ISO/IEC JTC 1/SC 22/WG 14 N1273 2007-10-22 WG 21 N2466=07-0336.

WG 14: Towards Attributes for C
Nick Stoughton, John Benito, Tom Plum, Arjun Bijanki, Jeff Muller

Introduction

During the WG 14 Kona meeting, the group considered several papers relating to attributes, including:
e NI1229 (previously reviewed in London), which includes interesting attributes from GCC
e NI1226 (arising from WG 21 paper N2418)
e N1264, which includes interesting attributes from MSVC
e NI1259, which describes concerns with the C++ syntax proposed in N1226 (N2418)

WG 14 decided to distinguish between the syntax relating to attributes and the semantics.

An overarching goal of WG 14, described in N1250, is to strive for compatibility with existing
implementations, and to avoid invention.

Concerns were voiced at the meeting, and in N1259, about both the inventiveness of the [[...]] syntax
proposed by WG 21 as well as its disrespect of existing practice, although there was sympathy for the
cleanliness of the proposed syntax. WG 14 decided to examine the problem from another point-of-view:
instead of inventing a syntax and then fitting the semantics to it, the WG expressed a desire to
understand the semantics, and then to attempt to fit a syntax to that, accommodating as far as possible
existing practice and minimizing any invention.

Attribute Semantics

WG 14 considered the proposed attributes listed in N1229, N1226 (those listed as “good” examples),
and N1264, and agreed on the following list (strikeouts indicate items where there was no consent to
move forward):

N1229 N1262 N1264

FUNCTION

noreturn noreturn noreturn




ISO/TEC JTC 1/SC 22/WG 14 N1273 2007-10-22 WG 21 N2466=07-0336.
returms_twice
pure pure
warn_unused_result
nonnull
deprecated deprecated
VARIABLE
aligned align(unsigned int) align(alignment)
cleanup has related proposal in
try{ Mfinally{}
unused unused
gcc has similar mechanism in probably(unsigned int)
__builtin_expect
noattas
Tegister
owTrer
has similar proposal in __thread thread

TYPE

aligned

packed

trarsparent_umnon

umnused

It is proposed that WG 14 will move forward with the union of these attributes. The semantics of each




ISO/IEC JTC 1/SC 22/WG 14 N1273 2007-10-22 WG 21 N2466=07-0336.

is discussed further in this paper.

Attribute Syntax

WG 14 could not agree on a syntax at the Kona meeting. However, the group agreed that:

0 whatever syntax is used, it must be compatible with existing practice, to the extent that simple
#define macros could be used to move from pre-existing practice syntax (e.g. __attribute__((x))
or __declspec(x)) to the new syntax and vice versa. Attributes must be permitted in the position
of a storage-class specifier, i.e. an attribute applies to all declarators.

0 the existing C _Pragma keyword goes a long way toward solving the generalized issue, and
might well serve as the ultimate way of expressing attributes at levels not currently recognized
in existing practice (e,g, at block or translation unit level).

One further syntactic point was discussed, relating to namespace reservation. It was generally agreed
that the attributes themselves have names, and individual implementations should be free to extend that
namespace. Existing practice has many more names than described in the table above, and it was
agreed that any solution proposed by the committee that outlawed existing practice would not be well
received. Therefore, it is proposed that the names used for standardized C attributes be prepended with
“stdc_"; the remainder of the attribute namespace should remain as it is now: open to vendor
invention. Does this prefix make the name too long? For example “stdc_warn_unused_result”.
Any other suitable prefix would be acceptable.

Detailed Attribute Semantics

The remainder of this paper either proposes actual standardized wording for the semantics of a given
attribute where multiple existing implementations overlap in attributes, or surveys existing practice
where there are conflicting semantics.

Function Level Attributes

The following attributes describe functions:

stdc_noreturn
Syntax: to be defined. Associated with a function.

Constraints:The return type of the associated function shall be voi d. [[NB gcc does not make this a
constraint without additional compiler flags. MSVC does enforce this]]

Semantics: The stdc_noreturn attribute indicates that the associated function does not return.

[Note -- control may still return from a stdc_noreturn-marked function via a non-local goto. --end



ISO/IEC JTC 1/SC 22/WG 14 N1273 2007-10-22 WG 21 N2466=07-0336.

note]

Any path that terminates in a call to a stdc_noreturn-marked function need not be expected to
result in any value.

