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Note to reviewers: This document is an in-progress snapshot. All input will be much appreciated. Here is a summary 
of changes since version 0.8 (July 31, 2006): 

• (Principles P3 and P4 merged and now use  §4.2 Option 4) In §4.2’s options, both internal and external feedback 
is as follows: No support for either Option 1 or Option 2 (both are considered at best prohibitively expensive, 
and probably unimplementable), 20% in favor of Option 3, and 80% in favor of Option 4. The main benefit of Op-
tion 3 is that it guarantees that individual memory locations will have values compatible with an SC execution, 
which may improve debuggability. However, there can still be word and object tearing, and a major cost of Op-
tion 3 is that it essentially bans compensating updates to shared memory locations, which in turn essentially 
bans speculative in-place updates of shared objects. The draft has changed to reflect Option 4 instead. This 
changes the answer to Example 3.1.4. 

• (Rule R4) Critical regions are now symmetric: Acquiring a lock requires only an acquire fence. 

• (Rule R4) Removed lock coarsening: Systems can no longer elide a successive unlock/lock of the same lock, not 
even if the system thinks it can prove that eliding the unlock has no side effects (i.e., no other observer is waiting 
to acquire the lock and so could tell that the unlock was removed), because volatile reads and writes may not be 
elided. This changes the answer to Examples 3.3.3 and 3.3.4.  

• Added the generalization in Example 3.2.8 and explanatory text. Compiler writers in particular are strongly en-
couraged to consider this example and the ones preceding it. 

Open questions: 

• In a race on variable x, what is undefined/unspecified: The value of x, or the whole program? Consider that a 
race could produce a wild branch (e.g., the race is on the construction of an object so that another thread sees an 
invalid vtable, or the race is on a pointer to function). Can this be prevented? 

• Atomic block coarsening: In the current structure, removing the dispensation to perform lock coarsening applies 
also to atomic blocks. Atomic block merging is desirable. Is it sufficiently enabled by just R1 (as-if), or is explicit 
dispensation required to allow the atomic block coarsening scenarios we consider important? 

Thanks! – Herb 
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1 Overview 

1.1 Motivation 
A multiprocessing system on a single computer involves problems similar to those of a distributed 
system because of the unpredictable order in which certain events can occur. … We have found 
that problems often arise because people are not fully aware of this fact and its implications.  
— [Lamport 1978] 

Chip [and compiler] designers are under so much pressure to deliver ever-faster CPUs [and op-
timizations] that they’ll risk changing the meaning of your program, and possibly break it, in or-
der to make it run faster. — [Sutter 2005] 

I personally believe that for mainstream computing, weak memory models will never catch on with 
human developers. Human productivity and software reliability are more important than the in-
crement of performance and scaling these models provide. — [Brumme 2003] 

The purpose of this paper is to specify a single memory model for all native code on Microsoft platforms, 
including the source code, compilers and tools, and supported hardware platforms for Windows XP/Vista 
(client and server), Windows Live, Windows Mobile (Smartphone and Pocket PC), and Xbox. Henceforth, 
native source code will rely only on the guarantees of this model, and compilers will emit instructions and 
barriers as necessary to ensure the model’s guarantees hold on supported target hardware. It is intended 
that the .NET managed memory model be implementable in terms of this underlying native code model. 

A memory model describes (a) how memory reads and writes may be executed by a processor relative to their 
program order, and (b) how writes by one processor may become visible to other processors. Both aspects affect 
the valid optimizations that can be performed by compilers, physical processors, and caches, and therefore 
a key role of the memory model is to define the tradeoff between programmability (stronger guarantees for 
programmers) and performance (greater flexibility for reordering program memory operations). 

In the past, Microsoft has had no well-specified memory model for native code; the model has been 
whatever the particular combination of compiler(s) and run-time hardware happened to do, which is at 
best unreliable and nonportable. The result has been that teams write code that contains latent bugs (in-
cluding potential security vulnerabilities) and/or explicit special-purpose cases for different hardware 
which increases testing and porting costs. Similar problems have been encountered and at least partly 
addressed for managed code in .NET [Hogg 2005, Morrison 2005, Morrison 2005a] and Java [Pugh 2000, 
JSR-133 2004]. Note that today programmers cannot consistently write correct lock-based code when 
compiler optimizations invent writes that do not appear in the source code and so cannot be correctly 
locked by the programmer (see Example 3.2.1). 

This paper proposes a memory model for all Microsoft native code, including source code, compilers and 
tools, and hardware platforms, that we believe corrects some fundamental problems, notably that today 
we do not have sufficient guarantees to write correct lock-based code, and achieves two key goals: (1) It is 
easy to understand for programmers, and equivalent to sequential consistency for race-free code. (2) It is 
easy to specify clearly for implementers, and allows greater optimization flexibility than current “strong” 
models. In particular, a primary goal is to allow wide (but not maximum) latitude for local optimizations 
without global knowledge of the complete program. 

There are many well-considered memory models available in the literature and in working implementa-
tions. This section describes the approach we chose for this paper and how it differs from other ap-
proaches. See also §5 for comparisons between this paper and specific related work. 
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1.2 The Elevator Speech Paragraph 
The primary goals of this paper are (1) to support a simple and teachable programming model, (2) that allows 
wide (but not maximum) latitude for local optimizations that can be performed without global knowledge of 
the complete program, and (3) that is the same across all Microsoft native platform targets (including tools 
and hardware). The approach is to guarantee sequential consistency for correctly synchronized programs, 
which means sequential consistency at checkpoints marked by special (“interlocked”) operations, includ-
ing locks and transaction boundaries in a transactional memory system. 

1.3 Model Scope and Components 
We consider a program that is compiled and executed on 
one or more processors sharing a single uniform memory. 
The memory model focuses on the following: 

• Program order: Reads and writes of program objects 
specified in program source code. 

• Observed execution order: Reads and writes of ac-
tual memory locations in the shared memory, as ob-
served by any entity that can access the shared 
memory. 

• Transformations from program order to observed 
execution order: Transformations that the interme-
diate layers shown in Figure 1 are and are not allowed to perform, individually and in combination. 

The memory model abstracts away the effects of intermediate implementation details of a given execu-
tion environment, such as NUMA architectures and cache structures. Compilers are required to maintain 
correct semantics for a given target processor by emitting the necessary instructions for that processor, 
including processor-specific memory ordering operations (e.g., load-with-acquire, fences). 

1.4 Program vs. Hardware Focus 
We believe that reasoning should start with the program, not with the hardware. This paper takes the 
approach of first coming up with a clear programming model based on simple abstractions, and then 
trying to specify the memory model in a way that permits implementations wide optimization latitude. 

In particular, we believe that programming models that require programmers to know why and how to 
write explicit fences or barriers have proven too difficult for even expert programmers to use reliably, in 
part because they require great care at every point of use of a lock-free variable rather than only at the 
(single) point of declaration of the variable. See for example [Win32prg 2006], which arose independently 
while we were writing this paper, as one current example of how even experienced programmers rou-
tinely encounter difficulty reasoning about even full fences, which are the simplest variety of barrier. 

The memory models in academic literature and commercial implementations are largely hardware-
centric, not programmer-centric. Most papers begin with a list of specific optimizations they want to al-
low in the processor, cache, and other hardware, and then describe various “escape hatches” by which 
programmers can constrain the hardware’s latitude and opt out of specific effects in specific ways. For 
example, [Adve 1995] Figure 8 lists a variety of such escape hatches in commercial systems, ranging from 
many flavors of explicit fences and memory barriers to special serialization instructions that require com-
pilers to insert otherwise-redundant reads and writes in baroque ways to preserve intended program 
semantics. Not only are these escape hatches inconsistent and incompatible across platforms, but more 
seriously they have proven to be too difficult for even expert programmers to use reliably in practice, and 

 
Figure 1: Common sources of transformations 
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so we do not consider such low-level mechanisms to be viable operations to expose in a programming 
model. (We also believe that starting with an explicit list of known optimizations may actually constrain, 
not enable, hardware optimization opportunities, because hardwiring current techniques into the mem-
ory model is sometimes done at the expense of flexibility for future ideas.) 

1.5 Uniform Treatment of Software and Hardware Optimizations 
We believe memory transformations at all of the levels shown in Figure 1 should be treated uniformly, 
because the levels are indistinguishable to the programmer. For example, successive reads from a variable 
x could be eliminated at level SW (e.g., by a compiler loading the value of x into a register) or at level 
HW2 (e.g., by loading the value of x into a processor-local cache), and because they have the same effect 
we conclude that for any given case if one is allowed then the other has to be allowed. Similarly, succes-
sive writes to different variables could be reordered at level SW by the compiler or at level HW1 by the 
processor, and again in any given case if one is allowed then the other has to be allowed. 

Therefore, we will consider only program reads and writes and how they may be transformed to exe-
cuted reads and writes of shared memory as observed by any entity that can access the shared memory. 
In practice, the only thing that matters to the programmer is that the system behaves as though: (a) the 
order in which memory operations are actually executed is equivalent to some sequential execution ac-
cording to program source order; and (b) each write is visible to all processors at the same time. This pa-
per therefore focuses only on how to maintain that illusion, and does not mention specific caching strate-
gies, barriers, etc., and thereby we also attempt to avoid overspecifying and overconstraining the allowed 
optimizations at all of these levels. Compilers conforming to this memory model are required to perform 
appropriate code generation to emit any hardware-specific instructions or directives required for correct 
execution on a particular architecture. 

1.6 Sequential Consistency For Correctly Synchronized Programs 
Fundamentally, programmers assume sequential consistency (SC) [Lamport 1979], where each processor 
executes its memory operations in program order, and only one processor at a time executes an operation 
on the monolithic shared memory. Two consequences are that: (a) each memory operation becomes in-
stantaneously visible to all processors, and (b) in any execution, memory operations executed by different 
processors are interleaved. 

This memory model is designed to preserve the expected sequentially consistent behavior for correctly 
synchronized programs. (This approach is similar to models like DRF0. [Adve 1990]) In particular, “cor-
rectly synchronized” means that every mutable object that is visible to multiple threads is either: (a) cor-
rectly protected by a lock (or, in a transactional memory system, by an atomic block); or else (b) declared as 
interlocked (similar to volatile in Java, .NET, and Visual C++; we deliberately use a different term herein to 
avoid confusion with other naming issues). For a discussion of guarantees in the presence of races, see §4.2. 

1.7 Atomic vs. Message Visibility 
This memory model does not make the assumption that writes are atomically visible,1 because we want 
this memory model to be applicable to clusters and other message-based environments. Therefore this 
model permits writes to be treated as asynchronous messages without violating sequential consistency 
and Rule R6. In other models, including the managed memory model, atomic visibility of writes is neces-
sary to guarantee causality for Examples 3.5.1 to 3.5.3, which in this model are preserved by R6. 

