Docunent: N2913=09- 0103
Dat e: 2009- 06-19
Aut hors: Robert Klarer
kl arer @a.i bm com
Bj arne Stroustrup
bs@s. tamu. edu
Dan Tsafrir
dan.tsafrir@mail.com
M chael Wong
m chael w@a. i bm com

SCARY Iterator Assignment and I nitialization
1 Abstract

We propose arequirement that a standard container’ siterator types have no dependency
on any type argument apart from the container’sval ue_t ype, di f f erence_t ype,
poi nt er type, and const _poi nt er type. In particular, the types of a standard
container’ s iterators should not depend on the container’skey conpar e, hasher,
key equal ,oral | ocat or types.

2 Background

This paper is a companion to document N2911, “Minimizing Dependencies Within Generic
Classes for Faster and Smaller Programs,” by Tsafrir, et al, which will be presented at OOPSLA
'09.

2.1 What is a SCARY iterator initialization?
N2911 gives the following examples of SCARY ! initializations:

set<int, Cl, Al>::iterator i1;
set<int, C2, Al>::iterator i2
set<int, Cl, A2>::iterator i3

=11; // different conparator
=1il;, /I different allocator
Theinitializations of i2 and i3 are valid if they have the sametype asil, whichis

currently an implementation-dependent issue that is not addressed by the standard.

2.2 Are SCARY assignments and initializations dangerous?

No, they just look dangerous. The comparator and allocator are properties of the container, not
theiterator itself. There' s no particular reason for a standard container’ s nested iterator typeto
depend upon the container’ s comparator or allocator type.

1 N2911 explains that the acronym SCARY *“describes assignments and initializations that are
Seemingly erroneous (Constrained by conflicting generic parameters), but Actually work with
the Right implementation (unconstrained bY the conflict due to minimized dependencies).”


mailto:klarer@ca.ibm.com
mailto:bs@cs.tamu.edu
mailto:dan.tsafrir@gmail.com
mailto:michaelw@ca.ibm.com

Often, standard container iterators are implemented as classes nested inside the corresponding
container template’ s definition. An iterator type's dependency on the container’ s comparator
and allocator types is the unintended result of thisimplementation technique.

2.3 Who supports SCARY iterator assignment/initialization
today?

Implementations that support SCARY assignment and initialization do so by dispensing
with the use of a nested class to represent the iterator template. Example:

tenpl ate <class T>
struct _Listlterator { // not actually nested

/1
3
tenplate <class T, class Allocator = allocator<T> >
struct list {
typedef _Listlterator<T> iterator;
11
3

N2911 uses the term independent to describe a standard container iterator whose type
does not depend on the container’ s alocator, comparator, hasher, etc.

Container iterators are independent in implementations based on SGI STL, including
libstdc++ and STLPort. Container iterators are not independent in implementations
based on Dinkumware STL and early versions of Rogue Wave STL.

The most recent version of Rogue Wave STL has independent container iteratorsin its
production mode, but some of the standard containers' iterators are not independent in
debug mode. N2911 explains that these dependencies are not actually required for
debugging purposes and can easily be removed.

2.4 Why support SCARY iterator operations?

N2911 explains the advantages of independent container iterators in detail and quantifies
them with academic rigor. In particular, it demonstrates that SCARY operations are
crucial to the performant implementation of common design patterns using STL
components. It further shows that implementations that support SCARY operations
reduce object code bloat by eliminating redundant specializations of iterator and
algorithm templ ates.



Other reasons to support SCARY operations are:

1. toclarify behavior that is currently implementation defined

2. to eliminate a known source of portability problems that have arisen in practice

3. to reduce excessive compile times by eliminating redundant template
instantiations

4. the C++ Standard Library is an important showpiece for contemporary C++ style,
and it should reflect the best known C++ programming practices; we should seek
to avoid gratuitous type distinctions in the library

2.5 What are the possible disadvantages of independent
iterators?

If container iterators are not independent, certain program errors can be detected at
compiletime:
std::deque<int> dl = {1, 2, 3};
std::deque<int, ny_allocator<int>> d2 = {3, 4, 5};
p = dl1. begin();
g = d2.end();
std::sort(p, q); // type error?

However, range-based algorithms will be a more general and reliable solution to this kind
of problem. Reliance on the type system to detect iterator mismatch errors has a number
of serious drawbacks:
1. it can't detect errorsin which both iterators have the same type but they refer
to different container objects
2. it can’'t detect errorsin which both iterators refer to the same container object,
but they don’t delimit arange
(eg.std::sort(dl.end(), dl.begin());)
3. some containers nested iterator types
(egstd::array<T, N>::iterator)will probably beimplemented as
typedefs to pointer types, so checking won’t be uniform; some containers may
support type-based iterator mismatch checking, but st d: : ar r ay and
perhaps others probably won't.

3 Proposal

We propose that al of the standard containers be required to support independent
iterators. We do not propose the same requirement for non-standard containers.

Add the following text after paragraph 10 in [contai ner.requirements.general]:

All container types defined in this Clause meet the following additional
requirements:



Type X: : i t er at or, where X isacontainer class, represents either a pointer
type or an instantiated class whose type argumentsinclude X: : val ue_t ype and any of
the following (and nothing else):

- X:difference_ type

- X :pointer

Type X: : const _it erat or, where Xisacontainer class, represents either a pointer
type or an instantiated class whose type argumentsinclude X: : val ue_t ype and any of
the following (and nothing else):

- X :difference_type

- X :pointer

- X :const_pointer

[ Note: in particular, X siterator andconst _it erator typesmay not vary with
changesto X: : al | ocat or, X: : key_conpar e, X: : hasher, or X: : key_equal .
—end note.]

