N2316=06-0176
2007-06-19

Daveed Vandevoorde
daveed@vandevoorde.com

Modules in C++

(Revision 5)

1 Introduction

Modules are a mechanism to package libraries and encapsulate their implementations.
They differ from the traditional approach of translation units and header files primarily in
that all entities are defined in just one place (even classes, templates, etc.). This paper
proposes a module mechanism (somewhat similar to that of Modula-2) with three
primary goals:

* Significantly improve build times of large projects

* Enable a better separation between interface and implementation

* Provide a viable transition path for existing libraries

While these are the driving goals, the proposal also resolves a number of other long-
standing practical C++ issues (initialization ordering, run-time performance, etc.).

1.1 Document Overview

Section 2 first presents how modules might affect a typical command-line-driven user
interface to a C++ compiler. The goal of that section is to convey how modules may or
may not disrupt existing practice with regard to build systems. Section 3 then briefly
introduces (mostly by example) the various language elements supporting modules. The
major expected benefits are described in some detail in Section 4. Finally, Section 5
covers rather extensive technical notes, including syntactic considerations. We conclude
with acknowledgments.

1.2 Changes Since Previous Version

Previous versions of this paper described extensions and alternatives to the basic
proposal. In the interest of brevity and focus, these are no longer included. Slight
syntactical changes have been made (most notably, a module definition no longer is
enclosed in braces).

2 Intended User Interface

Although the C++ standard doesn't mandate or even recommend any specific user model,
successful implementations of C++ share similar user interface elements. For example,
they tend to rely on compiling a translation unit at a time, on name mangling, on plain-
text source code, on time-stamp-based dependency checking, etc.



The introduction of modules is not expected to change this: The revised standard will
continue to just describe the semantics of the program, and an implementation will
continue to be free to achieve those semantics in any way. However, it is still expected
that mainstream implementations will agree on the general mechanisms involved, and the
intent is not to overly disrupt current software building strategies.

2.1 Module Files vs. Header Files

The main expected change when transitioning from traditional C++ libraries to module-
based libraries is that compiler-generated module files will largely replace user-written
header files. To make this concrete, consider a simple application consisting of one
implementation file (main.cpp) that uses one simple library itself consisting of one
implementation file (1ib.cpp) and one header file (1ib.h). The file 1ib.h describes
the interfaces offered by the library and —as is typical —is included in both main.cpp
and 1ib.cpp. (Let's assume for this particular case that the library does not provide any
macros to client code.) The library writer might build his library with a compiler
invocation like

$ CC —c —0 1lib.cpp

which will produce an object code file (1ib.o, say). That object code file (in some
form) is provided to the application writer along with the header file, who can then build
his application using

$ CC —0 main.cpp lib.o

The intent of this proposal is that the two command lines above continue to work when
the code transitions to modules, but the mechanisms underneath differ. First, the header
file can be dropped and its declarations moved to 1ib.cpp. Second, when 1ib.cpp is
compiled, a second file is generated in addition to the object code file: A module file
(1ib.mpp, say) that describes the public interfaces of the library'. Third, when
main.cpp is compiled, the #include directive can be replaced by an import directive
(which is now a core language construct instead of a preprocessor construct). The
compiler will read (parts of) 1ib.mpp when it parses the import directive, and will
retrieve additional information from 1ib.mpp as it encounters the need to know about
the various aspects of the library (or "module") it describes.

As with header files, compilers will likely have a mechanism to describe where various
module files might be located. So if the module file 1ib.mpp was moved to a
nonstandard location, the compiler invocation might look like:

$ CC —M /nonstd/loc —O main.cpp lib.o

' The —O option in the examples is a request for optimization. It could conceivably affect the module file by
promoting to the public interface special knowledge —such as the fact that no exceptions are

thrown—about the implementation.



Unlike with header files, however, a compiler might also offer an option to locate where
a module file should be written when a module is compiled. So the command to build the
library could conceivably be written as follows:

$ CC —X /nonstd/loc —c —0 lib.cpp

2.2 What's A Module File Like?

Module files are compiler-generated and need not be human-readable. They can
therefore be optimized for efficient reading when compiling client code. In particular, it
is expected that a compiler will only read the elements of a module file that are needed by
client code. For example, if a library offers ten independent class definitions with 5
inline member function definitions in each, and client code only uses two of those classes
and six of those inline member functions, then a compiler would only load the initial
"table of contents" for the module, the two class descriptions in that module file (which
include their own "table of contents", and the data defining the six inline members.
Furthermore, tokenization, preprocessing, name lookup, overload resolution, and many
other tasks a compiler must perform when reading a header file need not be performed
when reading a module file (it was done once when the module implementation was
compiled, and the results saved in a form more straightforward for the compiler).