                                                           
1 Usually the term “atomic” is used to describe a read or write of a variable or memory location, and means that no interme-
diate value will be observable by other processors. Occasionally, as here, “atomic” is used to describe the visibility of a write, 
and means that a given write becomes visible to all other processors simultaneously (which this model does not require). 
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2 Model 

2.1 Principles 
The intent of this memory model is to enable a simple statement of the programmer’s responsibility that 
developers can understand and use to reason reliably about the meaning of their programs, supported by 
an underlying model that is easy to specify clearly and implement correctly at all levels and that allows 
for local optimizations without global knowledge of the whole program. 

2.1.1 Correctness 
But I also knew, and forgot, Hoare’s dictum that premature optimization is the root of all evil in 
programming. — [Knuth 1989] 

It is far easier to make a correct program fast than it is to make a fast program correct. — Various 

The principal question is, “what do we teach programmers?” The answer has to be simple. We propose: 

Principle P1: Enable a teachable programming model. The programmer shall ensure that 
every object that is simultaneously visible to multiple threads and mutable is either: (a) cor-
rectly protected by a lock (e.g., manipulated while holding a traditional lock, or within an 
atomic block in a transactional memory system); or else (b) declared as interlocked with 
atomic, read-acquire, write-release, and in-order semantics. If these conditions are met, any 
execution shall be sequentially consistent with no races. 

A programmer who follows P1 does not need to know anything further about this memory model, and 
can stop reading here. We believe that programming models more complex than P1 (e.g., requiring ex-
plicit fences) have been proven in practice to be too difficult for even experienced systems programmers 
to use reliably. Even with this simple model, the vast majority of programmers should use only part (a). 

Principle P2: Enable a simple specification. The memory model shall be built on the inter-
locked write as the key primitive that acts as a checkpoint to guarantee a set of ordinary 
writes shall become visible to another thread or processor that performs a corresponding in-
terlocked read. An interlocked read or write can be used directly on an interlocked program 
object, or indirectly by acquiring or releasing a lock. 

Informally, an interlocked read enters a critical region, and an interlocked write exits a critical region; 
reads and writes can move into, but not out of, the region. A write event of interest is either a single inter-
locked write or a group of ordinary writes made visible by the next interlocked write by the same ob-
server in program order, and the memory model guarantees sequential consistency for all write events in 
a correctly synchronized program while allowing wide latitude for local optimization within a group. 

2.1.2 Causality 
The concept of time is fundamental to our way of thinking. It is derived from the more basic con-
cept of the order in which events occur. — [Lamport 1978] 

The physical universe is an orderly system of events and observers based on causality, and causality is 
necessary for a system that humans can reason about reliably. In particular, in the physical universe: 

Principle P3: Causality. An event is an individual interlocked read or write, or a batch of or-
dinary reads and writes performed by the same observer between successive interlocked 
writes. An observer shall not observe an event before any other event that causally precedes 
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it (its cause or potential cause). All observers shall observe causally related events in the same 
order. Only in a race, an observer may observe a distorted batch whose writes appear to be 
performed in a different order than in a sequentially consistent execution. 

Even though relativistic and quantum effects introduce strange complications, they do not violate these 
simple guarantees. For example, time dilation can cause different observers to observe causally related 
events as happening at different times and speeds, but observers can never observe causally related 
events as happening in different orders. There is reordering latitude: Different observers can, and rou-
tinely do, observe causally unrelated events in different orders. Further, events have reordering restric-
tions only with respect to observers and frames of reference that can observe them, and “private” unob-
served events may experience an uncertainty that does not affect causality. Finally, in some situations 
(e.g., lensing), an event can be observed with limited local distortion that is different for different observ-
ers. 

These ideas apply directly to shared-memory computing, which likewise is a system of events and observ-
ers, where some memory events are private and some are causally related to other events. Only in races, 
incomplete events can be observed with limited local distortion (for detailed discussion of this design 
point, see §4.2). 

This memory model derives from the basic principles P1-P3, and like the physical universe it allows 
causally related events (writes) to become visible to different observers at different times but not in differ-
ent orders, and even in races events may be distorted but not have values that never existed. 

2.2 Rules 

2.2.1 Correctness 
First, we define the “as if” rule for race-free programs: 

Rule R1: As if. In a program that does not contain a race, any transformation that does not 
change the program’s effects and cannot be detected by the program is valid. 

Informally, if no valid program that relies only on the guarantees set out in this memory model can tell 
the difference, then there is no difference. For example, optimizers can eliminate unreachable code (code 
that is never executed) and dead code (ordinary writes that are never read by any observer, including that 
the write is not read by any program thread, not read by any other process via shared memory, not part of 
memory-mapped I/O, etc.). 

Note that in this paper we do not consider reads and writes of unshared memory locations, which corre-
spond to physical events that cannot be observed by other observers; these may be reordered subject to 
normal sequential optimization constraints (notably R1 applied to sequential code, including that sequen-
tial data and control dependencies are satisfied). 

2.2.2 Ordinary and Interlocked Operations 
A program always refers to the program source code. A bitfield is a variable that is explicitly specified in 
the program to be represented in memory using a specific number of bits. An object (or, equivalently, vari-
able) is a single type instance declared in the program that is not a bitfield, or any sequence of bitfields 
declared contiguously in the program. Informally, an object is any single object or variable expressed in 
the source code, except that adjacent bitfields are considered to be a single object. An interlocked object is 
an object that is specially designated as such by the programmer. A program read or write is a write that 
appears in the program and is performed on a specific object. 
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An observer is a sequential portion of a program (e.g., a thread) whose program reads and writes have a 
total ordering according to the program’s source code. 2 Informally, an observer is a piece of sequential 
code with a single consistent frame of reference.3 A shared object is an object that is declared interlocked or 
that can be the target of program reads or writes performed by more than one observer; conservatively, 
every object is considered shared unless it is not interlocked and can be proved to be accessible to only 
one observer (e.g., through language-specific programmer annotations, or through escape analysis or 
other deduction). 

A memory location is an atomically updatable region of memory. A shared memory location is a memory loca-
tion that is visible to more than one observer. Every object is stored in one or more memory locations, and 
no memory location stores any parts of two different objects. 

An interlocked memory location is a memory location that is used to store an interlocked object. An inter-
locked read or write is a read or write of an interlocked memory location, and is generated from a single 
program read or write of an interlocked object. Per P1, we require: 

Rule R2 (=P1.b): Interlocked atomicity. An interlocked object is stored in exactly one shared 
memory location. Corollaries: Every interlocked read and write is atomic. An interlocked ob-
ject is suitable for use with atomic operations including compare-and-swap (a_cas) and ex-
change (a_swap). 

An ordinary read or write is a read or write of a non-interlocked shared memory location, and is generated 
from a single program read or write of a shared object. A batch of ordinary reads and writes is a sequence 
of ordinary reads and/or writes executed by the same observer with no intervening interlocked writes in 
program order. Every batch shall be finite, followed by either the next interlocked operation or the end of 
that observer’s execution; in particular, a loop consisting only of ordinary operations is assumed to be 
finite (see Example 3.2.1). 

We require that interlocked reads and writes behave as though each interlocked operation directly ac-
cesses main memory, and supports the requirements of P1: 

Rule R3 (=P1): Interlocked reads and writes. Interlocked reads and writes by the same ob-
server shall be executed in program order. An interlocked read shall be executed before all 
ordinary reads and writes by the same observer that follow it in program order (“acquire se-
mantics”), and shall not be eliminated unless it is immediately followed by another inter-
locked read or write of the same memory location. An interlocked write shall be executed af-
ter all reads and writes by the same observer that precede it in program order (“release se-
mantics”), and shall not be eliminated unless it is immediately followed by another inter-
locked write to the same memory location. 

A lock is used to ensure mutual exclusion to a set of shared objects. In this paper, a lock refers to either a 
traditional lock acquired and released explicitly by the programmer, or to a system-generated lock sur-
rounding critical regions that are acquired and released automatically in a transactional memory system 
(e.g., to implement begin, commit, retry, and rollback operations; see also Examples 3.6.1 and 3.6.2). A 
lock can be held by a single observer at a time; an observer holds a lock after acquiring it until releasing it. 

                                                           
2 Examples: A thread is an observer. Any subset of the code in the same thread is an observer. The set of all fibers on a thread 
is an observer because the fibers are scheduled cooperatively (during any interval wherein the set of fibers sharing the 
thread does not change due to migration of a fiber from or to another thread). An individual fiber is an observer. 
3 The term “observer” does not imply that it does not perform writes — by definition, it can. We adopt this term from the 
domain of physics as a neutral term for generality, in order to avoid implying that it is necessarily a thread, a fiber, a process, 
or any other particular system-specific entity. 
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A lock acquire operation blocks indefinitely until the observer successfully acquires the lock, and a lock 
try-acquire operation returns without blocking indefinitely and reports whether or not the lock was suc-
cessfully acquired. A lock can be released by the observer that acquired it, after which another observer can 
acquire the lock. Lock implementations are permitted to select among different semantics compatible 
with the foregoing; in particular, a given type of lock may or may not permit nested acquisition of the 
same lock by an observer who already holds it, and if so then a release may release only the last acquisi-
tion or all existing acquisitions. Per P2, we require: 

Rule R4 (=P2): Interlocked locks. Each lock is implemented using a distinct interlocked con-
trol variable. A lock acquire or try-acquire operation performs an interlocked read on the 
lock’s control variable. A lock release operation performs an interlocked write on the lock’s 
control variable. 

Note that acquiring a lock is required to perform only an interlocked read, although implementations will 
typically also perform a write (not necessarily interlocked). 

The programmer cannot apply P1 and write the correct synchronization if he does not control all writes to 
shared variables. Therefore P1 implies that the system cannot invent writes to shared variables. Further, 
programming languages must also be able to create additional data, such as vptrs, that are associated 
with program-declared objects, but the programmer cannot perform correct locking if he is not able to see 
where all writes to the conceptual object (including additional hidden data) can occur. Therefore we re-
quire: 

Rule R5 (=P1): Translating program writes. Every ordinary or interlocked write shall corre-
spond to a valid program write, such that the set of all such program writes is possible in 
some execution wherein all are executed in program order. A program write to a shared ob-
ject s shall not result in executing ordinary or interlocked writes to any memory location 
holding a program object other than s. If the system creates a hidden shared object h associ-
ated with a specific a shared program object s, then h is part of s, a read (or write) of a mem-
ory location holding a part of h can be generated adjacent to a read (or write) of a memory lo-
cation holding a part of s, and reads and writes of h must obey all rules pertaining to reads 
and writes of s (including interlockedness). 

The second sentence of R5 implies that: (a) a program write to an object a may not create an ordinary or 
interlocked write to the bits of any other object b (see Example 3.1.2); and (b) an ordinary or interlocked 
read or write cannot be invented that does not occur as part of a valid program read or write (see Exam-
ple 3.2.1, and see also Example 3.2.5). 

The third sentence implies that: (c) h is interlocked if and only if s is interlocked; and (d) the system may 
not create a read or write of h where no program read or write of s appears. Once created, these reads and 
writes of h can be reordered subject to R3 and R4. 

