
Document: N2913=09-0103
Date: 2009-06-19
Authors: Robert Klarer
 klarer@ca.ibm.com
 Bjarne Stroustrup
 bs@cs.tamu.edu
 Dan Tsafrir
 dan.tsafrir@gmail.com
 Michael Wong
 michaelw@ca.ibm.com

SCARY Iterator Assignment and Initialization

1 Abstract
We propose a requirement that a standard container’s iterator types have no dependency
on any type argument apart from the container’s value_type, difference_type,
pointer type, and const_pointer type. In particular, the types of a standard
container’s iterators should not depend on the container’s key_compare, hasher,
key_equal, or allocator types.

2 Background
This paper is a companion to document N2911, “Minimizing Dependencies Within Generic
Classes for Faster and Smaller Programs,” by Tsafrir, et al, which will be presented at OOPSLA
’09.

2.1 What is a SCARY iterator initialization?
N2911 gives the following examples of SCARY1 initializations:

 set<int, C1, A1>::iterator i1;
 set<int, C2, A1>::iterator i2 = i1; // different comparator
 set<int, C1, A2>::iterator i3 = i1; // different allocator

The initializations of i2 and i3 are valid if they have the same type as i1, which is
currently an implementation-dependent issue that is not addressed by the standard.

2.2 Are SCARY assignments and initializations dangerous?
No, they just look dangerous. The comparator and allocator are properties of the container, not
the iterator itself. There’s no particular reason for a standard container’s nested iterator type to
depend upon the container’s comparator or allocator type.

1 N2911 explains that the acronym SCARY “describes assignments and initializations that are
Seemingly erroneous (Constrained by conflicting generic parameters), but Actually work with
the Right implementation (unconstrained bY the conflict due to minimized dependencies).”

mailto:klarer@ca.ibm.com
mailto:bs@cs.tamu.edu
mailto:dan.tsafrir@gmail.com
mailto:michaelw@ca.ibm.com

Often, standard container iterators are implemented as classes nested inside the corresponding
container template’s definition. An iterator type’s dependency on the container’s comparator
and allocator types is the unintended result of this implementation technique.

2.3 Who supports SCARY iterator assignment/initialization
today?

Implementations that support SCARY assignment and initialization do so by dispensing
with the use of a nested class to represent the iterator template. Example:

template <class T>
struct _ListIterator { // not actually nested
 // …
};

template <class T, class Allocator = allocator<T> >
struct list {
 typedef _ListIterator<T> iterator;
 // …
};

N2911 uses the term independent to describe a standard container iterator whose type
does not depend on the container’s allocator, comparator, hasher, etc.

Container iterators are independent in implementations based on SGI STL, including
libstdc++ and STLPort. Container iterators are not independent in implementations
based on Dinkumware STL and early versions of Rogue Wave STL.

The most recent version of Rogue Wave STL has independent container iterators in its
production mode, but some of the standard containers’ iterators are not independent in
debug mode. N2911 explains that these dependencies are not actually required for
debugging purposes and can easily be removed.

2.4 Why support SCARY iterator operations?
N2911 explains the advantages of independent container iterators in detail and quantifies
them with academic rigor. In particular, it demonstrates that SCARY operations are
crucial to the performant implementation of common design patterns using STL
components. It further shows that implementations that support SCARY operations
reduce object code bloat by eliminating redundant specializations of iterator and
algorithm templates.

Other reasons to support SCARY operations are:

1. to clarify behavior that is currently implementation defined
2. to eliminate a known source of portability problems that have arisen in practice
3. to reduce excessive compile times by eliminating redundant template

instantiations
4. the C++ Standard Library is an important showpiece for contemporary C++ style,

and it should reflect the best known C++ programming practices; we should seek
to avoid gratuitous type distinctions in the library

2.5 What are the possible disadvantages of independent
iterators?

If container iterators are not independent, certain program errors can be detected at
compile time:
 std::deque<int> d1 = {1, 2, 3};
 std::deque<int, my_allocator<int>> d2 = {3, 4, 5};
 p = d1.begin();
 q = d2.end();
 std::sort(p, q); // type error?

However, range-based algorithms will be a more general and reliable solution to this kind
of problem. Reliance on the type system to detect iterator mismatch errors has a number
of serious drawbacks:

1. it can’t detect errors in which both iterators have the same type but they refer
to different container objects

2. it can’t detect errors in which both iterators refer to the same container object,
but they don’t delimit a range
(eg. std::sort(d1.end(), d1.begin());)

3. some containers’ nested iterator types
(eg std::array<T, N>::iterator) will probably be implemented as
typedefs to pointer types, so checking won’t be uniform; some containers may
support type-based iterator mismatch checking, but std::array and
perhaps others probably won’t.

3 Proposal
We propose that all of the standard containers be required to support independent
iterators. We do not propose the same requirement for non-standard containers.

Add the following text after paragraph 10 in [container.requirements.general]:

 All container types defined in this Clause meet the following additional
requirements:

 Type X::iterator, where X is a container class, represents either a pointer
type or an instantiated class whose type arguments include X::value_type and any of
the following (and nothing else):

- X::difference_type
- X::pointer

Type X::const_iterator, where X is a container class, represents either a pointer
type or an instantiated class whose type arguments include X::value_type and any of
the following (and nothing else):

- X::difference_type
- X::pointer
- X::const_pointer

[Note: in particular, X’s iterator and const_iterator types may not vary with
changes to X::allocator, X::key_compare, X::hasher, or X::key_equal.
– end note.]