Although module files are compiler-generated, it is not expected that their contents will
be "close to the compiler's internal representation". Indeed, tying the module file
representation to a compiler's internals makes it highly likely that the module file will not
be usable with future versions of the compiler (which may need to change important
aspects of its internal representation for various reasons). Instead, a module file will
likely represent the interfaces using the same abstractions as the language standard (plus
extensions), which is also the abstraction level implicit in a header file.

It is also hoped that module files will be standardized to a large extent. At the very least,
they will need to be specified by each platform along with an ABI. To help the chances of
getting there, future revisions of this paper will likely include a detailed description of a
module file format that can accommodate not only the standard language, but also
nonstandard extensions and future language developments.

An implementation of the features described in this paper has been initiated. That
implementation anticipates that a complete "module file" will in fact be a "folder of files"
(i.e., a "directory" in UNIX/Windows parlance).

2.3 Header Files May Stay Around

Although modules are meant to replace header files for interfaces expressed using the

core language, they cannot replace header files for macro interfaces. In a C++-with-

modules world, header files will therefore remain desirable. In our earlier example we

may therefore re-introduce a header file 1ib.h with contents somewhat as follows:
#ifndef LIB_H

#define LIB_H



import Lib; // Import the module (no guard needed)
#define LIB_MACRO(X, Y) ...
#endif /* ifndef LIB_H */

Even if a library does not provide macros it may still provide a header file (as outlined
above but without the macro definitions) to maintain source-level compatibility with
prior non-module-based versions of that library. (Note that import directives don't need
include guards: A duplicated import is essentially just ignored.) I.e., client code that
imports the library's interfaces with

#include "lib.h"

will continue to work and need not be aware of the fact that the header file is little more
than a wrapper around a module import directive.

2.4 Writing Against Unimplemented Interfaces

It's not uncommon for the development of client code to start before a library has been
fully implemented. The header file is written first and contains the anticipated interfaces.
Client code can be compiled against that while the implementation of the library proceeds
concurrently. The client code cannot be linked until enough of the library's
implementation is written, but the scenario does enable compression of development
schedules in practice. (Note that the C++ standard doesn't mandate that this be possible,
but the compiler+linker implementation strategy nicely supports it.)

This concurrent development approach is also intended to be available in the modules
world (though again outside the standard wording). This is achieved by compiling
incompletely implemented modules. For example, a very simple incomplete module may
look as follows:

export Lib:
public:
void f£(); // Not yet implemented
This can be compiled the usual way:
$ CC — lib.cpp

The object file produced (if any) is not useful, but the module file can be given to client
code developers to start coding against it.:

import Lib;
int main() {

£(); // Will compile but not link yet.
}

2.5 Dependency Management
Or: How will tools like "make" work in the world of modules?



Tools like "make" typically examine the "last time modified" time-stamp of various files
to decide whether a file (traditionally, an object code file or an executable file) needs to
be re-built. In the header-based world, the rule for rebuilding an object file typically
depends on the implementation (.cpp) file it is built from, plus any header files directly or
indirectly included by that implementation file.

In the proposed module world, object files will need to depend on module files imported
by the associated implementation (.cpp) files. Specifying the imported module files
directly in the dependency descriptions could achieve this. Alternatively (for code that is
transitioning from the header-based model), for modules with an associated header file as
described above (i.e., one that mostly just contains a module import directive), a rule
could be added to update the header file time stamp when the module file itself is
updated.

Since module files are generated, they themselves depend on other files: the source files
implementing the module (typically .cpp files, although header files are possible too) and
perhaps other module files it depends on.

As with header files todays, it is relatively simple for a compiler to generate a dependency
description that includes modules.

3 Module Features By Example

3.1 Import Directives

The following example shows a simple use of a module. In this case, the module
encapsulates the standard library.

import std; // Module import directive.
int main() {
std::cout << “Hello World\n”;

}

The first statement in this example is a module import directive (or simply, an import
directive). Such a directive makes a collection of declarations available in the translation
unit. In contrast to #include preprocessor directives, module import directives are
insensitive to macro expansion (except with regard to the identifiers appearing in the
directive itself, of course).

