N2853=09-0043

Constraining unique_ptr

Document: N2853=09-0043
Date: 2009-03-20
Reply to: Alisdair Meredith public@alisdairm.net

Introduction

Unique_ptr is a new class template introduced in C++0x to simplify the use of move semantics and
pointer-ownership. It is an extremely flexible template, supporting an extremely high degree of
customizability with essentially zero overhead. By default there is no overhead in time or space
compared to a ‘raw’ pointer.

It is clearly desirable to be able to use this new smart pointer in constrained code, and a challenge to
constrain it in such a way that it loses none of the flexibility without adding any overhead.

This paper forms a partial response to the following National Body comments on the CD1 ballot for
C++0x:

CA-2, US-61, US-62, UK-209, UK-211
It indirectly contributes to resolving some additional comments:
CA-1, CH-2, US-2

Note: This paper is not complete, and clearly marks out as yet unreviewed clauses. It is intended to
generate feedback so that a complete paper will be available for the pre-Frankfurt mailing.

Notable Use Cases
The following use cases highlight some tricky design choices supported by the original unconstrained
template that must be preserved for the constrained template.

e Support incomplete types (e.g. for use with plmpl idiom)
e Support custom pointer types (e.g. shared memory)
e No space overhead compared to raw pointer by default

Design Issues

Empty pointers and nullptr equivalence
Another problem that comes up is the nature of a ‘null’ unique_ptr. Essentially, we would like the
following expressions to hold, given a variable ptr of type unique_ptr<T,D>.

static_cast<bool>(ptr) < ptr == unique_ptr<T,D>{} < ptr == nullptr
Likewise, we would like to see
unique_ptr<T,D>{} & unique_ptr<T,D>{ nullptr }

This seems like a good place to introduce axioms, but finding the best minimum formulation of the
concept to hold these axioms is probably the biggest design challenge.

Re-usability of concepts

As we design concepts and constraints for unique_ptr, we must keep one eye to the future and the
next task, which will be constraining shared_ptr. The plan is that the concepts for unique_ptr should
be usable without changes for shared_ptr, otherwise they have not delivered on a true abstraction,
but merely an implementation detail.

Constraining unique_ptr Page 1

mailto:public@alisdairm.net

N2853=09-0043

The success of this effort will not be known until that follow-up paper.

Likewise, at the heart of any smart pointer type is the notion of a dereferenceable thing. This might
imply some kind of consistency between operator* and operator->, callability if the pointed-to
object is callable, and handling the case that the pointed-to type is a void type. This set of properties
is common to all smart-pointers, and that might include iterators which are essentially a smart-
pointer that abstracts iteration rather than object lifetime.

Should we support function pointers

Technically there is nothing in unique_ptr that prevents use with function pointers. The user will
be responsible for providing an appropriate deleter policy as DefaultDelete will not do the right
thing, but otherwise everything should work (at least with the unconstrained unique_ptr).

The more interesting question is that if we choose to support function pointers, should we provide a
function call operator for pointers to Cal lablle types? This would be a clear extension of the
existing unique_ptr interface, and start encroaching on the design space of std: : function.
However, it might still be useful in specific contexts. E.g. a function pointer with a deleter that
includes a spin-lock on the shared library the function pointer was retrieved from.

This paper does not extend in this direction, although the question itself seems worth of some
discussion when in LWG review. The end result is that unique_ptr is constrained to point to object
types, which is a mild loss of functionality compared to the unconstrained template.

Solutions

New Concepts

A couple of new concepts are proposed to support smart pointers with deleters. The same set of
concepts should be useful constraining shared_ptr as well. It is recommended that any additional
requirements emerging from the process of constraining shared_ptr be tackled as an issue for
synchronizing the two smart pointer types, than maintain a parallel set of smart pointer custom
deleter concepts.

NullablePointerLike

For the purposes of this concept, a pointer is something that is copyable, movable and contextually
convertible to bool. Likewise, it is convertible to/from nullptr literals, and a value that compares
equal to the nullptr literal is equivalent to one that yields false when converted to bool.

