©ISO 2010 — All rights reserved

ISO/IEC JTC1 SC22 WG21 N 3092
Date: 2010-03-26

ISO/IEC IS 14882

ISO/IEC JTC1 SC22

Secretariat: ANSI

Programming Languages — C++

Langages de programmation — C++

Warning

This document is not an ISO International Standard. It is distributed for review and comment. It is subject
to change without notice and may not be referred to as an International Standard.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights
of which they are aware and to provide supporting documentation.

Document type: Draft International Standard
Document stage: (30) Final Committee Draft
Document Language: E

Copyright notice

This ISO document is a working draft or committee draft and is copyright-protected by ISO. While the
reproduction of working drafts or committee drafts in any form for use by participants in the ISO standards
development process is permitted without prior permission from ISO, neither this document nor any extract
from it may be reproduced, stored or transmitted in any form for any other purpose without prior written
permission from ISO.

Requests for permission to reproduce this document for the purpose of selling it should be addressed as
shown below or to ISO’s member body in the country of the requestor.

ISO copyright office

Case postale 56, CH-1211 Geneva 20
Tel. 4+ 41 22 749 01 11

Fax + 41 22 749 09 47

E-mail copyright@iso.org

Web www.iso.org

Reproduction for sales purposes may be subject to royalty payments or a licensing agreement.

Violators may be prosecuted.

©ISO/IEC N3092

Contents

Contents iii
List of Tables xi
List of Figures XV
1 General 1
1.1 SCOPE .« o e 1
1.2 Normative references L 1
1.3 Definitions L L e 2
1.4 Implementation compliance e 4
1.5 Structure of this International Standard 5
1.6 Syntax notation L 5
1.7 The C++ memory model 5
1.8 The C++ object model e 6
1.9 Program execution e e 7
1.10 Multi-threaded executions and data races 10
1.11 Acknowledgments e 14
2 Lexical conventions 15
2.1 Separate translation L. 15
2.2 Phases of translation 15
2.3 Character sets e 16
2.4 Trigraph sequences e 17
2.5 Preprocessing tokens 18
2.6 Alternative tokens L e e e 18
2.7 ToKenS o e e e e e e e e e 19
2.8 Comments e 19
2.9 Header names 19
2.10 Preprocessing numbers Lo e 20
2.11 Identifiers e e 20
212 Keywords oL e e e 21
2.13 Operators and punctuators 21
2.14 Literals 22
3 Basic concepts 31
3.1 Declarations and definitionso 31
3.2 One definition rule e e 33
3.3 SCODPE .« . e 35
3.4 Namelookup e 41
3.5 Program and linkage L 55
3.6 Start and termination L L L 58
3.7 Storage duration e 61
3.8 Object lifetime 65
3.9 Types . . o e e e 69
3.10 Lvaluesand rvalues e e e e e 74

CONTENTS iii

©ISO/IEC N3092

3.11 Alignment L e e 76
4 Standard conversions 77
4.1 Lvalue-to-rvalue conversion L e 78
4.2 Array-to-pointer conversiono e e 78
4.3 Function-to-pointer conversion 78
4.4 Qualification conversions L. 78
4.5 Integral promotions L 79
4.6 Floating point promotion Lo 80
4.7 Integral cOnNversionso e e e e e e e e 80
4.8 Floating point conversions Lo 80
4.9 Floating-integral conversions L oL L 81
4.10 Pointer conversionso e e e e e e 81
4.11 Pointer to member conversions Lo e 81
4.12 Boolean conversions o i e e e e e e e 82
4.13 Integer conversion ranko Lo 82
5 Expressions 83
5.1 Primary expressions e e e 85
5.2 Postfix expressions 92
5.3 Unary expressions.l 104
5.4 Explicit type conversion (cast notation) Lo Lo 112
5.9 Pointer-to-member operators oL 113
5.6 Multiplicative operators 114
5.7 Additive operators L. 114
5.8 Shift operators L L 116
5.9 Relational operators 116
5.10 Equality operators L 117
5.11 Bitwise AND operator 118
5.12 Bitwise exclusive OR operator 118
5.13 Bitwise inclusive OR operator 118
5.14 Logical AND operator e 118
5.15 Logical OR operator e 119
5.16 Conditional operator e 119
5.17 Assignment and compound assignment operatorso 120
5.18 Comma operator e e e e e 122
5.19 Constant expressionso i e e e e e e 122
6 Statements 125
6.1 Labeled statement L 125
6.2 Expression statement oL oL 125
6.3 Compound statement or block L 125
6.4 Selection statements L 126
6.5 Iteration statements Lo 128
6.6 Jump statements L L e 131
6.7 Declaration statement 132
6.8 Ambiguity resolution Lo 133
7 Declarations 135
7.1 Specifiers L 137
7.2 Enumeration declarationso L 150

CONTENTS iv

©ISO/IEC

7.3 Namespaces o v it e e e e
7.4 The asm declaration
7.5 Linkage specifications oL
7.6 Attributes L
8 Declarators
8.1 Typenameso
8.2 Ambiguity resolution oo Lo
8.3 Meaning of declarators L oL
8.4 Function definitions
8.5 Initializers e e
9 Classes
9.1 Class NAIeS e
9.2 Class members
9.3 Member functions
94 Static members
9.5 Unions e
9.6 Bit-fields
9.7 Nested class declarationso
9.8 Local class declarations
9.9 Nested typenames o
10 Derived classes
10.1 Multiple base classes e
10.2 Member name lookup oo
10.3 Virtual functions
10.4 Abstract classes

11 Member access control

11.1 Access specifiers
11.2 Accessibility of base classes and base class members.
11.3 Access declarations L
11.4 Friends e
11.5 Protected member access
11.6 Access to virtual functions L.
11.7 Multiple access Lo
11.8 Nested classes o . o e

12 Special member functions

12.1 Constructors e
12.2 Temporary objectso
12.3 Conversions
12.4 Destructors e e e e e
125 Freestore e
12.6 Imitialization
12.7 Construction and destruction
12.8 Copying and moving class objects oL
12.9 Imnheriting Constructors.o oL

13 Overloading

CONTENTS

N3092

©ISO/IEC

13.1
13.2
13.3
13.4
13.5
13.6

Overloadable declarations
Declaration matching Lo Lo
Overload resolution
Address of overloaded function
Overloaded operators
Built-in operators

14 Templates

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8

Template parameters o
Names of template specializations
Template argumentso Lo
Type equivalence
Template declarations,
Name resolution Lo
Template instantiation and specialization
Function template specializations

15 Exception handling

15.1
15.2
15.3
15.4
15.5

Throwing an exception
Constructors and destructors
Handling an exception L.
Exception specifications L oL
Special functions oL oL

16 Preprocessing directives

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9

Conditional inclusion
Source file inclusion L o
Macro replacement
Line control
Error directive
Pragma directive o oo
Null directive e
Predefined macronames
Pragma operator Lo Lo

17 Library introduction

17.1
17.2
17.3
17.4
17.5
17.6

General L
The C standard library
Definitions
Additional definitions Lo
Method of description (Informative)
Library-wide requirements

18 Language support library

18.1
18.2
18.3
18.4
18.5
18.6
18.7

General L e
Types . . o o e
Implementation properties Lo
Integer typeso
Start and termination oL oo
Dynamic memory management
Type identification

CONTENTS

N3092

vi

©ISO/IEC

18.8 Exception handling L.
18.9 Imitializer lists
18.10 Other runtime support
19 Diagnostics library
19.1 General
19.2 Exception classes Lo o
19.3 Assertions e
19.4 Error numbers e e
19.5 System error support

20 General utilities library

20.1 General
20.2 Requirements
20.3 Utility components Lo o
204 Tuples
20.5 Class template bitset
20.6 Compile-time rational arithmetic
20.7 Metaprogramming and type traits
20.8 Function objects Lo
209 Memory
20.10 Time utilities
20.11 Date and time functions oo
20.12 Class type_index o
21 Strings library
21.1 General
21.2 Character traits L
21.3 String classes o
21.4 Class template basic_string
21.5 Numeric Conversions
21.6 Hashsupport
21.7 Null-terminated sequence utilities
22 Localization library
22.1 General
22.2 Header <locale> Synopsis o v v v b v
22.3 Locales. e
22.4 Standard locale categories
22.5 Standard code conversion facets L
22.6 CLibrary Locales o
23 Containers library
23.1 General
23.2 Container requirementso
23.3 Sequence containerso e e e
23.4 Associative containers
23.5 Unordered associative containers

24 Tterators library

24.1

General

CONTENTS

N3092

461

............. 461
............. 461
............. 465
............. 466
............. 466

478

............. 478
............. 478
............. 488
............. 495
............. 504
............. 011
............. 513
............. 529
............. 550
............. 594
............. 608
............. 608

vii

©ISO/IEC N3092

24.2 Tterator requirements L Lo e e e e 810
24.3 Header <iterator> Synopsis. o it 815
24.4 Tterator primitives L L e e 818
24.5 Tterator adaptors L e 822
24.6 Stream iterators. e e 836
25 Algorithms library 844
25.1 General e 844
25.2 Non-modifying sequence operations o 854
25.3 Mutating sequence operations Lo e e 859
25.4 Sorting and related operations L. L oL L 868
25.5 Clibrary algorithms e 882
26 Numerics library 884
26.1 General e 884
26.2 Numeric type requirements L Lo Lo 884
26.3 The floating-point environment Lo oL oL o 885
26.4 Complex numbers e 886
26.5 Random number generation L Lo 895
26.6 Numeric arrays e e 942
26.7 Generalized numeric operations L.l 964
26.8 C Library e 967
27 Input/output library 972
27.1 General e e 972
27.2 Jostreams requirements oL Lo Lo e 973
27.3 Forward declarationso 973
27.4 Standard iostream objects L. 975
27.5 Jostreams base classes e 977
27.6 Stream buffers. 997
27.7 Formatting and manipulators Lo Lo o 1007
27.8 String-based streams L 1034
279 File-based streams e 1045
28 Regular expressions library 1060
28.1 General 1060
28.2 Definitions e 1060
28.3 Requirements L e e 1061
28.4 Header <regex> SyNnoOpSIS« « o oo e e e e e 1063
28.5 Namespace std::regex_constants. 1069
28.6 Class TregeX_erTor v i ittt e e e 1074
28.7 Class template regex_traits o 1074
28.8 Class template basic_regex e 1076
28.9 Class template sub_match e e e e 1082
28.10 Class template match_results ittt 1088
28.11 Regular expression algorithmso Lo oo 1093
28.12 Regular expression Iterators Lo 1098
28.13 Modified ECMAScript regular expression grammar oo ... 1104
29 Atomic operations library 1107
29.1 General e 1107

CONTENTS viii

©ISO/IEC

29.2
29.3
294
29.5
29.6
29.7
29.8

Header <atomic> synopsiso
Order and Consistency
Lock-free Property
Atomic Types e e
Operations on Atomic Types
Flag Type and Operations
Fences o

30 Thread support library

30.1
30.2
30.3
30.4
30.5
30.6

General
Requirements L L
Threads o
Mutual exclusion
Condition variables
Futures

A Grammar summary

Al
A2
A3
A4
A5
A6
A7
A8
A9
A10
A1l
A12
A3
A.14

Keywords e
Lexical conventions L o
Basicconcepts. Lo
Expressions o
Statements e e
Declarations
Declarators e
Classes v o v i e e
Derived classes
Special member functions,
Overloading
Templates e
Exception handling oo
Preprocessing directives

B Implementation quantities

C Compatibility

Cl CHandISOC e
C.2 Standard C library
D Compatibility features
D.1 Increment operator with bool operand
D.2 statickeyword
D.3 Access declarations L
D.4 register keyword
D.5 Dynamic exception specifications L.
D.6 C standard library headers
D.7 Old iostreams members
D.8 char*streams e
D.9 Binders e
D.10 auto_ptr

E Cross references

CONTENTS

N3092

ix

©ISO/IEC N3092

Index 1247
Index of Grammar Productions 1272
Index of Library Names 1275
Index of Implementation Defined Behavior 1309

CONTENTS X

©ISO/IEC N3092

List of Tables

N O Uk W N

10
11

12
13
14
15

16
17
18
19
20
21
22
23
24
25
26

27
28
29

30
31
32
33
34
35
36
37
38
39

Trigraph sequences L L 17
Alternative tokens L L 19
Keywords e e 21
Alternative representations L e 21
Types of integer constants L 23
Escape sequences L e e 25
String literal concatenations oL Lo 28
Relations on const and volatile Lo 74
simple-type-specifiers and the types they specify oo oL 147
Relationship between operator and function call notation 291
Conversionso e e e e 299
Library categories e 410
Ct++ library headers e e 422
CH+ headers for C library facilities 422
C++ headers for freestanding implementations 423
Language support library summaryo L 432
Header <cstddef> synopsis oL e 432
Header <climits> Synopsis o v i i e e e e e e e e e e 442
Header <cfloat> Synopsis i e e 442
Header <cstdlib> Synopsis oo i e e e 443
Header <cstdarg> synopsis e 459
Header <csetjmp> Synopsis L e 459
Header <ctime> Synopsis L e e e 459
Header <csignal> Synopsis o vt i it e e e e e e e 460
Header <cstdlib> Synopsis o o v v it e e e 460
Header <cstdbool> SYNOPSIS . .+« v v v v v v i e e e e e e e 460
Diagnostics library summary oL L 461
Header <cassert> Synopsis o e 465
Header <cerrno> synopsis 466
General utilities library summary L. 478
EqualityComparable requirements o 479
LessThanComparable requirements oo it e e 479
DefaultConstructible requirements L e 479
MoveConstructible requirements L L e 479
CopyConstructible requirements (in addition to MoveConstructible) 479
MoveAssignable requirements Lo 479
CopyAssignable requirements(in addition to MoveAssignable) 480
Destructible requirements Lo Lo e e e 480
NullablePointer requirements L L e 483

List of Tables List of Tables xi

©ISO/IEC N3092

40
41
42
43
44
45
46
47
48
49
50
51
52
593
o4
95
56
57

o8
59
60
61
62
63
64
65
66

67
68
69
70
71
72
73
74
75
76

7
78
79
80
81
82
83
84
85
86
87

Hash requirements L e e e e e 483
Descriptive variable definitions 483
Allocator requirements Lo e 485
Primary type category predicates Lo 516
Composite type category predicates L 517
Type property predicates L e 518
Type property queries L e e e e e e 522
Type relationship predicates L 523
Const-volatile modifications 524
Reference modificationso 525
Sign modificationso 525
Array modifications Lo Lo 526
Pointer modifications L 527
Other transformations L 527
Header <cstdlib> Synopsis v v v v i e e e e e e e e e e e e e 593
Header <cstring> synopsis o e e 594
Clock requirements e e e 597
Header <ctime> SynopsiS o . o i e e 608
Strings library summary oL e 611
Character traits requirements 612
basic_string(const Allocator&) effects Lo L. 625
basic_string(const basic_string&) effects 626
basic_string(const basic_string&, size_type, size_type, const Allocator&) effects . 626
basic_string(const charT*, size_type, const Allocator&) effects. 626
basic_string(const charT#*, const Allocator&) effects 627
basic_string(size_t, charT, const Allocator&) effects 627
basic_string(const basic_string&, const Allocator&) and basic_string(basic_string&,

const Allocator&) effects L L 628
operator=(const basic_string<charT, traits, Allocator>&) effects 628
operator=(const basic_string<charT, traits, Allocator>&&) effects 628
compare() results 642
Potential mbstate_t dataraceso 651
Header <cctype> Synopsis o v v v v it 652
Header <cwctype> synopsis o e e 652
Header <cstring> synopsis oL e e 652
Header <cwchar> SYyNopsis v v v v i i e e e e e e e e e e e 652
Header <cstdlib> Synopsis o o v v v i e e 653
Header <cuchar> Synopsis o o o vt i i e 653
Localization library summary Lo 654
Locale category facets L e 658
Required specializations L 659
do_in/do_out result values 677
do_unshift result values e 677
Integer conversions L e e e e 681
Length modifier« . . e 681
Integer conversions e 685
Floating-point conversions L e 685
Length modifier 686
Numeric cConversions Lo e e e e 686

List of Tables List of Tables xii

©ISO/IEC N3092

88
89
90
91

92
93
94
95
96
97
98
99
100

101
102
103
104
105
106
107
108

109
110

111
112
113
114
115
116
117

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

133

Fill padding o e e 687
do_get_date effects 694
Header <clocale> Synopsis v v v v vt i it e e e e 709
Potential setlocale dataraces L e 709
Containers library summary oL o e 710
Container requirements Lo e 711
Reversible container requirements Lo 714
Optional container operations Lo 715
Allocator-aware container requirementso e e 715
Sequence container requirements (in addition to container) 0L 718
Optional sequence container operations v v it e e e e 721
Associative container requirements (in addition to container) L. 723
Unordered associative container requirements (in addition to container) 729
Iterators library summary oL e e e e 810
Relations among iterator categories L L 810
Iterator requirements Lo e 812
Input iterator requirements (in addition to Iterator) 812
Output iterator requirements (in addition to Iterator) 813
Forward iterator requirements (in addition to input iterator) 814
Bidirectional iterator requirements (in addition to forward iterator). 814
Random access iterator requirements (in addition to bidirectional iterator) 815
Algorithms library summary L e e e 844
Header <cstdlib> SYnopsis v v v v i e e e e e e e e e e e e e e 882
Numerics library summary o L e e e 884
Seed sequence requirements L Lo Lo e e 897
Uniform random number generator requirements Lo 898
Random number engine requirementso Lo o 899
Random number distribution requirements L L oo oo 903
Header <cmath> Synopsis o i e e 967
Header <cstdlib> Synopsis o . o v i i i e 968
Input/output library summary 972
fmtflags effects L 982
fmtflags constants L 982
iostateeffects L 983
openmode effects L 983
seekdir effects L 984
Position type requirements L L L L oL e e 988
basic_ios::init() effects L 991
basic_ios::copyfmt() effects Lo 992
seekoff positioning Lo 1038
newoff values L 1039
File open modes 1049
seekoff effects L L 1051
Header <cstdio> Synopsis o v vttt e e e 1059
Header <cinttypes> Synopsis« . o e 1059
Regular expressions library summary oL oL 1060

List of Tables List of Tables xiii

©ISO/IEC N3092

134
135
136

137
138
139
140

141
142
143
144

145

146
147
148
149
150

151
152
153
154
155
156

Regular expression traits class requirements L L oo 1061
syntax_option_type effects L 1071
regex_constants::match_flag_type effects when obtaining a match against a character con-

tainer sequence [first,last). L. e 1072
error_type values in the Clocale 1073
match_results assignment operator effects o oL oo 1090
Effects of regex_match algorithm L o 1093
Effects of regex_search algorithm o 0oL 1095
Atomics library summary L. e e e e e 1107
Atomics for built-in types oL 1117
Atomics for standard typedef types L 1118
Atomic arithmetic computations 1125
Thread support library summary Lo 1129
Standard macroso e e 1210
Standard values e e 1210
Standard types 1210
Standard structs L e 1210
Standard functions Lo 1211
Cheaders e 1214
strstreambuf (streamsize) effects L 1218
strstreambuf (void* (%) (size_t), void (%) (voidx*)) effects 1218
strstreambuf (charT*, streamsize, charT*) effects 1219
seekoff positioning 1221
newoff values 1221

List of Tables List of Tables xiv

©ISO/IEC N3092

List of Figures

1 Expression category taxonomyo 74
2 Directed acyclic graph L 227
3 Non-virtual base e e e e 228
4 Virtual base e e e 229
5 Virtual and non-virtual base Lo 229
6 Name lookup 0 L e 231
7 Stream position, offset, and size types [non-normative]o Lo oL 972

List of Figures List of Figures XV

2

©ISO/IEC N3092

1 General [intro]

1.1 Scope [intro.scope]

This International Standard specifies requirements for implementations of the C++ programming language.
The first such requirement is that they implement the language, and so this International Standard also
defines C++. Other requirements and relaxations of the first requirement appear at various places within
this International Standard.

C++ is a general purpose programming language based on the C programming language as described in
ISO/IEC 9899:1999 Programming languages — C' (hereinafter referred to as the C standard). In addition
to the facilities provided by C, C++ provides additional data types, classes, templates, exceptions, name-
spaces, inline functions, operator overloading, function name overloading, references, free store management
operators, and additional library facilities.

1.2 Normative references [intro.refs]

The following standards contain provisions which, through reference in this text, constitute provisions of
this International Standard. At the time of publication, the editions indicated were valid. All standards
are subject to revision, and parties to agreements based on this International Standard are encouraged to
investigate the possibility of applying the most recent editions of the standards indicated below. Members
of IEC and ISO maintain registers of currently valid International Standards.

— Ecma International, ECMAScript Language Specification, Standard Ecma-262, third edition, 1999.
— ISO/IEC 2382 (all parts), Information technology — Vocabulary

— ISO/IEC 9899:1999, Programming languages — C

— ISO/IEC 9899:1999/Cor.1:2001(E), Programming languages — C, Technical Corrigendum 1

— ISO/IEC 9899:1999/Cor.2:2004(E), Programming languages — C, Technical Corrigendum 2

— ISO/IEC 9899:1999/Cor.3:2007(E), Programming languages — C, Technical Corrigendum 3

— ISO/IEC 9945:2003, Information Technology — Portable Operating System Interface (POSIX)

— ISO/IEC TR 10176:2003, Information technology — Guidelines for the preparation of programming
language standards

— ISO/IEC 10646-1:1993, Information technology — Universal Multiple-Octet Coded Character Set (UCS)
— Part 1: Architecture and Basic Multilingual Plane

— ISO/IEC TR 19769:2004, Information technology — Programming languages, their environments and
system software interfaces — FExtensions for the programming language C' to support new character
data types

The library described in Clause 7 of ISO/IEC 9899:1999 and Clause 7 of ISO/IEC 9899:1999/Cor.1:2001
and Clause 7 of ISO/IEC 9899:1999/Cor.2:2003 is hereinafter called the C standard library.*

The library described in ISO/IEC TR 19769:2004 is hereinafter called the C' Unicode TR.

1) With the qualifications noted in Clauses 18 through 30 and in C.2, the C standard library is a subset of the C++ standard
library.

§1.2 1

©ISO/IEC N3092

The operating system interface described in ISO/TEC 9945:2003 is hereinafter called POSIX.
The ECMAScript Language Specification described in Standard Ecma-262 is hereinafter called ECMA-262.

1.3 Definitions [intro.defs]

For the purposes of this International Standard, the definitions given in ISO/IEC 2382 and the following
definitions apply. 17.3 defines additional terms that are used only in Clauses 17 through 27 and Annex D.

Terms that are used only in a small portion of this International Standard are defined where they are used
and italicized where they are defined.

1.3.1 [defns.argument)]
argument

an expression in the comma-separated list bounded by the parentheses in a function call expression; a
sequence of preprocessing tokens in the comma-separated list bounded by the parentheses in a function-like
macro invocation; the operand of throw; or an expression, type-id or template-name in the comma-separated
list bounded by the angle brackets in a template instantiation. Also known as an actual argument or actual
parameter.

1.3.2 [defns.cond.supp]
conditionally-supported

a program construct that an implementation is not required to support. [Note: Each implementation
documents all conditionally-supported constructs that it does not support. — end note]

1.3.3 [defns.diagnostic]
diagnostic message
a message belonging to an implementation-defined subset of the implementation’s output messages.

1.3.4 [defns.dynamic.type]
dynamic type

the type of the most derived object (1.8) to which the glvalue denoted by a glvalue expression refers.
[Ezample: if a pointer (8.3.1) p whose static type is “pointer to class B” is pointing to an object of class
D, derived from B (Clause 10), the dynamic type of the expression *p is “D.” References (8.3.2) are treated
similarly. — end example] The dynamic type of a prvalue expression is its static type.

1.3.5 [defns.ill.formed]
ill-formed program
a program that is not well formed.

1.3.6 [defns.impl.defined)]
implementation-defined behavior
behavior, for a well-formed program construct and correct data, that depends on the implementation and
that each implementation documents.

1.3.7 [defns.impl.limits]

§1.3 2

©ISO/IEC N3092

implementation limits
restrictions imposed upon programs by the implementation.

1.3.8 [defns.locale.specific]
locale-specific behavior

behavior that depends on local conventions of nationality, culture, and language that each implementation
documents.

1.3.9 [defns.multibyte]
multibyte character

a sequence of one or more bytes representing a member of the extended character set of either the source or
the execution environment. The extended character set is a superset of the basic character set (2.3).

1.3.10 [defns.parameter]
parameter

an object or reference declared as part of a function declaration or definition, or in the catch Clause of an
exception handler, that acquires a value on entry to the function or handler; an identifier from the comma-
separated list bounded by the parentheses immediately following the macro name in a function-like macro
definition; or a template-parameter. Parameters are also known as formal arguments or formal parameters.

1.3.11 [defns.signature]
signature

the name and the parameter type list (8.3.5) of a function, as well as the class or namespace of which it
is a member. If a function or function template is a class member its signature additionally includes the
cv-qualifiers (if any) and the ref-qualifier (if any) on the function or function template itself. The signature
of a function template additionally includes its return type and its template parameter list. The signature
of a function template specialization includes the signature of the template of which it is a specialization
and its template arguments (whether explicitly specified or deduced). [Note: Signatures are used as a basis
for name mangling and linking. — end note]

1.3.12 [defns.static.type]
static type

the type of an expression (3.9), which type results from analysis of the program without considering execution
semantics. The static type of an expression depends only on the form of the program in which the expression
appears, and does not change while the program is executing.

1.3.13 [defns.undefined]
undefined behavior

behavior, such as might arise upon use of an erroneous program construct or erroneous data, for which
this International Standard imposes no requirements. Undefined behavior may also be expected when this
International Standard omits the description of any explicit definition of behavior. [Note: permissible
undefined behavior ranges from ignoring the situation completely with unpredictable results, to behaving
during translation or program execution in a documented manner characteristic of the environment (with or
without the issuance of a diagnostic message), to terminating a translation or execution (with the issuance
of a diagnostic message). Many erroneous program constructs do not engender undefined behavior; they are
required to be diagnosed. — end note]

§1.3 3

©ISO/IEC N3092

1.3.14 [defns.unspecified]
unspecified behavior

behavior, for a well-formed program construct and correct data, that depends on the implementation. The
implementation is not required to document which behavior occurs. [Note: usually, the range of possible
behaviors is delineated by this International Standard. — end note |

1.3.15 [defns.well.formed)|
well-formed program

a C++ program constructed according to the syntax rules, diagnosable semantic rules, and the One Definition
Rule (3.2).

1.4 Implementation compliance [intro.compliance]

The set of diagnosable rules consists of all syntactic and semantic rules in this International Standard except
for those rules containing an explicit notation that “no diagnostic is required” or which are described as
resulting in “undefined behavior.”

Although this International Standard states only requirements on C++ implementations, those requirements
are often easier to understand if they are phrased as requirements on programs, parts of programs, or
execution of programs. Such requirements have the following meaning:

— If a program contains no violations of the rules in this International Standard, a conforming imple-
mentation shall, within its resource limits, accept and correctly execute? that program.

— If a program contains a violation of any diagnosable rule or an occurrence of a construct described in
this Standard as “conditionally-supported” when the implementation does not support that construct,
a conforming implementation shall issue at least one diagnostic message.

— If a program contains a violation of a rule for which no diagnostic is required, this International
Standard places no requirement on implementations with respect to that program.

For classes and class templates, the library Clauses specify partial definitions. Private members (Clause 11)
are not specified, but each implementation shall supply them to complete the definitions according to the
description in the library Clauses.

For functions, function templates, objects, and values, the library Clauses specify declarations. Implemen-
tations shall supply definitions consistent with the descriptions in the library Clauses.

The names defined in the library have namespace scope (7.3). A C++ translation unit (2.2) obtains access
to these names by including the appropriate standard library header (16.2).

The templates, classes, functions, and objects in the library have external linkage (3.5). The implementation
provides definitions for standard library entities, as necessary, while combining translation units to form a
complete C++ program (2.2).

Two kinds of implementations are defined: hosted and freestanding. For a hosted implementation, this
International Standard defines the set of available libraries. A freestanding implementation is one in which
execution may take place without the benefit of an operating system, and has an implementation-defined
set of libraries that includes certain language-support libraries (17.6.1.3).

A conforming implementation may have extensions (including additional library functions), provided they do
not alter the behavior of any well-formed program. Implementations are required to diagnose programs that
use such extensions that are ill-formed according to this International Standard. Having done so, however,
they can compile and execute such programs.

2) “Correct execution” can include undefined behavior, depending on the data being processed; see 1.3 and 1.9.

§1.4 4

©ISO/IEC N3092

Each implementation shall include documentation that identifies all conditionally-supported constructs that
it does not support and defines all locale-specific characteristics.>

1.5 Structure of this International Standard [intro.structure]

Clauses 2 through 16 describe the C++ programming language. That description includes detailed syntactic
specifications in a form described in 1.6. For convenience, Annex A repeats all such syntactic specifications.

Clauses 18 through 30 and Annex D (the library clauses) describe the Standard C++ library. That description
includes detailed descriptions of the templates, classes, functions, constants, and macros that constitute the
library, in a form described in Clause 17.

Annex B recommends lower bounds on the capacity of conforming implementations.

Annex C summarizes the evolution of C++ since its first published description, and explains in detail the
differences between C++ and C. Certain features of C++ exist solely for compatibility purposes; Annex D
describes those features.

Throughout this International Standard, each example is introduced by “[Ezample:” and terminated by
“ —end example]”. Each note is introduced by “[Note:” and terminated by “ — end note]”. Examples and
notes may be nested.

1.6 Syntax notation [syntax]

In the syntax notation used in this International Standard, syntactic categories are indicated by italic type,
and literal words and characters in constant width type. Alternatives are listed on separate lines except in
a few cases where a long set of alternatives is marked by the phrase “one of.” If the text of an alternative is
too long to fit on a line, the text is continued on subsequent lines indented from the first one. An optional
terminal or nonterminal symbol is indicated by the subscript “,,: 7, so

{ expressiongp: ¥
indicates an optional expression enclosed in braces.
Names for syntactic categories have generally been chosen according to the following rules:

— X-name is a use of an identifier in a context that determines its meaning (e.g., class-name, typedef-
name).

— X-id is an identifier with no context-dependent meaning (e.g., qualified-id).

— X-seq is one or more X'’s without intervening delimiters (e.g., declaration-seq is a sequence of declara-
tions).

— X-list is one or more X’s separated by intervening commas (e.g., expression-list is a sequence of
expressions separated by commas).

1.7 The C++ memory model [intro.memory]

The fundamental storage unit in the C++ memory model is the byte. A byte is at least large enough to
contain any member of the basic execution character set and the eight-bit code units of the Unicode UTF-8
encoding form and is composed of a contiguous sequence of bits, the number of which is implementation-
defined. The least significant bit is called the low-order bit; the most significant bit is called the high-order
bit. The memory available to a C++ program consists of one or more sequences of contiguous bytes. Every
byte has a unique address.

3) This documentation also defines implementation-defined behavior; see 1.9.

§1.7 5

©ISO/IEC N3092

[Note: the representation of types is described in 3.9. — end note]

A memory location is either an object of scalar type or a maximal sequence of adjacent bit-fields all having
non-zero width. [Note: Various features of the language, such as references and virtual functions, might
involve additional memory locations that are not accessible to programs but are managed by the imple-
mentation. — end note| Two threads of execution (1.10) can update and access separate memory locations
without interfering with each other.

[Note: Thus a bit-field and an adjacent non-bit-field are in separate memory locations, and therefore can be
concurrently updated by two threads of execution without interference. The same applies to two bit-fields,
if one is declared inside a nested struct declaration and the other is not, or if the two are separated by
a zero-length bit-field declaration, or if they are separated by a non-bit-field declaration. It is not safe to
concurrently update two bit-fields in the same struct if all fields between them are also bit-fields of non-zero
width. — end note]

[Ezample: A structure declared as

struct {
char a;
int b:5,
c:11,
:0,
d:8;
struct {int ee:8;} e;

}

contains four separate memory locations: The field a and bit-fields d and e.ee are each separate memory
locations, and can be modified concurrently without interfering with each other. The bit-fields b and c
together constitute the fourth memory location. The bit-fields b and ¢ cannot be concurrently modified, but
b and a, for example, can be. — end example |

1.8 The C++ object model [intro.object]

The constructs in a C++ program create, destroy, refer to, access, and manipulate objects. An object is a
region of storage. [Note: A function is not an object, regardless of whether or not it occupies storage in the
way that objects do. — end note] An object is created by a definition (3.1), by a new-ezpression (5.3.4) or
by the implementation (12.2) when needed. The properties of an object are determined when the object is
created. An object can have a name (Clause 3). An object has a storage duration (3.7) which influences
its lifetime (3.8). An object has a type (3.9). The term object type refers to the type with which the object
is created. Some objects are polymorphic (10.3); the implementation generates information associated with
each such object that makes it possible to determine that object’s type during program execution. For other
objects, the interpretation of the values found therein is determined by the type of the expressions (Clause 5)
used to access them.

Objects can contain other objects, called subobjects. A subobject can be a member subobject (9.2), a base
class subobject (Clause 10), or an array element. An object that is not a subobject of any other object is
called a complete object.

For every object x, there is some object called the complete object of x, determined as follows:
— If x is a complete object, then x is the complete object of x.
— Otherwise, the complete object of x is the complete object of the (unique) object that contains x.

If a complete object, a data member (9.2), or an array element is of class type, its type is considered the
most derived class, to distinguish it from the class type of any base class subobject; an object of a most
derived class type or of a non-class type is called a most derived object.

§1.8 6

©ISO/IEC N3092

Unless it is a bit-field (9.6), a most derived object shall have a non-zero size and shall occupy one or more
bytes of storage. Base class subobjects may have zero size. An object of trivially copyable or standard-layout
type (3.9) shall occupy contiguous bytes of storage.

Unless an object is a bit-field or a base class subobject of zero size, the address of that object is the address
of the first byte it occupies. Two distinct objects that are neither bit-fields nor base class subobjects of zero

size shall have distinct addresses.
[Example:
static const char testl = ’x’;
static const char test2 = ’x’;
const bool b = &testl != &test2; // always true

— end example|

[Note: C++ provides a variety of built-in types and several ways of composing new types from existing
types (3.9). — end note]

1.9 Program execution [intro.execution]

The semantic descriptions in this International Standard define a parameterized nondeterministic abstract
machine. This International Standard places no requirement on the structure of conforming implementations.
In particular, they need not copy or emulate the structure of the abstract machine. Rather, conforming
implementations are required to emulate (only) the observable behavior of the abstract machine as explained
below.?

Certain aspects and operations of the abstract machine are described in this International Standard as
implementation-defined (for example, sizeof (int)). These constitute the parameters of the abstract ma-
chine. Each implementation shall include documentation describing its characteristics and behavior in these
respects. Such documentation shall define the instance of the abstract machine that corresponds to that
implementation (referred to as the “corresponding instance” below).

Certain other aspects and operations of the abstract machine are described in this International Standard as
unspecified (for example, order of evaluation of arguments to a function). Where possible, this International
Standard defines a set of allowable behaviors. These define the nondeterministic aspects of the abstract
machine. An instance of the abstract machine can thus have more than one possible execution for a given
program and a given input.

Certain other operations are described in this International Standard as undefined (for example, the effect of
dereferencing the null pointer). [Note: this International Standard imposes no requirements on the behavior
of programs that contain undefined behavior. — end note|

A conforming implementation executing a well-formed program shall produce the same observable behavior
as one of the possible executions of the corresponding instance of the abstract machine with the same program
and the same input. However, if any such execution contains an undefined operation, this International
Standard places no requirement on the implementation executing that program with that input (not even
with regard to operations preceding the first undefined operation).

4) Under the “as-if” rule an implementation is allowed to store two objects at the same machine address or not store an
object at all if the program cannot observe the difference (1.9).

5) This provision is sometimes called the “as-if” rule, because an implementation is free to disregard any requirement of this
International Standard as long as the result is as if the requirement had been obeyed, as far as can be determined from the
observable behavior of the program. For instance, an actual implementation need not evaluate part of an expression if it can
deduce that its value is not used and that no side effects affecting the observable behavior of the program are produced.

6) This documentation also includes conditonally-supported constructs and locale-specific behavior. See 1.4.

§1.9 7

©ISO/IEC N3092

When the processing of the abstract machine is interrupted by receipt of a signal, the values of objects which
are neither

— of type volatile std::sig_atomic_t nor
— lock-free atomic objects (29.4)

are unspecified, and the value of any object not in either of these two categories that is modified by the
handler becomes undefined.

An instance of each object with automatic storage duration (3.7.3) is associated with each entry into its
block. Such an object exists and retains its last-stored value during the execution of the block and while the
block is suspended (by a call of a function or receipt of a signal).

The least requirements on a conforming implementation are:
— Access to volatile objects are evaluated strictly according to the rules of the abstract machine.

— At program termination, all data written into files shall be identical to one of the possible results that
execution of the program according to the abstract semantics would have produced.

— The input and output dynamics of interactive devices shall take place in such a fashion that prompting
output is actually delivered before a program waits for input. What constitutes an interactive device
is implementation-defined.

These collectively are referred to as the observable behavior of the program. [Note: more stringent corre-
spondences between abstract and actual semantics may be defined by each implementation. — end note]

[Note: operators can be regrouped according to the usual mathematical rules only where the operators really
are associative or commutative.” For example, in the following fragment

int a, b;

Sk

a=a+ 32760 + b + 5;

the expression statement behaves exactly the same as

a = (((a + 32760) + b) + 5);

due to the associativity and precedence of these operators. Thus, the result of the sum (a + 32760) is next
added to b, and that result is then added to 5 which results in the value assigned to a. On a machine in which
overflows produce an exception and in which the range of values representable by an int is [-32768,+32767],
the implementation cannot rewrite this expression as

a = ((a +Db) + 32765);

since if the values for a and b were, respectively, -32754 and -15, the sum a + b would produce an exception
while the original expression would not; nor can the expression be rewritten either as

a ((a + 32765) + b);

or

a (a + (b + 32765));

7) Overloaded operators are never assumed to be associative or commutative.

10

11

12

13

©ISO/IEC N3092

since the values for a and b might have been, respectively, 4 and -8 or -17 and 12. However on a machine in
which overflows do not produce an exception and in which the results of overflows are reversible, the above
expression statement can be rewritten by the implementation in any of the above ways because the same
result will occur. — end note|

A full-expression is an expression that is not a subexpression of another expression. If a language construct
is defined to produce an implicit call of a function, a use of the language construct is considered to be an
expression for the purposes of this definition. A call to a destructor generated at the end of the lifetime of
an object other than a temporary object is an implicit full-expression. Conversions applied to the result of
an expression in order to satisfy the requirements of the language construct in which the expression appears
are also considered to be part of the full-expression.

[Example:

struct S {
S(int i): I(i) { }
int& v() { return I; }

private:
int I;
};
S s1(1); // full-expression is call of S::8(int)
S s2 = 2; // full-expression is call of S::8(int)
void £() {
if (8(3).v()) // full-expression includes lvalue-to-rvalue and
// int to bool conversions, performed before
// temporary is deleted at end of full-expression
{7
}

— end example]

[Note: the evaluation of a full-expression can include the evaluation of subexpressions that are not lexically
part of the full-expression. For example, subexpressions involved in evaluating default argument expres-
sions (8.3.6) are considered to be created in the expression that calls the function, not the expression that
defines the default argument. — end note]

Accessing an object designated by a volatile glvalue (3.10), modifying an object, calling a library I/O
function, or calling a function that does any of those operations are all side effects, which are changes in the
state of the execution environment. FEwvaluation of an expression (or a sub-expression) in general includes
both value computations (including determining the identity of an object for glvalue evaluation and fetching
a value previously assigned to an object for prvalue evaluation) and initiation of side effects. When a call
to a library I/O function returns or an access to a volatile object is evaluated the side effect is considered
complete, even though some external actions implied by the call (such as the I/0O itself) or by the volatile
access may not have completed yet.

Sequenced before is an asymmetric, transitive, pair-wise relation between evaluations executed by a single
thread (1.10), which induces a partial order among those evaluations. Given any two evaluations A and B, if
A is sequenced before B, then the execution of A shall precede the execution of B. If A is not sequenced before
B and B is not sequenced before A, then A and B are unsequenced. [Note: The execution of unsequenced

evaluations can overlap. — end note] Evaluations A and B are indeterminately sequenced when either A
is sequenced before B or B is sequenced before A, but it is unspecified which. [Note: Indeterminately
sequenced evaluations cannot overlap, but either could be executed first. — end note]

§ 1.9 9

14

15

©ISO/IEC N3092

Every value computation and side effect associated with a full-expression is sequenced before every value
computation and side effect associated with the next full-expression to be evaluated.®.

Except where noted, evaluations of operands of individual operators and of subexpressions of individual
expressions are unsequenced. [Note: In an expression that is evaluated more than once during the execution
of a program, unsequenced and indeterminately sequenced evaluations of its subexpressions need not be
performed consistently in different evaluations. — end note| The value computations of the operands of an
operator are sequenced before the value computation of the result of the operator. If a side effect on a scalar
object is unsequenced relative to either another side effect on the same scalar object or a value computation
using the value of the same scalar object, the behavior is undefined.

[Example:

void f(int, int);
void g(int i, int* v) {

i = v[i++]; // the behavior is undefined

i =7, i++, i++; // i becomes 9

i=i++ + 1; // the behavior is undefined
i=1i+1; // the value of i is incremented

£f(1i = -1, i = -1); // the behavior is undefined
}

— end example]

When calling a function (whether or not the function is inline), every value computation and side effect
associated with any argument expression, or with the postfix expression designating the called function, is
sequenced before execution of every expression or statement in the body of the called function. [Note: Value
computations and side effects associated with different argument expressions are unsequenced. — end note|
Every evaluation in the calling function (including other function calls) that is not otherwise specifically
sequenced before or after the execution of the body of the called function is indeterminately sequenced with
respect to the execution of the called function.? Several contexts in CH++ cause evaluation of a function call,
even though no corresponding function call syntax appears in the translation unit. [Ezample: Evaluation of
a new expression invokes one or more allocation and constructor functions; see 5.3.4. For another example,
invocation of a conversion function (12.3.2) can arise in contexts in which no function call syntax appears.
— end example] The sequencing constraints on the execution of the called function (as described above)
are features of the function calls as evaluated, whatever the syntax of the expression that calls the function
might be.

1.10 Multi-threaded executions and data races [intro.multithread]

A thread of execution (also known as a thread) is a single flow of control within a program, including the initial
invocation of a specific top-level function, and recursively including every function invocation subsequently
executed by the thread. [Note: when one thread creates another, the initial call to the top-level function of
the new thread is executed by the new thread, not by the creating thread. — end note] Every thread in a
program can potentially access every object and function in a program.'® Under a hosted implementation, a
C++ program can have more than one thread running concurrently. The execution of each thread proceeds
as defined by the remainder of this standard. The execution of the entire program consists of an execution of

8) As specified in 12.2; after a full-expression is evaluated, a sequence of zero or more invocations of destructor functions for
temporary objects takes place, usually in reverse order of the construction of each temporary object.
9) In other words, function executions do not interleave with each other.
10) An object with automatic or thread storage duration (3.7) is associated with one specific thread, and can be accessed by
a different thread only indirectly through a pointer or reference (3.9.2).

§ 1.10 10

©ISO/IEC N3092

all of its threads. [Note: Usually the execution can be viewed as an interleaving of all its threads. However,
some kinds of atomic operations, for example, allow executions inconsistent with a simple interleaving, as
described below. — end note] Under a freestanding implementation, it is implementation-defined whether
a program can have more than one thread of execution.

The value of an object visible to a thread T at a particular point is the initial value of the object, a value
assigned to the object by T, or a value assigned to the object by another thread, according to the rules
below. [Note: In some cases, there may instead be undefined behavior. Much of this section is motivated
by the desire to support atomic operations with explicit and detailed visibility constraints. However, it also
implicitly supports a simpler view for more restricted programs. — end note]

Two expression evaluations conflict if one of them modifies a memory location and the other one accesses or
modifies the same memory location.

The library defines a number of atomic operations (Clause 29) and operations on locks (Clause 30) that
are specially identified as synchronization operations. These operations play a special role in making as-
signments in one thread visible to another. A synchronization operation on one or more memory locations
is either a consume operation, an acquire operation, a release operation, or both an acquire and release
operation. A synchronization operation without an associated memory location is a fence and can be either
an acquire fence, a release fence, or both an acquire and release fence. In addition, there are relaxed atomic
operations, which are not synchronization operations, and atomic read-modify-write operations, which have
special characteristics. [Note: For example, a call that acquires a lock will perform an acquire operation
on the locations comprising the lock. Correspondingly, a call that releases the same lock will perform a
release operation on those same locations. Informally, performing a release operation on A forces prior side
effects on other memory locations to become visible to other threads that later perform a consume or an
acquire operation on A. “Relaxed” atomic operations are not synchronization operations even though, like
synchronization operations, they cannot contribute to data races. — end note]

All modifications to a particular atomic object M occur in some particular total order, called the modification
order of M. If A and B are modifications of an atomic object M and A happens before (as defined below) B,
then A shall precede B in the modification order of M, which is defined below. | Note: This states that the
modification orders must respect the “happens before” relationship. — end note] [Note: There is a separate
order for each atomic object. There is no requirement that these can be combined into a single total order for
all objects. In general this will be impossible since different threads may observe modifications to different
objects in inconsistent orders. — end note

A release sequence on an atomic object M is a maximal contiguous sub-sequence of side effects in the
modification order of M, where the first operation is a release, and every subsequent operation

— is performed by the same thread that performed the release, or
— is an atomic read-modify-write operation.

Certain library calls synchronize with other library calls performed by another thread. In particular, an
atomic operation A that performs a release operation on an atomic object M synchronizes with an atomic
operation B that performs an acquire operation on M and reads a value written by any side effect in
the release sequence headed by A. [Note: Except in the specified cases, reading a later value does not
necessarily ensure visibility as described below. Such a requirement would sometimes interfere with efficient
implementation. — end note] [Note: The specifications of the synchronization operations define when one
reads the value written by another. For atomic objects, the definition is clear. All operations on a given
lock occur in a single total order. Each lock acquisition “reads the value written” by the last lock release.
— end note]

An evaluation A carries a dependency to an evaluation B if

— the value of A is used as an operand of B, unless:

§1.10 11

10

11

©ISO/IEC N3092

— B is an invocation of any specialization of std::kill_dependency (29.3), or

— A is the left operand of a built-in logical AND (&&, see 5.14) or logical OR (||, see 5.15) operator,
or

— A is the left operand of a conditional (?:, see 5.16) operator, or
— A is the left operand of the built-in comma (,) operator (5.18);
or

— A writes a scalar object or bit-field M, B reads the value written by A from M, and A is sequenced
before B, or

— for some evaluation X, A carries a dependency to X, and X carries a dependency to B.

[Note: “Carries a dependency to” is a subset of “is sequenced before”, and is similarly strictly intra-thread.
— end note]

An evaluation A is dependency-ordered before an evaluation B if

— A performs a release operation on an atomic object M, and B performs a consume operation on M
and reads a value written by any side effect in the release sequence headed by A, or

— for some evaluation X, A is dependency-ordered before X and X carries a dependency to B.

[Note: The relation “is dependency-ordered before” is analogous to “synchronizes with”, but uses release/-
consume in place of release/acquire. — end note|

An evaluation A inter-thread happens before an evaluation B if
— A synchronizes with B, or
— A is dependency-ordered before B, or
— for some evaluation X
— A synchronizes with X and X is sequenced before B, or
— A is sequenced before X and X inter-thread happens before B, or
— A inter-thread happens before X and X inter-thread happens before B.

[Note: The “inter-thread happens before” relation describes arbitrary concatenations of “sequenced before”,
“synchronizes with” and “dependency-ordered before” relationships, with two exceptions. The first exception
is that a concatenation is not permitted to end with “dependency-ordered before” followed by “sequenced
before”. The reason for this limitation is that a consume operation participating in a “dependency-ordered
before” relationship provides ordering only with respect to operations to which this consume operation
actually carries a dependency. The reason that this limitation applies only to the end of such a concatenation
is that any subsequent release operation will provide the required ordering for a prior consume operation.
The second exception is that a concatenation is not permitted to consist entirely of “sequenced before”.
The reasons for this limitation are (1) to permit “inter-thread happens before” to be transitively closed and
(2) the “happens before” relation, defined below, provides for relationships consisting entirely of “sequenced
before”. — end note]

An evaluation A happens before an evaluation B if:
— A is sequenced before B, or

— A inter-thread happens before B.

§1.10 12

12

13

14

15

16

©ISO/IEC N3092

A wvisible side effect A on a scalar object or bit-field M with respect to a value computation B of M satisfies
the conditions:

— A happens before B and
— there is no other side effect X to M such that A happens before X and X happens before B.

The value of a non-atomic scalar object or bit-field M, as determined by evaluation B, shall be the value
stored by the visible side effect A. [Note: If there is ambiguity about which side effect to a non-atomic object
or bit-field is visible, then the behavior is either unspecified or undefined. — end note] [Note: This states
that operations on ordinary objects are not visibly reordered. This is not actually detectable without data
races, but it is necessary to ensure that data races, as defined here, and with suitable restrictions on the
use of atomics, correspond to data races in a simple interleaved (sequentially consistent) execution. — end
note |

The wvisible sequence of side effects on an atomic object M, with respect to a value computation B of M, is
a maximal contiguous sub-sequence of side effects in the modification order of M, where the first side effect
is visible with respect to B, and for every subsequent side effect, it is not the case that B happens before it.
The value of an atomic object M, as determined by evaluation B, shall be the value stored by some operation
in the visible sequence of M with respect to B. Furthermore, if a value computation A of an atomic object M
happens before a value computation B of M, and the value computed by A corresponds to the value stored
by side effect X, then the value computed by B shall either equal the value computed by A, or be the value
stored by side effect Y, where Y follows X in the modification order of M. [Note: This effectively disallows
compiler reordering of atomic operations to a single object, even if both operations are “relaxed” loads.
This effectively makes the “cache coherence” guarantee provided by most hardware available to C++ atomic
operations. — end note] [Note: The visible sequence depends on the “happens before” relation, which
depends on the values observed by loads of atomics, which we are restricting here. The intended reading
is that there must exist an association of atomic loads with modifications they observe that, together with
suitably chosen modification orders and the “happens before” relation derived as described above, satisfy
the resulting constraints as imposed here. — end note]

The execution of a program contains a data race if it contains two conflicting actions in different threads,
at least one of which is not atomic, and neither happens before the other. Any such data race results in
undefined behavior. [Note: It can be shown that programs that correctly use simple locks to prevent all
data races and use no other synchronization operations behave as though the executions of their constituent
threads were simply interleaved, with each observed value of an object being the last value assigned in that
interleaving. This is normally referred to as “sequential consistency”. However, this applies only to race-free
programs, and race-free programs cannot observe most program transformations that do not change single-
threaded program semantics. In fact, most single-threaded program transformations continue to be allowed,
since any program that behaves differently as a result must perform an undefined operation. — end note]

[Note: Compiler transformations that introduce assignments to a potentially shared memory location that
would not be modified by the abstract machine are generally precluded by this standard, since such an
assignment might overwrite another assignment by a different thread in cases in which an abstract machine
execution would not have encountered a data race. This includes implementations of data member assign-
ment that overwrite adjacent members in separate memory locations. Reordering of atomic loads in cases
in which the atomics in question may alias is also generally precluded, since this may violate the “visible
sequence” rules. — end note]

[Note: Transformations that introduce a speculative read of a potentially shared memory location may not
preserve the semantics of the C++ program as defined in this standard, since they potentially introduce a
data race. However, they are typically valid in the context of an optimizing compiler that targets a specific
machine with well-defined semantics for data races. They would be invalid for a hypothetical machine that
is not tolerant of races or provides hardware race detection. — end note]

§ 1.10 13

©ISO/IEC N3092

1.11 Acknowledgments [intro.ack]

1 The C++ programming language as described in this International Standard is based on the language as
described in Chapter R (Reference Manual) of Stroustrup: The C++ Programming Language (second edition,
Addison-Wesley Publishing Company, ISBN 0-201-53992-6, copyright (©1991 AT&T). That, in turn, is based
on the C programming language as described in Appendix A of Kernighan and Ritchie: The C' Programming
Language (Prentice-Hall, 1978, ISBN 0-13-110163-3, copyright ©1978 AT&T).

