Doc No: N2554=08-0064

Date: 2008-02-29

Author: Pablo Halpern
Bloomberg, L.P.

phalpern@halpernwightsoftware.com

The Scoped Allocator Model (Rev 2)

Contents
Changes from IN2523 ... s
Changes from N2446 ...
MOtIVATION ...ttt
Summary of Changes to the Working Draftccooiiiie,
Usage EXAMPLEcc.ciiiiiiiiiiiiiiccc e
Document CONVENIONScccuiiiiiiiiiiiiiiiic s 11
Proposed WOTding.........ccoeiviiiiiiiiniiiiiiiicicc et 11
Allocator-related Type Traitsccccveiriiiiiiiiniiiiiiccceeeees 11
Scoped Allocator Adaptorcciiiiiiiiiiiiicc s 16
Element CONSIUCHON.........coiviiiiiiiiiiiicc s 22
Pair ChANGESoviiiiiiietcc s 23
TUPLe ChanGes........ccciviiiiiiiiiiiccic et 25
Container ReqUIrementscc.ooioiiiiiiiiiiic e 28
basic_string Changescccociiiiiniiiniiiiicie e 33
deque Changes ... 34
LISt CRANGES ... 34
VECOT CRANGESvviiiiiicic s 35
Changes t0 @daPLerscccvviuiiiiiiriiii e 35
MAP CRANGES ...ttt 37
multimap Changes..........coceiiiiii s 37
SEE ChANZES ...t 38
multiset ChaNEES.........cocuiiiiiiiii s 38
unordered_map Changes ..o 39
unordered_multimap changes............ccccciiiiiii 39
unordered_set ChANGEscccccvieuiiriiiniiiiiniec e 40
unordered_multiset Changes..........c.ccooeiiiiiiiii 40
FUNCHON CRANGESccoiiiiiiiiiiiiicccc ettt 41
Implementation EXPerience...........cccociiviniiiiiiiiiiiiiiicec e 42

N2554: The Scoped Allocator Model (Rev 2) Page 1 of 42

Changes from N2523

This document is a minor revision of N2523 incorporating typographical corrections
only.

Changes from N2446

This revision of the Scoped Allocator Model proposal addresses the major concerns
raised during the October 2007 meeting in Kona and adds one enhancement that was
also requested during the Kona meeting. Specifically:

e Added alternative wording for concepts.
e Added diagrams to clarify the motivation section.

e A scoped allocator adaptor template has been added to allow one allocator
to be specified for a container and a different allocator to be specified for its
constituent elements.

e Scoped allocators are more flexible in this proposal: the inner allocator may be
different from the outer allocator.

e The (conditional) change in container copy semantics (and its ripple effect on
swap ()) has been removed. A separate proposal (N2525) addresses the semantics
of copy, move, and swap in the presence of unequal allocators. The two issues are
no longer tied together.

e The constructor changes to pair and tuple are different in this proposal than in
N2446 to correct for ambiguities with the new variadic constructors.

e A change to function was added to allow it to work seamlessly with the allocator
framework.

e Minor changes to reflect additional implementation experience with new features.

Motivation

Memory is a core (pun intended) resource used by every part of a software system.
Because memory organization and usage vary widely with the type of software being
developed, every standard library component (and most library components outside of
the standard) should provide a mechanism for the user to control how memory is
allocated within that component. In the portion of the C++ standard library that

N2554: The Scoped Allocator Model (Rev 2) Page 2 of 42

evolved from the STL, user control over memory allocation is provided through the
allocator parameter to the container templates.

The allocator instance passed to the constructor of a container is used by that container
to allocate its internal data structures. Allocators thus provide control over the use of
memory by a container. Containers are often nested, however; you can have a vector of
strings or a map of lists of sets of user-defined types. In the C++03 allocator model (the
traditional allocator model), the allocator instance for every element in a container may
manage a different memory resource. For example, Figure 1 illustrates a vector of
strings using the traditional allocator model (rectangles represent data structures,
ellipses represent memory resources managed by allocator instances):

Internal data Each string allocates
structure holds memory from its own
Container uses strin allocator resource.

allocator to allocate
its internal data
structure

Container

allocator

Allocator
manages one
memory resource

IR

Allocatop“managed memory

Figure 1: A container of strings using the traditional allocator model

The scoped allocator model provides a mechanism for the user to designate one
allocator instance for use by the container (the outer allocator), and another (possibly
different) allocator instance to be used by all of the container’s elements (the inner
allocator). The container ensures that all of its elements are constructed with a copy of
the inner allocator instance. For example, we might want to place all strings into a
special string region managed by a corresponding string allocator, as shown in Figure 2:

N2554: The Scoped Allocator Model (Rev 2) Page 3 of 42

Internal data All strings share the
structure holds inner memory
strings resource.

Container uses
allocator to allocate
its internal data
structure

Container

allocator

Scoped allocator
manages two
memaory resources

Figure 2: A container using a scoped allocator

In order to control the source of memory used by elements in a container, the traditional
allocator model requires that the user control the allocator instance at the point where
each element is inserted into the container. The purpose of the scoped allocator model,
in contrast, is to allow a programmer to specify the memory resource to be used by
every element of a container at the point of construction of the container, rather than at
every insertion point.

The most common use of a scoped allocator is to ensure that all of the elements of a
container get their memory from the same source as the container itself, i.e., the inner
allocator is the same as the outer one. For example, if a container allocates memory
from a local pool that maximizes locality-of-reference, it is desirable that all of its
elements get their memory from the same local pool. Similarly, if a container allocates
memory from a shared memory region (using fancy pointers), we would want all of its
elements to allocate their memory from the same shared-memory region. In both of
these examples, we would use a scoped allocator where the outer and inner allocators
both allocate from the same memory resource, as shown in Figure 3:

N2554: The Scoped Allocator Model (Rev 2) Page 4 of 42

Internal data Strings share an
structure holds allocator resource
strings nvith the container

Container uses
allocator to allocate
its internal data
structure

Container

allocator

Scoped allocator
manages a single
memaory resource

Allocator-managed memory

Figure 3: A container using a scoped allocator where the inner allocator
is the same as the outer allocator

Note that in both of the scoped allocator examples, the invariant holds that

v[x].get _allocator() == v[y].get allocator () forall indexes x and y in
vector v. This invariant makes it easier to reason about the behavior and performance
of permuting algorithms like sort () and remove 1if ().

The scoped allocator model was developed at multiple companies to address a real
need for better control over how library classes use memory. In adapting the
Bloomberg LP implementation experience for standardization, and in integrating it with
other concerns regarding allocators, I was struck by how the C++ object model treats
memory very differently from other system resources. Unlike the file-system, threads,
concurrency locks, or other resources, access to memory is not filtered through a high-
level abstraction: The language itself specifies certain rules for the relationship between
elements in an array, the address of the first element of a structure, and the alignment of
elements in a union. Although a certain amount of abstraction can be added through
the use of smart pointers and classes that allocate memory (allocators), these
abstractions are necessarily leaky; any attempt to completely abstract away access to
memory is likely to result in substantial efficiency penalties.

N2554: The Scoped Allocator Model (Rev 2) Page 5 of 42

The changes in this revised proposal make allocators as useful as possible to the largest
audience possible, while remaining within the constraints of the proposed language and
retaining backward-compatibility with C++03 allocator usage. With this proposal, we
strive to provide good support for both the traditional allocator model and the scoped
allocator model. Any added complexity, in our experience, is more than balanced by the
added power for controlling memory allocation compared to the traditional allocator
model alone.

Summary of Changes to the Working Draft

The proposed wording for this proposal is long because similar changes are made in
many places in the working draft. The basic structure can be explained much more
concisely, however, and is summarized here.

This summary assumes the presence of concepts, because concepts make it easier to
express the intent. However, because concepts have not been accepted into the working
paper as of this writing, the actual proposed wording is not concept-based, but does
propose concept-based alternatives to most sections. In a sense, then, this proposal is
really two proposals: the non-concept-based proposal intended to be replaced by the
concept-based proposal when concepts are added to the language and library.

We begin with a new concept:

concept ScopedAllocator<class Alloc>

{

requires Allocator<Alloc>;
typename inner allocator type;
inner allocator type Alloc::inner allocator () const;

}

The author for a given allocator type, A11oc, should create a concept map for
ScopedAllocator<Alloc>if Allocisa “scoped” allocator, i.e., it is intended to be
used according to the scoped allocator model. The traits-based alternative to this
concept is:

template <class Alloc> struct is scoped allocator;

Unless specialized for a given Alloc type, is scoped allocator inherits from
false type.

To make it easy to build scoped allocators from existing allocators, we add a new
adaptor template:

N2554: The Scoped Allocator Model (Rev 2) Page 6 of 42

template <Allocator Outer, Allocator Inner = NullAllocator>
class scoped allocator adaptor;

A scoped_allocator adaptor is ascoped allocator with Outer as the outer
allocator type and Inner as the inner allocator type. If instantiated with only one
argument, then the outer and inner allocators are the same type and value. A scoped
allocator adaptor can be nested to arbitrary depth by instantiating it with an inner
allocator that is itself a scoped allocator adaptor.