While many pointers are dereferencable, that is not a universal trait (e.g. void*) and not a
requirement of this concept.

The key ideas it is factoring out are

e interaction with nullptr
e boolean conversions
e relationship between bool and nullptr

The value-like semantics are added as a convenient bundling that simplify the writing of unique_ptr
constraints, but might be pulled out separately if more fine-grained concepts are desired.

Note that the proposed specification does not require that a Nul lablePointerLike type is
DefaultConstructible, although it does require the ability to construct from null pointer
constants. This has the effect of replacing occurrences pointer(), typically used as a default, with a
nul lptr literal.

Constraining unique_ptr Page 2

N2853=09-0043

Likewise, while Equal ityComparable would be a useful trait, it is not absolutely required and the
whole unique_ptr template can be specified without it. However, there are additional axioms that
make should be asserted if this extra constraint holds.

One design considered making Nul lablePointerLike a refinement of SemiRegular or
Regular, which would have brought along default construction and comparison operators.
However, this seems to be over-constraining, so was ultimately rejected. In particular, it would
disallow use of move only types as models of Nul lablePointerLike, including unique_ptr
itself.

SmartPointerDeleter

The SmartPointerDeleter concept describes types that may be used as a custom deleter with
shared_ptr and to supply the deleter policy to unique_ptr. The requirements for unique_ptr are that
it provides an associated pointer type, which defaults to T*, and that it is Callable with a single
pointer argument. It is expected that calling the SmartPointerDeleter type with a pointer value will
destroy the pointed-to object and release other resources associated with that ownership, although
it is not clear how to write the semantic requirements in terms of a set of axioms.

SmartPointerDeleters are NOT required to handle null pointer values. However, this is currently a
requirement for custom deleters used with shared_ptr.

PointerType and MemberPointerType

The concepts PointerType and MemberPointerType are required to constrain the acceptable values
for constructors that do not supply a value for the deleter. If the deleter type is a function pointer or
member-pointer type, this would produce a null pointer which is always an error, yet easily
diagnosed by the type system. While these concepts are used in this paper, they are not defined.
This was initially an oversight assuming they existed in the support concepts clause, 14.9.4
[concept.support]. However, it now relates directly to National Body comment US-70/LWG #1018.

One easy way to write these concepts would to make them depend on the type traits:

concept PointerType< typename T > {
requires True< is_pointer<T>::value >;

To make this work, we would need to constrain the type traits templates, although they can all
safely be constrained with an arbitrary requires True<true> constraint so there is no real difficulty
here.

Alternatively, we can introduce new fundamental concepts PointerType etc. and define the type
traits in terms of these new concepts:

template< typename T >
requires True<true>
struct is_pointer : false_type {};

template< typename T >
requires PointerType<T>
struct is_pointer<T> : true_type {};
This variation assumes that any constraint on T makes the partial specialization more-specialized
than the primary, which needs to be confirmed with Core.

Resolving this should be part of a larger paper dedicated to the topic, which this paper will depend
on.

Rationales
Some decisions taken below may not seem obvious at first sight. Some of the more interesting
decisions are spelled out below.

Constraining unique_ptr Page 3

N2853=09-0043

Constraints on return type of operator->

operator->returns a value of type pointer. We could accept the implicitly deduced
Returnable<pointer> constraint and leave it at that. However, this paper proposes
strengthening that constraint to CopyConstructible<pointer> because Returnable would
also support move-only pointer types, and we don’t want operator-> to implicitly move out the
contents of the owned pointer.

To support move-only pointer types, and additional constrained overload is supplied when
pointer is not CopyConstructible. In this case it returns by (const) reference, and should allow
for the usual operator-> chaining rules. This might well be deemed an extension rather than a
strictly required feature. It is supplied now as it is easier to remove, than to add it later.