The name space of modules is distinct from all other name spaces in the language. It is
therefore possible to have a module and e.g. a C++ namespace share the same name. That
is assumed in the example above (where the module name std is identical to the main
namespace being imported). It is also expected that this practice will be common in
module-based libraries (but it is not a requirement; in fact a module may well contain bits
of multiple C++ namespaces). So in std: : cout the std does not refer to the module
name std, but to a namespace name std that happens to be packaged in the std module.

3.2 Module Definitions

Let’s now look at the definition (as opposed to the use) of a module.



// File_1l.cpp:
export Lib: // Module definition header.
// Must precede all declarations.
import std;
public:
namespace N {
struct S {
S() { std::cout << “S()\n”; }
}i

// File_2.cpp:

import Lib;

int main() {

N::S s;

}
A module definition header must precede all declarations in a translation unit: It indicates
that some of the declarations that follow may be made available for importing in other
translation units.

Import directives only make visible those members of a module that were declared to be
"public" (these are also called exported members). To this end, the access labels
"public:" and "private:" (but not "protected:") are extended to apply not only to
class member declarations, but also to namespace member declarations that appear in
module definitions. By default, namespace scope declarations in a module are private.

Note that the constructor of S is an inline function. Although its definition is separate (in
terms of translation units) from the call site, it is expected that the call will in fact be
expanded inline using simple compile-time technology (as opposed to the more elaborate
link-time optimization technologies available in some of today’s compilation systems).

Variables with static storage duration defined in modules are called module variables.
Because modules” have a well-defined dependency relationship, it is possible to define a
reliable run-time initialization order for module variables.

3.3 Transitive Import Directives
Importing a module is transitive only for public import directives:
// File_1l.cpp:
export Ml:
public:
typedef int Il;

2 This is slightly inaccurate: It is module partitions (subsection 3.5) that have the well-defined dependency

relationship. Nonetheless, the conclusion holds.



// File_2.cpp:
export M2:
public:

typedef int I2;

// File_3.cpp:
export MM:
public:
import M1l; // Make exported names from M1l visible
// here and in client code.
private:
import M2; // Make M2 visible here, but not in
// client code.

// File_4.cpp:

import MM;

I1 i1; // Okay.

I2 i2; // Error: Declarations from M2 are invisible.

3.4 Private Class Members

Our next example demonstrates the interaction of modules and private class member
visibility.
// File_1l.cpp:
export Lib:
public:
struct S { void £() {} }; // Public f.
class C { void £() {} }; // Private f.

// File_2.cpp:
import Lib; // Private members invisible.
struct D: Lib::S, Lib::C {
void g() {
£(); // Not ambiguous: Calls S::f.
}
}i

The similar case using header files would lead to an ambiguity, because private members
are visible even when they are not accessible. In fact, within modules private members
must remain visible as the following example shows:



export Err:

public:
struct S { int £() {} }; // Public f.
class C { int £(); }; // Private f.

int C::£() {} // C::f must be visible for parsing.
struct D: S, C {
void g() {
£(); // Error: Ambiguous.
}
}i

It may be useful to underscore at this point that the separation is only a matter of
visibility: The invisible entities still exist and may in fact be known to the compiler when
it imports a module. The following example illustrates a key aspect of this observation:

// Library file:
export Singleton:
public:
struct Factory {
// ...
private:
Factory(Factory const&); // Disable copying.
}i

Factory factory;

// Client file:

import Singleton;

Singleton: :Factory competitor(Singleton::factory);
// Error: No copy constructor

Consider the initialization of the variable competitor. In nonmodule code, the compiler
would find the private copy constructor and issue an access error. With modules, the
user-declared copy constructor still exists (and is therefore not generated in the client
file), but, because it is invisible, a diagnostic will be issued just as in the nonmodule
version of such code. Subsection 3.7 proposes an additional construct to handle a less
common access-based technique that would otherwise not so easily translate into
modularized code.

3.5 Module Partitions

A module may span multiple translation units: Each translation unit defines a module
partition. For example:



// File_1l.cpp:
export Lib.pl:
struct Helper { // Not exported.
/! ...
}i

// File_2.cpp:
export Lib.p2:
import Lib.pl;
public:
struct Bling: Helper { // Okay.
// ...
}i

// Client.cpp:
import Lib;
Bling x;

The example above shows that an import directive may name a module partition to make
visible only part of the module, and within a module all declarations from imported
partitions of that same mode are visible (i.e., not just the exported declarations).