Add the following text to [unord.req]:

All unordered associative container types defined in this Clause meet the following
additional requirements:

Type X::local_iterator, where X is an unordered associative container class,
represents either a pointer type or an instantiated class whose type arguments include
X::value_type and any of the following (and nothing else):

- X::difference_type
- X::pointer

Type X::const_local_iterator, where X is an unordered associative container
class, represents either a pointer type or an instantiated class whose type arguments
include X::value_type and any of the following (and nothing else):

- X::difference_type
- X::pointer
- X::const_pointer

4 Implications to backwards compatibility

4.1 Source compatibility
We do not propose changing the general container requirements, so user-defined
containers that do not currently support SCARY operations will continue to satisfy these
requirements.

Since this proposal merely relaxes a restriction by ensuring the availability of SCARY
operations, it won’t render incorrect any use of the standard containers in user source
code.

4.2 Link compatibility
If an implementation of the C++ Standard Library that did not previously support
SCARY operations is modified to support this proposal, then the linkage name of any
library function or user function that has a parameter whose type is one of the standard
container iterators will change. We believe that this source of ABI incompatibility is no
worse than that which is already imposed on implementers and their users by the
introduction of several C++0x language features, including Concepts.

5 Possible extensions to this proposal
The important part of this proposal is section 3, above. We propose the following
additional changes for completeness.

5.1 When iterator is a constant iterator
The standard currently specifies that set<T, C, A>::iterator (for some value
type T, comparator C, and allocator A) is a constant iterator. This prevents a programmer
from inadvertently putting the container into a state in which it is no longer sorted.
However, set<T, C, A>::iterator is not necessarily the same type as set<T,
C, A>::const_iterator. Whether the two types are identical is unspecified
according to [associative.reqmts]. This contradicts [set], which states that these types are
implementation-defined.

We propose that the standard mandate that set<T, C, A>::iterator and
set<T, C, A>::const_iterator are the same type. Similarly, we propose that
the standard mandate that unordered_set<T, H, C, A>::iterator and
unordered_set<T, H, C, A>::const_iterator (H is any hasher type) are
the same type.

The standard specifies that map<…>::iterator, multimap<…>::iterator,
unordered_map<…>::iterator, and
unordered_multimap<…>::iterator are mutating iterators, since one might
wish to change the mapped part of an element without changing its key. Therefore, this
proposed change is not applicable to those containers.

Change paragraph 6 of [associative.reqmts] as follows:

iterator of an associative container meets the requirements of the
BidirectionalIterator concept. For associative containers where the
value type is the same as the key type, both iterator and const_iterator
are constant iterators. It is unspecified whether or not iterator and
const_iterator and are the same type.

(Alternatively, just replace the line “typedef implementation-defined
const_iterator;” in [set] and [multiset] with “typedef iterator

const_iterator;” and strike the line, quoted above, that begins with “it is
unspecified….”)

Change paragraph 11 of [unord.req] as follows:

The iterator types iterator and const_iterator of an unordered associative
container meet the requirements of the ForwardIterator concept. For
unordered associative containers where the key type and value type are the same,
both iterator and const_iterator are constant iterators and are the same
type.

(Alternatively, just replace the line “typedef implementation-defined
const_iterator;” in [unord.set] and [unord.multiset] with “typedef
iterator const_iterator;”. No change to [unord.req] is required.)

5.2 When local_iterator is a constant iterator
Add the following sentence to the end of paragraph 11 of [unord.req]:

 Likewise, local_iterator and const_local_iterator are constant
iterators and are the same type.

(Alternatively, just replace the line “typedef implementation-defined
const_local_iterator;” in [unord.set] and [unord.multiset] with “typedef
local_iterator const_local_iterator;”. No change to [unord.req] is
required.)

5.3 X::iterator and multiX::iterator
If the proposal in section 3 of this paper is adopted, it’s likely that
set<T>::iterator and multiset<T>::iterator will be the same type for
any value type T because, in practice, both containers will use the same underlying tree
structure. Similarly, unordered_set<T>::iterator and
unordered_multiset<T>::iterator will likely be the same type because both
containers will use the same underlying hash table. The same reasoning applies to the
map and multimap iterator types, the unordered_map and unordered_multimap types, and
various local iterator types.

Further, map<Key, T>::iterator will likely be the same type as
set<pair<const Key, T>>::iterator (and similarly for
multimap/multiset, and the unordered associative containers).

The committee should at least consider mandating, for example, that
set<T>::iterator and multiset<T>::iterator are identical. Of course,
we’ll provide wording if the committee is interested in pursuing this.

	1 Abstract
	2 Background
	2.1 What is a SCARY iterator initialization?
	2.2 Are SCARY assignments and initializations dangerous?
	2.3 Who supports SCARY iterator assignment/initialization today?
	2.4 Why support SCARY iterator operations?
	2.5 What are the possible disadvantages of independent iterators?

	3 Proposal
	4 Implications to backwards compatibility
	4.1 Source compatibility
	4.2 Link compatibility

	5 Possible extensions to this proposal
	5.1 When iterator is a constant iterator
	5.2 When local_iterator is a constant iterator
	5.3 X::iterator and multiX::iterator