2.2.3 Causality 
For the purpose of P3, an event of interest is an individual interlocked read or write, or a batch of ordinary 
reads and writes. An event a is observed by the observer that performs a immediately upon completion of 
a, and by a different observer when the value(s) written by a are available to be read by that observer. 
Note that in a correctly synchronized program all writes performed in the same event become visible 
atomically with respect to another observer. 

We define a causally-precedes relation  → c   to define a partial ordering of events according to which events 
could causally affect other events. The relation  → c   on the events of a program execution is the smallest 
relation satisfying the following conditions: (1) For events a and b performed by the same observer, if a 
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precedes b in program order then a → c  b. (2) For events a and b, if b observes a then a → c  b. (3) For events 
a and b that write different values to the same memory location m, and an observer o that observes both a 
and b and then in program order reads m, if o reads the value written by b, then a → c  b. (4) For events a 
and b, if some observer performs a and then observes b, then a → c  b. (5) If a → c  b and b → c  c then a → c  c. 

Two events a and b are causally related if and only if a → c  b or b → c  a; otherwise, they are causally unrelated 
(alternatively, concurrent). Note that a  → c  /  a for any event a. Therefore  → c   is an irreflexive partial ordering 
on the set of events in the program. 

Note: Other work defines relations that are closely related to causally-precedes as defined above. For exam-
ple, [Lamport 1978], [Adve 1990], [Manson 2005], and [Arvind 2006] define similar happens-before rela-
tions for Lamport clocks, the DRF0 memory model, the happens-before relation for the Java memory 
model, and the is-before relation for serializability and store atomicity, respectively. See §5 of this paper 
for a discussion of differences with other formulations. 

We can now adopt P3 directly as an additional rule that further constrains the reordering and visibility of 
events: 

Rule R6 (=P3): Causality. An event is an individual interlocked read or write, or a batch of 
ordinary reads and writes performed by the same observer between successive interlocked 
writes. An observer shall not observe an event before any other event that causally precedes 
it (its cause or potential cause). All observers shall observe causally related events in the or-
der defined by  → c  . When an observer executes a read of a memory location, the result is the 
value written by the event most recently observed that included a write to that location. Only 
in a race, an observer may observe a distorted batch whose writes appear to be performed in 
a different order than in a sequentially consistent execution. 

A race exists when, for any shared object s, there are two causally unrelated events a and b where a per-
forms an ordinary write to s and b performs a read or write of s. Only in a race, an observer may observe 
“batch tearing.” 

Finally, per P1.a, the only rule that places a requirement on the programmer is that the programmer elimi-
nate races using locks (or, alternatively, by designating a shared object to be interlocked): 

Rule R7 (=P1.a): Correct locking. For every noninterlocked shared object s, if any observer 
can perform an ordinary write to any part of s and a different observer can perform an ordi-
nary read or ordinary write of any part of s, then the program shall have one lock associated 
with that object and both observers shall perform their actions only while holding that lock. 

Note that, because no other rule prevents it, by Rule 1 an implementation is permitted to freely apply 
local optimizations that reorder, create, and remove ordinary reads and writes performed by the same 
observer, subject only to the constraints that they not move ahead of an interlocked read, move after an 
interlocked write, or violate normal sequential data and control dependencies. Global knowledge of the 
whole program and other threads is not required to perform such optimizations. 

2.2.4 Language Semantics 
Programming languages do not always precisely define the exact ordering of memory operations on pro-
gram variables. For example, this often arises when a single expression in the language automatically 
generates multiple calls to other functions. Where languages do permit latitude, the compiler must trans-
late the program as conservatively as possible to avoid performing an interlocked read later, or an inter-
locked write earlier, than necessary. (See also Example 3.9.1.) 
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Rule R8: Conservative interpretation of language semantics. Given a set M of memory op-
erations performed by the same observer that corresponds to a particular program expression 
or statement, where the programming language permits latitude in compiler translation of 
the ordering of operations in M: The compiler shall translate the program so that every inter-
locked read in M precedes all possible ordinary reads and writes in M, and every interlocked 
write in M follows all possible ordinary reads and writes in M, to the extent permitted by 
language semantics. 
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3 Examples 
In these examples, unless otherwise noted, all initial values are 0, all variables whose names start with r 
are unshared (representing unshared memory locations, e.g., in local variables, registers, and caches), and 
all other variables are ordinary shared variables (not interlocked). Where possible, we mention the source 
where we first encountered the example. 

3.1 Ordinary Reads and Writes 

3.1.1 Basic Reordering 
This example was supplied by Kang Su Gatlin. 

Consider the following code, where initially x = y = 0 and threads T1 and T2 are the only observers ma-
nipulating x and y: 

// thread T1 
x = 1;  // a 
y = 1;   // b 

// thread T2 
if( y == 1 )  // c 
  --x;   // d 

This code contains a race because both x and y can be concurrently read and written and there is no syn-
chronization. How the race can manifest for y is obvious; it can manifest for x because lines a and b can be 
reordered. 

Incidentally, note that even if x and y have type int, the programmer cannot rely on program writes to 
actually be atomic (e.g., ints are not guaranteed to be aligned), and in general under this memory model 
atomicity is not an inherent property of any type, not even char, unless the variable is declared inter-
locked. 

P1 tells the programmer how to remove the race. There are two ways, either of which is sufficient: 

• Use a lock: If both code fragments are protected using the same traditional lock or protected in an 
atomic { … } block, there is no race because of mutual exclusion. 

• Make y interlocked: If y is interlocked, then there is no race on y because it is atomically updatable, 
and there is no race on x because a → c  b → c  d. 

3.1.2 Masking and Object Layout 
This example was supplied by Intel (see [Boehm 2006a]). Consider the following code, assuming 8-bit 
chars and that S’s members are laid out contiguously so that sizeof(S) == 4: 

// program source 
struct S { 
  char a; 
  int b : 9; // note: bitfields 
  int c : 7; 
  char d; 
}; 
S s; 
s.b = 1; 

Consider the transformation that reads s in a single operation, writes only to the bits corresponding to b, 
and writes s back: 
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// transformation 
struct S { 
  char a; 
  int b : 9; 
  int c : 7; 
  char d; 
}; 
S s; 
char tmp[4]; 
memcpy( &tmp[0], &s, 4 );  
… in tmp, write to only the bits corresponding to b … 
memcpy( &s, &tmp[0], 4 ); 

If s is not a shared object, then this transformation is legal. If s is a shared object, this transformation is 
illegal by R5 because it creates ordinary writes to a and d that are not present in the program source. (The 
creation of an ordinary write to the bits of c is valid because b and c are contiguous bitfields and are 
therefore the same object.) 

3.1.3 Condition-Write 
Consider the following code, where x is an ordinary shared variable, as usual with initial value 0: 

// program source 
if( cond ) 
  x = 42; 

Assuming this code contains no interlocked operations, may this be transformed as follows (e.g., if the 
compiler or profile-guided optimizer determines that cond is expected to be true): 

// transformation 
x = 42; 
if( !cond ) 
  x = 0; 

The answer is no. The transformation is disallowed by R5 for two reasons: (1) The write x = 42; does not 
correspond to a program write and so cannot be invented. (2) If cond is false the value 0 would be writ-
ten, which is a valid program write in any sequentially consistent execution of the program code. 

See also Example 3.1.4. 

3.1.4 Write-Condition-Write 
Consider the following code, where x is an ordinary shared variable: 

// program source 
x = 0; 
if( cond ) 
  x = 42; 

Assuming this code contains no interlocked operations, may this be transformed as follows (e.g., if the 
compiler or profile-guided optimizer determines that cond is expected to be true): 

// transformation 
x = 42; 
if( !cond ) 
  x = 0; 
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The answer is yes, because every sequentially consistent execution contains a write to x. 

3.1.5 Read Elision 
Consider this example, where x is not interlocked: 

// program source 
x = 2;  // a 
r1 = x;  // b 

Is it legal to transform this as follows to eliminate the redundant read of x? 

// transformation 
x = 2;  // a 
r1 = 2;  // b’ 

This is legal, because it obeys R1. (Note that R5 only forbids the invention of reads and writes not visible 
in the source code, not their elision when doing so does not introduce new behaviors.) Even in a race, this 
local transformation only reduces the set of possible behaviors, by making b’ be unable to see a racing 
update on another thread, which it cannot rely on seeing anyway. Once this transformation is performed, 
line b’ could further be reordered ahead of line a. 

Note that if x were interlocked, this transformation would be disallowed by R3, which does not permit 
this elision of an interlocked read. 

3.1.6 Write Elision 
This example was supplied by Vinod Grover. Consider this code, where x is not interlocked: 

// program source 
x = 1;  // a 
if( cond ) { 
  x = 2;  // b 
} 

Is it legal to transform this as follows to eliminate the redundant write of x in the case where cond is true? 

// transformation 
if( cond ) { 
  x = 2;  // b 
} else { 
  x = 1;  // a’ 
} 

This is legal, because it does not violate any rules; in particular, every executed write is one that would 
have occurred in an SC execution. 

Note that if x were interlocked, this transformation would be disallowed by R3, which does not permit 
this elision of an interlocked write. 

3.1.7 Dead Write Elision 
Consider this example, where x is not interlocked: 

// program source 
x = 1;  // a 
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Is it legal to eliminate line a? By R1, the answer is yes if and only if the program cannot tell that the write 
was eliminated. In particular, to eliminate this write the system must prove that x will not be read by any 
other observer, including that x will not be read by any other thread in the process, that if x is in shared 
memory it will not be read by another process which can see x, and that x is not participating in memory-
mapped I/O. 

Note that if x were interlocked, this transformation would be disallowed by R3, which does not permit 
this elision of an interlocked write. 

3.1.8 Read Invention 
Consider the following code, where initially x = 0 and threads T1 and T2 are the only observers manipu-
lating x and y: 

// thread T1 
x = 1;  // a 

// thread T2 
r1 = x;  // b 
r2 = 0; 
if( r1 == 1 ) { // c 
  r2++; 
// later 
if( r1 == 1 ) { // d 
  r2++; 

This code contains a race. Is r2 == 1 a possible outcome? The answer is yes, because another read of x can 
be invented beside line b and then moved between lines c and d. 

3.2 Loops Containing Only Ordinary Reads and Writes 

3.2.1 Nonterminating Loops 
This example was supplied by [Boehm 2006a]. Consider the following code, which contains no synchro-
nization (locks or interlocked variables): 

// program source 
for( T* p = q; p != 0; p = p->next ) { … } 
x = 42; 

Can any of the write to x be moved ahead of the loop? In particular, if the loop is potentially nonterminat-
ing, could an observer on another thread see a value for x even when the assignment to x could never be 
executed according to program order? 

The answer is yes. All of the code is part of the same batch, and R6 permits the reordering of writes 
within a batch. R5 does not prohibit moving a valid write within a batch, and the write x = 42; must oc-
cur because the batch is required to be finite (if the loop is infinite then this code violates the requirement 
that a batch must be finite). 

