Concepts for the C++0x Standard Library: Introduction

Douglas Gregor, Jeremiah Willcock, and Andrew Lumsdaine
Open Systems Laboratory
Indiana University
Bloomington, IN 47405
{dgregor, jewilico, lums}@cs.indiana.edu

Document number: N2037=06-0107

Date: 2006-06-21

Project: Programming Language~C Library Working Group
Reply-to: Douglas Gregordgregor@cs.indiana.etu

Introduction

This document proposes changes to Chapter 17 of theS@ndard Library in order to make full use of concepis [1].
Unless otherwise specified, all changes in this document have been verified to work with ConceptGCC and its modified
Standard Library implementation. We make every attempt to provide complete backward compatibility with the pre-
concept Standard Library, and note each place where we have knowingly changed semantics.

This document is formatted in the same manner as the working draft ofthst@ndard (N1804). Future versions

of this document will track the working draft and the concepts proposal as they evolve. Wherever the numbering of
a (sub)section matches a section of the working paper, the text in this document should be considered replacement
text, unless editorial comments state otherwise. All editorial comment: have a gray backgroundChanges to the
replacement text are categorized and typeseatidsions remevals or ehangesiodficaions.


mailto:dgregor@cs.indiana.edu
mailto:jewillco@cs.indiana.edu
mailto:lums@cs.indiana.edu
mailto:dgregor@cs.indiana.edu

Chapter 17 Library introduction [lib.library]

17.1 Definitions [lib.definitions]

17.1.19 traits class [defns.traits]

17.1.20 wide-oriented iostream classes [defns.wide.iostream]

the instantiations of the iostream class templates on the character containercakasst andthedefaultvalueof-the
traitsparaneter (?7?).

17.3 Method of description (Informative) [lib.description]
17.3.1 Structure of each subclause [lib.structure]
17.3.1.2 Requirements [lib.structure.requirements]

The library can be extended by &program. Each clause, as applicable, describes the requirements that such exten-
sions must meet. Such extensions are generally one of the following:

— Template arguments

— Derived classes

— Containers, iterators, and/or algorithms that meet an interface convention

Requirements are stated in termsaadli-definedexpresionsoncepts which definevalid-termsgpabilities of the types
that satisfy the requirements. For every set of requirements thetebdaonceptthat specifiesninitial-setof thevalid
expresionghe requirementsand their semantic@, ??, ??). Any generic algorithm (clausg?) that uses theequire-

men&omepts&dsenbe&n%emgeﬁhexml@exppe&e%fmplacegequwanemwn its formal type parameters.




3 Library introduction 17.4 Library-wide requirements

6 In some cases the semantic requirements are presented asde. Such code is intended as a specification of equiva-
lence of a construct to another construct, not necessarily as the way the construct must be imp@nented.

17.3.2 Other conventions [lib.conventions]

17.3.2.1 Type descriptions [lib.type.descriptions]

2 Certain types defined in clau&€ are used to describe implementation-defined types. They are based on other types,
but with added constraints.

17.4 Library-wide requirements [lib.requirements]
17.4.1 Library contents and organization [lib.organization]
17.4.1.1 Library contents [lib.contents]

1 The G+ Standard Library provides definitions for the following types of entities: Macros, Values, Tgpesepts,
Corceptmaps,Templates, Classes, Functions, Objects.

2 All library entities except macrosiperator new andoperator delete are defined within the namespaged or
namespaces nested within namespsace

3 Whenever a name defined in the standard library is mentioned, the natris assumed to be fully qualified as
::std: :x, unless explicitly described otherwise. For example, if the Effects section for library furkcisotescribed
as calling library functiorg, the function: : std: : G is meant.

17.4.1.2 Headers [lib.headers]

1 The elements of the€@ Standard Library are declared or defined (as appropriatemimdeﬂ
2 The G+ Standard Library provide3334 C++ headersas shown in TabIEJrl.