2 Portions of the library Clauses of this International Standard are based on work by P.J. Plauger, which was
published as The Draft Standard C++ Library (Prentice-Hall, ISBN 0-13-117003-1, copyright ©1995 P.J.
Plauger).

3 All rights in these originals are reserved.

§1.11 14

1

©ISO/IEC N3092

2 Lexical conventions [lex]

2.1 Separate translation [lex.separate]

The text of the program is kept in units called source files in this International Standard. A source file
together with all the headers (17.6.1.2) and source files included (16.2) via the preprocessing directive
#include, less any source lines skipped by any of the conditional inclusion (16.1) preprocessing directives, is
called a translation unit. [Note: a C++ program need not all be translated at the same time. — end note]

[Note: previously translated translation units and instantiation units can be preserved individually or in
libraries. The separate translation units of a program communicate (3.5) by (for example) calls to functions
whose identifiers have external linkage, manipulation of objects whose identifiers have external linkage, or
manipulation of data files. Translation units can be separately translated and then later linked to produce
an executable program (3.5). — end note]

2.2 Phases of translation [lex.phases]

The precedence among the syntax rules of translation is specified by the following phases.!!

1. Physical source file characters are mapped, in an implementation-defined manner, to the basic source
character set (introducing new-line characters for end-of-line indicators) if necessary. The set of phys-
ical source file characters accepted is implementation-defined. Trigraph sequences (2.4) are replaced
by corresponding single-character internal representations. Any source file character not in the basic
source character set (2.3) is replaced by the universal-character-name that designates that charac-
ter. (An implementation may use any internal encoding, so long as an actual extended character
encountered in the source file, and the same extended character expressed in the source file as a
universal-character-name (i.e., using the \uXXXX notation), are handled equivalently.)

2. Each instance of a backslash character (\) immediately followed by a new-line character is deleted,
splicing physical source lines to form logical source lines. Only the last backslash on any physical
source line shall be eligible for being part of such a splice. If, as a result, a character sequence that
matches the syntax of a universal-character-name is produced, the behavior is undefined. A source file
that is not empty and that does not end in a new-line character, or that ends in a new-line character
immediately preceded by a backslash character before any such splicing takes place, shall be processed
as if an additional new-line character were appended to the file.

3. The source file is decomposed into preprocessing tokens (2.5) and sequences of white-space characters
(including comments). A source file shall not end in a partial preprocessing token or in a partial com-
ment.'? Each comment is replaced by one space character. New-line characters are retained. Whether
each nonempty sequence of white-space characters other than new-line is retained or replaced by one
space character is unspecified. The process of dividing a source file’s characters into preprocessing to-
kens is context-dependent. [Ezample: see the handling of < within a #include preprocessing directive.
— end example| Within the r-char-sequence of a raw string literal, any transformations performed in
phases 1 and 2 (trigraphs, universal-character-names, and line splicing) are reverted.

11) Implementations must behave as if these separate phases occur, although in practice different phases might be folded
together.

12) A partial preprocessing token would arise from a source file ending in the first portion of a multi-character token that
requires a terminating sequence of characters, such as a header-name that is missing the closing " or >. A partial comment
would arise from a source file ending with an unclosed /* comment.

§2.2 15

©ISO/IEC N3092

4. Preprocessing directives are executed, macro invocations are expanded, and _Pragma unary operator
expressions are executed. If a character sequence that matches the syntax of a universal-character-name
is produced by token concatenation (16.3.3), the behavior is undefined. A #include preprocessing di-
rective causes the named header or source file to be processed from phase 1 through phase 4, recursively.
All preprocessing directives are then deleted.

5. Each source character set member and universal-character-name in a character literal or a string literal,
as well as each escape sequence in a character literal or a non-raw string literal, is converted to the
corresponding member of the execution character set (2.14.3, 2.14.5); if there is no corresponding
member, it is converted to an implementation-defined member other than the null (wide) character.'3

6. Adjacent string literal tokens are concatenated.

7. White-space characters separating tokens are no longer significant. Each preprocessing token is con-
verted into a token. (2.7). The resulting tokens are syntactically and semantically analyzed and trans-
lated as a translation unit. [Note: The process of analyzing and translating the tokens may occasionally
result in one token being replaced by a sequence of other tokens (14.2). — end note] [Note: Source
files, translation units and translated translation units need not necessarily be stored as files, nor need
there be any one-to-one correspondence between these entities and any external representation. The
description is conceptual only, and does not specify any particular implementation. — end note]

8. Translated translation units and instantiation units are combined as follows: [Note: some or all of
these may be supplied from a library. — end note| Each translated translation unit is examined to
produce a list of required instantiations. [Note: this may include instantiations which have been
explicitly requested (14.7.2). —end note] The definitions of the required templates are located.
It is implementation-defined whether the source of the translation units containing these definitions
is required to be available. [Note: an implementation could encode sufficient information into the
translated translation unit so as to ensure the source is not required here. — end note| All the
required instantiations are performed to produce instantiation units. [Note: these are similar to
translated translation units, but contain no references to uninstantiated templates and no template
definitions. — end note] The program is ill-formed if any instantiation fails.

9. All external entity references are resolved. Library components are linked to satisfy external references
to entities not defined in the current translation. All such translator output is collected into a program
image which contains information needed for execution in its execution environment.

2.3 Character sets [lex.charset]

1 The basic source character set consists of 96 characters: the space character, the control characters repre-
.14

senting horizontal tab, vertical tab, form feed, and new-line, plus the following 91 graphical characters:
abcdefghijklmnopgqrstuvwxyaz
ABCDEFGHIJKLMNOPQRSTUVWIXYZ
0123456789

AT #(C)<>h 0 o7+ -/ T8 | ~ =, "

13) An implementation need not convert all non-corresponding source characters to the same execution character.

14) The glyphs for the members of the basic source character set are intended to identify characters from the subset of
ISO/IEC 10646 which corresponds to the ASCII character set. However, because the mapping from source file characters to the
source character set (described in translation phase 1) is specified as implementation-defined, an implementation is required to
document how the basic source characters are represented in source files.

§2.3 16

©ISO/IEC N3092

The universal-character-name construct provides a way to name other characters.

hez-quad:

hexadecimal-digit hexadecimal-digit hexadecimal-digit hexadecimal-digit
universal-character-name:

\u hez-quad

\U hex-quad hezx-quad

The character designated by the universal-character-name \UNNNNNNNN is that character whose character
short name in ISO/IEC 10646 is NNNNNNNN; the character designated by the universal-character-name \uNNNN
is that character whose character short name in ISO/IEC 10646 is 0000NNNN. If the hexadecimal value for a
universal-character-name corresponds to a surrogate code point (in the range 0xD800-0xDFFF, inclusive),
the program is ill-formed. Additionally, if the hexadecimal value for a universal-character-name outside the
c-char-sequence, s-char-sequence, or r-char-sequence of a character or string literal corresponds to a control
character (in either of the ranges 0x00-0x1F or 0x7F-0x9F, both inclusive) or to a character in the basic
source character set, the program is ill-formed.

The basic execution character set and the basic execution wide-character set shall each contain all the
members of the basic source character set, plus control characters representing alert, backspace, and carriage
return, plus a null character (respectively, null wide character), whose representation has all zero bits. For
each basic execution character set, the values of the members shall be non-negative and distinct from one
another. In both the source and execution basic character sets, the value of each character after 0 in the
above list of decimal digits shall be one greater than the value of the previous. The execution character set
and the execution wide-character set are implementation-defined supersets of the basic execution character
set and the basic execution wide-character set, respectively. The values of the members of the execution
character sets and the sets of additional members are locale-specific.

2.4 Trigraph sequences [lex.trigraph]

Before any other processing takes place, each occurrence of one of the following sequences of three characters
(“trigraph sequences”) is replaced by the single character indicated in Table 1.

Table 1 — Trigraph sequences

’ Trigraph Replacement \ Trigraph Replacement \ Trigraph Replacement ‘

?7= # ?77([77< {
??/ \ ?7)] 77> }
v B 77! | - ~

[Example:

becomes

#define arraycheck(a,b) a[b] || blal

— end example]

No other trigraph sequence exists. Each ? that does not begin one of the trigraphs listed above is not
changed.

§2.4 17

©ISO/IEC N3092

2.5 Preprocessing tokens [lex.pptoken)]

preprocessing-token:

header-name

identifier

pp-number

character-literal

user-defined-character-literal

string-literal

user-defined-string-literal

Preprocessing-op-or-punc

each non-white-space character that cannot be one of the above
Each preprocessing token that is converted to a token (2.7) shall have the lexical form of a keyword, an
identifier, a literal, an operator, or a punctuator.

A preprocessing token is the minimal lexical element of the language in translation phases 3 through 6. The
categories of preprocessing token are: header names, identifiers, preprocessing numbers, character literals
(including user-defined character literals), string literals (including user-defined string literals), preprocessing
operators and punctuators, and single non-white-space characters that do not lexically match the other
preprocessing token categories. If a > or a " character matches the last category, the behavior is undefined.
Preprocessing tokens can be separated by white space; this consists of comments (2.8), or white-space
characters (space, horizontal tab, new-line, vertical tab, and form-feed), or both. As described in Clause 16,
in certain circumstances during translation phase 4, white space (or the absence thereof) serves as more
than preprocessing token separation. White space can appear within a preprocessing token only as part of
a header name or between the quotation characters in a character literal or string literal.

If the input stream has been parsed into preprocessing tokens up to a given character:

— if the next character begins a sequence of characters that could be the prefix and initial double quote
of a raw string literal, such as R", the next preprocessing token shall be a raw string literal;

— otherwise, the next preprocessing token is the longest sequence of characters that could constitute a
preprocessing token, even if that would cause further lexical analysis to fail.

[Example:

#define R "x"
const charx s = R"y"; // ill-formed raw string, not "x" "y"

— end example]

[Ezample: The program fragment 1Ex is parsed as a preprocessing number token (one that is not a valid
floating or integer literal token), even though a parse as the pair of preprocessing tokens 1 and Ex might
produce a valid expression (for example, if Ex were a macro defined as +1). Similarly, the program fragment
1E1 is parsed as a preprocessing number (one that is a valid floating literal token), whether or not E is a
macro name. — end ezample]

[Ezample: The program fragment x+++++y is parsed as x ++ ++ + y, which, if x and y are of built-in types,
violates a constraint on increment operators, even though the parse x ++ + ++ y might yield a correct
expression. — end example|

2.6 Alternative tokens [lex.digraph)]

Alternative token representations are provided for some operators and punctuators.'®

15) These include “digraphs” and additional reserved words. The term “digraph” (token consisting of two characters) is not

§ 2.6 18

©ISO/IEC N3092

2 In all respects of the language, each alternative token behaves the same, respectively, as its primary token,

1

except for its spelling.!® The set of alternative tokens is defined in Table 2.

Table 2 — Alternative tokens

’ Alternative Primary ‘ Alternative Primary ‘ Alternative Primary ‘

<% { and && and_eq &=
%> T bitor | or_eq |=
<: [or [xor_eq "=
>] xor - not !
% # compl ~ not_eq 1=
Hoith: ## bitand &
2.7 Tokens [lex.token]
token.:

identifier

keyword

literal

operator

punctuator

There are five kinds of tokens: identifiers, keywords, literals,!” operators, and other separators. Blanks,
horizontal and vertical tabs, newlines, formfeeds, and comments (collectively, “white space”), as described
below, are ignored except as they serve to separate tokens. [Note: Some white space is required to sepa-
rate otherwise adjacent identifiers, keywords, numeric literals, and alternative tokens containing alphabetic
characters. — end note]

2.8 Comments [lex.comment]

The characters /* start a comment, which terminates with the characters */. These comments do not
nest. The characters // start a comment, which terminates with the next new-line character. If there is a
form-feed or a vertical-tab character in such a comment, only white-space characters shall appear between it
and the new-line that terminates the comment; no diagnostic is required. | Note: The comment characters
//, /*, and */ have no special meaning within a // comment and are treated just like other characters.
Similarly, the comment characters // and /* have no special meaning within a /* comment. — end note|

2.9 Header names [lex.header]

header-name:
< h-char-sequence >
" g-char-sequence "

h-char-sequence:
h-char
h-char-sequence h-char

h-char:
any member of the source character set except new-line and >

perfectly descriptive, since one of the alternative preprocessing-tokens is %:%: and of course several primary tokens contain two
characters. Nonetheless, those alternative tokens that aren’t lexical keywords are colloquially known as “digraphs”.

16) Thus the “stringized” values (16.3.2) of [and <: will be different, maintaining the source spelling, but the tokens can
otherwise be freely interchanged.

17) Literals include strings and character and numeric literals.

§ 2.9 19

1

©ISO/IEC N3092

g-char-sequence:
g-char
g-char-sequence q-char

g-char:
any member of the source character set except new-line and "

Header name preprocessing tokens shall only appear within a #include preprocessing directive (16.2). The
sequences in both forms of header-names are mapped in an implementation-defined manner to headers or
to external source file names as specified in 16.2.

The appearance of either of the characters > or \ or of either of the character sequences /* or // in a
g-char-sequence or an h-char-sequence is conditionally supported with implementation-defined semantics, as

is the appearance of the character " in an h-char-sequence.'®
2.10 Preprocessing numbers [lex.ppnumber]|
pp-number:
digit
. digit

pp-number digit

pp-number identifier-nondigit
pp-number e sign

pp-number E sign

pp-number .

Preprocessing number tokens lexically include all integral literal tokens (2.14.2) and all floating literal to-
kens (2.14.4).

A preprocessing number does not have a type or a value; it acquires both after a successful conversion to an
integral literal token or a floating literal token.

2.11 Identifiers [lex.name]

identifier:
identifier-nondigit
identifier identifier-nondigit
identifier digit
identifier-nondigit:
nondigit
universal-character-name
other implementation-defined characters

nondigit: one of
abcdefghijklm
nopgqgrstuvwzxyz
ABCDEFGHIJKLM
NOPQRSTUVWIXYZ _
digit: one of
0123456789
An identifier is an arbitrarily long sequence of letters and digits. Each universal-character-name in an
identifier shall designate a character whose encoding in ISO 10646 falls into one of the ranges specified in
Annex A of TR 10176:2003. Upper- and lower-case letters are different. All characters are significant.!®

18) Thus, a sequence of characters that resembles an escape sequence might result in an error, be interpreted as the character
corresponding to the escape sequence, or have a completely different meaning, depending on the implementation.

19) On systems in which linkers cannot accept extended characters, an encoding of the universal-character-name may be used
in forming valid external identifiers. For example, some otherwise unused character or sequence of characters may be used to

§2.11 20

2

©ISO/IEC N3092

In addition, some identifiers are reserved for use by C++ implementations and standard libraries (17.6.3.3.2)
and shall not be used otherwise; no diagnostic is required.

2.12 Keywords [lex.key]

The identifiers shown in Table 3 are reserved for use as keywords (that is, they are unconditionally treated
as keywords in phase 7) except in an attribute-token (7.6.1) [Note: The export keyword is unused but is
reserved for future use. — end note]:

Table 3 — Keywords

alignof decltype goto reinterpret_cast try

asm default if return typedef
auto delete inline short typeid
bool do int signed typename
break double long sizeof union
case dynamic_cast mutable static unsigned
catch else namespace static_assert using
char enum new static_cast virtual
charl6_t explicit noexcept struct void
char32_t export nullptr switch volatile
class extern operator template wchar_t
const false private this while
constexpr float protected thread_local

const_cast for public throw

continue friend register true

Furthermore, the alternative representations shown in Table 4 for certain operators and punctuators (2.6)
are reserved and shall not be used otherwise:

Table 4 — Alternative representations

and and_eq Dbitand bitor compl not
not_eq or or_eq xor xor_eq
2.13 Operators and punctuators [lex.operators]

The lexical representation of C++ programs includes a number of preprocessing tokens which are used in
the syntax of the preprocessor or are converted into tokens for operators and punctuators:

preprocessing-op-or-punc: one of

{ } [] # ## ()

<: > <% %> % bhith: ; :

new delete ? H . ¥

+ - * / % - & | ~
! = < > += -= *= = %=
~= &= = << >> >>= <<= == 1=
<= >= && |l ++ - s —>% ->
and and_eq bitand bitor compl not not_eq

or or_eq xor xor_eq

encode the \u in a universal-character-name. Extended characters may produce a long external identifier, but C++ does not
place a translation limit on significant characters for external identifiers. In C++, upper- and lower-case letters are considered
different for all identifiers, including external identifiers.

§2.13 21

©ISO/IEC N3092

Each preprocessing-op-or-punc is converted to a single token in translation phase 7 (2.2).

2.14 Literals [lex.literal]
2.14.1 Kinds of literals [lex.literal.kinds]

There are several kinds of literals.2?

literal:
integer-literal
character-literal
floating-literal
string-literal
boolean-literal
pointer-literal
user-defined-literal

2.14.2 Integer literals [lex.icon]

integer-literal:
decimal-literal integer-suffizop:
octal-literal integer-suffizop:
hezadecimal-literal integer-suffizop:

decimal-literal:
nonzero-digit
decimal-literal digit

octal-literal:
0
octal-literal octal-digit

hezadecimal-literal:
0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-literal hexadecimal-digit

nonzero-digit: one of
123456789

octal-digit: one of
01234567

hezxadecimal-digit: one of
0123456789
abcdef
ABCDEF
integer-suffix:
unsigned-suffiz long-suffizop:
unsigned-suffiz long-long-suffizop:
long-suffiz unsigned-suffizop:
long-long-suffix unsigned-suffizop:
unsigned-suffiz: one of
ul
long-suffiz: one of
1L
long-long-suffix: one of
11 LL

20) The term “literal” generally designates, in this International Standard, those tokens that are called “constants” in ISO C.

§ 2.14.2 22

©ISO/IEC N3092

An integer literal is a sequence of digits that has no period or exponent part. An integer literal may have
a prefix that specifies its base and a suffix that specifies its type. The lexically first digit of the sequence
of digits is the most significant. A decimal integer literal (base ten) begins with a digit other than 0 and
consists of a sequence of decimal digits. An octal integer literal (base eight) begins with the digit 0 and
consists of a sequence of octal digits.?! A heradecimal integer literal (base sixteen) begins with 0x or 0X and
consists of a sequence of hexadecimal digits, which include the decimal digits and the letters a through f
and A through F with decimal values ten through fifteen. [Ezample: the number twelve can be written 12,
014, or 0XC. — end example]

The type of an integer literal is the first of the corresponding list in Table 5 in which its value can be
represented.

Table 5 — Types of integer constants

Suffix Decimal constant Octal or hexadecimal constant
none int int
long int unsigned int
long long int long int
unsigned long int
long long int
unsigned long long int
uorU unsigned int unsigned int
unsigned long int unsigned long int
unsigned long long int | unsigned long long int
lorlL long int long int
long long int unsigned long int
long long int
unsigned long long int
BothuorU | unsigned long int unsigned long int
and 1 or L unsigned long long int | unsigned long long int
11 or LL long long int long long int
unsigned long int
BothuorU | unsigned long long int | unsigned long long int
and 11 or LL

3 If an integer literal cannot be represented by any type in its list and an extended integer type can represent

its value, it may have that extended integer type. If all of the types in the list for the literal are signed, the
extended integer type shall be signed. If all of the types in the list for the literal are unsigned, the extended
integer type shall be unsigned. If the list contains both signed and unsigned types, the extended integer
type may be signed or unsigned. A program is ill-formed if one of its translation units contains an integer
literal that cannot be represented by any of the allowed types.

2.14.3 Character literals [lex.ccon]

character-literal:
> c-char-sequence °
u’ c-char-sequence °’
U’ c-char-sequence ’
L’ c-char-sequence ’

21) The digits 8 and 9 are not octal digits.

§2.14.3 23

1

©ISO/IEC N3092

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any member of the source character set except
the single-quote ’, backslash \, or new-line character
escape-sequence
universal-character-name
escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

stmple-escape-sequence: one of

VA N7\

\a \o \Mf \n \r \t \v
octal-escape-sequence:

\ octal-digit

\ octal-digit octal-digit

\ octal-digit octal-digit octal-digit
hexadecimal-escape-sequence:

\x hezxadecimal-digit

hexadecimal-escape-sequence hexadecimal-digit

A character literal is one or more characters enclosed in single quotes, as in ’x’, optionally preceded by
one of the letters u, U, or L, as in u’y’, U’z’, or L’x’, respectively. A character literal that does not begin
with u, U, or L is an ordinary character literal, also referred to as a narrow-character literal. An ordinary
character literal that contains a single c-char has type char, with value equal to the numerical value of the
encoding of the c-char in the execution character set. An ordinary character literal that contains more than
one c-char is a multicharacter literal. A multicharacter literal has type int and implementation-defined
value.

A character literal that begins with the letter u, such as u’y’, is a character literal of type char16_t. The
value of a char16_t literal containing a single c-char is equal to its ISO 10646 code point value, provided that
the code point is representable with a single 16-bit code unit. (That is, provided it is a basic multi-lingual
plane code point.) If the value is not representable within 16 bits, the program is ill-formed. A char16_t
literal containing multiple c-chars is ill-formed. A character literal that begins with the letter U, such as
U’z’, is a character literal of type char32_t. The value of a char32_t literal containing a single c-char is
equal to its ISO 10646 code point value. A char32_t literal containing multiple c-chars is ill-formed. A
character literal that begins with the letter L, such as L’x’, is a wide-character literal. A wide-character
literal has type wchar_t.?2 The value of a wide-character literal containing a single c-char has value equal
to the numerical value of the encoding of the c-char in the execution wide-character set, unless the c-char
has no representation in the execution wide-character set, in which case the value is implementation-defined.
[Note: the type wchar_t is able to represent all members of the execution wide-charater set (see 3.9.1).
— end note]. The value of a wide-character literal containing multiple c-chars is implementation-defined.

Certain nongraphic characters, the single quote ’, the double quote ", the question mark 7,23 and the
backslash \, can be represented according to Table 6. The double quote " and the question mark 7, can
be represented as themselves or by the escape sequences \" and \? respectively, but the single quote ’
and the backslash \ shall be represented by the escape sequences \’ and \\ respectively. Escape sequences

22) They are intended for character sets where a character does not fit into a single byte.
23) Using an escape sequence for a question mark can avoid accidentally creating a trigraph.

§2.14.3 24

©ISO/IEC N3092

in which the character following the backslash is not listed in Table 6 are conditionally-supported, with
implementation-defined semantics. An escape sequence specifies a single character.

Table 6 — Escape sequences

new-line NL(LF) \n
horizontal tab ~ HT \t
vertical tab VT \v
backspace BS \b
carriage return CR \r
form feed FF \f
alert BEL \a
backslash \ \\
question mark 7 \?
single quote ’ \?
double quote " \"
octal number 000 \ooo
hex number hhh \xhhh

4 The escape \ooo consists of the backslash followed by one, two, or three octal digits that are taken to specify
the value of the desired character. The escape \xhhh consists of the backslash followed by x followed by one
or more hexadecimal digits that are taken to specify the value of the desired character. There is no limit to
the number of digits in a hexadecimal sequence. A sequence of octal or hexadecimal digits is terminated by
the first character that is not an octal digit or a hexadecimal digit, respectively. The value of a character
literal is implementation-defined if it falls outside of the implementation-defined range defined for char (for
literals with no prefix), char16_t (for literals prefixed by ’u’), char32_t (for literals prefixed by *U’), or
wchar_t (for literals prefixed by ’L”).

5 A universal-character-name is translated to the encoding, in the appropriate execution character set, of the
character named. If there is no such encoding, the universal-character-name is translated to an implementation-
defined encoding. [Note: in translation phase 1, a universal-character-name is introduced whenever an actual
extended character is encountered in the source text. Therefore, all extended characters are described in
terms of universal-character-names. However, the actual compiler implementation may use its own native
character set, so long as the same results are obtained. — end note |

2.14.4 Floating literals [lex.fcon)]

floating-literal:
fractional-constant exponent-partop: floating-suffizop:
digit-sequence exponent-part floating-suffizopt

fractional-constant:
digit-sequenceop: . digit-sequence
digit-sequence .
exponent-part:
e signop: digit-sequence
E signop: digit-sequence
sign: one of
+ -
digit-sequence:
digit
digit-sequence digit

§2.14.4 25

©ISO/IEC N3092

floating-suffiz: one of
f1FL

A floating literal consists of an integer part, a decimal point, a fraction part, an e or E, an optionally signed
integer exponent, and an optional type suffix. The integer and fraction parts both consist of a sequence of
decimal (base ten) digits. Either the integer part or the fraction part (not both) can be omitted; either the
decimal point or the letter e (or E) and the exponent (not both) can be omitted. The integer part, the
optional decimal point and the optional fraction part form the significant part of the floating literal. The
exponent, if present, indicates the power of 10 by which the significant part is to be scaled. If the scaled
value is in the range of representable values for its type, the result is the scaled value if representable, else the
larger or smaller representable value nearest the scaled value, chosen in an implementation-defined manner.
The type of a floating literal is double unless explicitly specified by a suffix. The suffixes f and F specify
float, the suffixes 1 and L specify long double. If the scaled value is not in the range of representable
values for its type, the program is ill-formed.

2.14.5 String literals [lex.string]

string-literal:
encoding-prefitop: " s-char-sequenceop; "
encoding-prefitop: R raw-string

encoding-prefix:
u8
u
U
L

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source character set except
the double-quote ", backslash \, or new-line character
escape-sequence
universal-character-name

raw-string:
" d-char-sequence,p: (T-char-sequenceop:) d-char-sequenceop: "

r-char-sequence:
r-char
r-char-sequence r-char

r-char:
any member of the source character set, except
a right parenthesis) followed by the initial d-char-sequence
(which may be empty) followed by a double quote ".

d-char-sequence:
d-char
d-char-sequence d-char

d-char:
any member of the basic source character set except:
space, the left parenthesis (, the right parenthesis), the backslash \,
and the control characters representing horizontal tab,
vertical tab, form feed, and newline.

§ 2.14.5 26

10

11

12

©ISO/IEC N3092

A string literal is a sequence of characters (as defined in 2.14.3) surrounded by double quotes, optionally
prefixed by R, u8, u8R, u, uR, U, UR, L, or LR, as in "...", R"(...)", u8"..." uBR"*x (...)xx" u"...",
uR"*~ (..)*%~" U"..." UR"zzz(...)zzz", L"..." or LR"(...)", respectively.

A string literal that has an R in the prefix is a raw string literal. The d-char-sequence serves as a delimiter.
The terminating d-char-sequence of a raw-string is the same sequence of characters as the initial d-char-
sequence. A d-char-sequence shall consist of at most 16 characters.?*

[Note: The characters ’ (> and ’)’ are permitted in a raw-string. Thus, R"delimiter((alb))delimiter"
is equivalent to "(alb)". — end note]

[Note: A source-file new-line in a raw string literal results in a new-line in the resulting execution string-
literal. Assuming no whitespace at the beginning of lines in the following example, the assert will succeed:

const char *p = R"(a\

b

"

assert(std::strcmp(p, "a\\\nb\nc") == 0);

— end note]

After translation phase 6, a string literal that does not begin with an encoding-prefiz is an ordinary string
literal, and is initialized with the given characters.

A string literal that begins with u8, such as u8"asdf", is a UTF-8 string literal and is initialized with the
given characters as encoded in UTF-8.

Ordinary string literals and UTF-8 string literals are also referred to as narrow string literals. A narrow
string literal has type “array of n const char”, where n is the size of the string as defined below, and has
static storage duration (3.7).

A string literal that begins with u, such as u"asdf", is a char16_t string literal. A char16_t string literal
has type “array of n const chari16_t”, where n is the size of the string as defined below; it has static storage
duration and is initialized with the given characters. A single c¢-char may produce more than one char16_t
character in the form of surrogate pairs.

A string literal that begins with U, such as U"asdf", is a char32_t string literal. A char32_t string literal
has type “array of n const char32_t”, where n is the size of the string as defined below; it has static storage
duration and is initialized with the given characters.

A string literal that begins with L, such as L"asdf", is a wide string literal. A wide string literal has type
“array of n const wchar_t”, where n is the size of the string as defined below; it has static storage duration
and is initialized with the given characters.

Whether all string literals are distinct (that is, are stored in nonoverlapping objects) is implementation-
defined. The effect of attempting to modify a string literal is undefined.

In translation phase 6 (2.2), adjacent string literals are concatenated. If both string literals have the same
encoding-prefir, the resulting concatenated string literal has that encoding-prefiz. If one string literal has
no encoding-prefix, it is treated as a string literal of the same encoding-prefix as the other operand. If a
UTF-8 string literal token is adjacent to a wide string literal token, the program is ill-formed. Any other
concatenations are conditionally supported with implementation-defined behavior. [Note: This concatena-
tion is an interpretation, not a conversion. Because the interpretation happens in translation phase 6 (after
each character from a literal has been translated into a value from the appropriate character set), a string

§ 2.14.5 27

13

14

©ISO/IEC N3092

Table 7 — String literal concatenations

Source Means Source Means Source Means
ulIall ullbll ullabﬂ Ullall Ullbll Ullabll Lllall Lllbll Lllabll
ullall ||bl| ullabll Ullall |Ibl| Ullabll Lllall Ilbll Lllabll
||al| ullbll ullabll ||al| U||b|l U||abll Ilall Lllbll Lllabll

literal’s initial rawness has no effect on the interpretation or well-formedness of the concatenation. — end
note| Table 7 has some examples of valid concatenations.

Characters in concatenated strings are kept distinct.
[Ezample:
"\XA" IIBI|

contains the two characters *\xA’ and ’B’ after concatenation (and not the single hexadecimal character
’\xAB’). — end example]

After any necessary concatenation, in translation phase 7 (2.2), >\0’ is appended to every string literal so
that programs that scan a string can find its end.

Escape sequences and universal-character-names in non-raw string literals have the same meaning as in
character literals (2.14.3), except that the single quote ’ is representable either by itself or by the escape
sequence \’, and the double quote " shall be preceded by a \. In a narrow string literal, a universal-character-
name may map to more than one char element due to multibyte encoding. The size of a char32_t or wide
string literal is the total number of escape sequences, universal-character-names, and other characters, plus
one for the terminating U°\0’ or L’\0’. The size of a char16_t string literal is the total number of escape
sequences, universal-character-names, and other characters, plus one for each character requiring a surrogate
pair, plus one for the terminating u’\0’. [Note: The size of a char16_t string literal is the number of code
units, not the number of characters. — end note] Within char32_t and char16_t literals, any universal-
character-names shall be within the range 0x0 to 0x10FFFF. The size of a narrow string literal is the total
number of escape sequences and other characters, plus at least one for the multibyte encoding of each
universal-character-name, plus one for the terminating >\0’.

2.14.6 Boolean literals [lex.bool]
boolean-literal:
false
true

The Boolean literals are the keywords false and true. Such literals are prvalues and have type bool.
2.14.7 Pointer literals [lex.nullptr]

pointer-literal:
nullptr

24) Use of characters with trigraph equivalents in a d-char-sequence may produce unintended results.

§ 2.14.7 28

1

1

©ISO/IEC N3092

The pointer literal is the keyword nullptr. It is a prvalue of type std: :nullptr_t.
2.14.8 User-defined literals [lex.ext]

user-defined-literal:
user-defined-integer-literal
user-defined-floating-literal
user-defined-string-literal
user-defined-character-literal
user-defined-integer-literal:
decimal-literal ud-suffiz
octal-literal ud-suffix
hexadecimal-literal ud-suffix
user-defined-floating-literal:
fractional-constant exponent-partop: ud-suffic
digit-sequence exponent-part ud-suffix
user-defined-string-literal:
string-literal ud-suffiz
user-defined-character-literal:
character-literal ud-suffix
ud-suffix:
identifier
If a token matches both user-defined-literal and another literal kind, it is treated as the latter. [Ezample:
123_km, 1.2LL, "Hello"s are all user-defined-literals, but 12LL is an integer-literal. — end example]

A user-defined-literal is treated as a call to a literal operator or literal operator template (13.5.8). To
determine the form of this call for a given user-defined-literal L with wud-suffiz X, the literal-operator-id
whose literal suffix identifier is X is looked up in the context of L using the rules for unqualified name
lookup (3.4.1). Let S be the set of declarations found by this lookup. S shall not be empty.

If L is a user-defined-integer-literal, let n be the literal without its ud-suffix. If S contains a literal operator
with parameter type unsigned long long, the literal L is treated as a call of the form

operator "" X (n ULL)
Otherwise, S shall contain a raw literal operator or a literal operator template (13.5.8) but not both. If S

contains a raw literal operator the literal L is treated as a call of the form

operator "" X ("n")

Otherwise (S contains a literal operator template), L is treated as a call of the form

operator "" X <’ci’, ’c2’, ... ’ci’>(Q)
where n is the source character sequence c¢jca...ck. [Note: the sequence c¢jca...c; can only contain characters
from the basic source character set. — end note]

If L is a user-defined-floating-literal, let f be the literal without its ud-suffiz. If S contains a literal operator
with parameter type long double, the literal L is treated as a call of the form

operator "" X (f L)

Otherwise, S shall contain a raw literal operator or a literal operator template (13.5.8) but not both. If S
contains a raw literal operator the literal L is treated as a call of the form

operator nn X (ufu)

§2.14.8 29

©ISO/IEC N3092

Otherwise (S contains a literal operator template), L is treated as a call of the form
operator "" X <’ci’, ’c2’, ... ’ci’>(Q)

where f is the source character sequence cjcs...ck. [Note: the sequence ¢qcs...cp, can only contain characters
from the basic source character set. — end note]

If L is a user-defined-string-literal, let str be the literal without its ud-suffix and let len be the number of

code units in str (i.e., its length excluding the terminating null character). The literal L is treated as a call
of the form

operator "" X (str , len)
If L is a user-defined-character-literal, let ch be the literal without its ud-suffiz. The literal L is treated as
a call of the form

operator "" X (ch)

[Example:
long double operator "" w(long double);
std: :string operator "" w(const charl6_t*, size_t);
unsigned operator "" w(const charx);
int main() {
1.2w; // calls operator "" w(1.2L)
u"one"w; // calls operator "" w(u"one", 3)
12w; // calls operator "" w("12")
"two"w; // error: no applicable literal operator
}

— end example]

In translation phase 6 (2.2), adjacent string literals are concatenated and user-defined-string-literals are
considered string literals for that purpose. During concatenation, ud-suffizes are removed and ignored and
the concatenation process occurs as described in 2.14.5. At the end of phase 6, if a string literal is the result
of a concatenation involving at lease one user-defined-string-literal, all the participating user-defined-string-
literals shall have the same ud-suffiz and that suffix is applied to the result of the concatenation.

[Example:

int main() {

L"A" "B" "C"x; // OK: same as L"ABC"x

"P"x "Q" "R"y; // error: two different ud-suffizes
}

— end example]

§2.14.8 30

©ISO/IEC N3092

3 Basic concepts [basic]

[Note: this Clause presents the basic concepts of the C++ language. It explains the difference between an
object and a mame and how they relate to the value categories for expressions. It introduces the concepts
of a declaration and a definition and presents C++’s notion of type, scope, linkage, and storage duration.
The mechanisms for starting and terminating a program are discussed. Finally, this Clause presents the
fundamental types of the language and lists the ways of constructing compound types from these. — end
note |

[Note: this Clause does not cover concepts that affect only a single part of the language. Such concepts are
discussed in the relevant Clauses. — end note]

An entity is a value, object, reference, function, enumerator, type, class member, template, template spe-
cialization, namespace, parameter pack, or this.

A name is a use of an identifier (2.11), operator-function-id (13.5), literal-operator-id (13.5.8), conversion-
function-id (12.3.2), or template-id (14.2) that denotes an entity or label (6.6.4, 6.1).

Every name that denotes an entity is introduced by a declaration. Every name that denotes a label is
introduced either by a goto statement (6.6.4) or a labeled-statement (6.1).

A wariable is introduced by the declaration of a reference other than a non-static data member or of an
object. The variable’s name denotes the reference or object.

Some names denote types or templates. In general, whenever a name is encountered it is necessary to
determine whether that name denotes one of these entities before continuing to parse the program that
contains it. The process that determines this is called name lookup (3.4).

Two names are the same if
— they are identifiers composed of the same character sequence, or
— they are operator-function-ids formed with the same operator, or
— they are conversion-function-ids formed with the same type, or
— they are template-ids that refer to the same class or function (14.4), or
— they are the names of literal operators (13.5.8) formed with the same literal suffix identifier.

A name used in more than one translation unit can potentially refer to the same entity in these translation
units depending on the linkage (3.5) of the name specified in each translation unit.

3.1 Declarations and definitions [basic.def]

A declaration (Clause 7) introduces names into a translation unit or redeclares names introduced by previous
declarations. A declaration specifies the interpretation and attributes of these names.

A declaration is a definition unless it declares a function without specifying the function’s body (8.4), it
contains the extern specifier (7.1.1) or a linkage-specification® (7.5) and neither an initializer nor a function-
body, it declares a static data member in a class definition (9.4), it is a class name declaration (9.1), it is

25) Appearing inside the braced-enclosed declaration-seq in a linkage-specification does not affect whether a declaration is a
definition.

§3.1 31

©ISO/IEC N3092

an opaque-enum-declaration (7.2), or it is a typedef declaration (7.1.3), a using-declaration (7.3.3), or a
using-directive (7.3.4).

[Ezample: all but one of the following are definitions:

int a; // defines a
extern const int ¢ = 1; // defines c
int f(int x) { return x+a; } // defines £ and defines x
struct S { int a; int b; }; // defines S, S::a, and S::b
struct X { // defines X
int x; // defines non-static data member x
static int y; // declares static data member y
XO: x0) {2 // defines a constructor of X
};
int X::y = 1; // defines X::y
enum { up, down }; // defines up and down
namespace N { int d; } // defines N and N: :d
namespace N1 = N; // defines N1
X anX; // defines anX

whereas these are just declarations:

extern int a; // declares a
extern comnst int c; // declares ¢

int f(int); // declares £

struct S; // declares S
typedef int Int; // declares Int
extern X anotherX; // declares anotherX
using N::d; // declares N: :d

— end example]

[Note: In some circumstances, C++ implementations implicitly define the default constructor (12.1), copy
constructor (12.8), move constructor (12.8), copy assignment operator (12.8), move assignment opera-
tor (12.8), or destructor (12.4) member functions. — end note] [Example: given

#include <string>

struct C {
std::string s; // std::string is the standard library class (Clause 21)
};
int main() {
C a;
Cb=aj;
b = a;
}

the implementation will implicitly define functions to make the definition of C equivalent to

struct C {
std::string s;
cO :sO {13}

C(const C& x): s(x.s) { }
C(C&& x): s(static_cast<std::string&&>(x.s)) { }
// ¢ s(std::move(x.s)) { }

C& operator=(const C& x) { s = x.s; return *this; }

§3.1 32

©ISO/IEC N3092

C& operator=(C&% x) { s = static_cast<std::string&&>(x.s); return *this; }
//{ s = std::move(x.s); return *this; }

cO {1}

};

— end example]
[Note: a class name can also be implicitly declared by an elaborated-type-specifier (7.1.6.3). — end note]

A program is ill-formed if the definition of any object gives the object an incomplete type (3.9).
3.2 One definition rule [basic.def.odr]

No translation unit shall contain more than one definition of any variable, function, class type, enumeration
type, or template.

An expression is potentially evaluated unless it is an unevaluated operand (Clause 5) or a subexpression
thereof. A variable or non-overloaded function whose name appears as a potentially-evaluated expression
is used unless it is an object that satisfies the requirements for appearing in a constant expression (5.19)
and the lvalue-to-rvalue conversion (4.1) is immediately applied. this is used if it appears as a potentially-
evaluated expression (including as the result of the implicit transformation in the body of a non-static member
function (9.3.1)). A virtual member function is used if it is not pure. An overloaded function is used if it
is selected by overload resolution when referred to from a potentially-evaluated expression. [Note: this
covers calls to named functions (5.2.2), operator overloading (Clause 13), user-defined conversions (12.3.2),
allocation function for placement new (5.3.4), as well as non-default initialization (8.5). A copy constructor or
move constructor is used even if the call is actually elided by the implementation. — end note] An allocation
or deallocation function for a class is used by a new expression appearing in a potentially-evaluated expression
as specified in 5.3.4 and 12.5. A deallocation function for a class is used by a delete expression appearing in
a potentially-evaluated expression as specified in 5.3.5 and 12.5. A non-placement allocation or deallocation
function for a class is used by the definition of a constructor of that class. A non-placement deallocation
function for a class is used by the definition of the destructor of that class, or by being selected by the lookup
at the point of definition of a virtual destructor (12.4).26 A copy-assignment function for a class is used
by an implicitly-defined copy-assignment function for another class as specified in 12.8. A move-assignment
function for a class is used by an implicitly-defined move-assignment function for another class as specified
in 12.8. A default constructor for a class is used by default initialization or value initialization as specified
in 8.5. A constructor for a class is used as specified in 8.5. A destructor for a class is used as specified
in 12.4.

Every program shall contain exactly one definition of every non-inline function or variable that is used in
that program; no diagnostic required. The definition can appear explicitly in the program, it can be found
in the standard or a user-defined library, or (when appropriate) it is implicitly defined (see 12.1, 12.4 and
12.8). An inline function shall be defined in every translation unit in which it is used.

Exactly one definition of a class is required in a translation unit if the class is used in a way that requires the
class type to be complete. [Example: the following complete translation unit is well-formed, even though it
never defines X:

struct X; // declare X as a struct type
struct X* x1; // use X in pointer formation
X* x2; // use X in pointer formation

— end example] [Note: the rules for declarations and expressions describe in which contexts complete class
types are required. A class type T must be complete if:

26) An implementation is not required to call allocation and deallocation functions from constructors or destructors; however,
this is a permissible implementation technique.

§ 3.2 33

©ISO/IEC N3092

an object of type T is defined (3.1), or

a non-static class data member of type T is declared (9.2), or

T is used as the object type or array element type in a new-expression (5.3.4), or

an lvalue-to-rvalue conversion is applied to a glvalue referring to an object of type T (4.1), or

an expression is converted (either implicitly or explicitly) to type T (Clause 4, 5.2.3, 5.2.7, 5.2.9, 5.4),
or

an expression that is not a null pointer constant, and has type other than voidx, is converted to the
type pointer to T or reference to T using an implicit conversion (Clause 4), a dynamic_cast (5.2.7) or
a static_cast (5.2.9), or

a class member access operator is applied to an expression of type T (5.2.5), or

the typeid operator (5.2.8) or the sizeof operator (5.3.3) is applied to an operand of type T, or
a function with a return type or argument type of type T is defined (3.1) or called (5.2.2), or

a class with a base class of type T is defined (10), or

an lvalue of type T is assigned to (5.17), or

the type T is the subject of an alignof expression (5.3.6), or

an exception-declaration has type T, reference to T, or pointer to T (15.3).

— end note]

There can be more than one definition of a class type (Clause 9), enumeration type (7.2), inline function with
external linkage (7.1.2), class template (Clause 14), non-static function template (14.5.6), static data member
of a class template (14.5.1.3), member function of a class template (14.5.1.1), or template specialization for
which some template parameters are not specified (14.7, 14.5.5) in a program provided that each definition
appears in a different translation unit, and provided the definitions satisfy the following requirements. Given
such an entity named D defined in more than one translation unit, then

each definition of D shall consist of the same sequence of tokens; and

in each definition of D, corresponding names, looked up according to 3.4, shall refer to an entity defined
within the definition of D, or shall refer to the same entity, after overload resolution (13.3) and after
matching of partial template specialization (14.8.3), except that a name can refer to a const object
with internal or no linkage if the object has the same literal type in all definitions of D, and the object
is initialized with a constant expression (5.19), and the value (but not the address) of the object is
used, and the object has the same value in all definitions of D; and

in each definition of D, the overloaded operators referred to, the implicit calls to conversion functions,
constructors, operator new functions and operator delete functions, shall refer to the same function,
or to a function defined within the definition of D; and

in each definition of D, a default argument used by an (implicit or explicit) function call is treated as
if its token sequence were present in the definition of D; that is, the default argument is subject to
the three requirements described above (and, if the default argument has sub-expressions with default
arguments, this requirement applies recursively).?”

if D is a class with an implicitly-declared constructor (12.1), it is as if the constructor was implicitly
defined in every translation unit where it is used, and the implicit definition in every translation unit
shall call the same constructor for a base class or a class member of D. [Ezample:

27) 8.3.6 describes how default argument names are looked up.

§ 3.2

34

©ISO/IEC N3092

//translation unit 1:
struct X {
X(int);
X(int, int);
};
X::X(dnt = 0) { }
class D: public X { };
D d2; // X(int) called by DO

//translation unit 2:
struct X {
X(int);
X(int, int);
};
X::X(int = 0, int 0 {1
class D: public X { }; // X(int, int) called by DO);
// DO ’s implicit definition
// violates the ODR

— end example]

If D is a template and is defined in more than one translation unit, then the last four requirements from the
list above shall apply to names from the template’s enclosing scope used in the template definition (14.6.3),
and also to dependent names at the point of instantiation (14.6.2). If the definitions of D satisfy all these
requirements, then the program shall behave as if there were a single definition of D. If the definitions of D
do not satisfy these requirements, then the behavior is undefined.

3.3 Scope [basic.scope]

3.3.1 Declarative regions and scopes [basic.scope.declarative]

Every name is introduced in some portion of program text called a declarative region, which is the largest part
of the program in which that name is valid, that is, in which that name may be used as an unqualified name
to refer to the same entity. In general, each particular name is valid only within some possibly discontiguous
portion of program text called its scope. To determine the scope of a declaration, it is sometimes convenient
to refer to the potential scope of a declaration. The scope of a declaration is the same as its potential scope
unless the potential scope contains another declaration of the same name. In that case, the potential scope
of the declaration in the inner (contained) declarative region is excluded from the scope of the declaration
in the outer (containing) declarative region.
[Ezample: in
int j = 24;
int main() {
int 1 = j, j;
J =42
}

the identifier j is declared twice as a name (and used twice). The declarative region of the first j includes
the entire example. The potential scope of the first j begins immediately after that j and extends to the
end of the program, but its (actual) scope excludes the text between the , and the }. The declarative region
of the second declaration of j (the j immediately before the semicolon) includes all the text between { and
}, but its potential scope excludes the declaration of i. The scope of the second declaration of j is the same
as its potential scope. — end example |

§3.3.1 35

©ISO/IEC N3092

The names declared by a declaration are introduced into the scope in which the declaration occurs, except
that the presence of a friend specifier (11.4), certain uses of the elaborated-type-specifier (7.1.6.3), and
using-directives (7.3.4) alter this general behavior.

Given a set of declarations in a single declarative region, each of which specifies the same unqualified name,
— they shall all refer to the same entity, or all refer to functions and function templates; or

— exactly one declaration shall declare a class name or enumeration name that is not a typedef name
and the other declarations shall all refer to the same variable or enumerator, or all refer to functions
and function templates; in this case the class name or enumeration name is hidden (3.3.10). [Note: a
namespace name or a class template name must be unique in its declarative region (7.3.2, Clause 14).
— end note]

[Note: these restrictions apply to the declarative region into which a name is introduced, which is not neces-
sarily the same as the region in which the declaration occurs. In particular, elaborated-type-specifiers (7.1.6.3)
and friend declarations (11.4) may introduce a (possibly not visible) name into an enclosing namespace; these
restrictions apply to that region. Local extern declarations (3.5) may introduce a name into the declarative
region where the declaration appears and also introduce a (possibly not visible) name into an enclosing

namespace; these restrictions apply to both regions. — end note]
[Note: the name lookup rules are summarized in 3.4. — end note]
3.3.2 Point of declaration [basic.scope.pdecl]

The point of declaration for a name is immediately after its complete declarator (Clause 8) and before its
initializer (if any), except as noted below. [Ezample:

int x = 12;
{ int x = x; }
Here the second x is initialized with its own (indeterminate) value. — end example]

[Note: a name from an outer scope remains visible up to the point of declaration of the name that hides
it.[Example:

const int i = 2;
{ int ilil; }
declares a block-scope array of two integers. — end example] — end note]

The point of declaration for a class or class template first declared by a class-specifier is immediately after
the identifier or simple-template-id (if any) in its class-head (Clause 9). The point of declaration for an
enumeration is immediately after the identifier (if any) in either its enum-specifier (7.2) or its first opaque-
enum-declaration (7.2), whichever comes first. The point of declaration of a template alias immediately
follows the identifier for the alias being declared.

The point of declaration for an enumerator is immediately after its enumerator-definition.| Example:
const int x = 12;
{enum { x=x3}; }

Here, the enumerator x is initialized with the value of the constant x, namely 12. — end ezample]

After the point of declaration of a class member, the member name can be looked up in the scope of its
class. [Note: this is true even if the class is an incomplete class. For example,

§3.3.2 36

6

10

11

©ISO/IEC N3092

struct X {

enum E { z = 16 };

int b[X::z]; // OK
};

— end note]
The point of declaration of a class first declared in an elaborated-type-specifier is as follows:
— for a declaration of the form
class-key attribute-specifieroy: identifier ;
the identifier is declared to be a class-name in the scope that contains the declaration, otherwise
— for an elaborated-type-specifier of the form
class-key identifier

if the elaborated-type-specifier is used in the decl-specifier-seq or parameter-declaration-clause of a
function defined in namespace scope, the identifier is declared as a class-name in the namespace that
contains the declaration; otherwise, except as a friend declaration, the identifier is declared in the
smallest non-class, non-function-prototype scope that contains the declaration. [Note: these rules also
apply within templates. — end note] [Note: other forms of elaborated-type-specifier do not declare a
new name, and therefore must refer to an existing type-name. See 3.4.4 and 7.1.6.3. — end note]

The point of declaration for an injected-class-name (9) is immediately following the opening brace of the
class definition.

The point of declaration for a function-local predefined variable (8.4) is immediately before the function-body
of a function definition.

The point of declaration for a template parameter is immediately after its complete template-parameter.
[Ezample:

typedef unsigned char T;
template<class T
=T // lookup finds the typedef name of unsigned char
, T // lookup finds the template parameter
N = 0> struct A { };

— end example]

[Note: friend declarations refer to functions or classes that are members of the nearest enclosing namespace,
but they do not introduce new names into that namespace (7.3.1.2). Function declarations at block scope
and variable declarations with the extern specifier at block scope refer to declarations that are members of
an enclosing namespace, but they do not introduce new names into that scope. — end note |

[Note: for point of instantiation of a template, see 14.6.4.1. — end note]

3.3.3 Block scope [basic.scope.local]

A name declared in a block (6.3) is local to that block; it has block scope. Its potential scope begins at its
point of declaration (3.3.2) and ends at the end of its block. A variable declared at block scope is a local
variable.

The potential scope of a function parameter name (including one appearing in a lambda-declarator) or of
a function-local predefined variable in a function definition (8.4) begins at its point of declaration. If the

§3.3.3 37

©ISO/IEC N3092

function has a function-try-block the potential scope of a parameter or of a function-local predefined variable
ends at the end of the last associated handler, otherwise it ends at the end of the outermost block of
the function definition. A parameter name shall not be redeclared in the outermost block of the function
definition nor in the outermost block of any handler associated with a function-try-block.

The name declared in an exception-declaration is local to the handler and shall not be redeclared in the
outermost block of the handler.

Names declared in the for-init-statement, the for-range-declaration, and in the condition of if, while, for,
and switch statements are local to the if, while, for, or switch statement (including the controlled
statement), and shall not be redeclared in a subsequent condition of that statement nor in the outermost
block (or, for the if statement, any of the outermost blocks) of the controlled statement; see 6.4.

3.3.4 Function prototype scope [basic.scope.proto]

In a function declaration, or in any function declarator except the declarator of a function definition (8.4),
names of parameters (if supplied) have function prototype scope, which terminates at the end of the nearest
enclosing function declarator.

3.3.5 Function scope [basic.funscope]

Labels (6.1) have function scope and may be used anywhere in the function in which they are declared. Only
labels have function scope.