In particular, this choice makes it illegal for surrounding/calling code to take a lock protecting x if and 
only if the loop will terminate, as in the following example provided by Carol Eidt: 

if( ConsultOracleWillLoopTerminate() ) { lock(); } // take lock protecting x iff necessary? 
for( … ) { … } 
x = 1; 
if( ConsultOracleWillLoopTerminate() ) { unlock(); } // release lock protecting x iff necessary? 
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If any other observer reads or writes x, whether under a lock or not, then the above code contains a race 
because a write to x can occur without holding the lock. 

3.2.2 Merging Successive Loops 
This motivation for this example was provided by David Callahan. Consider the following loops, where 
there are no interlocked operations: 

// program source 
for( i = 0; i < max; ++i ) { c[i] = a[i] + b[i]; } 
for( i = 0; i < max; ++i ) { d[i] = a[i] * b[i]; } 
for( i = 0; i < max; ++i ) { e[i] = sqrt( a[i]*a[i] + b[i]*b[i] ); } 

The question is, if the bodies are free of other side effects, can an optimizer merge the loops and transform 
this into the following (e.g., for better locality on the shared arrays a and b)? 

// transformation 
for( i = 0; i < max; ++i ) { 
  c[i] = a[i] + b[i]; 
  d[i] = a[i] * b[i]; 
  e[i] = sqrt( a[i]*a[i] + b[i]*b[i] ); 
} 

The answer is yes. All of the code is part of the same batch, and R6 permits the reordering of writes 
within a batch. R5 does not prohibit moving a valid write within a batch, and the writes must occur be-
cause the batch is required to be finite (if the loop is infinite then this code violates the requirement that a 
batch must be finite). 

3.2.3 Inverting Nested Loops 
Consider the following loops, where there are no interlocked operations: 

// program source 
for( j = 0; j < jmax; ++j ) { 
  for( i = 0; i < imax; ++i ) { 
    b[i] += a[i][ j] * 2; 
  } 
} 

The question is, if the bodies are free of other side effects, can an optimizer rearrange the loops and trans-
form this into the following (e.g., for better locality on the shared arrays a and b)? 

// transformation 
for( i = 0; i < imax; ++i ) { 
  for( j = 0; j < jmax; ++j ) { 
    b[i] += a[i][ j] * 2; 
  } 
} 

The answer is yes. All of the code is part of the same batch, and R6 permits the reordering of writes 
within a batch. R5 does not prohibit moving a valid write within a batch, and the writes must occur be-
cause the batch is required to be finite (if the loop is infinite then this code violates the requirement that a 
batch must be finite). 
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3.2.4 Register Allocation Without Dirty Check 
This example was supplied by Kevin Frei from actual code, and based on a similar example in [Boehm 
2006a]. Consider the following code, where object x is protected by a lock: 

// program source 
if( cond ) 
  lock();   // more generally, “initialize resource” 
for( … ) 
  if( cond && other_cond ) { 
    ++x;   // more generally, “use resource” 
  } 
if( cond ) 
  unlock();   // more generally, “release resource” 

This pattern arises in a function that optionally performs additional work (here, optional work that in-
volves updating x), where the flag used to control whether the extra work should be done (here cond) is 
typically passed as a parameter to the function. In this case, the programmer knows the lock is only 
needed if the optional work will be done and x could be updated, so the lock is only taken if the optional 
additional work involving x will actually be performed. 

If x is not a shared object, then this may be legally transformed as follows to enregister x: 

// transformation 
if( cond ) 
  lock(); 
r1 = x; 
for( … ) 
  if( cond && other_cond ) { 
    ++r1; 
  } 
x = r1; 
if( cond ) 
  unlock(); 

But if x is a shared object, this transformation is illegal by R5 because it can create an ordinary write that 
is not present in the program source, for example whenever cond is false. 

Example 3.2.5 shows how to change this transformation to make it legal. 

3.2.5 Register Allocation With Inefficient Dirty Check 
Consider again the original code in Example 3.2.4: 

// program source 
if( cond ) 
  lock(); 
for( … ) 
  if( cond && other_cond ) { 
    ++x;   // more generally, “use resource” 
  } 
if( cond ) 
  unlock(); 
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The following transformation to enregister x will be legal whether or not x is a shared object: 

// transformation 
if( cond ) 
  lock(); 

r1 = x; 
bDirty = false; 
for( … ) 
  if( cond && other_cond ) { 
    ++r1; 
    bDirty = true; 
  } 
if( bDirty) 
  x = r1; 

if( cond ) 
  unlock(); 

If x is a shared object, this transformation does not violate R5 the way that Example 3.2.1 does, because 
here the transformed code writes the register back to x only if there is a program write to x. Therefore this 
transformation amounts to combining all the loop’s ordinary writes to x and moving them after the loop, 
and it is legal if and only if that combination and motion is legal. 

3.2.6 Register Allocation With Efficient Dirty Check 
Consider again the original code in Example 3.2.4: 

// program source 
if( cond ) 
  lock(); 
for( … ) 
  if( cond && other_cond ) { 
    ++x;   // more generally, “use resource” 
  } 
if( cond ) 
  unlock(); 

The following transformation to enregister x will be legal whether or not x is a shared object: 

// transformation 
if( cond ) 
  lock(); 

r1 = 0;   // r1 has the same type as x 
for( … ) 
  if( cond && other_cond ) { 
    ++r1; 
  } 
if( r1 != 0 )   // note: !=, not < 
  x += r1;   // increment x once 

if( cond ) 
  unlock(); 
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If x is a shared object, this transformation does not violate R5 the way that Example 3.2.1 does, because 
here the transformed code writes to x only if there is a program write to x. Therefore this transformation 
amounts to combining all the loop’s ordinary writes to x and moving them after the loop, and it is legal if 
and only if that combination and motion is legal. 

Note: The only case in which r1 could be updated but would not update x is if r1 overflowed to 0 (one or 
more times), but then the same number of increments of x would also overflow to x’s original value, so 
the transformation remains correct. 

3.2.7 Register Allocation Without Dirty Check (II) 
This variant of Example 3.2.4 supplied by Jim Hogg. Consider the following code, where object x is pro-
tected by a lock: 

// program source 
if( a.length() > 0 ) 
  lock();   // more generally, “initialize resource” 
for( int i = 0; i < a.length(); ++i ) 
  ++x;   // more generally, “use resource” 
if( a.length() > 0 ) 
  unlock();   // more generally, “release resource” 

If x is not a shared object, then this may be legally transformed as follows to enregister x: 

// transformation 
if( a.length() > 0 ) 
  lock();   // more generally, “initialize resource” 
r1 = x; 
for( int i = 0; i < a.length(); ++i ) 
  ++r1;   // more generally, “use resource” 
x = r1; 
if( a.length() > 0 ) 
  unlock();   // more generally, “release resource” 

But if x is a shared object, this transformation is illegal by R5 because it can create an ordinary write that 
is not present in the program source, for example whenever a.length() <= 0 is false. 

Example 3.2.5 shows how to change this transformation to make it legal. 

3.2.8 Generalization: Conditional Writes 
The foregoing examples lead to the following generalization, noted by Jim Larus: Because any arbitrary 
piece of code could be called both inside and outside a lock, therefore any shared variable s that is written 
to in a conditionally executed block (including an explicit conditional branch, or in the body of a loop that 
may not be executed) cannot safely be enregistered without a check to ensure that the transformation 
does not invent a write to s when no write could occur in a sequentially consistent execution. 

Consider: 

// program source 
… 
if( cond )  
  ++x; 
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for( … ) 
  ++y; 
… 

Enregistering either x or y is not legal in general: 

// program source 
… 
r1 = x; 
if( cond )  
  ++r1; 
r2 = y;   // a 
for( … ) 
  ++r2; 
… 
x = r1; 
y = r2;   // b 

Line a is not legal because it invents a write to x when cond is false. Line b is not legal unless the system 
can prove the loop would be executed at least once, because it invents a write to y when the loop is never 
executed. 

See Examples 3.2.5 through 3.2.7 for legal variants where the enregistration is done correctly. 

3.3 Interlocked Reads and Writes 

3.3.1 Interlocked Read, Interlocked Write 
Consider this example, where x and y are interlocked: 

r1 = x; // interlocked read 
y = r2; // interlocked write 

By R3, these operations may not be reordered. 

3.3.2 Interlocked Write, Interlocked Read 
Consider this example, where x and y are interlocked: 

x = r1; // interlocked write 
r2 = y; // interlocked read 

By R3, these operations may not be reordered. 

3.3.3 Lock Coarsening 
Consider this example, where a_lock is a lock and x and y are shared: 

// program source 
a_lock.lock();  // a 
x = 42;   // b 
a_lock.unlock();  // c 
y = 53;   // d 
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a_lock.lock();  // e 
x = 64;   // f 
a_lock.unlock();  // g 

Can this legally be transformed to the following? 

// transformation 
a_lock.lock(); 
x = 64; 
y = 53; 
a_lock.unlock(); 

The answer is no. It is legal to move line d after f, so that the last four lines look like the transformation. 
But it is not legal to then remove lines a through c, nor is it legal to elide the now-adjacent unlock/lock 
pair, because interlocked reads and writes may not be elided. 

3.3.4 Locks As Barriers 
Consider this example, supplied by Hans Boehm, where x and y may or may not be interlocked, but if not 
interlocked assume they are atomically updated: 

// thread T1 
x = 1;  // a 
lock(l1); unlock(l1); 
lock(l1); unlock(l1); 
r1 = y;  // b 

// thread T2 
y = 1;  // c 
lock(l2); unlock(l2); 
lock(l2); unlock(l2); 
r2 = x;  // d 

The question is: Can r1 == r2 == 0? The answer is no, because this would require reordering lines a and 
b and lines c and d, and that is impossible because unlock followed by lock acts as a full fence. Formally: 
In all cases, a → c  b and c → c  d. If r1 == 0 then b → c  c → c  d, but if r2 == 0 then d → c  b, which is a contradic-
tion and so both cannot be true. 

3.3.5 Lock Acquire As Publishing Events 
The following example is adapted from the example for Theorem 6.1 in [Boehm 2005a]. This code demon-
strates why lock acquisition could be viewed as a “publishing” event if there is a try_lock operation that 
can make lock acquisition observable on another thread. Here v1 is noninterlocked: 

// thread T1 
x = 1;  // a 
lock(l1);  // b 

// thread T2 
while( try_lock(l1) ) { // c  
  unlock( l1 ); 
} 
r2 = x;  // d ?= 1 

This code contains a race, and we do not guarantee the result r2 == 1. In particular, lines a and b may be 
reordered. Informally, this model does not choose to support treating lock acquisition as an observable 
event so as to manipulate a noninterlocked shared variable like x outside a lock; per P1, noninterlocked 
shared variables should be manipulated while holding a lock. 

