Doc No: N2943=09-0133

Date: 2009-07-30

Author: Pablo Halpern
Cilk Arts, Inc.

phalpern@halpernwightsoftware.com

Allocators without Concepts (preview)

Contents

Motivation and SUMMATYccceeiriiiniiiiiiiicee e 1
National Body Comments Addressed in this Paper ..o, 2
Document CONVENTIONScoiiiiiiiiiiiicictc e 2
Major SIMPlIfiCatiONS.coviiiiiiiiiiiccc s 2
C++0x Allocator REQUITEMENLSccociiiiiiiiiiiiiiiiicicc s 3
The allocator traits class template........ccoiiiiiiiiiieeee 4
Alternative: an adaptor for C++98 AllOCAtOTScccvvviiriiiiiiiiiiiiiccc e 6
CONCIUSION ...t 8
REEETEIICES ...ttt 8

Motivation and Summary

The adoption of N2554 (The Scoped Allocator Model) and N2525 (Allocator-specific Swap and
Move Behavior) in Belevue (February/March 2008) made allocators much more useful and
flexible than they were in 1998. It has been pointed out, however, that these improvements
came at the cost of some interface complexity. Of particular concern was the fact that the
presence of scoped allocators required the definition and testing of traits in numerous places in
the standard library.

A couple of concepts-related papers (N2768 and N2840) attempted to simplify the use of
allocators by moving most scoped-allocator knowledge into the scoped-allocator adaptor
classes, and most allocator-propagation machinery into the Allocator concept. In addition,
N2908 was on the verge of removing allocator interfaces from pair. But then concepts were
dropped from the core language in Frankfurt (July 2009), rendering these proposals mute.

This paper represents the first step towards bringing as many of the concepts-based
simplifications to the allocator library as possible in the absence of concepts. This is not a
formal proposal and it does not contain formal wording. My intention, rather, is to provide a
“heads up” to the library working group outlining a possible direction for allocators and
providing a basis for feedback in advance of a formal proposal. Expect a formal proposal

N2943: Allocators without Concepts (preview) Page 1 of 8

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2554.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2525.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2768.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2840.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2908.pdf

before the Santa Cruz meeting (October, 2009). This paper does not address the issue of
constructors to pair. That issue will be addressed by a separate revision of N2908.

The purpose of this paper is two-fold: 1) to assure the committee that the simplifications in the
allocator system that were described in N2768 and N2840 will not be lost, and 2) to solicit
early feedback so that a solid proposal can be brought to Santa Cruz and passed in the same
meeting.

National Body Comments Addressed in this Paper

US 65 and US 74.1

The issues with pair have been split off into a separate paper, which will be a revision of
N2908.

Document Conventions

Although this paper does not propose formal wording, any reference to section names and
numbers are relative to the pre-concepts, August 2008 WP, N2723 (pre-San Francisco).

Existing and proposed working paper text is indented and shown in dark blue. Small edits to the working
paper are shown with red-strikeoutsfor-deleted-text-and green underlining for inserted text within the indented
blue original text. Large proposed insertions into the working paper are shown in the same dark blue indented
format (no green underline).

Comments and rationale mixed in with the proposed wording appears as shaded text.

Requests for LWG opinions and guidance appear with light (yellow) shading

Major Simplifications

The formal proposal for Santa Cruz will contain most or all of the following simplifications
from the pre-concepts working paper (N2723):

1. Eliminate the following trait class templates:
is scoped allocator,
constructible with allocator prefix,
constructible with allocator suffix,
allocator propagate never,
allocator propagate on copy construction,
allocator propagate on move assignment,
allocator propagate on copy assignment,
allocator parpagation map

2. Remove specialization of uses _allocator for pair and tuple.

N2943: Allocators without Concepts (preview) Page 2 of 8

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2908.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2768.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2840.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2908.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2723.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2723.pdf

3. Eliminate the construct element function template

4. Rename the second specialization of scoped allocator adaptor to
scoped allocator adapator2 toavoid confusion between the two usages.

5. Move ConstructibleAsElement requirements from [container.requirements] to the
scoped-allocator section [allocator.adaptor].

6. Precisely specify requirements for a C++0x allocator.

7. Createan allocator traits template that can be used to adapt other types to the
allocator requirements. The allocator traits template would be specialized in
such a way that legacy C++03 allocators would automatically be so adapted.

Most of the above items are either self-explanatory, or can be understood in rough outline by
reading N2768 and N2840. I will elaborate on the last two items below and save the details of
the other items for the formal proposal before Santa Cruz.