Constraints on relational operators

This part of the design took a number of evolutions. The goal is to focus on supporting the minimal
set of constraints, and therefore operators that must be implemented by the wrapped pointer types.
It is well understood that for comparisons of the same type, the full set of 6 relational operators can
be built from the pair of < and ==. An early evolution insisted that the pointer typedef of both
unique_ptr types be the same, allowing us to rely on the LessThanComparable and

Equal ityComaparable concepts, and std: : relops for an implementation. This approach was
ultimately rejected when Howard Hinnant presented the following motivating example:

struct base {...};
struct derived : base {...};

vector<unique_ptr<base>> sorted_vec;

l]r-lique_ptr<derived> d¢--.);
vector<unique_ptr<base>>::iterator i1 =
lower_bound(sorted_vec.begin(), sorted_vec.end(), d);

This desire to support heterogeneous comparison leads to the proposed formulation, which requires
HasLessThan be supported in both directions. This does allow for occasionally strange types that
will support the operators ==, |=, < and >=; but not >= and <. A third option would simply require
HasLessThan in one direction, and use HasEqual To to support the missing cases. This was
rejected as being inefficient in some common cases, in order to support very unusual types. For
reference, the library already takes the constrain-both-ways approach in several algorithms
(equal_range, binary_search and the set operations). It is also the approach taken by

std: :move_iterator and consistency with this was the deciding factor.

A further research project might want to investigate a concept-enabled equivalent for a
heterogeneous relops, which would be re-used here. Be advised though, that early exploration
suggests that complexity may outweigh any benefit though.

Acknowledgements

| would particularly like to thank Howard Hinnant, the father of unique_ptr, for help and support
preparing this paper. Likewise, Daniel Krugler, Peter Dimov and Walter Brown gave invaluable
feedback in early reviews of the paper.

LWG Issues

The proposed wording also provides a solution for the following LWG issues, which should be
considered resolved if this paper is adopted:

834, 854, 932, 938, 950, 1021

Checklist of issues not yet addressed:

Constraining unique_ptr Page 4

N2853=09-0043

933, 978, 983, 998

Proposed Wording

Note that this wording is draughted against N2800, and might need some tweaks to correspond to
later working papers. It also applies the resolution of LWG issues 821 and paper N2844 adopted at
the Summit meeting, and highlights a couple of editorial changes..

- and - are marked with the appropriate highlights.

Sections with a grey background have not been reviewed yet; this remains a work in progress.

20.7 Memory [memory]

1 Header <memory_concepts> synopsis
namespace std {

}

2 Header <memory> synopsis
namespace std {
/7 20.7.12 Class unique _ptr:
template <class T>

default_delete;
template <

, D = default_delete<T>>
class unique_ptr;

Constraining unique_ptr Page 5

N2853=09-0043

3
20.7.12 Class template unique_ptr [unique.ptr]
1 Template unique_ptr stores a pointer to an object and deletes that object using the associated
delete when it is itself destroyed (such as when leaving block scope (6.7)).
2 The unique_ptr provides a semantics of strict ownership. A unique_ptr owns the object it holds a

pointer to. A unique_ptr is not CopyConstructible, nor CopyAssignable, however it is
MoveConstructible and MoveAssignable. The template parameter T of unique_ptr may be an
incomplete type. [Note: The uses of unique_ptr include providing exception safety for
dynamically allocated memory, passing ownership of dynamically allocated memory to a
function, and returning dynamically allocated memory from a function. —end note]

namespace std {

temﬁlate <class T>

struct default_delete;

temﬁlate <class T>

struct default_delete<T[]>;

template < T
, D = default_delete<T>>

class unique_ptr;

template < _
>

class unique_ptr<T[], D>;

template <
ue

void swap(uni tr<T, D>& X, uni
template<
, D2 >

bool operator==(const unique
template<
5 D2 >

tr<T1l, D1>& x, const unique ptr<T2, D2>& y);

bool operator!=(const unique
template<
5 D2 >

tr<T1l, D1>& x, const unique ptr<T2, D2>& y);

bool operator<(const unique_ptr<Tl, D1>& X, const unique ptr<T2, D2>& y);
template< D1
5 D2 >

bool operator<=
template<
5 D2 >

const unique ptr<T1l, D1>& x, const unique ptr<T2, D2>& y);
1

bool operator>(const unique
template<
5 D2 >

tr<T1l, D1>& X, const unique ptr<T2, D2>& y);
D1

bool operator>=(const unique_ptr<T1l, D1>& x, const unique_ptr<T2, D2>& y);