Every constructor of every library class that uses an allocator must have a variant that
takes an allocator argument, typically as an optional last constructor argument. The
standard container classes, for example, are each enhanced with an allocator-extended
move constructor and allocator-extended copy constructor as follows (where C represents the
container class):

C(C&&, const allocator typeg); / / extended move constructor
C(const C&, const allocator types&); // extended copy constructor

These allocator-extended constructors are used by the scoped allocator framework to
pass the inner allocator from the container to each element as it is inserted.

Special constructors are also added to pair, tuple, and function so that they, too,
can be constructed with allocators if they contain elements that use allocators.
However, in order to avoid ambiguities with variadic constructors, these types use an
allocator prefix argument (instead of a suffix argument) with a special type,
allocator arg t, to clearly disambiguate the extended case from the non-allocator
case. For example, the allocator-extended copy constructor for pair looks like this:

template <class Alloc>
pair (allocator arg t, const Allocé&, const pairé&);

Two auto concepts automatically determine the order of arguments for its allocator-
extended constructors of a given type:

auto concept
ConstructibleWithAllocatorSuffix<class T, class Alloc,
class... Args>
{
typename allocator type;
requires Allocator<allocator type> &&
Convertible<Alloc, allocator type>;

T::T(Args..., Alloc);

N2554: The Scoped Allocator Model (Rev 2) Page 7 of 42

auto concept
ConstructibleWithAllocatorPrefix<class T, class Alloc,
class... Args>

{
typename allocator type;
requires Allocator<allocator type> &&
Convertible<Alloc, allocator type>;

T::T(allocator arg t, Alloc, Args...);
}

Or, using traits instead of concepts:

template <typename T>
struct constructible with allocator suffix;

template <typename T>
struct constructible with allocator prefix;

Unfortunately, these traits cannot be reliably deduced by library code without using
concepts. Our real-world experience is in using explicit traits and we have found it to
be workable. Still, it will be nice when it is no longer necessary to explicitly declare
collaborative traits such as these.

Containers use the allocator-extended constructors to pass the inner allocator of a
scoped allocator to each element as it is inserted. For each insertion function (including
insert, push back, push front, and constructors that insert), the container
constructs a new element using the construct element function in the
ConstructibleAsElement concept:

concept ConstructibleAsElement<class Alloc, class T,
class... Args>

{
requires Allocator<Alloc>;
void construct element (Allocé& a, T* p, Argsé&é& args...);

}

ConstructibleAsElement is a simple concept with a complex set of concept maps
that automatically determine if A1loc is a scoped allocator and, if so, automatically
passes a.inner allocator () to T’s constructor using the appropriate allocator-
extended constructor.

So that queue, priority queue, stack, and function can be used as elements of
containers with scoped allocators, allocator-extended constructors must be added to

N2554: The Scoped Allocator Model (Rev 2) Page 8 of 42

these templates. The stringstreamn class can also benefit from user-controlled
allocation and thus we add an allocator argument to its constructor as well.

Usage Example

An arena is a mechanism that supplies memory from a contiguous buffer using very
little bookkeeping. Typically, deallocating from an arena is a no-op, thus making an
arena allocator inappropriate for applications where memory is allocated and then
deallocated multiple times. However, the minimal bookkeeping and zero-cost
deallocation make it ideal for situations where a data structure is built up over time, but
destroyed all at once. All that is needed is to free the entire arena, possibly without
even calling destructors. In the following example, we use a class, SimpleArena to
supply memory from a fixed-sized buffer:

class SimpleArena

{
public:
SimpleArena(std::max _align t *buffer, std::size t nbytes);

void* alloc(std::size t n); // Allocate n bytes

void dealloc (void *p); // No-op
std::size t max size() const; // return remaining bytes
private:
std::max align t *buffer ;
std::max _align t *current ; // Grows down toward start of buffer

}s

We then build an allocator, SimpleArenaAlloc, thatholds a pointer to a
SimpleArena and uses it as a memory resource:

template <class TYPE>
class SimpleArenalAlloc

{

SimpleArena *d guts;

public:
typedef unsigned int size type;
typedef int difference type;
typedef TYPE* pointer;
typedef const TYPE* const pointer;
typedef TYPES& reference;
typedef const TYPE& const reference;
typedef TYPE value type;

template<typename TYPE1l>
struct rebind
{
typedef SimpleArenaAlloc<TYPEl> other;
}i

N2554: The Scoped Allocator Model (Rev 2) Page 9 of 42

SimpleArenaAlloc (SimpleArena* g) throw() : d guts(g) { }

}i

Now, we build up a list of lists of ints. The advantage of an arena is compromised if
parts of a data structure are not allocated from the same arena. If some parts of the
structure are not allocated from the desired arena, then their memory will not be
reclaimed when the arena is destroyed. Worse, if parts of the structure are allocated
from a different arena and if that other arena is shorter-lived, then memory could be
reclaimed to soon! We completely avoid these problems by creating a scoped allocator
from our arena, thus ensuring that all parts of our list allocate memory from the same
pool of memory:

std::max_align t bufferl([512/sizeof (std::max _align t)];
SimpleArena al (bufferl, 512);

typedef std::1list<int, SimpleArenaAlloc<int> > InnerList;

typedef std::scoped allocator adaptor<SimpleArenaAlloc<InnerList> >
ScopedListAlloc;

typedef std::list<InnerList, ScopedListAlloc> OuterList;

// Allocate the outer list from the arena
OuterlList *bigList = new(al.alloc(sizeof (OuterList)))
OuterList (ScopedListAlloc(&al));

We build up the list by constructing lists of ints and appending each to the list of lists:

for (int 1 = 0; 1 < 3; ++1)

{
// Construct an inner list using a smaller arena.
std::max_align t buffer2[128/sizeof (std::max align t)];
SimpleArena a2 (buffer2, 128);
InnerList littlelList (i, 1, SimpleArenaAlloc<int>(&a2));

bigList->push back(littlelist);
assert (bigList->back() == littlelist);

Using the traditional allocator model, the push back would insert an item using the
same allocator as the argument (with dire results). However, using the scoped allocator
model, the item is always constructed with the inner allocator, which in this case is the
same as the outer allocator:

ASSERT (bigList->back() == littlelist);
ASSERT (bigList->back () .get allocator () !=
littleList.get allocator());

ASSERT (bigList->back () .get allocator () ==
bigList->get allocator());

}

At this point, bigList points to a dynamically-allocated list of list of integers, all of the
memory for which was allocated in the arena called al. When al goes out of scope, all

N2554: The Scoped Allocator Model (Rev 2) Page 10 of 42

of the memory used by bigList will be reclaimed, without ever calling a list
destructor!

Document Conventions

All section names and numbers are relative to the October 2007 working draft, N2461.
Existing and proposed working paper text is indented and shown in dark blue. Small edits to the
working paper are shown with green-strikeoutsfor-deleted-text and green underlining for inserted text

within the indented blue original text. Large proposed insertions into the working paper are shown in
the same dark blue indented format (no green underline).

As of this writing, concepts have not yet been accepted into the working draft. Accordingly, the
proposed wording does not use concepts. Alternative working-paper text that declares concepts and
concept maps is enclosed in a red box. Even once concepts are accepted, it is hoped that the non-
concept interface could define a de-facto standard method of implementing the elements of this
proposal using a C++03 compiler.

Comments and rationale mixed in with the proposed wording appears as shaded text.

Requests for LWG opinions and guidance appear with light (yellow) shading. It is
expected that changes resulting from such guidance will be minor and will not delay
acceptance of this proposal in the same meeting at which it is presented.

Proposed Wording

Allocator-related Type Traits

In section [memory] (20.6), insert the following class declarations at the beginning of the
Header <memory> synopsis:

/I 2.6.w, allocator-argument tag
struct allocator arg t { };
const allocator arg t allocator arg = allocator arg t();

A struct rather than an enum was chosen because the implicit enum-to-int conversion
could potentially re-introduce the ambiguity that this type is intended to avoid.

Insert after the preceding (or else in <memory_concepts>):

/1 2.6.x, allocator-related traits

template <class T, class Alloc> struct uses allocator;
template <class Alloc> struct is scoped allocator;

template <class T> struct constructible with allocator suffix;
template <class T> struct constructible with allocator prefix;

N2554: The Scoped Allocator Model (Rev 2) Page 11 of 42

/I 2.6.x, allocator-related concepts

concept ScopedAllocator<typename Alloc> See below

auto concept UsesAllocator<class T, class Alloc> see below

auto concept

ConstructibleWithAllocatorSuffix<class T, class Alloc,
class... Args> see below

auto concept

ConstructibleWithAllocatorPreffix<class T, class Alloc,

class... Args> see below
Insert before [default.allocator] (20.6.1):
2.6.w Allocator-argument tag
namespace std {
struct allocator arg t { };
const allocator arg t allocator arg = allocator arg t();

}

The allocator arg t structisanempty structure type used as a unique type to disambiguate
constructor and function overloading. Specifically, several types (see pair (20.2.3)) have
constructors with allocator arg t as the first argument, immediately followed by an argument
of type that satisfies the A11ocator requirements (20.1.2).