3.3.6 Namespace scope [basic.scope.namespace]

The declarative region of a namespace-definition is its namespace-body. The potential scope denoted by
an original-namespace-name is the concatenation of the declarative regions established by each of the
namespace-definitions in the same declarative region with that original-namespace-name. Entities declared
in a namespace-body are said to be members of the namespace, and names introduced by these declarations
into the declarative region of the namespace are said to be member names of the namespace. A namespace
member name has namespace scope. Its potential scope includes its namespace from the name’s point of
declaration (3.3.2) onwards; and for each using-directive (7.3.4) that nominates the member’s namespace,
the member’s potential scope includes that portion of the potential scope of the using-directive that follows
the member’s point of declaration. [Ezample:

namespace N {
int i;
int g(int a) { return a; }
int jO;
void q();
}
namespace { int 1=1; }
// the potential scope of 1 is from its point of declaration
// to the end of the translation unit

namespace N {
int g(char a) { // overloads N::g(int)

return l+a; // 1 is from unnamed namespace
}
int i; // error: duplicate definition
int jO; // OK: duplicate function declaration
int jO { // OK: definition of N::j()
return g(i); // calls N: :g(int)

§ 3.3.6 38

1

©ISO/IEC N3092

}

int qQ; // error: different return type

}

— end example]

A namespace member can also be referred to after the : : scope resolution operator (5.1) applied to the name

of its

namespace or the name of a namespace which nominates the member’s namespace in a using-directive;

see 3.4.3.2.

The outermost declarative region of a translation unit is also a namespace, called the global namespace. A

name
scope

declared in the global namespace has global namespace scope (also called global scope). The potential
of such a name begins at its point of declaration (3.3.2) and ends at the end of the translation unit

that is its declarative region. Names with global namespace scope are said to be global.

3.3.7 Class scope [basic.scope.class]

The following rules describe the scope of names declared in classes.

1)

The potential scope of a name declared in a class consists not only of the declarative region following
the name’s point of declaration, but also of all function bodies, brace-or-equal-initializers of non-static
data members, and default arguments in that class (including such things in nested classes).

A name N used in a class S shall refer to the same declaration in its context and when re-evaluated in
the completed scope of S. No diagnostic is required for a violation of this rule.

If reordering member declarations in a class yields an alternate valid program under (1) and (2), the
program is ill-formed, no diagnostic is required.

A name declared within a member function hides a declaration of the same name whose scope extends
to or past the end of the member function’s class.

The potential scope of a declaration that extends to or past the end of a class definition also ex-
tends to the regions defined by its member definitions, even if the members are defined lexically
outside the class (this includes static data member definitions, nested class definitions, member func-
tion definitions (including the member function body and any portion of the declarator part of such
definitions which follows the declarator-id, including a parameter-declaration-clause and any default
arguments (8.3.6).] Ezample:

typedef int c;
enum { i = 1 };

class X {
char v[il; // error: i refers to ::i
// but when reevaluated is X: :1i
int f() { return sizeof(c); } // OK: X::c

char «c;
enum { i = 2 };
}
typedef char* T;
struct Y {
T a; // error: T refers to ::T

// but when reevaluated is Y: : T
typedef long T;
T b;
+;

§ 3.3.7 39

2

©ISO/IEC N3092

typedef int I;
class D {
typedef I I; // error, even though no reordering involved

}’
— end example]
The name of a class member shall only be used as follows:
— in the scope of its class (as described above) or a class derived (Clause 10) from its class,

— after the . operator applied to an expression of the type of its class (5.2.5) or a class derived from its
class,

— after the -> operator applied to a pointer to an object of its class (5.2.5) or a class derived from its
class,

— after the :: scope resolution operator (5.1) applied to the name of its class or a class derived from its
class.

3.3.8 Enumeration scope [basic.scope.enum)]

The name of a scoped enumerator (7.2) has enumeration scope. Its potential scope begins at its point of
declaration and terminates at the end of the enum-specifier.

3.3.9 Template Parameter Scope [basic.scope.temp]

The declarative region of the name of a template parameter of a template template-parameter is the smallest
template-parameter-list in which the name was introduced.

The declarative region of the name of a template parameter of a template is the smallest template-declaration
in which the name was introduced. Only template parameter names belong to this declarative region; any
other kind of name introduced by the declaration of a template-declaration is instead introduced into the
same declarative region where it would be introduced as a result of a non-template declaration of the same
name. [Ezample:

namespace N {

template<class T> struct A { }; /) #1
template<class U> void £(U) { } /) #2
struct B {

template<class V> friend int g(struct Cx); // #3
}

The declarative regions of T, U and V are the template-declarations on lines #1, #2 and #3, respectively.
But the names A, £, g and C all belong to the same declarative region — namely, the namespace-body of N.
(g is still considered to belong to this declarative region in spite of its being hidden during qualified and
unqualified name lookup.) — end ezample]

The potential scope of a template parameter name begins at its point of declaration (3.3.2) and ends at the
end of its declarative region. [Note: this implies that a template-parameter can be used in the declaration
of subsequent template-parameters and their default arguments but cannot be used in preceding template-
parameters or their default arguments. For example,

template<class T, T* p, class U = T> class X { /* */ };
template<class T> void f(T* p = new T);

§ 3.3.9 40

©ISO/IEC N3092

This also implies that a template-parameter can be used in the specification of base classes. For example,

template<class T> class X : public Array<T> { /x ... x/ };
template<class T> class Y : public T { /*x ...*/ };

The use of a template parameter as a base class implies that a class used as a template argument must be
defined and not just declared when the class template is instantiated. — end note]

The declarative region of the name of a template parameter is nested within the immediately-enclosing
declarative region. [Note: as a result, a template-parameter hides any entity with the same name in an
enclosing scope (3.3.10). [Ezample:

typedef int N;
template<N X, typename N, template<N Y> class T> struct A;

Here, X is a non-type template parameter of type int and Y is a non-type template parameter of the same
type as the second template parameter of A. — end example] — end note]

[Note: because the name of a template parameter cannot be redeclared within its potential scope (14.6.1), a
template parameter’s scope is often its potential scope. However, it is still possible for a template parameter
name to be hidden; see 14.6.1. — end note]

3.3.10 Name hiding [basic.scope.hiding)]

A name can be hidden by an explicit declaration of that same name in a nested declarative region or derived
class (10.2).

A class name (9.1) or enumeration name (7.2) can be hidden by the name of a variable, data member,
function, or enumerator declared in the same scope. If a class or enumeration name and a variable, data
member, function, or enumerator are declared in the same scope (in any order) with the same name, the
class or enumeration name is hidden wherever the variable, data member, function, or enumerator name is
visible.

In a member function definition, the declaration of a name at block scope hides the declaration of a member
of the class with the same name; see 3.3.7. The declaration of a member in a derived class (Clause 10) hides
the declaration of a member of a base class of the same name; see 10.2.

During the lookup of a name qualified by a namespace name, declarations that would otherwise be made
visible by a using-directive can be hidden by declarations with the same name in the namespace containing
the using-directive; see (3.4.3.2).

If a name is in scope and is not hidden it is said to be wisible.

3.4 Name lookup [basic.lookup]

The name lookup rules apply uniformly to all names (including typedef-names (7.1.3), namespace-names (7.3),
and class-names (9.1)) wherever the grammar allows such names in the context discussed by a particular
rule. Name lookup associates the use of a name with a declaration (3.1) of that name. Name lookup shall
find an unambiguous declaration for the name (see 10.2). Name lookup may associate more than one dec-
laration with a name if it finds the name to be a function name; the declarations are said to form a set
of overloaded functions (13.1). Overload resolution (13.3) takes place after name lookup has succeeded.
The access rules (Clause 11) are considered only once name lookup and function overload resolution (if
applicable) have succeeded. Only after name lookup, function overload resolution (if applicable) and access
checking have succeeded are the attributes introduced by the name’s declaration used further in expression
processing (Clause 5).

§ 3.4 41

©ISO/IEC N3092

A name “looked up in the context of an expression” is looked up as an unqualified name in the scope where
the expression is found.

The injected-class-name of a class (Clause 9) is also considered to be a member of that class for the purposes
of name hiding and lookup.

[Note: 3.5 discusses linkage issues. The notions of scope, point of declaration and name hiding are discussed
in 3.3. — end note]

3.4.1 Unqualified name lookup [basic.lookup.unqual]

In all the cases listed in 3.4.1, the scopes are searched for a declaration in the order listed in each of the
respective categories; name lookup ends as soon as a declaration is found for the name. If no declaration is
found, the program is ill-formed.

The declarations from the namespace nominated by a using-directive become visible in a namespace enclosing
the using-directive; see 7.3.4. For the purpose of the unqualified name lookup rules described in 3.4.1, the
declarations from the namespace nominated by the using-directive are considered members of that enclosing
namespace.

The lookup for an unqualified name used as the postfiz-expression of a function call is described in 3.4.2.
[Note: for purposes of determining (during parsing) whether an expression is a postfiz-expression for a func-
tion call, the usual name lookup rules apply. The rules in 3.4.2 have no effect on the syntactic interpretation
of an expression. For example,

typedef int f;
namespace N {
struct A {
friend void f(A &);
operator int();
void g(A a) {
int i = £(a); // £ is the typedef, not the friend
// function: equivalent to int(a)
}
I
}

Because the expression is not a function call, the argument-dependent name lookup (3.4.2) does not apply
and the friend function £ is not found. — end note]

A name used in global scope, outside of any function, class or user-declared namespace, shall be declared
before its use in global scope.

A name used in a user-declared namespace outside of the definition of any function or class shall be declared
before its use in that namespace or before its use in a namespace enclosing its namespace.

A name used in the definition of a function following the function’s declarator-id®® that is a member of
namespace N (where, only for the purpose of exposition, N could represent the global scope) shall be declared
before its use in the block in which it is used or in one of its enclosing blocks (6.3) or, shall be declared
before its use in namespace N or, if N is a nested namespace, shall be declared before its use in one of N’s
enclosing namespaces. [Example:

namespace A {
namespace N {

28) This refers to unqualified names that occur, for instance, in a type or default argument expression in the parameter-
declaration-clause or used in the function body.

§3.4.1 42

©ISO/IEC N3092

void f();
}
}
void A::N::f() {
i = b5;

// The following scopes are searched for a declaration of i:
// 1) outermost block scope of A::N::f, before the use of i
// 2) scope of namespace N

// 8) scope of namespace A

// 4) global scope, before the definition of A::N::f

— end example |

7 A name used in the definition of a class X outside of a member function body or nested class definition?’

shall be declared in one of the following ways:
— before its use in class X or be a member of a base class of X (10.2), or

— if X is a nested class of class Y (9.7), before the definition of X in Y, or shall be a member of a base
class of Y (this lookup applies in turn to Y ’s enclosing classes, starting with the innermost enclosing
class),3% or

— if X is a local class (9.8) or is a nested class of a local class, before the definition of class X in a block
enclosing the definition of class X, or

— if X is a member of namespace N, or is a nested class of a class that is a member of N, or is a local class
or a nested class within a local class of a function that is a member of N, before the definition of class
X in namespace N or in one of N ’s enclosing namespaces.

[Ezample:

namespace M {
class B { };
}

namespace N {
class Y : public M::B {
class X {
int alil;
};
};
}

// The following scopes are searched for a declaration of i:
// 1) scope of class N::Y::X, before the use of i

// 2) scope of class N: :Y, before the definition of N::Y::X
// 3) scope of N::Y’s base class M: :B

// 4) scope of namespace N, before the definition of N::Y
// &) global scope, before the definition of N

29) This refers to unqualified names following the class name; such a name may be used in the base-clause or may be used in
the class definition.

30) This lookup applies whether the definition of X is nested within Y’s definition or whether X’s definition appears in a
namespace scope enclosing Y ’s definition (9.7).

§3.4.1 43

©ISO/IEC N3092

— end example] [Note: when looking for a prior declaration of a class or function introduced by a friend
declaration, scopes outside of the innermost enclosing namespace scope are not considered; see 7.3.1.2. —
end note| [Note: 3.3.7 further describes the restrictions on the use of names in a class definition. 9.7 further
describes the restrictions on the use of names in nested class definitions. 9.8 further describes the restrictions
on the use of names in local class definitions. — end note|

A name used in the definition of a member function (9.3) of class X following the function’s declarator-id 3
or in the brace-or-equal-initializer of a non-static data member (9.2) of class X shall be declared in one of
the following ways:

— before its use in the block in which it is used or in an enclosing block (6.3), or
— shall be a member of class X or be a member of a base class of X (10.2), or

— if X is a nested class of class Y (9.7), shall be a member of Y, or shall be a member of a base class of Y
(this lookup applies in turn to Y’s enclosing classes, starting with the innermost enclosing class),3? or

— if X is a local class (9.8) or is a nested class of a local class, before the definition of class X in a block
enclosing the definition of class X, or

— if X is a member of namespace N, or is a nested class of a class that is a member of N, or is a local class
or a nested class within a local class of a function that is a member of N, before the use of the name,
in namespace N or in one of N ’s enclosing namespaces.

[Example:

class B { };
namespace M {
namespace N {
class X : public B {

void £(0);
};
}
}
void M::N::X::f() {
i = 16;
}

// The following scopes are searched for a declaration of i:

// 1) outermost block scope of M::N::X::£f, before the use of i
// 2) scope of class M: :N::X

// 8) scope of M::N::X’s base class B

// 4) scope of namespace M: :N

// &) scope of namespace M

// 6) global scope, before the definition of M::N::X::f

— end example] [Note: 9.3 and 9.4 further describe the restrictions on the use of names in member function
definitions. 9.7 further describes the restrictions on the use of names in the scope of nested classes. 9.8
further describes the restrictions on the use of names in local class definitions. — end note]

Name lookup for a name used in the definition of a friend function (11.4) defined inline in the class granting
friendship shall proceed as described for lookup in member function definitions. If the friend function is

31) That is, an unqualified name that occurs, for instance, in a type or default argument expression in the parameter-
declaration-clause or in the function body.

32) This lookup applies whether the member function is defined within the definition of class X or whether the member function
is defined in a namespace scope enclosing X’s definition.

§3.4.1 44

10

11

12

13

14

15

©ISO/IEC N3092

not defined in the class granting friendship, name lookup in the friend function definition shall proceed as
described for lookup in namespace member function definitions.

In a friend declaration naming a member function, a name used in the function declarator and not part of a
template-argument in the declarator-id is first looked up in the scope of the member function’s class (10.2). If
it is not found, or if the name is part of a template-argument in the declarator-id, the look up is as described
for unqualified names in the definition of the class granting friendship. [Example:

struct A {

typedef int AT;

void f1(AT);

void f2(float);

template <class T> void £3();
I
struct B {

typedef char AT;

typedef float BT;

friend void A::f1(AT); // parameter type is A::AT
friend void A::f2(BT); // parameter type is B: :BT
friend void A::f3<AT>(); // template argument is B: : AT

};

— end example]

During the lookup for a name used as a default argument (8.3.6) in a function parameter-declaration-clause
or used in the expression of a mem-initializer for a constructor (12.6.2), the function parameter names are
visible and hide the names of entities declared in the block, class or namespace scopes containing the function
declaration. [Note: 8.3.6 further describes the restrictions on the use of names in default arguments. 12.6.2
further describes the restrictions on the use of names in a ctor-initializer. — end note]

During the lookup of a name used in the constant-expression of an enumerator-definition, previously declared
enumerators of the enumeration are visible and hide the names of entities declared in the block, class, or
namespace scopes containing the enum-specifier.

A name used in the definition of a static data member of class X (9.4.2) (after the qualified-id of the static
member) is looked up as if the name was used in a member function of X. [Note: 9.4.2 further describes the
restrictions on the use of names in the definition of a static data member. — end note]

If a variable member of a namespace is defined outside of the scope of its namespace then any name that
appears in the definition of the member (after the declarator-id) is looked up as if the definition of the
member occurred in its namespace. [Ezample:

namespace N {
int i = 4;
extern int j;

}
int i = 2;
int N::j = i; J/N:ij ==

— end example]

A name used in the handler for a function-try-block (Clause 15) is looked up as if the name was used in
the outermost block of the function definition. In particular, the function parameter names shall not be
redeclared in the exception-declaration nor in the outermost block of a handler for the function-try-block.

§3.4.1 45

16

©ISO/IEC N3092

Names declared in the outermost block of the function definition are not found when looked up in the scope

of a handler for the function-try-block. [Note: but function parameter names are found. — end note
[Note: the rules for name lookup in template definitions are described in 14.6. — end note]
3.4.2 Argument-dependent name lookup [basic.lookup.argdep]

When the postfiz-expression in a function call (5.2.2) is an unqualified-id, other namespaces not considered
during the usual unqualified lookup (3.4.1) may be searched, and in those namespaces, namespace-scope
friend function declarations (11.4) not otherwise visible may be found. These modifications to the search
depend on the types of the arguments (and for template template arguments, the namespace of the template
argument). [Example:

namespace N {
struct S { };

void f(S);
}
void g() {
N::S s;
£(s); // OK: calls N: : £
(£)(s); // error: N: :f not considered; parentheses
// prevent argument-dependent lookup
}

— end example]

For each argument type T in the function call, there is a set of zero or more associated namespaces and a
set of zero or more associated classes to be considered. The sets of namespaces and classes is determined
entirely by the types of the function arguments (and the namespace of any template template argument).
Typedef names and using-declarations used to specify the types do not contribute to this set. The sets of
namespaces and classes are determined in the following way:

— If T is a fundamental type, its associated sets of namespaces and classes are both empty.

— If T is a class type (including unions), its associated classes are: the class itself; the class of which it is a
member, if any; and its direct and indirect base classes. Its associated namespaces are the namespaces
of which its associated classes are members. Furthermore, if T is a class template specialization,
its associated namespaces and classes also include: the namespaces and classes associated with the
types of the template arguments provided for template type parameters (excluding template template
parameters); the namespaces of which any template template arguments are members; and the classes
of which any member templates used as template template arguments are members. | Note: non-type
template arguments do not contribute to the set of associated namespaces. — end note]

— If T is an enumeration type, its associated namespace is the namespace in which it is defined. If it is
class member, its associated class is the member’s class; else it has no associated class.

— If T is a pointer to U or an array of U, its associated namespaces and classes are those associated with
U.

— If T is a function type, its associated namespaces and classes are those associated with the function
parameter types and those associated with the return type.

— If T is a pointer to a member function of a class X, its associated namespaces and classes are those
associated with the function parameter types and return type, together with those associated with X.

§ 3.4.2 46

©ISO/IEC N3092

— If T is a pointer to a data member of class X, its associated namespaces and classes are those associated
with the member type together with those associated with X.

If an associated namespace is an inline namespace (7.3.1), its enclosing namespace is also included in the set.
If an associated namespace directly contains inline namespaces, those inline namespaces are also included in
the set. In addition, if the argument is the name or address of a set of overloaded functions and/or function
templates, its associated classes and namespaces are the union of those associated with each of the members
of the set, i.e., the classes and namespaces associated with its (non-dependent) parameter types and return
type.

Let X be the lookup set produced by unqualified lookup (3.4.1) and let ¥ be the lookup set produced by
argument dependent lookup (defined as follows). If X contains

— a declaration of a class member, or
— a block-scope function declaration that is not a using-declaration, or
— a declaration that is neither a function or a function template

then Y is empty. Otherwise Y is the set of declarations found in the namespaces associated with the
argument types as described below. The set of declarations found by the lookup of the name is the union of
X and Y. [Note: the namespaces and classes associated with the argument types can include namespaces
and classes already considered by the ordinary unqualified lookup. — end note] [Ezample:

namespace NS {
class T { };
void £(T);
void g(T, int);
}
NS::T parm;
void g(NS::T, float);
int main() {

£ (parm) ; // OK: calls NS: : £
extern void g(NS::T, float);
g(parm, 1); // OK: calls g(NS::T, float)

}

— end example]

When considering an associated namespace, the lookup is the same as the lookup performed when the
associated namespace is used as a qualifier (3.4.3.2) except that:

— Any using-directives in the associated namespace are ignored.

— Any namespace-scope friend functions or friend function templates declared in associated classes are
visible within their respective namespaces even if they are not visible during an ordinary lookup (11.4).

— All names except those of (possibly overloaded) functions and function templates are ignored.

3.4.3 Qualified name lookup [basic.lookup.qual]

The name of a class or namespace member or enumerator can be referred to after the :: scope resolution
operator (5.1) applied to a nested-name-specifier that denotes its class, namespace, or enumeration. If a ::
scope resolution operator in a nested-name-specifier is not preceded by a decltype-specifier, lookup of the
name preceding that :: considers only namespaces, types, and templates whose specializations are types.
If the name found does not designate a namespace or a class, enumeration, or dependent type, the program
is ill-formed.[Example:

§3.4.3 47

©ISO/IEC N3092

class A {
public:
static int n;
};
int main() {
int A;
A::n = 42; // OK
A b; // ill-formed: A does not name a type
}

— end example]

[Note: multiply qualified names, such as N1::N2::N3::n, can be used to refer to members of nested
classes (9.7) or members of nested namespaces. — end note]

In a declaration in which the declarator-id is a qualified-id, names used before the qualified-id being declared
are looked up in the defining namespace scope; names following the qualified-id are looked up in the scope
of the member’s class or namespace. [Ezample:

class X { };
class C {
class X { };
static const int number = 50;
static X arr[number];
};
X C::arr[number]l; // ill-formed:
// equivalent to: ::X C::arr[C::number];
// mot to: C::X C::arr[C: :number] ;

— end example]

A name prefixed by the unary scope operator :: (5.1) is looked up in global scope, in the translation unit
where it is used. The name shall be declared in global namespace scope or shall be a name whose declaration
is visible in global scope because of a using-directive (3.4.3.2). The use of :: allows a global name to be
referred to even if its identifier has been hidden (3.3.10).

A name prefixed by a nested-name-specifier that nominates an enumeration type shall represent an enumer-
ator of that enumeration.

If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier, the type-names are looked up as types
in the scope designated by the nested-name-specifier. Similarly, in a qualified-id of the form:

tiopt nested-name-specifierop: class-name :: ~ class-name
the second class-name is looked up in the same scope as the first. [Ezample:

struct C {
typedef int I;
};
typedef int I1, I2;
extern int* p;
extern int* q;
p—>C::I::7I(); // T is looked up in the scope of C
q->I1::7120); // 12 is looked up in the scope of
// the postfiz-expression

struct A {
“AQ;

§3.4.3 48

©ISO/IEC N3092

};
typedef A AB;
int main() {

AB *p;
p—>AB::"AB(Q); // explicitly calls the destructor for A
}
— end example] [Note: 3.4.5 describes how name lookup proceeds after the . and -> operators. — end
note|
3.4.3.1 Class members [class.qual]

1 If the nested-name-specifier of a qualified-id nominates a class, the name specified after the nested-name-
specifier is looked up in the scope of the class (10.2), except for the cases listed below. The name shall
represent one or more members of that class or of one of its base classes (Clause 10). [Note: a class member
can be referred to using a qualified-id at any point in its potential scope (3.3.7). — end note] The exceptions
to the name lookup rule above are the following:

— a destructor name is looked up as specified in 3.4.3;

— a conversion-type-id of an conversion-function-id is looked up both in the scope of the class and in the
context in which the entire postfiz-expression occurs and shall refer to the same type in both contexts;

— the names in a template-argument of a template-id are looked up in the context in which the entire
postfix-expression occurs.

— the lookup for a name specified in a using-declaration (7.3.3) also finds class or enumeration names
hidden within the same scope (3.3.10).

2 In a lookup in which the constructor is an acceptable lookup result and the nested-name-specifier nominates
a class C:

— if the name specified after the nested-name-specifier, when looked up in C, is the injected-class-name
of C (Clause 9), or

— in a using-declaration (7.3.3) that is a member-declaration, if the name specified after the nested-name-
specifier is the same as the identifier or the simple-template-id’s template-name in the last component
of the nested-name-specifier,

the name is instead considered to name the constructor of class C. [Note: for example, the constructor is
not an acceptable lookup result in an elaborated-type-specifier so the constructor would not be used in place
of the injected-class-name. — end note] Such a constructor name shall be used only in the declarator-id of
a declaration that names a constructor or in a using-declaration. [Example:

struct A { AQ; };
struct B: public A { BQ); };

A::20 {1}

B::BO {}

B::A ba; // object of type A

A::A a; // error, A::A is not a type name
struct A::A a2; // object of type A

— end example]

3 A class member name hidden by a name in a nested declarative region or by the name of a derived class
member can still be found if qualified by the name of its class followed by the :: operator.

§ 3.4.3.1 49

©ISO/IEC N3092

3.4.3.2 Namespace members [namespace.qual]

If the nested-name-specifier of a qualified-id nominates a namespace, the name specified after the nested-
name-specifier is looked up in the scope of the namespace, except that the names in a template-argument of
a template-id are looked up in the context in which the entire postfiz-expression occurs.

For a namespace X and name m, the namespace-qualified lookup set S(X,m) is defined as follows: Let
S’(X,m) be the set of all declarations of m in X and the inline namespace set of X (7.3.1). If S’(X,m) is not
empty, S(X,m) is S'(X,m); otherwise, S(X,m) is the union of S(INV;,m) for all namespaces N; nominated
by wusing-directives in X and its inline namespace set.

Given X::m (where X is a user-declared namespace), or given ::m (where X is the global namespace), if
S(X,m) is the empty set, the program is ill-formed. Otherwise, if S(X,m) has exactly one member, or if
the context of the reference is a using-declaration (7.3.3), S(X,m) is the required set of declarations of m.
Otherwise if the use of m is not one that allows a unique declaration to be chosen from S(X,m), the program
is ill-formed. [Ezample:

int x;

namespace Y {
void f(float);
void h(int);

}

namespace Z {
void h(double);
}

namespace A {
using namespace Y;
void f(int);
void g(int);
int i;

}

namespace B {
using namespace Z;
void f(char);
int i;

}

namespace AB {
using namespace A;
using namespace B;

void g();
}
void h()
{
AB::g(); // & is declared directly in AB,
// therefore S is { AB::g() } and AB::g() is chosen
AB::£(1); // £ is not declared directly in AB so the rules are

// applied recursively to A and B;

// namespace Y is not searched and Y: : £ (float)
// is not considered;

// 8 is { A::£(int), B::f(char) } and overload
// resolution chooses A: :f (int)

§3.4.3.2 50

©ISO/IEC

AB::f(’c’);
AB: :x++;
AB: :i++;
AB::h(16.8);

}

// as above but resolution chooses B: : f (char)

// % is not declared directly in AB, and

// is not declared in A or B, so the rules are

// applied recursively to Y and Z,

// S is { } so the program is ill-formed

// i is not declared directly in AB so the rules are
// applied recursively to A and B,

//Sis{ A::i, B::i } so the use is ambiguous
// and the program is ill-formed

// h is not declared directly in AB and

// mot declared directly in A or B so the rules are
// applied recursively to Y and Z,

// S is { Y::h(int), Z::h(double) } and overload
// resolution chooses Z: :h(double)

N3092

4 The same declaration found more than once is not an ambiguity (because it is still a unique declaration).

For example:

namespace A {
int a;

}

namespace B {
using namespace A;

}

namespace C {
using namespace A;

}

namespace BC {
using namespace B;
using namespace C;

}
void £()
{
BC: :at+;
}

namespace D {
using A::a;

}

namespace BD {
using namespace B;
using namespace D;

}
void g()
{
BD::at++;
}

§3.4.3.2

// OK:Sis { Ai:a, A::a }

// OK: Sis { A::a, A::a}

51

©ISO/IEC N3092

5 Because each referenced namespace is searched at most once, the following is well-defined:

namespace B {
int b;
}

namespace A {
using namespace B;
int a;

}

namespace B {
using namespace A;

}

void £()

{
A::at+; // OK: a declared directly in A, S is {A::a}
B::at+; // OK: both A and B searched (once), S is {A::a}
A::bt+; // OK: both A and B searched (once), S is {B::b}
B::b++; // OK: b declared directly in B, S is {B::b}

}

— end example]

6 During the lookup of a qualified namespace member name, if the lookup finds more than one declaration of
the member, and if one declaration introduces a class name or enumeration name and the other declarations
either introduce the same variable, the same enumerator or a set of functions, the non-type name hides
the class or enumeration name if and only if the declarations are from the same namespace; otherwise (the
declarations are from different namespaces), the program is ill-formed. [Ezample:

namespace A {
struct x { };
int x;
int y;

}

namespace B {
struct y { };
}

namespace C {
using namespace A;
using namespace B;
int i = C::x; // OK, A::x (of type int)
int j = C::y; // ambiguous, A::y or B::y

— end example]

7 In a declaration for a namespace member in which the declarator-id is a qualified-id, given that the qualified-id
for the namespace member has the form

nested-name-specifier unqualified-id

the unqualified-id shall name a member of the namespace designated by the nested-name-specifier or of an
element of the inline namespace set (7.3.1) of that namespace. [Ezample:

§3.4.3.2 52

©ISO/IEC N3092

namespace A {
namespace B {
void f1(int);
X
using namespace B;

}
void A::f1(int){ } //ill-formed, £1 is not a member of A

— end example] However, in such namespace member declarations, the nested-name-specifier may rely on
using-directives to implicitly provide the initial part of the nested-name-specifier. | Example:

namespace A {
namespace B {
void f1(int);
}
}

namespace C {
namespace D {
void f1(int);
}
}

using namespace A;
using namespace C::D;
void B::f1(int){ } // OK, defines A::B::f1(int)

— end example]

3.4.4 Elaborated type specifiers [basic.lookup.elab]

An elaborated-type-specifier (7.1.6.3) may be used to refer to a previously declared class-name or enum-name
even though the name has been hidden by a non-type declaration (3.3.10).

If the elaborated-type-specifier has no nested-name-specifier, and unless the elaborated-type-specifier appears
in a declaration with the following form:

class-key attribute-specifieroy: identifier ;

the identifier is looked up according to 3.4.1 but ignoring any non-type names that have been declared. If
the elaborated-type-specifier is introduced by the enum keyword and this lookup does not find a previously
declared type-name, the elaborated-type-specifier is ill-formed. If the elaborated-type-specifier is introduced by
the class-key and this lookup does not find a previously declared type-name, or if the elaborated-type-specifier
appears in a declaration with the form:

class-key attribute-specifierop: identifier ;
the elaborated-type-specifier is a declaration that introduces the class-name as described in 3.3.2.

If the elaborated-type-specifier has a nested-name-specifier, qualified name lookup is performed, as described
in 3.4.3, but ignoring any non-type names that have been declared. If the name lookup does not find a
previously declared type-name, the elaborated-type-specifier is ill-formed. [Example:

struct Node {
struct Nodex Next; // OK: Refers to Node at global scope
struct Data* Data; // OK: Declares type Data
// at global scope and member Data

§ 3.4.4 53

©ISO/IEC N3092

};
struct Data {
struct Nodex Node; // OK: Refers to Node at global scope
friend struct ::Glob; // error: Glob is not declared
// cannot introduce a qualified type (7.1.6.3)
friend struct Glob; // OK: Refers to (as yet) undeclared Glob
// at global scope.
1
struct Base {
struct Data; // OK: Declares nested Data
struct ::Datax thatData; // OK: Refers to ::Data
struct Base::Datax thisData; // OK: Refers to nested Data
friend class ::Data; // OK: global Data is a friend
friend class Data; // OK: nested Data is a friend
struct Data { /* ... =%/ }; // Defines nested Data
};
struct Data; // OK: Redeclares Data at global scope
struct ::Data; // error: cannot introduce a qualified type (7.1.6.3)
struct Base::Data; // error: cannot introduce a qualified type (7.1.6.3)
struct Base::Datum; // error: Datum undefined
struct Base::Data* pBase; // OK: refers to nested Data

— end example|

3.4.5 Class member access [basic.lookup.classref]

In a class member access expression (5.2.5), if the . or —=> token is immediately followed by an identifier
followed by a <, the identifier must be looked up to determine whether the < is the beginning of a template
argument list (14.2) or a less-than operator. The identifier is first looked up in the class of the object
expression. If the identifier is not found, it is then looked up in the context of the entire postfiz-expression
and shall name a class template. If the lookup in the class of the object expression finds a template, the
name is also looked up in the context of the entire postfiz-expression and

— if the name is not found, the name found in the class of the object expression is used, otherwise

— if the name is found in the context of the entire postfiz-expression and does not name a class template,
the name found in the class of the object expression is used, otherwise

— if the name found is a class template, it shall refer to the same entity as the one found in the class of
the object expression, otherwise the program is ill-formed.

If the id-expression in a class member access (5.2.5) is an unqualified-id, and the type of the object expression
is of a class type C, the unqualified-id is looked up in the scope of class C. If the type of the object expression
is of pointer to scalar type, the unqualified-id is looked up in the context of the complete postfiz-expression.

If the unqualified-id is ~type-name, the type-name is looked up in the context of the entire postfiz-expression.
If the type T of the object expression is of a class type C, the type-name is also looked up in the scope of
class C. At least one of the lookups shall find a name that refers to (possibly cv-qualified) T. [Ezample:

struct A { };

struct B {
struct A { };

§3.4.5 54

©ISO/IEC N3092

void f(::A*x a);
};

void B::f(::A* a) {
a->"A(); // OK: lookup in *a finds the injected-class-name
}

— end example]

If the id-expression in a class member access is a qualified-id of the form

the class-name-or-namespace-name following the . or -> operator is looked up both in the context of the
entire postfiz-expression and in the scope of the class of the object expression. If the name is found only in
the scope of the class of the object expression, the name shall refer to a class-name. If the name is found
only in the context of the entire postfiz-expression, the name shall refer to a class-name or namespace-name.
If the name is found in both contexts, the class-name-or-namespace-name shall refer to the same entity.

If the qualified-id has the form

the class-name-or-namespace-name is looked up in global scope as a class-name or namespace-name.

If the nested-name-specifier contains a simple-template-id (14.2), the names in its template-arguments are
looked up in the context in which the entire postfix-expression occurs.

If the id-expression is a conversion-function-id, its conversion-type-id shall denote the same type in both the
context in which the entire postfiz-expression occurs and in the context of the class of the object expression
(or the class pointed to by the pointer expression).

3.4.6 Using-directives and namespace aliases [basic.lookup.udir|

When looking up a namespace-name in a wusing-directive or namespace-alias-definition, only namespace
names are considered.

3.5 Program and linkage [basic.link]

A program consists of one or more translation units (Clause 2) linked together. A translation unit consists
of a sequence of declarations.

translation-unit:
declaration-seqop:

A name is said to have linkage when it might denote the same object, reference, function, type, template,
namespace or value as a name introduced by a declaration in another scope:

— When a name has external linkage, the entity it denotes can be referred to by names from scopes of
other translation units or from other scopes of the same translation unit.

— When a name has internal linkage, the entity it denotes can be referred to by names from other scopes
in the same translation unit.

— When a name has no linkage, the entity it denotes cannot be referred to by names from other scopes.
A name having namespace scope (3.3.6) has internal linkage if it is the name of

— a variable, function or function template that is explicitly declared static; or,

§ 3.5 55

©ISO/IEC N3092

— a variable that is explicitly declared const and neither explicitly declared extern nor previously
declared to have external linkage; or

— a data member of an anonymous union.

4 A name having namespace scope has external linkage if it is the name of
— a variable, unless it has internal linkage; or
— a function, unless it has internal linkage; or

— a named class (Clause 9), or an unnamed class defined in a typedef declaration in which the class has
the typedef name for linkage purposes (7.1.3); or

— a named enumeration (7.2), or an unnamed enumeration defined in a typedef declaration in which the
enumeration has the typedef name for linkage purposes (7.1.3); or

— an enumerator belonging to an enumeration with external linkage; or
— a template, unless it is a function template that has internal linkage (Clause 14); or
— a namespace (7.3), unless it is declared within an unnamed namespace.

5 In addition, a member function, static data member, a named class or enumeration of class scope, or an
unnamed class or enumeration defined in a class-scope typedef declaration such that the class or enumeration
has the typedef name for linkage purposes (7.1.3), has external linkage if the name of the class has external
linkage.

6 The name of a function declared in block scope and the name of a variable declared by a block scope extern
declaration have linkage. If there is a visible declaration of an entity with linkage having the same name and
type, ignoring entities declared outside the innermost enclosing namespace scope, the block scope declaration
declares that same entity and receives the linkage of the previous declaration. If there is more than one such
matching entity, the program is ill-formed. Otherwise, if no matching entity is found, the block scope entity
receives external linkage.[Example:

static void £();

static int i = 0; /) #1
void g() {
extern void £(); // internal linkage
int i; // #2 i has no linkage
{
extern void £(); // internal linkage
extern int i; // #8 external linkage
}
}

There are three objects named i in this program. The object with internal linkage introduced by the
declaration in global scope (line #1), the object with automatic storage duration and no linkage introduced
by the declaration on line #2, and the object with static storage duration and external linkage introduced
by the declaration on line #3. — end ezample]

7 When a block scope declaration of an entity with linkage is not found to refer to some other declaration,
then that entity is a member of the innermost enclosing namespace. However such a declaration does not
introduce the member name in its namespace scope. [Example:

namespace X {

void p() {
q0); // error: q not yet declared
extern void qQ); // q is a member of namespace X

§ 3.5 56

©ISO/IEC N3092

}
void middle() {
q0; // error: q not yet declared
}
void qOO { /x ... */} // definition of X::q
}
void qOO { /* ... */ % // some other, unrelated q

— end example]

8 Names not covered by these rules have no linkage. Moreover, except as noted, a name declared at block
scope (3.3.3) has no linkage. A type is said to have linkage if and only if:

— it is a class or enumeration type that is named (or has a name for linkage purposes (7.1.3)) and the
name has linkage; or

— it is an unnamed class or enumeration member of a class with linkage; or
— it is a specialization of a class template (14)33; or
— it is a fundamental type (3.9.1); or

— it is a compound type (3.9.2) other than a class or enumeration, compounded exclusively from types
that have linkage; or

— it is a cv-qualified (3.9.3) version of a type that has linkage.
A type without linkage shall not be used as the type of a variable or function with external linkage unless
— the entity has C language linkage (7.5), or
— the entity is declared within an unnamed namespace (7.3.1), or
— the entity is not used (3.2) or is defined in the same translation unit.

[Note: in other words, a type without linkage contains a class or enumeration that cannot be named outside
its translation unit. An entity with external linkage declared using such a type could not correspond to any
other entity in another translation unit of the program and thus must be defined in the translation unit if
it is used. Also note that classes with linkage may contain members whose types do not have linkage, and
that typedef names are ignored in the determination of whether a type has linkage. — end note]

[Example:

template <class T> struct B {
void g(T) { }

void h(T);
friend void i(B, T) { }
};
void £() {
struct A { int x; }; // no linkage
Aa={113;
B<A> ba; // declares B<A>::g(A) and B<A>::h(A)
ba.g(a); // OK

33) A class template always has external linkage, and the requirements of 14.3.1 and 14.3.2 ensure that the template arguments
will also have appropriate linkage.

§ 3.5 57

10

11

©ISO/IEC N3092

ba.h(a); // error: B<A>::h(A) not defined in the translation unit
i(ba, a); // OK
}

— end example]

Two names that are the same (Clause 3) and that are declared in different scopes shall denote the same
variable, function, type, enumerator, template or namespace if

— both names have external linkage or else both names have internal linkage and are declared in the
same translation unit; and

— both names refer to members of the same namespace or to members, not by inheritance, of the same
class; and

— when both names denote functions, the parameter-type-lists of the functions (8.3.5) are identical; and
— when both names denote function templates, the signatures (14.5.6.1) are the same.

After all adjustments of types (during which typedefs (7.1.3) are replaced by their definitions), the types
specified by all declarations referring to a given variable or function shall be identical, except that decla-
rations for an array object can specify array types that differ by the presence or absence of a major array
bound (8.3.4). A violation of this rule on type identity does not require a diagnostic.

[Note: linkage to non-C++ declarations can be achieved using a linkage-specification (7.5). — end note]
3.6 Start and termination [basic.start]
3.6.1 Main function [basic.start.main]

A program shall contain a global function called main, which is the designated start of the program. It
is implementation-defined whether a program in a freestanding environment is required to define a main
function. [Note: in a freestanding environment, start-up and termination is implementation-defined; start-
up contains the execution of constructors for objects of namespace scope with static storage duration;
termination contains the execution of destructors for objects with static storage duration. — end note|

An implementation shall not predefine the main function. This function shall not be overloaded. It shall
have a return type of type int, but otherwise its type is implementation-defined. All implementations shall
allow both of the following definitions of main:

int main() { /% ... */}
and
int main(int argc, char*x argv[]) { /x ... =/}

In the latter form argc shall be the number of arguments passed to the program from the environ-
ment in which the program is run. If argc is nonzero these arguments shall be supplied in argv[0]
through argv[argc-1] as pointers to the initial characters of null-terminated multibyte strings (NTMBS
s) (17.5.2.1.4.2) and argv[0] shall be the pointer to the initial character of a NTMBS that represents the

name used to invoke the program or "". The value of argc shall be non-negative. The value of argv[argc]
shall be 0. [Note: it is recommended that any further (optional) parameters be added after argv. —end
note |

The function main shall not be used (3.2) within a program. The linkage (3.5) of main is implementation-
defined. A program that defines main as deleted or that declares main to be inline, static, or constexpr

§ 3.6.1 58

©ISO/IEC N3092

is ill-formed. The name main is not otherwise reserved. | Ezample: member functions, classes, and enumer-
ations can be called main, as can entities in other namespaces. — end ezample]

Terminating the program without leaving the current block (e.g., by calling the function std: :exit (int) (18.5))
does not destroy any objects with automatic storage duration (12.4). If std::exit is called to end a pro-
gram during the destruction of an object with static or thread storage duration, the program has undefined
behavior.

A return statement in main has the effect of leaving the main function (destroying any objects with automatic
storage duration) and calling std: :exit with the return value as the argument. If control reaches the end
of main without encountering a return statement, the effect is that of executing

return O;

3.6.2 Initialization of non-local variables [basic.start.init]

There are two broad classes of named non-local variables: those with static storage duration (3.7.1) and
those with thread storage duration (3.7.2). Non-local variables with static storage duration are initialized
as a consequence of program initiation. Non-local variables with thread storage duration are initialized as a
consequence of thread execution. Within each of these phases of initiation, initialization occurs as follows.

Variables with static storage duration (3.7.1) or thread storage duration (3.7.2) shall be zero-initialized (8.5)
before any other initialization takes place.

Constant initialization is performed:

— if each full-expression (including implicit conversions) that appears in the initializer of a reference with
static or thread storage duration is a constant expression (5.19) and the reference is bound to an lvalue
designating an object with static storage duration or to a temporary (see 12.2)

— if an object with static or thread storage duration is initialized such that the initialization satisfies the
requirements for the object being declared with constexpr (7.1.5).

Together, zero-initialization and constant initialization are called static initialization; all other initialization is
dynamic initialization. Static initialization shall be performed before any dynamic initialization takes place.
Dynamic initialization of a non-local variable with static storage duration is either ordered or unordered.
Definitions of explicitly specialized class template static data members have ordered initialization. Other
class template static data members (i.e., implicitly or explicitly instantiated specializations) have unordered
initialization. Other non-local variables with static storage duration have ordered initialization. Variables
with ordered initialization defined within a single translation unit shall be initialized in the order of their
definitions in the translation unit. If a program starts a thread (30.3), the subsequent initialization of a
variable is unsequenced with respect to the initialization of a variable defined in a different translation unit.
Otherwise, the initialization of a variable is indeterminately sequenced with respect to the initialization of
a variable defined in a different translation unit. If a program starts a thread, the subsequent unordered
initialization of a variable is unsequenced with respect to every other dynamic initialization. Otherwise,
the unordered initialization of a variable is indeterminately sequenced with respect to every other dynamic
initialization. [Note: This definition permits initialization of a sequence of ordered variables concurrently
with another sequence. — end note] [Note: The initialization of local static variables is described in 6.7.
— end note]

An implementation is permitted to perform the initialization of a non-local variable with static storage
duration as a static initialization even if such initialization is not required to be done statically, provided
that

— the dynamic version of the initialization does not change the value of any other object of namespace
scope prior to its initialization, and

§ 3.6.2 59

©ISO/IEC N3092

— the static version of the initialization produces the same value in the initialized variable as would be
produced by the dynamic initialization if all variables not required to be initialized statically were
initialized dynamically.

— [Note: as a consequence, if the initialization of an object obj1 refers to an object obj2 of namespace
scope potentially requiring dynamic initialization and defined later in the same translation unit, it is
unspecified whether the value of obj2 used will be the value of the fully initialized obj2 (because obj2
was statically initialized) or will be the value of obj2 merely zero-initialized. For example,

inline double fd() { return 1.0; }

extern double di;

double d2 = di; // unspecified:
// may be statically initialized to 0.0 or
// dynamically initialized to 1.0

double d1 = £d(); // may be initialized statically to 1.0

— end note]

4 Tt is implementation-defined whether the dynamic initialization of a non-local variable with static storage
duration is done before the first statement of main. If the initialization is deferred to some point in time
after the first statement of main, it shall occur before the first use of any function or variable defined in the
same translation unit as the variable to be initialized.?* [Ezample:

// - File 1 -

#include "a.h"

#include "b.h"

B b;

A::A0{
b.Use();

}

// - File 2 -
#include "a.h"
A a;

// - File 3 -
#include "a.h"
#include "b.h"
extern A a;
extern B b;

int main() {
a.Use();
b.Use();

}

It is implementation-defined whether either a or b is initialized before main is entered or whether the
initializations are delayed until a is first used in main. In particular, if a is initialized before main is entered,
it is not guaranteed that b will be initialized before it is used by the initialization of a, that is, before A: : A
is called. If, however, a is initialized at some point after the first statement of main, b will be initialized
prior to its use in A::A. — end ezample]

5 It is implementation-defined whether the dynamic initialization of a non-local variable with static or thread
storage duration is done before the first statement of the initial function of the thread. If the initialization

34) A non-local variable with static storage duration having initialization with side-effects must be initialized even if it is not
used (3.7.1).

§ 3.6.2 60

©ISO/IEC N3092

is deferred to some point in time after the first statement of the initial function of the thread, it shall occur
before the first use of any variable with thread storage duration defined in the same translation unit as the
variable to be initialized.

[Note: If the initialization of a non-local variable with static or thread storage duration terminates by
throwing an exception, std: :terminate is called (see 15.5.1). — end note]

3.6.3 Termination [basic.start.term)|

Destructors (12.4) for initialized objects (that is, objects whose lifetime (3.8) has begun) with static storage
duration are called as a result of returning from main and as a result of calling std: :exit (18.5). Destructors
for initialized objects with thread storage duration within a given thread are called as a result of returning
from the initial function of that thread and as a result of that thread calling std::exit. The completions
of the destructors for all initialized objects with thread storage duration within that thread are sequenced
before the initiation of the destructors of any object with static storage duration. If the completion of the
constructor or dynamic initialization of an object with thread storage duration is sequenced before that of
another, the completion of the destructor of the second is sequenced before the initiation of the destructor
of the first. If the completion of the constructor or dynamic initialization of an object with static storage
duration is sequenced before that of another, the completion of the destructor of the second is sequenced
before the initiation of the destructor of the first. [Note: this definition permits concurrent destruction.
— end note] If an object is initialized statically, the object is destroyed in the same order as if the object was
dynamically initialized. For an object of array or class type, all subobjects of that object are destroyed before
any block-scope object with static storage duration initialized during the construction of the subobjects is
destroyed. [Note: If the destruction of a non-local object with static or thread storage duration terminates
by throwing an exception, std: :terminate is called (see 15.5.1). — end note|

If a function contains a block-scope object of static or thread storage duration that has been destroyed and
the function is called during the destruction of an object with static or thread storage duration, the program
has undefined behavior if the flow of control passes through the definition of the previously destroyed block-
scope object. Likewise, the behavior is undefined if the block-scope object is used indirectly (i.e., through a
pointer) after its destruction.

If the completion of the initialization of an object with static storage duration is sequenced before a call
to std::atexit (see <cstdlib>, 18.5), the call to the function passed to std::atexit is sequenced before
the call to the destructor for the object. If a call to std: :atexit is sequenced before the completion of the
initialization of an object with static storage duration, the call to the destructor for the object is sequenced
before the call to the function passed to std: :atexit. If a call to std: :atexit is sequenced before another
call to std::atexit, the call to the function passed to the second std: :atexit call is sequenced before the
call to the function passed to the first std::atexit call.

If there is a use of a standard library object or function not permitted within signal handlers (18.10) that
does not happen before (1.10) completion of destruction of objects with static storage duration and execution
of std::atexit registered functions (18.5), the program has undefined behavior. [Note: if there is a use
of an object with static storage duration that does not happen before the object’s destruction, the program
has undefined behavior. Terminating every thread before a call to std::exit or the exit from main is
sufficient, but not necessary, to satisfy these requirements. These requirements permit thread managers as
static-storage-duration objects. — end note|

Calling the function std::abort() declared in <cstdlib> terminates the program without executing any
destructors and without calling the functions passed to std::atexit() or std::at_quick_exit().

3.7 Storage duration [basic.stc]

Storage duration is the property of an object that defines the minimum potential lifetime of the storage

§ 3.7 61

©ISO/IEC N3092

containing the object. The storage duration is determined by the construct used to create the object and is
one of the following:

— static storage duration

— thread storage duration

— automatic storage duration
— dynamic storage duration

Static, thread, and automatic storage durations are associated with objects introduced by declarations (3.1)
and implicitly created by the implementation (12.2). The dynamic storage duration is associated with objects
created with operator new (5.3.4).

The storage duration categories apply to references as well. The lifetime of a reference is its storage duration.

3.7.1 Static storage duration [basic.stc.static]

All variables which do not have dynamic storage duration, do not have thread storage duration, and are
not local have static storage duration. The storage for these entities shall last for the duration of the
program (3.6.2, 3.6.3).

If a variable with static storage duration has initialization or a destructor with side effects, it shall not be
eliminated even if it appears to be unused, except that a class object or its copy/move may be eliminated
as specified in 12.8.

The keyword static can be used to declare a local variable with static storage duration. [Note: 6.7 describes
the initialization of local static variables; 3.6.3 describes the destruction of local static variables. — end
note |

The keyword static applied to a class data member in a class definition gives the data member static
storage duration.

3.7.2 Thread storage duration [basic.stc.thread]

All variables declared with the thread_local keyword have thread storage duration. The storage for these
entities shall last for the duration of the thread in which they are created. There is a distinct object or
reference per thread, and use of the declared name refers to the entity associated with the current thread.

A variable with thread storage duration shall be initialized before its first use and, if constructed, shall be
destroyed on thread exit.

3.7.3 Automatic storage duration [basic.stc.auto]

Local variables explicitly declared register or not explicitly declared static or extern have automatic
storage duration. The storage for these entities lasts until the block in which they are created exits.

[Note: these variables are initialized and destroyed as described in 6.7. — end note]

If a variable with automatic storage duration has initialization or a destructor with side effects, it shall not
be destroyed before the end of its block, nor shall it be eliminated as an optimization even if it appears to
be unused, except that a class object or its copy/move may be eliminated as specified in 12.8.

3.7.4 Dynamic storage duration [basic.stc.dynamic]

Objects can be created dynamically during program execution (1.9), using new-expressions (5.3.4), and
destroyed using delete-expressions (5.3.5). A C++ implementation provides access to, and management

§3.74 62

©ISO/IEC N3092

of, dynamic storage via the global allocation functions operator new and operator newl[] and the global
deallocation functions operator delete and operator deletel[].

The library provides default definitions for the global allocation and deallocation functions. Some global
allocation and deallocation functions are replaceable (18.6.1). A C++ program shall provide at most one
definition of a replaceable allocation or deallocation function. Any such function definition replaces the
default version provided in the library (17.6.3.6). The following allocation and deallocation functions (18.6)
are implicitly declared in global scope in each translation unit of a program.

void* operator new(std::size_t) throw(std::bad_alloc);
void* operator new[] (std::size_t) throw(std::bad_alloc);
void operator delete(void*) throw();

void operator deletel[](void*) throw();

These implicit declarations introduce only the function names operator new, operator newl[], operator
delete, operator delete[]. [Note: the implicit declarations do not introduce the names std, std: :bad_-
alloc, and std::size_t, or any other names that the library uses to declare these names. Thus, a new-
expression, delete-expression or function call that refers to one of these functions without including the
header <new> is well-formed. However, referring to std, std::bad_alloc, and std::size_t is ill-formed
unless the name has been declared by including the appropriate header. — end note] Allocation and/or
deallocation functions can also be declared and defined for any class (12.5).

Any allocation and/or deallocation functions defined in a C++ program, including the default versions in
the library, shall conform to the semantics specified in 3.7.4.1 and 3.7.4.2.

3.7.4.1 Allocation functions [basic.stc.dynamic.allocation]

An allocation function shall be a class member function or a global function; a program is ill-formed if an
allocation function is declared in a namespace scope other than global scope or declared static in global
scope. The return type shall be void*. The first parameter shall have type std::size_t (18.2). The first
parameter shall not have an associated default argument (8.3.6). The value of the first parameter shall be
interpreted as the requested size of the allocation. An allocation function can be a function template. Such
a template shall declare its return type and first parameter as specified above (that is, template parameter
types shall not be used in the return type and first parameter type). Template allocation functions shall
have two or more parameters.

