
 Doc No: SC22/WG21/N2851
 J16/09-0041
 Date: 2009-03-06
 Reply to: Robert Klarer
 IBM Canada, Ltd.
 klarer@ca.ibm.com

Changes to the Decimal TR since the PDTR Ballot

Document N2849 supersedes N2732, which was the subject of the PDTR ballot. This
document is a comprehensive list of the differences between the two documents, apart
from minor changes to formatting and presentation. These changes are also identified
using red text and strikethrough text in N2849 itself.

1. Change the second paragraph of “2 Conventions” as follows:

Although this report describes extensions to the C++ standard library, vendors may
choose to implement these extensions in the C++ language translator itself. This practice
is permitted so long as all well-formed programs are accepted by the implementation, and
the semantics of those programs which do not have undefined or implementation-defined
behavior are the same as the same as they would be had if the extensions had taken the
form of a library. [Note: This allows, for instance, an implementation to produce a
different result when the extension is implemented in the C++ language translator, for
programs that are ill-formed when the extension is implemented as a library.]
The result of deriving a user-defined type from std::decimal::decimal32,
std::decimal::decimal64, or std::decimal::decimal128 is undefined.

2. In “3.1 Characteristics of decimal floating-point types,” change Table 1 as
follows:

Format decimal32 decimal64 decimal128
Coefficient length in digits 7 16 34
Maximum Exponent (E

max
) 97 385 6145

Minimum Exponent (E
min

) -94 -382 -6142

3. Change “3.2.2.4 Conversion to integral type” as follows:

 operator long long() const;

ReturnsEffects: Returns the result of the conversion of *this to the type long long, as
if performed by the expression llroundd32(*this) while the decimal rounding
direction mode [3.5.2] FE_DEC_TOWARD_ZERO is in effect. by discarding the fractional
part (i.e., the value is truncated toward zero). If the value of the integral part cannot be
represented by the integer type or *this has infinite value or is NAN, the “invalid”
floating-point exception shall be raised and the result of the conversion is unspecified.

1

4. Change “3.2.3.4 Conversion to integral type” as follows:

 operator long long() const;

ReturnsEffects: Returns the result of the conversion of *this to the type long long, as
if performed by the expression llroundd64(*this) while the decimal rounding
direction mode [3.5.2] FE_DEC_TOWARD_ZERO is in effect. by discarding the fractional
part (i.e., the value is truncated toward zero). If the value of the integral part cannot be
represented by the integer type or *this has infinite value or is NAN, the “invalid”
floating-point exception shall be raised and the result of the conversion is unspecified.

5. Change “3.2.4.4 Conversion to integral type” as follows:
 operator long long() const;

ReturnsEffects: Returns the result of the conversion of *this to the type long long, as
if performed by the expression llroundd128(*this) while the decimal rounding
direction mode [3.5.2] FE_DEC_TOWARD_ZERO is in effect. by discarding the fractional
part (i.e., the value is truncated toward zero). If the value of the integral part cannot be
represented by the integer type or *this has infinite value or is NAN, the “invalid”
floating-point exception shall be raised and the result of the conversion is unspecified.
6. Change the Effects clause of “3.2.5 Initialization from coefficient and exponent”
as follows:
Effects: If the value coeff x 10

exponent
 is outside of the range of values that can be

represented by the return type, plus or minus HUGE_VAL_D32, HUGE_VAL_D64, or
HUGE_VAL_D128 is returned (according to the return type and the sign of coeff) and
the value of the macro ERANGE is stored in errno. If the result underflows, plus or
minus DEC32_MIN, DEC64_MIN, or DEC128_MIN is returned (according to the return
type and the sign of coeff), and the value of ERANGE is stored in errno. Otherwise,
Returns an object of the appropriate decimal floating-point type with the value coeff x
10

exponent , rounded as in IEEE-754, if necessary. If an overflow condition occurs, then the
value of the macro ERANGE is stored in errno.