Insert after the preceding (or else in <memory_concepts>):
2.6.x Allocator-related traits [allocator.traits]
template <class T, class Alloc> struct uses allocator; see below

Remark: Automatically detects if T has anested allocator type thatis convertible from
Alloc. Meetsthe BinaryTypeTrait requirements (meta.rqgmts] 20.4.1). A program may
specialize this type to derive from true type fora T of user-defined type if T does not have a
nested allocator type butis nonetheless constructible using the specified Alloc.

Result: derived from true type if Convertible<Alloc,T::allocator type>and
derived from false type otherwise.

The class templates, is scoped allocator,
constructible with allocator suffix, and
constructible with allocator prefix meetthe UnaryTypeTrait requirements
([meta.rgmts] 20.4.1). Each of these templates shall be publicly derived directly or indirectly from
true type if the corresponding condition is true, otherwise from false type. All are elective
traits; they are not computed automatically by determining an intrinsic quality of the type, but rather
indicate a deliberate choice by the author of the type. A program may specialize these traits for user-
defined types provided that the user-defined type meets the requirement of the trait. However, a
program is never required to specialize these traits.

template <class Alloc> struct is scoped allocator : false type { };

N2554: The Scoped Allocator Model (Rev 2) Page 12 of 42

Remark: if a specialization is derived from true type, indicates that A11oc is a Scoped
Allocator. A scoped allocator specifies the memory resource to be used by a container (as any
other allocator does) and also specifies an inner allocator resource to be used by every element in
the container.

Requires: if a specialization is derived from true type, Alloc is required to have an
inner allocator type nested type and a member function inner allocator(),
which is callable with no arguments and which returns a type convertible to

inner allocator type

template <class T> struct constructible with allocator suffix
false type { };

Remark: if a specialization is derived from true type, indicates that T may be constructed
with an allocator as its last constructor argument. lIdeally, all constructors of T (including the
copy and move constructors) should have a variant that accepts a final argument of
allocator type.

Requires: if a specialization is derived from true type, T must have a nested type,
allocator type and at least one constructor for which allocator type is the last
parameter. If not all constructors of T can be called with a final allocator type argument,
and if T is used in a context where a container must call such a constructor, then the program is
ill-formed.

[Example:

template <class T, class A = allocator<T> >
class Z {
public:
typedef A allocator type;

/I Default constructor with optional allocator suffix
Z (const allocator type& a = allocator type()):;

/I Copy constructor and allocator-extended copy constructor
Z (const 72& zz);
Z (const Z& zz, const allocator typeé& a);
}i
/I Specialize trait for class template Z
template <class T, class A = allocator<T> >

struct constructible with allocator suffix<z<T,A> >
true type { };

-- end example]

template <class T> struct constructible with allocator prefix
false type { };

N2554: The Scoped Allocator Model (Rev 2) Page 13 of 42

Remark: if a specialization is derived from true type, indicates that T may be constructed
with allocator argand T::allocator type as its first two constructor arguments.
Ideally, all constructors of T (including the copy and move constructors) should have a variant
that accepts these two initial arguments.

Requires: if a specialization is derived from true type, T must have a nested type,
allocator type and at least one constructor for which allocator arg tis the first
parameter and allocator type is the second parameter. If not all constructors of T can be
called with these initial arguments, and if T is used in a context where a container must call such
a constructor, then the program is ill-formed.

[Example:

template <class T, class A = allocator<T> >
class Y {
public:
typedef A allocator type;

/I Default constructor with and allocator-extended default constructor
Y();
Y (allocator arg t, const allocator type& a);

/I Copy constructor and allocator-extended copy constructor
Y (const Y& vyy);
Y (allocator arg t, const allocator type& a, const Y& yy);

/I Variadic constructor and allocator-extended variadic constructor

template<class ...Args> Y (Argsé&& args...);

template<class ...Args>

Y (allocator arg t, const allocator type& a,
Argsé&é&... args);

}s

/I Specialize trait for class template Y

template <class T, class A = allocator<T> >

struct constructible with allocator prefix<¥Y<T,A> >
true type { };

-- end example]

The constructible with allocator suffix/prefix traits are needed only
because there is no way, without concepts or compiler support, to detect the constructor
signatures for a given type.

2.6.x, allocator-related concepts
auto concept UsesAllocator<typename T, typename Alloc> {

requires Allocator<Alloc>;
typename T::allocator type;

N2554: The Scoped Allocator Model (Rev 2) Page 14 of 42

requires Convertible<Alloc, allocator type>;

Remark: Automatically detects if T has a nested allocator type thatis convertible from
Alloc. A program may create a concept map for UsesAllocator for a T of user-defined type if
T does not have a nested allocator type butis nonetheless constructible using the specified
Alloc.

concept ScopedAllocator<typename Alloc> {
requires Allocator<Alloc>;
typename inner allocator type;
inner allocator type Alloc::inner allocator() const;

Remark: a concept map for a give Al1oc type indicates that A11oc is a Scoped Allocator. A
scoped allocator specifies the memory resource to be used by a container (as any other allocator) and
also specifies an inner allocator resource to be used by every element in the container.

auto concept
ConstructibleWithAllocatorSuffix<class T, class Alloc,
class... Args>
UsesAllocator<T, Alloc>

requires Constructible<T, Args..., allocator type>;

Remark: an (automatically generated) concept map for a given set of parameters indicates that T
may be constructed with allocator type as its last constructor argument. ldeally, all
constructors of T (including the copy and move constructors) should have a variant that accepts a
final argument of allocator type.

[Example:

template <class T, class A = allocator<T> >
class 7Z {
public:
typedef A allocator type;

/I Default constructor with optional allocator suffix
Z (const allocator type& a = allocator type());

/I Copy constructor and allocator-extended copy constructor
Z (const 7Z& zz);
Z (const Z& zz, const allocator typeé& a);

}i
-- end example]

auto concept
ConstructibleWithAllocatorPrefix<class T, class Alloc,
class... Args>

N2554: The Scoped Allocator Model (Rev 2) Page 15 of 42

UsesAllocator<T, Alloc>

requires Allocator<Alloc>;

typename T::allocator type;

requires Convertible<Alloc, allocator type>;

requires Constructible<T, allocator arg t, Alloc, Args...>;

Remark: an (automatically generated) concept map for a given set of parameters indicates that T
may be constructed with allocator argand T::allocator type as its first two constructor
arguments. lIdeally, all constructors of T (including the copy and move constructors) should have a
variant that accepts these two initial arguments.

[Example:

template <class T, class A = allocator<T> >
class Y {
public:
typedef A allocator type;

/I Default constructor and allocator-extended default constructor

Y();
Y (allocator arg t, const allocator typeé& a);

/I Copy constructor and allocator-extended copy constructor
Y (const Y& yy);
Y (allocator arg t, const allocator type& a, const Y& yy);

/I Variadic constructor and allocator-extended variadic constructor

template<class ...Args> Y (Argsé&&... args);

template<class ...Args>

Y (allocator arg t, const allocator typeé& a,
Argsé&é&... args);

i

-- end example]

The concepts for ConstructibleWithAllocatorSuffix and
ConstructibleWithAllocatorPrefix will match only types that have an
allocator type associated type. The reason for this requirement is to avoid overly-
general matches with template constructors —i.e., a constructor that takes a template
argument of any type will take an allocator argument even if that type doesn’t directly
use allocators.

Scoped Allocator Adaptor

In section 20.6, before the declaration of raw _storage iterator, insert:

/1 20.6.1+, scoped allocator adaptor:

N2554: The Scoped Allocator Model (Rev 2) Page 16 of 42

template<class OuterA, class InnerA = void>
class scoped allocator adaptor;

template<class Alloc>
class scoped allocator adaptor<Alloc, void>;

template<class OuterA, class InnerA>
struct is scoped allocator<
scoped allocator adaptor<OuterA, InnerA> > : true type { };

template<class OuterA, class InnerA>
struct allocator propagate never<
scoped allocator adaptor<OuterA, InnerA> > : true type { };

template<class OuterA, class InnerA>
concept map ScopedAllocator<
scoped allocator adaptor<OuterA,InnerA> > { }

template<class OuterA, class InnerA>
concept map AllocatorPropagateNever<
scoped allocator adaptor<OuterA, InnerA> > { }

Note that the declaration of the trait allocator propagate never (or the concept
map for AllocatorPropagateNever) is contingent on acceptance of N2525.

template<typename OuterAl, typename OuterA2, typename InnerA>
bool operator==(const scoped allocator adaptor<OuterAl,InnerA>& a,
const scoped allocator adaptor<OuterAZ, InnerA>& b);

template<typename OuterAl, typename OuterA2Z, typename InnerA>
bool operator!=(const scoped allocator adaptor<OuterAl,InnerA>& a,
const scoped allocator adaptor<OuterA2,InnerA>& b);

Between sections 20.6.1 and 20.6.2, add a new subsection:
20.6.x Scoped Allocator Adaptor [scoped.allocator]

The scoped allocator adaptor class template is an allocator template that specifies the
memory resource (the outer allocator) to be used by a container (as any other allocator does) and also
specifies an inner allocator resource to be used by every element in the container. This adaptor is
instantiated with outer and inner allocator types. If instantiated with only one allocator type (i.e., the
second type is void), the same allocator type is used for both the outer and inner allocator types and
the same allocator instance is used for both the outer and inner allocator instances. The interface is
specialized for the single-allocator case such that it takes only one allocator instance argument in the
constructor, verses two allocators for the general case. Otherwise, the interface to the specialized and
general cases are the same. A scoped allocator adaptor thatis instantiated with two
identical parameters is different than an adaptor instantiated with only one parameter: the former may
be constructed with different instances of outer and inner allocators whereas the second may be
constructed only with one allocator instance. [Note: the scoped allocator adaptor s

N2554: The Scoped Allocator Model (Rev 2) Page 17 of 42

derived from the outer allocator type, so it can be substituted for the outer allocator type in most
expressions. — end note]

namespace

std {

template<typename OuterA, typename InnerA
class scoped allocator adaptor ;

template<typename OuterA>
class scoped allocator adaptor<OuterA, void> : public OuterA

{
public:

typedef OuterA outer allocator type;
typedef OuterA inner allocator type;
and inner allocator types are the same.