The behavior is undefined if the function returns normally.

stdc_pure

Syntax: to be defined. Associated with a function.

Constraints: None.

Semantics: Any function marked as stdc_pure has no side effects and depends only on the values of
the arguments passed; any call to the function with the same arguments has the same results as a
previous call*. [*Footnote: an implementation is free to call a pure function fewer times than the
program might suggest if it is able to show that subsequent calls have the same arguments as an earlier
call. Some common examples of pure functions are strlen and imaxabs)-end footnote].

stdc_warn_unused_result
Syntax: to be defined. Associated with a function.

Constraints: The return value from a function marked as stdc_warn_unused_result shall be
either stored or examined.

Semantics: A diagnostic message shall be issued if the value returned from any function marked as

stdc_warn_unused_result isignored.

(NB Annex I may need updating) [[not sure about the name]]

stdc_deprecated
Syntax: to be defined. Associated with a function. A message may be provided as message.
Constraints: None.

Semantics: A diagnostic message shall be issued if the associated function is referenced. If the
message argument is provided, the diagnostic shall contain message.

stdc_nonnull

Syntax: to be defined. Associated with the argument to a function. To be discussed. SAL associates this
with the argument itself, gcc associates it with the function.

Constraints: The argument shall not be a null pointer. [[at least as far as the implementation can tell]]

Semantics: To be discussed[[the implementation may/it is implementation defined add assertions to



ISO/IEC JTC 1/SC 22/WG 14 N1273 2007-10-22 WG 21 N2466=07-0336.

ensure the runtime values of the variables are not null pointers]]

stdc_align

Syntax: to be defined. Associated with any variable. Must include a power-of-two alignment value,
alignment . Existing practice varies subtly on the name of the attribute (“aligned” versus
“align”). Gee also permits alignment to be associated with types.

Constraints: alignment shall be a power of two.

Semantics: The implementation shall arrange that the associated variable has an address that is an exact
multiple of alignment. [[some details remain to be worked out with WG 21. Possible upper
boundaty, ALIGN_MAX or similar]].

g S brteh-beforet et variabd : O — ; H
fotrshattbecatted withapomter tothe varrabte: Move this to a separate paper.
stdc_unused

Syntax: to be defined. Associated with a function argument. [[gcc also allow it to be associated with a
function itself]]

Constraints: [[Should there be a constraint forbidding the use of the variable? Probably yes.]]

Semantics: No diagnostic shall be issued if the associated variable is not used. [An unused parameter to
a function need not have a name.]

stdc_probably
Syntax: to be defined. Associated with any(?) branch statement. [[gcc has alternative syntax]]
Constraints:

Semantics:

stdc_thread

Syntax: to be defined. [[gcc uses keyword ___thread]]



ISO/IEC JTC 1/SC 22/WG 14 N1273 2007-10-22 WG 21 N2466=07-0336.

Constraints:

Semantics: The stdc_thread attribute may be used alone, with the extern or static specifiers,
but with no other storage class specifier. When used with extern or static, stdc_thread must
appear immediately after the other storage class specifier.

The stdc_thread attribute may be applied to any global, file-scoped static, or function-scoped
static. It may not be applied to block-scoped automatic.

When the address-of operator is applied to a thread-local variable, it is evaluated at run-time and
returns the address of the current thread's instance of that variable. An address so obtained may be used
by any thread. When a thread terminates, any pointers to thread-local variables in that thread become
invalid.

No static initialization may refer to the address of a thread-local variable.

stdc_packed
Syntax: to be defined. Applies to any enum, structure or union type
Constraints: None.

Semantics:This attribute, attached to struct or union type definition, specifies that each member
(other than zero-width bitfields) of the structure or union is placed to minimize the memory required.
When attached to an enum definition, it indicates that the smallest integral type should be used.



	WG 14: Towards Attributes for C
	Introduction
	Attribute Semantics
	Attribute Syntax
	Detailed Attribute Semantics
	Function Level Attributes
	stdc_noreturn
	stdc_pure
	stdc_warn_unused_result
	stdc_deprecated
	stdc_nonnull
	stdc_align
	stdc_cleanup
	stdc_unused
	stdc_probably
	stdc_thread
	stdc_packed