¥
20.7.12.1 Default deleters [unique.ptr.dltr]
20.7.12.1.1 default_delete [unique.ptr.ditr.dfit]

Constraining unique_ptr Page 6

N2853=09-0043

namespace std {
template <class T>

struct default_delete
default_delete() ;
template <class U>

default_delete(const default_delete<U>&);

void operator()(T*) const;
}:
}
template <class U>

default_delete(const default_delete<U>& other);

1 Effects: Constructs a default_delete from a default_delete<U>.
requires FreeStoreAllocatable<T>
void operator()(T *ptr) const;
2 Effects: calls delete on ptr. A diagnostic is required if T is an incomplete type.
20.7.12.1.2 default_delete<T[]> [unique.ptr.dltr.dfltl]

namespace std {
template <class T>

struct default delete<T[]>

void operator()(T*) const;

}:
3
requires FreeStoreAllocatable<T>
void operator()(T* ptr) const;
1 operator() calls delete[] on ptr. A diagnostic is required if T is an incomplete type.
20.7.12.2 unique_ptr for single objects [unique.ptr.single]

namespace std
template < T
D = default_delete<T>>

class unique_ptr {

public:
typedef [ilCHCREatIONSEERIREED: - poINter pointer;
typedef T element_type;
typedef D deleter_type;

// constructors

unique ptrOf |

ptr(nullptr_t) RO

explicit unique_ptr(pointer p);

unique_ptr(unique
unique_ptr(pointer p,

tré&& u);
implementation-defined d);

Constraining unique_ptr Page 7

N2853=09-0043

unique_ptr(unique_ptr<U, E>&& u);

// destructor
~unique_ptrQ;

/S assiinment

E>

unique_ptr& operator=(unique ptr<U, E>&& u);
unique_ptré& operator:(“);

// observers

operator* const;

ointer operator-> const;

nter get const;

deleter_typeé& get _deleter();
const deleter_type& get _deleter() const;
explicit operator bool() const;

/7 modifiers
pointer release();

W);

void swap(unique_ptré& u);

/7 disable copy from Ivalue

unique_ptr(const unique_ptr&) = delete;

template <class U, class E> unique_ptr(const unique_ptr<U, E>&) = delete;
unique_ptré& operator=(const unique_ptré&) = delete;

template <class U, class E> unique_ptr& operator=(const unique_ptr<U, E>&) =

delete;
}:
}

1 The default type for the template parameter D is default_delete. A client-supplied template
argument D shall be a for which, given a value d
of type D and a ptr of type , the expression d(ptr) is valid and has
the effect of deallocating the pointer as appropriate for that deleter. D may also be an Ivalue-
reference to a deleter.

2 If the deleter D maintains state, it is intended that this state stay with the associated pointer as

ownership is transferred from unique_ptr to unique_ptr. The deleter state need never be
copied, only moved or swapped as pointer ownership is moved around.

20.7.12.2.1 unigue_ [unique.ptr.single.ctor]

Constraining unique_ptr Page 8

10

11

12

13

14

15

N2853=09-0043

constexpr unique ptr(hullptr ©):
Requires: Default constructor for D shall
not throw an exception.

Effects: Constructs a unique_ptr which owns nothing.

Postconditions: HEEGIEEERgI*this. get_deleter() returns a reference to a il
value initialized deleter D.

Throws: nothing.

requires DefaultConstructible<D>
&& 1PointerType<D>
&& MemberPointerType<D>

unique_ptr(pointer ;
Requires: Neither the default constructor
for D nor the move constructor for pointer shall throw an exception.

Effects: Constructs a unique_ptr which owns p.

Postconditions: get() == p. get_deleter() returns a reference to a EIECONSHucEd value
initialized deleter D.