The allocation function attempts to allocate the requested amount of storage. If it is successful, it shall
return the address of the start of a block of storage whose length in bytes shall be at least as large as
the requested size. There are no constraints on the contents of the allocated storage on return from the
allocation function. The order, contiguity, and initial value of storage allocated by successive calls to an
allocation function are unspecified. The pointer returned shall be suitably aligned so that it can be converted
to a pointer of any complete object type with a fundamental alignment requirement (3.11) and then used
to access the object or array in the storage allocated (until the storage is explicitly deallocated by a call to
a corresponding deallocation function). Even if the size of the space requested is zero, the request can fail.
If the request succeeds, the value returned shall be a non-null pointer value (4.10) pO different from any
previously returned value p1, unless that value pl was subsequently passed to an operator delete. The
effect of dereferencing a pointer returned as a request for zero size is undefined.?®

An allocation function that fails to allocate storage can invoke the currently installed new-handler func-
tion (18.6.2.3), if any. [Note: A program-supplied allocation function can obtain the address of the currently
installed new_handler using the std::set_new_handler function (18.6.2.4). —end note] If an allocation
function declared with a non-throwing exception-specification (15.4) fails to allocate storage, it shall return

35) The intent is to have operator new() implementable by calling std::malloc() or std::calloc(), so the rules are sub-
stantially the same. C++ differs from C in requiring a zero request to return a non-null pointer.

§3.7.4.1 63

©ISO/IEC N3092

a null pointer. Any other allocation function that fails to allocate storage shall indicate failure only by
throwing an exception of a type that would match a handler (15.3) of type std::bad_alloc (18.6.2.1).

A global allocation function is only called as the result of a new expression (5.3.4), or called directly using the
function call syntax (5.2.2), or called indirectly through calls to the functions in the C++ standard library.
[Note: in particular, a global allocation function is not called to allocate storage for objects with static
storage duration (3.7.1), for objects or references with thread storage duration (3.7.2), for objects of type
std: :type_info (5.2.8), or for the copy of an object thrown by a throw expression (15.1). — end note]

3.7.4.2 Deallocation functions [basic.stc.dynamic.deallocation]

Deallocation functions shall be class member functions or global functions; a program is ill-formed if deal-
location functions are declared in a namespace scope other than global scope or declared static in global
scope.

Each deallocation function shall return void and its first parameter shall be void*. A deallocation function
can have more than one parameter. If a class T has a member deallocation function named operator delete
with exactly one parameter, then that function is a usual (non-placement) deallocation function. If class T
does not declare such an operator delete but does declare a member deallocation function named operator
delete with exactly two parameters, the second of which has type std::size_t (18.2), then this function
is a usual deallocation function. Similarly, if a class T has a member deallocation function named operator
delete[] with exactly one parameter, then that function is a usual (non-placement) deallocation function.
If class T does not declare such an operator delete[] but does declare a member deallocation function
named operator delete[] with exactly two parameters, the second of which has type std::size_t, then
this function is a usual deallocation function. A deallocation function can be an instance of a function
template. Neither the first parameter nor the return type shall depend on a template parameter. [Note:
that is, a deallocation function template shall have a first parameter of type void* and a return type of
void (as specified above). —end note| A deallocation function template shall have two or more function
parameters. A template instance is never a usual deallocation function, regardless of its signature.

If a deallocation function terminates by throwing an exception, the behavior is undefined. The value of the
first argument supplied to a deallocation function may be a null pointer value; if so, and if the deallocation
function is one supplied in the standard library, the call has no effect. Otherwise, the value supplied
to operator delete(void*) in the standard library shall be one of the values returned by a previous
invocation of either operator new(std: :size_t) or operator new(std::size_t, const std::nothrow_-
t&) in the standard library, and the value supplied to operator delete[] (void#) in the standard library
shall be one of the values returned by a previous invocation of either operator new[] (std::size_t) or
operator new[] (std::size_t, const std::nothrow_t&) in the standard library.

If the argument given to a deallocation function in the standard library is a pointer that is not the null pointer
value (4.10), the deallocation function shall deallocate the storage referenced by the pointer, rendering invalid
all pointers referring to any part of the deallocated storage. The effect of using an invalid pointer value
(including passing it to a deallocation function) is undefined.3¢

3.7.4.3 Safely-derived pointers [basic.stc.dynamic.safety]

A traceable pointer object is
— an object of pointer-to-object type, or
— an object of an integral type that is at least as large as std: :intptr_t, or

— a sequence of elements in an array of character type, where the size and alignment of the sequence
match that of some pointer-to-object type.

36) On some implementations, it causes a system-generated runtime fault.

§3.74.3 64

©ISO/IEC N3092

2 A pointer value is a safely-derived pointer to a dynamic object only if it has pointer-to-object type and it is
one of the following:

— the value returned by a call to the C++ standard library implementation of : :operator new(std::size_-
t) ;37

— the result of taking the address of an object (or one of its subobjects) designated by an lvalue resulting
from dereferencing a safely-derived pointer value;

— the result of well-defined pointer arithmetic using a safely-derived pointer value;

— the result of a well-defined pointer conversion of a safely-derived pointer value;

— the result of a reinterpret_cast of a safely-derived pointer value;

— the result of a reinterpret_cast of an integer representation of a safely-derived pointer value;

— the value of an object whose value was copied from a traceable pointer object, where at the time of
the copy the source object contained a copy of a safely-derived pointer value.

3 An integer value is an integer representation of a safely-derived pointer only if its type is at least as large as
std: :intptr_t and it is one of the following:

— the result of a reinterpret_cast of a safely-derived pointer value;
— the result of a valid conversion of an integer representation of a safely-derived pointer value;

— the value of an object whose value was copied from a traceable pointer object, where at the time of
the copy the source object contained an integer representation of a safely-derived pointer value;

— the result of an additive or bitwise operation, one of whose operands is an integer representation of a
safely-derived pointer value P, if that result converted by reinterpret_cast<void*> would compare
equal to a safely-derived pointer computable from reinterpret_cast<void#*>(P).

4 An implementation may have relaxed pointer safety, in which case the validity of a pointer value does not
depend on whether it is a safely-derived pointer value. Alternatively, an implementation may have strict
pointer safety, in which case, if a pointer value that is not a safely-derived pointer value is dereferenced
or deallocated, and the referenced complete object is of dynamic storage duration and has not previously
been declared reachable (20.9.12), the behavior is undefined. [Note: this is true even if the unsafely-derived
pointer value might compare equal to some safely-derived pointer value. — end note] It is implementation
defined whether an implementation has relaxed or strict pointer safety.

3.7.5 Duration of subobjects [basic.stc.inherit]

1 The storage duration of member subobjects, base class subobjects and array elements is that of their complete
object (1.8).

3.8 Object lifetime [basic.life]

1 The lifetime of an object is a runtime property of the object. An object is said to have non-trivial initialization
if it is of a class or aggregate type and it or one of its members is initialized by a constructor other
than a trivial default constructor. [Note: initialization by a trivial copy/move constructor is non-trivial
initialization. — end note] The lifetime of an object of type T begins when:

— storage with the proper alignment and size for type T is obtained, and

37) This section does not impose restrictions on dereferencing pointers to memory not allocated by ::operator new. This
maintains the ability of many C++ implementations to use binary libraries and components written in other languages. In
particular, this applies to C binaries, because dereferencing pointers to memory allocated by malloc is not restricted.

§ 3.8 65

©ISO/IEC N3092

— if the object has non-trivial initialization, its initialization is complete.

The lifetime of an object of type T ends when:
— if T is a class type with a non-trivial destructor (12.4), the destructor call starts, or
— the storage which the object occupies is reused or released.

[Note: the lifetime of an array object starts as soon as storage with proper size and alignment is obtained,
and its lifetime ends when the storage which the array occupies is reused or released. 12.6.2 describes the
lifetime of base and member subobjects. — end note|

The properties ascribed to objects throughout this International Standard apply for a given object only
during its lifetime. [Note: in particular, before the lifetime of an object starts and after its lifetime ends
there are significant restrictions on the use of the object, as described below, in 12.6.2 and in 12.7. Also,
the behavior of an object under construction and destruction might not be the same as the behavior of an
object whose lifetime has started and not ended. 12.6.2 and 12.7 describe the behavior of objects during the
construction and destruction phases. — end note]

A program may end the lifetime of any object by reusing the storage which the object occupies or by
explicitly calling the destructor for an object of a class type with a non-trivial destructor. For an object
of a class type with a non-trivial destructor, the program is not required to call the destructor explicitly
before the storage which the object occupies is reused or released; however, if there is no explicit call to
the destructor or if a delete-expression (5.3.5) is not used to release the storage, the destructor shall not be
implicitly called and any program that depends on the side effects produced by the destructor has undefined
behavior.

Before the lifetime of an object has started but after the storage which the object will occupy has been
allocated®® or, after the lifetime of an object has ended and before the storage which the object occupied is
reused or released, any pointer that refers to the storage location where the object will be or was located
may be used but only in limited ways. For an object under construction or destruction, see 12.7. Otherwise,
such a pointer refers to allocated storage (3.7.4.2), and using the pointer as if the pointer were of type voidx,
is well-defined. Such a pointer may be dereferenced but the resulting lvalue may only be used in limited
ways, as described below. The program has undefined behavior if:

— the object will be or was of a class type with a non-trivial destructor and the pointer is used as the
operand of a delete-expression,

— the pointer is used to access a non-static data member or call a non-static member function of the
object, or

— the pointer is implicitly converted (4.10) to a pointer to a base class type, or

— the pointer is used as the operand of a static_cast (5.2.9) (except when the conversion is to voidx,
or to void* and subsequently to char*, or unsigned char*), or

— the pointer is used as the operand of a dynamic_cast (5.2.7). [Example:

#include <cstdlib>

struct B {
virtual void f£();
void mutate();
virtual “B(Q);

};

38) For example, before the construction of a global object of non-POD class type (12.7).

§ 3.8 66

©ISO/IEC N3092

struct D1 : B { void £(); };
struct D2 : B { void £(); };

void B::mutate() {

new (this) D2; // reuses storage — ends the lifetime of *this
£0; // undefined behavior
. = this; // OK, this points to valid memory
}
void g() {

void* p = std::malloc(sizeof(D1) + sizeof(D2));
B* pb = new (p) Di;
pb—>mutate();

&pb; // OK: pb points to valid memory

void* q = pb; // OK: pb points to valid memory

pb—>fQ0); // undefined behavior, lifetime of *pb has ended
}

— end example]

6 Similarly, before the lifetime of an object has started but after the storage which the object will occupy
has been allocated or, after the lifetime of an object has ended and before the storage which the object
occupied is reused or released, any glvalue that refers to the original object may be used but only in limited
ways. For an object under construction or destruction, see 12.7. Otherwise, such a glvalue refers to allocated
storage (3.7.4.2), and using the properties of the glvalue that do not depend on its value is well-defined. The
program has undefined behavior if:

— an lvalue-to-rvalue conversion (4.1) is applied to such a glvalue,

— the glvalue is used to access a non-static data member or call a non-static member function of the
object, or

— the glvalue is implicitly converted (4.10) to a reference to a base class type, or

— the glvalue is used as the operand of a static_cast (5.2.9) except when the conversion is ultimately
to cv char& or cv unsigned charé&, or

— the glvalue is used as the operand of a dynamic_cast (5.2.7) or as the operand of typeid.

7 If, after the lifetime of an object has ended and before the storage which the object occupied is reused or
released, a new object is created at the storage location which the original object occupied, a pointer that
pointed to the original object, a reference that referred to the original object, or the name of the original
object will automatically refer to the new object and, once the lifetime of the new object has started, can
be used to manipulate the new object, if:

— the storage for the new object exactly overlays the storage location which the original object occupied,
and

— the new object is of the same type as the original object (ignoring the top-level cv-qualifiers), and

— the type of the original object is not const-qualified, and, if a class type, does not contain any non-static
data member whose type is const-qualified or a reference type, and

— the original object was a most derived object (1.8) of type T and the new object is a most derived
object of type T (that is, they are not base class subobjects). [Example:

struct C {
int i;

§ 3.8 67

©ISO/IEC N3092

void £();
const C& operator=(const C&);

};

const C& C::operator=(const C& other) {
if (this != &other) {

this->"CQ; // lifetime of *this ends
new (this) C(other); // mew object of type C created
£0); // well-defined
}
return *this;
}
C ci;
C c2;
cl = c2; // well-defined
cl1.£0; // well-defined; c1 refers to a new object of type C

— end example]

If a program ends the lifetime of an object of type T with static (3.7.1), thread (3.7.2), or automatic (3.7.3)
storage duration and if T has a non-trivial destructor,®® the program must ensure that an object of the
original type occupies that same storage location when the implicit destructor call takes place; otherwise the
behavior of the program is undefined. This is true even if the block is exited with an exception. [Ezample:

class T { };

struct B {
“BO;

};

void h() {
B b;
new (&b) T;
} // undefined behavior at block exit

— end example]

Creating a new object at the storage location that a const object with static, thread, or automatic storage
duration occupies or, at the storage location that such a const object used to occupy before its lifetime
ended results in undefined behavior. | Example:

struct B {
BO;
“BQO);
};

const B b;

void h() {

b."BO;

new (&b) const B; // undefined behavior
}

39) That is, an object for which a destructor will be called implicitly—upon exit from the block for an object with automatic
storage duration, upon exit from the thread for an object with thread storage duration, or upon exit from the program for an
object with static storage duration.

§ 3.8 68

10

3

©ISO/IEC N3092

— end example]

In this section, “before” and “after” refer to the “happens before” relation (1.10). [Note: Therefore, undefined
behavior results if an object that is being constructed in one thread is referenced from another thread without
adequate synchronization. — end note|

3.9 Types [basic.types]

[Note: 3.9 and the subclauses thereof impose requirements on implementations regarding the representation
of types. There are two kinds of types: fundamental types and compound types. Types describe objects
(1.8), references (8.3.2), or functions (8.3.5).

For any object (other than a base-class subobject) of trivially copyable type T, whether or not the object
holds a valid value of type T, the underlying bytes (1.7) making up the object can be copied into an array
of char or unsigned char.?? If the content of the array of char or unsigned char is copied back into the
object, the object shall subsequently hold its original value. [Ezample:

#define N sizeof (T)
char buf[N];

T obj; // obj initialized to its original value
std: :memcpy (buf, &obj, N); // between these two calls to std: :memcpy,
// obj might be modified
std: :memcpy(&obj, buf, N); // at this point, each subobject of obj of scalar type

// holds its original value

— end example]

For any trivially copyable type T, if two pointers to T point to distinct T objects objl and obj2, where
neither obj1 nor obj2 is a base-class subobject, if the underlying bytes (1.7) making up obj1 are copied
into obj2," obj2 shall subsequently hold the same value as obj1. [Ezample:

T* tip;

T* t2p;
// provided that t2p points to an initialized object ...

std: :memcpy(tlp, t2p, sizeof(T));
// at this point, every subobject of trivially copyable type in *tlp contains
// the same value as the corresponding subobject in *t2p

— end example|

The object representation of an object of type T is the sequence of N unsigned char objects taken up by
the object of type T, where N equals sizeof (T). The value representation of an object is the set of bits that
hold the value of type T. For trivially copyable types, the value representation is a set of bits in the object
representation that determines a wvalue, which is one discrete element of an implementation-defined set of
values.*?

A class that has been declared but not defined, or an array of unknown size or of incomplete element type, is
an incompletely-defined object type.* Incompletely-defined object types and the void types are incomplete
types (3.9.1). Objects shall not be defined to have an incomplete type.

A class type (such as “class X”) might be incomplete at one point in a translation unit and complete later
on; the type “class X” is the same type at both points. The declared type of an array object might be

40) By using, for example, the library functions (17.6.1.2) std: :memcpy or std: :memmove.

41) By using, for example, the library functions (17.6.1.2) std: :memcpy or std: :memmove.

42) The intent is that the memory model of C++ is compatible with that of ISO/IEC 9899 Programming Language C.
43) The size and layout of an instance of an incompletely-defined object type is unknown.

§ 3.9 69

10

©ISO/IEC N3092

an array of incomplete class type and therefore incomplete; if the class type is completed later on in the
translation unit, the array type becomes complete; the array type at those two points is the same type. The
declared type of an array object might be an array of unknown size and therefore be incomplete at one point
in a translation unit and complete later on; the array types at those two points (“array of unknown bound
of T” and “array of N T”) are different types. The type of a pointer to array of unknown size, or of a type
defined by a typedef declaration to be an array of unknown size, cannot be completed. [Ezample:

class X; // X is an incomplete type

extern X* xp; // Xp is a pointer to an incomplete type
extern int arr[]; // the type of arr is incomplete

typedef int UNKA[]; // UNKA is an incomplete type

UNKA* arrp; // arrp is a pointer to an incomplete type

UNKA** arrpp;

void foo() {

Xptt; // ill-formed: X is incomplete
arrp++; // ill-formed: incomplete type
arrpp++; // OK: sizeof UNKA* is known
}
struct X { int i; }; // now X is a complete type
int arr[10]; // now the type of arr is complete
X x;
void bar() {
xp = &x; // OK; type is “pointer to X”
arrp = &arr; // ill-formed: different types
Xpt+; // OK: X is complete
arrp++; // ill-formed: UNKA can’t be completed
}

— end example]

[Note: the rules for declarations and expressions describe in which contexts incomplete types are prohibited.
— end note]

An object type is a (possibly cv-qualified) type that is not a function type, not a reference type, and not a
void type.

Arithmetic types (3.9.1), enumeration types, pointer types, pointer to member types (3.9.2), std: :nullptr_-
t, and cv-qualified versions of these types (3.9.3) are collectively called scalar types. Scalar types, POD
classes (Clause 9), arrays of such types and cuv-qualified versions of these types (3.9.3) are collectively called
POD types. Scalar types, trivially copyable class types (Clause 9), arrays of such types, and cv-qualified
versions of these types (3.9.3) are collectively called trivially copyable types. Scalar types, trivial class types
(Clause 9), arrays of such types and cv-qualified versions of these types (3.9.3) are collectively called trivial
types. Scalar types, standard-layout class types (Clause 9), arrays of such types and cv-qualified versions of
these types (3.9.3) are collectively called standard-layout types.

A type is a literal type if it is:
— a scalar type; or
— a class type (Clause 9) with
— a trivial copy constructor,

— no non-trivial move constructor,

§ 3.9 70

11

©ISO/IEC N3092

— a trivial destructor,

— a trivial default constructor or at least one constexpr constructor other than the copy or move
constructor, and

— all non-static data members and base classes of literal types; or
— an array of literal type.

If two types T1 and T2 are the same type, then T1 and T2 are layout-compatible types. [Note: Layout-
compatible enumerations are described in 7.2. Layout-compatible standard-layout structs and standard-
layout unions are described in 9.2. — end note]|

3.9.1 Fundamental types [basic.fundamental]

Objects declared as characters (char) shall be large enough to store any member of the implementation’s ba-
sic character set. If a character from this set is stored in a character object, the integral value of that character
object is equal to the value of the single character literal form of that character. It is implementation-defined
whether a char object can hold negative values. Characters can be explicitly declared unsigned or signed.
Plain char, signed char, and unsigned char are three distinct types. A char, a signed char, and an
unsigned char occupy the same amount of storage and have the same alignment requirements (3.11); that
is, they have the same object representation. For character types, all bits of the object representation par-
ticipate in the value representation. For unsigned character types, all possible bit patterns of the value
representation represent numbers. These requirements do not hold for other types. In any particular imple-
mentation, a plain char object can take on either the same values as a signed char or an unsigned char;
which one is implementation-defined.

Y s

There are five standard signed integer types : “signed char”, “short int”, “int”, “long int”, and “long
long int”. In this list, each type provides at least as much storage as those preceding it in the list.
There may also be implementation-defined eztended signed integer types. The standard and extended signed
integer types are collectively called signed integer types. Plain ints have the natural size suggested by the
architecture of the execution environment**; the other signed integer types are provided to meet special
needs.

For each of the standard signed integer types, there exists a corresponding (but different) standard un-
signed integer type: “unsigned char”, “unsigned short int”, “unsigned int”, “unsigned long int”,
and “unsigned long long int”, each of which occupies the same amount of storage and has the same
alignment requirements (3.11) as the corresponding signed integer type®; that is, each signed integer type
has the same object representation as its corresponding unsigned integer type. Likewise, for each of the
extended signed integer types there exists a corresponding extended unsigned integer type with the same
amount of storage and alignment requirements. The standard and extended unsigned integer types are
collectively called unsigned integer types. The range of non-negative values of a signed integer type is a
subrange of the corresponding unsigned integer type, and the value representation of each corresponding
signed /unsigned type shall be the same. The standard signed integer types and standard unsigned integer
types are collectively called the standard integer types, and the extended signed integer types and extended
unsigned integer types are collectively called the extended integer types.

Unsigned integers, declared unsigned, shall obey the laws of arithmetic modulo 2™ where n is the number
of bits in the value representation of that particular size of integer.*6

44) that is, large enough to contain any value in the range of INT_MIN and INT_MAX, as defined in the header <climits>.

45) See 7.1.6.2 regarding the correspondence between types and the sequences of type-specifiers that designate them.

46) This implies that unsigned arithmetic does not overflow because a result that cannot be represented by the resulting
unsigned integer type is reduced modulo the number that is one greater than the largest value that can be represented by the
resulting unsigned integer type.

§3.9.1 71

10

11

©ISO/IEC N3092

Type wchar_t is a distinct type whose values can represent distinct codes for all members of the largest
extended character set specified among the supported locales (22.3.1). Type wchar_t shall have the same
size, signedness, and alignment requirements (3.11) as one of the other integral types, called its underlying
type. Types char16_t and char32_t denote distinct types with the same size, signedness, and alignment as

uint_least16_t and uint_least32_t, respectively, in <stdint.h>, called the underlying types.
Values of type bool are either true or false.*” [Note: there are no signed, unsigned, short, or long
bool types or values. — end note] Values of type bool participate in integral promotions (4.5).

Types bool, char, char16_t, char32_t, wchar_t, and the signed and unsigned integer types are collectively
called integral types.*® A synonym for integral type is integer type. The representations of integral types

shall define values by use of a pure binary numeration system.*® [Ezample: this International Standard
permits 2’s complement, 1’s complement and signed magnitude representations for integral types. —end
example]

There are three floating point types: float, double, and long double. The type double provides at least
as much precision as float, and the type long double provides at least as much precision as double.
The set of values of the type float is a subset of the set of values of the type double; the set of values
of the type double is a subset of the set of values of the type long double. The value representation of
floating-point types is implementation-defined. Integral and floating types are collectively called arithmetic
types. Specializations of the standard template std::numeric_limits (18.3) shall specify the maximum
and minimum values of each arithmetic type for an implementation.

The void type has an empty set of values. The void type is an incomplete type that cannot be completed. It
is used as the return type for functions that do not return a value. Any expression can be explicitly converted
to type cv void (5.4). An expression of type void shall be used only as an expression statement (6.2), as an
operand of a comma expression (5.18), as a second or third operand of ?: (5.16), as the operand of typeid,
or as the expression in a return statement (6.6.3) for a function with the return type void.

A value of type std: :nullptr_t is a null pointer constant (4.10). Such values participate in the pointer and
the pointer to member conversions (4.10, 4.11). sizeof (std: :nullptr_t) shall be equal to sizeof (void*).

[Note: even if the implementation defines two or more basic types to have the same value representation,
they are nevertheless different types. — end note]

3.9.2 Compound types [basic.compound]

Compound types can be constructed in the following ways:
— arrays of objects of a given type, 8.3.4;

— functions, which have parameters of given types and return void or references or objects of a given
type, 8.3.5;

— pointers to void or objects or functions (including static members of classes) of a given type, 8.3.1;
— references to objects or functions of a given type, 8.3.2. There are two types of references:
— lvalue reference

— rvalue reference

47) Using a bool value in ways described by this International Standard as “undefined,” such as by examining the value of an
uninitialized automatic object, might cause it to behave as if it is neither true nor false.

48) Therefore, enumerations (7.2) are not integral; however, enumerations can be promoted to integral types as specified in 4.5.

49) A positional representation for integers that uses the binary digits 0 and 1, in which the values represented by successive
bits are additive, begin with 1, and are multiplied by successive integral power of 2, except perhaps for the bit with the highest
position. (Adapted from the American National Dictionary for Information Processing Systems.)

§3.9.2 72

2

©ISO/IEC N3092

— classes containing a sequence of objects of various types (Clause 9), a set of types, enumerations and
functions for manipulating these objects (9.3), and a set of restrictions on the access to these entities
(Clause 11);

— wunions, which are classes capable of containing objects of different types at different times, 9.5;

— enumerations, which comprise a set of named constant values. Each distinct enumeration constitutes
a different enumerated type, 7.2;

— pointers to non-static °° class members, which identify members of a given type within objects of a
given class, 8.3.3.

These methods of constructing types can be applied recursively; restrictions are mentioned in 8.3.1, 8.3.4,
8.3.5, and 8.3.2.

A pointer to objects of type T is referred to as a “pointer to T.” [Ezample: a pointer to an object of type
int is referred to as “pointer to int ” and a pointer to an object of class X is called a “pointer to X.” — end
example] Except for pointers to static members, text referring to “pointers” does not apply to pointers to
members. Pointers to incomplete types are allowed although there are restrictions on what can be done with
them (3.11). A valid value of an object pointer type represents either the address of a byte in memory (1.7)
or a null pointer (4.10). If an object of type T is located at an address A, a pointer of type cv T* whose value
is the address A is said to point to that object, regardless of how the value was obtained. [Note: for instance,
the address one past the end of an array (5.7) would be considered to point to an unrelated object of the
array’s element type that might be located at that address. There are further restrictions on pointers to
objects with dynamic storage duration; see 3.7.4.3. — end note| The value representation of pointer types
is implementation-defined. Pointers to cv-qualified and cv-unqualified versions (3.9.3) of layout-compatible
types shall have the same value representation and alignment requirements (3.11). [Note: pointers to
over-aligned types (3.11) have no special representation, but their range of valid values is restricted by the
extended alignment requirement. This International Standard specifies only two ways of obtaining such a
pointer: taking the address of a valid object with an over-aligned type, and using one of the runtime pointer
alignment functions. An implementation may provide other means of obtaining a valid pointer value for an
over-aligned type. — end note]

Objects of cv-qualified (3.9.3) or cv-unqualified type void#* (pointer to void), can be used to point to objects
of unknown type. A void# shall be able to hold any object pointer. A cv-qualified or cv-unqualified (3.9.3)
void* shall have the same representation and alignment requirements as a cv-qualified or cv-unqualified
char*.

3.9.3 CV-qualifiers [basic.type.qualifier]

A type mentioned in 3.9.1 and 3.9.2 is a cv-unqualified type. Each type which is a cv-unqualified complete
or incomplete object type or is void (3.9) has three corresponding cv-qualified versions of its type: a
const-qualified version, a wvolatile-qualified version, and a const-volatile-qualified version. The term object
type (1.8) includes the cv-qualifiers specified when the object is created. The presence of a const specifier
in a decl-specifier-seq declares an object of const-qualified object type; such object is called a const object.
The presence of a volatile specifier in a decl-specifier-seq declares an object of volatile-qualified object type;
such object is called a wvolatile object. The presence of both cv-qualifiers in a decl-specifier-seq declares an
object of const-volatile-qualified object type; such object is called a const volatile object. The cv-qualified or
cv-unqualified versions of a type are distinct types; however, they shall have the same representation and
alignment requirements (3.9).51

50) Static class members are objects or functions, and pointers to them are ordinary pointers to objects or functions.
51) The same representation and alignment requirements are meant to imply interchangeability as arguments to functions,
return values from functions, and non-static data members of unions.

§3.9.3 73

©ISO/IEC N3092

A compound type (3.9.2) is not cv-qualified by the cv-qualifiers (if any) of the types from which it is com-
pounded. Any cv-qualifiers applied to an array type affect the array element type, not the array type (8.3.4).

Each non-static, non-mutable, non-reference data member of a const-qualified class object is const-quali-
fied, each non-static, non-reference data member of a volatile-qualified class object is volatile-qualified and
similarly for members of a const-volatile class. See 8.3.5 and 9.3.2 regarding function types that have
cv-qualifiers.

There is a partial ordering on cv-qualifiers, so that a type can be said to be more cv-qualified than another.
Table 8 shows the relations that constitute this ordering.

Table 8 — Relations on const and volatile

no cv-qualifier < const
no cv-qualifier < volatile
no cv-qualifier < const volatile
const < const volatile
volatile < const volatile

In this International Standard, the notation cv (or cvl, cv2, etc.), used in the description of types, represents
an arbitrary set of cv-qualifiers, i.e., one of {const}, {volatile}, {const, volatile}, or the empty set.
Cv-qualifiers applied to an array type attach to the underlying element type, so the notation “cv T,” where
T is an array type, refers to an array whose elements are so-qualified. Such array types can be said to be
more (or less) cv-qualified than other types based on the cv-qualification of the underlying element types.

3.10 Lvalues and rvalues [basic.lval]

Expressions are categorized according to the taxonomy in Figure 1.

expression
glvalue rvalue
lvalue xvalue prvalue

Figure 1 — Expression category taxonomy

— An lvalue (so called, historically, because lvalues could appear on the left-hand side of an assignment
expression) designates a function or an object. [Ezample: If E is an expression of pointer type, then
*E is an lvalue expression referring to the object or function to which E points. As another example,
the result of calling a function whose return type is an lvalue reference is an lvalue. — end example]

— An zvalue (an “eXpiring” value) also refers to an object, usually near the end of its lifetime (so that its
resources may be moved, for example). An xvalue is the result of certain kinds of expressions involving
rvalue references (8.3.2). [Ezample: The result of calling a function whose return type is an rvalue
reference is an xvalue. — end ezample]

— A glvalue (“generalized” lvalue) is an lvalue or an xvalue.

§ 3.10 74

10

©ISO/IEC N3092

— An rvalue (so called, historically, because rvalues could appear on the right-hand side of an assignment
expressions) is an xvalue, a temporary object (12.2) or subobject thereof, or a value that is not
associated with an object.

— A prvalue (“pure” rvalue) is an rvalue that is not an xvalue. [Ezample: The result of calling a function
whose return type is not a reference is a prvalue. The value of a literal such as 12, 7.3e5, or true is
also a prvalue. — end ezample]

Every expression belongs to exactly one of the fundamental classifications in this taxonomy: lvalue, xvalue,
or prvalue. This property of an expression is called its value category. [Note: The discussion of each built-in
operator in Clause 5 indicates the category of the value it yields and the value categories of the operands it
expects. For example, the built-in assignment operators expect that the left operand is an lvalue and that
the right operand is a prvalue and yield an lvalue as the result. User-defined operators are functions, and
the categories of values they expect and yield are determined by their parameter and return types. — end
note |

Whenever a glvalue appears in a context where a prvalue is expected, the glvalue is converted to a prvalue;
see 4.1, 4.2, and 4.3.

The discussion of reference initialization in 8.5.3 and of temporaries in 12.2 indicates the behavior of lvalues
and rvalues in other significant contexts.

Class prvalues can have cv-qualified types; non-class prvalues always have cv-unqualified types. Prvalues shall
always have complete types or the void type; in addition to these types, glvalues can also have incomplete

types.

An lvalue for an object is necessary in order to modify the object except that an rvalue of class type can
also be used to modify its referent under certain circumstances. | Ezample: a member function called for an
object (9.3) can modify the object. — end example]

Functions cannot be modified, but pointers to functions can be modifiable.

A pointer to an incomplete type can be modifiable. At some point in the program when the pointed to type
is complete, the object at which the pointer points can also be modified.

The referent of a const-qualified expression shall not be modified (through that expression), except that if
it is of class type and has a mutable component, that component can be modified (7.1.6.1).

If an expression can be used to modify the object to which it refers, the expression is called modifiable. A
program that attempts to modify an object through a nonmodifiable lvalue or rvalue expression is ill-formed.

If a program attempts to access the stored value of an object through a glvalue of other than one of the
following types the behavior is undefined®?

— the dynamic type of the object,

— a cv-qualified version of the dynamic type of the object,

— a type similar (as defined in 4.4) to the dynamic type of the object,

— a type that is the signed or unsigned type corresponding to the dynamic type of the object,

— a type that is the signed or unsigned type corresponding to a cv-qualified version of the dynamic type
of the object,

— an aggregate or union type that includes one of the aforementioned types among its elements or non-
static data members (including, recursively, an element or non-static data member of a subaggregate
or contained union),

52) The intent of this list is to specify those circumstances in which an object may or may not be aliased.

§ 3.10 75

©ISO/IEC N3092

— a type that is a (possibly cv-qualified) base class type of the dynamic type of the object,

— a char or unsigned char type.

3.11 Alignment [basic.align]

Object types have alignment requirements (3.9.1, 3.9.2) which place restrictions on the addressses at which
an object of that type may be allocated. An aligment is an implementation-defined integer value representing
the number of bytes between successive addresses at which a given object can be allocated. An object type
imposes an alignment requirement on every object of that type; stricter alignment can be requested using
the alignment attribute (7.6.2).

A fundamental alignment is represented by an alignment less than or equal to the greatest alignment sup-
ported by the implementation in all contexts, which is equal to alignof (std::max_align_t) (18.2).

An extended alignment is represented by an alignment greater than alignof (std::max_align_t). It is
implementation-defined whether any extended alignments are supported and the contexts in which they are
supported (7.6.2). A type having an extended alignment requirement is an over-aligned type. [Note: every
over-aligned type is or contains a class type with a non-static data member to which an extended alignment
has been applied. — end note |

Alignments are represented as values of the type std: :size_t. Valid alignments include only those values
returned by an alignof expression for the fundamental types plus an additional implementation-defined set
of values which may be empty.*?

Alignments have an order from weaker to stronger or stricter alignments. Stricter alignments have larger
alignment values. An address that satisfies an alignment requirement also satisfies any weaker valid alignment
requirement.

The alignment requirement of a complete type can be queried using an alignof expression (5.3.6). Fur-
thermore, the types char, signed char, and unsigned char shall have the weakest alignment require-
ment. [Note: this enables the character types to be used as the underlying type for an aligned memory
area (7.6.2). — end note

Comparing alignments is meaningful and provides the obvious results:
— Two alignments are equal when their numeric values are equal.
— Two alignments are different when their numeric values are not equal.
— When an alignment is larger than another it represents a stricter alignment.

[Note: the runtime pointer alignment function (20.9.13) can be used to obtain an aligned pointer within a
buffer; the aligned-storage templates in the library (20.7.6.6) can be used to obtain aligned storage. — end
note]

If a request for a specific extended alignment in a specific context is not supported by an implementation,
the program is ill-formed. Additionally, a request for runtime allocation of dynamic storage for which the
requested alignment cannot be honored shall be treated as an allocation failure.

53) It is intended that every valid alignment value be an integral power of two.

§ 3.11 76

©ISO/IEC N3092

4 Standard conversions [conv]

Standard conversions are implicit conversions defined for built-in types. Clause 4 enumerates the full set
of such conversions. A standard conversion sequence is a sequence of standard conversions in the following
order:

— Zero or one conversion from the following set: Ivalue-to-rvalue conversion, array-to-pointer conversion,
and function-to-pointer conversion.

— Zero or one conversion from the following set: integral promotions, floating point promotion, integral
conversions, floating point conversions, floating-integral conversions, pointer conversions, pointer to
member conversions, and boolean conversions.

— Zero or one qualification conversion.

[Note: a standard conversion sequence can be empty, i.e., it can consist of no conversions. — end note|
A standard conversion sequence will be applied to an expression if necessary to convert it to a required
destination type.

[Note: expressions with a given type will be implicitly converted to other types in several contexts:

— When used as operands of operators. The operator’s requirements for its operands dictate the desti-
nation type (Clause 5).

— When used in the condition of an if statement or iteration statement (6.4, 6.5). The destination type
is bool.

— When used in the expression of a switch statement. The destination type is integral (6.4).

— When used as the source expression for an initialization (which includes use as an argument in a
function call and use as the expression in a return statement). The type of the entity being initialized
is (generally) the destination type. See 8.5, 8.5.3.

— end note]

An expression e can be implicitly converted to a type T if and only if the declaration T t=e; is well-formed,
for some invented temporary variable t (8.5). Certain language constructs require that an expression be
converted to a Boolean value. An expression e appearing in such a context is said to be contextually
converted to bool and is well-formed if and only if the declaration bool t(e); is well-formed, for some
invented temporary variable t (8.5). The effect of either implicit conversion is the same as performing the
declaration and initialization and then using the temporary variable as the result of the conversion. The
result is an lvalue if T is an lvalue reference type or an rvalue reference to function type (8.3.2), an xvalue
if T is an rvalue reference to object type, and a prvalue otherwise. The expression e is used as a glvalue if
and only if the initialization uses it as a glvalue.

[Note: For user-defined types, user-defined conversions are considered as well; see 12.3. In general, an
implicit conversion sequence (13.3.3.1) consists of a standard conversion sequence followed by a user-defined
conversion followed by another standard conversion sequence. — end note |

[Note: There are some contexts where certain conversions are suppressed. For example, the lvalue-to-
rvalue conversion is not done on the operand of the unary & operator. Specific exceptions are given in the
descriptions of those operators and contexts. — end note]

7

©ISO/IEC N3092

4.1 Lvalue-to-rvalue conversion [conv.lval]

A glvalue (3.10) of a non-function, non-array type T can be converted to a prvalue.”® If T is an incomplete
type, a program that necessitates this conversion is ill-formed. If the object to which the glvalue refers is not
an object of type T and is not an object of a type derived from T, or if the object is uninitialized, a program
that necessitates this conversion has undefined behavior. If T is a non-class type, the type of the prvalue is
the cv-unqualified version of T. Otherwise, the type of the prvalue is T.%°

When an lvalue-to-rvalue conversion occurs in an unevaluated operand or a subexpression thereof (Clause 5)
the value contained in the referenced object is not accessed. Otherwise, if the glvalue has a class type,
the conversion copy-initializes a temporary of type T from the glvalue and the result of the conversion is a
prvalue for the temporary. Otherwise, if the glvalue has (possibly cv-qualified) type std: :nullptr_t, the
prvalue result is a null pointer constant (4.10). Otherwise, the value contained in the object indicated by
the glvalue is the prvalue result.

[Note: See also 3.10. — end note]

4.2 Array-to-pointer conversion [conv.array]

An lvalue or rvalue of type “array of N T” or “array of unknown bound of T” can be converted to a prvalue
of type “pointer to T”. The result is a pointer to the first element of the array.

4.3 Function-to-pointer conversion [conv.func]

An lvalue of function type T can be converted to a prvalue of type “pointer to T.” The result is a pointer to

the function.?®
[Note: See 13.4 for additional rules for the case where the function is overloaded. — end note]
4.4 Qualification conversions [conv.qual]

A prvalue of type “pointer to cv! T” can be converted to a prvalue of type “pointer to cv2 T” if “cv2 T” is
more cv-qualified than “cvi T”.

A prvalue of type “pointer to member of X of type cvl T” can be converted to a prvalue of type “pointer to
member of X of type cv2 T” if “cv2 T” is more cv-qualified than “cvl T”.

[Note: Function types (including those used in pointer to member function types) are never cv-qualified (8.3.5).
— end note]

A conversion can add cv-qualifiers at levels other than the first in multi-level pointers, subject to the following
rules:?”

Two pointer types T1 and T2 are similar if there exists a type T and integer n > 0 such that:
T11is cvy,o pointer to cvy,; pointer to --- cvi -1 pointer to cvy, T
and

T2 is cva o pointer to cvg ;1 pointer to --- cva ,—1 pointer to cvg, T

54) For historical reasons, this conversion is called the “lvalue-to-rvalue” conversion, even though that name does not accurately
reflect the taxonomy of expressions described in 3.10.

55) In C++ class prvalues can have cv-qualified types (because they are objects). This differs from ISO C, in which non-lvalues
never have cv-qualified types.

56) This conversion never applies to non-static member functions because an lvalue that refers to a non-static member function
cannot be obtained.

57) These rules ensure that const-safety is preserved by the conversion.

§ 4.4 78

5

©ISO/IEC N3092

where each cv; ; is const, volatile, const volatile, or nothing. The n-tuple of cv-qualifiers after the
first in a pointer type, e.g., cvi,1, cv1,2, -+, cV1,, in the pointer type 711, is called the cv-qualification
signature of the pointer type. An expression of type T'1 can be converted to type T2 if and only if the
following conditions are satisfied:

— the pointer types are similar.
— for every j > 0, if const is in cvy ; then const is in cvs j, and similarly for volatile.
— if the cv1; and cvy ; are different, then const is in every cva) for 0 < k < j.

[Note: if a program could assign a pointer of type T** to a pointer of type const T#* (that is, if line #1
below were allowed), a program could inadvertently modify a const object (as it is done on line #2). For
example,

int main() {

const char ¢ = ’c’;

char* pc;

const char** pcc = &pc; // #1: not allowed

*pcc = &c;

*pc = ’C’; // #2: modifies a const object
}

— end note

A multi-level pointer to member type, or a multi-level mized pointer and pointer to member type has the
form:

C’U()PO to C’U1P1 to - .- Cvn—lpn—l to CUp, T
where P; is either a pointer or pointer to member and where T is not a pointer type or pointer to member
type.
Two multi-level pointer to member types or two multi-level mixed pointer and pointer to member types T1
and T2 are similar if there exists a type T and integer n > 0 such that:

T1is cvi,0Fo to cv1 1Py to -+ cvip_1Py_q1 to corp T
and

T2 is 01}270P0 to C’U271P1 to - .- cvg,n_an_l to CU2.n T

For similar multi-level pointer to member types and similar multi-level mixed pointer and pointer to member
types, the rules for adding cv-qualifiers are the same as those used for similar pointer types.

4.5 Integral promotions [conv.prom]

A prvalue of an integer type other than bool, char16_t, char32_t, or wchar_t whose integer conversion
rank (4.13) is less than the rank of int can be converted to a prvalue of type int if int can represent all
the values of the source type; otherwise, the source prvalue can be converted to a prvalue of type unsigned
int.

A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted to a prvalue of the first of
the following types that can represent all the values of its underlying type: int, unsigned int, long int,
unsigned long int, long long int, or unsigned long long int. If none of the types in that list can
represent all the values of its underlying type, a prvalue of type char16_t, char32_t, or wchar_t can be
converted to a prvalue of its underlying type.

§ 4.5 79

©ISO/IEC N3092

A prvalue of an unscoped enumeration type whose underlying type is not fixed (7.2) can be converted to a
prvalue of the first of the following types that can represent all the values of the enumeration (i.e., the values
in the range b,in t0 by as described in 7.2): int, unsigned int, long int, unsigned long int, long
long int, or unsigned long long int. If none of the types in that list can represent all the values of
the enumeration, a prvalue of an unscoped enumeration type can be converted to a prvalue of the extended
integer type with lowest integer conversion rank (4.13) greater than the rank of long long in which all the
values of the enumeration can be represented. If there are two such extended types, the signed one is chosen.

A prvalue of an unscoped enumeration type whose underlying type is fixed (7.2) can be converted to a
prvalue of its underlying type. Moreover, if integral promotion can be applied to its underlying type, a
prvalue of an unscoped enumeration type whose underlying type is fixed can also be converted to a prvalue
of the promoted underlying type.

A prvalue for an integral bit-field (9.6) can be converted to a prvalue of type int if int can represent all
the values of the bit-field; otherwise, it can be converted to unsigned int if unsigned int can represent
all the values of the bit-field. If the bit-field is larger yet, no integral promotion applies to it. If the bit-field
has an enumerated type, it is treated as any other value of that type for promotion purposes.

A prvalue of type bool can be converted to a prvalue of type int, with false becoming zero and true
becoming one.

These conversions are called integral promotions.

4.6 Floating point promotion [conv.fpprom]

A prvalue of type float can be converted to a prvalue of type double. The value is unchanged.

This conversion is called floating point promotion.

4.7 Integral conversions [conv.integral]

A prvalue of an integer type can be converted to a prvalue of another integer type. A prvalue of an unscoped
enumeration type can be converted to a prvalue of an integer type.

If the destination type is unsigned, the resulting value is the least unsigned integer congruent to the source
integer (modulo 2™ where n is the number of bits used to represent the unsigned type). [Note: In a two’s
complement representation, this conversion is conceptual and there is no change in the bit pattern (if there
is no truncation). — end note|

If the destination type is signed, the value is unchanged if it can be represented in the destination type (and
bit-field width); otherwise, the value is implementation-defined.

If the destination type is bool, see 4.12. If the source type is bool, the value false is converted to zero and
the value true is converted to one.

The conversions allowed as integral promotions are excluded from the set of integral conversions.

4.8 Floating point conversions [conv.double]

A prvalue of floating point type can be converted to a prvalue of another floating point type. If the
source value can be exactly represented in the destination type, the result of the conversion is that exact
representation. If the source value is between two adjacent destination values, the result of the conversion
is an implementation-defined choice of either of those values. Otherwise, the behavior is undefined.

§ 4.8 80

©ISO/IEC N3092

The conversions allowed as floating point promotions are excluded from the set of floating point conversions.

4.9 Floating-integral conversions [conv.fpint]

A prvalue of a floating point type can be converted to a prvalue of an integer type. The conversion trun-
cates; that is, the fractional part is discarded. The behavior is undefined if the truncated value cannot be
represented in the destination type. [Note: If the destination type is bool, see 4.12. — end note]|

A prvalue of an integer type or of an unscoped enumeration type can be converted to a prvalue of a floating
point type. The result is exact if possible. If the value being converted is in the range of values that can
be represented but the value cannot be represented exactly, it is an implementation-defined choice of either
the next lower or higher representable value. [Note: loss of precision occurs if the integral value cannot be
represented exactly as a value of the floating type. — end note] If the value being converted is outside the
range of values that can be represented, the behavior is undefined. If the source type is bool, the value
false is converted to zero and the value true is converted to one.

4.10 Pointer conversions [conv.ptr]

A null pointer constant is an integral constant expression (5.19) prvalue of integer type that evaluates to
zero or a prvalue of type std::nullptr_t. A null pointer constant can be converted to a pointer type; the
result is the null pointer value of that type and is distinguishable from every other value of pointer to object
or pointer to function type. Two null pointer values of the same type shall compare equal. The conversion
of a null pointer constant to a pointer to cv-qualified type is a single conversion, and not the sequence of a
pointer conversion followed by a qualification conversion (4.4). A null pointer constant of integral type can
be converted to a prvalue of type std: :nullptr_t. [Note: The resulting prvalue is not a null pointer value.
— end note]

A prvalue of type “pointer to cv T,” where T is an object type, can be converted to a prvalue of type “pointer
to cv void”. The result of converting a “pointer to cv T” to a “pointer to cv void” points to the start of
the storage location where the object of type T resides, as if the object is a most derived object (1.8) of type
T (that is, not a base class subobject). The null pointer value is converted to the null pointer value of the
destination type.

A prvalue of type “pointer to cv D”, where D is a class type, can be converted to a prvalue of type “pointer
to cv B”, where B is a base class (Clause 10) of D. If B is an inaccessible (Clause 11) or ambiguous (10.2)
base class of D, a program that necessitates this conversion is ill-formed. The result of the conversion is a
pointer to the base class subobject of the derived class object. The null pointer value is converted to the
null pointer value of the destination type.

4.11 Pointer to member conversions [conv.mem)]

A null pointer constant (4.10) can be converted to a pointer to member type; the result is the null member
pointer value of that type and is distinguishable from any pointer to member not created from a null pointer
constant. Two null member pointer values of the same type shall compare equal. The conversion of a null
pointer constant to a pointer to member of cv-qualified type is a single conversion, and not the sequence of
a pointer to member conversion followed by a qualification conversion (4.4).

A prvalue of type “pointer to member of B of type cv T”, where B is a class type, can be converted to a
prvalue of type “pointer to member of D of type cv T”, where D is a derived class (Clause 10) of B. If B is
an inaccessible (Clause 11), ambiguous (10.2), or virtual (10.1) base class of D, or a base class of a virtual
base class of D, a program that necessitates this conversion is ill-formed. The result of the conversion refers
to the same member as the pointer to member before the conversion took place, but it refers to the base
class member as if it were a member of the derived class. The result refers to the member in D’s instance of
B. Since the result has type “pointer to member of D of type cv T”, it can be dereferenced with a D object.

§4.11 81

1

©ISO/IEC N3092

The result is the same as if the pointer to member of B were dereferenced with the B subobject of D. The
null member pointer value is converted to the null member pointer value of the destination type.>®

4.12 Boolean conversions [conv.bool]

A prvalue of arithmetic, unscoped enumeration, pointer, or pointer to member type can be converted to a
prvalue of type bool. A zero value, null pointer value, or null member pointer value is converted to false;
any other value is converted to true. A prvalue of type std: :nullptr_t can be converted to a prvalue of
type bool; the resulting value is false.

4.13 Integer conversion rank [conv.rank]

Every integer type has an integer conversion rank defined as follows:

— No two signed integer types other than char and signed char (if char is signed) shall have the same
rank, even if they have the same representation.

— The rank of a signed integer type shall be greater than the rank of any signed integer type with a
smaller size.

— The rank of long long int shall be greater than the rank of long int, which shall be greater than
the rank of int, which shall be greater than the rank of short int, which shall be greater than the
rank of signed char.

— The rank of any unsigned integer type shall equal the rank of the corresponding signed integer type.

— The rank of any standard integer type shall be greater than the rank of any extended integer type
with the same size.

— The rank of char shall equal the rank of signed char and unsigned char.
— The rank of bool shall be less than the rank of all other standard integer types.
— The ranks of char16_t, char32_t, and wchar_t shall equal the ranks of their underlying types (3.9.1).

— The rank of any extended signed integer type relative to another extended signed integer type with
the same size is implementation-defined, but still subject to the other rules for determining the integer
conversion rank.

— For all integer types T1, T2, and T3, if T1 has greater rank than T2 and T2 has greater rank than T3,
then T1 shall have greater rank than T3.

[Note: The integer conversion rank is used in the definition of the integral promotions (4.5) and the usual
arithmetic conversions (5). — end note|

58) The rule for conversion of pointers to members (from pointer to member of base to pointer to member of derived) appears
inverted compared to the rule for pointers to objects (from pointer to derived to pointer to base) (4.10, Clause 10). This
inversion is necessary to ensure type safety. Note that a pointer to member is not a pointer to object or a pointer to function
and the rules for conversions of such pointers do not apply to pointers to members. In particular, a pointer to member cannot
be converted to a voidx*.

§ 4.13 82

©ISO/IEC N3092

5 Expressions [expr]

[Note: Clause 5 defines the syntax, order of evaluation, and meaning of expressions.®® An expression is a
sequence of operators and operands that specifies a computation. An expression can result in a value and
can cause side effects. — end note]

[Note: Operators can be overloaded, that is, given meaning when applied to expressions of class type (Clause 9)
or enumeration type (7.2). Uses of overloaded operators are transformed into function calls as described

in 13.5. Overloaded operators obey the rules for syntax specified in Clause 5, but the requirements of

operand type, value category, and evaluation order are replaced by the rules for function call. Relations

between operators, such as ++a meaning a+=1, are not guaranteed for overloaded operators (13.5), and are

not guaranteed for operands of type bool. — end note]

Clause 5 defines the effects of operators when applied to types for which they have not been overloaded.
Operator overloading shall not modify the rules for the built-in operators, that is, for operators applied to
types for which they are defined by this Standard. However, these built-in operators participate in overload
resolution, and as part of that process user-defined conversions will be considered where necessary to convert
the operands to types appropriate for the built-in operator. If a built-in operator is selected, such conversions
will be applied to the operands before the operation is considered further according to the rules in Clause 5;
see 13.3.1.2, 13.6.

If during the evaluation of an expression, the result is not mathematically defined or not in the range of
representable values for its type, the behavior is undefined. [Note: most existing implementations of C++
ignore integer overflows. Treatment of division by zero, forming a remainder using a zero divisor, and all
floating point exceptions vary among machines, and is usually adjustable by a library function. — end note

If an expression initially has the type “reference to T” (8.3.2, 8.5.3), the type is adjusted to T prior to
any further analysis. The expression designates the object or function denoted by the reference, and the
expression is an lvalue or an xvalue, depending on the expression.