3.4 Publishing Idioms 
These examples are variants of the general case where one observer creates (or in isolation mutates) 
shared objects and then makes them visible to the rest of the system with an atomic operation, which in 
this memory model means an interlocked write. 
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3.4.1 Create and Publish New Object 
Consider the following code, where p is an interlocked pointer to an ImmutableObject: 

// thread T1 (publisher) 
p = new ImmutableObject(); 

// threads T2..n (readers) 
DoSomethingWith( p ); 

This program is correct and race-free because p is interlocked and after construction *p is shared but im-
mutable. Note that R8 requires that in line 1 the write to p must occur last even if the language allows 
flexibility in the ordering of line 1’s subactions. (See also Example 3.9.1.) Therefore readers of a non-null p 
see the fully constructed object. (If the object is mutable, further locking may be required, but the code 
above is sufficient for this example of constructing an object that is thereafter immutable.) 

3.4.2 Create and Publish Queue Items 
This example is taken from [Adve 1995] Figure 1. Consider the following code, where thread T1 builds up 
a singly-linked list of tasks and then publishes the list via an interlocked head pointer, and other threads 
wait for the publishing to be complete and then each take one queue item from the queue (using a lock to 
serialize the readers with respect to each other). Initially all pointers are null and all integers are 0, and 
head is the publishing variable: 

// thread T1 (publisher) 
while( there are more tasks ) { 
  task = GetFromFreeList(); // read task 
  task->data = …;  // set values 
  … insert task in queue … 
} 
head = head of task queue; 

// threads T2..n (readers) 
while( myTask == null ) { 
  lock_list(); 
  if( head != null ) { 
    myTask = head;  // take task 
    head = head->next; // remove it 
  } 
  unlock_list(); 
} 
… = myTask->data; 

This program is correct and race-free. Because head is interlocked, all the work in T1 must be visible to 
any other thread that sees a non-null value of head. After T1 publishes the list, it is protected by a lock. 

3.4.3 Internally Versioned Objects Using Immutable Slices 
Consider the following Versioned class whose instances are safe to use without locking because state is 
never updated in place, but rather internal state is maintained in immutable slices accessed via an inter-
locked pState pointer:  

// program source 
class Versioned { 
private: 
  State *interlocked pState; // pointer to current immutable “slice”/”version” of this object’s state 
  … 
  void EveryReader() { // every reader method of this class must follow the pattern that 
    State* pOld = pState; // “taking a local copy of the state pointer” must come first 
    … use *pOld, not *pState… // and then only pOld is used to access the object’s state 
  } 
  void EveryMutator() { // every mutator method of this class must follow the pattern that 
    while( true ) { 
      State* pOld = pState; // like every method it first takes a copy of the state pointer 
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      State* pNew = new State; // and then creates a new State with new values, and then 
      … set values of *pNew from values of *pOld and other sources, but not pState … 
      if( a_cas( &pState, pOld, pNew ) ) { 
        break;   // finally overwrites pState to publish the new state 
      } else { 
        … undo work and delete pNew … 
      } 
    } 
  } 
}; 

This program is correct and race-free. Because pState is interlocked, all the work to initialize a new slice 
must be visible to any other thread that sees the result of the new pointer stored with a_cas. 

Note that the above code elides the details of memory management to free old slices when they are no 
longer referenced by any readers. 

3.4.4 Double-Checked Locking (DCL) 
Consider the classic Double-Checked Locking pattern, where the first thread to call GetPointer lazily ini-
tializes the singleton T object pointed to by the interlocked pointer p: 

// program source 
T* GetPointer() { 
  if( p == 0 ) {  // a: interlocked read (p) 
    p_lock.lock();  // b: interlocked read (p_lock.var) 
    if( p == 0 ) {  // c: interlocked read (p) 
      p = new T;  // d: ordinary reads/writes + interlocked write (p) 
    } 
    p_lock.unlock();  // e: interlocked write (p_lock.var) 
  } 

  return p;   // f: interlocked read 
} 

This code is correct and race-free: 

• By R3 and R4, lines a, b, and c cannot be reordered and must precede d, e, and f. 
• By R8, in line d the ordinary reads/writes are performed first (and may be reordered with respect 

to each other) before the interlocked write to p. This is necessary to ensure that another thread exe-
cuting lines a and f will not see a partly-constructed object. 

• By R4, line d must precede lines e and f. 

Note that lines e and f can be reordered. (See also Example 3.3.2.) 

See also Example 3.9.2 for an alternative equivalent to DCL for initialization that does not require tradi-
tional locks. 

3.5 Causality 

3.5.1 Canonical Example 
This example comes from many sources, including [Adve 1995] and Hans Boehm. Consider the following 
code, notably where each thread runs on a different processor or core. In this example, x and y are inter-
locked, and initially x = y = 0: 
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// thread T1 
x = 1; // event a 

// thread T2 
if( x == 1 ) // observe a 
  y = 1; // event b 

// thread T3 
if( y == 1 ) // observe b 
  assert( x == 1 ); // observe a 

The assertion is required to succeed by R6 because a → c  b and so T3 cannot observe b (y == 1) without 
also observing a (x == 1). 

The same is true in the equivalent case with locks: 

// thread T1 
lock(); 
x = 1; // event a 
unlock(); 

// thread T2 
lock(); 
if( x == 1 ) // observe a 
  y = 1; // event b 
unlock(); 

// thread T3 
lock(); 
if( y == 1 ) // observe b 
  assert( x == 1 ); // observe a 
unlock(); 

Note: Although each unlock() has release semantics, the release semantics are only sufficient to require 
that the program writes that appear earlier in the same thread be both performed and visible before the 
unlock() is performed and visible; release semantics alone does not govern transitivity of writes observed 
from other threads, without the additional requirements set out by R6 and the  → c   relation. 

3.5.2 Initialization (I) 
In [Boehm 2006c], Hans Boehm provided the following example, where p and q are interlocked and ini-
tially p = q = null: 

// thread T1 
construct X;  // a 
p = pointer to X; // b 

// thread T2 
r2 = p;  // c 
q = r2;  // d 

// thread T3 
r3 = q;  // e 
if( r3 != null ) { 
  q->foo();  // f 
} 

If T3 sees r3 != null, then q must refer to a fully-constructed X object. Here r3 != null implies d → c  e, r2 != 
null, and c → c  d, therefore a → c  b → c  e → c  f. By R3, all ordinary writes performed by X’s constructor (which 
by R5 include compiler-generated writes to set up the vtable, the vptr member, and initonly or literal 
members), must be visible to f. For example, if X is a type with immutable instances like System::String, 
T3 must not be able to observe the string’s value changing asynchronously. See also Example 3.9.1. 

3.5.3 Initialization (II) 
Similarly to Example 3.5.2, consider this code (adapted from [Boehm 2006c]), where p_initialized and 
q_initialized are interlocked: 

// thread T1 
p = new X;  // a 
p_initialized = true; // b 

// thread T2 
while( !p_initialized ) // c 
  { ; } 
q = new Y( p ); // d  
q_initialized = true; // e 

// thread T3 
while( !q_initialized ) // f 
  { ; } 
access *p via *q // g 

If T3 sees q_initialized == true, then q must refer to a fully-constructed Y object which in turn refers to a 
fully-constructed X object. Here q_initialized == true in line f implies e → c  f, and since also by construc-
tion b → c  d, therefore a → c  b → c  f → c  g. By R3, all ordinary writes performed by X’s and Y’s constructors 
(which by R5 include compiler-generated writes to set up the vtable, the vptr member, and initonly or 
literal members), must be visible to g. 
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3.5.4 Hand-Rolled Locks 
Boehm provides the following example, where initially x = y = lck = 0, and lck is interlocked: 

// thread T1 
x = 17; 
lck = 1; // a 

// thread T2 
while( lck == 0 ) { ; } 

r1 = x; 
y = r1; 
lck = 2; // b 

// thread T3 
while( lck < 2 ) { ; } 

r2 = y; // c 

By R6, a → c  b → c  c, and so the result is that r1 == r2 == 17. 

3.6 Transactional Memory 

3.6.1 Optimistic Versioning (I) 
This example is adapted from [Harris 2006], as sample code that could be found in a software transac-
tional memory (STM) system. Consider the following code, where w is an interlocked write-control vari-
able storing a version number or write-lock flag, w protects object x, multiple readers can execute concur-
rently and commit as long as no writers are in progress (w == WRITELOCK) or completed since (w was 
incremented), and threads T1 and T2 are the only observers manipulating w and x: 

// thread T1 (reader) 
do { 
  w1 = w;  // a: read version # 
  if( w1 != WRITELOCK ) { 
    local = x;  // b: read from x 
    … other work … 
  } 
} 
while( w1 == WRITELOCK || 
          !a_cas( &w, w1, w1 ) ); // c: check v# 

// thread T2 (writer) 
while( 
  (w2 = a_swap( &w, WRITELOCK ))  // d: r+w 
  == WRITELOCK 
) { ; } // spin 
x = … ;  // e: write to x 
… other work … 
w = w2 + 1;  // f: write new v# 

This code is correct and race-free because lines a through c must be performed in that order on T1, and d 
through f must be performed in that order on T2: 

• Because line a has acquire semantics, lines b and c correctly cannot move ahead of a. 

• Because line c has release semantics, line c correctly cannot move ahead of line a or c. 

• Because line c has acquire semantics, it ensures that line c’s check will detect any in-progress or 
completed writes during the execution of T1’s loop body. 

• Because line d has acquire semantics (actually a full fence thanks to a_swap), lines e  and f correctly 
cannot move ahead of d. 

• Because line f has release semantics, line f correctly cannot move ahead of line d or e. 

3.6.2 Optimistic Versioning (II) 
This example is adapted from [Harris 2006], as sample code that could be found in a software transac-
tional memory (STM) system. Consider the following program code, where none of the variables are in-
terlocked: 

// program code 
… 
int x = g_x; 
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int y = g_y; 
… 

In the above code, the two assignments can be reordered. 

An STM implementation may transform the above program code as follows to add instrumentation: 

// STM transformation — from [Harris 2006] 
… 
OpenForRead(&g_x, …); // a: performs an interlocked read of some g_x.tmw 
int x = g_x;   // b 
OpenForRead(&g_y, …); // c: performs an interlocked read of some g_y.tmw 
int y = g_y;   // d 
… 

The requirements here are that (a) line a must precede line b, and (b) line c must precede line d. To ensure 
this ordering, it is sufficient to make OpenForRead contain a read of an interlocked variable associated 
with the particular memory location passed to the function. 

Note that this guarantee is more restrictive than strictly necessary to achieve the desired semantics fro this 
example, in that line a does not need to precede line c or d. This memory model does not provide a direct 
way to express the less restrictive ordering that would permit line c and/or line d to be reordered before 
line a, but this memory model does allow looser models to be implemented at higher levels that would 
permit such reorderings. For further discussion, see §4.3. 

3.6.3 Atomic Block Coarsening 
Consider the following example, provided by Tim Harris [Harris 2006a], where initially x = y = 0 and x 
and y are noninterlocked: 

// thread T1 
atomic { 
  x = 1;  // a 
} 
atomic { 
  y = 2;  // b 
} 

// thread T2 
atomic { 
  r1 = y;  // c 
} 
atomic { 
  r2 = x;  // d 
} 

In all cases, if r1 == 2 then r2 == 1. Having r1 == 2 and r2 == 0 is not a valid result. 