 [Note: In cases where the desired coefficient is greater than ULLONG_MAX or less than
LLONG_MIN, it will be preferable to initialize an object of decimal floating-point type by
extracting its value from a string literal using one of the strtod functions or iostreams.
Also, see 4.1 --end note.]
7. Add new functions to “3.2.6 Conversion to generic floating-point type”

 float decimal32_to_float (decimal32 d);
 float decimal64_to_float (decimal64 d);
 float decimal128_to_float(decimal128 d);
 float decimal_to_float(decimal32 d);
 float decimal_to_float(decimal64 d);
 float decimal_to_float(decimal128 d);
Returns: If std::numeric_limits<float>::is_iec559 == true, returns the result of
the conversion of d to float, performed as in IEEE 754-2008. Otherwise, the returned
value is implementation-defined. See 4.2.

2

 double decimal32_to_double (decimal32 d);
 double decimal64_to_double (decimal64 d);
 double decimal128_to_double(decimal128 d);
 double decimal_to_double(decimal32 d);
 double decimal_to_double(decimal64 d);
 double decimal_to_double(decimal128 d);
Returns: If std::numeric_limits<double>::is_iec559 == true, returns the result
of the conversion of d double, performed as in IEEE 754-2008. Otherwise, the returned
value is implementation-defined. See 4.2.

8. In “3.3 Additions to header <limits>”, change the values of
numeric_limits<decimal::decimal32>:: min_exponent and
numeric_limits<decimal::decimal32>:: max_exponent in the example:

 static const int min_exponent = -94;
 static const int min_exponent10 = min_exponent;
 static const int max_exponent = 97;
 static const int max_exponent10 = max_exponent;

9. In “3.4 Headers <cfloat> and <float.h>”, remove the outdated reference to
<cdecfloat>:
The header <cdecfloat> is described in [tr.c99.cfloat].
10. Change the title of subclause “3.4.1 Additions to hHeader <cfloat> synopsis”,
and update some macro values as follows:

 // minimum exponent:
 #define DEC32_MIN_EXP -94
 #define DEC64_MIN_EXP -382
 #define DEC128_MIN_EXP -6142

 // maximum exponent:
 #define DEC32_MAX_EXP 97
 #define DEC64_MAX_EXP 385
 #define DEC128_MAX_EXP 6145

11. Change the title of subclause “3.4.2 Additions to hHeader <float.h> synopsis.”

12. Correct the copy-paste bug in “3.4.6 Minimum positive subnormal value” as
follows:

 #define DEC32_SUBNORMAL implementation-defined
Expansion: an rvalue of type decimal32 equal to the minimum positive finite number
that can be represented by an object of type decimal32; exactly equal to 0.000001 x 10

-95

 #define DEC64_SUBNORMAL implementation-defined
Expansion: an rvalue of type decimal64 equal to the minimum positive finite number
that can be represented by an object of type decimal64; exactly equal to
0.000000000000001 x 10

-383

3

 #define DEC128_SUBNORMAL implementation-defined
Expansion: an rvalue of type decimal128 equal to the minimum positive finite
number that can be represented by an object of type decimal128; exactly equal to
0.000000000000000000000000000000001 x 10

-6143

13. Correct typo in “3.5.2 Rounding modes” as follows:

These macros are used by the fe_dec_getround and fe_dec_setround functions for
getting and setting the rounding mode to be used in decimal floating-point operations.
14. Update “3.6 Additions to <cmath> and <math.h> “ as follows:

The elementary mathematical functions declared in the standard C++ header <cmath> are
overloaded by this Technical Report to support the decimal floating-point types. The
macros HUGE_VAL_D32, HUGE_VAL_D64, HUGE_VAL_D128, DEC_INFINITY, and DEC_NAN
are defined for use with these functions. With the exception of sqrt, fmax, and fmin, the
accuracy of the result of a call to one of these functions is implementation-defined: The
following math functions are completely specified by 754-2008 and are correctly
rounded:
sqrt, fma, fabs, fmax, fmin, ceil, floor, trunc, round, rint, lround,
llround, ldexp, frexp, ilogb, logb, scalbn, scalbln, copysign,
nextafter, remainder, isnan, isinf, isfinite, isnormal, signbit,
fpclassify, isunordered, isgreater, isgreaterequal, isless,
islessequal, quantize, and samequantum.