// outer

typedef
typedef
typedef
typedef
typedef
typedef
typedef

typename
typename
typename
typename
typename
typename
typename

outer allocator type:
outer allocator type:
outer allocator type:
outer allocator type:
outer allocator type:
outer allocator type:
outer allocator type:

template <typename Tp>
struct rebind

{

:size type
:difference type difference type;

void>

size type;

:pointer pointer;
:const pointer const pointer;
:reference reference;

:const reference const reference;
:value type

value type;

typedef scoped allocator adaptor<OuterA::template rebind< Tp>::other,

}i

scoped allocator adaptor();
scoped allocator adaptor (scoped allocator adaptoré&s);

void> other;

scoped allocator adaptor (OuterA&& outerAlloc);

(
(
scoped allocator adaptor (const scoped allocator adaptoré&);
(
(

scoped allocator adaptor (const OuterA& outerAlloc);

template <typename OuterA2>
scoped allocator adaptor (
scoped allocator adaptor<OuterA2, void>&é&);
template <typename OuterA2>
scoped allocator adaptor (
const scoped allocator adaptor<OuterA2, void>&);

~scoped allocator adaptor();

pointer

const pointer address(const reference x)

pointer allocate(size type n);

address (reference x)

template <typename HintP>
pointer allocate(size type n, HintP u);

void deallocate (pointer p,

size type max size() const;

N2554: The Scoped Allocator Model (Rev 2)

size type n);

const;
const;

Page 18 of 42

template <class... Args>
void construct (pointer p, Argsé&é&... args);
void destroy (pointer p);

const outer allocator type& outer allocator();
const inner allocator typeé& inner allocator();

}i

template<typename OuterA, typename InnerA>

class scoped allocator adaptor : public OuterA
{
public:

typedef OuterA outer allocator type;

typedef InnerA inner allocator type;

typedef typename outer allocator type::size type size type;
typedef typename outer allocator type::difference type difference type;
typedef typename outer allocator type::pointer pointer;

typedef typename outer allocator type::const pointer const pointer;
typedef typename outer allocator type::reference reference;
typedef typename outer allocator type::const reference const reference;
typedef typename outer allocator type::value type value type;

template <typename Tp>
struct rebind
{
typedef scoped allocator adaptor<OuterA::template rebind< Tp>::other,
InnerA> other;

}i

scoped allocator adaptor();
scoped allocator adaptor (outer allocator typeé&& outerAlloc,
inner allocator typeé&& innerAlloc);
scoped allocator adaptor (const outer allocator typeé& outerAlloc,
const inner allocator typeé& innerAlloc);
scoped allocator adaptor (scoped allocator adaptor&& other);
scoped allocator adaptor (const scoped allocator adaptor& other);

template <typename OuterAlloc2>
scoped allocator adaptor (
scoped allocator adaptor<OuterAlloc2&, InnerA>&&);
template <typename OuterAlloc2>
scoped allocator adaptor (
const scoped allocator adaptor<OuterAlloc2é&,InnerA>&);

~scoped allocator adaptor();

pointer address (reference x) const;
const pointer address(const reference x) const;

pointer allocate(size type n);

template <typename HintP>
pointer allocate(size type n, HintP u);

N2554: The Scoped Allocator Model (Rev 2) Page 19 of 42

void deallocate (pointer p, size type n);
size type max size() const;

template <class... Args>
void construct (pointer p, Argsé&&... args);

void destroy (pointer p);

const outer allocator type& outer allocator() const;
const inner allocator typeé& inner allocator() const;

}i
template<typename OuterAl, typename OuterA2, typename InnerA>

bool operator==(const scoped allocator adaptor<OuterAl,InnerA>& a,
const scoped allocator adaptor<OuterA2,InnerA>& b);

template<typename OuterAl, typename OuterA2, typename InnerA>

bool operator!=(const scoped allocator adaptor<OuterAl, InnerA>& a,
const scoped allocator adaptor<OuterAZ, InnerA>& b);

}
20.6.x.1 scoped_allocator_adaptor constructors [scoped.adaptor.cntr]

scoped allocator adaptor();

effects: initializes the outer and inner allocator instances using their corresponding default
constructors.

scoped allocator adaptor (scoped allocator adaptor&& other);
scoped allocator adaptor (const scoped allocator adaptor& other);

effects: initializes the outer and inner allocator instances from the corresponding parts of other.

scoped allocator adaptor (OuterA&& outerAlloc);
scoped allocator adaptor (const OuterA& outerAlloc);

requires: scoped allocator adaptor was instantiated with only one parameter.
effects: initializes the base class (which is both the outer and inner allocator) from outerAlloc.
template <typename OuterA2>
scoped allocator adaptor (
scoped allocator adaptor<OuterA2, InnerA>&& other);
template <typename OuterA2>
scoped allocator adaptor (
const scoped allocator adaptor<OuterAZ, InnerA>& other);
requires: Same<OuterA2, OuterA::rebind<value type>::other>.

effects: initializes the outer and inner allocator instances from the corresponding parts of other.

20.6.x.2 scoped_allocator_adaptor members [scoped.adaptor.members]

N2554: The Scoped Allocator Model (Rev 2) Page 20 of 42

pointer address (reference x) const;
const pointer address(const reference x) const;

rﬂuww:outer_allocator().address(x);
pointer allocate(size type n);
returns: outer allocator () .allocate(n);

template <typename HintP>
pointer allocate(size type n, HintP u);

returns: outer allocator() .allocate(n, u);
void deallocate (pointer p, size type n);

effects: outer allocator().deallocate(p, n);
size type max size() const;

returns: outer allocator () .max size();

template <class... Args>
void construct (pointer p, Argsé&é&... args);

effects: outer allocator().construct(p, args...);
void destroy (pointer p);
effects: outer allocator () .destroy(p);
const outer allocator type& outer allocator() const;
returns: the outer allocator used to construct this object.
const inner allocator type& inner allocator() const;

returns: the inner allocator used to construct this object. For the single-parameter instantiation,
returns the same reference as outer allocator ().

20.6.x.3 scoped_allocator_adaptor globals [scoped.adaptor.globals]
template<typename OuterAl, typename OuterA2, typename InnerA>
bool operator==(const scoped allocator adaptor<OuterAl, InnerA>& a,

const scoped allocator adaptor<OuterA2, InnerA>& b);

rMUWB:a.outer_allocator() == b.outer allocator() &&
a.inner allocator() == b.inner allocator().

N2554: The Scoped Allocator Model (Rev 2) Page 21 of 42

template<typename OuterAl, typename OuterA2, typename InnerA>
bool operator!=(const scoped allocator adaptor<OuterAl, InnerA>& a,
const scoped allocator adaptor<OuterA2, InnerA>& b);

returns: ! (a == Db) .

Element construction

In section 20.6 [memory], after the comment that reads “//specialized algorithms”, insert

the following:
template<typename Alloc, typename T, class... Args>
void construct element (Allocé& alloc, T& r, Argsé&&... args);

Before section 20.6.4.1 [uninitialized.copy], insert the following:

20.6.4.x construct element [construct.element]

template<typename Alloc, typename T, class... Args>
void construct element (Allocé& alloc, T& r, Argsé&&... args);

remarks: This function is called from within containers in order to construct elements during insertion
operations as well as to move elements during reallocation operations. It automates the process of
determining if the scoped allocator model is in use and transmitting the inner allocator for scoped

allocators.
effects:
If Scopedhllocator<Alloc> and UsesAllocator<T, A::inner allocator type>
then
If ConstructibleWithAllocatorPrefix<T,A::inner allocator type,Args..>
then
alloc.construct (alloc.address(r), allocator arg t,
alloc.inner allocator(), args...);
else if
ConstructibleWithAllocatorSuffix<T,A::inner allocator type,Args..>
then
alloc.construct (alloc.address(r),args...,alloc.inner allocator());
else
program is ill-formed
end 1if
else
alloc.construct(alloc.address(r), args...);
end if

This function encapsulates all of the mechanism (meta-programming and/or concept
overloading) necessary to construct a container element. If a type has an

allocator_ type but does not indicate how to construct an item using an allocator (by
specializing a trait or mapping a concept), then the program is ill-formed. Doing
otherwise would violate the principle of least surprise in that a user could reasonably
expect that the allocator would be transmitted to the element in that case. Note that the
element argument to construct element is of type T& rather than

N2554: The Scoped Allocator Model (Rev 2) Page 22 of 42

Alloc: :reference for two reasons: First, we want the call to be element-centric,
rather than allocator-centric. Second, we are leaving the door open to a more
permissive definition of Allocator: :construct that would allow an allocator to
construct an object other than one of type Allocator: :value type.