3.6.4 Partially Synchronized Program (I) 
Consider the following example, proposed by Tim Harris [Harris 2006a] as a variant of Example 3.6.3, 
where again initially x = y = 0 and x and y are noninterlocked: 

// thread T1 
atomic { 
  x = 1;  // a 
} 
y = 2;  // b 

// thread T2 
r1 = y;  // c 
atomic { 
  r2 = x;  // d 
} 

In all cases, r2 is either 0 or 1. However, this program violates R7 because it contains a race on y, and so r1 
can contain any value. 
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The following doesn’t change the answer, but for completeness we note that the only legal transformation 
is that line b could move into T1’s atomic block, and possibly move ahead of a within the block. 

3.6.5 Partially Synchronized Program (II) 
Consider the following example, proposed by Tim Harris [Harris 2006a] as a variant of Example 3.6.3, 
where again initially x = y = 0 and x and y are noninterlocked: 

// thread T1 
y = 2;  // part of an event a 
atomic { 
  x = 1;  // b 
} 

// thread T2 
atomic { 
  r2 = x;  // c 
} 
r1 = y;  // part of an event d 

The question is: If r2 ==1, are we guaranteed that r1 == 2? The answer is yes, because if r2 ==1 then c 
observed d, so a → c  b → c  c → c  d, so in line d r1 == 2. Note that there is no race, and it does not matter 
whether or not an optimizer chooses to move the read of y into the atomic block(s). 

3.6.6 Intervening Atomic Block 
Consider the following example, proposed by Tim Harris [Harris 2006a] as a variant of Example 3.6.3, 
where again initially x = y = 0 and x and y are noninterlocked: 

// thread T1 
x = 1;  // a 
atomic { } 
y = 2;  // b 

// thread T2 
atomic { 
  r1 = y;  // c 
} 
atomic { 
  r2 = x;  // d 
} 

This program violates R7 because it contains races on both x and y, and so r1 and r2 can contain any values. 

The following doesn’t change the answer, but for completeness we note that the only legal transformation 
is that line b could move into the atomic block. Although that transformation would remove the race on 
y, the programmer cannot rely on such transformations happening. 

3.7 Arvind’s Examples 

3.7.1 [Arvind 2006a] Figure 3 
This example is adapted from [Arvind 2006a] Figure 3, and by R7 we make x and y interlocked instead of 
writing explicit fences as in the original example: 

// thread T1 
x = 1; // a 
y = 2; // b 
r1 = y; // c == 3 

// thread T2 
y = 3; // d 
x = 4; // e 
r2 = x; // f ?= 1 

Note that, in this example, each thread’s reads and writes must be performed in program order because 
of the interlocked semantics and data dependencies. 
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The question is, it is possible to have r1 == 3 and r2 == 1? The answer is no, because this result would 
require two observers to disagree on the order of causally related events, which violates R6. The contra-
diction is that r1 == 3 implies b → c  d, whereas r2 == 1 implies d → c  b. Expanding slightly: 

• If r1 == 3, then line c observed d, and so b → c  d. 

• If r2 == 1, then line f observed a, and so e → c  a, and so d → c  e → c  a → c  b. 

3.7.2 [Arvind 2006a] Figure 4 
This example is adapted from [Arvind 2006a] Figure 4, and by R7 we make x and y interlocked instead of 
writing explicit fences as in the original example: 

// thread T1 
x = 1; // a 
x = 2; // b 
r1 = y; // c == 3 

// thread T2 
y = 3; // d 
y = 5; // e 
r2 = x; // f ?= 1 

Note that, in this example, each thread’s reads and writes must be performed in program order because 
of the interlocked semantics and data dependencies. 

The question is, it is possible to have r1 == 3 and r2 == 1? The answer is no, because this result would 
require two observers to disagree on the order of causally related events, which violates R6. The contra-
diction is that r1 == 3 implies b → c  e, whereas r2 == 1 implies e → c  b. 

Expanding slightly: 

• If r1 == 3, then line c observed d but not e, and so b → c  c → c  e. 

• If r2 == 1, then line f observed a but not b, and so e → c  a → c  b. 

3.7.3 [Arvind 2006a] Figure 5 
This example is adapted from [Arvind 2006a] Figure 5, and by R7 we make x and y interlocked instead of 
writing explicit fences as in the original example: 

// thread T1 
x = 1; // a 
r1 = y; // b == 2 
r2 = y; // c == 4 

// thread T2 
y = 2; // d 

// thread T3 
y = 4; // e 
x = 8; // f 
r4 = x; // g ?= 1 

Note that, in this example, each thread’s reads and writes must be performed in program order because 
of the interlocked semantics and data dependencies. 

The question is, if r1 == 2 and r2 == 4, is it possible to have r4 == 1? The answer is no, because this re-
sult would require two observers to disagree on the order of causally related events, which violates R6. 
The contradiction is that having both r1 == 2 and r2 == 4 implies a → c  h, whereas r4 == 1 implies h → c  a. 

Expanding slightly: 

• If r1 == 2 and r2 == 4, then d → c  b → c  e → c  c, and in turn b → c  e implies a → c  f. 
• If r4 == 1, then f → c  a. 

3.7.4 [Arvind 2006a] Figure 7 
This example is adapted from [Arvind 2006a] Figure 7, and by R7 we make x and y interlocked instead of 
writing explicit fences as in the original example: 
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// thread T1 
x = 1; // a 
y = 3; // b 
r1 = y; // c 

// thread T2 
y = 4; // d 
r2 = x; // e 

// thread T3 
x = 2; // f 

Note that, in this example, each thread’s reads and writes must be performed in program order because 
of the interlocked semantics and data dependencies. 

The question is, if r1 == 4 and r2 == 2, what if anything can we say about the relationship between 
events a and f? If r1 == 4, then b → c  d, and so a → c  e. If also r2 == 2, then a → c  f → c  e. Therefore, if r1 == 4 
and r2 == 2, then a → c  f. 

3.7.5 [Arvind 2006a] Figure 8: Speculative Execution 
This example is adapted from [Arvind 2006a] Figure 8, and by R7 we make w, x, y, and z interlocked in-
stead of writing explicit fences as in the original example (note that this affects the answer to the question 
posed in the original and considered below). Note that w, x, and z are pointers containing the address of 
another memory location, and unary * denotes deference: 

// thread T1 
x = w; // a 
y = 2; // b 
y = 4; // c 
x = z; // d 

// thread T2 
r1 = y; // e = 2 
r6 = x; // f 
*r6 = 7; // g 
r8 = y; // h 

The first question is: If r1 == 2, can h observe either b or c (r8 == 2 or 4)? The answer is yes. If r1 == 2, 
then b → c  e → c  c. There is no causal ordering between c and h, so r8 == 2 and r8 == 4 are legal outcomes. 

The second question is: Can line g be reordered after line h? (Clearly line g cannot be reordered to pre-
cede line f, because of the data dependency.) The answer does not depend on the memory model, but 
only on local sequential data and control flow rules: Lines g and h can be reordered if and only if r6 does 
not contain the address of y. As noted in [Arvind 2006a], this restricts speculative execution. If line h is 
executed speculatively as written before line f, then the speculation will have to be thrown away if it is 
discovered that r6 contains the address of y. On the other hand, if line h is speculatively executed as r8 = 
7, then the speculation will have to be thrown away if it is discovered that r6 does not contain the address 
of y. 

3.8 [JSR-133 2004]’s Examples 

3.8.1 [JSR-133 2004] Figure 6 
This example is adapted from [JSR-133 2004] Figure 6, and x and y are ordinary shared variables: 

// thread T1 
r1 = x;  // a 
if( r1 != 0 ) 
  y = 1;  // b 

// thread T2 
r2 = y;  // c 
if( r2 != 0 ) 
  x = 1;  // d 

By R5 and R7, this code is correctly synchronized and the result is r1 == r2 == 0. R5 does not permit 
either thread’s reads and writes of x and y to be reordered, because there is no sequentially consistent 
execution where line b or line d will be executed. 
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3.8.2 [JSR-133 2004] Figure 7 
This example is adapted from [JSR-133 2004] Figure 7, and x and y are ordinary shared variables: 

// thread T1 
r1 = x;  // a 
y = r1;  // b 

// thread T2 
r2 = y;  // c 
x = r2;  // d 

By R7, this code is not correctly synchronized. Even though there is a race, if x and y each occupies a sin-
gle memory location (and therefore each read and write is atomic) then we can make the statement that 
the result is r1 == r2 == x == y == 0 because there is no sequentially consistent execution where any 
variable could have a nonzero value. 

3.8.3 [JSR-133 2004] Figure 8 
This example is adapted from [JSR-133 2004] Figure 8, and x and y are ordinary shared variables: 

// thread T1 
r1 = x;  // a 
r2 = x;  // b 
if( r1 == r2 ) 
  y = 2;  // c 

// thread T2 
r3 = y; 
x = r3; 

By R7, this code is not correctly synchronized. Given that there is a race, the question is: Is r1 == r2 == r3 
== 2 possible? The answer is yes. As described in [JSR-133 2004], one valid transformation is to remove 
the redundant read of x in line a: 

// thread T1 (valid transformation) 
r1 = x;  // a 
r2 = r1;  // b’ 
if( r1 == r2 ) 
  y = 2;  // c 

// thread T2 
r3 = y;  // d 
x = r3;  // e 

After this, the condition is always true and can be eliminated, and line c can be moved ahead of lines a 
and b’. 

3.8.4 [JSR-133 2004] Figure 12 
This example is adapted from [JSR-133 2004] Figure 12, and x is an ordinary shared variable: 

// thread T1 
r1 = x;  // a 
x = 1;  // b 

// thread T2 
r2 = x;  // c 
x = 2;  // d 

By R7, this code is not correctly synchronized.  Given that there is a race, the question is: Is r1 == 2 and r2 
== 1 possible? The answer is yes. [JSR-133 2004] permits this, saying that “the behavior r1 == 2 and r2 
== 1 might be allowed by a processor architecture that performs the writes early, but in a way that they 
were not visible to local reads that came before them in program order. This behavior, while surprising, is 
allowed by the Java memory model.” No rule in this memory model prohibits such an implementation. 

3.8.5 [JSR-133 2004] Figure 14 
This example is adapted from [JSR-133 2004] Figure 14, and x and y are ordinary shared variables: 
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// thread T1 
r1 = x;  // a 
if( r1 == 1 ) 
  y = 1;  // b 

// thread T2 
r2 = y;  // c 
if( r2 == 1 ) 
  x = 1;  // d 
else 
  x = 1;  // e 

By R7, this code is not correctly synchronized.  Given that there is a race, the question is: Is r1 == r2 == 1 
possible? The answer is yes. The reason is that T2’s assignment to x will be performed regardless of the 
value of r2, and so lines d and e can be merged and moved before the conditional test (which can then be 
eliminated because nothing remains in either branch), and then before line c. 