C++0x Allocator Requirements

The requirements for a C++0x allocator can be specified either as a requirements table, or in a
concept-like format. I will use the concept-like format here for brevity, but this will probably
need to be converted to a requirements table for Santa Cruz.

struct Allocator

{
typedef object-type value type;

typedef pointer-like-type pointer;
typedef pointer-like-type const pointer;

typedef pointer-like-type generic pointer;
typedef pointer-like-type const generic pointer;

typedef integer-type difference type;
typedef integer-type size type;

template <typename T> using rebind type = rebind-template;
// Static functions

static pointer from generic pointer (generic pointer);
static const pointer from generic pointer(const generic pointer);

// Required constructor
template <typename T>
Allocator (const rebind type<T>& other);

N2943: Allocators without Concepts (preview) Page 3 of 8

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2768.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2840.pdf

// Allocator propagation on construction
static Alloc select on copy construction(const Allocé& rhs);

// Allocator propagation functions. Return true if *this was modified.

bool do on container copy assignment (const Allocatoré& rhs);
bool do on container move assignment (Allocator&& rhs);

bool do on container swap(Allocatoré& other);

pointer allocate(size type n);
pointer allocate(size type n, const generic pointer hint);

void deallocate (pointer p, size type n);

template <typename T, typename... Args>
void construct (T* p, Argsé&&... args);

template <typename T>
void destroy (T* p);

size type max size () const;

pointer address(value type& r) const;
const pointer address(const value type& r) const;

}i

bool operator==(const Allocatoré& a, const Allocatoré& b);
bool operator!=(const Allocatoré& a, const Allocatoré& Db);

The allocator traits class template

Instead of directly using an allocator a of type, Alloc, a client (i.e., a container) would access the
allocator via the allocator traits template:

typedef allocator traits<Alloc> atraits;
p = atraits::allocate(a, 1);

This traits approach is clean and non-intrusive. It provides an adaptation point whereby
almost any type can be used as an allocator (similar to the way iterator traits allows
pointers to be used as iterators). In addition, the traits approach is extensible because it
provides a place for adding default implementations of new features in the future. Some
meta-programming will be used to select an adapted traits specialization for legacy (C++03)
allocators, probably by detecting the absence of generic pointer and or rebind type, or
by using some kind of versioning as described in Howard Hinnant’s paper, N1953. The
allocator traits template will look something like the following:

template <typename Alloc>
struct allocator traits

N2943: Allocators without Concepts (preview) Page 4 of 8

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1953.htm

typedef Alloc allocator type;

typedef typename Alloc::value type value type;
typedef typename Alloc::pointer pointer;

typedef typename Alloc::const pointer const pointer;
typedef typename Alloc::generic pointer generic pointer;

typedef typename Alloc::const generic pointer const generic pointer;

typedef typename Alloc::difference type difference type;
typedef typename Alloc::size type size type;

template <typename T> using rebind type =
Alloc::template rebind type<T>;

// Static functions
static pointer from generic pointer (generic pointer p)

{ return Alloc::from generic pointer(p); }
static const pointer from generic pointer (const generic pointer p)
{ return Alloc::from generic pointer(p); }

// Allocator propagation on construction
static Alloc select on copy construction(const Alloc& from);

// Allocator propagation on assignment and swap.

// Return true if lhs is modified.
static bool do on container copy assignment (Allocé& lhs,
const Allocé& rhs)
{ return lhs.do on container copy assignment (rhs); }
static bool do on container move assignment (Alloc& lhs, Allocé&& rhs)
{ return lhs.do on container move assignment (rhs); }

static bool do on container swap (Alloc& lhs, Allocé& rhs)
{ return lhs.do on container swap(rhs); }

static pointer allocate(Alloc& a, size type n)
{ return a.allocate(n); }
static pointer allocate(Alloc& a, size type n,
const generic pointer hint)
{ return a.allocate(n, hint); }

static void deallocate (Allocé& a, pointer p, size type n)
{ a.deallocate(p, n); }

static template <typename T, typename... Args>
void construct (Alloc& a, T* p, Argsé&&... args)
{ a.construct(p, std::forward<Args>(args)...); }

static template <typename T>
void destroy(Alloc& a, T* p)

N2943: Allocators without Concepts (preview) Page 5 of 8

{ a.destroy(p); }

static size type max size(const Alloc& a,)
{ return a.max size(); }

static pointer address(const Alloc& a, value typeé& r)

{ return a.address(r); }
static const pointer address(const Allocé& a, const value typeé& r)
{ return a.address(r); }

}s

What is the best way to detect a C++98 allocator for specializing allocator traits?