Pair changes

Modify the declaration of pair<T1, T2>, in section 20.2.3 [pairs] as follows:

template <class T1, class T2>
struct pair {

b

typedef Tl first type;
typedef T2 second type;

Tl first;

T2 second;

pair();

pair (const Tl& x, const T2& y);

template<class U, class V > pair(U&& x , V&& y);

pair (pair&& p);

template<class U, class V > pair(const pair<U , V >& p);
template<class U, class V > pair(pair<U , V >&& p);
template<class U, class... Args> pair (U&& x, Argsé&&... args);

[/ allocator-extended constructors
template <class Alloc> pair(allocator arg t, const Allocé& a);
template <class Alloc>

pair (allocator arg t,const Allocé& a,const Tl& x,const T2& V) ;
template<class U, class V, class Alloc >

pair(allocator arg t, const Allocé& a, U&& x , V&& Vy);
template <class Alloc>

pair(allocator arg t, const Allocé& a, pairé&& p);
template<class U, class V, class Alloc>

pair(allocator arg t, const Allocé& a, const pair<U, V >& p);
template<class U , class V, class Alloc >

pair (allocator arg t, const Allocé& a, pair<U, V>&& p);
template<class U, class... Args>

pair (allocator arg t, const Alloc& a, U&& x, Argsé&&... args);

pair& operator=(pairé&& p);
template<class U , class V > palir& operator=(pair<U , V >&& p);

void swap (pairé&& p);

template <class T1, class T2, class Alloc>

struct uses allocator<pair<Tl, T2>, Alloc>;

template <class T1l, class T2>

struct constructible with allocator prefix<pair<Tl, T2> >;

N2554: The Scoped Allocator Model (Rev 2) Page 23 of 42

Before the definition of the first constructor, insert these traits/concepts:

template <class T1l, class T2, class Alloc>
struct uses allocator<pair<Tl, T2>, Alloc>
true type { };

requires: Alloc shall bean Allocator ([allocator.requirements] 20.1.2)

remarks: Specialization of this trait informs other library components that pair can be
constructed with an allocator, even though it does not have an allocator type associated
type.

template <class T1l, class T2>
struct constructible with allocator prefix<pair<Tl, T2> >
true type { };

remarks: Specialization of this trait informs other library components that a pair can always be
constructed with an allocator prefix argument.

template <class T1l, class T2, class Alloc>

concept map UsesAllocator<pair<Tl, T2>, Alloc> {
typedef Alloc allocator type;

}

template <class T1l, class T2, class ...Args>

concept map constructible with allocator prefix<pair<Tl, T2>,
Args... > {

}

After the definition of all of the existing constructors, insert the following definitions:

template <class Alloc> pair(allocator arg t, const Allocé& a);
template <class Alloc>

pair(allocator arg t,const Alloc& a,const Tl& x,const T2& y);
template<class U, class V, class Alloc >

pair (allocator arg t, const Allocé& a, U&& x , V&& y);
template <class Alloc>

pair (allocator arg t, const Allocé& a, pair&& p);
template<class U, class V, class Alloc>

pair(allocator arg t, const Allocé& a, const pair<U, V >& p);
template<class U , class V, class Alloc >

pair (allocator arg t, const Allocé& a, pair<U, V>&& p);
template<class U, class... Args>

pair (allocator arg t, const Allocé& a, U&& X, Argsé&&... args);

requires: Alloc shall be an A11ocator ([allocator.requirements] 20.1.2);
effects: equivalent to the preceding constructors except that the allocator argument is passed
conditionally to the constructors of £irst, second, or both. If uses allocator<Tl,

Alloc>::value && constructible with allocator prefix<T1>::value,
then £irst is constructed with allocator arg, and a as the first two constructor arguments.

N2554: The Scoped Allocator Model (Rev 2) Page 24 of 42

Otherwise, if uses_allocator<Tl, Alloc>::value &&

constructible with allocator suffix<T1>::value,then first is constructed
with a as the last constructor argument. Otherwise £irst is constructed without an allocator as
in the preceding constructors. If uses allocator<T2, Alloc>::value &&
constructible with allocator prefix<T2>::value,then secondis
constructed with allocator arg, and a as the first two constructor arguments. Otherwise, if
uses allocator<T2, Alloc>::value &&

constructible with allocator suffix<T2>::value,then secondis
constructed with a as the last constructor argument. Otherwise second is constructed without an
allocator, as in the preceding constructors. [Note: If both first and second are constructed
without allocators, then the a argument is ignored — end note].

These definitions allow containers (especially associative containers) to pass an allocator
to items of pair type. These constructors can be implemented using constructor
delegation and meta-programming. In the existing implementations, these constructors
are implemented by using inheritance and meta-programming.

Tuple Changes

In section 20.3.1 [tuple.tuple], modify the declaration of class template tuple as follows:

template <class... Types>
class tuple

{

public:
tuple (),
explicit tuple(const Typesé&...);
template <class... UTypes>

explicit tuple (UTypesé&&...);

tuple (const tuple&);
tuple (tupleé&&) ;

template <class... UTypes>
tuple (const tuple<UTypes...>&);
template <class... UTypes>

tuple (tuple<UTypes...>&&) ;

template <class Ul, class U2>

tuple (const pair<Ul, U2>¢&); // iff sizeof...(Types) == 2
template <class Ul, class U2>
tuple (pair<Ul, U2>&&); // iff sizeof...(Types) == 2

template <class Alloc>

tuple (allocator arg t, const Allocé& a);
template <class Alloc>

tuple (allocator arg t, const Alloc& a, const Types&...);
template <class Alloc, class... UTypes>

tuple (allocator arg t, const Alloc& a, UTypes&&...);

N2554: The Scoped Allocator Model (Rev 2) Page 25 of 42

template <class Alloc>

tuple(allocator arg t, const Allocé& a, const tupleé§);
template <class Alloc>

tuple (allocator arg t, const Allocé& a, tuple&é&);

template <class Alloc, class... UTypes>
tuple (allocator arg t, const Alloc& a, const tuple<UTypes...>&);
template <class Alloc, class... UTypes>

tuple (allocator arg t, const Allocé& a, tuple<UTypes...>&&);

template <class Alloc, class Ul, class U2>
tuple(allocator arg t, const Allocé& a,
const pair<Ul, U2>&);
template <class Alloc, class Ul, class U2>
tuple(allocator arg t, const Allocé& a, pair<Ul, U2>&&);

tuple& operator=(const tuple&);
tuple& operator=(tuple&s&);

template <class... UTypes>
tuple& operator=(const tuple<UTypes...>&);
template <class... UTypes>

tuple& operator=(tuple<UTypes...>&&);

template <class Ul, class U2>
tuple& operator=(const pair<Ul, U2>s&); //iffsizeof...(Types) =
template <class Ul, class U2>
tuple& operator=(pair<Ul, U2>&&); // iff sizeof...(Types) == 2
bi

Before section 20.3.1.1 [tuple.cnstr], insert the following new subsection:

20.3.1.1 Tuple traits [tuple.traits]

template <class... Types, class Alloc>
struct uses allocator<tuple<Types...>, Alloc>
true type { };

requires: Alloc shall bean 2A11locator ([allocator.requirements] 20.1.2)

remarks: Specialization of this trait informs other library components that tuple can be
constructed with an allocator, even though it does not have an allocator type associated

type.

template <class... Types>
struct constructible with allocator prefix<tuple<Types...> >
true type { };

remarks: Specialization of this trait informs other library components that a tuple can always
be constructed with an allocator prefix argument.

N2554: The Scoped Allocator Model (Rev 2) Page 26 of 42

template <class... Types, class Alloc>

concept map UsesAllocator<tuple<Types...>, Alloc> ({
typedef Alloc allocator type;

}

template <class... Types, class ...Args>

concept map constructible with allocator prefix<tuple<Types...>,
Args... > {

}

In section 20.3.1.1 [tuple.cnstr], after the definition of all of the existing constructors,
add the following definitions:

template <class Alloc>

tuple (allocator arg t, const Allocé& a);
template <class Alloc>

tuple (allocator arg t, const Alloc& a, const Typesé&...);
template <class Alloc, class... UTypes>

tuple (allocator arg t, const Alloc& a, UTypes&&...);

template <class Alloc>

tuple (allocator arg t, const Alloc& a, const tupleé&);
template <class Alloc>

tuple (allocator arg t, const Alloc& a, tuple&&);

template <class Alloc, class... UTypes>
tuple (allocator arg t, const Alloc& a, const tuple<UTypes...>&);
template <class Alloc, class... UTypes>

tuple (allocator arg t, const Alloc& a, tuple<UTypes...>&&);

template <class Alloc, class Ul, class U2>
tuple (allocator arg t, const Allocé& a,
const pair<Ul, U2>&);
template <class Alloc, class Ul, class U2>
tuple (allocator arg t, const Alloc& a, pair<Ul, U2>&&);

requires: Alloc shall be an 211ocator ([allocator.requirements] 20.1.2);

effects: equivalent to the preceding constructors except that the allocator argument is passed
conditionally to the constructors of each element. For each element n of type Tn, if
uses allocator<Tn, Alloc>::value &&

constructible with allocator prefix<Tn>::value, thenthe elementn is

constructed with allocator arg, and a as the first two constructor arguments. Otherwise, if

uses allocator<Tn, Alloc>::value &&
constructible with allocator suffix<Tn>::value,thenelementnis

constructed with a as the last constructor argument. Otherwise element n is constructed without

an allocator, as in the preceding constructors. [Note: If none of the elements are constructed
without allocators, then the a argument is ignored — end note].