Partitioning may also be desirable to control the import granularity for clients. For
example, the standard header <vector> might be structured as follows:

#ifndef __ STD_VECTOR_HDR
#define __ STD_VECTOR_HDR

import std.vector;
// Load definitions from std, but only those
// from the vector partition should be made
// visible in this translation unit.

// Definitions of macros (if any):

#define ...

#endif /* ifndef ___STD VECTOR_HDR */

The corresponding module partition could then be defined with following general pattern:
export std.vector:
public:
import std.allocator;
// Additional declarations and definitionms...

The partition name is an identifier, but it must be unique among the partitions of a
module (two different modules may use the same partition name, however; such
partitions are unrelated). All partitions must be named, except if a module consists of just
one partition.



The dependency graph of the module partitions in a program must form a directed acyclic
graph. Cycles can (and should) be diagnosed. Note that this does not imply that the
dependency graph of the complete modules cannot have cycles.

3.6 Nested Module Names
Module names can look like nested namespace names:

export Lib::Chunk:
// ...

However, this is only a naming mechanism: Such names don't imply any relationship
with other modules. In particular, the example above does not require the existence of a
module Lib.

The principal motivation for this feature is to allow modules to have names matching
certain namespaces. E.g.:

export Boost::MPL:
public:
namespace Boost {
namespace MPL {

/7 ...

}

Note that unlike class and namespace names, module names cannot be used for
qualification. For example:

// File lib.cpp:

export Lib:
void £() {}

// File main.cpp:
import Lib;
int main() {
Lib::£f(); // Error: No class Lib or namespace Lib.

}

3.7 Prohibited Members

The fact that private namespace members become invisible when imported from a
module may change the overload set obtained in such cases when compared with the pre-
module situation. Consider the following nonmodule example:



struct S {
void f(double);
private:
void f(int);
}i
}
void g(S &s) {
s.f£(0); // Access error.

}

The overload set for the call s. £ (0) contains two candidates, but the private member is
preferred. An access error ensues.

If struct s is moved to a module, the code might become:
import M;
void g(S &s) {
s.f£(0); // Selects S::f(double).
}

In the transformed code, the overload set for s. £ (0) only contains the public member
S:: £, which is therefore selected. In this case, the programmer of S may have opted to
deliberately introduce the private member to diagnose unintended uses at compile time.

There exist alternative techniques to achieve a similar effect without relying on private
members’, but none are as direct and effective as the approach shown above. It may
therefore be desirable to introduce a new access specifier prohibited to indicate that a
member cannot be called; this property is considered part of the public interface and
therefore not made invisible by a module boundary. The example above would thus be
rewritten as follows:

export M:
struct S {
void f(double);
prohibited:
void f(int); // Visible but not callable.
}i

Note that this parallels the "not default" functionality proposed in N1445 "Class
defaults" by Francis Glassborow. The access label "prohibited:" will also be extended
to namespace scope module members. For example:

* For example, a public member template could be added that would trigger an instantiation error if

selected.



export P:
public:

void f(double) { ... }
prohibited:

void f(int);

N2210 "Defaulted and Deleted Functions" by Lawrence Crowl addresses the same
issue—among others —with the = delete construct.

3.8 Inline Importing

When a module wants to interface to a nonmodule library, it needs to be able to declare
the contents of the nonmodule library. It cannot just #include its header, because that
would make each declaration of the header a member of the current module. We
therefore propose an escape mechanism called "inline import":

export Mod:
import { // Inline import.

extern "C" int printf(char const*, ...);
#include <stdlib.h>

}
/7 ...

Declarations appearing in an inline import are not members of any modules (and can
therefore not be exported).

4 Benefits

The capabilities implied by the features presented above suggest the following benefits to
programmers:

* Improved (scalable) build times

* Shielding from macro interference

* Shielding from private members

* Improved initialization order guarantees

* Global optimization properties (exceptions, side-effects, alias leaks,...)
* Dynamic library framework

* Smooth transition path from the #include world

The following subsections discuss these in more detail.

