Proposed Wording for Scoped Concept Maps

Authors: Jeremy Siek, University of Colorado at Boulder
James Widman, Gimpel Software

Document number: N2414=07-0274

Date: 2007-09-10

Project: Programming Language C++, Core Working Group

Reply-to: Jeremy Siek <jeremy.siek @colorado.edu>

Introduction

This document provides proposed wording for scoped concept maps. Readers unfamiliar with scoped concept maps
are encouraged to read the proposal for scoped concept maps [[L]. This document assumes that the revised wording for
concepts, paper number N2398=07-0258, has been applied to the working draft, and suggests further changes to the
working draft. The changes with respec to N2398=07-0258 are summarized as follows:

— Added concept map names (3][3.4).

— Added using declarations and directives for concept maps (7.3.3).

— Added nested-name-specifier in front of concept-id in the grammar rule for concept-map-definition (14.9.2)).
— Removed restriction that concept maps be defined in the same namespace as their concept (14.9.2).

— Changed the concept-id requirement to say that it finds concept maps via name lookup (14.9.3).

— Described how concept map lookup works during instantiation on constrained templates (14.9.4)).

Typographical conventions

Within the proposed wording, text that has been added will be presented in blue and underlined when possible. Text that
has been removed will be presented in red,with strike-through when possible.

Purely editorial comments will be written in a separate, shaded box.

The wording in this document is based on the latest C++0x draft, currently N2284. We have done our best to synchronize
section, paragraph, and table numbers with N2284. However, we have omitted many sections (those that did not require
any changes), leaving some dangling references in the final document. These references will be resolved automatically
when the ISTEX source of this proposal is merged with the I&TEX source of the working paper.

mailto:jeremy.siek@colorado.edu

Chapter 3 Basic concepts [basic]

Some names denote types, classes, concepts, concept maps, enumerations, or templates. In general, it is necessary to
determine whether or not a name denotes one of these entities before parsing the program that contains it. The process
that determines this is called name lookup (3.4).

3.4 Name lookup [basic.lookup]

The name lookup rules apply uniformly to all names (including typedef-names (??), namespace-names (??), concept-
names (??), concept-map-names and class-names (??)) wherever the grammar allows such names in the context
discussed by a particular rule. Name lookup associates the use of a name with a declaration (??) of that name. Name
lookup shall find an unambiguous declaration for the name (see ??). Name lookup may associate more than one dec-
laration with a name if it finds the name to be a function name; the declarations are said to form a set of overloaded
functions (??). Overload resolution (??) takes place after name lookup has succeeded. The access rules (clause ??) are
considered only once name lookup and function overload resolution (if applicable) have succeeded. Only after name
lookup, function overload resolution (if applicable) and access checking have succeeded are the attributes introduced by
the name’s declaration used further in expression processing (clause ??).

3.4 Name lookup Basic concepts 4

21

22

Chapter 7 Declarations [dcl.dcl]

7.3.3 The using declaration [namespace.udecl]

A using-declaration introduces a name into the declarative region in which the using-declaration appears. That name is
a synonym for the name of some entity declared elsewhere.

using-declaration:
using typename : :opested-name-specifier unqualified-id ;
using :: unqualified-id ;
using : :, nested-name-specifier,p; concept_map nested-name-specifier,p, concept-id ;
using nested-name-specifier,y concept_map concept-namep; ;
using : :pnested-name-specifier,p; concept concept-name ;

A using-declaration for a concept map is an alias to the concept map that matches (??) the concept-id from the specified
namespace. [Example:

namespace N1 {
concept C<typename T> { };
}
namespace N2 {
concept_map N1::C<int> { }
template<typename T> concept_map N1::C<T*> { }
}
namespace N3 {
using N2::concept_map N1::C<int>;
using N2::concept_map N1::C<intx*>;

}

— end example]

A using-declaration for a concept map that specifies a concept-name (and not a concept-id) brings all of the concept
maps and concept map templates from the specified namespace for the given concept into the scope in which the using-
declaration appears. [Example:

namespace N1 {
concept C<typename T> { };
template<C T> void £(T) { }
}
namespace N2 {
concept_map N1::C<int> { }
template<typename T> concept_map N1::C<T*> { }
}

Declarations 6

namespace N3 {
using N2::concept_map N1::C;

void g() {
£(1);
f(new int);
}
}

— end example]

23 If no concept is specified in the concept map using declaration, all concept maps from the specified namespace are

brought into scope.
[Note: A using-directive for a namespace brings the concept maps of that namespace into scope, just like other entities.