N2554: The Scoped Allocator Model (Rev 2) Page 27 of 42

Container Requirements

In section [container.requirements] (23.1), replace paragraph 3:

Objects stored in these components shall be constructed using the construct _element

specialized algorithm (20.6.4.x [construct.element]). For each operation that inserts an element of
type T into a container (insert, push _back, push front, emplace, etc.), with arguments
args.., T shall be ConstructibleAsElement, as described in table [new table number] below. [Note:
If the component is instantiated with a scoped allocator of type A (i.e., an allocator for which

is scoped allocator<A>istrue), thenthe construct element function may pass an
inner allocator argument to T’s constructor. — end note]

Rather than generalize all of the requirements on T for the entire container, the
requirements on T should be stated on a per-function basis in the tables, to avoid
unnecessary restrictions. For example there is no need for T to be MoveAssignable if a
function that uses move-assignment is never invoked. The is scoped allocator
trait is used to choose the allocator model. The allocator is propagated from the
container to the contained item if and only if both the container and the item agree to
this contract. If they do agree, the container passes its own allocator to the item when it
constructs the item. The use of the model is determined once for the container; it does
not vary from function to function, e.g., the container will not propagate the allocator
on, say, move construction but not on copy construction. Note that this paragraph does
not require that the item type use an allocator (because allocator-specific behavior
depends on the uses allocator trait, which applies only to classes that use
allocators).

In section [container.requirements] (23.1), add a new table before Table 87:

In table n, A denotes an allocator, | denotes an allocator of type A::inner_allocator_type (if any), X
denotes a container class containing objects of type T and instantiated with allocator type A, aand b
denote values of type X, u denotes an identifier, r denotes an lvalue or a const rvalue of type X, and rv
denotes a non-const rvalue of type X. Args denotes a template parameter pack; args denotes a
function parameter pack with the pattern Args&&.

Table n: ConstructibleAsElement<A, T, Args> requirements

expression post-condition
! (is_scoped_allocator<A>::value && true
uses_allocator<T,I>::value) ||
constructible_with_allocator_prefix<T, I, Args...>::value ||
constructible with allocator suffix<T, I, Args...>::value

N2554: The Scoped Allocator Model (Rev 2) Page 28 of 42

In section [container.requirements] (23.1), Table 87: Container requirements, change
selected rows as follows:

expression return type operational assertion/note complexity
semantics pre/post-condition

X::value - T s compile time

type Cepvtenstruetibte

X(a); requires: T is linear
CopyConstructible.
a == X(a)

X ul(a); requires: T is linear

X u = a; CopyConstructible.
post: u ==

N2554: The Scoped Allocator Model (Rev 2)

Page 29 of 42

expression return type operational assertion/note complexity

semantics pre/post-condition
X u(rv); requires: T is Constant
X u = rv; MoveConstructible.

post: u shall be equal to

the value that rv had

before this construction
ol : =

LAA)

Modify the paragraph immediately following Table 87 as follows:

Notes: the algorithms swap () , equal () and lexicographical compare () are defined in
clause 25. Those entries marked “(Note A)” should have constant complexity.

In section [container.requirements] (23.1), after paragraph 12 (just before
[sequence.reqmts]) add the following text and additional table:

All of the containers defined in this clause and in clause [basic.string] (21.3), except array, meet the
additional requirements of an allocator-aware container, as described in Table [88+1].

In Table [88+1], X denotes an allocator-aware container class with a value type of T using
allocator of type A, u denotes a variable, t denotes an Ivalue or a const rvalue of type X, rv denotes a
non-const rvalue of type X, m is a value of type A, Q is an allocator type.

Table [88+1] Allocator-aware container requirements (in addition to container)

expression return type assertion/note complexity
pre/post-condition

allocator type A requires: compile time
allocator type::value type
isthe same as X: : value type.

uses derived from true type if Q is convertible to A compile time
_allocator<X,Q> true typeor
false type

Constructible wi Derived from compile time
th allocator suf true type
Fix<x> B B
get allocator() A constant
X () requires: DefaultConstructible<A>. constant
X uy post: u.size() == 0,

get allocator ()== A()
X (m) post: u.size() == 0, constant
X u(m); get allocator() == m
X (t,m) requires: linear
X u(t,m); ConstructibleAsElement<A, T, T>

post: u == t,

get allocator () == m

N2554: The Scoped Allocator Model (Rev 2) Page 30 of 42

X(rv,m)
X u(rv,m);

requires:
ConstructibleAsElement<A, T, T&&>
post: u shall be equal to the value that
rv had before this construction,

get allocator() ==m

constant if m ==
rv.get_allocator(),
else linear

Adds the allocator requirements. The uses allocator trait is computed
automatically . We specify the allocator-extended default, move, and copy constructors
as allocator-suffix-style constructors and define the appropriate trait. Note that all
containers will now have a constructor that takes a single allocator argument. The
absence of such a constructor (e.g., for map) has caused grief for those of us using

stateful allocators up until now.

In section [sequence.reqmts] (23.1.1), modify paragraph 3 as follows:

In Tables 89 and 90, X denotes a sequence container class, a denotes a value of type X containing
elements of type T, A denotes X::allocator type if it exists and std::allocator<T> if X does not have

an allocator type, i and j denote iterators satisfying input iterator requirements and refer to elements
implicitly convertible to value_type, [i, j) denotes a valid range, n denotes a value of X::size_type, p
denotes a valid const iterator to a, g denotes a valid dereferenceable const iterator to a, [g1, q2)
denotes a valid range of const iterators in a, t denotes an Ivalue or a const rvalue of X::value_type,
and rv denotes a non-const rvalue of X::value_type. Args denotes a template parameter pack; args
denotes a function parameter pack with the pattern Args&&.

In section [container.requirements] (23.1), Table 89, change selected rows as follows:

a.emplace (p,args) ;

iterator requires:

ConstructibleAsElement<A,T,Args>.

Inserts an object of type T constructed
with F{std::forward<Args>(args)...)»-

a.insert (p, t)

iterator requires: Fshal-be-CopyConstructible
ConstructibleAsElement<A,T,T> and

CopyAssignable<T>.
inserts a copy of t before p.

a.insert (p, rv)

iterator requires:

ConstructibleAsElement<A,T,T&&>

and MoveAssignable<T>.

inserts a copy of rv before p.

a.erase (q)

iterator requires: MoveAssignable<T>.

Erases the element pointed to by q

a.erase (ql,g2)

iterator requires: MoveAssignable<T>.

Erases the elements in the range [q1,02)

In section [sequence.reqmts] (23.1.1), modify rows in Table 90 as follows:

a.push -
front (args)

void

a.emplace (a.begin (),
std::forward<Args> (args)...)

requires:
ConstructibleAsElement<A,T,Args>

list, deque

N2554: The Scoped Allocator Model (Rev 2)

Page 31 of 42

a.push -
back (args)

void

a.emplace(a.end(), list, deque,
std::forward<Args>(args)..) vector
requires:

ConstructibleAsElement<A,T,Args>

We specify the requirements for push front and push back because they turn out to
be less than the requirements for emplace for some container types.

In section [associative.reqmts] (23.1.2): Associative containers, modify paragraph 2 as

follows:

Each associative container is parameterized on Key and an ordering relation Compare that induces a

strict weak ordering (25.3) on elements of Key. In addition, map and multimap associate an arbitrary
type T with the Key. The object of type Compare is called the comparison object of a container. This
comparison object may be a pointer to function or an object of a type with an appropriate function
call operator._If the Compare type uses an allocator, then it conforms to the same rules as a container
item; the container will construct the comparison object with the allocator appropriate to the
allocator-related traits of the Compare type and whether is _scoped allocator istrue for the
container’s allocator type.