[Note: An expression is an xvalue if it is:

— the result of calling a function, whether implicitly or explicitly, whose return type is an rvalue reference
to object type,

— a cast to an rvalue reference to object type,

— a class member access expression designating a non-static data member in which the object expression
is an xvalue, or

— a .* pointer-to-member expression in which the first operand is an xvalue and the second operand is
a pointer to data member.

In general, the effect of this rule is that named rvalue references are treated as lvalues and unnamed rvalue
references to objects are treated as xvalues; rvalue references to functions are treated as lvalues whether
named or not. — end note]

[Example:

struct A {
int m;

59) The precedence of operators is not directly specified, but it can be derived from the syntax.

83

10

©ISO/IEC N3092

};
A%& operator+(A, A);
AgE £0);

A a;
A&&% ar = static_cast<A&&>(a);

The expressions £ (), £() .m, static_cast<A&&>(a), and a + a are xvalues. The expression ar is an lvalue.
— end example]

An expression designating an object is called an object-expression.

In some contexts, unevaluated operands appear (5.2.8, 5.3.3, 5.3.7, 7.1.6.2). An unevaluated operand is not
evaluated. [Note: In an unevaluated operand, a non-static class member may be named (5.1) and naming
of objects or functions does not, by itself, require that a definition be provided (3.2). — end note]

Whenever a glvalue expression appears as an operand of an operator that expects a prvalue for that operand,
the lvalue-to-rvalue (4.1), array-to-pointer (4.2), or function-to-pointer (4.3) standard conversions are applied
to convert the expression to a prvalue. [Note: because cv-qualifiers are removed from the type of an
expression of non-class type when the expression is converted to a prvalue, an lvalue expression of type
const int can, for example, be used where a prvalue expression of type int is required. — end note]

Many binary operators that expect operands of arithmetic or enumeration type cause conversions and yield
result types in a similar way. The purpose is to yield a common type, which is also the type of the result.
This pattern is called the usual arithmetic conversions, which are defined as follows:

— If either operand is of scoped enumeration type (7.2), no conversions are performed; if the other
operand does not have the same type, the expression is ill-formed.

— If either operand is of type long double, the other shall be converted to long double.
— Otherwise, if either operand is double, the other shall be converted to double.
— Otherwise, if either operand is float, the other shall be converted to float.

— Otherwise, the integral promotions (4.5) shall be performed on both operands.®® Then the following
rules shall be applied to the promoted operands:

— If both operands have the same type, no further conversion is needed.

— Otherwise, if both operands have signed integer types or both have unsigned integer types, the
operand with the type of lesser integer conversion rank shall be converted to the type of the
operand with greater rank.

— Otherwise, if the operand that has unsigned integer type has rank greater than or equal to the
rank of the type of the other operand, the operand with signed integer type shall be converted to
the type of the operand with unsigned integer type.

— Otherwise, if the type of the operand with signed integer type can represent all of the values of
the type of the operand with unsigned integer type, the operand with unsigned integer type shall
be converted to the type of the operand with signed integer type.

— Otherwise, both operands shall be converted to the unsigned integer type corresponding to the
type of the operand with signed integer type.

60) As a consequence, operands of type bool, chari6_t, char32_t, wchar_t, or an enumerated type are converted to some
integral type.

84

11

1

©ISO/IEC N3092

The values of the floating operands and the results of floating expressions may be represented in greater
precision and range than that required by the type; the types are not changed thereby.5!

5.1 Primary expressions [expr.prim)]

5.1.1 General [expr.prim.general]

Primary-erpression:
literal
this
(expression)
id-expression
lambda-expression
id-expression:
unqualified-id
qualified-id
unqualified-id:
identifier
operator-function-id
conversion-function-id
literal-operator-id
~ class-name
~ decltype-specifier
template-id
A literal is a primary expression. Its type depends on its form (2.14). A string literal is an lvalue; all other
literals are prvalues.

The keyword this names a pointer to the object for which a non-static member function (9.3.2) is invoked
or a non-static data member’s initializer (9.2) is evaluated. The keyword this shall be used only inside the
body of a non-static member function (9.3) of the nearest enclosing class or in a brace-or-equal-initializer
for a non-static data member (9.2). The type of the expression is a pointer to the class of the function or
non-static data member, possibly with cv-qualifiers on the class type. The expression is a prvalue.

[Example:
class Outer {
int a[sizeof (*this)]; // error: not inside a member function
unsigned int sz = sizeof (*this); // OK: in brace-or-equal-initializer
void £() {
int bl[sizeof (*this)]; // OK

struct Inner {
int c[sizeof (*this)]; // error: not inside a member function of Inner
I
}
};

— end example]

The operator : : followed by an identifier, a qualified-id, an operator-function-id, or a literal-operator-id is a
primary-expression. Its type is specified by the declaration of the identifier, qualified-id, operator-function-
id, or literal-operator-id. The result is the entity denoted by the identifier, qualified-id, operator-function-id,

61) The cast and assignment operators must still perform their specific conversions as described in 5.4, 5.2.9 and 5.17.

§5.1.1 85

©ISO/IEC N3092

or literal-operator-id. The result is an lvalue if the entity is a function or variable and a prvalue otherwise.
The identifier, qualified-id, operator-function-id, or literal-operator-id shall have global namespace scope or
be visible in global scope because of a using-directive (7.3.4). [Note: the use of :: allows an entity declared
in the global namespace to be referred to even if its name has been hidden (3.4.3). — end note]

A parenthesized expression is a primary expression whose type and value are identical to those of the
enclosed expression. The presence of parentheses does not affect whether the expression is an lvalue. The
parenthesized expression can be used in exactly the same contexts as those where the enclosed expression
can be used, and with the same meaning, except as otherwise indicated.

An id-expression is a restricted form of a primary-expression. [Note: an id-expression can appear after .
and -> operators (5.2.5). — end note]

An identifier is an id-expression provided it has been suitably declared (Clause 7). [Note: for operator-
function-ids, see 13.5; for conversion-function-ids, see 12.3.2; for literal-operator-ids, see 13.5.8; for template-
ids, see 14.2. A class-name or decltype-specifier prefixed by ~ denotes a destructor; see 12.4. Within the
definition of a non-static member function, an identifier that names a non-static member is transformed to a
class member access expression (9.3.1). — end note] The type of the expression is the type of the identifier.
The result is the entity denoted by the identifier. The result is an lvalue if the entity is a function, variable,
or data member and a prvalue otherwise.
qualified-id:
tiopt nested-name-specifier template,,; unqualified-id
11 identifier
11 operator-function-id
: literal-operator-id
: template-id
nested-name-specifier:
type-name ::
namespace-name ::
decltype-specifier : :
nested-name-specifier identifier : :
nested-name-specifier template,,; simple-template-id : :

A nested-name-specifier that denotes a class, optionally followed by the keyword template (14.2), and then
followed by the name of a member of either that class (9.2) or one of its base classes (Clause 10), is a
qualified-id; 3.4.3.1 describes name lookup for class members that appear in qualified-ids. The result is the
member. The type of the result is the type of the member. The result is an lvalue if the member is a static
member function or a data member and a prvalue otherwise. [Note: a class member can be referred to using
a qualified-id at any point in its potential scope (3.3.7). — end note] Where class-name :: class-name is
used, and the two class-names refer to the same class, this notation names the constructor (12.1). Where
class-name : :~ class-name is used, the two class-names shall refer to the same class; this notation names
the destructor (12.4). The form ~ decltype-specifier also denotes the destructor, but it shall not be used as
the unqualified-id in a qualified-id. [Note: a typedef-name that names a class is a class-name (9.1). —end
note |

A nested-name-specifier that names a namespace (7.3), followed by the name of a member of that namespace
(or the name of a member of a namespace made visible by a using-directive) is a qualified-id; 3.4.3.2 describes
name lookup for namespace members that appear in qualified-ids. The result is the member. The type of
the result is the type of the member. The result is an lvalue if the member is a function or a variable and a
prvalue otherwise.

A nested-name-specifier that denotes an enumeration (7.2), followed by the name of an enumerator of that
enumeration, is a qualified-id that refers to the enumerator. The result is the enumerator. The type of the
result is the type of the enumeration. The result is a prvalue.

§5.1.1 86

10

1

©ISO/IEC N3092

In a qualified-id, if the id-expression is a conversion-function-id, its conversion-type-id shall denote the same
type in both the context in which the entire qualified-id occurs and in the context of the class denoted by
the nested-name-specifier.

An id-expression that denotes a non-static data member or non-static member function of a class can only
be used:

— as part of a class member access (5.2.5) in which the object-expression refers to the member’s class or
a class derived from that class, or

— to form a pointer to member (5.3.1), or

— in the body of a non-static member function of that class or of a class derived from that class (9.3.1),
or

— in a mem-initializer for a constructor for that class or for a class derived from that class (12.6.2), or

— in a brace-or-equal-initializer for a non-static data member of that class or of a class derived from that
class (12.6.2), or

— if that id-expression denotes a non-static data member and it appears in an unevaluated operand.

[Example:
struct S {
int m;
};
int i = sizeof(S::m); // OK
int j = sizeof(S::m + 42); // OK

— end example]

5.1.2 Lambda expressions [expr.prim.lambda]

Lambda expressions provide a concise way to create simple function objects. [Ezample:

#include <algorithm>
#include <cmath>
void abssort(float *x, unsigned N) {
std::sort(x, x + N,
[1(float a, float b) {
return std::abs(a) < std::abs(b);
b;

— end example|

lambda-expression:
lambda-introducer lambda-declaratoroy,: compound-statement

lambda-introducer:
[lambda-captureop: 1

lambda-capture:
capture-default
capture-list
capture-default , capture-list

capture-default:
&

§5.1.2 87

2

©ISO/IEC N3092

capture-list:
capture . . . opt
capture-list , capture . . .opt
capture:
identifier
& identifier
this
lambda-declarator:
(parameter-declaration-clause) attribute-specifierop: mutable,py
exception-specificationp: trailing-return-typeopt

The evaluation of a lambda-expression results in a prvalue temporary (12.2). This temporary is called the
closure object. A lambda-expression shall not appear in an unevaluated operand (Clause 5). [Note: a closure
object behaves like a function object (20.8). — end note |

The type of the lambda-expression (which is also the type of the closure object) is a unique, unnamed non-
union class type — called the closure type — whose properties are described below. This class type is not an
aggregate (8.5.1). The closure type is declared in the smallest block scope, class scope, or namespace scope
that contains the corresponding lambda-expression. [Note: this determines the set of namespaces and classes
associated with the closure type (3.4.2). The parameter types of a lambda-declarator do not affect these
associated namespaces and classes. — end note] An implementation may define the closure type differently
from what is described below provided this does not alter the observable behavior of the program other than
by changing:

— the size and/or alignment of the closure type,
— whether the closure type is trivially copyable (Clause 9),
— whether the closure type is a standard-layout class (Clause 9), or
— whether the closure type is a POD class (Clause 9).
An implementation shall not add members of rvalue reference type to the closure type.

If a lambda-expression does not include a lambda-declarator, it is as if the lambda-declarator were (). If
a lambda-expression does not include a trailing-return-type, it is as if the trailing-return-type denotes the
following type:

— if the compound-statement if of the form
{ return attribute-specifieroy: erpression ; }

the type of the returned expression after lvalue-to-rvalue conversion (4.1), array-to-pointer conver-
sion (4.2), and function-to-pointer conversion (4.3);

— otherwise, void.

[Ezample:
auto x1 = [I1(int i){ return i; }; // OK: return type is int
auto x2 = [1{ return { 1, 2 }; }; // error: the return type is void (a

// braced-init-list is not an expression)

— end example]

The closure type for a lambda-expression has a public inline function call operator (13.5.4) whose param-
eters and return type are described by the lambda-expression’s parameter-declaration-clause and trailing-
return-type respectively. This function call operator is declared const (9.3.1) if and only if the lambda-
expression’s parameter-declaration-clause is not followed by mutable. It is neither virtual nor declared

§5.1.2 88

10

11

©ISO/IEC N3092

volatile. Default arguments (8.3.6) shall not be specified in the parameter-declaration-clause of a lambda-
declarator. Any exception-specification specified on a lambda-expression applies to the corresponding func-
tion call operator. Any attribute-specifiers appearing immediately after the lambda-expression’s parameter-
declaration-clause appertain to the type of the corresponding function call operator. [Note: names referenced
in the lambda-declarator are looked up in the context in which the lambda-ezpression appears. — end note|

The closure type for a lambda-expression with no lambda-capture has a public non-virtual non-explicit const
conversion function to pointer to function having the same parameter and return types as the closure type’s
function call operator. The value returned by this conversion function shall be the address of a function
that, when invoked, has the same effect as invoking the closure type’s function call operator.

The lambda-expression’s compound-statement yields the function-body (8.4) of the function call operator,
but for purposes of name lookup (3.4), determining the type and value of this (9.3.2) and transforming id-
expressions referring to non-static class members into class member access expressions using (*this) (9.3.1),
the compound-statement is considered in the context of the lambda-ezpression. | Example:

struct S1 {
int x, y;
int operator() (int);
void £() {
[=1 O->int {
return operator() (this->x + y); // equivalent to S1::operator() (this->x + (*this).y)
// this has type S1*
};
}
};

— end example]

If a lambda-capture includes a capture-default that is &, the identifiers in the lambda-capture shall not be
preceded by &. If a lambda-capture includes a capture-default that is =, the lambda-capture shall not contain
this and each identifier it contains shall be preceded by &. An identifier or this shall not appear more than
once in a lambda-capture. | Example:

struct 82 { void f(int i); };
void S2::f(int i) {
&, i1{ 3; // OK
(&, &i1{ }; // error: i preceded by & when & is the default
[=, thisl{ }; // error: this when = is the default
(i, i1{ }; // error: i repeated
}

— end example]

A lambda-expression whose smallest enclosing scope is a block scope (3.3.3) is a local lambda expression; any
other lambda-expression shall not have a capture-list in its lambda-introducer. The reaching scope of a local
lambda expression is the set of enclosing scopes up to and including the innermost enclosing function and
its parameters. [Note: this reaching scope includes any intervening lambda-expressions. — end note]

The identifiers in a capture-list are looked up using the usual rules for unqualified name lookup (3.4.1); each
such lookup shall find a variable with automatic storage duration declared in the reaching scope of the local
lambda expression. An entity (i.e. a variable or this) is said to be explicitly captured if it appears in the
lambda-expression’s capture-list.

If a lambda-expression has an associated capture-default and its compound-statement uses (3.2) this or a
variable with automatic storage duration and the used entity is not explicitly captured, then the used entity

§5.1.2 89

12

©ISO/IEC N3092

is said to be implicitly captured; such entities shall be declared within the reaching scope of the lambda
expression. [Note: the implicit capture of an entity by a nested lambda-expression can cause its implicit
capture by the containing lambda-expression (see below). Implicit uses of this can result in implicit capture.
— end note]

An entity is captured if it is captured explicitly or implicitly. An entity captured by a lambda-expression is
used (3.2) in the scope containing the lambda-expression. If this is captured by a local lambda expression,
its nearest enclosing function shall be a non-static member function. If a lambda-expression uses (3.2) this
or a variable with automatic storage duration from its reaching scope, that entity shall be captured by the
lambda-expression. If a lambda-expression captures an entity and that entity is not defined or captured in
the immediately enclosing lambda expression or function, the program is ill-formed. [Ezample:

void f1(int i) {
int const N = 20;
auto m1 = [=]{
int const M = 30;
auto m2 = [i]{

int x[N][M]; // OK: N and M are not "used"
x[0][0] = i; // OK: i is explicitly captured by m2
// and implicitly captured by m1
};
};
struct s1 {
int f;

int work(int n) {
int m = n*n;

int j = 40;
auto m3 = [this,m] {
auto m4 = [&,j] { // error: j not captured by m3
int x = n; // error: n implicitly captured by m4
// but not captured by m3
X += m; // OK: m implicitly captured by m4
// and explicitly captured by m3
X += i; // error: i is outside of the reaching scope
X += f; // OK: this captured implicitly by m4
// and explicitly by m3
};
};
}
};

— end example]

13 A lambda-expression appearing in a default argument shall not implicitly or explicitly capture any entity.

[Ezample:

void £20) {
int i = 1;
void gl(int = ([i]l{ return i; }) ()); // ill-formed
void g2(int = ([i]{ return 0; }) ()); // ill-formed
void g3(int = ([=]{ return i; }O); // ill-formed
void g4(int = ([=]{ return 0; })()); // OK
void gb(int = ([1{ return sizeof i; })()); //OK

}

§5.1.2 90

14

15

16

17

18

©ISO/IEC N3092

— end example]

An entity is captured by copy if it is implicitly captured and the capture-default is = or if it is explicitly
captured with a capture that does not include an &. For each entity captured by copy, an unnamed non-
static data member is declared in the closure type. The declaration order of these members is unspecified.
The type of such a data member is the type of the corresponding captured entity if the entity is not a
reference to an object, or the referenced type otherwise. [Note: if the captured entity is a reference to a
function, the corresponding data member is also a reference to a function. — end note

An entity is captured by reference if it is implicitly or explicitly captured but not captured by copy. It is
unspecified whether additional unnamed non-static data members are declared in the closure type for entities
captured by reference.

If a lambda-expression m1 captures an entity and that entity is captured by an immediately enclosing lambda-
expression m2, then m1’s capture is transformed as follows:

— if m2 captures the entity by copy, m1 captures the corresponding non-static data member of m2’s closure
type;
— if m2 captures the entity by reference, m1 captures the same entity captured by m2.
[Example: the nested lambda expressions and invocations below will output 123234.

int a=1, b=1, c = 1;
auto m1 = [a, &b, &c]() mutable {
auto m2 = [a, b, &c]() mutable {
std::cout << a << b << ¢c;
a=4; b=4; c = 4;
};
a=3; b=3; c=3;
m2();
};
a=2; b=2; c=2;
mi();
std::cout << a << b << c;

— end example]

Every id-expression that is a use (3.2) of an entity captured by copy is transformed into an access to
the corresponding unnamed data member of the closure type. If this is captured, each use of this is
transformed into an access to the corresponding unnamed data member of the closure type, cast (5.4) to the
type of this. [Note: the cast ensures that the transformed expression is a prvalue. — end note |

Every occurrence of decltype((x)) where x is a possibly parenthesized id-ezpression that names an entity
of automatic storage duration is treated as if x were transformed into an access to a corresponding data
member of the closure type that would have been declared if x were a use of the denoted entity. [Ezample:

void £3() {
float x, &r = x;
(=1 { // x and T are not captured (appearance in a decltype operand is not a “use”)
decltype(x) yi; // y1 has type float

decltype((x)) y2 = y1; //y2 has type float const& because this lambda
// is not mutable and x is an lvalue
// 1l has type float& (transformation not considered)

decltype(r) ri H
y2; // r2 has type float const&

= y1
decltype((r)) r2 =

§5.1.2 91

19

20

21

22

23

1

©ISO/IEC N3092

— end example]

The closure type associated with a lambda-expression has a deleted (8.4.3) default constructor and a deleted
copy assignment operator. It has an implicitly-declared copy constructor (12.8) and may have an implicitly-
declared move constructor (12.8). [Note: the copy/move constructor is implicitly defined in the same way
as any other implicitly declared copy/move constructor would be implicitly defined. — end note]

The closure type associated with a lambda-expression has an implicitly-declared destructor (12.4).

When the lambda-expression is evaluated, the entities that are captured by copy are used to direct-initialize
each corresponding non-static data member of the resulting closure object. (For array members, the array
elements are direct-initialized in increasing subscript order.) These initializations are performed in the (un-
specified) order in which the non-static data members are declared. [Note: this ensures that the destructions
will occur in the reverse order of the constructions. — end note]

[Note: If an entity is implicitly or explicitly captured by reference, invoking the function call operator of
the corresponding lambda-expression after the lifetime of the entity has ended is likely to result in undefined
behavior. — end note]

A capture followed by an ellipsis is a pack expansion (14.5.3). [Ezample:

template<class... Args>

void f(Args... args) {
auto 1m = [&, args...] { return g(args...); };
ImQ);

}

— end example]

5.2 Postfix expressions [expr.post]

Postfix expressions group left-to-right.

postfix-expression:
Primary-expression
postfiz-expression [expression]
postfir-expression [braced-init-list]
postfiz-expression (expression-listop:)
simple-type-specifier (expression-listop:)
typename-specifier (expression-listop:)
stmple-type-specifier braced-init-list
typename-specifier braced-init-list
postfiz-expression . template,y; id-expression
postfiz-expression —> template,y: id-expression
postfiz-expression . pseudo-destructor-name
postfir-expression —> pseudo-destructor-name
postfiz-expression ++
postfiz-expression —=
dynamic_cast < type-id > (expression)
static_cast < type-id > (expression)
reinterpret_cast < type-id > (expression)
const_cast < type-id > (expression)
typeid (expression)
typeid (type-id)

expression-list:
initializer-list

§5.2 92

©ISO/IEC N3092

pseudo-destructor-name:
t:opt nested-name-specifieroy: type-name :: ~ type-name
1 opt mested-name-specifier template simple-template-id : : ~ type-name
tiopt nested-name-specifierops ~ type-name
~ decltype-specifier

[Note: The > token following the type-id in a dynamic_cast, static_cast, reinterpret_cast, or const_-
cast may be the product of replacing a >> token by two consecutive > tokens (14.2). — end note|

5.2.1 Subscripting [expr.sub]

A postfix expression followed by an expression in square brackets is a postfix expression. One of the expres-
sions shall have the type “pointer to T” and the other shall have unscoped enumeration or integral type.
The result is an lvalue of type “T.” The type “T” shall be a completely-defined object type.5? The expression
E1[E2] is identical (by definition) to * ((E1)+(E2)) [Note: see 5.3 and 5.7 for details of * and + and 8.3.4
for details of arrays. — end note|

A braced-init-list may appear as a subscript for a user-defined operator[]. In that case, the initializer list
is treated as the initializer for the subscript argument of the operator[]. An initializer list shall not be
used with the built-in subscript operator.

[Ezample:

struct X {
Z operator[](std::initializer_list<int>);

};

X x;

x[{1,2,3}]

int a[10];

al{1,2,3}]

7 // OK: meaning x.operator[]({1,2,3})

7; // error: built-in subscript operator

— end example]

5.2.2 Function call [expr.call]

There are two kinds of function call: ordinary function call and member function® (9.3) call. A function
call is a postfix expression followed by parentheses containing a possibly empty, comma-separated list of
expressions which constitute the arguments to the function. For an ordinary function call, the postfix
expression shall be either an lvalue that refers to a function (in which case the function-to-pointer standard
conversion (4.3) is suppressed on the postfix expression), or it shall have pointer to function type. Calling
a function through an expression whose function type has a language linkage that is different from the
language linkage of the function type of the called function’s definition is undefined (7.5). For a member
function call, the postfix expression shall be an implicit (9.3.1, 9.4) or explicit class member access (5.2.5)
whose id-expression is a function member name, or a pointer-to-member expression (5.5) selecting a function
member; the call is as a member of the object pointed to or referred to by the object expression (5.2.5, 5.5).
In the case of an implicit class member access, the implied object is the one pointed to by this. [Note: a
member function call of the form f () is interpreted as (*this) .f() (see 9.3.1). — end note] If a function
or member function name is used, the name can be overloaded (Clause 13), in which case the appropriate
function shall be selected according to the rules in 13.3. If the selected function is non-virtual, or if the
id-expression in the class member access expression is a qualified-id, that function is called. Otherwise, its
final overrider (10.3) in the dynamic type of the object expression is called. [Note: the dynamic type is
the type of the object pointed or referred to by the current value of the object expression. 12.7 describes

62) This is true even if the subscript operator is used in the following common idiom: &x[0].
63) A static member function (9.4) is an ordinary function.

§ 5.2.2 93

©ISO/IEC N3092

the behavior of virtual function calls when the object-expression refers to an object under construction or
destruction. — end note|

[Note: if a function or member function name is used, and name lookup (3.4) does not find a declaration of
that name, the program is ill-formed. No function is implicitly declared by such a call. — end note]

The type of the function call expression is the return type of the statically chosen function (i.e., ignoring the
virtual keyword), even if the type of the function actually called is different. This type shall be a complete
object type, a reference type or the type void.

When a function is called, each parameter (8.3.5) shall be initialized (8.5, 12.8, 12.1) with its corresponding
argument. If the function is a non-static member function, the this parameter of the function (9.3.2) shall
be initialized with a pointer to the object of the call, converted as if by an explicit type conversion (5.4).
[Note: There is no access or ambiguity checking on this conversion; the access checking and disambiguation
are done as part of the (possibly implicit) class member access operator. See 10.2, 11.2, and 5.2.5. —
end note] When a function is called, the parameters that have object type shall have completely-defined
object type. [Note: this still allows a parameter to be a pointer or reference to an incomplete class type.
However, it prevents a passed-by-value parameter to have an incomplete class type. — end note| During
the initialization of a parameter, an implementation may avoid the construction of extra temporaries by
combining the conversions on the associated argument and/or the construction of temporaries with the
initialization of the parameter (see 12.2). The lifetime of a parameter ends when the function in which it
is defined returns. The initialization and destruction of each parameter occurs within the context of the
calling function. [Ezample: the access of the constructor, conversion functions or destructor is checked at
the point of call in the calling function. If a constructor or destructor for a function parameter throws an
exception, the search for a handler starts in the scope of the calling function; in particular, if the function
called has a function-try-block (Clause 15) with a handler that could handle the exception, this handler is
not considered. — end example] The value of a function call is the value returned by the called function
except in a virtual function call if the return type of the final overrider is different from the return type of
the statically chosen function, the value returned from the final overrider is converted to the return type of
the statically chosen function.

[Note: a function can change the values of its non-const parameters, but these changes cannot affect the
values of the arguments except where a parameter is of a reference type (8.3.2); if the reference is to a
const-qualified type, const_cast is required to be used to cast away the constness in order to modify
the argument’s value. Where a parameter is of const reference type a temporary object is introduced if
needed (7.1.6, 2.14, 2.14.5, 8.3.4, 12.2). In addition, it is possible to modify the values of nonconstant objects
through pointer parameters. — end note]

A function can be declared to accept fewer arguments (by declaring default arguments (8.3.6)) or more

arguments (by using the ellipsis, ..., or a function parameter pack (8.3.5)) than the number of parameters
in the function definition (8.4). [Note: this implies that, except where the ellipsis (...) or a function
parameter pack is used, a parameter is available for each argument. — end note]

When there is no parameter for a given argument, the argument is passed in such a way that the receiving
function can obtain the value of the argument by invoking va_arg (18.10). [Note: This paragraph does not
apply to arguments passed to a function parameter pack. Function parameter packs are expanded during
template instantiation (14.5.3), thus each such argument has a corresponding parameter when a function
template specialization is actually called. — end note] The lvalue-to-rvalue (4.1), array-to-pointer (4.2), and
function-to-pointer (4.3) standard conversions are performed on the argument expression. An argument that
has (possibly cv-qualified) type std: :nullptr_t is converted to type void* (4.10). After these conversions,
if the argument does not have arithmetic, enumeration, pointer, pointer to member, or class type, the
program is ill-formed. Passing a potentially-evaluated argument of class type (Clause 9) with a non-trivial
copy constructor or a non-trivial destructor with no corresponding parameter is conditionally-supported,
with implementation-defined semantics. If the argument has integral or enumeration type that is subject to

§ 5.2.2 94

10

©ISO/IEC N3092

the integral promotions (4.5), or a floating point type that is subject to the floating point promotion (4.6),
the value of the argument is converted to the promoted type before the call. These promotions are referred
to as the default argument promotions.

[Note: The evaluations of the postfix expression and of the argument expressions are all unsequenced
relative to one another. All side effects of argument expression evaluations are sequenced before the function
is entered (see 1.9). — end note]|

Recursive calls are permitted, except to the function named main (3.6.1).

A function call is an lvalue if the result type is an lvalue reference type or an rvalue reference to function
type, an xvalue if the result type is an rvalue reference to object type, and a prvalue otherwise.

5.2.3 Explicit type conversion (functional notation) [expr.type.conv]|

A simple-type-specifier (7.1.6.2) or typename-specifier (14.6) followed by a parenthesized expression-list con-
structs a value of the specified type given the expression list. If the expression list is a single expression, the
type conversion expression is equivalent (in definedness, and if defined in meaning) to the corresponding cast
expression (5.4). If the type specified is a class type, the class type shall be complete. If the expression list
specifies more than a single value, the type shall be a class with a suitably declared constructor (8.5, 12.1),
and the expression T(x1, x2, ...) is equivalent in effect to the declaration T t(x1, x2, ...); for some
invented temporary variable t, with the result being the value of t as a prvalue.

The expression T(), where T is a simple-type-specifier or typename-specifier for a non-array complete ob-
ject type or the (possibly cv-qualified) void type, creates a prvalue of the specified type, which is value-
initialized (8.5; no initialization is done for the void() case). [Note: if T is a non-class type that is
cv-qualified, the cv-qualifiers are ignored when determining the type of the resulting prvalue (3.10). —end
note |

Similarly, a simple-type-specifier or typename-specifier followed by a braced-init-list creates a temporary
object of the specified type direct-list-initialized (8.5.4) with the specified braced-init-list, and its value is
that temporary object as a prvalue.

5.2.4 Pseudo destructor call [expr.pseudo]

The use of a pseudo-destructor-name after a dot . or arrow -> operator represents the destructor for the
non-class type denoted by type-name or decltype-specifier. The result shall only be used as the operand for
the function call operator (), and the result of such a call has type void. The only effect is the evaluation
of the postfix-expression before the dot or arrow.

The left-hand side of the dot operator shall be of scalar type. The left-hand side of the arrow operator shall
be of pointer to scalar type. This scalar type is the object type. The cv-unqualified versions of the object
type and of the type designated by the pseudo-destructor-name shall be the same type. Furthermore, the
two type-names in a pseudo-destructor-name of the form

::opt Mested-name-specifieropy: type-name :: ~ type-name
shall designate the same scalar type.

5.2.5 Class member access [expr.ref]

A postfix expression followed by a dot . or an arrow —>, optionally followed by the keyword template (14.8.1),
and then followed by an id-expression, is a postfix expression. The postfix expression before the dot or arrow

§ 5.2.5 95

©ISO/IEC N3092

is evaluated;%* the result of that evaluation, together with the id-expression, determines the result of the
entire postfix expression.

2 For the first option (dot) the type of the first expression (the object expression) shall be “class object” (of a
complete type). For the second option (arrow) the type of the first expression (the pointer expression) shall
be “pointer to class object” (of a complete type). In these cases, the id-expression shall name a member
of the class or of one of its base classes. [Note: because the name of a class is inserted in its class scope
(Clause 9), the name of a class is also considered a nested member of that class. — end note] [Note: 3.4.5
describes how names are looked up after the . and -> operators. — end note]

3 If E1 has the type “pointer to class X,” then the expression E1->E2 is converted to the equivalent form
(*(E1)) .E2; the remainder of 5.2.5 will address only the first option (dot)%®. Abbreviating object-expression.id-
expression as E1.E2, then the type and value category of this expression are determined as follows. In the
remainder of 5.2.5, cq represents either const or the absence of const and vg represents either volatile or
the absence of volatile. cv represents an arbitrary set of cv-qualifiers, as defined in 3.9.3.

4 If E2 is declared to have type “reference to T,” then E1.E2 is an lvalue; the type of E1.E2 is T. Otherwise,
one of the following rules applies.

— If E2 is a static data member and the type of E2 is T, then E1.E2 is an lvalue; the expression designates
the named member of the class. The type of E1.E2 is T.

— If E2 is a non-static data member and the type of E1 is “cql vql X”, and the type of E2 is “cq2 vq2
T”, the expression designates the named member of the object designated by the first expression. If
E1 is an lvalue, then E1.E2 is an lvalue; if E1 is an xvalue, then E1.E2 is an xvalue; otherwise, it is a
prvalue. Let the notation vql2 stand for the “union” of vql and vg2; that is, if vql or v¢2 is volatile,
then vq12 is volatile. Similarly, let the notation cql2 stand for the “union” of cqf and cq2; that is,
if cql or cq2 is const, then cql2 is const. If E2 is declared to be a mutable member, then the type
of E1.E2 is “vg12 T”. If E2 is not declared to be a mutable member, then the type of E1.E2 is “cql2
vql2 T”.

— If E2 is a (possibly overloaded) member function, function overload resolution (13.3) is used to deter-
mine whether E1.E2 refers to a static or a non-static member function.

— If it refers to a static member function and the type of E2 is “function of parameter-type-list
returning T”, then E1.E2 is an lvalue; the expression designates the static member function. The
type of E1.E2 is the same type as that of E2, namely “function of parameter-type-list returning
T”.

— Otherwise, if E1.E2 refers to a non-static member function and the type of E2 is “function of
parameter-type-list cv ref-qualifieroy,, returning T”, then E1.E2 is a prvalue. The expression
designates a non-static member function. The expression can be used only as the left-hand
operand of a member function call (9.3). [Note: any redundant set of parentheses surrounding
the expression is ignored (5.1). — end note] The type of E1.E2 is “function of parameter-type-list
cv returning T”.

— If E2 is a nested type, the expression E1.E2 is ill-formed.

— If E2 is a member enumerator and the type of E2 is T, the expression E1.E2 is a prvalue. The type of
E1.E2is T.

5 If E2 is a non-static data member or a non-static member function, the program is ill-formed if the class of
which E2 is directly a member is an ambiguous base (10.2) of the naming class (11.2) of E2.

64) If the class member access expression is evaluated, the subexpression evaluation happens even if the result is unnecessary
to determine the value of the entire postfix expression, for example if the id-expression denotes a static member.
65) Note that if E1 has the type “pointer to class X,” then (*(E1)) is an lvalue.

§5.2.5 96

©ISO/IEC N3092

5.2.6 Increment and decrement [expr.post.incr]

The value of a postfix ++ expression is the value of its operand. [Note: the value obtained is a copy of
the original value — end note] The operand shall be a modifiable lvalue. The type of the operand shall be
an arithmetic type or a pointer to a complete object type. The value of the operand object is modified by
adding 1 to it, unless the object is of type bool, in which case it is set to true. [Note: this use is deprecated,
see Annex D. — end note| The value computation of the ++ expression is sequenced before the modification
of the operand object. With respect to an indeterminately-sequenced function call, the operation of postfix
++ is a single evaluation. [Note: Therefore, a function call shall not intervene between the lvalue-to-rvalue
conversion and the side effect associated with any single postfix ++ operator. — end note| The result is a
prvalue. The type of the result is the cv-unqualified version of the type of the operand. See also 5.7 and 5.17.

The operand of postfix -- is decremented analogously to the postfix ++ operator, except that the operand
shall not be of type bool. [Note: For prefix increment and decrement, see 5.3.2. — end note]

5.2.7 Dynamic cast [expr.dynamic.cast]

The result of the expression dynamic_cast<T>(v) is the result of converting the expression v to type T. T
shall be a pointer or reference to a complete class type, or “pointer to cv void.” The dynamic_cast operator
shall not cast away constness (5.2.11).

If T is a pointer type, v shall be a prvalue of a pointer to complete class type, and the result is a prvalue
of type T. If T is an lvalue reference type, v shall be an lvalue of a complete class type, and the result is
an lvalue of the type referred to by T. If T is an rvalue reference type, v shall be an expression having a
complete class type, and the result is an xvalue of the type referred to by T.

If the type of v is the same as T, or it is the same as T except that the class object type in T is more
cv-qualified than the class object type in v, the result is v (converted if necessary).

If the value of v is a null pointer value in the pointer case, the result is the null pointer value of type T.

If T is “pointer to cv! B” and v has type “pointer to cv2 D” such that B is a base class of D, the result is a
pointer to the unique B subobject of the D object pointed to by v. Similarly, if T is “reference to cvi B” and
v has type cv2 D such that B is a base class of D, the result is the unique B subobject of the D object referred
to by v. 66 The result is an lvalue if T is an lvalue reference, or an xvalue if T is an rvalue reference. In both
the pointer and reference cases, the program is ill-formed if cv2 has greater cv-qualification than cv! or if B
is an inaccessible or ambiguous base class of D. [Ezample:

struct B { };
struct D : B { };
void foo(D* dp) {
B*x bp = dynamic_cast<B*>(dp); // equivalent to Bx bp = dp;
}

— end example|

Otherwise, v shall be a pointer to or an lvalue of a polymorphic type (10.3).

If T is “pointer to cv void,” then the result is a pointer to the most derived object pointed to by v. Otherwise,
a run-time check is applied to see if the object pointed or referred to by v can be converted to the type
pointed or referred to by T.

If C is the class type to which T points or refers, the run-time check logically executes as follows:

66) The most derived object (1.8) pointed or referred to by v can contain other B objects as base classes, but these are ignored.

§5.2.7 97

©ISO/IEC N3092

— If, in the most derived object pointed (referred) to by v, v points (refers) to a public base class
subobject of a C object, and if only one object of type C is derived from the subobject pointed (referred)
to by v the result points (refers) to that C object.

— Otherwise, if v points (refers) to a public base class subobject of the most derived object, and the
type of the most derived object has a base class, of type C, that is unambiguous and public, the result
points (refers) to the C subobject of the most derived object.

— Otherwise, the run-time check fails.

9 The value of a failed cast to pointer type is the null pointer value of the required result type. A failed cast
to reference type throws std: :bad_cast (18.7.2).

[Example:

class A { virtual void f(); };
class B { virtual void g(); };
class D : public virtual A, private B { };

void g() {
D d;
Bx Dbp = (B*)&d; // cast needed to break protection
Ax ap = &d; // public derivation, no cast needed
D& dr = dynamic_cast<D&>(*bp); // fails
ap = dynamic_cast<A*>(bp); // fails
bp = dynamic_cast<Bx>(ap); // fails
ap = dynamic_cast<A*>(&d); // succeeds
bp = dynamic_cast<B*>(&d); // ill-formed (not a run-time check)
}

class E : public D, public B { };
class F : public E, public D { };

void h() {
F f;
Ax ap = &f; // succeeds: finds unique A
D* dp = dynamic_cast<Dx>(ap); // fails: yields O
// £ has two D subobjects
Ex ep = (Ex)ap; // ill-formed: cast from virtual base
Ex epl = dynamic_cast<Ex>(ap); // succeeds
}

— end example] [Note: 12.7 describes the behavior of a dynamic_cast applied to an object under construc-
tion or destruction. — end note]

5.2.8 Type identification [expr.typeid]

1 Theresult of a typeid expression is an lvalue of static type const std: : type_info (18.7.1) and dynamic type
const std: :type_info or const name where name is an implementation-defined class publicly derived from
std : : type_info which preserves the behavior described in 18.7.1.57 The lifetime of the object referred to by
the lvalue extends to the end of the program. Whether or not the destructor is called for the std: :type_info
object at the end of the program is unspecified.

2 When typeid is applied to a glvalue expression whose type is a polymorphic class type (10.3), the result refers
to a std::type_info object representing the type of the most derived object (1.8) (that is, the dynamic
type) to which the glvalue refers. If the glvalue expression is obtained by applying the unary * operator to a

67) The recommended name for such a class is extended_type_info.

§5.2.8 98

©ISO/IEC N3092

pointer®® and the pointer is a null pointer value (4.10), the typeid expression throws the std: :bad_typeid
exception (18.7.3).

When typeid is applied to an expression other than a glvalue of a polymorphic class type, the result refers
to a std::type_info object representing the static type of the expression. Lvalue-to-rvalue (4.1), array-to-
pointer (4.2), and function-to-pointer (4.3) conversions are not applied to the expression. If the type of the
expression is a class type, the class shall be completely-defined. The expression is an unevaluated operand
(Clause 5).

When typeid is applied to a type-id, the result refers to a std::type_info object representing the type of
the type-id. If the type of the type-id is a reference to a possibly cv-qualified type, the result of the typeid
expression refers to a std: :type_info object representing the cv-unqualified referenced type. If the type of
the type-id is a class type or a reference to a class type, the class shall be completely-defined.

The top-level cv-qualifiers of the glvalue expression or the type-id that is the operand of typeid are always
ignored. [Example:

class D { ... };

D di;

const D d2;

typeid(dl) == typeid(d2); // yields true
typeid(D) == typeid(const D); // yields true
typeid(D) == typeid(d2); // yields true
typeid(D) == typeid(const D&); // yields true

— end example|

If the header <typeinfo> (18.7.1) is not included prior to a use of typeid, the program is ill-formed.

[Note: 12.7 describes the behavior of typeid applied to an object under construction or destruction. — end
note |
5.2.9 Static cast [expr.static.cast]

The result of the expression static_cast<T>(v) is the result of converting the expression v to type T. If T
is an lvalue reference type or an rvalue reference to function type, the result is an lvalue; if T is an rvalue
reference to object type, the result is an xvalue; otherwise, the result is a prvalue. The static_cast operator
shall not cast away constness (5.2.11).

An lvalue of type “cvl B,” where B is a class type, can be cast to type “reference to cv2 D,” where D is a class
derived (Clause 10) from B, if a valid standard conversion from “pointer to D” to “pointer to B” exists (4.10),
cv2 is the same cv-qualification as, or greater cv-qualification than, cvi, and B is neither a virtual base class
of D nor a base class of a virtual base class of D. The result has type “cv2 D.” An xvalue of type “cvi B” may
be cast to type “rvalue reference to cv2 D” with the same constraints as for an lvalue of type “cv! B.” If the
object of type “cvl B” is actually a subobject of an object of type D, the result refers to the enclosing object
of type D. Otherwise, the result of the cast is undefined. [Ezample:

struct B { };
struct D : public B { };

D d;
B &br = d;
static_cast<D&>(br); // produces lvalue to the original d object

68) If p is an expression of pointer type, then *p, (xp), *(p), ((xp)), *((p)), and so on all meet this requirement.

§5.2.9 99

10

11

©ISO/IEC N3092

— end example]

A glvalue of type “cvl T1” can be cast to type “rvalue reference to cv2 T2” if “cv2 T2” is reference-compatible
with “cvl T1” (8.5.3). The result refers to the object or the specified base class subobject thereof. If T2 is
an inaccessible (Clause 11) or ambiguous (10.2) base class of T1, a program that necessitates such a cast is
ill-formed.

Otherwise, an expression e can be explicitly converted to a type T using a static_cast of the form static_-
cast<T>(e) if the declaration T t(e); is well-formed, for some invented temporary variable t (8.5). The
effect of such an explicit conversion is the same as performing the declaration and initialization and then
using the temporary variable as the result of the conversion. The expression e is used as a glvalue if and
only if the initialization uses it as a glvalue.

Otherwise, the static_cast shall perform one of the conversions listed below. No other conversion shall be
performed explicitly using a static_cast.

Any expression can be explicitly converted to type cv void. The expression value is discarded. [Note:
however, if the value is in a temporary object (12.2), the destructor for that object is not executed until
the usual time, and the value of the object is preserved for the purpose of executing the destructor. — end
note| The lvalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions
are not applied to the expression.

The inverse of any standard conversion sequence (Clause 4), other than the lvalue-to-rvalue (4.1), array-to-
pointer (4.2), function-to-pointer (4.3), and boolean (4.12) conversions, can be performed explicitly using
static_cast. A program is ill-formed if it uses static_cast to perform the inverse of an ill-formed standard
conversion sequence. [Example:

struct B { };
struct D : private B { };

void £() {
static_cast<D*>((B*)0); // Error: B is a private base of D.
static_cast<int B::*>((int D::%)0); // Error: B is a private base of D.
}

— end example|

The lvalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) conversions are applied to
the operand. Such a static_cast is subject to the restriction that the explicit conversion does not cast
away constness (5.2.11), and the following additional rules for specific cases:

A value of a scoped enumeration type (7.2) can be explicitly converted to an integral type. The value is
unchanged if the original value can be represented by the specified type. Otherwise, the resulting value is
unspecified. A value of a scoped enumeration type can also be explicitly converted to a floating-point type;
the result is the same as that of converting from the original value to the floating-point type.

A value of integral or enumeration type can be explicitly converted to an enumeration type. The value is
unchanged if the original value is within the range of the enumeration values (7.2). Otherwise, the resulting
enumeration value is unspecified.

A prvalue of type “pointer to cvl B,” where B is a class type, can be converted to a prvalue of type “pointer
to cv2 D,” where D is a class derived (Clause 10) from B, if a valid standard conversion from “pointer to D” to
“pointer to B” exists (4.10), cv2 is the same cv-qualification as, or greater cv-qualification than, cvl, and B
is neither a virtual base class of D nor a base class of a virtual base class of D. The null pointer value (4.10)
is converted to the null pointer value of the destination type. If the prvalue of type “pointer to cvl B” points
to a B that is actually a subobject of an object of type D, the resulting pointer points to the enclosing object
of type D. Otherwise, the result of the cast is undefined.

§5.2.9 100

12

13

©ISO/IEC N3092

A prvalue of type “pointer to member of D of type cvi T” can be converted to a prvalue of type “pointer to
member of B” of type cv2 T, where B is a base class (Clause 10) of D, if a valid standard conversion from
“pointer to member of B of type T” to “pointer to member of D of type T” exists (4.11), and cv2 is the same
cv-qualification as, or greater cv-qualification than, cv1.%° The null member pointer value (4.11) is converted
to the null member pointer value of the destination type. If class B contains the original member, or is a base
or derived class of the class containing the original member, the resulting pointer to member points to the
original member. Otherwise, the result of the cast is undefined. [Note: although class B need not contain
the original member, the dynamic type of the object on which the pointer to member is dereferenced must
contain the original member; see 5.5. — end note]

A prvalue of type “pointer to cvl void” can be converted to a prvalue of type “pointer to cv2 T,” where
T is an object type and cv2 is the same cv-qualification as, or greater cv-qualification than, cvi. The null
pointer value is converted to the null pointer value of the destination type. A value of type pointer to object
converted to “pointer to cv void” and back, possibly with different cv-qualification, shall have its original
value. [Ezample:

T* pl = new T;
const T* p2 = static_cast<const T*>(static_cast<void*>(p1));
bool b = pl == p2; //b will have the value true.

— end example]

5.2.10 Reinterpret cast [expr.reinterpret.cast]

The result of the expression reinterpret_cast<T>(v) is the result of converting the expression v to type
T. If T is an lvalue reference type or an rvalue reference to function type, the result is an lvalue; if T is an
rvalue reference to object type, the result is an xvalue; otherwise, the result is a prvalue and the lvalue-to-
rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are performed on the
expression v. Conversions that can be performed explicitly using reinterpret_cast are listed below. No
other conversion can be performed explicitly using reinterpret_cast.

The reinterpret_cast operator shall not cast away constness (5.2.11). An expression of integral, enumer-
ation, pointer, or pointer-to-member type can be explicitly converted to its own type; such a cast yields the
value of its operand.

[Note: The mapping performed by reinterpret_cast might, or might not, produce a representation dif-
ferent from the original value. — end note]

A pointer can be explicitly converted to any integral type large enough to hold it. The mapping function is
implementation-defined. [Note: it is intended to be unsurprising to those who know the addressing structure
of the underlying machine. — end note] A value of type std::nullptr_t can be converted to an integral
type; the conversion has the same meaning and validity as a conversion of (void*)O0 to the integral type.
[Note: a reinterpret_cast cannot be used to convert a value of any type to the type std::nullptr_t.
— end note]

A value of integral type or enumeration type can be explicitly converted to a pointer. A pointer converted
to an integer of sufficient size (if any such exists on the implementation) and back to the same pointer type
will have its original value; mappings between pointers and integers are otherwise implementation-defined.
[Note: Except as described in 3.7.4.3, the result of such a conversion will not be a safely-derived pointer
value. — end note]

A pointer to a function can be explicitly converted to a pointer to a function of a different type. The effect
of calling a function through a pointer to a function type (8.3.5) that is not the same as the type used in

69) Function types (including those used in pointer to member function types) are never cv-qualified; see 8.3.5.

§5.2.10 101

10

11

©ISO/IEC N3092

the definition of the function is undefined. Except that converting a prvalue of type “pointer to T1” to the
type “pointer to T2” (where T1 and T2 are function types) and back to its original type yields the original
pointer value, the result of such a pointer conversion is unspecified. [Note: see also 4.10 for more details of
pointer conversions. — end note]

A pointer to an object can be explicitly converted to a pointer to a different object type.” When a
prvalue v of type “pointer to T1” is converted to the type “pointer to cvT2”, the result is static_-
cast<cvuT2#>(static_cast<cuvoid*>(v)) if both T1 and T2 are standard-layout types (3.9) and the align-
ment requirements of T2 are no stricter than those of T1. Converting a prvalue of type “pointer to T1” to
the type “pointer to T2” (where T1 and T2 are object types and where the alignment requirements of T2 are
no stricter than those of T1) and back to its original type yields the original pointer value. The result of
any other such pointer conversion is unspecified.

Converting a pointer to a function into a pointer to an object type or vice versa is conditionally-supported.
The meaning of such a conversion is implementation-defined, except that if an implementation supports
conversions in both directions, converting a prvalue of one type to the other type and back, possibly with
different cv-qualification, shall yield the original pointer value.

The null pointer value (4.10) is converted to the null pointer value of the destination type. [Note: A null
pointer constant of type std: :nullptr_t cannot be converted to a pointer type, and a null pointer constant
of integral type is not necessarily converted to a null pointer value. — end note|

A prvalue of type “pointer to member of X of type T1” can be explicitly converted to a prvalue of a different
type “pointer to member of Y of type T2” if T1 and T2 are both function types or both object types.”t The
null member pointer value (4.11) is converted to the null member pointer value of the destination type. The
result of this conversion is unspecified, except in the following cases:

— converting a prvalue of type “pointer to member function” to a different pointer to member function
type and back to its original type yields the original pointer to member value.

— converting a prvalue of type “pointer to data member of X of type T1” to the type “pointer to data
member of Y of type T2” (where the alignment requirements of T2 are no stricter than those of T1)
and back to its original type yields the original pointer to member value.

An lvalue expression of type T1 can be cast to the type “reference to T2” if an expression of type “pointer to
T1” can be explicitly converted to the type “pointer to T2” using a reinterpret_cast. That is, a reference
cast reinterpret_cast<T&>(x) has the same effect as the conversion *reinterpret_cast<T*>(&x) with
the built-in & and * operators (and similarly for reinterpret_cast<T&&>(x)). The result refers to the same
object as the source lvalue, but with a different type. The result is an lvalue for an lvalue reference type or
an rvalue reference to function type and an xvalue for an rvalue reference to object type. No temporary is
created, no copy is made, and constructors (12.1) or conversion functions (12.3) are not called.”

5.2.11 Const cast [expr.const.cast]

The result of the expression const_cast<T>(v) is of type T. If T is an lvalue reference type or an rvalue
reference to function type, the result is an lvalue; if T is an rvalue reference to object type, the result
is an xvalue; otherwise, the result is a prvalue and the lvalue-to-rvalue (4.1), array-to-pointer (4.2), and
function-to-pointer (4.3) standard conversions are performed on the expression v. Conversions that can be

70) The types may have different cv-qualifiers, subject to the overall restriction that a reinterpret_cast cannot cast away
constness.

71) T1 and T2 may have different cv-qualifiers, subject to the overall restriction that a reinterpret_cast cannot cast away
constness.

72) This is sometimes referred to as a type pun.

§5.2.11 102

©ISO/IEC N3092

performed explicitly using const_cast are listed below. No other conversion shall be performed explicitly
using const_cast.

[Note: Subject to the restrictions in this section, an expression may be cast to its own type using a const_-
cast operator. — end note]

For two pointer types T1 and T2 where

T11is cvy, pointer to cvy,; pointer to --- cvy ,—1 pointer to cvi, T
and

T2 is cva pointer to cvy 1 pointer to - -- cve ,—1 pointer to cvg, T

where T is any object type or the void type and where cvy ; and cvy ; may be different cv-qualifications, a
prvalue of type T1 may be explicitly converted to the type T2 using a const_cast. The result of a pointer
const_cast refers to the original object.

For two object types T1 and T2, if a pointer to T1 can be explicitly converted to the type “pointer to T2”
using a const_cast, then the following conversions can also be made:

— an lvalue of type T1 can be explicitly converted to an Ivalue of type T2 using the cast const_cast<T2&>;

— a glvalue of type T1 can be explicitly converted to an xvalue of type T2 using the cast const_-
cast<T2&&>; and

— if T1 is a class type, a prvalue of type T1 can be explicitly converted to an xvalue of type T2 using the
cast const_cast<T2&&>.

The result of a reference const_cast refers to the original object.