Throws: nothing.

unique_ptr(pointer p, implementation-defined d);
unique_ptr(pointer p, implementation-defined d);

The signature of these constructors depends upon whether D is a reference type or not. If D is

non-reference type A, then the signatures are:
unique_ptr(pointer p, const A& d);
unique_ptr(pointer p, A&& d);

If D is an Ivalue-reference type A&, then the signatures are:
unique_ptr(pointer p, A& d);
unique_ptr(pointer p, A&& d);

If D is an Ivalue-reference type const A&, then the signatures are:
unique_ptr(pointer p, const A& d);
unique_ptr(pointer p, const A&& d);

Requires: If D is not an Ivalue-reference type then

— If d is an Ivalue or const rvalue then the first constructor of this pair will be selected. D must be
CopyConstructible (Table 20.1.8), and this unique_ptr will hold a copy of d. The copy constructor
of D shall not throw an exception.

— Otherwise d is a non-const rvalue and the second constructor of this pair will be selected. D
need only be MoveConstructible (Table 20.1.8), and this unique_ptr will hold a value move
constructed from d. The move constructor of D shall not throw an exception.

Otherwise D is an Ivalue-reference type. d shall be reference-compatible with one of the
constructors. If d is an rvalue, it will bind to the second constructor of this pair. That constructor
shall emit a diagnostic. [Note: The diagnostic could be implemented using a static_assert which
assures that D is not a reference type. —end note] Else d is an Ivalue and will bind to the first
constructor of this pair. The type which D references need not be CopyConstructible nor
MoveConstructible. This unique_ptr will hold a D which refers to the Ivalue d. [Note: D may not
be an rvalue-reference type. —end note]

Postconditions: get() == p. get_deleter() returns a reference to the internally stored deleter. If D is
a reference type then get_deleter() returns a reference to the Ivalue d.

Throws: nothing.

[Example:

D d;

unigue_ptr<int, D> p1(new int, D()); /I D must be MoveConstructible
unique_ptr<int, D> p2(new int, d); /I D must be Copyconstructible
unique_ptr<int, D&> p3(new int, d); /I p3 holds a reference to d

Constraining unique_ptr Page 9

N2853=09-0043

unigue_ptr<int, const D&> p4(new int, D()); /I error: rvalue deleter object combined
/I with reference deleter type
—end example]

requires MoveConstructible<D>
unique_ptr(unique_ptré&& u);
16 Requires: If the deleter is not a reference type, construction of the deleter D from an rvalue D
shall not throw an exception.

17 Effects: Constructs a unique_ptr which owns the pointer which u owns (if any). If the deleter is
not a reference type, it is move constructed from u’s deleter, otherwise the reference is copy
constructed from u’s deleter. After the construction, u no longer owns a pointer. [Note: The
deleter constructor can be implemented with std: : forward<D>. —end note]

18 Postconditions: get() == value u.get() had before the construction. get_deleter() returns
a reference to the internally stored deleter which was constructed from u.get_deleter(). If D is
a reference type then get_deleter() and u.get_deleter() both reference the same Ivalue
deleter.

19 Throws: nothing.

template <gE@88PointeeType U, El@88SmartPointerDeleter<auto, U> E>
requires Constructible< pointer, E::pointer&& >
&& Constructible< D, E&& >
unique_ptr(unique_ptr<U, E>&& u);
20 Requires: If D is not a reference type, construction of the deleter D from an rvalue of type E shall
be well formed and shall not throw an exception. If D is a reference type, then E shall be the
same type as D (diagnostic required). unique_ptr<U, E>::pointer shall be implicitly convertible to

pointer. [Note: These requirements imply that T and U are complete types. —end note]

21 Effects: Constructs a unique_ptr which owns the pointer which u owns (if any). If the deleter is
not a reference type, it is move constructed from u’s deleter, otherwise the reference is copy
constructed from u’s deleter. After the construction, u no longer owns a pointer. [Note: The
deleter constructor can be implemented with std::forward<D>. —end note]

22 Postconditions: get() == value u.get() had before the construction, modulo any required offset
adjustments resulting from the cast from unique_ptr<U, E>::pointer to pointer. get_deleter()
returns a reference to the internally stored deleter which was constructed from u.get_deleter().