4.1 Improved (scalable) build times

Build times on typical evolving C++ projects are not significantly improving as hardware
and compiler performance have made strides forward. To a large extent, this can be
attributed to the increasing total size of header files and the increased complexity of the
code it contains. (An internal project at Intel has been tracking the ratio of C++ code in



“.cpp” files to the amount of code in header files: In the early nineties, header files only
contained about 10% of all that project's code; a decade later, well over half the code
resided in header files.) Since header files are typically included in many other files, the
growth in build cycles is generally superlinear with respect to the total amount of source
code. If the issue is not addressed, it is likely to become worse as the use of templates
increases and more powerful declarative facilities (like concepts, contract programming,
etc.) are added to the language.

Modules address this issue by replacing the textual inclusion mechanism (whose
processing time is roughly proportional to the amount of code included) by a precompiled
module attachment mechanism (whose processing time —when properly
implemented —is roughly proportional to the number of imported declarations). The
property that client translation units need not be recompiled when private module
definitions change can be retained.

Experience with similar mechanisms in other languages suggests that modules therefore
effectively solve the issue of excessive build times.

4.2 Shielding from macro interference

The possibility that macros inadvertently change the meaning of code from an unrelated
module is averted. Indeed, macros cannot “reach into” a module. They only affect
identifiers in the current translation unit.

This proposal may therefore obviate the need for a dedicated preprocessor facility for this
specific purpose (for example as suggested in N1614 "#scope: A simple scoping
mechanism for the C/C++ preprocessor" by Bjarne Stroustrup).

4.3 Shielding from private members

The fact that private members are inaccessible but not invisible regularly surprises
incidental programmers. Like macros, seemingly unrelated declarations interfere with
subsequent code. Unfortunately, there are good reasons for this state of affairs: Without
it, private out-of-class member declarations become impractical to parse in the general
case.

Modules appear to be an ideal boundary for making the private member fully invisible:
Within the module the implementer has full control over naming conventions and can
therefore easily avoid interference, while outside the module the client will never have to
implement private members. (Note that this also addresses the concerns of N1602 "Class
Scope Using Declarations & private Members" by Francis Glassborow; the extension
proposed therein is then no longer needed.)

4.4 Improved initialization order guarantees

A long-standing practical problem in C++ is that the order of dynamic initialization of
namespace scope objects is not defined across translation unit boundaries. The module
partition dependency graph defines a natural partial ordering for the initialization of

module variables that ensures that implementation data is ready by the time client code



relies on it. I.e., the initialization run-time can ensure that the entities defined in an
imported module partition are initialized before the initialization of the entities in any
client module partition.

Consider the following multi-translation-unit program:
// File X.cpp:
export X:
import std;
public:

struct X { X(int i) { std::cout << i << '\n'

e
-
e

X x1(1);

// File Ll.cpp:
export L.pl:
import X; X x3(3);

// File L2.cpp:
export L.p2:
import L.pl; X x4(4);

// File main.cpp:

import X;

X x2(2);

import L;

int main() {}
This program outputs:

1

2
3
4

because the location of import directives are a trigger to ensure that the imported
partitions be initialized at that time. If a partition was previously initialized, it is of
course not initialized a second time (i.e., the initialization code for every partition is
protected by a "one time" flag).



4.5 Global optimization properties
(exceptions, side-effects, alias leaks, ...)

Certain properties of a function can be established relatively easily if these properties are
known for all the functions called by the first function. For example, it is relatively easy
to determine whether a function will not throw an exception if it is known that the
functions it calls will never throw. Such knowledge can greatly increase the optimization
opportunities available to the lower-level code generators. In a world where interfaces
can only be communicated through header files containing source code, consistently
applying such optimizations requires that the optimizer see all code. This leads to build
times and resource requirements that are often (usually?) impractical. Historically such
optimizers have also been less reliable, further decreasing the willingness of developers
to take advantage of them.

Since the interface specification of a module is generated from its definition, a compiler
can be free to add any interface information it can distill from the implementation. That
means that various simple properties (such as a function not having side-effects or not
throwing exceptions) can be affordably determined and taken advantage of.

An alternative solution is to add declaration syntax for this purpose as proposed for
example in N1664 "Toward Improved Optimization Opportunities in C++0X" by Walter
E. Brown and Marc F. Paterno. The advantage of that alternative is that the properties can
be associated with function types and not just functions. In turn that allows indirect calls
to still take advantage of the related optimizations (at a cost in type system constraints). A
practical downside of that approach is that without careful cooperation from the
programmer, the optimizations will not occur. In particular, it is in general quite
cumbersome and often impractical to manually deal with the annotations for instances of
templates when these annotations may depend on the template arguments.