For a const_cast involving pointers to data members, multi-level pointers to data members and multi-level
mixed pointers and pointers to data members (4.4), the rules for const_cast are the same as those used for
pointers; the “member” aspect of a pointer to member is ignored when determining where the cv-qualifiers
are added or removed by the const_cast. The result of a pointer to data member const_cast refers to the
same member as the original (uncast) pointer to data member.

A null pointer value (4.10) is converted to the null pointer value of the destination type. The null member
pointer value (4.11) is converted to the null member pointer value of the destination type.

[Note: Depending on the type of the object, a write operation through the pointer, lvalue or pointer
to data member resulting from a const_cast that casts away a const-qualifier’® may produce undefined
behavior (7.1.6.1). — end note]

The following rules define the process known as casting away constness. In these rules Tn and Xn represent
types. For two pointer types:

X1is Tlcvyq * -+ cvy,n * where T1 is not a pointer type
X2 is T2cvg,1 * -+ cvg, * where T2 is not a pointer type
K is min(N, M)

casting from X1 to X2 casts away constness if, for a non-pointer type T there does not exist an implicit
conversion (Clause 4) from:

Tevy (N—K+1) * CUL(N—K+2) ¥ *+* CUL,N *

to

73) const_cast is not limited to conversions that cast away a const-qualifier.

§5.2.11 103

10

11

12

©ISO/IEC N3092

Tevo (m—K+1) * CU2(M—K+2) * -+ CU2 M *

Casting from an lvalue of type T1 to an lvalue of type T2 using an lvalue reference cast or casting from an
expression of type T1 to an xvalue of type T2 using an rvalue reference cast casts away constness if a cast
from a prvalue of type “pointer to T1” to the type “pointer to T2” casts away constness.

Casting from a prvalue of type “pointer to data member of X of type T1” to the type “pointer to data member
of Y of type T2” casts away constness if a cast from a prvalue of type “pointer to T1” to the type “pointer
to T2” casts away constness.

For multi-level pointer to members and multi-level mixed pointers and pointer to members (4.4), the “mem-
ber” aspect of a pointer to member level is ignored when determining if a const cv-qualifier has been cast
away.

[Note: some conversions which involve only changes in cv-qualification cannot be done using const_cast.
For instance, conversions between pointers to functions are not covered because such conversions lead to
values whose use causes undefined behavior. For the same reasons, conversions between pointers to member
functions, and in particular, the conversion from a pointer to a const member function to a pointer to a
non-const member function, are not covered. — end note]

5.3 Unary expressions [expr.unary]

Expressions with unary operators group right-to-left.

UNATY-ETPTESSION:
postfiz-expression
++ cast-expression
-- cast-expression
unary-operator cast-expression
sizeof wunary-expression
sizeof (type-id)
sizeof ... (identifier)
alignof (type-id)
noexcept-expression
new-exrpression
delete-expression

unary-operator: one of
*x &+ -1 ~

5.3.1 Unary operators [expr.unary.op]

The unary * operator performs indirection: the expression to which it is applied shall be a pointer to an
object type, or a pointer to a function type and the result is an lvalue referring to the object or function
to which the expression points. If the type of the expression is “pointer to T,” the type of the result is “T.”
[Note: a pointer to an incomplete type (other than cv void) can be dereferenced. The lvalue thus obtained
can be used in limited ways (to initialize a reference, for example); this lvalue must not be converted to a
prvalue, see 4.1. — end note]

The result of each of the following unary operators is a prvalue.

The result of the unary & operator is a pointer to its operand. The operand shall be an lvalue or a qualified-id.
If the operand is a qualified-id naming a non-static member m of some class C with type T, the result has type
“pointer to member of class C of type T” and is a prvalue designating C: :m; the program is ill formed if C is
an ambiguous base (10.2) of the class designated by the nested-name-specifier of the qualified-id. Otherwise,
if the type of the expression is T, the result has type “pointer to T” and is a prvalue that is the address of

§ 5.3.1 104

10

©ISO/IEC N3092

the designated object (1.7) or a pointer to the designated function. [Note: In particular, the address of an
object of type “cv T” is “pointer to cv T”, with the same cv-qualification. — end note| [Example:

struct A { int i; };
struct B : A { };
. &B::i ... // has type int A::*

— end example] [Note: a pointer to member formed from a mutable non-static data member (7.1.1) does
not reflect the mutable specifier associated with the non-static data member. — end note]

A pointer to member is only formed when an explicit & is used and its operand is a qualified-id not enclosed
in parentheses. [Note: that is, the expression &(qualified-id), where the qualified-id is enclosed in
parentheses, does not form an expression of type “pointer to member.” Neither does qualified-id, because
there is no implicit conversion from a qualified-id for a non-static member function to the type “pointer to
member function” as there is from an lvalue of function type to the type “pointer to function” (4.3). Nor is
&unqualified-id a pointer to member, even within the scope of the unqualified-id’s class. — end note]|

The address of an object of incomplete type can be taken, but if the complete type of that object is a class
type that declares operator&() as a member function, then the behavior is undefined (and no diagnostic is
required). The operand of & shall not be a bit-field.

The address of an overloaded function (Clause 13) can be taken only in a context that uniquely determines
which version of the overloaded function is referred to (see 13.4). [Note: since the context might determine
whether the operand is a static or non-static member function, the context can also affect whether the
expression has type “pointer to function” or “pointer to member function.” — end note|

The operand of the unary + operator shall have arithmetic, unscoped enumeration, or pointer type and the
result is the value of the argument. Integral promotion is performed on integral or enumeration operands.
The type of the result is the type of the promoted operand.

The operand of the unary - operator shall have arithmetic or unscoped enumeration type and the result
is the negation of its operand. Integral promotion is performed on integral or enumeration operands. The
negative of an unsigned quantity is computed by subtracting its value from 2", where n is the number of
bits in the promoted operand. The type of the result is the type of the promoted operand.

The operand of the logical negation operator ! is contextually converted to bool (Clause 4); its value is
true if the converted operand is false and false otherwise. The type of the result is bool.

The operand of ~ shall have integral or unscoped enumeration type; the result is the one’s complement of
its operand. Integral promotions are performed. The type of the result is the type of the promoted operand.
There is an ambiguity in the unary-expression ~“X(), where X is a class-name or decltype-specifier. The
ambiguity is resolved in favor of treating ~ as a unary complement rather than treating “X as referring to a
destructor.

5.3.2 Increment and decrement [expr.pre.incr]

The operand of prefix ++ is modified by adding 1, or set to true if it is bool (this use is deprecated). The
operand shall be a modifiable lvalue. The type of the operand shall be an arithmetic type or a pointer to
a completely-defined object type. The result is the updated operand; it is an Ivalue, and it is a bit-field if
the operand is a bit-field. If x is not of type bool, the expression ++x is equivalent to x+=1 [Note: see the
discussions of addition (5.7) and assignment operators (5.17) for information on conversions. — end note|

The operand of prefix -- is modified by subtracting 1. The operand shall not be of type bool. The
requirements on the operand of prefix —— and the properties of its result are otherwise the same as those of

§ 5.3.2 105

©ISO/IEC N3092

prefix ++. [Note: For postfix increment and decrement, see 5.2.6. — end note|

5.3.3 Sizeof [expr.sizeof]

The sizeof operator yields the number of bytes in the object representation of its operand. The operand is
either an expression, which is an unevaluated operand (Clause 5), or a parenthesized type-id. The sizeof
operator shall not be applied to an expression that has function or incomplete type, to an enumeration
type whose underlying type is not fixed before all its enumerators have been declared, to the parenthesized
name of such types, or to an lvalue that designates a bit-field. sizeof (char), sizeof (signed char) and
sizeof (unsigned char) are 1. The result of sizeof applied to any other fundamental type (3.9.1) is
implementation-defined. [Note: in particular, sizeof (bool), sizeof (char16_t), sizeof (char32_t), and
sizeof (wchar_t) are implementation-defined.” — end note] [Note: See 1.7 for the definition of byte
and 3.9 for the definition of object representation. — end note]

When applied to a reference or a reference type, the result is the size of the referenced type. When applied
to a class, the result is the number of bytes in an object of that class including any padding required for
placing objects of that type in an array. The size of a most derived class shall be greater than zero (1.8).
The result of applying sizeof to a base class subobject is the size of the base class type.” When applied
to an array, the result is the total number of bytes in the array. This implies that the size of an array of n
elements is n times the size of an element.

The sizeof operator can be applied to a pointer to a function, but shall not be applied directly to a function.

The lvalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are not
applied to the operand of sizeof.

The identifier in a sizeof... expression shall name a parameter pack. The sizeof... operator yields the
number of arguments provided for the parameter pack identifier. The parameter pack is expanded (14.5.3)
by the sizeof... operator. [Example:

template<class... Types>
struct count {
static const std::size_t value = sizeof...(Types);

};

— end example]

The result of sizeof and sizeof... is a constant of type std::size_t. [Note: std::size_t is defined in
the standard header <cstddef> (18.2). — end note]

5.3.4 New [expr.new]

The new-expression attempts to create an object of the type-id (8.1) or new-type-id to which it is applied.
The type of that object is the allocated type. This type shall be a complete object type, but not an
abstract class type or array thereof (1.8, 3.9, 10.4). It is implementation-defined whether over-aligned types
are supported (3.11). [Note: because references are not objects, references cannot be created by new-
expressions. — end note] [Note: the type-id may be a cv-qualified type, in which case the object created
by the new-expression has a cv-qualified type. — end note]|

74) sizeof (bool) is not required to be 1.
75) The actual size of a base class subobject may be less than the result of applying sizeof to the subobject, due to virtual
base classes and less strict padding requirements on base class subobjects.

§ 5.3.4 106

©ISO/IEC N3092

new-erpression:
1t opt new new-placement,p; new-type-id new-initializer,p
:topt new new-placementoy: (type-id) new-initializerop:
new-placement:
(expression-list)
new-type-id:
type-specifier-seq new-declaratorop;
new-declarator:

ptr-operator new-declarator,p:
noptr-new-declarator

noptr-new-declarator:
[expression 1 attribute-specifieropt
noptr-new-declarator [constant-expression 1 attribute-specifierop:
new-initializer:
(expression-listops)
braced-init-list
Entities created by a new-expression have dynamic storage duration (3.7.4). [Note: the lifetime of such an
entity is not necessarily restricted to the scope in which it is created. — end note] If the entity is a non-
array object, the new-expression returns a pointer to the object created. If it is an array, the new-expression
returns a pointer to the initial element of the array.

If the auto type-specifier appears in the type-specifier-seq of a new-type-id or type-id of a new-expression, the
new-expression shall contain a new-initializer of the form

(assignment-expression)

The allocated type is deduced from the new-initializer as follows: Let e be the assignment-expression in the
new-initializer and T be the new-type-id or type-id of the new-expression, then the allocated type is the type
deduced for the variable x in the invented declaration (7.1.6.4):

T x(e);
[Ezample:
new auto(1); // allocated type is int
auto x = new auto(’a’); // allocated type is char, x is of type char*

— end example]

The new-type-id in a new-expression is the longest possible sequence of new-declarators. [Note: this prevents
ambiguities between the declarator operators &, &&, *, and [] and their expression counterparts. — end
note] [Example:

new int * i; // syntax error: parsed as (new int*) i, not as (new int)*i

The * is the pointer declarator and not the multiplication operator. — end example]

[Note: parentheses in a new-type-id of a new-expression can have surprising effects. [Ezample:

new int(x[10]) (); // error

is ill-formed because the binding is

(new int) (x[101)O); // error

Instead, the explicitly parenthesized version of the new operator can be used to create objects of compound
types (3.9.2):

§ 5.3.4 107

10

11

©ISO/IEC N3092

new (int (x[10]1)();

allocates an array of 10 pointers to functions (taking no argument and returning int. — end example]
— end note]

When the allocated object is an array (that is, the noptr-new-declarator syntax is used or the new-type-id or
type-id denotes an array type), the new-expression yields a pointer to the initial element (if any) of the array.
[Note: both new int and new int[10] have type int* and the type of new int[i][10] is int () [10]
— end note] The attribute-specifier in a noptr-new-declarator appertains to the associated array type.

Every constant-expression in a noptr-new-declarator shall be an integral constant expression (5.19) and
evaluate to a strictly positive value. The expression in a noptr-new-declarator shall be of integral type,
unscoped enumeration type, or a class type for which a single non-explicit conversion function to integral or
unscoped enumeration type exists (12.3). If the expression is of class type, the expression is converted by
calling that conversion function, and the result of the conversion is used in place of the original expression.
If the value of the expression is negative, the behavior is undefined. [Ezample: given the definition int
n = 42, new float[n] [5] is well-formed (because n is the expression of a noptr-new-declarator), but new
float [5] [n] is ill-formed (because n is not a constant expression). If n is negative, the effect of new
float [n] [5] is undefined. — end example]

When the value of the ezpression in a noptr-new-declarator is zero, the allocation function is called to
allocate an array with no elements. If the value of that expression is such that the size of the allocated object
would exceed the implementation-defined limit, no storage is obtained and the new-expression terminates
by throwing an exception of a type that would match a handler (15.3) of type std::bad_array_new_-
length (18.6.2.2).

A new-expression obtains storage for the object by calling an allocation function (3.7.4.1). If the new-
expression terminates by throwing an exception, it may release storage by calling a deallocation func-
tion (3.7.4.2). If the allocated type is a non-array type, the allocation function’s name is operator new and
the deallocation function’s name is operator delete. If the allocated type is an array type, the allocation
function’s name is operator newl[] and the deallocation function’s name is operator delete[]. [Note: an
implementation shall provide default definitions for the global allocation functions (3.7.4, 18.6.1.1, 18.6.1.2).
A C++ program can provide alternative definitions of these functions (17.6.3.6) and/or class-specific ver-
sions (12.5). — end note]

If the new-expression begins with a unary :: operator, the allocation function’s name is looked up in the
global scope. Otherwise, if the allocated type is a class type T or array thereof, the allocation function’s
name is looked up in the scope of T. If this lookup fails to find the name, or if the allocated type is not a
class type, the allocation function’s name is looked up in the global scope.

A new-expression passes the amount of space requested to the allocation function as the first argument of
type std::size_t. That argument shall be no less than the size of the object being created; it may be
greater than the size of the object being created only if the object is an array. For arrays of char and
unsigned char, the difference between the result of the new-expression and the address returned by the
allocation function shall be an integral multiple of the strictest fundamental alignment requirement (3.11) of
any object type whose size is no greater than the size of the array being created. [Note: Because allocation
functions are assumed to return pointers to storage that is appropriately aligned for objects of any type with
fundamental alignment, this constraint on array allocation overhead permits the common idiom of allocating
character arrays into which objects of other types will later be placed. — end note]

The new-placement syntax is used to supply additional arguments to an allocation function. If used, overload
resolution is performed on a function call created by assembling an argument list consisting of the amount of
space requested (the first argument) and the expressions in the new-placement part of the new-expression (the

§ 5.3.4 108

12

13

14

15

16

17

18

©ISO/IEC N3092

second and succeeding arguments). The first of these arguments has type std::size_t and the remaining
arguments have the corresponding types of the expressions in the new-placement.

[Ezample:
— new T results in a call of operator new(sizeof (T)),
— new(2,f) T results in a call of operator new(sizeof(T),2,f),
— new T[5] results in a call of operator new[] (sizeof (T)*5+x), and
— new(2,f) TI[5] results in a call of operator newl[] (sizeof (T)*5+y,2,f).

Here, x and y are non-negative unspecified values representing array allocation overhead; the result of the
new-expression will be offset by this amount from the value returned by operator new[]. This overhead
may be applied in all array new-expressions, including those referencing the library function operator
new[] (std::size_t, void*) and other placement allocation functions. The amount of overhead may vary
from one invocation of new to another. — end example|

[Note: unless an allocation function is declared with a non-throwing ezception-specification (15.4), it indi-
cates failure to allocate storage by throwing a std::bad_alloc exception (Clause 15, 18.6.2.1); it returns a
non-null pointer otherwise. If the allocation function is declared with a non-throwing exception-specification,
it returns null to indicate failure to allocate storage and a non-null pointer otherwise. — end note] If the
allocation function returns null, initialization shall not be done, the deallocation function shall not be called,
and the value of the new-expression shall be null.

[Note: when the allocation function returns a value other than null, it must be a pointer to a block of storage
in which space for the object has been reserved. The block of storage is assumed to be appropriately aligned
and of the requested size. The address of the created object will not necessarily be the same as that of the
block if the object is an array. — end note]

A new-expression that creates an object of type T initializes that object as follows:

— 1If the new-initializer is omitted, the object is default-initialized (8.5); if no initialization is performed,
the object has indeterminate value.

— Otherwise, the new-initializer is interpreted according to the initialization rules of 8.5 for direct-
initialization.
The invocation of the allocation function is indeterminately sequenced with respect to the evaluations of
expressions in the new-initializer. Initialization of the allocated object is sequenced before the value com-
putation of the new-expression. It is unspecified whether expressions in the new-initializer are evaluated if
the allocation function returns the null pointer or exits using an exception.

If the new-expression creates an object or an array of objects of class type, access and ambiguity control
are done for the allocation function, the deallocation function (12.5), and the constructor (12.1). If the
new expression creates an array of objects of class type, access and ambiguity control are done for the
destructor (12.4).

If any part of the object initialization described above™ terminates by throwing an exception and a suitable
deallocation function can be found, the deallocation function is called to free the memory in which the object
was being constructed, after which the exception continues to propagate in the context of the new-expression.
If no unambiguous matching deallocation function can be found, propagating the exception does not cause
the object’s memory to be freed. [Note: This is appropriate when the called allocation function does not
allocate memory; otherwise, it is likely to result in a memory leak. — end note]

76) This may include evaluating a new-initializer and/or calling a constructor.

§ 5.3.4 109

19

20

21

©ISO/IEC N3092

If the new-expression begins with a unary :: operator, the deallocation function’s name is looked up in the
global scope. Otherwise, if the allocated type is a class type T or an array thereof, the deallocation function’s
name is looked up in the scope of T. If this lookup fails to find the name, or if the allocated type is not a
class type or array thereof, the deallocation function’s name is looked up in the global scope.

A declaration of a placement deallocation function matches the declaration of a placement allocation function
if it has the same number of parameters and, after parameter transformations (8.3.5), all parameter types
except the first are identical. Any non-placement deallocation function matches a non-placement allocation
function. If the lookup finds a single matching deallocation function, that function will be called; otherwise,
no deallocation function will be called. If the lookup finds the two-parameter form of a usual deallocation
function (3.7.4.2) and that function, considered as a placement deallocation function, would have been
selected as a match for the allocation function, the program is ill-formed. [Ezample:

struct S {
// Placement allocation function:
static void* operator new(std::size_t, std::size_t);

// Usual (non-placement) deallocation function:
static void operator delete(void*, std::size_t);

};

S* p = new (0) S; //ill-formed: non-placement deallocation function matches
// placement allocation function

— end example|

If a new-expression calls a deallocation function, it passes the value returned from the allocation function
call as the first argument of type void*. If a placement deallocation function is called, it is passed the same
additional arguments as were passed to the placement allocation function, that is, the same arguments as
those specified with the new-placement syntax. If the implementation is allowed to make a copy of any
argument as part of the call to the allocation function, it is allowed to make a copy (of the same original
value) as part of the call to the deallocation function or to reuse the copy made as part of the call to the
allocation function. If the copy is elided in one place, it need not be elided in the other.

5.3.5 Delete [expr.delete]

The delete-expression operator destroys a most derived object (1.8) or array created by a new-expression.

delete-expression:
1 iopt delete cast-expression
tiopt delete [] cast-expression

The first alternative is for non-array objects, and the second is for arrays. Whenever the delete key-
word is immediately followed by empty square brackets, it shall be interpreted as the second alternative.””
The operand shall have a pointer to object type, or a class type having a single non-explicit conversion
function (12.3.2) to a pointer to object type. The result has type void.™

If the operand has a class type, the operand is converted to a pointer type by calling the above-mentioned
conversion function, and the converted operand is used in place of the original operand for the remainder of
this section. In either alternative, the value of the operand of delete may be a null pointer value. If it is
not a null pointer value, in the first alternative (delete object), the value of the operand of delete shall be
a pointer to a non-array object or a pointer to a subobject (1.8) representing a base class of such an object

77) A lambda expression with a lambda-introducer that consists of empty square brackets can follow the delete keyword if
the lambda expression is enclosed in parentheses.
78) This implies that an object cannot be deleted using a pointer of type void* because void is not an object type.

§5.3.5 110

10

©ISO/IEC N3092

(Clause 10). If not, the behavior is undefined. In the second alternative (delete array), the value of the
operand of delete shall be the pointer value which resulted from a previous array new-expression.” If not,
the behavior is undefined. [Note: this means that the syntax of the delete-expression must match the type

of the object allocated by new, not the syntax of the new-expression. — end note] [Note: a pointer to a
const type can be the operand of a delete-expression; it is not necessary to cast away the constness (5.2.11)
of the pointer expression before it is used as the operand of the delete-expression. — end note]

In the first alternative (delete object), if the static type of the object to be deleted is different from its
dynamic type, the static type shall be a base class of the dynamic type of the object to be deleted and the
static type shall have a virtual destructor or the behavior is undefined. In the second alternative (delete
array) if the dynamic type of the object to be deleted differs from its static type, the behavior is undefined.

The cast-expression in a delete-expression shall be evaluated exactly once.

If the object being deleted has incomplete class type at the point of deletion and the complete class has a
non-trivial destructor or a deallocation function, the behavior is undefined.

If the value of the operand of the delete-expression is not a null pointer value, the delete-expression will
invoke the destructor (if any) for the object or the elements of the array being deleted. In the case of an
array, the elements will be destroyed in order of decreasing address (that is, in reverse order of the completion
of their constructor; see 12.6.2).

If the value of the operand of the delete-expression is not a null pointer value, the delete-expression will
call a deallocation function (3.7.4.2). Otherwise, it is unspecified whether the deallocation function will be
called. [Note: The deallocation function is called regardless of whether the destructor for the object or some
element of the array throws an exception. — end note|

[Note: An implementation provides default definitions of the global deallocation functions operator delete()
for non-arrays (18.6.1.1) and operator deletel[]() for arrays (18.6.1.2). A C++ program can provide al-
ternative definitions of these functions (17.6.3.6), and/or class-specific versions (12.5). — end note]

When the keyword delete in a delete-expression is preceded by the unary :: operator, the global dealloca-
tion function is used to deallocate the storage.

Access and ambiguity control are done for both the deallocation function and the destructor (12.4, 12.5).

5.3.6 Alignof [expr.alignof]
An alignof expression yields the alignment requirement of its operand type. The operand shall be a type-id
representing a complete object type or an array thereof or a reference to a complete object type.

The result is an integral constant of type std::size_t.

When alignof is applied to a reference type, the result shall be the alignment of the referenced type. When
alignof is applied to an array type, the result shall be the alignment of the element type.

5.3.7 noexcept operator [expr.unary.noexcept]

The noexcept operator determines whether the evaluation of its operand, which is an unevaluated operand
(Clause 5), can throw an exception (15.1).

noexcept-erpression:
noexcept (expression)

The result of the noexcept operator is a constant of type bool and is an rvalue.

79) For non-zero-length arrays, this is the same as a pointer to the first element of the array created by that new-expression.
Zero-length arrays do not have a first element.

§5.3.7 111

©ISO/IEC N3092

3 The result of the noexcept operator is false if in a potentially-evaluated context the ezpression would
contain

— a potentially evaluated call® to a function, member function, function pointer, or member function
pointer that does not have a non-throwing exception-specification (15.4),

— a potentially evaluated throw-ezpression (15.1),

— a potentially evaluated dynamic_cast expression dynamic_cast<T>(v), where T is a reference type,
that requires a run-time check (5.2.7), or

— a potentially evaluated typeid expression (5.2.8) applied to a glvalue expression whose type is a
polymorphic class type (10.3).

Otherwise, the result is true.

5.4 Explicit type conversion (cast notation) [expr.cast]

1 The result of the expression (T) cast-expression is of type T. The result is an lvalue if T is an lvalue reference
type or an rvalue reference to function type and an xvalue if T is an rvalue reference to object type; otherwise
the result is a prvalue. [Note: if T is a non-class type that is cv-qualified, the cv-qualifiers are ignored when
determining the type of the resulting prvalue; see 3.10. — end note]

2 An explicit type conversion can be expressed using functional notation (5.2.3), a type conversion operator
(dynamic_cast, static_cast, reinterpret_cast, const_cast), or the cast notation.

cast-expression:
UNATY-eTpression
(type-id) cast-expression

3 Any type conversion not mentioned below and not explicitly defined by the user (12.3) is ill-formed.
4 The conversions performed by

— a const_cast (5.2.11),

— a static_cast (5.2.9),

— a static_cast followed by a const_cast,

— a reinterpret_cast (5.2.10), or

— a reinterpret_cast followed by a const_cast,

can be performed using the cast notation of explicit type conversion. The same semantic restrictions and be-
haviors apply, with the exception that in performing a static_cast in the following situations the conversion
is valid even if the base class is inaccessible:

— a pointer to an object of derived class type or an lvalue or rvalue of derived class type may be explicitly
converted to a pointer or reference to an unambiguous base class type, respectively;

— a pointer to member of derived class type may be explicitly converted to a pointer to member of an
unambiguous non-virtual base class type;

— a pointer to an object of an unambiguous non-virtual base class type, a glvalue of an unambiguous
non-virtual base class type, or a pointer to member of an unambiguous non-virtual base class type
may be explicitly converted to a pointer, a reference, or a pointer to member of a derived class type,
respectively.

80) This includes implicit calls such as the call to an allocation function in a new-expression.

§5.4 112

©ISO/IEC N3092

If a conversion can be interpreted in more than one of the ways listed above, the interpretation that appears
first in the list is used, even if a cast resulting from that interpretation is ill-formed. If a conversion can be
interpreted in more than one way as a static_cast followed by a const_cast, the conversion is ill-formed.
[Ezample:

struct A { };
struct I1 : A { };
struct I2 : A { };
struct D : I1, I2 { };
A xfoo(D *p) {
return (A*) (p); // ill-formed static_cast interpretation
}

— end example]

The operand of a cast using the cast notation can be a prvalue of type “pointer to incomplete class type”.
The destination type of a cast using the cast notation can be “pointer to incomplete class type”. If both the
operand and destination types are class types and one or both are incomplete, it is unspecified whether the
static_cast or the reinterpret_cast interpretation is used, even if there is an inheritance relationship
between the two classes. [Note: For example, if the classes were defined later in the translation unit, a
multi-pass compiler would be permitted to interpret a cast between pointers to the classes as if the class
types were complete at the point of the cast. — end note|

5.5 Pointer-to-member operators [expr.mptr.oper]

The pointer-to-member operators =>* and .* group left-to-right.
pm-expression:
cast-expression
pm-expression .* cast-exrpression
pm-expression —>* cast-expression

The binary operator .* binds its second operand, which shall be of type “pointer to member of T” (where
T is a completely-defined class type) to its first operand, which shall be of class T or of a class of which T is
an unambiguous and accessible base class. The result is an object or a function of the type specified by the
second operand.

The binary operator ->* binds its second operand, which shall be of type “pointer to member of T” (where
T is a completely-defined class type) to its first operand, which shall be of type “pointer to T” or “pointer to
a class of which T is an unambiguous and accessible base class.” The result is an object or a function of the
type specified by the second operand.

The first operand is called the object expression. If the dynamic type of the object expression does not
contain the member to which the pointer refers, the behavior is undefined.

The restrictions on cv-qualification, and the manner in which the cv-qualifiers of the operands are combined
to produce the cv-qualifiers of the result, are the same as the rules for E1.E2 given in 5.2.5. [Note: it is not
possible to use a pointer to member that refers to a mutable member to modify a const class object. For
example,

struct S {
SO : i) { ¥
mutable int i;
};
void £()
{

§5.5 113

©ISO/IEC N3092

const S cs;

int S::* pm = &S::i; // pm refers to mutable member S::i
cs.*pm = 88; // ill-formed: cs is a const object
}

— end note]

If the result of .* or =>* is a function, then that result can be used only as the operand for the function call
operator (). [Ezample:

(ptr_to_obj->*ptr_to_mfct) (10);

calls the member function denoted by ptr_to_mfct for the object pointed to by ptr_to_obj. —end
example] In a .* expression whose object expression is an rvalue, the program is ill-formed if the second
operand is a pointer to member function with ref-qualifier & In a ->* expression or in a .* expression
whose object expression is an lvalue, the program is ill-formed if the second operand is a pointer to member
function with ref-qualifier &&. The result of a .* expression whose second operand is a pointer to a data
member is of the same value category (3.10) as its first operand. The result of a . * expression whose second
operand is a pointer to a member function is a prvalue. The result of an ->* expression is an lvalue if its
second operand is a pointer to data member and a prvalue otherwise. If the second operand is the null
pointer to member value (4.11), the behavior is undefined.

5.6 Multiplicative operators [expr.mul]

The multiplicative operators *, /, and % group left-to-right.

multiplicative-expression:

pm-expression

multiplicative-expression * pm-expression

multiplicative-expression / pm-expression

multiplicative-expression % pm-expression
The operands of * and / shall have arithmetic or unscoped enumeration type; the operands of % shall have
integral or unscoped enumeration type. The usual arithmetic conversions are performed on the operands
and determine the type of the result.

The binary * operator indicates multiplication.

The binary / operator yields the quotient, and the binary % operator yields the remainder from the division
of the first expression by the second. If the second operand of / or % is zero the behavior is undefined. For
integral operands the / operator yields the algebraic quotient with any fractional part discarded;®! if the
quotient a/b is representable in the type of the result, (a/b)*b + a}b is equal to a.

5.7 Additive operators [expr.add]

The additive operators + and - group left-to-right. The usual arithmetic conversions are performed for
operands of arithmetic or enumeration type.

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

For addition, either both operands shall have arithmetic or unscoped enumeration type, or one operand shall
be a pointer to a completely-defined object type and the other shall have integral or unscoped enumeration
type.

81) This is often called truncation towards zero.

§5.7 114

©ISO/IEC N3092

For subtraction, one of the following shall hold:
— both operands have arithmetic or unscoped enumeration type; or

— both operands are pointers to cv-qualified or cv-unqualified versions of the same completely-defined
object type; or

— the left operand is a pointer to a completely-defined object type and the right operand has integral or
unscoped enumeration type.

The result of the binary + operator is the sum of the operands. The result of the binary - operator is the
difference resulting from the subtraction of the second operand from the first.

For the purposes of these operators, a pointer to a nonarray object behaves the same as a pointer to the
first element of an array of length one with the type of the object as its element type.

When an expression that has integral type is added to or subtracted from a pointer, the result has the type
of the pointer operand. If the pointer operand points to an element of an array object, and the array is
large enough, the result points to an element offset from the original element such that the difference of
the subscripts of the resulting and original array elements equals the integral expression. In other words, if
the expression P points to the i-th element of an array object, the expressions (P)+N (equivalently, N+(P))
and (P)-N (where N has the value n) point to, respectively, the i + n-th and 7 — n-th elements of the array
object, provided they exist. Moreover, if the expression P points to the last element of an array object,
the expression (P)+1 points one past the last element of the array object, and if the expression Q points
one past the last element of an array object, the expression (Q)-1 points to the last element of the array
object. If both the pointer operand and the result point to elements of the same array object, or one past
the last element of the array object, the evaluation shall not produce an overflow; otherwise, the behavior is
undefined.

When two pointers to elements of the same array object are subtracted, the result is the difference of the
subscripts of the two array elements. The type of the result is an implementation-defined signed integral
type; this type shall be the same type that is defined as std: :ptrdiff_t in the <cstddef> header (18.2). As
with any other arithmetic overflow, if the result does not fit in the space provided, the behavior is undefined.
In other words, if the expressions P and Q point to, respectively, the i-th and j-th elements of an array object,
the expression (P)-(Q) has the value ¢ — j provided the value fits in an object of type std::ptrdiff_t.
Moreover, if the expression P points either to an element of an array object or one past the last element of
an array object, and the expression Q points to the last element of the same array object, the expression
((Q+1)-(P) has the same value as ((Q)-(P))+1 and as -((P)-((Q)+1)), and has the value zero if the
expression P points one past the last element of the array object, even though the expression (Q)+1 does not
point to an element of the array object. Unless both pointers point to elements of the same array object, or
one past the last element of the array object, the behavior is undefined.5?

If the value 0 is added to or subtracted from a pointer value, the result compares equal to the original pointer
value. If two pointers point to the same object or both point one past the end of the same array or both
are null, and the two pointers are subtracted, the result compares equal to the value 0 converted to the type
std::ptrdiff_t.

82) Another way to approach pointer arithmetic is first to convert the pointer(s) to character pointer(s): In this scheme the
integral value of the expression added to or subtracted from the converted pointer is first multiplied by the size of the object
originally pointed to, and the resulting pointer is converted back to the original type. For pointer subtraction, the result of the
difference between the character pointers is similarly divided by the size of the object originally pointed to.

When viewed in this way, an implementation need only provide one extra byte (which might overlap another object in the
program) just after the end of the object in order to satisfy the “one past the last element” requirements.

§5.7 115

©ISO/IEC N3092

5.8 Shift operators [expr.shift]

The shift operators << and >> group left-to-right.

shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

The operands shall be of integral or unscoped enumeration type and integral promotions are performed.

The type of the result is that of the promoted left operand. The behavior is undefined if the right operand
is negative, or greater than or equal to the length in bits of the promoted left operand.

The value of E1 << E2 is E1 left-shifted E2 bit positions; vacated bits are zero-filled. If E1 has an unsigned
type, the value of the result is E1 x 2F2, reduced modulo one more than the maximum value representable
in the result type. Otherwise, if E1 has a signed type and non-negative value, and E1 x 2F2 is representable
in the result type, then that is the resulting value; otherwise, the behavior is undefined.

The value of E1 >> E2 is E1 right-shifted E2 bit positions. If E1 has an unsigned type or if E1 has a signed
type and a non-negative value, the value of the result is the integral part of the quotient of E1/2F2. If E1
has a signed type and a negative value, the resulting value is implementation-defined.

5.9 Relational operators [expr.rel]

The relational operators group left-to-right. [FEzample: a<b<c means (a<b)<c and not (a<b)&&(b<c).
— end example|

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

The operands shall have arithmetic, enumeration, or pointer type, or type std: :nullptr_t. The operators
< (less than), > (greater than), <= (less than or equal to), and >= (greater than or equal to) all yield false
or true. The type of the result is bool.

The usual arithmetic conversions are performed on operands of arithmetic or enumeration type. Pointer
conversions (4.10) and qualification conversions (4.4) are performed on pointer operands (or on a pointer
operand and a null pointer constant, or on two null pointer constants, at least one of which is non-integral)
to bring them to their composite pointer type. If one operand is a null pointer constant, the composite
pointer type is std: :nullptr_t if the other operand is also a null pointer constant or, if the other operand
is a pointer, the type of the other operand. Otherwise, if one of the operands has type “pointer to cv! void,”
then the other has type “pointer to cv2 T” and the composite pointer type is “pointer to cvi2 void,” where
cv12 is the union of cv! and cv2. Otherwise, the composite pointer type is a pointer type similar (4.4) to the
type of one of the operands, with a cv-qualification signature (4.4) that is the union of the cv-qualification
signatures of the operand types. [Note: this implies that any pointer can be compared to a null pointer
constant and that any object pointer can be compared to a pointer to (possibly cv-qualified) void. — end
note| [Ezample:

void *p;
const int *q;
int **pi;
const int *const *pci;
void ct() {
P <= q; // Both converted to const voidx before comparison

§5.9 116

©ISO/IEC N3092

pi <= pci; // Both converted to const int *const * before comparison

}

— end example| Pointers to objects or functions of the same type (after pointer conversions) can be com-
pared, with a result defined as follows:

— If two pointers p and q of the same type point to the same object or function, or both point one past
the end of the same array, or are both null, then p<=q and p>=q both yield true and p<q and p>q
both yield false.

— If two pointers p and q of the same type point to different objects that are not members of the same
object or elements of the same array or to different functions, or if only one of them is null, the results
of p<q, p>q, p<=q, and p>=q are unspecified.

— If two pointers point to non-static data members of the same object, or to subobjects or array elements
of such members, recursively, the pointer to the later declared member compares greater provided the
two members have the same access control (Clause 11) and provided their class is not a union.

— If two pointers point to non-static data members of the same object with different access control
(Clause 11) the result is unspecified.

— If two pointers point to non-static data members of the same union object, they compare equal (after
conversion to voidx, if necessary). If two pointers point to elements of the same array or one beyond
the end of the array, the pointer to the object with the higher subscript compares higher.

— Other pointer comparisons are unspecified.

Pointers to void (after pointer conversions) can be compared, with a result defined as follows: If both
pointers represent the same address or are both the null pointer value, the result is true if the operator is
<= or >= and false otherwise; otherwise the result is unspecified.

If two operands of type std: :nullptr_t are compared, the result is true if the operator is <= or >=, and
false otherwise.

If both operands (after conversions) are of arithmetic or enumeration type, each of the operators shall yield
true if the specified relationship is true and false if it is false.

5.10 Equality operators [expr.eq]

equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression = relational-expression

The == (equal to) and the != (not equal to) operators have the same semantic restrictions, conversions, and
result type as the relational operators except for their lower precedence and truth-value result. [Note: a<b
== c<d is true whenever a<b and c<d have the same truth-value. — end note] Pointers of the same type
(after pointer conversions) can be compared for equality. Two pointers of the same type compare equal if
and only if they are both null, both point to the same function, or both represent the same address (3.9.2).

In addition, pointers to members can be compared, or a pointer to member and a null pointer constant.
Pointer to member conversions (4.11) and qualification conversions (4.4) are performed to bring them to a
common type. If one operand is a null pointer constant, the common type is the type of the other operand.
Otherwise, the common type is a pointer to member type similar (4.4) to the type of one of the operands,
with a cv-qualification signature (4.4) that is the union of the cv-qualification signatures of the operand
types. [Note: this implies that any pointer to member can be compared to a null pointer constant. — end
note] If both operands are null, they compare equal. Otherwise if only one is null, they compare unequal.

§5.10 117

©ISO/IEC N3092

Otherwise if either is a pointer to a virtual member function, the result is unspecified. Otherwise they
compare equal if and only if they would refer to the same member of the same most derived object (1.8)
or the same subobject if they were dereferenced with a hypothetical object of the associated class type.
[Ezample:

struct B {
int £Q);

};

struct L : B

struct R : B

struct D : L

int (B::*pb) () = &B::f;

int (L::*pl) () = pb;

int (R::*pr) () = pb;

int (D::*pdl) () = pl;

int (D::*pdr) () = pr;

bool x = (pdl == pdr); // false

— end example]

If two operands of type std: :nullptr_t are compared, the result is true if the operator is ==, and false
otherwise.

Each of the operators shall yield true if the specified relationship is true and false if it is false.

5.11 Bitwise AND operator [expr.bit.and]

and-expression:
equality-expression
and-expression & equality-expression
The usual arithmetic conversions are performed; the result is the bitwise AND function of the operands. The
operator applies only to integral or unscoped enumeration operands.

5.12 Bitwise exclusive OR operator [expr.xor|

exclusive-or-expression:
and-expression
exclusive-or-expression ~ and-expression

The usual arithmetic conversions are performed; the result is the bitwise exclusive OR function of the
operands. The operator applies only to integral or unscoped enumeration operands.

5.13 Bitwise inclusive OR operator [expr.or]

inclusive-or-expression:
exclusive-or-expression
inclusive-or-expression | exclusive-or-expression

The usual arithmetic conversions are performed; the result is the bitwise inclusive OR function of its operands.
The operator applies only to integral or unscoped enumeration operands.

5.14 Logical AND operator [expr.log.and]
logical-and-expression:

inclusive-or-expression
logical-and-expression && inclusive-or-expression

§ 5.14 118

©ISO/IEC N3092

The && operator groups left-to-right. The operands are both contextually converted to type bool (Clause 4).
The result is true if both operands are true and false otherwise. Unlike &, && guarantees left-to-right
evaluation: the second operand is not evaluated if the first operand is false.

The result is a bool. If the second expression is evaluated, every value computation and side effect associated
with the first expression is sequenced before every value computation and side effect associated with the
second expression.

5.15 Logical OR operator [expr.log.or|

logical-or-expression:
logical-and-expression
logical-or-expression || logical-and-expression

The || operator groups left-to-right. The operands are both contextually converted to bool (Clause 4). It
returns true if either of its operands is true, and false otherwise. Unlike |, || guarantees left-to-right
evaluation; moreover, the second operand is not evaluated if the first operand evaluates to true.

The result is a bool. If the second expression is evaluated, every value computation and side effect associated
with the first expression is sequenced before every value computation and side effect associated with the
second expression.

5.16 Conditional operator [expr.cond]

conditional-expression:

logical-or-expression

logical-or-expression 7 exrpression : assignment-erpression
Conditional expressions group right-to-left. The first expression is contextually converted to bool (Clause 4).
It is evaluated and if it is true, the result of the conditional expression is the value of the second expression,
otherwise that of the third expression. Only one of the second and third expressions is evaluated. Every value
computation and side effect associated with the first expression is sequenced before every value computation
and side effect associated with the second or third expression.

If either the second or the third operand has type (possibly cv-qualified) void, then the lvalue-to-rvalue (4.1),
array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are performed on the second and
third operands, and one of the following shall hold:

— The second or the third operand (but not both) is a throw-expression (15.1); the result is of the type
of the other and is a prvalue.

— Both the second and the third operands have type void; the result is of type void and is a prvalue.
[Note: this includes the case where both operands are throw-expressions. — end note

Otherwise, if the second and third operand have different types and either has (possibly cv-qualified) class
type, or if both are glvalues of the same value category and the same type except for cv-qualification, an
attempt is made to convert each of those operands to the type of the other. The process for determining
whether an operand expression E1 of type T1 can be converted to match an operand expression E2 of type
T2 is defined as follows:

— If E2 is an lvalue: E1 can be converted to match E2 if E1 can be implicitly converted (Clause 4) to the
type “lvalue reference to T2”, subject to the constraint that in the conversion the reference must bind
directly (8.5.3) to an lvalue.

— If E2 is an xvalue: E1 can be converted to match E2 if E1 can be implicitly converted to the type
“rvalue reference to T2”, subject to the constraint that the reference must bind directly.

§5.16 119

©ISO/IEC N3092

If E2 is an rvalue or if neither of the conversions above can be done and at least one of the operands
has (possibly cv-qualified) class type:

— if E1 and E2 have class type, and the underlying class types are the same or one is a base class
of the other: E1 can be converted to match E2 if the class of T2 is the same type as, or a base
class of, the class of T1, and the cv-qualification of T2 is the same cv-qualification as, or a greater
cv-qualification than, the cv-qualification of T1. If the conversion is applied, E1 is changed to a
prvalue of type T2 by copy-initializing a temporary of type T2 from E1 and using that temporary
as the converted operand.

— Otherwise (i.e., if E1 or E2 has a nonclass type, or if they both have class types but the underlying
classes are not either the same or one a base class of the other): E1 can be converted to match E2
if E1 can be implicitly converted to the type that expression E2 would have if E2 were converted
to a prvalue (or the type it has, if E2 is a prvalue).

Using this process, it is determined whether the second operand can be converted to match the third
operand, and whether the third operand can be converted to match the second operand. If both can
be converted, or one can be converted but the conversion is ambiguous, the program is ill-formed.
If neither can be converted, the operands are left unchanged and further checking is performed as
described below. If exactly one conversion is possible, that conversion is applied to the chosen operand
and the converted operand is used in place of the original operand for the remainder of this section.

4 If the second and third operands are glvalues of the same value category and have the same type, the result
is of that type and value category and it is a bit-field if the second or the third operand is a bit-field, or if
both are bit-fields.

5 Otherwise, the result is a prvalue. If the second and third operands do not have the same type, and either
has (possibly cv-qualified) class type, overload resolution is used to determine the conversions (if any) to be
applied to the operands (13.3.1.2, 13.6). If the overload resolution fails, the program is ill-formed. Otherwise,
the conversions thus determined are applied, and the converted operands are used in place of the original
operands for the remainder of this section.

6 Lvalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are per-
formed on the second and third operands. After those conversions, one of the following shall hold:

The second and third operands have the same type; the result is of that type. If the operands have
class type, the result is a prvalue temporary of the result type, which is copy-initialized from either
the second operand or the third operand depending on the value of the first operand.

The second and third operands have arithmetic or enumeration type; the usual arithmetic conversions
are performed to bring them to a common type, and the result is of that type.

The second and third operands have pointer type, or one has pointer type and the other is a null
pointer constant, or both are null pointer constants, at least one of which is non-integral; pointer
conversions (4.10) and qualification conversions (4.4) are performed to bring them to their composite
pointer type (5.9). The result is of the composite pointer type.

The second and third operands have pointer to member type, or one has pointer to member type and the
other is a null pointer constant; pointer to member conversions (4.11) and qualification conversions (4.4)
are performed to bring them to a common type, whose cv-qualification shall match the cv-qualification
of either the second or the third operand. The result is of the common type.

5.17 Assignment and compound assignment operators [expr.ass|

1 The assignment operator (=) and the compound assignment operators all group right-to-left. All require a

§ 5.17 120

©ISO/IEC N3092

modifiable lvalue as their left operand and return an lvalue referring to the left operand. The result in all
cases is a bit-field if the left operand is a bit-field. In all cases, the assignment is sequenced after the value
computation of the right and left operands, and before the value computation of the assignment expression.
With respect to an indeterminately-sequenced function call, the operation of a compound assignment is
a single evaluation. [Note: Therefore, a function call shall not intervene between the lvalue-to-rvalue
conversion and the side effect associated with any single compound assignment operator. — end note]

assignment-expression:
conditional-expression
logical-or-expression assignment-operator initializer-clause
throw-expression

assignment-operator: one of
= %= /= Y= += —-= >>= <<= &= "= |=
In simple assignment (=), the value of the expression replaces that of the object referred to by the left
operand.

If the left operand is not of class type, the expression is implicitly converted (Clause 4) to the cv-unqualified
type of the left operand.

If the left operand is of class type, the class shall be complete. Assignment to objects of a class is defined
by the copy/move assignment operator (12.8, 13.5.3).

[Note: For class objects, assignment is not in general the same as initialization (8.5, 12.1, 12.6, 12.8). — end
note |

When the left operand of an assignment operator denotes a reference to T, the operation assigns to the
object of type T denoted by the reference.

The behavior of an expression of the form E1 op = E2 is equivalent to E1 = E1 op E2 except that E1 is
evaluated only once. In += and -=, E1 shall either have arithmetic type or be a pointer to a possibly
cv-qualified completely-defined object type. In all other cases, E1 shall have arithmetic type.

If the value being stored in an object is accessed from another object that overlaps in any way the storage of
the first object, then the overlap shall be exact and the two objects shall have the same type, otherwise the
behavior is undefined. [Note: This restriction applies to the relationship between the left and right sides of
the assignment operation; it is not a statement about how the target of the assignment may be aliased in
general. See 3.10. — end note]

A braced-init-list may appear on the right-hand side of

— an assignment to a scalar, in which case the initializer list shall have at most a single element. The
meaning of x={v}, where T is the scalar type of the expression x, is that of x=T(v) except that no
narrowing conversion (8.5.4) is allowed. The meaning of x={2} is x=T().

— an assignment defined by a user-defined assignment operator, in which case the initializer list is passed
as the argument to the operator function.

[Example:
complex<double> z;
z=91,2}; // meaning z.operator=({1,23})
z+={1, 2 }; // meaning z.operator+=({1,2})
int a, b;
a=b={113} // meaning a=b=1;
a={1}=n0; // syntax error

— end example]

§5.17 121

©ISO/IEC N3092

5.18 Comma operator [expr.commal]

The comma operator groups left-to-right.
expression:

assignment-expression
expression , assignment-expression

A pair of expressions separated by a comma is evaluated left-to-right and the value of the left expression
is discarded.®® The Ivalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard
conversions are not applied to the left expression. Every value computation and side effect associated with
the left expression is sequenced before every value computation and side effect associated with the right
expression. The type and value of the result are the type and value of the right operand; the result is of the
same value category as its right operand, and is a bit-field if its right operand is a glvalue and a bit-field.

In contexts where comma is given a special meaning, [Ezample: in lists of arguments to functions (5.2.2)
and lists of initializers (8.5) — end example] the comma operator as described in Clause 5 can appear only
in parentheses. [Example:

fla, (£=3, t+2), c);

has three arguments, the second of which has the value 5. — end example]

5.19 Constant expressions [expr.const]

Certain contexts require expressions that satisfy additional requirements as detailed in this sub-clause. Such
expressions are called constant expressions. [Note: Those expressions can be evaluated during translation. —
end note |

constant-expression:
conditional-expression

A conditional-expression is a constant expression unless it involves one of the following as a potentially evalu-
ated subexpression (3.2), but subexpressions of logical AND (5.14), logical OR (5.15), and conditional (5.16)
operations that are not evaluated are not considered [Note: an overloaded operator invokes a function. — end
note):

— this (5.1) unless it appears as the postfiz-ezpression in a class member access expression, including
the result of the implicit transformation in the body of a non-static member function (9.3.1);

— an invocation of a function other than a constexpr function or a constexpr constructor [Note: overload
resolution (13.3) is applied as usual — end note];

— an invocation of an undefined constexpr function or an undefined constexpr constructor outside the
definition of a constexpr function or a constexpr constructor;

— an invocation of a constexpr function with arguments that, when implicitly converted to the corre-
sponding parameter types and substituted for the corresponding parameters in the potential constant
expression of the constexpr function, and the resulting expression implicitly converted to the return
type, do not produce a constant expression; [Example:

constexpr const int* addr(const int& ir) { return &ir; } // OK
static const int x = 5;
constexpr const int* xp

addr(x); // OK: (const int*)&(const int&)x is an
// address contant expression
addr(5); // error, initializer for constexpr variable not a constant

constexpr const int* tp

83) However, an invocation of an overloaded comma operator is an ordinary function call; hence, the evaluations of its argument
expressions are unsequenced relative to one another (see 1.9).

§5.19 122

©ISO/IEC N3092

// expression; (const int*)&(const int&)5 is not a constant
// expression because it takes the address of a temporary

— end example]
— a result that is not mathematically defined or not in the range of representable values for its type;
— a lambda-expression (5.1.2);
— an lvalue-to-rvalue conversion (4.1) unless it is applied to

— a glvalue of integral or enumeration type that refers to a non-volatile const object with a preceding
initialization, initialized with a constant expression, or

— a glvalue of literal type that refers to a non-volatile object defined with constexpr, or that refers
to a sub-object of such an object, or

— a glvalue of literal type that refers to a non-volatile temporary object initialized with a constant

expression;3*

— an array-to-pointer conversion (4.2) that is applied to a glvalue that does not designate an object with
static storage duration;

— a unary operator & (5.3.1) that is applied to an lvalue that does not designate an object with static
storage duration;

— an id-expression that refers to a variable or data member of reference type;8?
— a dynamic cast (5.2.7);

— a type conversion from a pointer or pointer-to-member type to a literal type [Note: a user-defined
conversion invokes a function — end note];

— a pseudo-destructor call (5.2.4);

— increment or decrement operations (5.2.6, 5.3.2);

— a typeid expression (5.2.8) whose operand is of a polymorphic class type;

— a new-expression (5.3.4);

— a delete-expression (5.3.5);

— a subtraction (5.7) where both operands are pointers;

— a relational (5.9) or equality (5.10) operator where at least one of the operands is a pointer;
— an assignment or a compound assignment (5.17); or

— a throw-ezpression (15.1).

3 A constant expression is an integral constant expression if it is of integral or enumeration type. [Note: such
expressions may be used as array bounds (8.3.4, 5.3.4), as case expressions (6.4.2), as bit-field lengths (9.6),
as enumerator initializers (7.2), and as integral or enumeration non-type template arguments (14.3). — end
note |

4 [Note: Although in some contexts constant expressions must be evaluated during program translation, others
may be evaluated during program execution. Since this International Standard imposes no restrictions on the

84) The temporary must be part of the constant expression, as any longer-lived temporary would have to be bound to a
reference, and reference variables cannot appear in a constant expression.

85) Use of a reference parameter of a constexpr function does not prevent the body from being a potential constant expression
because the parameters are replaced by constant expressions during that determination, and later by arguments to a call.