Table 11: G+ Library Headers

<algorithm> <functional> <limits> <ostream> <streambuf>
<bitset> <iomanip> <list> <queue> <string>
<complex> <ios> <locale> <set> <typeinfo>
<concepts> <iosfwd> <map> <sstream> <utility>
<deque> <iostream> <memory> <stack> <valarray>
<exception> <istream> <new> <stdexcept> <vector>
<fstream> <iterator> <numeric> <strstream>

3 The facilities of the Standard C Library are provided in 18 additional headers, as shown ifi Table 12.

1) Although in some cases the code given is unambiguously the optimum implementation.

2 o j B cobleLe S pomosle = 2
Swadleate, Héleﬂ—pFed’eate—%y 3 d
3) A header is not necessarily a source file, nor are the sequences delimitethbly in header names necessarily valid source file naf®@s (

Draft



17.4 Library-wide requirements Library introduction 4

Table 12: G+ Headers for C Library Facilities
<cassert> <ciso0646> <csetjmp> <cstdio> <ctime>
<cctype> <climits> <csignal> <cstdlib> <cwchar>
<cerrno> <clocale> <cstdarg> <cstring> <cwctype>
<cfloat> <cmath> <cstddef>

Except as noted in claus&® through?? and Annex?? the contents of each headetame shall be the same as

that of the corresponding headegme.h, as specified in ISO/IEC 9899:1990 Programming Languages C (clause 7),
or ISO/IEC:1990 Programming Languages — C AMENDMENT 1: C Integrity, (clause 7), as appropriate, as if by
inclusion. In the @+ Standard Library, however, the declarations and definitions (except for names which are defined as
macros in C) are within namespace scop® 6f the namespacetd.

Names which are defined as macros in C shall be defined as macros it+tB&a@dard Library, even if C grants license
for implementation as functions Note:the names defined as macros in C include the followiigtert, offsetof,
setjmp, va_arg, va_end, andva_start. —end noté

Names that are defined as functions in C shall be defined as functions imiStaBdard Librarff)]
Identifiers that are keywords or operators it¥Ghall not be defined as macros imtGtandard library heade@.
??, Standard C library headers, describes the effects of usingathe h (C header) form in a €& progranﬁ]

17.4.1.3 Reserved names [lib.reserved.names]

It is undefined for a € program to add declarations or definitions to namespadeor namespaces within names-
pacestd unless otherwise specified. A program may add template specializations for any standard library template to
namespacetd. A programmayaddcorceptmapsfor anystardardlibrary conceptto namegpacestd, unlessexplicitly

prohibited. Such a specializationr corceptmap (complete or partial) of a standard library template results in unde-

fined behavior unless the declaration depends on a user-defined type of external linkage and unless the specialization
meets the standard library requirements for the original tenﬂa@teprogram may explicitly instantiate any templates

in the standard library only if the declaration depends on the name of a user-defined type of external linkage and the
instantiation meets the standard library requirements for the original template.

The G+ Standard Library reserves the following kinds of names:
— Macros
— Global names

— Names with external linkage

4) This disallows the practice, allowed in C, of providing a "masking macro" in addition to the function prototype. The only way to achieve
equivalent "inline" behavior in €t is to provide a definition as an extern inline function.

9In particular, including the standard headeso646 . h> or <ciso646> has no effect.

6) The".h" headers dump all their names into the global namespace, whereas the newer forms keep their names in satheEperfore, the
newer forms are the preferred forms for all uses except for @ograms which are intended to be strictly compatible with C.

) Any library code that instantiates other library templates must be prepared to work adequately with any user-supplied specialization that meets
the minimum requirements of the Standard.

Draft



5 Library introduction 17.4 Library-wide requirements

3 Ifthe program declares or defines a name in a context where it is reserved, other than as explicitly allowed by this clause,
the behavior is undefined.

Bibliography

[1] Douglas Gregor and Bjarne Stroustrup. Concepts. Technical Report N2042=06-0112, ISO/IEC JTC 1, Information
Technology, Subcommittee SC 22, Programming Language C++, June 2006.

Draft



	Library introduction
	Definitions
	Method of description (Informative)
	Library-wide requirements