In section [associative.reqmts] (23.1.2): Associative containers, modify paragraph 7 as
follows:

In Table 91, X denotes an associative container class, a denotes a value of X, a_uniq denotes a value
of X when X supports unique keys, a_eq denotes a value of X when X supports multiple keys, u
denotes an identifier, r denotes an Ivalue or a const rvalue of type X, and rv denotes a non-const
rvalue of type X. i and j satisfy input iterator requirements and refer to elements implicitly convertible
to value_type. [i,j) denotes a valid range, p denotes a valid const iterator to a, g denotes a valid
dereferenceable const iterator to a, [g1, g2) denotes a valid range of const iterators in a, t denotes a
value of X::value_type, k denotes a value of X::key_ type and ¢ denotes a value of type
X::key_compare._A denotes the storage allocator used by X, if any, or std::allocator<X::value type>
otherwise, and m denotes an allocator of type convertible to A.

In section [associative.reqmts] (23.1.2): Associative containers, modify table 91 as

follows:
X (c) requires: constant
X a(c) ConstructibleAsElement<A key com

pare, key compare>.
constructs an empty container.
uses a copy of ¢ as a comparison object

requires: ConstructibleAsElement<A, constant

X a; key compare>

constructs an empty container
uses Compare() as a comparison object

N2554: The Scoped Allocator Model (Rev 2) Page 32 of 42

X(i,3,¢) requires: NlogN in general

X a(i,j,c); ConstructibleAsElement<A key com (N is the distance
pare, key compare>. fromi to j), linear
constructs an empty container and if [i, j) is sorted
inserts elements from the range with
[i,7) intoit; usesacopy of casa value_compare()
comparison object

X(i,7) requires: ConstructibleAsElement<A, same as above

X a(i,3); key compare>

same as above, but uses Compare (),
as a comparison object.

In section [unord.req] (23.1.3), modify paragraph 3 as follows:

Each unordered associative container is parameterized by Key, by a function object Hash that acts as
a hash function for values of type Key, and by a binary predicate Pred that induces an equivalence
relation on values of type Key. Additionally, unordered_map and unordered_multimap associate an
arbitrary mapped type T with the Key._If the Hash and/or the Pred type use an allocator, then they
conform to the same rules as container items; the container will construct the Hash and Pred objects
with the allocator appropriate to the the allocator-related traits of the Hash and Pred types and
whether is_scoped _allocator is true for the container’s allocator type.

basic_string Changes
In section [basic.string] (21.3), modify paragraph 3 as follows:
The class template basic_string conforms to the requirements for a Sequence (23.1.1), are-for a

Reversible Container (23.1) , and for an allocator-aware container (23.1). Thus;-the iterators
supported by basic_string are random access iterators (24.1.5).

In section [basic.string] (21.3), add the following constructors:

basic string(const basic stringé&, const Allocatoré&);
basic string(basic stringé&&, const Allocatoré&);

And the following trait specialization:

template<class charT, class traits, class Alloc>
struct constructible with allocator suffix<
basic string<charT, traits, Alloc> > : true type { };

Then add descriptions of the extended copy and move constructors:

basic string(const basic string& str, const Allocatoré& alloc);
basic string(basic stringé&& str, const Allocatoré& alloc);

Effects: Constructs an object of class basic string asindicated in Table [58+1]. The stored
allocator is constructed from alloc. Inthe second form, str is left in a valid state with an
unspecified value.

N2554: The Scoped Allocator Model (Rev 2) Page 33 of 42

Throws: The second form throws nothing if alloc == str.get allocator () unlessthe
copy constructor for A1llocator throws.

Element Value
data () points to the first element of an allocated copy of
the array whose first element is pointed at by the
original value of str.data ()

size () the original value of str.size ()
capacity () a value at least as large as size ()
get allocator () alloc

deque changes
In section [deque] (23.2.2): Class template deque, modify paragraph 2:

A deque satisfies all of the requirements of a container,-and of a reversible container, and of an
allocator-aware container (given in tables in 23.1) and of a sequence container, including the optional
sequence container requirements (23.1.1). Descriptions are provided here only for operations on
deque that are not described in one of these tables or for operations where there is additional semantic
information.

Add the following constructors:

deque (const dequeé&, const Allocatoré§);
deque (dequeé& &, const Allocatoré);

And add the following trait specialization:

template <class T, class Alloc>
struct constructible with allocator suffix<deque<T, Alloc> >
true type { };

list changes
In section [list] (23.2.3): Class template 1ist, modify paragraph 2:

A list satisfies all of the requirements of a container,-and of a reversible container, and of an allocator-
aware container (given in fwe-tables in 23.1) and of a sequence container, including most of the the
optional sequence container requirements (23.1.1). The exceptions are the operator[] and at member
functions, which are not provided.?®) Descriptions are provided here only for operations on list that
are not described in one of these tables or for operations where there is additional semantic
information.

Add the following constructors:

list (const listé&, const Allocatoré&);
list(list&&, const Allocatoré):;

And add the following trait specialization:

N2554: The Scoped Allocator Model (Rev 2) Page 34 of 42

template <class T, class Alloc>
struct constructible with allocator suffix<list<T, Alloc> >
true type { };

vector changes
In section [vector] (23.2.5): Class template vector, modify paragraph 2:

A vector satisfies all of the requirements of a container,-and of a reversible container, and of an
allocator-aware container (given in twe-tables in 23.1) and of a sequence container, including most of
the optional sequence container requirements (23.1.1). The exceptions are the push_front and
pop_front member functions, which are not provided. Descriptions are provided here only for
operations on vector that are not described in one of these tables or for operations where there is
additional semantic information.

Add the following constructors:

vector (const vectoré&, const Allocatoré&);
vector (vector&&, const Allocatoré&);

And add the following trait specialization:

template <class T, class Alloc>
struct constructible with allocator suffix<vector<T, Alloc> >
true type { };

In section [vector.bool] (23.2.6): Class vector<bool>, add the following constructors:

vector (const vectoré&, const Allocatoré&);
vector (vector&&, const Allocatoré&);

No additional specialization of constructible with allocator suffix is
needed for vector<bool>. The specialization for vector<T> is sufficient.

Changes to adapters

In section [container.adaptors] (23.2.4): Container adaptors, modify paragraph 1 as
follows:

The container adaptors each take a Container template parameter, and each constructor takes a
Container reference argument. This container is copied into the Container member of each adaptor. If
the container takes an allocator, then a compatible allocator may be passed in to the adaptor’s
constructor. Otherwise, normal copy or move construction is used for the container argument. [Note:
it is not necessary for an implementation to distinguish between the one-argument constructor that
takes a Container and the one-argument constructor that takes an allocator type. Both
forms use their argument to construct an instance of the container. — end note]

N2554: The Scoped Allocator Model (Rev 2) Page 35 of 42

The ability to pass an allocator to an adaptor is important for allowing containers of

adaptors.

In section [queue.defn] (23.2.4.1.1): queue definition, add the following constructors:

template
template
template
template

<class
<class
<class
<class

Alloc> explicit gqueue(const Allocé&);
Alloc> queue (const Containeré&, const Allocé);
queue (Container&&, const Allocé);

Alloc>
Alloc>

queue (queue& &, const

And add the following trait specialization:

template <class T,
struct uses allocator<queue<T,

class Container,

Container>,

Allocé&) ;

class Alloc>

Alloc>

uses allocator<Container, Alloc>::type { };

template <class T,

class Container>

struct constructible with allocator suffix<queue<T, Container> >
true type { };

In section [priority.queue] (23.2.4.2): Class template priority queue, add the following

constructors:
template
template
template

template

template

<class

<class

<class

<class

<class

Alloc>

Alloc>

Alloc>

Alloc>

Alloc>

explicit priority queue (const Allocé&);

priority gqueue (const
const
priority queue (const
const
const
priority queue (const

Compareé,
Allocé&) ;
Compareg,
Containerég,
Allocé&) ;
Compareg,

Containeré&s,

const

Alloc&) ;

priority queue (priority queueé&é,

const

And add the following trait specializations:

template <class T,

class Container,

Alloc&) ;

class Compare, class Alloc>

struct uses allocator<priority queue<T, Container, Compare>,Alloc>
uses allocator<Container, Alloc>::type { };

template <class T,

class Container,

class Compare >

struct constructible with allocator suffix<
priority queue<T, Container, Compare> >
true type { };

In section [stack.defn] (23.2.4.3.1): stack definition, add the following constructors:

template <class Alloc> explicit stack(const Allocé&);
template <class Alloc> stack(const Containeré&, const Allocé&);

N2554: The Scoped Allocator Model (Rev 2)

Page 36 of 42

template <class Alloc> stack(Containeré&&, const Allocé);
template <class Alloc> stack(stacké&&, const Allocé&);

And add the following trait specializations:

template <class T, class Container, class Alloc>
struct uses allocator<stack<T, Container>, Alloc>
uses allocator<Container, Alloc>::type { };

template <class T, class Container>
struct constructible with allocator suffix<stack<T, Container> >
true type { };

map Changes
In section [map] (23.3.1): Class template map, change paragraph 2 as follows:

A map satisfies all of the requirements of a container and of a reversible container (23.1), of an
allocator-aware container (23.1), and of an associative container (23.1.2). A map also provides most
operations described in (23.1.2) for unique keys. This means that a map supports the a_uniq
operations in (23.1.2) but not the a_eq operations. For a map<Key, T> the key_type is Key and the
value_- type is pair<const Key,T>. Descriptions are provided here only for operations on map that are
not described in one of those tables or for operations where there is additional semantic information.