23 Throws: nothing.

20.7.12.2.2 unique_ptr destructor [unique.ptr.single.dtor]
~unique ptr(Q);

2 Effects: If IS8 1*this there are no effects. Otherwise get_deleter() (get()). [Note:
The use of default_delete requires T to be a complete type. —end note]
3 Throws: nothing.
20.7.12.2.3 unique_ptr assighment [unique.ptr.single.asgn]

requires MoveAssignable<D>
unique_ptré& operator=(unique_ptr&& u);

1 Requires: Assignment of the deleter D from an rvalue D shall not throw an exception.
2 Effects: reset(u.release()) followed by a move assignment from u’s deleter to this deleter.
3 Postconditions: This unique_ptr now owns the pointer which u owned, and u no longer owns it. [

Note: If D is a reference type, then the referenced Ivalue deleters are move assigned. —end note

]

4 Returns: *this.

5 Throws: nothing.

Constraining unique_ptr Page 10

10

11

12

13

14

10

11

N2853=09-0043

template < u, E>

unique_ptr& operator=(unique_ptr<U, E>&& u);
Requires: Assignment of the deleter D from an rvalue D shall not throw an exception.

Effects: reset(u.release()) followed by a move assignment from u’s deleter to this deleter. If
either D or E is a reference type, then the referenced Ivalue deleter participates in the move
assignment.

Postconditions: This unique_ptr now owns the pointer which u owned, and u no longer owns it.
Returns: *this.

Throws: nothing.

unique ptré& operator= ;

Effects: reset().

Postcondition: e~ this -

Returns: *this.

Throws: nothing.

20.7.12.2.4 unique_ptr observers [unique.ptr.single.observers]

operator™ const;
Requires: .

Returns: *get().

Throws: nothing.

ointer operator-> const;

Requires:
Returns: get().
Throws: nothing.

Note: use typically requires that T be a complete type.

ointer get const;

Returns: The stored pointer.
Throws: nothing.

deleter_typeé& get _deleter();
const deleter_type& get_deleter() const;

Returns: A reference to the stored deleter.
Throws: nothing.

Constraining unique_ptr Page 11

12

13

10

N2853=09-0043
explicit operator bool const;
Returns: .
Throws: nothing.
20.7.12.2.5 unique_ptr modifiers [unique.ptr.single.modifiers]

pointer release();
Postcondition: .

Returns: The value get() had at the start of the call to release.

Throws: nothing.

void resetiiointer i = -i

Effects: If Rl ~ this there are no effects. Otherwise get_deleter() (get()).
Postconditions: get() == p.
Throws: nothing.

void swap(unique_ptré& u);

Requires: The deleter D and pointer type pointer shall not throw an

exception under swap.

Effects: The stored pointers of ¥this and u are exchanged. The stored deleters are swap'd
(unqualified).

Throws: nothing.

20.7.12.3 unique_ptr for array objects with a runtime length [unique.ptr.runtime]
namespace std
template < T
, D = default_delete<T[]>
>
class unique_ptr<T[], D> {
public:

typedef [ilGHCHEatIONGERIREED: - pOINter pointer;
typedef T element_type;
typedef D deleter_type;

// constructors

|
ptr(nullptr_t) RGO

explicit unique_ptr(pointer p);

unique_ptr(pointer p, #implementation-defined d);

unique_ptr(pointer p, implementation-defined d);
unique_ptr(uniquePtré&& u);

// destructor
~unique_ptr();

/7 assignment
unique_ptr& operator=(unique ptré&& u);
unique_ptr& operator=(D;

// observers

Constraining unique_ptr Page 12

N2853=09-0043

operator[](size_t i) const;

ointer get const;

deleter_typeé& get_deleter();
const deleter_type& get_deleter() const;
explicit operator bool() const;

/7 modifiers
pointer release();

void reset(pointer p = FElESR@NUIIEER) ;
void reset(EEEEEnullptr_t);

temﬁlate< tiﬁename U >

void reset(U = delete;

void swap(unique_ptré& u);

/7 disable copy from Ivalue
unique_ptr(const unique_ptr&) = delete;
unique_ptré& operator=(const unique_ptré&) = delete;

}:
}

A specialization for array types is provided with a slightly altered interface.
— Conversions among different types of unique_ptr<T[], D> or to or from the non-array forms of
unique_ptr are disallowed (diagnostic required).
— Pointers to types derived from T are rejected by the constructors, and by reset.
— The observers operator* and operator-> are not provided.
— The indexing observer operator][] is provided.
— The default deleter will call delete][].