4.6 Dynamic library framework

C++ currently does not include a concept of dynamic libraries (aka. shared libraries,
dynamically linked libraries (DLLs), etc.). This has led to a proliferation of vendor-
specific, ad-hoc constructs to indicate that certain definitions can be dynamically linked
to. N1400 "Toward standardization of dynamic libraries" by Matt Austern offers a good
first overview of some of the issues in this area.

The module concept maps naturally to dynamic libraries and this may be sufficient to
address the issue in the next standard. Indeed, the symbol visibility/resolution,
initialization order, and general packaging aspects of modules have direct counterparts in
dynamic libraries.

Modules that may be loaded and unloaded at the program's discretion are probably
possible, but they are currently not discussed in this proposal.

4.7 Smooth transition path from the #include world

As proposed, modules can easily be introduced in a bottom-up fashion into an existing
development environment. Nonmodule code is after all allowed to import modules. Top-



down transitions are also possible —though likely more cumbersome —thanks to inline
imports.

The provision for module partitions allows for existing file organizations to be retained in
most cases. Cyclic declaration dependencies between translation units are the only
exception. Such cycles are fortunately uncommon and can easily be worked around by
moving declarations to separate partitions.

Finally, we note that modules are a "front end" notion with no effect on traditional ABIs
("application binary interfaces"). Moving to a module-based library implementation
therefore does not require breaking binary compatibility.

5 Technical Notes

This section collects some thoughts about specific constraints and semantics, as well as
practical implementation considerations.

5.1 The module file

A module is expected to map on one or several persistent files describing its public
declarations. This module file (we will use the singular form in what follows, but it is
understood that a multi-file approach may have its own benefits) will also contain any
public definitions except for definitions of noninline functions, namespace scope
variables, and nontemplate static data members, which can all be compiled to a separate
object file just as they are in current implementations.

Some private entities may still need to be stored in the module file because they are
(directly or indirectly) referred to by public declarations, inline function definitions, or
private member declarations. For example:

export M:

struct S {} s; // Private type
public:

S £f() { return s; }

Not every modification of the source code defining a module needs to result in updating
the associated module file. Avoiding superfluous compilations due to unnecessary
module file updates is relatively straightforward.

As mentioned before, an implementation may store interface information that is not
explicit in the source. For example, it may determine that a function won’t throw any
exceptions, that it won’t read or write persistent state, or that it won’t leak the address of
its parameters.

In its current form, the syntax does not allow for the explicit naming of the module file: It
is assumed that the implementation will use a simple convention to map module names
onto file names (e.g., module name Lib: : Core may map onto Lib.Core.mpp). This
may be complicated somewhat by file system limitations on name length or case
sensitivity.



5.2 Loading a module file

When a compiler front end encounters an import directive, it will load the corresponding
module file. It is expected that this "loading" does not actually bring in all the
declarations packaged in the module. Instead, a sort of "table of contents" is loaded
(most likely into the symbol table) and if any lookup finds an entry in that table,
additional declarative information is loaded as needed. For example, if the <algorithms>
header is included and only one or two algorithm are used, a module-based header
implementation would only load the definitions of the used algorithms.

5.3 Module dependencies

When module A imports module B (or a partition thereof) it is expected that A's module
file will not contain a copy of the contents of B's module file. Instead it will include a
reference to B's module file. When a module is imported, a compiler first retrieves the list
of modules it depends on from the module file and loads any that have not been imported
yet. To avoid undue implementation and specification complications, the following
constraint is made:

The dependencies among partitions within a module must form a directed
acyclic graph.
When a partition is modified, sections of the module file on which it depends need not be
updated. Similarly, sections of partitions that do not depend on the modified partition do
not need to be updated. Initialization order among partitions is only defined up to the
partial ordering of the partitions.

5.4 Startup and termination
A natural initialization order can be achieved within modules and module partitions.

Within a module partition the module variables are initialized in the order
currently specified for a translation unit (see [basic.start.init] §3.6.2). The
module variables and local static variables of a program are destroyed in
reverse order of initialization (see [basic.start.term] §3.6.3).

As with the current translation unit rules, it is the point of definition and not the point of
declaration that determines initialization order.