§5.19 123

©ISO/IEC N3092

accuracy of floating-point operations, it is unspecified whether the evaluation of a floating-point expression
during translation yields the same result as the evaluation of the same expression (or the same operations
on the same values) during program execution.® | Ezample:

bool £() {
char array[l + int(1 + 0.2 - 0.1 - 0.1)1; // Must be evaluated during translation
int size = 1 + int(1 + 0.2 - 0.1 - 0.1); // May be evaluated at runtime
return sizeof (array) == size;

It is unspecified whether the value of £() will be true or false. — end example] — end note]

If an expression of literal class type is used in a context where an integral constant expression is required,
then that class type shall have a single non-explicit conversion function to an integral or enumeration type
and that conversion function shall be constexpr. [Example:

struct A {
constexpr A(int i) : val(i) { }
constexpr operator int() { return val; }
constexpr operator long() { return 43; }
private:
int val;
};
template<int> struct X { };
constexpr A a = 42;
X<a> x; // OK: unique conversion to int
int arylal; // error: ambiguous conversion

— end example]

An expression is a potential constant expression if it is a constant expression when all occurrences of function
parameters are replaced as follows:

— for non-reference parameters, by arbitrary prvalue constant expressions of the appropriate types;

— for lvalue reference parameters, by arbitrary variables of the referred-to types with static storage
duration initialized with constant expressions; or

— for rvalue reference parameters, by arbitrary prvalue constant expressions of the referred-to types
implicitly converted to the types of the parameters.

86) Nonetheless, implementations are encouraged to provide consistent results, irrespective of whether the evaluation was
actually performed during translation or during program execution.

§5.19 124

©ISO/IEC N3092

6 Statements [stmt.stmt]

Except as indicated, statements are executed in sequence.

statement:
labeled-statement
attribute-specifierop: expression-statement
attribute-specifierop; compound-statement
attribute-specifierop; selection-statement
attribute-specifierop: iteration-statement
attribute-specifierop; jump-statement
declaration-statement
attribute-specifierop: try-block

The optional attribute-specifier appertains to the respective statement.

6.1 Labeled statement [stmt.label]

A statement can be labeled.
labeled-statement:
attribute-specifierop: identifier : statement
attribute-specifier,p; case constant-expression : statement
attribute-specifier,p; default : statement

The optional attribute-specifier appertains to the label. An identifier label declares the identifier. The only
use of an identifier label is as the target of a goto. The scope of a label is the function in which it appears.
Labels shall not be redeclared within a function. A label can be used in a goto statement before its definition.
Labels have their own name space and do not interfere with other identifiers.

Case labels and default labels shall occur only in switch statements.

6.2 Expression statement [stmt.expr|

Expression statements have the form

expression-statement:
eTPTessioNopt 3

The expression is evaluated and its value is discarded. The lvalue-to-rvalue (4.1), array-to-pointer (4.2), and
function-to-pointer (4.3) standard conversions are not applied to the expression. All side effects from an
expression statement are completed before the next statement is executed. An expression statement with the
expression missing is called a null statement. [Note: Most statements are expression statements — usually
assignments or function calls. A null statement is useful to carry a label just before the } of a compound

statement and to supply a null body to an iteration statement such as a while statement (6.5.1). —end
note]
6.3 Compound statement or block [stmt.block]

So that several statements can be used where one is expected, the compound statement (also, and equiva-
lently, called “block”) is provided.

compound-statement:
{ statement-seqopt ¥

§ 6.3 125

©ISO/IEC N3092

statement-seq:
statement
statement-seq statement

A compound statement defines a block scope (3.3). [Note: a declaration is a statement (6.7). — end note]

6.4 Selection statements [stmt.select]

Selection statements choose one of several flows of control.

selection-statement:
if (condition) statement
if (condition) statement else statement
switch (condition) statement
condition:
expression
attribute-specifierop; type-specifier-seq declarator = initializer-clause
attribute-specifierop; type-specifier-seq declarator braced-init-list
See 8.3 for the optional attribute-specifier in a condition. In Clause 6, the term substatement refers to the
contained statement or statements that appear in the syntax notation. The substatement in a selection-
statement (each substatement, in the else form of the if statement) implicitly defines a block scope (3.3).
If the substatement in a selection-statement is a single statement and not a compound-statement, it is as if
it was rewritten to be a compound-statement containing the original substatement. [Example:

if (%)
int i;

can be equivalently rewritten as

if (x) {
int i;

}

Thus after the if statement, i is no longer in scope. — end example]

The rules for conditions apply both to selection-statements and to the for and while statements (6.5). The
declarator shall not specify a function or an array. If the auto type-specifier appears in the type-specifier-seq,
the type of the identifier being declared is deduced from the initializer as described in 7.1.6.4.

A name introduced by a declaration in a condition (either introduced by the type-specifier-seq or the declara-
tor of the condition) is in scope from its point of declaration until the end of the substatements controlled
by the condition. If the name is re-declared in the outermost block of a substatement controlled by the
condition, the declaration that re-declares the name is ill-formed. [Example:

if (dnt x = £Q)) {

int x; // ill-formed, redeclaration of x
}
else {

int x; // ill-formed, redeclaration of x
}

— end example|

The value of a condition that is an initialized declaration in a statement other than a switch statement is the
value of the declared variable contextually converted to bool (Clause 4). If that conversion is ill-formed, the
program is ill-formed. The value of a condition that is an initialized declaration in a switch statement is the
value of the declared variable if it has integral or enumeration type, or of that variable implicitly converted

§ 6.4 126

©ISO/IEC N3092

to integral or enumeration type otherwise. The value of a condition that is an expression is the value of the
expression, contextually converted to bool for statements other than switch; if that conversion is ill-formed,
the program is ill-formed. The value of the condition will be referred to as simply “the condition” where the
usage is unambiguous.

If a condition can be syntactically resolved as either an expression or the declaration of a block-scope name,
it is interpreted as a declaration.

6.4.1 The if statement [stmt.if]

If the condition (6.4) yields true the first substatement is executed. If the else part of the selection
statement is present and the condition yields false, the second substatement is executed. In the second
form of if statement (the one including else), if the first substatement is also an if statement then that
inner if statement shall contain an else part.®”

6.4.2 The switch statement [stmt.switch]

The switch statement causes control to be transferred to one of several statements depending on the value
of a condition.

The condition shall be of integral type, enumeration type, or of a class type for which a single non-explicit
conversion function to integral or enumeration type exists (12.3). If the condition is of class type, the
condition is converted by calling that conversion function, and the result of the conversion is used in place of
the original condition for the remainder of this section. Integral promotions are performed. Any statement
within the switch statement can be labeled with one or more case labels as follows:

case constant-expression :

where the constant-expression shall be an integral constant expression (5.19). The integral constant expres-
sion is implicitly converted to the promoted type of the switch condition. No two of the case constants in
the same switch shall have the same value after conversion to the promoted type of the switch condition.

There shall be at most one label of the form

default :

within a switch statement.

Switch statements can be nested; a case or default label is associated with the smallest switch enclosing
it.

When the switch statement is executed, its condition is evaluated and compared with each case constant. If
one of the case constants is equal to the value of the condition, control is passed to the statement following
the matched case label. If no case constant matches the condition, and if there is a default label, control

passes to the statement labeled by the default label. If no case matches and if there is no default then
none of the statements in the switch is executed.

case and default labels in themselves do not alter the flow of control, which continues unimpeded across
such labels. To exit from a switch, see break, 6.6.1. [Note: usually, the substatement that is the subject
of a switch is compound and case and default labels appear on the top-level statements contained within

87) In other words, the else is associated with the nearest un-elsed if.

§ 6.4.2 127

©ISO/IEC N3092

the (compound) substatement, but this is not required. Declarations can appear in the substatement of a
switch-statement. — end note]

6.5 Iteration statements [stmt.iter]

Tteration statements specify looping.

iteration-statement:

while (condition) statement

do statement while (expression) ;

for (for-init-statement conditionoy: ; erpressionop:) statement

for (for-range-declaration : expression) statement
for-init-statement:

expression-statement

stmple-declaration

for-range-declaration:
attribute-specifierop: type-specifier-seq declarator

See 8.3 for the optional attribute-specifier in a for-range-declaration. [Note: a for-init-statement ends with
a semicolon. — end note

The substatement in an éteration-statement implicitly defines a block scope (3.3) which is entered and exited
each time through the loop.

If the substatement in an iteration-statement is a single statement and not a compound-statement, it is as if
it was rewritten to be a compound-statement containing the original statement. [Example:

while (--x >= 0)
int i;
can be equivalently rewritten as

while (--x >= 0) {

int i;
}
Thus after the while statement, i is no longer in scope. — end example]
[Note: The requirements on conditions in iteration statements are described in 6.4. — end note]

A loop that, outside of the for-init-statement in the case of a for statement,
— makes no calls to library I/O functions, and
— does not access or modify volatile objects, and
— performs no synchronization operations (1.10) or atomic operations (Clause 29)

may be assumed by the implementation to terminate. [Note: This is intended to allow compiler transfor-
mations, such as removal of empty loops, even when termination cannot be proven. — end note]

6.5.1 The while statement [stmt.while]

In the while statement the substatement is executed repeatedly until the value of the condition (6.4) becomes
false. The test takes place before each execution of the substatement.

When the condition of a while statement is a declaration, the scope of the variable that is declared extends
from its point of declaration (3.3.2) to the end of the while statement. A while statement of the form

§6.5.1 128

©ISO/IEC N3092

while (T t = x) statement

is equivalent to

label:
{ // start of condition scope
Tt =x;
if () {
statement
goto label;
}
} // end of condition scope

The variable created in a condition is destroyed and created with each iteration of the loop. [Example:

struct A {

int val;

A(int i) : val(i) { }

“AOQ {1}

operator bool() { return val != 0; }
};

int i = 1;
while (A a = i) {

//

In the while-loop, the constructor and destructor are each called twice, once for the condition that succeeds
and once for the condition that fails. — end ezample]

6.5.2 The do statement [stmt.do]

The expression is contextually converted to bool (Clause 4); if that conversion is ill-formed, the program is
ill-formed.

In the do statement the substatement is executed repeatedly until the value of the expression becomes false.
The test takes place after each execution of the statement.

6.5.3 The for statement [stmt.for]
The for statement
for (for-init-statement condition.y: ; erpressionop:) statement

is equivalent to

{
for-init-statement
while (condition) {
statement
exrpression ;
}
}

except that names declared in the for-init-statement are in the same declarative-region as those declared in
the condition, and except that a continue in statement (not enclosed in another iteration statement) will
execute expression before re-evaluating condition. [Note: Thus the first statement specifies initialization for
the loop; the condition (6.4) specifies a test, made before each iteration, such that the loop is exited when

§6.5.3 129

©ISO/IEC N3092

the condition becomes false; the expression often specifies incrementing that is done after each iteration.
— end note

Either or both of the condition and the expression can be omitted. A missing condition makes the implied
while Clause equivalent to while(true).

If the for-init-statement is a declaration, the scope of the name(s) declared extends to the end of the for-
statement. | Example:

int i = 42;

int a[10];

for (int i = 0; i < 10; i++)
ali] = i;

int j = i; //j = 42
— end example]

6.5.4 The range-based for statement [stmt.ranged]

The range-based for statement
for (for-range-declaration : expression) statement

is equivalent to

{
auto &% __range = (ezpression);
for (auto __begin = begin-expr,
__end = end-ezpr;
__begin != __end;
++__begin) {
for-range-declaration = *__begin;
statement
}
}

where __range, __begin, and __end are variables defined for exposition only, and _RangeT is the type of
the expression, and begin-ezpr and end-expr are determined as follows:.

— if _RangeT is an array type, begin-ezpr and end-erpr are __range and __range + __bound, respec-
tively, where __bound is the array bound. If _RangeT is an array of unknown size or an array of
incomplete type, the program is ill-formed.

— otherwise, begin-expr and end-expr are begin(__range) and end(__range), respectively, where begin
and end are looked up with argument-dependent lookup (3.4.2). For the purposes of this name lookup,
namespace std is an associated namespace.

[Example:

int array(5] = {1, 2, 3, 4, 5 };
for (int& x : array)
X *x= 2;

— end example|

§ 6.5.4 130

©ISO/IEC N3092

6.6 Jump statements [stmt.jump]

Jump statements unconditionally transfer control.
Jump-statement:
break ;
continue ;
return expressionop: ;
return braced-init-list ;
goto identifier ;

On exit from a scope (however accomplished), objects with automatic storage duration (3.7.3) that have been
constructed in that scope are destroyed in the reverse order of their construction. [Note: For temporaries,
see 12.2. —end note| Transfer out of a loop, out of a block, or back past an initialized variable with
automatic storage duration involves the destruction of objects with automatic storage duration that are in
scope at the point transferred from but not at the point transferred to. (See 6.7 for transfers into blocks).
[Note: However, the program can be terminated (by calling std::exit() or std::abort() (18.5), for
example) without destroying class objects with automatic storage duration. — end note|

6.6.1 The break statement [stmt.break]

The break statement shall occur only in an iteration-statement or a switch statement and causes termination
of the smallest enclosing iteration-statement or switch statement; control passes to the statement following
the terminated statement, if any.

6.6.2 The continue statement [stmt.cont]

The continue statement shall occur only in an iteration-statement and causes control to pass to the loop-
continuation portion of the smallest enclosing iteration-statement, that is, to the end of the loop. More
precisely, in each of the statements

while (foo) { do { for (;;) {
{ { {
/. /). /) ..
} } }
contin: ; contin: ; contin: ;
} } while (foo); }

a continue not contained in an enclosed iteration statement is equivalent to goto contin.

6.6.3 The return statement [stmt.return]

A function returns to its caller by the return statement.

A return statement without an expression can be used only in functions that do not return a value, that is,
a function with the return type void, a constructor (12.1), or a destructor (12.4). A return statement with
an expression of non-void type can be used only in functions returning a value; the value of the expression
is returned to the caller of the function. The value of the expression is implicitly converted to the return
type of the function in which it appears. A return statement can involve the construction and copy or move
of a temporary object (12.2). [Note: A copy or move operation associated with a return statement may
be elided or considered as an rvalue for the purpose of overload resolution in selecting a constructor (12.8).
— end note| A return statement with a braced-init-list initializes the object or reference to be returned from
the function by copy-list-initialization (8.5.4) from the specified initializer list. [Ezample:

std: :pair<std::string,int> f(const char* p, int x) {
return {p,x};

§6.6.3 131

©ISO/IEC N3092

}

— end example]

Flowing off the end of a function is equivalent to a return with no value; this results in undefined behavior
in a value-returning function.

A return statement with an expression of type “cv void” can be used only in functions with a return type
of cv void; the expression is evaluated just before the function returns to its caller.

6.6.4 The goto statement [stmt.goto]

The goto statement unconditionally transfers control to the statement labeled by the identifier. The identifier
shall be a label (6.1) located in the current function.

6.7 Declaration statement [stmt.dcl]

A declaration statement introduces one or more new identifiers into a block; it has the form

declaration-statement:
block-declaration
If an identifier introduced by a declaration was previously declared in an outer block, the outer declaration
is hidden for the remainder of the block, after which it resumes its force.

Variables with automatic storage duration (3.7.3) are initialized each time their declaration-statement is
executed. Variables with automatic storage duration declared in the block are destroyed on exit from the
block (6.6).

It is possible to transfer into a block, but not in a way that bypasses declarations with initialization. A
program that jumps®® from a point where a variable with automatic storage duration is not in scope to a
point where it is in scope is ill-formed unless the variable has scalar type, class type with a trivial default
constructor and a trivial destructor, a cv-qualified version of one of these types, or an array of one of the
preceding types and is declared without an initializer (8.5). [Example:

void £() {
goto 1x; // ill-formed: jump into scope of a
1ly:
Xa=1;
/-
1x:
goto ly; // OK, jump implies destructor
// call for a followed by construction
// again immediately following label 1y
}

— end example|

The zero-initialization (8.5) of all block-scope variables with static storage duration (3.7.1) or thread storage
duration (3.7.2) is performed before any other initialization takes place. Constant initialization (3.6.2) of a
block-scope entity with static storage duration, if applicable, is performed before its block is first entered.
An implementation is permitted to perform early initialization of other block-scope variables with static or
thread storage duration under the same conditions that an implementation is permitted to statically initialize
a variable with static or thread storage duration in namespace scope (3.6.2). Otherwise such a variable is

88) The transfer from the condition of a switch statement to a case label is considered a jump in this respect.

§6.7 132

2

©ISO/IEC N3092

initialized the first time control passes through its declaration; such a variable is considered initialized upon
the completion of its initialization. If the initialization exits by throwing an exception, the initialization
is not complete, so it will be tried again the next time control enters the declaration. If control enters
the declaration concurrently while the variable is being initialized, the concurrent execution shall wait for
completion of the initialization.®? If control re-enters the declaration recursively while the variable is being
initialized, the behavior is undefined. [Ezample:

int foo(int i) {
static int s = foo(2*i); // recursive call - undefined
return i+1;

}

— end example |

The destructor for a block-scope object with static or thread storage duration will be executed if and only
if it was constructed. [Note: 3.6.3 describes the order in which block-scope objects with static and thread
storage duration are destroyed. — end note|

6.8 Ambiguity resolution [stmt.ambig)]

There is an ambiguity in the grammar involving expression-statements and declarations: An expression-
statement with a function-style explicit type conversion (5.2.3) as its leftmost subexpression can be indis-
tinguishable from a declaration where the first declarator starts with a (. In those cases the statement is a
declaration. [Note: To disambiguate, the whole statement might have to be examined to determine if it is
an expression-statement or a declaration. This disambiguates many examples. [Ezample: assuming T is a
simple-type-specifier (7.1.6),

T(a)->m = 7; // expression-statement
T(a)++; // expression-statement
T(a,5)<<c; // expression-statement
T(*d) (int); // declaration
T(e) [5]; // declaration

TE ={1, 23 // declaration
T(xg) (double(3)); // declaration

In the last example above, g, which is a pointer to T, is initialized to double(3). This is of course ill-formed
for semantic reasons, but that does not affect the syntactic analysis. — end ezample]

The remaining cases are declarations. | Example:

class T {
public:

TO;

T(int);

T(int, int);
};
T(a); // declaration
T(xb) O // declaration
T(c)=7; // declaration
T(d),e,f=3; // declaration
extern int h;
T(g) (h,2); // declaration

89) The implementation must not introduce any deadlock around execution of the initializer.

§ 6.8 133

©ISO/IEC N3092

— end example] — end note]

The disambiguation is purely syntactic; that is, the meaning of the names occurring in such a statement,
beyond whether they are type-names or not, is not generally used in or changed by the disambiguation. Class
templates are instantiated as necessary to determine if a qualified name is a type-name. Disambiguation
precedes parsing, and a statement disambiguated as a declaration may be an ill-formed declaration. If,
during parsing, a name in a template parameter is bound differently than it would be bound during a trial
parse, the program is ill-formed. No diagnostic is required. [Note: This can occur only when the name is
declared earlier in the declaration. — end note| [Example:

struct T1 {
T1 operator() (int x) { return Ti(x); }
int operator=(int x) { return x; }
Ti(int) { }

3

struct T2 { T2@int){ } };

int a, (x(xb)(T2)) (int), c, d;

void £() {
// disambiguation requires this to be parsed as a declaration:
Ti(a) = 3,
T2(4), // T2 will be declared as
(¢ (*b) (T2(c))) (int (d)); // a variable of type T1
// but this will not allow
// the last part of the
// declaration to parse
// properly since it depends
// on T2 being a type-name
}

— end example]

§6.8 134

1

©ISO/IEC N3092

7 Declarations [dcl.dcl]

Declarations generally specify how names are to be interpreted. Declarations have the form

declaration-seq:
declaration
declaration-seq declaration

declaration:
block-declaration
function-definition
template-declaration
explicit-instantiation
explicit-specialization
linkage-specification
namespace-definition
empty-declaration
attribute-declaration

block-declaration:
stmple-declaration
asm-definition
namespace-alias-definition
using-declaration
using-directive
static__assert-declaration
alias-declaration
opaque-enum-declaration

alias-declaration:

using identifier = type-id ;
simple-declaration:

attribute-specifierop; decl-specifier-seqop: init-declarator-listop: ;
static__assert-declaration:

static_assert (constant-expression , string-literal) ;
empty-declaration:
attribute-declaration:

attribute-specifier ;

[Note: asm-definitions are described in 7.4, and linkage-specifications are described in 7.5. Function-
definitions are described in 8.4 and template-declarations are described in Clause 14. Namespace-definitions
are described in 7.3.1, using-declarations are described in 7.3.3 and using-directives are described in 7.3.4.
— end note

The simple-declaration
attribute-specifierop: decl-specifier-seqop: init-declarator-listop: ;

is divided into three parts. Atrributes are described in 7.6. decl-specifiers, the principal components of a
decl-specifier-seq, are described in 7.1. declarators, the components of an init-declarator-list, are described in
Clause 8. The optional attribute-specifier in a simple-declaration appertains to each of the entities declared
by the declarators; it shall not appear if the optional init-declarator-list is omitted. [Note: In the declaration

135

©ISO/IEC N3092

for an entity, attributes appertaining to that entity may appear at the start of the declaration and after the
declarator-id for that declaration. — end note| [Example:

[[noreturn, nothrowl] void f [[noreturnl] (); // OK

— end example]
Except where otherwise specified, the meaning of an attribute-declaration is implementation-defined.

A declaration occurs in a scope (3.3); the scope rules are summarized in 3.4. A declaration that declares a
function or defines a class, namespace, template, or function also has one or more scopes nested within it.
These nested scopes, in turn, can have declarations nested within them. Unless otherwise stated, utterances
in Clause 7 about components in, of, or contained by a declaration or subcomponent thereof refer only to
those components of the declaration that are not nested within scopes nested within the declaration.

In a simple-declaration, the optional init-declarator-list can be omitted only when declaring a class (Clause 9)
or enumeration (7.2), that is, when the decl-specifier-seq contains either a class-specifier, an elaborated-
type-specifier with a class-key (9.1), or an enum-specifier. In these cases and whenever a class-specifier or
enum-specifier is present in the decl-specifier-seq, the identifiers in these specifiers are among the names being
declared by the declaration (as class-names, enum-names, or enumerators, depending on the syntax). In such
cases, and except for the declaration of an unnamed bit-field (9.6), the decl-specifier-seq shall introduce one
or more names into the program, or shall redeclare a name introduced by a previous declaration. | Example:

enum { }; // ill-formed
typedef class { }; // ill-formed

— end example]

In a static_assert-declaration the constant-expression shall be a constant expression (5.19) that can be
contextually converted to bool (Clause 4). If the value of the expression when so converted is true, the
declaration has no effect. Otherwise, the program is ill-formed, and the resulting diagnostic message (1.4)
shall include the text of the string-literal, except that characters not in the basic source character set (2.3)
are not required to appear in the diagnostic message. [Ezample:

static_assert(sizeof(long) >= 8, "64-bit code generation required for this library.");

— end example|
An empty-declaration has no effect.

Each init-declarator in the init-declarator-list contains exactly one declarator-id, which is the name declared
by that init-declarator and hence one of the names declared by the declaration. The type-specifiers (7.1.6)
in the decl-specifier-seq and the recursive declarator structure of the init-declarator describe a type (8.3),
which is then associated with the name being declared by the init-declarator.

If the decl-specifier-seq contains the typedef specifier, the declaration is called a typedef declaration and the
name of each init-declarator is declared to be a typedef-name, synonymous with its associated type (7.1.3).
If the decl-specifier-seq contains no typedef specifier, the declaration is called a function declaration if the
type associated with the name is a function type (8.3.5) and an object declaration otherwise.

Syntactic components beyond those found in the general form of declaration are added to a function decla-
ration to make a function-definition. An object declaration, however, is also a definition unless it contains
the extern specifier and has no initializer (3.1). A definition causes the appropriate amount of storage to
be reserved and any appropriate initialization (8.5) to be done.

136

©ISO/IEC N3092

Only in function declarations for constructors, destructors, and type conversions can the decl-specifier-seq
be omitted.”

7.1 Specifiers [dcl.spec]

The specifiers that can be used in a declaration are
decl-specifier:
storage-class-specifier
type-specifier
function-specifier
friend
typedef
constexpr

decl-specifier-seq:
decl-specifier attribute-specifierop;
decl-specifier decl-specifier-seq
The optional attribute-specifier in a decl-specifier-seq appertains to the type determined by the decl-specifier-
seq (8.3). The attribute-specifier affects the type only for the declaration it appears in, not other declarations
involving the same type.

If a type-name is encountered while parsing a decl-specifier-seq, it is interpreted as part of the decl-specifier-
seq if and only if there is no previous type-specifier other than a cv-qualifier in the decl-specifier-seq. The
sequence shall be self-consistent as described below. [Ezample:

typedef char* Pc;
static Pc; // error: name missing

Here, the declaration static Pc is ill-formed because no name was specified for the static variable of type Pc.
To get a variable called Pc, a type-specifier (other than const or volatile) has to be present to indicate that
the typedef-name Pc is the name being (re)declared, rather than being part of the decl-specifier sequence.
For another example,

void f(const Pc); // void f(char* const) (not const char*)
void g(const int Pc); // void g(const int)
— end example|

[Note: since signed, unsigned, long, and short by default imply int, a type-name appearing after one of
those specifiers is treated as the name being (re)declared. [Example:

void h(unsigned Pc); // void h(unsigned int)
void k(unsigned int Pc); // void k(unsigned int)
— end example] — end note]
7.1.1 Storage class specifiers [dcl.stc]

The storage class specifiers are

storage-class-specifier:
register
static
thread_local
extern
mutable

90) The “implicit int” rule of C is no longer supported.

§7.1.1 137

©ISO/IEC N3092

At most one storage-class-specifier shall appear in a given decl-specifier-seq, except that thread_local
may appear with static or extern. If thread_local appears in any declaration of a variable it shall be
present in all declarations of that entity. If a storage-class-specifier appears in a decl-specifier-seq, there
can be no typedef specifier in the same decl-specifier-seq and the init-declarator-list of the declaration shall
not be empty (except for an anonymous uniondeclared in a named namespace or in the global namespace,
which shall be declared static (9.5)). The storage-class-specifier applies to the name declared by each
init-declarator in the list and not to any names declared by other specifiers. A storage-class-specifier shall
not be specified in an explicit specialization (14.7.3) or an explicit instantiation (14.7.2) directive.

The register specifier shall be applied only to names of variables declared in a block (6.3) or to function
parameters (8.4). It specifies that the named variable has automatic storage duration (3.7.3). A variable
declared without a storage-class-specifier at block scope or declared as a function parameter has automatic
storage duration by default.

A register specifier is a hint to the implementation that the variable so declared will be heavily used.
[Note: the hint can be ignored and in most implementations it will be ignored if the address of the variable
is taken. This use is deprecated (see D.4). — end note]

The thread_local specifier indicates that the named entity has thread storage duration (3.7.2). It shall be
applied only to the names of variables of namespace or block scope and to the names of static data members.
When thread_local is applied to a variable of block scope the storage-class-specifier static is implied if
it does not appear explicitly.

The static specifier can be applied only to names of variables and functions and to anonymous unions (9.5).
There can be no static function declarations within a block, nor any static function parameters. A static
specifier used in the declaration of a variable declares the variable to have static storage duration (3.7.1),
unless accompanied by the thread_local specifier, which declares the variable to have thread storage
duration (3.7.2). A static specifier can be used in declarations of class members; 9.4 describes its effect.
For the linkage of a name declared with a static specifier, see 3.5.

The extern specifier can be applied only to the names of variables and functions. The extern specifier cannot
be used in the declaration of class members or function parameters. For the linkage of a name declared with
an extern specifier, see 3.5. [Note: The extern keyword can also be used in explicit-instantiations and
linkage-specifications, but it is not a storage-class-specifier in such contexts. — end note|

A name declared in a namespace scope without a storage-class-specifier has external linkage unless it has
internal linkage because of a previous declaration and provided it is not declared const. Objects declared
const and not explicitly declared extern have internal linkage.

The linkages implied by successive declarations for a given entity shall agree. That is, within a given scope,
each declaration declaring the same variable name or the same overloading of a function name shall imply
the same linkage. Each function in a given set of overloaded functions can have a different linkage, however.
[Example:

static char* £(); // £Q has internal linkage

char* £() // £Q) still has internal linkage
{ /x ... %/}

char* g(); // 80 has external linkage

static char* g() // error: inconsistent linkage
{ /x ... x/}

void h();

inline void h(); // external linkage

inline void 1();

§7.1.1 138

©ISO/IEC N3092

void 1Q); // external linkage

inline void m();
extern void m(); // external linkage

static void n();

inline void n(); // internal linkage

static int a; // a has internal linkage

int a; // error: two definitions
static int b; // b has internal linkage
extern int b; // b still has internal linkage
int c; // ¢ has external linkage
static int c; // error: inconsistent linkage
extern int d; // 4 has external linkage
static int d; // error: inconsistent linkage

— end example]

9 The name of a declared but undefined class can be used in an extern declaration. Such a declaration can

10

11

only be used in ways that do not require a complete class type. [Example:

struct S;

extern S a;
extern S £();
extern void g(8);

void h() {
ga); // error: S is incomplete
£O; // error: S is incomplete
}

— end example]

The mutable specifier can be applied only to names of class data members (9.2) and cannot be applied to
names declared const or static, and cannot be applied to reference members. [Ezample:

class X {
mutable const int* p; // OK
mutable int* const q; // ill-formed
3

— end example]

The mutable specifier on a class data member nullifies a const specifier applied to the containing class object
and permits modification of the mutable class member even though the rest of the object is const (7.1.6.1).

7.1.2 Function specifiers [dcl.fct.spec]

Function-specifiers can be used only in function declarations.
function-specifier:
inline
virtual
explicit

§7.1.2 139

©ISO/IEC N3092

A function declaration (8.3.5, 9.3, 11.4) with an inline specifier declares an inline function. The inline
specifier indicates to the implementation that inline substitution of the function body at the point of call
is to be preferred to the usual function call mechanism. An implementation is not required to perform this
inline substitution at the point of call; however, even if this inline substitution is omitted, the other rules
for inline functions defined by 7.1.2 shall still be respected.

A function defined within a class definition is an inline function. The inline specifier shall not appear on
a block scope function declaration.”! If the inline specifier is used in a friend declaration, that declaration
shall be a definition or the function shall have previously been declared inline.

An inline function shall be defined in every translation unit in which it is used and shall have exactly
the same definition in every case (3.2). [Note: a call to the inline function may be encountered before its
definition appears in the translation unit. — end note] If the definition of a function appears in a translation
unit before its first declaration as inline, the program is ill-formed. If a function with external linkage is
declared inline in one translation unit, it shall be declared inline in all translation units in which it appears;
no diagnostic is required. An inline function with external linkage shall have the same address in all
translation units. A static local variable in an extern inline function always refers to the same object.
A string literal in the body of an extern inline function is the same object in different translation units.
[Note: A string literal appearing in a default argument expression is not in the body of an inline function
merely because the expression is used in a function call from that inline function. — end note] A type
defined within the body of an extern inline function is the same type in every translation unit.

The virtual specifier shall be used only in the initial declaration of a non-static class member function;
see 10.3.

The explicit specifier shall be used only in the declaration of a constructor or conversion function within
its class definition; see 12.3.1 and 12.3.2.

7.1.3 The typedef specifier [dcl.typedef]

Declarations containing the decl-specifier typedef declare identifiers that can be used later for naming
fundamental (3.9.1) or compound (3.9.2) types. The typedef specifier shall not be combined in a decl-
specifier-seq with any other kind of specifier except a type-specifier, and it shall not be used in the decl-
specifier-seq of a parameter-declaration (8.3.5) nor in the decl-specifier-seq of a function-definition (8.4).

typedef-name:
identifier

A name declared with the typedef specifier becomes a typedef-name. Within the scope of its declaration, a
typedef-name is syntactically equivalent to a keyword and names the type associated with the identifier in
the way described in Clause 8. A typedef-name is thus a synonym for another type. A typedef-name does
not introduce a new type the way a class declaration (9.1) or enum declaration does. [Ezample: after

typedef int MILES, *KLICKSP;

the constructions

MILES distance;
extern KLICKSP metricp;

are all correct declarations; the type of distance is int and that of metricp is “pointer to int.” —end
example]

A typedef-name can also be introduced by an alias-declaration. The identifier following the using keyword
becomes a typedef-name. It has the same semantics as if it were introduced by the typedef specifier. In
particular, it does not define a new type and it shall not appear in the type-id. [Ezample:

91) The inline keyword has no effect on the linkage of a function.

§7.1.3 140

©ISO/IEC N3092

using handler_t = void (*)(int);

extern handler_t ignore;

extern void (*ignore) (int); // redeclare ignore
using cell = pair<void*, cellx>; // ill-formed

— end example]

In a given non-class scope, a typedef specifier can be used to redefine the name of any type declared in that
scope to refer to the type to which it already refers. [Ezample:

typedef struct s { /fx ...x/ } s;
typedef int I;

typedef int I;

typedef I I;

— end example|

In a given class scope, a typedef specifier can be used to redefine any class-name declared in that scope
that is not also a typedef-name to refer to the type to which it already refers. [Example:

struct S {
typedef struct A { } A; // OK
typedef struct B B; // OK
typedef A A; // error
};

— end example]

In a given scope, a typedef specifier shall not be used to redefine the name of any type declared in that
scope to refer to a different type. [Ezample:

class complex { /x ...%/ };
typedef int complex; // error: redefinition
— end example]

Similarly, in a given scope, a class or enumeration shall not be declared with the same name as a typedef-name
that is declared in that scope and refers to a type other than the class or enumeration itself. [Example:

typedef int complex;
class complex { /x ... %/ }; // error: redefinition

— end example|

[Note: A typedef-name that names a class type, or a cv-qualified version thereof, is also a class-name (9.1).
If a typedef-name is used to identify the subject of an elaborated-type-specifier (7.1.6.3), a class definition
(Clause 9), a constructor declaration (12.1), or a destructor declaration (12.4), the program is ill-formed.
— end note] [Example:

struct S {
SO
50 ;

};

typedef struct S T;

Sa=TQO; // OK
struct T * p; // error

§7.13 141

2

©ISO/IEC N3092

— end example]

If the typedef declaration defines an unnamed class (or enum), the first typedef-name declared by the dec-
laration to be that class type (or enum type) is used to denote the class type (or enum type) for linkage
purposes ouly (3.5). [Ezample:

typedef struct { } *ps, S; // 8 is the class name for linkage purposes

— end example]

7.1.4 The friend specifier [dcl.friend]

The friend specifier is used to specify access to class members; see 11.4.

7.1.5 The constexpr specifier [dcl.constexpr]

The constexpr specifier shall be applied only to the definition of an object, the declaration of a function or
function template, or the declaration of a static data member of a literal type (3.9). If any declaration of a
function or function template has constexpr specifier, then all its declarations shall contain the constexpr
specifier. [Note: an explicit specialization can differ from the template declaration with respect to the

constexpr specifier. — end note] [Note: function parameters cannot be declared constexpr. — end note|
[Example:
constexpr int square(int x); // OK: declaration
constexpr int bufsz = 1024; // OK: definition
constexpr struct pixel { // error: pixel is a type
int x;
int y;
constexpr pixel(int); // OK: declaration
};

constexpr pixel::pixel(int a)
: x(square(a)), y(square(a)) // OK: definition
{1}
constexpr pixel small(2); // error: square not defined, so small(2)
// not constant (5.19) so constexpr not satisfied

constexpr int square(int x) { // OK: definition
return x * Xx;

}

constexpr pixel large(4); // OK: square defined

int next(constexpr int x) { // error: not for parameters
return x + 1;

}

extern constexpr int memsz; // error: not a definition

— end example]

A constexpr specifier used in the declaration of a function that is not a constructor declares that function
to be a constexpr function. Similarly, a constexpr specifier used in a constructor declaration declares that
constructor to be a constexpr constructor. Constexpr functions and constexpr constructors are implicitly
inline (7.1.2).

The definition of a constexpr function shall satisfy the following constraints:
— it shall not be virtual (10.3)

— its return type shall be a literal type or a reference to literal type

§7.15 142

©ISO/IEC N3092

each of its parameter types shall be a literal type or a reference to literal type
its function-body shall be a compound-statement of the form

{ return ezpression ; }

where exzpression is a potential constant expression (5.19)

every implicit conversion used in converting expression to the function return type (8.5) shall be one
of those allowed in a constant expression (5.19).

[Example:
constexpr int square(int x)
{ return x * x; } // OK
constexpr long long_max()
{ return 2147483647; } // OK

constexpr int abs(int x)
{ return x < 0 7 -x : x; } // OK
constexpr void f(int x) // error: return type is void
{ /x ... x/}
constexpr int prev(int x)
{ return --x; } // error: use of decrement
constexpr int g(int x, int n) { // error: body not just “return expr”
int r = 1;
while (--n > 0) r *= x;
return r;

}

— end example]

The definition of a constexpr constructor shall satisfy the following constraints:

each of its parameter types shall be a literal type or a reference to literal type

its function-body shall not be a function-try-block

the compound-statement of its function-body shall be empty

every non-static data member and base class sub-object shall be initialized (12.6.2)

every constructor involved in initializing non-static data members and base class sub-objects invoked
by a mem-initializer shall be a constexpr constructor.

every constructor argument and full-expression in a mem-initializer shall be a potential constant
expression

every implicit conversion used in converting a constructor argument to the corresponding parameter
type and converting a full-expression to the corresponding member type shall be one of those allowed
in a constant expression.

A trivial copy/move constructor is also a constexpr constructor.

[Example:

struct Length {
explicit constexpr Length(int i = 0) : val(i) { }
private:

};

int val;

§7.1.5 143

©ISO/IEC N3092

— end example]

If the instantiated template specialization of a constexpr function template would fail to satisfy the require-
ments for a constexpr function or constexpr constructor, the constexpr specifier is ignored.

A call to a constexpr function produces the same result as a call to an equivalent non-constexpr function in
all respects except that a call to a constexpr function can appear in a constant expression.

A constexpr specifier for a non-static member function that is not a constructor declares that member
function to be const (9.3.1). [Note: the constexpr specifier has no other effect on the function type. — end
note| The class of which that function is a member shall be a literal type (3.9). [Ezample:

class debug_flag {

public:
explicit debug_flag(bool);
constexpr bool is_on(); // error: debug_flag not
// literal type
private:
bool flag;
};

constexpr int bar(int x, int y) // OK
{ return x + y + x*y; }

/..

int bar(int x, int y) // error: redefinition of bar
{ return x * 2 + 3 * y; }

— end example]

A constexpr specifier used in an object declaration declares the object as const. Such an object shall be
initialized. If it is initialized by a constructor call, the constructor shall be a constexpr constructor and every
argument to the constructor shall be a constant expression. Otherwise, every full-expression that appears
in its initializer shall be a constant expression. Each implicit conversion used in converting the initializer
expressions and each constructor call used for the initialization shall be one of those allowed in a constant
expression (5.19). [Ezample:

struct pixel {

int x, y;
};
constexpr pixel ur = { 1294, 1024 };// OK
constexpr pixel origin; // error: initializer missing

— end example]

7.1.6 Type specifiers [dcl.type]

The type-specifiers are

type-specifier:
trailing-type-specifier
class-specifier
enum-specifier

trailing-type-specifier:
simple-type-specifier
elaborated-type-specifier
typename-specifier
cv-qualifier

§7.1.6 144

©ISO/IEC N3092

type-specifier-seq:
type-specifier attribute-specifieropt
type-specifier type-specifier-seq
trailing-type-specifier-seq:
trailing-type-specifier attribute-specifierop:
trailing-type-specifier trailing-type-specifier-seq
The optional attribute-specifier in a type-specifier-seq or a trailing-type-specifier-seq appertains to the type
denoted by the preceding type-specifiers (8.3). The attribute-specifier affects the type only for the declaration
it appears in, not other declarations involving the same type.

As a general rule, at most one type-specifier is allowed in the complete decl-specifier-seq of a declaration or
in a type-specifier-seq or trailing-type-specifier-seq. The only exceptions to this rule are the following:

— const can be combined with any type specifier except itself.

— volatile can be combined with any type specifier except itself.

— signed or unsigned can be combined with char, long, short, or int.
— short or long can be combined with int.

— long can be combined with double.

— long can be combined with long.

At least one type-specifier that is not a cv-qualifier is required in a declaration unless it declares a constructor,
destructor or conversion function.”2 A type-specifier-seq shall not define a class or enumeration unless it
appears in the type-id of an alias-declaration (7.1.3).

[Note: class-specifiers and enum-specifiers are discussed in Clause 9 and 7.2, respectively. The remaining
type-specifiers are discussed in the rest of this section. — end note]|

7.1.6.1 The cv-qualifiers [dcl.type.cv]

There are two cv-qualifiers, const and volatile. If a cv-qualifier appears in a decl-specifier-seq, the init-
declarator-list of the declaration shall not be empty. [Note: 3.9.3 and 8.3.5 describe how cv-qualifiers affect
object and function types. — end note] Redundant cv-qualifications are ignored. [Note: for example, these
could be introduced by typedefs. — end note]

[Note: Declaring a variable const can affect its linkage (7.1.1) and its usability in constant expressions (5.19).
As described in 8.5, the definition of an object or subobject of const-qualified type must specify an initializer
or be subject to default-initialization. — end note]

A pointer or reference to a cv-qualified type need not actually point or refer to a cv-qualified object, but it
is treated as if it does; a const-qualified access path cannot be used to modify an object even if the object
referenced is a non-const object and can be modified through some other access path. [Note: cv-qualifiers
are supported by the type system so that they cannot be subverted without casting (5.2.11). — end note]

Except that any class member declared mutable (7.1.1) can be modified, any attempt to modify a const
object during its lifetime (3.8) results in undefined behavior. [Example:

const int ci = 3; // cv-qualified (initialized as required)
ci = 4; // ill-formed: attempt to modify const
int i = 2; // mot cv-qualified

92) There is no special provision for a decl-specifier-seq that lacks a type-specifier or that has a type-specifier that only specifies
cv-qualifiers. The “implicit int” rule of C is no longer supported.

§7.1.6.1 145

5

6

1

©ISO/IEC N3092

const int* cip; // pointer to const int

cip = &i; // OK: cv-qualified access path to unqualified

xcip = 4; // ill-formed: attempt to modify through ptr to const
int* ip;

ip = const_cast<int*>(cip); // cast needed to convert const int* to int*

*xip = 4; // defined: *ip points to i, a non-const object
const int* ciq = new const int (3); // initialized as required

int* iqg = const_cast<int*>(ciq); // cast required

*iq = 4; // undefined: modifies a const object

For another example

struct X {
mutable int i;
int j;
};
struct Y {
X x;
YO;
};
const Y y;
V.X.i+4; // well-formed: mutable member can be modified
V.X.j++; // ill-formed: const-qualified member modified
Y* p = const_cast<¥*>(&y); // cast away const-ness of y
p->x.i = 99; // well-formed: mutable member can be modified
p->x.j = 99; // undefined: modifies a const member

— end example]

If an attempt is made to refer to an object defined with a volatile-qualified type through the use of a glvalue
with a non-volatile-qualified type, the program behavior is undefined.

[Note: volatile is a hint to the implementation to avoid aggressive optimization involving the object
because the value of the object might be changed by means undetectable by an implementation. See 1.9 for
detailed semantics. In general, the semantics of volatile are intended to be the same in C++ as they are
in C. — end note]

7.1.6.2 Simple type specifiers [dcl.type.simple]

The simple type specifiers are

§7.1.6.2 146

2

©ISO/IEC

simple-type-specifier:
::opt Mested-name-specifierop: type-name
t:opt nested-name-specifier template simple-template-id

char
charl6_t
char32_t
wchar_t
bool
short
int

long
signed
unsigned
float
double
void
auto

decltype-specifier

type-name:
class-name
enuUM-name

typedef-name

decltype-specifier:
decltype (

expression)

N3092

The auto specifier is a placeholder for a type to be deduced (7.1.6.4). The other simple-type-specifiers specify
either a previously-declared user-defined type or one of the fundamental types (3.9.1). Table 9 summarizes

the valid combinations of simple-type-specifiers and the types they specify.

Table 9 — simple-type-specifiers and the types they specify

Specifier(s)

Type

type-name
simple-template-id
char

unsigned char
signed char
charl6_t
char32 t

bool

unsigned
unsigned int
signed

signed int

int

unsigned short int
unsigned short
unsigned long int
unsigned long
unsigned long long int
unsigned long long
signed long int
signed long

the type named

the type as defined in 14.2
“char”

“unsigned char”

“signed char”
“charl6_t”

“char32 t”

“bool”

“unsigned int”
“unsigned int”

“int”

“int”

“int”

“unsigned short int”
“unsigned short int”
“unsigned long int”
“unsigned long int”
“unsigned long long int”
“unsigned long long int”
“long int”

“long int”

§7.1.6.2

147

©ISO/IEC N3092

Table 9 — simple-type-specifiers and the types they specify (con-

tinued)
] Specifier(s) Type ‘
signed long long int “long long int”
signed long long “long long int”
long long int “long long int”
long long “long long int”
long int “long int”
long “long int”
signed short int “short int”
signed short “short int”
short int “short int”
short “short int”
wchar t “wchar t”
float “float”
double “double”
long double “long double”
void “void”
auto placeholder for a type to be deduced
decltype(expression) the type as defined below

When multiple simple-type-specifiers are allowed, they can be freely intermixed with other decl-specifiers in
any order. [Note: It is implementation-defined whether objects of char type and certain bit-fields (9.6) are
represented as signed or unsigned quantities. The signed specifier forces char objects and bit-fields to be
signed; it is redundant in other contexts. — end note|

The type denoted by decltype(e) is defined as follows:

— if e is an unparenthesized id-expression or a class member access (5.2.5), decltype(e) is the type
of the entity named by e. If there is no such entity, or if e names a set of overloaded functions, the
program is ill-formed;

— otherwise, if e is a function call (5.2.2) or an invocation of an overloaded operator (parentheses around
e are ignored), decltype(e) is the return type of the statically chosen function;

— otherwise, if e is an lvalue, decltype(e) is T&, where T is the type of e;
— otherwise, decltype(e) is the type of e.
The operand of the decltype specifier is an unevaluated operand (Clause 5).
[Example:
const int&& foo();

int i;
struct A { double x; };

const A*x a = new AQ);
decltype(foo()) x1 = i;
decltype(i) x2;
decltype(a->x) x3;

decltype((a->x)) x4 = x3;

— end example]

§7.1.6.2

// type is const int&&
// type is int

// type is double

// type is const double&

148

©ISO/IEC N3092

7.1.6.3 Elaborated type specifiers [dcl.type.elab]

elaborated-type-specifier:
class-key attribute-specifierop: : :opt nested-name-specifier,p: identifier
class-key : : opr mested-name-specifieryp; template,,: simple-template-id
enum ::,p, nested-name-specifierop: identifier

An attribute-specifier shall not apear in an elaborated-type-specifier unless the latter is the sole constituent
of a declaration. If an elaborated-type-specifier is the sole constituent of a declaration, the declaration is
ill-formed unless it is an explicit specialization (14.7.3), an explicit instantiation (14.7.2) or it has one of the
following forms:

class-key attribute-specifierop: identifier ;

friend class-key ::op: tdentifier ;

friend class-key ::op; Stmple-template-id ;

friend class-key ::opt mnested-name-specifier identifier ;

friend class-key ::op: mnested-name-specifier template,,; simple-template-id ;

In the first case, the attribute-specifier, if any, appertains to the class being declared; the attributes in the
attribute-specifier are thereafter considered attributes of the class whenever it is named.

3.4.4 describes how name lookup proceeds for the identifier in an elaborated-type-specifier. If the identifier
resolves to a class-name or enum-name, the elaborated-type-specifier introduces it into the declaration the
same way a simple-type-specifier introduces its type-name. If the identifier resolves to a typedef-name, the
elaborated-type-specifier is ill-formed. [Note: this implies that, within a class template with a template
type-parameter T, the declaration

friend class T;

is ill-formed. However, the similar declaration friend T; is allowed (11.4). — end note]

The class-key or enum keyword present in the elaborated-type-specifier shall agree in kind with the dec-
laration to which the name in the elaborated-type-specifier refers. This rule also applies to the form of
elaborated-type-specifier that declares a class-name or friend class since it can be construed as referring to
the definition of the class. Thus, in any elaborated-type-specifier, the enum keyword shall be used to refer to
an enumeration (7.2), the union class-key shall be used to refer to a union (Clause 9), and either the class
or struct class-key shall be used to refer to a class (Clause 9) declared using the class or struct class-key.
[Example:

enum class E { a, b };
enum E x = E::a; // OK
— end example]

7.1.6.4 auto specifier [dcl.spec.auto]

The auto type-specifier signifies that the type of a variable being declared shall be deduced from its initializer
or that a function declarator shall include a trailing-return-type.

The auto type-specifier may appear with a function declarator with a trailing-return-type (8.3.5) in any
context where such a declarator is valid.

Otherwise, the type of the variable is deduced from its initializer. The name of the variable being declared
shall not appear in the initializer expression. This use of auto is allowed when declaring variables in a
block (6.3), in namespace scope (3.3.6), and in a for-init-statement (6.5.3). auto shall appear as one of
the decl-specifiers in the decl-specifier-seq and the decl-specifier-seq shall be followed by one or more init-
declarators, each of which shall have a non-empty initializer.

[Example:

§7.1.6.4 149

©ISO/IEC N3092

auto x = 5; // OK: x has type int

const auto *v = &x, u = 6; // OK: v has type const int*, u has type const int
static auto y = 0.0; // OK: y has type double

auto int r; // error: auto is not a storage-class-specifier

— end example]

The auto type-specifier can also be used in declaring a variable in the condition of a selection statement (6.4) or
an iteration statement (6.5), in the type-specifier-seq in the new-type-id or type-id of a new-expression (5.3.4), in
a for-range-declaration, and in declaring a static data member with a brace-or-equal-initializer that appears
within the member-specification of a class definition (9.4.2).

A program that uses auto in a context not explicitly allowed in this section is ill-formed.

Once the type of a declarator-id has been determined according to 8.3, the type of the declared variable
using the declarator-id is determined from the type of its initializer using the rules for template argument
deduction. Let T be the type that has been determined for a variable identifier d. Obtain P from T by
replacing the occurrences of auto with either a new invented type template parameter U or, if the initializer
is a braced-init-list (8.5.4), with std::initializer_1list<U>. The type deduced for the variable d is then
the deduced A determined using the rules of template argument deduction from a function call (14.8.2.1),
where P is a function template parameter type and the initializer for d is the corresponding argument. If
the deduction fails, the declaration is ill-formed. [Example:

auto x1 = { 1, 2 }; // decltype(x1) is std::initializer_list<int>
auto x2 = { 1, 2.0 }; // error: cannot deduce element type

— end example]

If the list of declarators contains more than one declarator, the type of each declared variable is determined
as described above. If the type deduced for the template parameter U is not the same in each deduction, the
program is ill-formed.

[Example:

const auto &i = expr;

The type of i is the deduced type of the parameter u in the call £ (expr) of the following invented function
template:

template <class U> void f(const U& u);

— end example]

7.2 Enumeration declarations [dcl.enum)]

An enumeration is a distinct type (3.9.1) with named constants. Its name becomes an enum-name, within
its scope.
enum-name:
identifier
enum-specifier:
enum-head { enumerator-listop; }
enum-head { enumerator-list , }

enum-head:
enum-key attribute-specifierop: identifierop: enum-baseqpt
enum-key attribute-specifierop nested-name-specifier identifier
enum-base,pt

§7.2 150

©ISO/IEC N3092

opaque-enum-declaration:

enum-key attribute-specifierop: identifier enum-baseop: ;
enum-key:

enum

enum class

enum struct
enum-base:

: type-specifier-seq
enumerator-list:

enumerator-definition

enumerator-list , enumerator-definition
enumerator-definition:

enumerator

enumerator = constant-expression

enumerator:
identifier

The optional attribute-specifier in the enum-head and the opaque-enum-declaration appertains to the enu-
meration; the attributes in that attribute-specifier are thereafter considered attributes of the enumeration
whenever it is named.

The enumeration type declared with an enum-key of only enum is an unscoped enumeration, and its enumer-
ators are unscoped enumerators. The enum-keys enum class and enum struct are semantically equivalent;
an enumeration type declared with one of these is a scoped enumeration, and its enumerators are scoped
enumerators. The optional identifier shall not be omitted in the declaration of a scoped enumeration. The
type-specifier-seq of an enum-base shall name an integral type; any cv-qualification is ignored. An opaque-
enum-declaration declaring an unscoped enumeration shall not omit the enum-base. The identifiers in an
enumerator-list are declared as constants, and can appear wherever constants are required. An enumerator-
definition with = gives the associated enumerator the value indicated by the constant-expression. The
constant-expression shall be an integral constant expression (5.19). If the first enumerator has no initializer,
the value of the corresponding constant is zero. An enumerator-definition without an initializer gives the
enumerator the value obtained by increasing the value of the previous enumerator by one.