—end note | [Example:

namespace N1 {

concept C<typename T> { }
}
namespace N2 {

concept_map N1::C<int> { }
}
namespace N3 {

using namespace N2;

template<N1::C T> void foo(T) { };

void bar() {
foo(17); // ok, finds the concept map from N2

}
}

— end example |

Chapter 14 Templates [temp]

14.9.1 Concept definitions [concept.def]

Each concept has an associated concept-map-name, which is an implementation-defined identifier unique to the concept.
[Note: The concept map name of a concept is not introduced into any scope until a concept map definition is seen. — end
note |

14.9.2 Concept maps [concept.map]

The grammar for a concept-map-definition is:

concept-map-definition:
concept_map nested-name-specifieroy; concept-id { concept-map-member-specificationgp: ¥ ; opt

concept-map-member-specification:
concept-map-member concept-map-member-specificationgp;

concept-map-member:

simple-declaration

function-definition

template-declaration
Concept maps describe how a set of template arguments meet the requirements stated in the body of a concept definition
(T4.9.1). Whenever a constrained template (??) is named, there shall be a concept map corresponding to each concepi-id
requirement in the requirements clause (14.9.3). This concept map may be written explicitly (I4.9.2), instantiated from
a concept map template (??), or generated implicitly (??). The concept map name (T4:9]) is inserted into the scope in
which the concept map or concept map template (??) is defined immediately after the concept-id is seen.

14.9.3 Template requirements [temp.req]

A concept-id requirement requires that there is a most specific concept map or concept instance according to concept
map matching (??) among the concept maps or concept instances that are found by name lookup (3-4) for the concept-
map-name determined by the concept in the concept-id.

14.9.4 Instantiation of constrained templates [temp.constrained.inst]

Instantiation of a constrained template also replaces each concept instance associated with the template requirements
with the concept map that satisfied the requirement. [Note: Concept members that had resolved to members of the
concept instance now refer to members of the corresponding concept maps. — end note]

Templates 8

3 If a concept-id appears (directly or indirectly) multiple times in the requirements of a constrained template, the program
is ill-formed if the concept maps used to satisty the multiple occurences of the concept-id are not the same concept map.
[Example:

concept A<typename T> { }
concept B<typename T> {
typename X;
requires A<X>;
¥
concept C<typename T> {
typename X;
requires A<X>;
}
namespace N1 {
concept_map A<int> { } /#I
concept_map B<int> { } //uses #I to satisfy the requirement for A<int>
}
namespace N2 {
concept_map A<int> { } /#2
concept_map C<int> { } /uses #2 to satisfy the requirement for A<int>
}
tempate<typename T> requires B<T> && C<T>
struct S { };
using N1::concept_map B<int>;
using N2::concept_map C<int>;
S<int> s; /ill-formed, two different concept maps for A<int>, #1 and #2

— end example |

The point of the above restriction is to allow the implementation to consider requirements as a mathematical set, where
duplicates are discarded. Because of the above restriction, it doesn’t matter which concept maps for a given concept-id
are discarded because they are all the same.

6 The concept maps that are used in this partial ordering include the concept maps that 1) have replaced the concept
instances used in the first partial ordering, 2) are in the same namespace as the concept maps from 1), or 3) are in the
associated namespaces of the concept map arguments for the concept maps from 1). [Example:

concept C<typename T> { }
concept D<typename T> { }

namespace N1 {
concept_map C<int> { }
concept_map D<int> { }
}
namespace N2 {
template<C T> void £(T); /N #1
template<C T> requires D<T> void £(T); /#2
template<C T> void g(T x) {
f(x);
}

using N1::concept_map C<int>;

9 Templates

void h() {

g(1); /inside, g, the call to f goes to #2
}
}

—end example]

The point of including 3) above is to handle the common case where the concept maps are defined in the same namespace
as the types that they are mapping.

Bibliography
[1] J. Siek. Scoped concept maps. Technical Report N2098=06-0168, ISO/IEC JTC 1, Information Technology, Sub-

committee SC 22, Programming Language C++, September 2006. http://www.open-std.org/jtcl/sc22/
wg21/docs/papers/2006/n2098. pdf.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2098.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2098.pdf

	Basic concepts
	Name lookup

	Declarations
	The using declaration

	Templates
	Concept definitions
	Concept maps
	Template requirements
	Instantiation of constrained templates