Descriptions are provided below only for member functions that have behavior different from the
primary template.

The template argument T shall be a complete type.

20.7.12.3.1 unique_ptr constructors

unique_ptr(pointer p);
unique_ptr(pointer p, implementation-defined d);
unique_ptr(pointer p, implementation-defined d);

These constructors behave the same as in the primary template except that they do not accept

pointer types which are convertible to pointer.

20.7.12.3.2 unique

[unique.ptr.runtime.ctor]

tr observers [unique.ptr.runtime.observers]

operator[](size_t i) const;
Requires: i < the size of the array to which the stored pointer points.

Returns: get()[i].
Throws: nothing.

20.7.12.3.3 unique_ptr modifiers [unique.ptr.runtime.modifiers]
void reset(pointer p = FEEEESEEINUIINEF) ;
void reset(hnullptr_t);
Effects: If g1 ~this there are no effects. Otherwise get_deleter() (get()).
Postcondition: get() ==

Constraining unique_ptr Page 13

N2853=09-0043

4 Throws: nothing.
20.7.12.4 unique_ptr specialized algorithms [unique.ptr.special]
template < T, D>
void swap(unique_ptr<T, D>& X, unique_ptr<T, D>& y);
1 Effects: Calls x.swap(y).
template< T1, D1
> T2, D2 >

bool operator==(const unique_ptr<T1l, D1>& X, const unique_ptr<T2, D2>& y);
2 Returns: x.get() == y.get().

D1
D2 >

template< T1,
s T2,

bool operator!=(const unique ptr<T1l, D1>& x, const unique_ptr<T2, D2>& y);
3 Returns:

D1
D2 >

template< T1,
s T2,

bool operator<(const unique_ptr<T1l, D1>& x, const unique_ptr<T2, D2>& y);
4 Returns: x.get() < y.get(Q).

template< T1, D1
, T2, D2 >

bool operator<=(const unique ptr<Tl, D1>& x, const unique_ptr<T2, D2>& y);
5 Returns:

D1
D2 >

template< T1,
, T2,

bool operator>(const unique ptr<Tl, D1>& x, const unique_ptr<T2, D2>& y);
6 Returns:

t

D1
D2 >

template< T1,
, T2,

bool operator>=(const unique ptr<Tl, D1>& X, const unique_ptr<T2, D2>& y);
7 Returns:

Constraining unique_ptr Page 14

N2853=09-0043

Preview of constraints for shared_ptr

As this paper was going to press, Peter Dimov supplied the following class template definition for a
constrained shared_ptr template. This will be the basis for including full wording for shared_ptr
constraints in the next paper, and feedback is invited.

New Concepts
Shared_ptr relies on a small number of compiler-supported concepts that might be added to the
earlier concepts headers:

// Suggested new concepts

// The expression delete p; iIs well-formed and its behavior is defined
// In particular, p shall not be a pointer to an incomplete type
// FreeStoreAllocatable might refine Deletable

// static_cast<To>(From) is well-formed and well-defined

// dynamic_cast<To>(From) is well-formed and well-defined

// const_cast<To>(From) is well-formed and well-defined

Shared_ptr template
// shared_ptr

temp late<ElESSPOINtEeTypE T>

class shared_ptr
{
public:
typedef T element_type;

// 20.7.13.2.1, constructors:
shared_ptr(Q);

template< >

explicit shared_ptr(Y* p);

template< , D>

|

shared_ptr(Y* p, D d);
D, E#a@ssAllocator A>

template<

|

shared_ptr(Y* p, D d, A a);
template< >
shared_ptr(const shared_ptr<Y>& r, T *p);

shared_ptr(const shared_ptr& r);

template< >
shared_ptr(const shared_ptr<Y>& r);
shared_ptr(shared_ptré&& r);

template< >

|-<

shared_ptr(shared_ptr<Y>&& r);

template< >

|-<

explicit shared_ptr(const weak_ptr<Y>& r);