Add the following text to [unord.req]:

All unordered associative container types defined in this Clause meet the following
additional requirements:

TypeX: : | ocal _iterator,whereXisan unordered associative container class,
represents either a pointer type or an instantiated class whose type arguments include
X: :val ue_t ype and any of the following (and nothing else):

- X :difference_type

- X :pointer

Type X: : const _| ocal _iterator,whereXisan unordered associative container
class, represents either a pointer type or an instantiated class whose type arguments
include X: : val ue_t ype and any of the following (and nothing else):

- X :difference_type

- X :pointer

- X :const_pointer

4 Implications to backwards compatibility

4.1 Source compatibility

We do not propose changing the general container requirements, so user-defined
containers that do not currently support SCARY operations will continue to satisfy these
requirements.

Since this proposal merely relaxes arestriction by ensuring the availability of SCARY
operations, it won't render incorrect any use of the standard containersin user source
code.



4.2 Link compatibility

If an implementation of the C++ Standard Library that did not previously support
SCARY operationsis modified to support this proposal, then the linkage name of any
library function or user function that has a parameter whose type is one of the standard
container iterators will change. We believe that this source of ABI incompatibility is no
worse than that which is already imposed on implementers and their users by the
introduction of several C++0x language features, including Concepts.

5 Possible extensions to this proposal

The important part of this proposal is section 3, above. We propose the following
additional changes for completeness.

5.1 Wheniterator is aconstant iterator

The standard currently specifiesthat set <T, C, A>::iterator (for somevaue
type T, comparator C, and allocator A) is a constant iterator. This prevents a programmer
from inadvertently putting the container into a state in which it is no longer sorted.
However,set <T, C, A>::iterator isnotnecessarily the sametypeasset <T,
C, A>::const _iterator. Whether thetwo types areidentical is unspecified
according to [associative.regmts]. This contradicts [set], which states that these types are
implementation-defined.

We propose that the standard mandate that set <T, C, A>::iterator and
set<T, C, A>::const _iterator arethesametype. Similarly, we propose that
the standard mandate that unor dered_set<T, H, C, A>.:iterator and
unordered_set<T, H, C, A>::const _iterator (Hisany hashertype) are
the same type.

The standard specifiesthat map<..>: :iterator,nul ti map<.>::iterator,
unordered_map<..>::iterator,and

unordered_mul timap<..>::iterator aremutating iterators, since one might
wish to change the mapped part of an element without changing itskey. Therefore, this
proposed change is not applicable to those containers.

Change paragraph 6 of [associative.reqmts] as follows:

i t er at or of an associative container meets the requirements of the
Bi di rectional I t erat or concept. For associative containers where the
value type isthe same asthe key type, beth i t er at or andconst _i t erat or

are constant iterators—H-s-unspeciied-whether-ornot-i-t-erat-or—and
R et are the same type.

(Alternatively, just replace theline“t ypedef implementation-defined
const __iterator;”in[set] and [multiset] with“t ypedef iterator



const _iterator;” andstrike the line, quoted above, that begins with “it is
unspecified....”)

Change paragraph 11 of [unord.req] as follows:

Theiterator typesi t er at or andconst _i t er at or of an unordered associative
container meet the requirements of the For war dl t er at or concept. For
unordered associative containers where the key type and value type are the same,
bethiterator andconst _iterator areconstant iterators

(Alternatively, just replace theline“t ypedef implementation-defined
const _iterator;”in[unord.set] and[unord.multiset] with “t ypedef
iterator const _iterator;”. Nochangeto [unord.req] isrequired.)

5.2 When | ocal _iterator is aconstant iterator
Add the following sentence to the end of paragraph 11 of [unord.req]:

Likewise, | ocal _iterator andconst | ocal _iterator areconstant
iterators and are the same type.

(Alternatively, just replace the line“t ypedef implementation-defined

const _| ocal _iterator;”in[unord.set] and [unord.multiset] with “t ypedef
| ocal _iterator const |l ocal _iterator;”. Nochangeto[unord.req] is
required.)

5.3 X::iterator and multiX::iterator

If the proposal in section 3 of this paper is adopted, it’s likely that
set<T>::iterator andnul tiset<T>::iterator will bethe sametypefor
any valuetype T because, in practice, both containers will use the same underlying tree
structure. Similarly, unor dered_set <T>::iterat or and

unordered_rul tiset<T>::iterator will likely be the same type because both
containers will use the same underlying hash table. The same reasoning appliesto the
map and multimap iterator types, the unordered_map and unordered _multimap types, and
various local iterator types.

Further, map<Key, T>::iterator willlikely bethesametypeas
set <pai r<const Key, T>>:.:iterator (andsmilarlyfor
mul ti map/ mul ti set, and the unordered associative containers).

The committee should at least consider mandating, for example, that
set<T>::iterator andmul tiset<T>::iterator areidentical. Of course,
we' |l provide wording if the committee isinterested in pursuing this.



	1 Abstract
	2 Background
	2.1 What is a SCARY iterator initialization?
	2.2 Are SCARY assignments and initializations dangerous?
	2.3 Who supports SCARY iterator assignment/initialization today?
	2.4 Why support SCARY iterator operations?
	2.5 What are the possible disadvantages of independent iterators?

	3 Proposal
	4 Implications to backwards compatibility
	4.1 Source compatibility
	4.2 Link compatibility

	5 Possible extensions to this proposal
	5.1 When iterator is a constant iterator 
	5.2 When local_iterator is a constant iterator
	5.3 X::iterator and multiX::iterator


