacement
text, unless editorial comments state otherwise. All editorial comments willhave a gray background. Changes to the
replacement text are categorized and typeset asadditions, removals, or changesmodifications..

mailto:dgregor@cs.indiana.edu
mailto:jewillco@cs.indiana.edu
mailto:lums@cs.indiana.edu
mailto:dgregor@cs.indiana.edu


Chapter 17 Library introduction [lib.library]

17.1 Definitions [lib.definitions]

17.1.19 traits class [defns.traits]

aclassthatencapsulatesasetof typesandfunctionsnecessaryfor classtemplatesandfunction templatesto manipulate
objectsof typesfor which they areinstantiated.Traits classesdefined in clauses21, 22 and27 arechararacter traits,
whichprovide thecharacterhandling support neededby thestringandiostreamclasses.

17.1.20 wide-oriented iostream classes [defns.wide.iostream]

the instantiations of the iostream class templates on the character container classwchar_t andthedefault valueof the
traitsparameter (??).

17.3 Method of description (Informative) [lib.description]

17.3.1 Structure of each subclause [lib.structure]

17.3.1.2 Requirements [lib.structure.requirements]

1 The library can be extended by a C++ program. Each clause, as applicable, describes the requirements that such exten-
sions must meet. Such extensions are generally one of the following:

— Template arguments

— Derived classes

— Containers, iterators, and/or algorithms that meet an interface convention

2 Thestringandiostreamscomponentsuseanexplicit representation of operationsrequiredof templatearguments.They
useaclasstemplatechar_traitsto define theseconstraints.

3 Interfaceconvention requirementsarestatedasgenerally aspossible. Insteadof stating “classX hasto defineamember
function operator++()”, theinterfacerequires“for anyobjectx of classX, ++x is defined.” Thatis, whethertheoperator
is amemberis unspecified.

4 Requirements are stated in terms ofwell-definedexpressionsconcepts, which definevalid termscapabilitiesof the types
that satisfy the requirements. For every set of requirements there is atableconceptthat specifiesaninitial setof thevalid
expressionstherequirementsand their semantics (??, ??, ??). Any generic algorithm (clause??) that uses therequire-
mentsconceptsis describedin termsof thevalid expressionsforplacesrequirementson its formal type parameters.

5 Templateargumentrequirementsaresometimesreferencedby name.See17.3.2.1.



3 Library introduction 17.4 Library-wide requirements

6 In some cases the semantic requirements are presented as C++ code. Such code is intended as a specification of equiva-
lence of a construct to another construct, not necessarily as the way the construct must be implemented.1)

17.3.2 Other conventions [lib.conventions]

17.3.2.1 Type descriptions [lib.type.descriptions]

1 TheRequirementssubclausesmaydescribenamesthatareusedto specify constraintson templatearguments.2) These
namesareusedin clauses20,23,25,and26 to describethetypesthatmaybesuppliedasargumentsby aC++ program
wheninstantiating templatecomponentsfrom thelibrary.

2 Certain types defined in clause?? are used to describe implementation-defined types. They are based on other types,
but with added constraints.

17.4 Library-wide requirements [lib.requirements]

17.4.1 Library contents and organization [lib.organization]

17.4.1.1 Library contents [lib.contents]

1 The C++ Standard Library provides definitions for the following types of entities: Macros, Values, Types,Concepts,
Conceptmaps,Templates, Classes, Functions, Objects.

2 All library entities except macros,operator new andoperator delete are defined within the namespacestd or
namespaces nested within namespacestd.

3 Whenever a namex defined in the standard library is mentioned, the namex is assumed to be fully qualified as
::std::x, unless explicitly described otherwise. For example, if the Effects section for library functionF is described
as calling library functionG, the function::std::G is meant.