Constraining unique_ptr Page 15

N2853=09-0043

// Note: suggesting implicit
// SmartPointerDeleter<D, Y> and Callable<D, D::pointer> are implied

template< Y, class D>
d shared_ptr(unique_ptr<Y, D>&& r);

shared_ptr(nullptr_t): shared_ptrQ {}

// 20.7.13.2.2, destructor:
~shared_ptr();

// 20.7.13.2.3, assignment:
shared_ptré& operator=(const shared_ptr& r);

shared_ptr& operator=(const shared_ptr<Y>& r);
shared_ptré& operator=(shared_ptré&& r);

shared_ptré& operator=(shared_ptr<Y>&& r);

templ ate<_ Y>

shared_ptr& operator=(auto_ptr<Y>&& r);

// No Ionier needed 1If && doesn"t bind to lvalues

// SmartPointerDeleter<D, Y> and Callable<D, D::pointer> are implied

template<_ Y, class D>

shared_ptr& operator=(unique_ptr<Y, D>&& r);

// 20.7.13.2.4, modifiers:
void swap(shared_ptré& r);

void reset();

templ ate<_ Y>

void reset(Y* p);

template<_ Y, MoveConstructible D>

void reset(Y* p, D d);

template<_ Y, MoveConstructible D, Allocator A>
void reset(Y* p, D d, A a);

// 20.7.13.2.5, observers:

T* get() const;
T& operator*() const;

T* operator->() const;

long use_count() const;

bool unique() const;

explicit operator bool() const;

template < U> bool owner_before(shared_ptr<U> const& b) const;
template < U> bool owner_before(weak_ptr<U> consté& b) const;

Constraining unique_ptr Page 16

N2853=09-0043

// 20.7.13.2.6, shared_ptr creation

template<class T, class... Arﬂs>

shared_ptr<T> make_shared(Argsé&&... args);

template<class T, Allocator A, class... Args>
requires Constructible<T, Args...>
shared_ptr<T> allocate_shared(const A& a, Args&&... args);

// 20.7.13.2.7, shared ptr comparisons:
template< T, u>

bool operator==(const shared_ptr<T>& a, const shared_ptr<U>& b);
template< T, u>
bool operator!=(const shared_ptr<T>& a, const shared_ptr<U>& b);

// This operator is a defect under the new < semantics

// Heteroieneous < comiarisons using < make no sense

// Suggested:

// 20.7.13.2.8, shared_ptr 1/0:

// basic_ostream is not conceptified
// not clear what we should do here

template<class E, class T, class Y>
basic_ostream<E, T>& operator<< (basic_ostream<E, T>& os, const shared_ptr<Y>&

P

// 20.7.13.2.9, shared_ptr specialized algorithms:
template<d T> void swap(shared_ptr<T>& a, shared_ptr<T>& b);

// 20.7.13.2.10, shared ptr casts:
template< T, u>

shared_ptr<T> static_pointer_cast(const shared_ptr<U>& r);
template< T, u>
shared_ptr<T> dynamic_pointer_cast(const shared_ptr<U>& r);

template< T, u>

shared_ptr<T> const_pointer_cast(const shared_ptr<U>& r);

// 20.7.13.2.11, shared_ptr get _deleter:
temp late<ERESSObJECETVHE D, T>
D* get_deleter(const shared_ptr<T>& p);

Constraining unique_ptr Page 17

	Introduction
	Notable Use Cases
	Design Issues
	Empty pointers and nullptr equivalence
	Re-usability of concepts
	Should we support function pointers

	Solutions
	New Concepts
	NullablePointerLike
	SmartPointerDeleter
	PointerType and MemberPointerType

	Rationales
	Constraints on return type of operator->
	Constraints on relational operators

	Acknowledgements
	LWG Issues
	Proposed Wording
	Preview of constraints for shared_ptr
	New Concepts
	Shared_ptr template