Alternative: an adaptor for C++98 Allocators

In my sample implementation, I found myself implementing something like

legacy allocator adaptor, below that combined the traits and the allocator into a single
object. This adaptor would eliminate the need for allocator traits, but we would still
need a selection mechanism for C++0x vs. C++03 allocators:

template <typename Alloc> using select allocator type = some-type;

Where some-type is either Alloc (for a C++0x allocator) or

legacy allocator adaptor<Alloc> (for legacy C++03 allocators). The selection criteria
will probably be the existence in Alloc of rebind type and/or generic pointer, or by
using some kind of versioning as described in Howard Hinnant’s paper, N1953.

Does anybody on the committee feel strongly about the merits allocator traits vs.
legacy allocator adaptor mechanism?

template <typename Alloc>
struct legacy allocator adaptor

{
typedef Alloc legacy allocator type;

Alloc alloc_; // exposition only

typedef typename Alloc::value type value type;
typedef typename Alloc::pointer pointer;
typedef typename Alloc::const pointer const pointer;

typedef typename

legacy generic pointer<pointer> generic pointer;
typedef typename

legacy generic pointer<const pointer> const generic pointer;

typedef typename Alloc::difference type difference type;
typedef typename Alloc::size type size type;

N2943: Allocators without Concepts (preview) Page 6 of 8

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1953.htm

template <typename T> using rebind type =
legacy allocator adaptor<Alloc::template rebind<T>::other>;

// Static functions
static pointer from generic pointer (generic pointer p)

{ return Alloc::from generic pointer(p); }
static const pointer from generic pointer(const generic pointer p)
{ return Alloc::from generic pointer(p); }

// Constructors
template <typename T>
legacy allocator adaptor(const rebind type<T>& other)
alloc (other.alloc) { }

template <typename... Args>
legacy allocator adaptor (Argsé&é&... args)
alloc (std::forward<Args>(args)...) { }

// Allocator propagation constructor
legacy allocator adaptor(on container move t,
const legacy allocator adaptoré& other)
alloc (other.alloc) { }

// Allocator propagation functions. Return true if *this was modified.

bool

do on container copy assignment (const legacy allocator adaptoré& from)
{ return false; }

bool do on container move assignment (legacy allocator adaptoré&& from)
{ return false; }

bool do on container swap (legacy allocator adaptoré& other)
{ assert(alloc_ == other.alloc); return false; }

pointer allocate(size type n)
{ return alloc .allocate(n); }
pointer allocate(size type n, const pointer hint)
{ return alloc .allocate(n, hint); }
pointer allocate(size type n, const generic pointer hint)

{ return alloc .allocate(n); } // ignore hint

void deallocate (pointer p, size type n)
{ alloc .deallocate(p, n); }

template <typename T, typename... Args>
void construct (T* p, Argsé&&... args)
{ new ((void*)p) T (std::forward<Args>(args)...); }

// Special case maching legacy construct () signature
void construct (pointer p, const value typeé& v)
{ alloc_ .construct(p, v); }

N2943: Allocators without Concepts (preview) Page 7 of 8

template <typename T>
void destroy (T* p)
{ p=>~T0O; }

size type max size() const
{ return alloc .max size(); }

pointer address(value type& r) const
{ return alloc .address(r); }

const pointer address(const value typeé& r) const
{ return alloc_ .address(r); }

}i

template <typename Alloc>
bool operator==(const legacy allocator adaptor<Alloc>é& a,
const legacy allocator adaptor<Alloc>& b);
template <typename Alloc>
bool operator!=(const legacy allocator adaptor<Alloc>é& a,
const legacy allocator adaptor<Alloc>& b);

Conclusion

A number of the allocator complexities described in US 65 and US 74.1 can be dealt with by
using concept-like thinking and moving more of the machinery into the scoped allocator
adaptors and out of the rest of the library. A future paper, in time for the Santa Cruz mailing
will add formal wording to the ideas described in this paper, and will incorporate any
guidance I get from committee members before then.

References

Documents referenced below can be found at
http://www.open-std.org/[TC1/SC22/WG21/docs/papers/2008/.

N2768: Allocator Concepts, part 1 (revision 2)
N2554: The scoped allocator model (Rev 2)
IN2525: Allocator-specific move and swap

Documents referenced below can be found at
http://www.open-std.org/[TC1/SC22/WG21/docs/papers/2009/.

IN2840: Defects and Proposed Resolutions for Allocator Concepts (Rev 2)
N2908: Several Proposals to Simplify pair (Rev 1)

N2943: Allocators without Concepts (preview) Page 8 of 8

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2008/
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2008/n2768.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2008/n2554.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2008/n2525.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2009/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2840.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2908.pdf