17.4.1.2 Headers [lib.headers]

1 The elements of the C++ Standard Library are declared or defined (as appropriate) in aheader.3)

2 The C++ Standard Library provides3334C++ headers, as shown in Table 11.

Table 11: C++ Library Headers
<algorithm> <functional> <limits> <ostream> <streambuf>
<bitset> <iomanip> <list> <queue> <string>
<complex> <ios> <locale> <set> <typeinfo>
<concepts> <iosfwd> <map> <sstream> <utility>
<deque> <iostream> <memory> <stack> <valarray>
<exception> <istream> <new> <stdexcept> <vector>
<fstream> <iterator> <numeric> <strstream>

3 The facilities of the Standard C Library are provided in 18 additional headers, as shown in Table 12.

1) Although in some cases the code given is unambiguously the optimum implementation.
2) Examplesfrom 20.1include:EqualityComparable,LessThanComparable,CopyConstructable,etc.Examplesfrom 24.1include:InputIterator,

ForwardIterator, Function, Predicate,etc.
3) A header is not necessarily a source file, nor are the sequences delimited by< and> in header names necessarily valid source file names (??).

Draft



17.4 Library-wide requirements Library introduction 4

Table 12: C++ Headers for C Library Facilities
<cassert> <ciso646> <csetjmp> <cstdio> <ctime>
<cctype> <climits> <csignal> <cstdlib> <cwchar>
<cerrno> <clocale> <cstdarg> <cstring> <cwctype>
<cfloat> <cmath> <cstddef>

4 Except as noted in clauses?? through?? and Annex?? the contents of each headercname shall be the same as
that of the corresponding headername.h, as specified in ISO/IEC 9899:1990 Programming Languages C (clause 7),
or ISO/IEC:1990 Programming Languages — C AMENDMENT 1: C Integrity, (clause 7), as appropriate, as if by
inclusion. In the C++ Standard Library, however, the declarations and definitions (except for names which are defined as
macros in C) are within namespace scope (??) of the namespacestd.

5 Names which are defined as macros in C shall be defined as macros in the C++ Standard Library, even if C grants license
for implementation as functions. [Note: the names defined as macros in C include the following:assert, offsetof,
setjmp, va_arg, va_end, andva_start. — end note]

6 Names that are defined as functions in C shall be defined as functions in the C++ Standard Library.4)

7 Identifiers that are keywords or operators in C++ shall not be defined as macros in C++ standard library headers.5)

8 ??, Standard C library headers, describes the effects of using thename.h (C header) form in a C++ program.6)

17.4.1.3 Reserved names [lib.reserved.names]

1 It is undefined for a C++ program to add declarations or definitions to namespacestd or namespaces within names-
pacestd unless otherwise specified. A program may add template specializations for any standard library template to
namespacestd. A programmayaddconceptmapsfor anystandardlibraryconceptto namespacestd,unlessexplicitly
prohibited. Such a specializationor conceptmap(complete or partial) of a standard library template results in unde-
fined behavior unless the declaration depends on a user-defined type of external linkage and unless the specialization
meets the standard library requirements for the original template.7) A program may explicitly instantiate any templates
in the standard library only if the declaration depends on the name of a user-defined type of external linkage and the
instantiation meets the standard library requirements for the original template.

2 The C++ Standard Library reserves the following kinds of names:

— Macros

— Global names

— Names with external linkage

4) This disallows the practice, allowed in C, of providing a "masking macro" in addition to the function prototype. The only way to achieve
equivalent "inline" behavior in C++ is to provide a definition as an extern inline function.

5)In particular, including the standard header<iso646.h> or <ciso646> has no effect.
6) The".h" headers dump all their names into the global namespace, whereas the newer forms keep their names in namespacestd. Therefore, the

newer forms are the preferred forms for all uses except for C++ programs which are intended to be strictly compatible with C.
7) Any library code that instantiates other library templates must be prepared to work adequately with any user-supplied specialization that meets

the minimum requirements of the Standard.

Draft



5 Library introduction 17.4 Library-wide requirements

3 If the program declares or defines a name in a context where it is reserved, other than as explicitly allowed by this clause,
the behavior is undefined.

Bibliography

[1] Douglas Gregor and Bjarne Stroustrup. Concepts. Technical Report N2042=06-0112, ISO/IEC JTC 1, Information
Technology, Subcommittee SC 22, Programming Language C++, June 2006.

Draft


	Library introduction
	Definitions
	Method of description (Informative)
	Library-wide requirements