3.9 Selected Language Semantics 
todo: this section under development, quite a bit more needs to come here 

3.9.1 new 

Consider the following C++ statement that contains a new-expression, where p is interlocked: 

// program code 
p = new T(); 

Conceptually, the compiler actually allocates raw memory, constructs the object, and stores the pointer 
into p — in some order. The following is a translation that conforms to ISO C++ rules and to R8: 

// transformation 
void *__temp = /* T */ ::operator new( sizeof(T) ); // allocate raw memory 
new (__temp) T();     // call constructor 
p = __temp;      // copy pointer 

The following translation also conforms to ISO C++ rules, but is invalid according to this memory model: 

// transformation 
p = (T*) /* T */ ::operator new( sizeof(T) );  // allocate raw memory 
new ((void*)p) T();     // call constructor 

Even in the absence of C++ language rules, the latter translation is invalid because it violates R8. 

It also invalid by C++ language rules. Because there is a sequence point at the end of the constructor call, 
the compiler must first translate it into a constructor call followed by the assignment to p, and then can-
not reorder the write to p upwards because it is an interlocked store. 

3.9.2 Shared Function Static Objects (C++) 
In C++, a static local object is shared across all executions of the function, but is not initialized until its 
first use: 

void f() { 
  static X x;  // dynamically initialized 

  … 
} 
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To implement the language’s required semantics correctly, the C++ compiler must ensure that initializa-
tion of x is race-free (unless it can prove that f can never be called concurrently by two different observ-
ers). 

One option is to have the compiler generate code like that for Double-Checked Locking to protect x’s 
initialization (see Example 3.4.4). 

A second option is to generate code similar to the following: 

void f() { 
  static X x;     // statically uninitialized 
  static interlocked char flag = 0;  // statically initialized to 0 
  if( flag != DONE ) {    // (for efficiency) 
    if( a_cas( &flag, 0, CONSTRUCTING ) ) { // if I get to be the one constructing 
      new (&x) X;    // then construct 
      flag = DONE; 
    } else { 
      while( flag == CONSTRUCTING ) 
        ; // spin 
    } 
  } 
  … 
} 

In either case, x is guaranteed to be initialized without a race. (If the program later uses x in a way that 
could cause a race, it must correctly synchronize access to x.) 
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4 Discussion 

4.1 Compatibility 
For backward compatibility, the/an old memory model can be explicitly requested by the developer, or 
used automatically by default for code that can be recompiled dynamically (e.g., JIT compilation) and that 
was originally developed under a previous memory model. 

In our next tool chain release that implements this memory model by default: 

• Compilers will add a tag to every binary/assembly produced using the new memory model. 

• A developer can opt out of the new model and select the old model via some syntax (e.g., #pragma) 
to be defined by individual languages. 

• Any JIT-like compiler will check the tag, and if the new memory model does not apply to the code 
being compiled it will disable optimizations as needed to comply with the older memory model. 

todo: barriers around calls across new/old code? barrier on thread create? destroy? 

4.2 Guarantees In the Presence of Races 
Some safety guarantees should be provided even in the presence of program races, notably where needed 
to strengthen runtime system integrity (e.g., memory safety) and language feature semantics (e.g., initiali-
zation of initonly/final fields should be made safe without external explicit synchronization; see §Error! 
Reference source not found.). 

For the programmer’s own invariants, however, what guarantees should hold even in programs with 
races? The potential answers range widely, and this is perhaps the area of most debate. From most to least 
restrictive, the major options include the following, where “transformation” includes the reordering, eli-
sion, and/or invention of memory operations. Note that these deal only with ordinary reads and writes 
of shared variables, and deals only with additional guarantees (we always assume ordinary sequential 
dependencies are satisfied): 

1. Allow no transformations, require full sequential consistency? This option would seriously in-
hibit optimizations, especially compiler code motion and memory latency hiding. 

2. Allow transforming reads, but not writes? It is conjectured that allowing read reordering while 
prohibiting write reordering would enable most of the desirable optimizations. Prohibiting write 
reordering is also conjectured to improve debuggability of races and eliminate some classes of inva-
lid state, by reducing the set of possible surprising behaviors in a race. Chris Brumme [Brumme 
2006] in particular makes a persuasive argument that, because races cannot in general be prevented 
or diagnosed with perfect accuracy even at test time, performing writes in program order can sig-
nificantly help programmers to figure out what is going wrong when debugging a race. 

3. Allow transforming both reads and writes, but every write to a memory location must write a 
value that would be written in a sequentially consistent execution? This allows latitude for most 
local optimizations, while prohibiting the creation of “impossible” values in individual (atomically 
updated) memory locations; see Example 3.1.4. The main benefit is that it guarantees that individ-
ual memory locations will have values compatible with an SC execution, which may improve de-
buggability even though there can still be word and object tearing. Importantly, a major cost is that 
this option essentially bans compensating updates to shared memory locations, which in turn es-
sentially bans speculative in-place updates of shared objects. 
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4. Allow all transformations. This would follow the philosophy of permitting full local optimizations 
and relying on the programmer to always correctly synchronize his program so that the optimiza-
tions cannot be detected. 

The Whidbey managed memory model chooses approximately #2. [Hogg 2005] (See also §5.3.) The Java 
memory model chooses approximately #3. [Manson 2005] 

This paper chooses #3, and the rest of this section makes an argument for this choice. For the program-
mer’s own invariants, we believe that only a few useful guarantees are possible in the presence of races. 
Although enforcing strict sequential consistency could make races somewhat easier to reason about dur-
ing debugging, which is attractive, we believe that this path is probably unfruitful for the following rea-
sons: 

• The stronger guarantees, even #1 (SC), don’t matter unless there is a race. The surprising values 
can only be observed in a race condition, and so the extra guarantees don’t matter for a correctly 
synchronized program. 

• The stronger guarantees, even #1 (SC), don’t help much when there is a race. In general, in a race 
a program can observe the same kinds of surprising values anyway. For example, even under #1 
(full SC), in a race even a plain int variable can be observed with “impossible” values (e.g., due to 
word tearing), and in general nearly any invariant that involves multiple variables (e.g., the state of 
an object, which depends on the values of its member variables) is liable to be broken in a race 
when the program fails to perform correct synchronization. 

There does not appear to be a significant practical difference between: (a) a corrupted object containing an 
invalid combination of bits because of a program race, even in a sequentially consistent execution; and (b) 
a corrupted object containing a different invalid combination of bits because of a program race and other 
effects such as write reordering. Once an object is in such a state, it is not possible in general to safely use 
the object, not even to safely destroy or finalize it. 

So our position is not that we choose not to make guarantees for programs with races, but rather that few 
useful guarantees are possible, and that trying to provide guarantees for a program with races at best 
gives the programmer a false sense of security. 

In contrast, consider choice #2 above: The managed memory model follows #2 and attempts to reduce 
invalid values even in races by prohibiting write reordering, and the managed environment aggressively 
aligns some fundamental types (including int) to guarantee that simple reads and writes are atomic by 
default on popular hardware platforms. For example, the following code will behave in a sequentially 
consistent manner on .NET even if x is a plain int without any synchronization (not even volatile), and x 
will end up being either -1 or 1: 

// thread T1 
x = -1; 

// thread T2 
x = 1; 

However, even with prohibiting all write reordering (per #1) plus strong alignment for x, this seems to be 
only a partial illusion of safety. Even slight code changes will break this sequentially consistent façade 
and allow “impossible” values, for example by: (a) changing the type of x to be Double or Decimal which 
are too large to be updated atomically; or (b) changing T1’s code to x--; which is not atomic (note that 
although code like x-- could be made atomic using a compare-and-swap technique, doing so is impracti-
cally expensive). We wonder whether choosing #2 would have a net effect of improving or worsening the 
problem; on the one hand, #2 stands improve the programmer’s ability to debug detected races; on the 
other hand, it could degrade the ability to discover races, providing a false sense of security by masking 
some kinds of latent races in some circumstances. 
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There has been much debate about the actual performance value of relaxed memory models. [Adve 1995, 
Hill 1998, Adve 2000, Hill 2003, JSR-133 2004]). The academic literature typically focuses on hardware 
optimizations, not software (compiler) optimizations. This is unfortunate, because routine compiler op-
timizations are known to have significant benefits up to order-of-magnitude improvements, whereas in 
hardware it is argued that techniques like scouting and other speculative execution have closed the gap 
between SC and relaxed models to 20% or less. [Hill 1998, Hill 2003] We assert that memory models that 
allow both read and write reordering are essential in order to take advantage of common techniques like 
register allocation and common subexpression evaluation that are known to be important and useful 
compiler optimization techniques. 

Consider this code adapted from [Adve 2000], where initially x = y = flag = 0 and flag is interlocked: 

// processor P1 
for( … ) { 
  … 
  x++; 
  … 
  y += …; 
  … 
} 
flag = 1; 

// processor P2 
while( flag != 1 ) ; 
… 
r1 = x; 
r2 = y; 

First, this memory model permits reordering ordinary writes. Compilers can therefore apply common 
optimizations like register allocation and CSE to shared variables like x and y. Without such optimiza-
tions, loops like P1’s can be significantly slower (e.g., a June 2006 internal mail thread reported a 400% 
performance difference for just such a loop, where x had type int and y had type float [Clrperfe 2006]). 

Second, in P2’s frame of reference, this memory model allows P1’s writes to x and y to be postponed until 
as late as P2’s reads of x and y. Adve observes that hardware implementations can exploit this latitude 
with “lazy invalidations [and] lazy release consistency on software DSMs.” [Adve 2000] 

4.3 Finer Granularity 
This memory model uses the conventional notion of interlocked reads and writes having acquire and 
release semantics. This is known to be somewhat coarse-grained, but we use it because it is difficult to get 
much finer-grained without seriously complicating the model. This model permits languages to define 
additional fine-grained semantics that will be preserved by this model. 

In particular, when a program performs an interlocked write (e.g., lock release) to publish a set of ordi-
nary writes or to exit a critical region, the interlocked write is often publishing or protecting some, but not 
all, of the reads and writes in the preceding batch (see Example 3.6.2). But it is not known exactly which 
reads and writes the programmer intended to protect, and so this model therefore prevents any memory 
operation from moving past an interlocked write, in case that access was part of what was to be pub-
lished or protected. 

By knowing exactly which ordinary reads and writes are associated with a given interlocked variable, we 
could enable optimizations to move unrelated ordinary reads and writes across the interlocked write 
without affecting program semantics. 

Although this memory model does not require a way to associate a given ordinary read or write with a 
given interlocked variable, it does allow languages and tools to let such relationships to be declared (e.g., 
by the programmer in programming model extensions) and/or deduced (e.g., through whole program 
analysis), and then to make use of the looser semantics in optimizations at higher levels (e.g., compiler 
optimizations). Optimizations at lower levels that are unaware of the looser semantics will apply the 
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stricter semantics in this memory model. This correctly preserves the finer-grained semantics as long as 
they are strictly looser than the guarantees of this model, and so any looser models built on top of this 
memory model must not add any additional guarantees not present in this model (unless it implements 
them in terms of the guarantees of this model, e.g., by generating appropriate use of interlocked reads 
and writes). 

5 Related Work 
There are three main pieces of commercial software existing practice that this proposal should consider or 
coordinate with. In chronological order, they are. 