Add the following constructors:

map (const Allocatoré&);
map (const mapé&, const Allocatoré);
map (mapé&&, const Allocatoré);

And add the following trait specialization:

template <class Key, class T, class Compare, class Alloc>
struct constructible with allocator suffix<
map<Key, T, Compare,Alloc> >
true type { };

multimap changes
In section [multimap] (23.3.2): Class template multimap, change paragraph 2 as follows:

A multimap satisfies all of the requirements of a container and of a reversible container (23.1), of an
allocator-aware container (23.1), and of an associative container (23.1.2). A multimap also provides
most operations described in (23.1.2) for equal keys. This means that a multimap supports the a_eq
operations in (23.1.2) but not the a_uniq operations. For a multimap<Key,T> the key_type is Key and
the value_type is pair<const Key, T>. Descriptions are provided here only for operations on multimap
that are not described in one of those tables or for operations where there is additional semantic
information.

N2554: The Scoped Allocator Model (Rev 2) Page 37 of 42

Add the following constructors:

multimap (const Allocatoré&);
multimap (const multimapé&, const Allocatoré&);
multimap (multimap&&, const Allocatoré);

And add the following trait specialization:

template <class Key, class T, class Compare, class Alloc>
struct constructible with allocator suffix<
multimap<Key, T, Compare,Alloc> >
true type { };

set changes
In section [set] (23.3.3) Class template set, change paragraph 2 as follows:

A set satisfies all of the requirements of a container and of a reversible container (23.1), of an
allocator-aware container (23.1), and of an associative container (23.1.2). A set also provides most
operations described in (23.1.2) for unique keys. This means that a set supports the a_uniq operations
in (23.1.2) but not the a_eq operations. For a set<Key> both the key_type and value_type are Key.
Descriptions are provided here only for operations on set that are not described in one of these tables
and for operations where there is additional semantic information.

Add the following constructors:

set (const Allocatoré&);
set (const seté&, const Allocatoré&);
set (set&&, const Allocatoré&);

And add the following trait specialization:

template <class Key, class Compare, class Alloc>
struct constructible with allocator suffix<
set<Key,Compare,Alloc> >
true type { };

multiset changes
In section [multiset] (23.3.4): Class template multiset, modify paragraph 2 as follows:

A multiset satisfies all of the requirements of a container and of a reversible container (23.1), of an
allocator-aware container (23.1), and of an associative container (23.1.2). multiset also provides most
operations described in (23.1.2) for duplicate keys. This means that a multiset supports the a_eq
operations in (23.1.2) but not the a_uniq operations. For a multiset<Key> both the key_type and
value_type are Key. Descriptions are provided here only for operations on multiset that are not
described in one of these tables and for operations where there is additional semantic information.

Add the following constructors:

N2554: The Scoped Allocator Model (Rev 2) Page 38 of 42

multiset (const Allocatoré&) ;
multiset (const multiseté&, const Allocatoré&);
multiset (multiset&&, const Allocatoré);

And add the following trait specialization:

template <class Key, class Compare, class Alloc>
struct constructible with allocator suffix<
multiset<Key, Compare,Alloc> >
true type { };

unordered_map changes

In section [unord.map] (23.4.1): Class template unordered_map, modify paragraph 2 as
follows:

An unordered_map satisfies all of the requirements of a container, of an allocator-aware container,
and of an unordered associative container. It provides the operations described in the preceding
requirements table for unique keys; that is, an unordered_map supports the a_uniq operations in that
table, not the a_eq operations. For an unordered_map<Key, T> the key type is Key, the mapped type
is T, and the value type is std::pair<const Key, T>.

Add the following constructors:

unordered map (const Allocatoré&);
unordered map (const unordered mapé&, const Allocatoré&);
unordered map (unordered mapé&&, const Allocatoré&);

And add the following trait specialization:

template <class Key,class T,class Hash,class Pred,class Alloc>
struct constructible with allocator suffix<
unordered map<Key, T,Hash, Pred,Alloc> >
true type { };

unordered_multimap changes

In section [unord.multimap] (23.4.2): Class template unordered_multimap, modify
paragraph 2 as follows:

An unordered_multimap satisfies all of the requirements of a container, of an allocator-aware
container, and of an unordered associative container. It provides the operations described in the
preceding requirements table for equivalent keys; that is, an unordered_- multimap supports the a_eq
operations in that table, not the a_uniq operations. For an unordered_multimap<Key, T> the key type
is Key, the mapped type is T, and the value type is std::pair<const Key, T>.

Add the following constructors:

N2554: The Scoped Allocator Model (Rev 2) Page 39 of 42

unordered multimap (const Allocatoré&);
unordered multimap (const unordered multimapé&, const Allocatoré&);
unordered multimap (unordered multimapé&&, const Allocatoré&);

And add the following trait specialization:

template <class Key,class T,class Hash,class Pred,class Alloc>
struct constructible with allocator suffix<
unordered multimap<Key, T, Hash, Pred,Alloc> >
true type { };

unordered_set changes

In section [unord.set] (23.4.3): Class template unordered_set, modify paragraph 2 as
follows:

An unordered_set satisfies all of the requirements of a container, of an allocator-aware container, and
of an unordered associative container. It provides the operations described in the preceding
requirements table for unique keys; that is, an unordered_set supports the a_unig operations in that
table, not the a_eq operations. For an unordered_set<Value> the key type and the value type are both
Value. The iterator and const_iterator types are both const iterator types. It is unspecified whether
they are the same type.

Add the following constructors:

unordered set (const Allocatoré&);
unordered set (const unordered seté&, const Allocatoréd);
unordered set (unordered seté&&, const Allocatoré&);

And add the following trait specialization:

template <class Value,class Hash,class Pred,class Alloc>
struct constructible with allocator suffix<
unordered set<Value, Hash, Pred,Alloc> >
true type { };

unordered_multiset changes

In section [unord.set] (23.4.3): Class template unordered_multiset, modify paragraph 2
as follows:

An unordered_multiset satisfies all of the requirements of a container, of an allocator-aware

container, and of an unordered associative container. It provides the operations described in the
preceding requirements table for equivalent keys; that is, an unordered_multiset supports the a_eq
operations in that table, not the a_uniq operations. For an unordered_multiset<Value> the key type
and the value type are both Value. The iterator and const_iterator types are both const iterator types. It
is unspecified whether they are the same type.

Add the following constructors:

N2554: The Scoped Allocator Model (Rev 2) Page 40 of 42

unordered multiset (const Allocatoré);
unordered multiset (const unordered multiseté&, const Allocatoré&);
unordered multiset (unordered multiseté&&, const Allocatoré&);

And add the following trait specialization:

template <class Value,class Hash,class Pred,class Alloc>
struct constructible with allocator suffix<
unordered multiset<Value, Hash, Pred,Alloc> >
true type { };

Function Changes

In section 20.5.15.2 [func.wrap.func], change the list of constructors as follows:

explicit function();

function (unspecified-null-pointer-type);
function (const functioné&);

function (function&é&) ;

template<class F> function (F
+ 1 calaca N £
F

) .

’
T~ o ~ (T o
TCTT A=

e P ot
&&) ;

+= N C
C— 1T

) .
7

+aman] oo T
cCIo T TCThoo L7 TTHS O Y 7

template<class F> function/(

template<class A> function(allocator arg t, const A&);
template<class A> function(allocator arg t, const Ag,
unspecified-null-pointer-type);
template<class A> function(allocator arg t, const Ag,
const functioné&) ;
template<class A> function(allocator arg t, const A&, functioné&é&);
template<class F, class A> function(allocator arg t, const A&, F);
template<class F, class A> function(allocator arg t, const A&, F&&);

And add the following trait specializations:

template<class R, class... ArgTypes >
struct constructible with allocator prefix<
function<R (ArgTypes...)> >

true type { };

template<class R, class... ArgTypes, class Alloc>
struct uses allocator<function<R (ArgTypes...)>, Alloc >
true type { };

template<class R, class... ArgTypes, class Alloc>
concept map UsesAllocator<function<R (ArgTypes...)>, Alloc > {
typedef Alloc allocator type;

A function object accepts an allocator using type erasure and thus has no
allocator type nested type. We adjust for that by explicitly specializing

N2554: The Scoped Allocator Model (Rev 2) Page 41 of 42

uses_allocator trait or mapping the UsesAllocator concept. The prefix-style allocator
argument is chosen to avoid overload ambiguities between the A and F parameters.

Implementation Experience

All of the elements in this proposal have been implemented and most have been used
extensively at Bloomberg LP and at other companies (e.g. Bear Stearns) for several
years. We make frequent use of short-lived arena allocators and allocators that use
special memory regions, and the scoped allocator semantics have provided a powerful
way to manage memory. The Bloomberg interface is quite close to the interface
presented in this proposal.

An open-source implementation that implements the exact interface from this proposal
is under development. The non-concept-based interface can be implemented almost
entirely using a C++03 compiler (though variadic templates must be simulated with
tixed-length parameter lists).

There is also an implementation of an earlier version of this proposal by a commercial
library vendor (Dinkumware).

N2554: The Scoped Allocator Model (Rev 2) Page 42 of 42