The initialization order between module partitions is determined as follows:

Every import directive implicitly defines anonymous namespace scope
variables associated with each module partition being imported. These
variables require dynamic initialization. The first of such variables
associated with a partition to be initialized triggers by its initialization the
initialization of the associated partition; the initialization of the other
variables associated with the same partition is without effect.

This essentially means that the initialization of a module partition must be guarded by
Boolean flags much like the dynamic initialization of local static variables. Also like



those local static variables, the Boolean flags will likely need to be protected by the
compiler if concurrency is a possibility (e.g., thread-based programming).

5.5 Linkage
In modules, public entities cannot have internal linkage.

5.6 Exporting incomplete types
It is somewhat common practice to declare a class type in a header file without defining
that type. The definition is then considered an implementation detail. To preserve this
ability in the module world, the following rule is stated:
An imported class type is incomplete unless its definition was public or a
public declaration requires the type to be complete.
For example:

// File_1l.cpp:
export Lib:

public:

struct S {}; // Export complete type.

class C; // Export incomplete type only.
private:

class C { ... };

// File_2.cpp:
import Lib;
int main() {
sizeof(S); // Okay.
sizeof(C); // Error: Incomplete type.
}
The following example illustrates how even when the type is not public, it may need to
be considered complete in client code:

// File_1l.cpp:
export X:

struct S {}; // Private by default.
public:

S £f() { return S(); }

// File_2.cpp:
import X;
int main() {
sizeof(£f()); // Allowed.



5.7 Explicit template specializations

Explicit template specializations and partial template specializations are slightly strange
in that they may be packaged in a module that is other than the primary template's own
module:

export Lib:

public:
template<typename T> struct S { ... };

export Client:
import Lib;
template<> struct S<int>;

There are however no known major technical problems with this situation.

It has been suggested that modules might allow "private specialization" of templates. In
the example above this might mean that module client will use the specialization of
S<int> it contains, while other modules might use an automatically instantiated version
of s<int> or perhaps another explicit specialization. The consequences of such a
possibility have not been considered in depth at this point. (For example, can such a
private specialization be an argument to an exported specialization?) Private
specializations are not currently part of the proposal.

5.8 Automatic template instantiations

The instantiations of noninline function templates and static data members of class
templates can be handled as they are today using any of the common instantiation
strategies (greedy, queried, or iterated). Such instantiations do not go into the module file
(they may go into an associated object file).

However instances of class templates present a difficulty. Consider the following small
multimodule example:
// File_1l.cpp:
export Lib:
public:
template<typename T> struct S {
static bool flag;

// File_2.cpp:

export Set:
import Lib;

public:
void set(bool = S<void>::flag);
// ...



// File_3.cpp:

export Reset:
import Lib;

public:
void reset(bool = S<void>::flag);
// ...

// File_4.cpp:

export App:
import Set;
import Reset;

/7 ...

Both modules set and Reset must instantiate Lib: : S<void>, and in fact both expose
this instantiation in their module file. However, storing a copy of Lib: : S<void> in both
module files can create complications similar to those encountered when implementing
export templates with the existing loose ODR rules.

Specifically, in module App, which of those two instantiations should be imported? In
theory, the two are equivalent (unlike the header file world, there can ultimately be only
one source of the constituent components), but an implementation cannot ignore the
possibility that some user error caused the two to be different. Ideally, such discrepancies
ought to be diagnosed (although current implementation often do not diagnose similar
problems in the header file world).

There are several technical solutions to this problem. One possibility is to have a
reference to instantiated types outside a template's module be stored in symbolic form in
the client module: An implementation could then reconstruct the instantiations when
they're first needed. Alternatively, references could be re-bound to a single randomly
chosen instance (this is similar to the COMDAT section approach used in many
implementations of the greedy instantiation strategy). Yet another alternative might
involve keeping a pseudo-module of instantiations associated with every module
containing public templates (that could resemble queried instantiation).

5.9 Friend declarations

Friend declarations present an interesting challenge to the module implementation when
the nominated friend is not guaranteed to be an entity of the same module. Consider the
following example illustrating three distinct situations:

export Example:
import Friends; // Imports namespace Friends.
void p() { /* ... */ };
public:
template<typename T> class C {
friend void p();



friend Friends::F;
friend T;
// ...

}i

The first friend declaration is the most common kind: Friendship is granted to another
member of the module. This scenario presents no special problems: Within the module
private members are always visible.