The accuracy of other math functions is implementation defined and the implementation
may state that the accuracy is unknown.

15. Change “3.6.2 <cmath> macros” as follows:

 #define HUGE_VAL_D32 implementation-defined
Expansion: a positive rvalue of type decimal32 representing infinity.
 #define HUGE_VAL_D64 implementation-defined
Expansion: a positive rvalue of type decimal64, not necessarily representable as a
decimal32 representing infinity.
 #define HUGE_VAL_128 implementation-defined
Expansion: a positive rvalue of type decimal128, not necessarily representable as a
decimal64 representing infinity.
 #define DEC_INFINITY implementation-defined
Expansion: an rvalue of type decimal32 representing infinity.
 #define DEC_NAN implementation-defined
Expansion: an rvalue of type decimal32 representing quiet NaN.
 decimal32 abs(decimal32 d);

4

16. Change “3.7 Additions to <cstdio> and <stdio.h>” as follows:

 H Specifies that any following a, A, e, E, f, F, g, or G
conversions specifier applies to a decimal32 argument.
 D Specifies that any following a, A, e, E, f, F, g, or G
conversions specifier applies to a decimal64 argument.
 DD Specifies that any following a, A, e, E, f, F, g, or G
conversions specifier applies to a decimal128 argument.

17. Change “3.10.2.2 extended_num_get virtual functions” as follows:
Effects: The input characters will be interpreted as described in
[lib.facet.num.get.virtuals], and the resulting value will be stored in val. For conversions
to type decimal32, decimal64, and decimal128, the conversion specifiers are %Hg, %Dg,
and %DDg, respectively.

18. Change “Table 4 -- Length modifier” as follows:

type length modifier
decimal32 HD
decimal64 D
decimal128 LDD

19. Change “3.11 Type traits” as follows:

However, the following expressions shall all yield true the same Boolean value, where
dec is one of decimal32, decimal64, or decimal128:
 tr1::is_arithmetic<dec>::value == tr1::is_fundamental<dec>::value ==
tr1::is_scalar<dec>::value == !tr1::is_class<dec>::value ==
tr1::is_pod<dec>::value

tr1::is_arithmetic<dec>::value
tr1::is_fundamental<dec>::value
tr1::is_scalar<dec>::value
!tr1::is_class<dec>::value
tr1::is_pod<dec>::value

[Note: The behavior of the type trait std::tr1::is_floating_point is not altered by
this Technical Report. --end note]

The following expression shall yield true where dec is one of decimal32, decimal64, or
decimal128:

 is_pod<dec>::value

5

20. Remove subclause “4.1 Use of <decfloat.h>”:

To aid portability to C++, it is recommended that C programmers #include the header
file <decfloat.h> in those translation units that make use of the decimal floating types.
This ensures that the equivalent C++ floating-point types will be available, should the
program source be ported to C++.

21. Change “4.3 [now 4.2, see above] Conversions” as follows:

In C, objects of decimal floating-point type can be converted to generic floating-point
type by means of an explicit cast. In C++ this is not possible. Instead, the following
functions decimal_to_long_double, decimal32_to_long_double,
decimal64_to_long_double, and decimal128_to_long_double should be used for
this purpose:

decimal_to_float decimal_to_double decimal_to_long_double
decimal32_to_float decimal32_to_double decimal32_to_long_double
decimal64_to_float decimal64_to_double decimal64_to_long_double
decimal128_to_float decimal128_to_double decimal128_to_long_double

 C programmers who wish to maintain portability to C++ should use these
decimal32_to_long_double, decimal64_to_long_double, and
decimal128_to_long_double forms instead of the cast notation.

6