• Java 5 memory model (2004): Before Java 5, Java’s memory model was known to be deficient in a 
number of ways. [Pugh 2000] Java 5 then specified a new memory model that provided more con-
sistent guarantees to programmers. [JSR-133 2004] 

• Visual Studio 2005 managed memory model (2005): During the VS 2005 product cycle, the Phoenix 
and CLR teams specified a CLR memory model for managed code. [Hogg 2005; Morrison 2005; 
Morrison 2005a] (Note that Ecma/ISO CLI also specifies a memory model; this paper will not con-
sider that model because it is known to be looser than what CLI implementations actually imple-
ment and therefore untestable. It also arguably places an unreasonable burden of responsibility on 
programmers. [Brumme 2003]) 

• ISO C++ memory model (under development, ETA 2007): The ISO C++ standards committee is 
now working to define an international standard for a cross-platform native memory model. 
[C++MM 2006] This work has gained momentum during 2006, and is expected to be finalized in 
2007. 

We also note similarities between this model and the following academic work in particular: 

• Lamport’s happens-before relation (1978): For message-passing systems, and used to implement 
Lamport clocks. [Lamport 1978] 

• Adve and Hill’s DRF0 memory model (1990): The model in this paper was independently derived, 
and is similar to DRF0. [Adve 1990] 

• Gharachorloo’s RC memory model (1990): Release consistency. [Gharachorloo 1990] 

This section considers the above in chronological order, and discusses how this paper’s goals and choices 
differ from the above designs and provides a rationale for those choices. 

5.1 Lamport Happens-Before [Lamport 1978] 
Applying Lamport’s formulation directly to memory operations considers an individual ordinary read 
(message send) or ordinary write (message receive) to be an event, in that the write sends information 
that can propagate and be subsequently read by another process (observer): 

A single process is defined to be a set of events with an a priori total ordering. … We assume that 
sending or receiving a message is an event in a process. … 

The relation ‘→’ on the set of events of a system is the smallest relation satisfying the following 
three conditions: (1) If a and b are events in the same process, and a comes before b, then a → b. 
(2) If a is the sending of a message by one process and b is the receipt of the same message by an-
other process, then a → b. (3) If a → b and b → c then a → c. — [Lamport 1978] 
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This formulation can be directly applied to specify a memory model, but it is not sufficient to guarantee 
causality (Principle P3 = Rule R6) without one additional guarantee, described below. 

Consider Figure 2, an interaction diagram showing three 
processors P1-P3 where time increases upward. Two 
writes a and b are performed by processors P1 and P2, 
respectively. Each dashed arrow begins at a write per-
formed by one processor, and points to when the write 
becomes observable by another specific target processor. 

In particular, if P2 observes a at a2 and then performs b, is 
it possible for processor P3 to observe b at b3 before it is 
able to observe a at a3? 

According to this memory model, if a and b are events and 
a → c  b, then the red edge is illegal by R6 because P3 cannot 
observe b before being able to observe a. (Imagine that P1, 
P2, and P3 are physical observers who observe events 
through telescopes. It is not possible for a light signal to 
travel from P1 to P2 to P3 in less time than it can travel 
directly from P1 to P3.) 

According to the [Lamport 1978] rules, each individual read and write is considered to be a distinct event, 
and we see that the red edge is legal because a → a2 → b → b2 → a3 and a → a3 are both legal paths in the 
happens-before graph. The problem is that reads like a2 and a3 that are observations of the same write event 
become decoupled and treated independently, so that the above rules are insufficient to govern the order-
ing in which dependent writes performed by two different observers become visible to third parties. 

What is needed is an additional requirement that a message not travel “faster than light.” For example: 

(4) If a and b are the sendings of two messages by two different processes, a’ and b’ are the 
receipt of a and b by a third process, and a → b, then a’ → b’. 

With this additional rule, and interpreting “event” as defined in this paper (an interlocked read or write, 
or a batch of ordinary reads and writes), we believe the Lamport happens-before relation → is closer to 
causally-precedes  → c   for the purpose of specifying Rule R6 and preserving causality. 

5.2 Java 5 Memory Model [JSR-133 2004] 
The Java 5 memory model (henceforth Java model) has many strengths. We feel there are two main 
weaknesses in this model. The first is that it is complex and hard to understand. 

The second is that it is unclear and inconsistent about causality, a notion that is central but is not well 
defined or enforced in the Java model. The paper frequently falls back on case-by-case analysis of code 
examples that it interprets as apparently violating causality and surprising programmers, and then some-
what arbitrarily declares some to be illegal and others to be legal (the latter several times accompanied by 
handwringing that it’s unfortunate that the cases are surprising to programmers but that allowing them is 
necessary to enable important optimizations). 

We strongly agree that the theme of causality is important, but the reason the Java model doesn’t answer 
these questions well is because its notion of causality not well-defined. In particular, this paper’s model: 
(a) defines the unit of “an event” to be an interlocked operation or a batch of ordinary operations between 
interlocked writes; (b) rigorously defines causality; and then (c) rigorously guarantees causality for those 
units of work which allows full local optimizations that do not violate acquire/release boundaries. 

 
Figure 2: A “faster-than-light”  

causality violation 
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Under this memory model, all of the causality “problem examples” in [JSR-133 2004] come out the same 
way they do in the Java model, but with a much stronger rationale and without special fudging or arbi-
trary case-by-case rules. We believe this paper gives a more powerful definition and a better model to 
achieve what both papers agree are the right answers for these examples. See §3.8 for detailed examples. 

5.3 Visual Studio 2005 Managed Memory Model [Hogg 2005, Morrison 2005a] 
The Whidbey managed memory model (henceforth “managed model”) was designed to target currently 
shipping IA32- and IA64-compatible hardware. Therefore, in addition to its explicit rules, it also includes 
implicit rules based on assumptions that happen to be true on that hardware. In particular, the managed 
model assumes that every shared write (whether ordinary or interlocked) will become visible to all other 
processors at the same time. 

The managed model also defines the following explicit rules: 

Rule-1. Shared-writes have release semantics 

Rule-2. May coalesce adjacent shared-reads or shared-writes 

Rule-3. Interlocked accesses have acquire/release semantics; adjacent merging is not allowed 

Rule-4. Cannot introduce or remove non-adjacent shared-reads; ditto for shared-writes 

Notes: … 

• Note that all of the reads and writes discussed in this spec are assumed atomic. 

— [Hogg 2005] 

This memory model differs mainly in its treatment of ordinary reads and writes. We allow much greater 
latitude for the reordering/creation/elision of ordinary reads and writes, and permit a strict superset of 
the transformations permitted under the managed model. Specifically: 

• Rule-1 is not required in this paper’s model. (Rule-1 is discussed in further detail below.) 

• Rule-2 agrees with this paper, and is covered by R1, R3, and R4. 

• Rule-3 mostly agrees with this paper, and is covered by R3 and R4. However, R3, and R4 do permit 
some elision/merging of interlocked operations. 

• Rule-4 mostly agrees with this paper, and is covered mainly by R5. 

• The atomicity note above is covered for interlocked objects by Rule R2. 

Rule-1 does not exist in this memory model. Note that Rule-1 could be restated as “writes cannot be reor-
dered.” The rule is stated in terms of release semantics because, on current Intel platforms, emitting every 
write as a st.rel is observed to be sufficient to both perform each processor’s stores in order and to make 
them visible in that order to other processors; that is, the execution environment is processor consistent 
(PC) so that writes performed in order will be observed in order by even ordinary reads because all writes 
are assumed to be visible atomically at the same time to all other processors. (A general acquire/release 
model would additionally need all reads to have acquire semantics, and then Rule-1 would have to be 
formulated differently because that would additionally prohibit read reordering which the managed 
model does not want to prohibit.) 

Rule-1 was adopted in part to make certain classes of existing bugs be legal, by assuming that all writes 
might be releases. One motivation for Rule-1 was backward compatibility with existing code that will be 
recompiled in the field with a new JIT compiler, because it would be impossible in general to require all 
shipped code to first be fixed (to use locks or interlocked) before it is recompiled. As noted in the man-
aged model’s specification: 
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In some cases, the original code is technically wrong – it doesn’t follow CLR rules for use of inter-
locked (as specified in the ECMA/ISO spec; Partition I, Section 12). In other cases it assumes that 
execution will slavishly follow source code, with no optimization being performed by the JIT. Put 
another way, if the author had made correct use of locks and interlocked references, it would 
have worked correctly on all platforms – past, present and future. 

Going forward, Microsoft might simply state that such code is wrong, and must be fixed. How-
ever, the CLR team feels this creates an unacceptable user experience. (It’s slightly worse than this: 
some of our own .NET Framework library code, already shipped, contains these defects. A cus-
tomer might see breakages if he simply re-ran existing code on a multi-processor Itanium). — 
[Hogg 2005] 

But this compatibility goal is inconsistent with the rationale for Snippet-4 in [Hogg 2005], which states 
that changes to shipped code are nevertheless required: 

The CLR team shall check that any spin-locks in managed library code are written correctly to 
keep working, by ensuring that reads on g are marked as ordered (ie, having acquire semantics).  
The alternative, of having JITs treat every shared-read as ordered is estimated as too costly to run-
time performance of managed code. — [Hogg 2005] 

Rule-1 prevents some optimizations that may be desirable, including some kinds of common subexpres-
sion elimination and register allocation. For example, Rule-1 prevents any optimization of loops like for( 
i=0; i<1000000; i++ ) { count++; count2++; } where count and count2 might be shared. Recent internal 
mail threads have complained about 400% performance differences between managed and native code in 
such examples [Clrperfe 2006], although that appears to be a worst case because the loop is not doing any 
other work which would reduce or swamp this overhead. The managed model paper itself notes this for 
Snippet-9: 

“The two shared-writes are not adjacent, and so cannot be coalesced by Rule-2. Moreover, the JIT 
cannot advance [3] above [2] in an attempt to make them adjacent – that is disallowed by Rule-1. 
Not allowing the JIT to perform this optimization is unfortunate. However, in general, we cannot 
be sure that another thread is spinning on g2 – when set, it signals that g1 can be accessed.” — 
[Hogg 2005] 

In that example, the shared variables g1 and g2 are neither protected by a lock or declared interlocked. 
The problem arises that, because the managed model essentially treats every shared variable as a poten-
tial flag (but does so incompletely; see below) it cannot optimize the vast majority that are not. In this 
paper’s model, g2 would be declared interlocked if it were such a flag, and the optimization would be 
allowed in the majority of cases where it is not. 

Finally, note that as of this writing Rule-1 is not enforced consistently in our JIT compilers (notably JIT64), 
which appears to perform such optimizations anyway in violation of the managed model. 

This paper does not currently adopt Rule-1, mainly because Rule-1 is not necessary to achieve sequential 
consistency in race-free programs, and prevents compiler optimizations that could benefit from moving 
ordinary writes. However, if preventing store ordering is considered important (see §4.2), then such a rule 
should be adopted (but it should probably not be specified in terms of st.rel semantics). 
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