The second friend declaration is expected to be uncommon, but must probably be allowed
nonetheless. Although private members of a class are normally not visible outside the
module in which they are declared, an exception must be made to out-of-module friends.
This implies that an implementation must fully export the symbolic information of
private members of a class containing friend declarations nominating nonlocal entities.
On the importing side, the implementation must then make this symbolic information
visible to the friend entities, but not elsewhere. The third declaration is similar to the
second one in that the friend entity isn't known until instantiation time and at that time it
may turn out to be a member of another module.

For the sake of completeness, the following example is included:

export Example2:
public:
template<typename T> struct S {
void £() {}
}i
class C {
friend void S<int>::£f();

}i

The possibility of S<int> being specialized in another module means that the friend
declaration in this latter example also requires the special treatment discussed above.

5.10 Base classes

Private members can be made entirely harmless by deeming them "invisible" outside
their enclosing module. Base classes, on the other hand, are not typically accessed
through name lookup, but through type conversion. Nonetheless, it is desirable to make
private base classes truly private outside their module. Consider the following example:
export Lib:
public:
struct B {};
struct D: private B {
operator B&() { static B b; return b; }

}i



export Client:
import Lib;
void f£() {
B b;
D d;
b = d; // Should invoke user-defined conversion.

}

If B were known to be a base class of D in the client module (i.e., considered for
derived-to-base conversions), then the assignment b = d would fail because the
(inaccessible) derived-to-base conversion is preferred over the user-defined conversion
operator.

Outside the module containing a derived class, its private base classes are not
considered for derived-to-base or base-to-derived conversions.

Although idioms taking advantage of the different outcomes of this issue are uncommon,
it seems preferable to also do "the right thing" in this case.

5.11 Syntax considerations

The following notes summarize some of the alternatives and conclusions considered for
module-related syntax.

5.11.1Is a keyword import viable?

The word "import" is fairly common, and hence the notion of making it a new keyword
gives one pause. The introduction of the keyword export might however have been the
true bullet that needed to be bitten: The two words usually go hand in hand, and reserving
one makes alternative uses of the other far less likely. Various Google searches of
"import" combined with other search terms likely to produce C or C++ code (like
"#define", "extern", etc.) did not find use of "import" as an identifier. Of note however,
are preprocessor extensions spelled #import both in Microsoft C++ and in Objective-
C++, but neither of those uses conflicts with import being a keyword.

Overall, a new keyword import appears to be a viable choice.

5.11.2 The module partition syntax
Early feedback on syntax suggested that requiring braces around a module definition was
preferred:

export MyModule {

e o o

}
However, if a translation unit contains a module partition, it cannot contain anything
outside that partition. That implies that requiring braces surrounding the partition's
content is superfluous. Although it was not preferred by the first few reviewers, the



current brace-less syntax has since gained more traction and now appears slightly more
popular than the alternative requiring braces.

5.11.3 Public module members

Earlier revisions on this paper made all module declarations "private" by default, and
required the use of the keyword export on those declarations meant to be visible to
client code. Advantages of that choice include:

* it makes explicit (both in source and in thought) which entities are exported, and
which are not, and

* the existing meaning of export (for templates) matches the general meaning of
this syntactical use.

There are also some disadvantages:

* it conflicts somewhat with the current syntax to introduce a module (that syntax

was different in earlier revisions of this paper, however).

* the requirement to repeat export on every public declaration can be unwieldy.
Peter Dimov's observation that the use of "public:" and "private:" for namespace scope
declarations (as is now proposed) is consistent with the rules for visibility of
public/private class members across module boundaries clinched the case for the current
syntax.

Other alternatives have been considered, but do not seem as effective as the ones
discussed.

5.11.4 Partition names

In earlier revisions of this paper, partition names were originally quoted strings, which
allowed them to e.g. match source file names:

export M["m.cpp"] ...

However, nearly-all reviewers were surprised by that syntax and expected an identifier
instead. Ultimately, simplicity and intuitiveness trumped generality and consistency.

6 Acknowledgments

Important refinements of the semantics of modules and improvements to the presentation
in this paper were inspired by David Abrahams, Steve Adamczyk, Pete Becker, Mike
Capp, Christophe De Dinechin, Peter Dimov, Lois Goldthwaite, Thorsten Ottosen,
Jeremy Siek, Lally Singh, John Spicer, Bjarne Stroustrup, John Torjo, and James
Widman.