[Example:

enum { a, b, c=0 };
enum { d, e, f=e+2 };

defines a, ¢, and d to be zero, b and e to be 1, and f to be 3. — end example]

An opaque-enum-declaration is either a redeclaration of an enumeration in the current scope or a declaration
of a new enumeration. [Note: an enumeration declared by an opaque-enum-declaration has fixed underlying
type and is a complete type. The list of enumerators can be provided in a later redeclaration with an enum-
specifier. — end note] A scoped enumeration shall not be later redeclared as unscoped or with a different
underlying type. An unscoped enumeration shall not be later redeclared as scoped and each redeclaration
shall include an enum-base specifying the same underlying type as in the original declaration.

If the enum-key is followed by a nested-name-specifier, the enum-specifier shall refer to an enumeration that
was previously declared directly in the class or namespace to which the nested-name-specifier refers (i.e.,
neither inherited nor introduced by a using-declaration), and the enum-specifier shall appear in a namespace
enclosing the previous declaration.

Each enumeration defines a type that is different from all other types. Each enumeration also has an
underlying type. The underlying type can be explicitly specified using enum-base; if not explicitly specified,
the underlying type of a scoped enumeration type is int. In these cases, the underlying type is said to be

§7.2 151

©ISO/IEC N3092

fized. Following the closing brace of an enum-specifier, each enumerator has the type of its enumeration.
If the underlying type is fixed, the type of each enumerator prior to the closing brace is the underlying
type; if the initializing value of an enumerator cannot be represented by the underlying type, the program
is ill-formed. If the underlying type is not fixed, the type of each enumerator is the type of its initializing
value:

— If an initializer is specified for an enumerator, the initializing value has the same type as the expression.

— If no initializer is specified for the first enumerator, the initializing value has an unspecified integral
type.

— Otherwise the type of the initializing value is the same as the type of the initializing value of the
preceding enumerator unless the incremented value is not representable in that type, in which case the
type is an unspecified integral type sufficient to contain the incremented value. If no such type exists,
the program is ill-formed.

For an enumeration whose underlying type is not fixed, the underlying type is an integral type that can
represent all the enumerator values defined in the enumeration. If no integral type can represent all the
enumerator values, the enumeration is ill-formed. It is implementation-defined which integral type is used
as the underlying type except that the underlying type shall not be larger than int unless the value of an
enumerator cannot fit in an int or unsigned int. If the enumerator-list is empty, the underlying type is
as if the enumeration had a single enumerator with value 0.

For an enumeration whose underlying type is fixed, the values of the enumeration are the values of the
underlying type. Otherwise, for an enumeration where e,,;, is the smallest enumerator and e, is the
largest, the values of the enumeration are the values in the range b,,in t0 byaz, defined as follows: Let K
be 1 for a two’s complement representation and 0 for a one’s complement or sign-magnitude representation.
bmaz is the smallest value greater than or equal to maz(|emin| — K, |€maz|) and equal to 2M — 1, where
M is a non-negative integer. by, is zero if e, is non-negative and — (b4, + K) otherwise. The size of
the smallest bit-field large enough to hold all the values of the enumeration type is max(M, 1) if by, is
zero and M + 1 otherwise. It is possible to define an enumeration that has values not defined by any of its
enumerators. If the enumerator-list is empty, the values of the enumeration are as if the enumeration had a
single enumerator with value 0.

Two enumeration types are layout-compatible if they have the same underlying type.

The value of an enumerator or an object of an unscoped enumeration type is converted to an integer by
integral promotion (4.5). [Example:

enum color { red, yellow, green=20, blue };
color col = red;

color* cp = &col;

if (*cp == blue) /) ..

makes color a type describing various colors, and then declares col as an object of that type, and cp as a
pointer to an object of that type. The possible values of an object of type color are red, yellow, green,
blue; these values can be converted to the integral values 0, 1, 20, and 21. Since enumerations are distinct
types, objects of type color can be assigned only values of type color.

color c = 1; // error: type mismatch,
// mo conversion from int to color

int i = yellow; // OK: yellow converted to integral value 1
// integral promotion

Note that this implicit enum to int conversion is not provided for a scoped enumeration:

§7.2 152

©ISO/IEC N3092

enum class Col { red, yellow, green };

int x = Col::red; // error: no Col to int conwversion
Col y = Col::red;
if (y) {} // error: mo Col to bool conversion

— end example]

10 An expression of arithmetic or enumeration type can be converted to an enumeration type explicitly. The
value is unchanged if it is in the range of enumeration values of the enumeration type; otherwise the resulting

enumeration value is unspecified.

11 Each enum-name and each unscoped enumerator is declared in the scope that immediately contains the
enum-specifier. Fach scoped enumerator is declared in the scope of the enumeration. These names obey the
scope rules defined for all names in (3.3) and (3.4).[Ezample:

enum direction { left=’1’, right=’r’ };

void g0 {
direction d; // OK
d = left; // OK
d = direction::right; // OK
}

enum class altitude { high=’h’, low=’1’ };

void h() {
altitude a; // OK
a = high; // error: high not in scope
a = altitude::low; // OK
}
— end example] An enumerator declared in class scope can be referred to using the class member access
operators (::, . (dot) and -> (arrow)), see 5.2.5. [Example:
struct X {

enum direction { left=’1’, right=’r’ };
int f(int i) { return i==left 7 0 : i==right 7 1 : 2; }

};
void g(X* p) {
direction d; // error: direction not in scope
int i;
i = p->f(left); // error: left not in scope
= p—>f(X::right); // OK
i = p—>f(p->left); // OK
}

— end example]

7.3 Namespaces [basic.namespace]

1 A namespace is an optionally-named declarative region. The name of a namespace can be used to access
entities declared in that namespace; that is, the members of the namespace. Unlike other declarative regions,
the definition of a namespace can be split over several parts of one or more translation units.

§7.3 153

©ISO/IEC N3092

The outermost declarative region of a translation unit is a namespace; see 3.3.6.

7.3.1 Namespace definition [namespace.def]

The grammar for a namespace-definition is

namespace-name:
original-namespace-name
namespace-alias

original-namespace-name:
identifier
namespace-definition:
named-namespace-definition
unnamed-namespace-definition
named-namespace-definition:
original-namespace-definition
extension-namespace-definition
original-namespace-definition:
inline,,; namespace identifier { namespace-body }

ezstension-namespace-definition:
inline,,; namespace original-namespace-name { namespace-body }

unnamed-namespace-definition:

inline,,; namespace { namespace-body }
namespace-body:

declaration-seqopt

The identifier in an original-namespace-definition shall not have been previously defined in the declarative
region in which the original-namespace-definition appears. The identifier in an original-namespace-definition
is the name of the namespace. Subsequently in that declarative region, it is treated as an original-namespace-
name.

The original-namespace-name in an extension-namespace-definition shall have previously been defined in an
original-namespace-definition in the same declarative region.

Every namespace-definition shall appear in the global scope or in a namespace scope (3.3.6).

Because a namespace-definition contains declarations in its namespace-body and a namespace-definition is
itself a declaration, it follows that namespace-definitions can be nested. [Ezample:

namespace Outer {

int i;
namespace Inner {
void £() { i++; } // Outer::i
int i;
void g { i++; } // Inner::i
}
}

— end example]

The enclosing namespaces of a declaration are those namespaces in which the declaration lexically appears,
except for a redeclaration of a namespace member outside its original namespace (e.g., a definition as
specified in 7.3.1.2). Such a redeclaration has the same enclosing namespaces as the original declaration.
[Example:

§7.3.1 154

©ISO/IEC N3092

namespace Q {
namespace V {
void £(0); // enclosing namespaces are the global namespace, Q, and Q: :V
class C { void m(Q); };
}
void V::£() { // enclosing namespaces are the global namespace, Q, and Q: :V
extern void h(); //... so this declares Q::V::h
}
void V::C::m() { // enclosing namespaces are the global namespace, Q, and Q: :V
}
}

— end example |

7 If the optional initial inline keyword appears in a namespace-definition for a particular namespace, that
namespace is declared to be an inline namespace. The inline keyword may be used on an extension-
namespace-definition only if it was previously used on the original-namespace-definition for that namespace.

8 Members of an inline namespace can be used in most respects as though they were members of the enclosing
namespace. Specifically, the inline namespace and its enclosing namespace are both added to the set of
associated namespaces used in argument-dependent lookup (3.4.2) whenever one of them is, and a using-
directive (7.3.4) that names the inline namespace is implicitly inserted into the enclosing namespace as for
an unnamed namespace (7.3.1.1). Furthermore, each member of the inline namespace can subsequently be
explicitly instantiated (14.7.2) or explicitly specialized (14.7.3) as though it were a member of the enclosing
namespace. Finally, looking up a name in the enclosing namespace via explicit qualification (3.4.3.2) will
include members of the inline namespace brought in by the using-directive even if there are declarations of
that name in the enclosing namespace.

9 These properties are transitive: if a namespace N contains an inline namespace M, which in turn contains an
inline namespace 0, then the members of 0 can be used as though they were members of M or N. The inline
namespace set of N is the transitive closure of all inline namespaces in N. The enclosing namespace set of 0
is the set of namespaces consisting of the innermost non-inline namespace enclosing an inline namespace 0,
together with any intervening inline namespaces.

7.3.1.1 Unnamed namespaces [namespace.unnamed]

1 An unnamed-namespace-definition behaves as if it were replaced by

inline,,; namespace unique { /* empty body */ }
using namespace unique ;
namespace unique { namespace-body }

where inline appears if and only if it appears in the unnamed-namespace-definition, all occurrences of
unique in a translation unit are replaced by the same identifier, and this identifier differs from all other
identifiers in the entire program.”® [Ezample:

namespace { int i; } // unique ::i
void £() { i++; } // unique ::i++

namespace A {
namespace {
int i; // A unique ::i
int j; // A:: unique ::j
}

93) Although entities in an unnamed namespace might have external linkage, they are effectively qualified by a name unique
to their translation unit and therefore can never be seen from any other translation unit.

§7.3.1.1 155

©ISO/IEC N3092

void g() { i++; } // A:: unique ::i++
}
using namespace A;
void h() {
i++; // error: unique ::i or A:: unique ::i
A:iitst; // A:: unique ::1i
Jjt+; // A:: unique ::j
}

— end example]

The use of the static keyword is deprecated when declaring variables in a namespace scope (see annex D);
the unnamed-namespace provides a superior alternative.

7.3.1.2 Namespace member definitions [namespace.memdef]

Members (including explicit specializations of templates (14.7.3)) of a namespace can be defined within that
namespace. | Ezample:

namespace X {
void £(O) { /x ... %/}
}

— end example]

Members of a named namespace can also be defined outside that namespace by explicit qualification (3.4.3.2)
of the name being defined, provided that the entity being defined was already declared in the namespace
and the definition appears after the point of declaration in a namespace that encloses the declaration’s
namespace. [Ezample:

namespace Q {
namespace V {

void f();
}
void V::f() { /x ...x/} // OK
void V:i:g() { /x .../} // error: g() is not yet a member of V
namespace V {
void g(Q);
}

}

namespace R {
void Q::V::g() { fx...x/} // error: R doesn’t enclose Q
}

— end example]

Every name first declared in a namespace is a member of that namespace. If a friend declaration in a non-
local class first declares a class or function® the friend class or function is a member of the innermost enclosing
namespace. The name of the friend is not found by unqualified lookup (3.4.1) or by qualified lookup (3.4.3)
until a matching declaration is provided in that namespace scope (either before or after the class definition
granting friendship). If a friend function is called, its name may be found by the name lookup that considers
functions from namespaces and classes associated with the types of the function arguments (3.4.2). If the

94) this implies that the name of the class or function is unqualified.

§7.3.1.2 156

©ISO/IEC N3092

name in a friend declaration is neither qualified nor a template-id and the declaration is a function or
an elaborated-type-specifier, the lookup to determine whether the entity has been previously declared shall
not consider any scopes outside the innermost enclosing namespace. [Note: the other forms of friend
declarations cannot declare a new member of the innermost enclosing namespace and thus follow the usual
lookup rules. — end note] [Ezample:

// Assume £ and g have not yet been defined.
void h(int);

template <class T> void £2(T);
namespace A {

class X {
friend void f(X); // A £(X) is a friend
class Y {
friend void g(); // A::g is a friend
friend void h(int); // A::h is a friend
// +:h not considered
friend void £2<>(int); // +:£2<>(int) is a friend
};
};
// A::f, A::g and A::h are not visible here
X x;
void g() { £(x); } // definition of A::g
void £(X) { /* ... */%} // definition of A::f
void h(int) { /* ... =*/} // definition of A::h

// A::f, A::g and A::h are visible here and known to be friends
}

using A::x;

void h() {
A f(x);
A:iX:if(x); // error: £ is not a member of A::X
A::X::Y::gQ); // error: g is not a member of A::X::Y
}

— end example]

7.3.2 Namespace alias [namespace.alias]

A namespace-alias-definition declares an alternate name for a namespace according to the following grammar:
namespace-alias:
identifier
namespace-alias-definition:
namespace tdentifier = qualified-namespace-specifier ;
qualified-namespace-specifier:
tiopt mested-name-specifieroy namespace-name
The identifier in a namespace-alias-definition is a synonym for the name of the namespace denoted by the
qualified-namespace-specifier and becomes a namespace-alias. [Note: when looking up a namespace-name
in a namespace-alias-definition, only namespace names are considered, see 3.4.6. — end note|

In a declarative region, a namespace-alias-definition can be used to redefine a namespace-alias declared in
that declarative region to refer only to the namespace to which it already refers. [Ezample: the following
declarations are well-formed:

§7.3.2 157

©ISO/IEC N3092

namespace Company_with_very_long_name { /x ...x/ }

namespace CWVLN = Company_with_very_long_name;

namespace CWVLN = Company_with_very_long_name; // OK: duplicate
namespace CWVLN = CWVLN;

— end example]

A namespace-name or namespace-alias shall not be declared as the name of any other entity in the same
declarative region. A mnamespace-name defined at global scope shall not be declared as the name of any
other entity in any global scope of the program. No diagnostic is required for a violation of this rule by
declarations in different translation units.

7.3.3 The using declaration [namespace.udecl]

A using-declaration introduces a name into the declarative region in which the using-declaration appears.

using-declaration:

using typename,p; ::opt nested-name-specifier unqualified-id ;

using :: unqualified-id ;
The member name specified in a using-declaration is declared in the declarative region in which the using-
declaration appears. [Note: only the specified name is so declared; specifying an enumeration name in a
using-declaration does not declare its enumerators in the using-declaration’s declarative region. — end note]
If a using-declaration names a constructor (3.4.3.1), it implicitly declares a set of constructors in the class in
which the using-declaration appears (12.9); otherwise the name specified in a using-declaration is a synonym
for the name of some entity declared elsewhere.

Every using-declaration is a declaration and a member-declaration and so can be used in a class definition.
[Ezample:

struct B {
void f(char);
void g(char);
enum E { e };
union { int x; };

};
struct D : B {

using B::f;

void f(int) { £(’°c’); %} // calls B: :f (char)

void g(int) { g(’c’); } // recursively calls D: :g(int)
};

— end example]

In a using-declaration used as a member-declaration, the nested-name-specifier shall name a base class of the
class being defined. If such a using-declaration names a constructor, the nested-name-specifier shall name a
direct base class of the class being defined; otherwise it introduces the set of declarations found by member
name lookup (10.2, 3.4.3.1). [Ezample:

class C {
int gQ);
};
class D2 : public B {
using B::f; // OK: B is a base of D2
using B::e; // OK: e is an enumerator of base B

§7.3.3 158

©ISO/IEC N3092

using B::x; // OK: x is a union member of base B
using C::g; // error: C isn’t a base of D2
};

— end example]

4 [Note: Since destructors do not have names, a using-declaration cannot refer to a destructor for a base
class. Since specializations of member templates for conversion functions are not found by name lookup,
they are not considered when a using-declaration specifies a conversion function (14.5.2). — end note] If an
assignment operator brought from a base class into a derived class scope has the signature of a copy/move
assignment operator for the derived class (12.8), the using-declaration does not by itself suppress the implicit
declaration of the derived class assignment operator; the copy/move assignment operator from the base class
is hidden or overridden by the implicitly-declared copy/move assignment operator of the derived class, as
described below.

5 A using-declaration shall not name a template-id. | Ezample:

struct A {
template <class T> void £(T);
template <class T> struct X { };

};
struct B : A {
using A::f<double>; // ill-formed
using A::X<int>; // ill-formed
};

— end example]
6 A using-declaration shall not name a namespace.
7 A using-declaration shall not name a scoped enumerator.

8 A using-declaration for a class member shall be a member-declaration. | Example:

struct X {
int i;
static int s;
};
void £() {
using X::i; // error: X::1i is a class member
// and this is not a member declaration.
using X::s; // error: X::s is a class member
// and this is not a member declaration.
}

— end example]

9 Members declared by a using-declaration can be referred to by explicit qualification just like other member
names (3.4.3.2). In a using-declaration, a prefix :: refers to the global namespace. [Ezample:

void £();

namespace A {
void g();

}

namespace X {

§7.3.3 159

©ISO/IEC

using ::f;
using A::g;
}

void h()
{
X::fQ;
X::g0);
}

— end example]

// global £
//sg

// calls ::f
// calls A::g

N3092

10 A using-declaration is a declaration and can therefore be used repeatedly where (and only where) multiple
declarations are allowed. [Ezample:

namespace A {
int i;

}

namespace Al {
using A::i;
using A::i;

}

void £() {
using A::i;
using A::i;

}

struct B {
int i;

};

struct X : B {
using B::i;
using B::i;

};

— end example]

// OK: double declaration

// error: double declaration

// error: double member declaration

11 The entity declared by a using-declaration shall be known in the context using it according to its definition
at the point of the using-declaration. Definitions added to the namespace after the using-declaration are not

considered when a use of the name is made. [Example:

namespace A {
void f(int);
}

using A::f;

namespace A {
void f(char);

}

void foo() {

£f(’a’);

§7.33

// £ is a synonym for A::f;
// that is, for A::f(int).

// calls £(int),

160

12

13

©ISO/IEC N3092

} // even though f(char) ezists.
void bar() {
using A::f; // £ is a synonym for A::f;
// that is, for A::£(int) and A::f(char).
£(’a’); // calls £ (char)

}

— end example]

[Note: partial specializations of class templates are found by looking up the primary class template and then
considering all partial specializations of that template. If a using-declaration names a class template, partial
specializations introduced after the using-declaration are effectively visible because the primary template is
visible (14.5.5). — end note]

Since a using-declaration is a declaration, the restrictions on declarations of the same name in the same
declarative region (3.3) also apply to using-declarations. | Example:

namespace A {
int x;

}

namespace B {
int i;
struct g { };
struct x { };
void f(int);
void f(double);

void g(char); // OK: hides struct g
}
void func() {
int i;
using B::i; // error: i declared twice
void f(char);
using B::f; // OK: each £ is a function
£(3.5); // calls B: : £ (double)
using B::g;
g(’a’); // calls B: :g(char)
struct g gl; // g1 has class type B: :g
using B::x;
using A::x; // OK: hides struct B::x
x = 99; // assigns to A::x
struct x x1; // x1 has class type B: :x
}

— end example]

14 If a function declaration in namespace scope or block scope has the same name and the same parameter

types as a function introduced by a using-declaration, and the declarations do not declare the same function,
the program is ill-formed. [Note: two using-declarations may introduce functions with the same name and
the same parameter types. If, for a call to an unqualified function name, function overload resolution selects
the functions introduced by such using-declarations, the function call is ill-formed. [Example:

namespace B {
void f(int);

§7.33 161

©ISO/IEC N3092

void f(double);
}
namespace C {
void f(int);
void f(double);
void f(char);

}
void h() {
using B::f; // B::f(int) and B::f(double)
using C::f; // C::f(int), C::f(double), and C::f(char)
£(°h?); // calls C::f(char)
£(1); // error: ambiguous: B::f(int) or C::f(int)?
void f(int); // error: £(int) conflicts with C::£(int) and B::f(int)
}
— end example] — end note]

15 When a using-declaration brings names from a base class into a derived class scope, member functions and
member function templates in the derived class override and/or hide member functions and member function
templates with the same name, parameter-type-list (8.3.5), cv-qualification, and ref-qualifier (if any) in a
base class (rather than conflicting). [Note: For using-declarations that name a constructor, see 12.9. — end
note| [Example:

struct B {
virtual void f(int);
virtual void f(char);
void g(int);
void h(int);

I
struct D : B {
using B::f;
void f(int); // OK: D::f(int) overrides B::f(int);
using B::g;
void g(char); // OK
using B::h;
void h(int); // OK: D::h(int) hides B::h(int)
};
void k(D* p)
{
p—>f(1); // calls D: : £ (int)
p—>f(Ca’); // calls B: :f (char)
p—>g(1); // calls B: :g(int)
p—>gCa’); // calls D: :g(char)
}

— end example]

16 For the purpose of overload resolution, the functions which are introduced by a wusing-declaration into a
derived class will be treated as though they were members of the derived class. In particular, the implicit
this parameter shall be treated as if it were a pointer to the derived class rather than to the base class.

§7.33 162

17

18

19

©ISO/IEC N3092

This has no effect on the type of the function, and in all other respects the function remains a member of
the base class.

The access rules for inheriting constructors are specified in 12.9; otherwise all instances of the name mentioned
in a using-declaration shall be accessible. In particular, if a derived class uses a using-declaration to access
a member of a base class, the member name shall be accessible. If the name is that of an overloaded
member function, then all functions named shall be accessible. The base class members mentioned by a
using-declaration shall be visible in the scope of at least one of the direct base classes of the class where the
using-declaration is specified. [Note: because a using-declaration designates a base class member (and not
a member subobject or a member function of a base class subobject), a using-declaration cannot be used to
resolve inherited member ambiguities. For example,

struct A { int xO); };
struct B : A { };
struct C : A {

using A::x;

int x(int);

};

struct D : B, C {
using C::x;
int x(double);

};
int £(D* d) {
return d->x(); // ambiguous: B::x or C::x
}
— end note

The alias created by the using-declaration has the usual accessibility for a member-declaration. [Note: A
using-declaration that names a constructor does not create aliases; see 12.9 for the pertinent accessibility
rules. — end note] [Example:

class A {
private:
void f(char);
public:
void f(int);
protected:
void g(Q);
};
class B : public A {
using A::f; // error: A::f(char) is inaccessible
public:
using A::g; // B:i:g is a public synonym for A::g
};

— end example]

[Note: use of access-declarations (11.3) is deprecated; member using-declarations provide a better alterna-
tive. — end note]|

§7.3.3 163

20

4

©ISO/IEC N3092

If a using-declaration uses the keyword typename and specifies a dependent name (14.6.2), the name intro-
duced by the using-declaration is treated as a typedef-name (7.1.3).

7.3.4 Using directive [namespace.udir]

using-directive:
attribute-specifierop: using namespace ::op: nested-name-specifierop: namespace-name ;

A wusing-directive shall not appear in class scope, but may appear in namespace scope or in block scope.
[Note: when looking up a namespace-name in a using-directive, only namespace names are considered,
see 3.4.6. — end note] The optional attribute-specifier appertains to the using-directive.

A using-directive specifies that the names in the nominated namespace can be used in the scope in which the
using-directive appears after the using-directive. During unqualified name lookup (3.4.1), the names appear
as if they were declared in the nearest enclosing namespace which contains both the using-directive and the
nominated namespace. [Note: in this context, “contains” means “contains directly or indirectly”. — end
note |

A using-directive does not add any members to the declarative region in which it appears. [Example:
namespace A {
int i;
namespace B {
namespace C {

int i;
}
using namespace A::B::C;
void £1() {
i = 5; // OK, C::1i visible in B and hides A: :1i
}

}

namespace D {
using namespace B;
using namespace C;

void f20) {
i = 5; // ambiguous, B::C::1 or A::i?
}
}
void £3() {
i = 5; // uses A::i
}
}
void £4() {
i=5; // ill-formed; neither i is visible
}

— end example]

For unqualified lookup (3.4.1), the using-directive is transitive: if a scope contains a wusing-directive that
nominates a second namespace that itself contains wusing-directives, the effect is as if the using-directives
from the second namespace also appeared in the first. [Note: For qualified lookup, see 3.4.3.2. — end note|
[Example:

namespace M {
int i;

}

§7.3.4 164

©ISO/IEC N3092

namespace N {
int i;
using namespace M;

}

void £() {
using namespace N;
i=7; // error: both M::i and N::1i are visible

}

For another example,

namespace A {
int i;
}
namespace B {
int i;
int j;
namespace C {
namespace D {
using namespace A;

int j;
int k;
int a = i; // Bi:i hides A::i
}
using namespace D;
int k = 89; // nmo problem yet
int 1 = k; // ambiguous: C::k or D::k
int m = i; //B::i hides A::i
int n = j; //D::j hides B::j

— end example]

If a namespace is extended by an extension-namespace-definition after a using-directive for that namespace
is given, the additional members of the extended namespace and the members of namespaces nominated by
using-directives in the extension-namespace-definition can be used after the extension-namespace-definition.

If name lookup finds a declaration for a name in two different namespaces, and the declarations do not
declare the same entity and do not declare functions, the use of the name is ill-formed. [Note: in particular,
the name of a variable, function or enumerator does not hide the name of a class or enumeration declared
in a different namespace. For example,

namespace A {
class X { };
extern "C" int g();
extern "C++" int h();
}
namespace B {
void X(int);
extern "C" int g();
extern "C++" int h(int);
}
using namespace A;
using namespace B;

§7.3.4 165

©ISO/IEC N3092

void £() {
X(1); // error: name X found in two namespaces
g0 // okay: name g refers to the same entity
h(); // okay: overload resolution selects A: :h
}
— end note]

7 During overload resolution, all functions from the transitive search are considered for argument matching.
The set of declarations found by the transitive search is unordered. [Note: in particular, the order in which
namespaces were considered and the relationships among the namespaces implied by the using-directives do
not cause preference to be given to any of the declarations found by the search. — end note] An ambiguity
exists if the best match finds two functions with the same signature, even if one is in a namespace reachable
through using-directives in the namespace of the other.”> [Example:

namespace D {
int di;
void f(char);
¥

using namespace D;
int di; // OK: no conflict with D: :d1

namespace E {
int e;
void f(int);
}

namespace D { // mnamespace extension
int d2;
using namespace E;
void f(int);

}
void £() {
dl++; // error: ambiguous ::d1 or D::d1?
Drdl+t; // OK
D::dl++; // OK
d2++; // OK: D::d2
et+; // OK: E::e
£(1); // error: ambiguous: D::f(int) or E::f(int)?
£(’a’); // OK: D::f (char)
}
— end example]
7.4 The asm declaration [dcl.asm)]

1 An asm declaration has the form
asm-definition:
asm (string-literal) ;

95) During name lookup in a class hierarchy, some ambiguities may be resolved by considering whether one member hides
the other along some paths (10.2). There is no such disambiguation when considering the set of names found as a result of
following using-directives.

§7.4 166

©ISO/IEC N3092

The asm declaration is conditionally-supported; its meaning is implementation-defined. [Note: Typically it
is used to pass information through the implementation to an assembler. — end note]

7.5 Linkage specifications [dcl.link]

All function types, function names with external linkage, and variable names with external linkage have a
language linkage. [Note: Some of the properties associated with an entity with language linkage are specific
to each implementation and are not described here. For example, a particular language linkage may be
associated with a particular form of representing names of objects and functions with external linkage, or
with a particular calling convention, etc. — end note| The default language linkage of all function types,
function names, and variable names is C++ language linkage. Two function types with different language
linkages are distinct types even if they are otherwise identical.

Linkage (3.5) between C++ and non-C++ code fragments can be achieved using a linkage-specification:
linkage-specification:
extern string-literal { declaration-seqop:
extern string-literal declaration

The string-literal indicates the required language linkage. This International Standard specifies the semantics
for the string-literals "C" and "C++". Use of a string-literal other than "C" or "C++" is conditionally-
supported, with implementation-defined semantics. [Note: Therefore, a linkage-specification with a string-
literal that is unknown to the implementation requires a diagnostic. — end note| [Note: It is recommended
that the spelling of the string-literal be taken from the document defining that language. For example, Ada
(not ADA) and Fortran or FORTRAN, depending on the vintage. — end note]

Every implementation shall provide for linkage to functions written in the C programming language, "C",
and linkage to C++ functions, "C++". [Example:

complex sqrt(complex); // C++ linkage by default
extern "C" {

double sqrt(double); // C linkage
}

— end example]

Linkage specifications nest. When linkage specifications nest, the innermost one determines the language
linkage. A linkage specification does not establish a scope. A linkage-specification shall occur only in
namespace scope (3.3). In a linkage-specification, the specified language linkage applies to the function
types of all function declarators, function names with external linkage, and variable names with external
linkage declared within the linkage-specification. | Example:

extern "C" void f1(void(*pf) (int));
// the name £1 and its function type have C language
// linkage; pf is a pointer to a C function

extern "C" typedef void FUNC();

FUNC £2; // the name £2 has C++ language linkage and the
// function’s type has C language linkage

extern "C" FUNC £3; // the name of function £3 and the function’s type
// have C language linkage

void (*pf2) (FUNC*); // the name of the variable p£2 has C++ linkage and

// the type of pf2 is pointer to C++ function that
// takes one parameter of type pointer to C function
extern "C" {
static void f4Q); // the name of the function f} has
// internal linkage (not C language
// linkage) and the function’s type

§7.5 167

©ISO/IEC N3092

// has C language linkage.
}

extern "C" void £f5() {
extern void f4(); // OK: Name linkage (internal)
// and function type linkage (C
// language linkage) gotten from
// previous declaration.

}

extern void f4(); // OK: Name linkage (internal)
// and function type linkage (C
// language linkage) gotten from
// previous declaration.

}

void f6() {

extern void f4(); // OK: Name linkage (internal)

// and function type linkage (C
// language linkage) gotten from
// previous declaration.

}

— end example] A C language linkage is ignored for the names of class members and the member function
type of class member functions. [Ezample:

extern "C" typedef void FUNC_c();

class C {
void mf1(FUNC_c*); // the name of the function mf1 and the member
// function’s type have C++ language linkage; the
// parameter has type pointer to C function
FUNC_c mf2; // the name of the function mf2 and the member
// function’s type have C++ language linkage
static FUNC_c* q; // the name of the data member q has C+ language
// linkage and the data member’s type is pointer to
// C function
};
extern "C" {
class X {
void mf(); // the name of the function mf and the member
// function’s type have C++ language linkage
void mf2(void(*) ()); // the name of the function mf2 has C++ language
// linkage; the parameter has type pointer to
// C function
};
}

— end example]

5 If two declarations declare functions with the same name and parameter-type-list (8.3.5) to be members of
the same namespace or declare objects with the same name to be members of the same namespace and the
declarations give the names different language linkages, the program is ill-formed; no diagnostic is required
if the declarations appear in different translation units. Except for functions with C++ linkage, a function
declaration without a linkage specification shall not precede the first linkage specification for that function.

§7.5 168

©ISO/IEC N3092

A function can be declared without a linkage specification after an explicit linkage specification has been
seen; the linkage explicitly specified in the earlier declaration is not affected by such a function declaration.

6 At most one function with a particular name can have C language linkage. Two declarations for a function
with C language linkage with the same function name (ignoring the namespace names that qualify it)
that appear in different namespace scopes refer to the same function. Two declarations for an object with
C language linkage with the same name (ignoring the namespace names that qualify it) that appear in
different namespace scopes refer to the same object. [Note: because of the one definition rule (3.2), only
one definition for a function or object with C linkage may appear in the program; that is, such a function
or object must not be defined in more than one namespace scope. For example,

namespace A {
extern "C" int f();
extern "C" int g() { return 1; }
extern "C" int h();

}

namespace B {
extern "C" int £Q); // A::f and B::f refer
// to the same function
extern "C" int g() { return 1; } // ill-formed, the function g
// with C language linkage
// has two definitions
}

int A::f() { return 98; } //definition for the function £
// with C language linkage
extern "C" int h() { return 97; }
// definition for the function h
// with C language linkage
// A::h and ::h refer to the same function

— end note]

7 A declaration directly contained in a linkage-specification is treated as if it contains the extern speci-
fier (7.1.1) for the purpose of determining the linkage of the declared name and whether it is a definition.
Such a declaration shall not specify a storage class. [Example:

extern "C" double f();

static double £(); // error
extern "C" int i; // declaration
extern "C" {

int i; // definition
}
extern "C" static void g(); // error

— end example]

8 [Note: because the language linkage is part of a function type, when a pointer to C function (for example)
is dereferenced, the function to which it refers is considered a C function. — end note]

9 Linkage from C++ to objects defined in other languages and to objects defined in C++ from other languages
is implementation-defined and language-dependent. Only where the object layout strategies of two language

§7.5 169

2

3

©ISO/IEC N3092

implementations are similar enough can such linkage be achieved.

7.6 Attributes [dcl.attr]

7.6.1 Attribute syntax and semantics [dcl.attr.grammar]|

Attributes specify additional information for various source constructs such as types, variables, names,
blocks, or translation units.

attribute-specifier:
[[attribute-list 1]
attribute-list:
attributeopt
attribute-list , attributeop:
attribute . ..
attribute-list , attribute ...
attribute:
attribute-token attribute-argument-clauseopt

attribute-token:
identifier
attribute-scoped-token

attribute-scoped-token:
attribute-namespace : : identifier

attribute-namespace:
identifier
attribute-argument-clause:
(balanced-token-seq)

balanced-token-seq:
balanced-token
balanced-token-seq balanced-token

balanced-token:
(balanced-token-seq)
[balanced-token-seq 1
{ balanced-token-seq }
any token other than a parenthesis, a bracket, or a brace

[Note: For each individual attribute, the form of the balanced-token-seq will be specified. — end note]

In an attribute-list, an ellipsis may appear only if that attribute’s specification permits it. An attribute
followed by an ellipsis is a pack expansion (14.5.3). An attribute-specifier that contains no attributes has no
effect. The order in which the attribute-tokens appear in an attribute-list is not significant. If a keyword (2.12)
or an alternative token (2.6) that satisfies the syntactic requirements of an identifier (2.11) is contained
in an attribute-token, it is considered an identifier. No name lookup (3.4) is performed on any of the
identifiers contained in an attribute-token. The attribute-token determines additional requirements on the
attribute-argument-clause (if any). The use of an attribute-scoped-token is conditionally-supported, with
implementation-defined behavior. [Note: Each implementation should choose a distinctive name for the
attribute-namespace in an attribute-scoped-token. — end note]

Each attribute-specifier is said to appertain to some entity or statement, identified by the syntactic context
where it appears (clause 7, clause 8). If an attribute-specifier that appertains to some entity or statement
contains an attribute that is not allowed to apply to that entity or statement, the program is ill-formed.
If an attribute-specifier appertains to a friend declaration (11.4), that declaration shall be a definition. No
attribute-specifier shall appertain to an explicit instantiation (14.7.2).

§ 7.6.1 170

©ISO/IEC N3092

For an attribute-token not specified in this International Standard, the behavior is implementation-defined.

Two consecutive left square bracket tokens shall appear only when introducing an attribute-specifier. [Note:
If two consecutive left square brackets appear where an attribute-specifier is not allowed, the program is ill
formed even if the brackets match an alternative grammar production. — end note| [Example:

int p[10];
void £ {
int x = 42, y[5];
int(p[[x] { return x; }0O1); // error: malformed attribute on a nested
// declarator-id and not a function-style cast of
// an element of p.
y[[] { return 2; }Q] = 2; // error even though attributes are not allowed
// in this context.
}

— end example|

7.6.2 Alignment attribute [dcl.align]
The attribute-token align specifies alignment (3.11). The attribute shall have one of the following forms:

align (type-id)
align (assignment-expression)

The attribute may be followed by an ellipsis. The attribute may be applied to a variable that is neither a
function parameter nor declared with the register storage class specifier and to a class data member that is
not a bit-field. The attribute may also be applied to the declaration of a class or enumeration type.

When the alignment attribute is of the form align(assignment-expression):
— the assignment-expression shall be an integral constant expression

— if the constant expression evaluates to a fundamental alignment, the alignment requirement of the
declared entity shall be the specified fundamental alignment

— if the constant expression evaluates to an extended alignment and the implementation supports that
alignment in the context of the declaration, the alignment of the declared entity shall be that alignment

— if the constant expression evaluates to an extended alignment and the implementation does not support
that alignment in the context of the declaration, the program is ill-formed

— if the constant expression evaluates to zero, the alignment specifier shall have no effect
— otherwise, the program is ill-formed.

When the alignment attribute is of the form align(type-id), it shall have the same effect as align(alignof (type-
id)) (5.3.6).

When multiple alignment attributes are specified for an entity, the alignment requirement shall be set to the
strictest specified alignment.

The combined effect of all alignment attributes in a declaration shall not specify an alignment that is less
strict than the alignment that would otherwise be required for the entity being declared.

If the defining declaration of an entity has an alignment attribute, any non-defining declaration of that entity
shall either specify equivalent alignment or have no alignment attribute. Conversely, if any declaration of
an entity has an alignment attribute, every defining declaration of that entity shall specify an equivalent
alignment. No diagnostic is required if declarations of an entity have different alignment attributes in
different translation units.

§7.6.2 171

©ISO/IEC N3092

[Example:
// Translation unit #1:
struct S { int x; } s, p = &s;

// Translation unit #2:
struct [[align(16)]] S; // error: definition of 8 lacks alignment; no
extern Sk p; // diagnostic required

— end example]

7 [Ezample: An aligned buffer with an alignment requirement of A and holding N elements of type T other
than char, signed char, or unsigned char can be declared as:

T buffer [[align(T), align(a) 11 [N];

Specifying align(T) in the atiribute-list ensures that the final requested alignment will not be weaker than

alignof (T), and therefore the program will not be ill-formed. — end example]
8 [Ezample:
void f [[align(double) 11 O; // error: alignment applied to function

unsigned char c
[[align(double) 1] [sizeof(double)l; // array of characters, suitably aligned for a double

extern unsigned char c[sizeof(double)]; // no align necessary
extern unsigned char c
[[align(float) 1] [sizeof(double)]; // error: different alignment in declaration

— end example |

7.6.3 Noreturn attribute [dcl.attr.noreturn]

1 The attribute-token noreturn specifies that a function does not return. It shall appear at most once in
each attribute-list and no attribute-argument-clause shall be present. The attribute may be applied to
the declarator-id in a function declaration. The first declaration of a function shall specify the noreturn
attribute if any declaration of that function specifies the noreturn attribute. If a function is declared with
the noreturn attribute in one translation unit and the same function is declared without the noreturn
attribute in another translation unit, the program is ill-formed; no diagnostic required.

2 If a function f is called where £ was previously declared with the noreturn attribute and f eventually

returns, the behavior is undefined. [Note: The function may terminate by throwing an exception. — end
note| [Note: Implementations are encouraged to issue a warning if a function marked [[noreturn]] might
return. — end note |

3 [Ezample:

void f [[noreturn 11 () {
throw "error"; // OK
}

void q [[noreturn 11 (int i) { // behavior is undefined if called with an argument <= 0
if (1 > 0)
throw "positive";

§76.3 172

©ISO/IEC N3092

— end example]

7.6.4 Final attribute [dcl.attr.final]

The attribute-token final specifies derivation semantics for a class and overriding semantics for a virtual
function. It shall appear at most once in each attribute-list and no attribute-argument-clause shall be present.
The attribute may be applied to class definitions and to virtual member functions being declared in a class
definition.

If a class B is marked final and a class D is derived from B the program is ill formed.

If a virtual member function f in some class B is marked final and in a class D derived from B a function
D::f overrides B: : f, the program is ill-formed.

[Ezample:

struct Bl {
virtual void f [[final 11 Q;
};

struct D1 : Bl {
void £Q); // il formed
};

struct [[final]] B2 {
};

struct D2 : B2 { // il formed
};

— end example]

7.6.5 Class member name checking attributes [dcl.attr.override]

The attribute-token override asserts that a virtual member function overrides a function in a base class.
It shall appear at most once in each attribute-list and no attribute-argument-clause shall be present. The
attribute may be applied to virtual member functions being declared in a class definition.

If a virtual member function f is marked override and does not override (10.3) a member function of a
base class the program is ill-formed.

The attribute-token hiding asserts that a class member name hides a name in a base class. It shall appear
at most once in each attribute-list and no attribute-argument-clause shall be present. The attribute may be
applied to class members being declared in a class definition.

If a class member is marked hiding and its name does not hide (3.3.10, 10.2) a class member name in a
base class the program is ill-formed.

The attribute-token base_check specifies that overriding and hiding of base members is strictly checked
within a class. It shall appear at most once in each attribute-list and no attribute-argument-clause shall be
present. The attribute may be applied to a class definition.

In a class definition marked base_check, if a virtual member function that is neither implicitly-declared
nor a destructor overrides (10.3) a member function of a base class and it is not marked override, the
program is ill-formed. Similarly, in such a class definition, if a class member name other than that of an
implicitly-declared special member function hides (3.3.10, 10.2) a class member name in a base class and it
is not marked hiding, the program is ill-formed. [Note: a using-declaration makes the potentially hidden
name visible, avoiding the need for the hiding attribute. — end note|

§ 7.6.5 173

©ISO/IEC

[Example:

class B {

};

class D [[base_check]]

virtual void some_func();

virtual void f(int);
virtual void h(int);
void j(int);

void k(Q);

typedef B self;

: public B {
void sone_func [[override]l]l ();

void f [[override]] (int);

virtual void f [[override]] (long);
virtual void f [[override]] (int) const;
virtual int f [[override]] (int);

virtual void g(long);

void h(int);

virtual void h(double);

virtual void h [[hiding]] (char *);

N3092

// error: misspelled name

// OK: £ implicitly virtual, overrides B: :f

// error: non-matching argument type

// error: non-matching cv-qualification
// error: mon-matching return type

// OK: new virtual function introduced

// error: h implicitly virtual, but overriding without marker
// error: hides B: :h without marker

// OK

using B::j;

int j(double);

void j(int);

virtual int j [[hidingl] (void);

// OK: not hiding due to “using”

// OK, despite ‘obscuring’ B::j(int)

// error: not hiding due to “using”

int k; // error: hides B: :k without marker
int m [[hiding]] (int);
typedef D self;

3

// error: no hiding despite marker
// error: hides B: :self without marker

— end example]

7.6.6 Carries dependency attribute [dcl.attr.depend]

The attribute-token carries_dependency specifies dependency propagation into and out of functions. It
shall appear at most once in each attribute-list and no attribute-argument-clause shall be present. The
attribute may be applied to the declarator-id of a parameter-declaration in a function declaration or lambda,
in which case it specifies that the initialization of the parameter carries a dependency to (1.10) each lvalue-
to-rvalue conversion (4.1) of that object. The attribute may also be applied to the declarator-id of a function
declaration, in which case it specifies that the return value, if any, carries a dependency to the evaluation of
the function call expression.

The first declaration of a function shall specify the carries_dependency attribute for its declarator-id if any
declaration of the function specifies the carries_dependency attribute. Furthermore, the first declaration of
a function shall specify the carries_dependency attribute for a parameter if any declaration of that function
specifies the carries_dependency attribute for that parameter. If a function or one of its parameters is
declared with the carries_dependency attribute in its first declaration in one translation unit and the

§7.6.6 174

4

5

©ISO/IEC N3092

same function or one of its parameters is declared without the carries_dependency attribute in its first
declaration in another translation unit, the program is ill-formed; no diagnostic required.

[Note: the carries_dependency attribute does not change the meaning of the program, but may result in
generation of more efficient code. — end note]

Ezample:
D
/* Translation unit A. x/

struct foo { int* a; int* b; };
std: :atomic<struct foo *> foo_head[10];
int foo_array[10][10];

struct foox f [[carries_dependencyl] (int i) {
return foo_head[i] .load(memory_order_consume) ;

}

int g(int* x, int* y [[carries_dependencyl]) {
return kill_dependency(foo_array [*x] [*y]);
}

/* Translation unit B. x/

struct foox f [[carries_dependency]] (int 1i);
int* g(int* x, int* y [[carries_dependencyl]);

int ¢ = 3;

void h(int i) {
struct foox* p;

p=f(@i);

do_something_with(g(&c, p—>a));

do_something_with(g(p—->a, &c));
}

The carries_dependency attribute on function £ means that the return value carries a dependency out of
f, so that the implementation need not constrain ordering upon return from f. Implementations of £ and
its caller may choose to preserve dependencies instead of emitting hardware memory ordering instructions
(a.k.a. fences).

Function g’s second argument has a carries_dependency attribute, but its first argument does not. There-
fore, function h’s first call to g carries a dependency into g, but its second call does not. The implementation
might need to insert a fence prior to the second call to g.

— end example]

§ 7.6.6 175

©ISO/IEC N3092

8 Declarators [dcl.decl]

1 A declarator declares a single variable, function, or type, within a declaration. The init-declarator-list
appearing in a declaration is a comma-separated sequence of declarators, each of which can have an initializer.

init-declarator-list:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator initializer,p;

2 The three components of a simple-declaration are the attributes (7.6), the specifiers (decl-specifier-seq; 7.1)
and the declarators (init-declarator-list). The specifiers indicate the type, storage class or other properties
of the entities being declared. The declarators specify the names of these entities and (optionally) modify
the type of the specifiers with operators such as * (pointer to) and () (function returning). Initial values
can also be specified in a declarator; initializers are discussed in 8.5 and 12.6.

3 Each init-declarator in a declaration is analyzed separately as if it was in a declaration by itself.?%

4 Declarators have the syntax

declarator:
ptr-declarator
noptr-declarator parameters-and-qualifiers trailing-return-type

ptr-declarator:
noptr-declarator
ptr-operator ptr-declarator

noptr-declarator:
declarator-id attribute-specifierop;
noptr-declarator parameters-and-qualifiers
noptr-declarator [constant-expression.p: 1 attribute-specifieropt
(ptr-declarator)

parameters-and-qualifiers:
(parameter-declaration-clause) attribute-specifierop: cv-qualifier-seqopt
ref-qualifierop: exception-specificationop:

trailing-return-type:
=> trailing-type-specifier-seq abstract-declaratorop:

96) A declaration with several declarators is usually equivalent to the corresponding sequence of declarations each with a
single declarator. That is

T D1, D2, ... Dn;
is usually equvalent to
T D1; T D2; ... T Dn;

where T is a decl-specifier-seq and each Di is an init-declarator. The exception occurs when a name introduced by one of
the declarators hides a type name used by the decl-specifiers, so that when the same decl-specifiers are used in a subsequent
declaration, they do not have the same meaning, as in

struct S ... ;

S S, T; // declare two instances of struct S
which is not equivalent to

struct S ... ;
S S;
S T; // error

176

©ISO/IEC N3092

ptr-operator:
* attribute-specifierops cv-qualifier-seqopt
& attribute-specifieropt
&& attribute-specifierop:
tiopt mested-name-specifier * attribute-specifierops cv-qualifier-seqopt
cv-qualifier-seq:
cv-qualifier cv-qualifier-seqopt
cv-qualifier:
const
volatile
ref-qualifier:
&
&&
declarator-id:
.. opt id-expression
tiopt mested-name-specifierop: class-name

A class-name has special meaning in a declaration of the class of that name and when qualified by that
name using the scope resolution operator :: (5.1, 12.1, 12.4).

The optional attribute-specifier in a trailing-return-type appertains to the indicated return type. The type-id
in a trailing-return-type includes the longest possible sequence of abstract-declarators. | Note: This resolves
the ambiguous binding of array and function declarators. [Ezample:

auto £()->int(*)[4]; // function returning a pointer to array[4] of int
// not function returning array[4] of pointer to int

— end example] — end note]

8.1 Type names [dcl.name]

To specify type conversions explicitly, and as an argument of sizeof, alignof, new, or typeid, the name of
a type shall be specified. This can be done with a type-id, which is syntactically a declaration for a variable
or function of that type that omits the name of the entity.
type-id:
type-specifier-seq abstract-declarator,p:
abstract-declarator:

ptr-abstract-declarator
noptr-abstract-declarator.p: parameters-and-qualifiers trailing-return-type

ptr-abstract-declarator:
noptr-abstract-declarator
ptr-operator ptr-abstract-declaratoropt

noptr-abstract-declarator:
noptr-abstract-declarator.ps parameters-and-qualifiers
noptr-abstract-declaratorop: [constant-expression 1 attribute-specifieropt
(ptr-abstract-declarator)

It is possible to identify uniquely the location in the abstract-declarator where the identifier would appear
if the construction were a declarator in a declaration. The named type is then the same as the type of the
hypothetical identifier. [Ezample:

int //int i
int * // int *pi
int *[3] // int *p[3]

§ 8.1 177

3

4

©ISO/IEC N3092

int (%) [3] // int (xp3i) [3]
int *(Q) // int *£(Q)
int (%) (double) // int (*pf) (double)

RRENAY R4S R4S

name respectively the types “int,” “pointer to int,” “array of 3 pointers to int,” “pointer to array of 3 int,”
“function of (no parameters) returning pointer to int,” and “pointer to a function of (double) returning
int.” — end example]

A type can also be named (often more easily) by using a typedef (7.1.3).

8.2 Ambiguity resolution [dcl.ambig.res]

The ambiguity arising from the similarity between a function-style cast and a declaration mentioned in 6.8
can also occur in the context of a declaration. In that context, the choice is between a function declaration
with a redundant set of parentheses around a parameter name and an object declaration with a function-style
cast as the initializer. Just as for the ambiguities mentioned in 6.8, the resolution is to consider any construct
that could possibly be a declaration a declaration. [Note: a declaration can be explicitly disambiguated by
a nonfunction-style cast, by an = to indicate initialization or by removing the redundant parentheses around
the parameter name. — end note| [Example:

struct S {
S(int);

};

void foo(double a) {
S w(int(a)); // function declaration
S x(int(Q)); // function declaration
S y((int)a); // object declaration
S z = int(a); // object declaration

}

— end example|

The ambiguity arising from the similarity between a function-style cast and a type-id can occur in different
contexts. The ambiguity appears as a choice between a function-style cast expression and a declaration of a
type. The resolution is that any construct that could possibly be a type-id in its syntactic context shall be
considered a type-id.

[Example:

#include <cstddef>

char *p;

void *operator new(std::size_t, int);

void foo() {
const int x = 63;
new (int(*p)) int; // new-placement expression
new (int(*[x])); // new type-id

}

For another example,

template <class T>

struct S {
T *p;
};
S<int ()> x; // type-id
S<int(1)> y; // expression (ill-formed)

§ 8.2 178

©ISO/IEC N3092

For another example,

void foo() {

sizeof (int(1)); // expression

sizeof (int()); // type-id (ill-formed)
}

For another example,

void foo() {
(int(1)); // expression
(int())1; // type-id (ill-formed)
}

— end example]

Another ambiguity arises in a parameter-declaration-clause of a function declaration, or in a type-id that
is the operand of a sizeof or typeid operator, when a type-name is nested in parentheses. In this case,
the choice is between the declaration of a parameter of type pointer to function and the declaration of a
parameter with redundant parentheses around the declarator-id. The resolution is to consider the type-name
as a simple-type-specifier rather than a declarator-id. | Ezample:

class C { };
void £(int(C)) { } // void f(int(*fp)(C c)) { }
// not: void f(int C);
int g(C);
void foo() {
£(1); // error: cannot convert 1 to function pointer
f(g); // OK

}

For another example,

class C { };
void h(int *(C[10]1)); // void h(int *(*_fp)(C _parm[10]));
// mot: void h(int *C[10]1);

— end example|

8.3 Meaning of declarators [dcl.meaning]

A list of declarators appears after an optional (Clause 7) decl-specifier-seq (7.1). Each declarator contains
exactly one declarator-id; it names the identifier that is declared. An unqualified-id occurring in a declarator-
id shall be a simple identifier except for the declaration of some special functions (12.3, 12.4, 13.5) and for
the declaration of template specializations or partial specializations (14.7). A declarator-id shall not be
qualified except for the definition of a member function (9.3) or static data member (9.4) outside of its
class, the definition or explicit instantiation of a function or variable member of a namespace outside of its
namespace, or the definition of an explicit specialization outside of its namespace, or the declaration of a
friend function that is a member of another class or namespace (11.4). When the declarator-id is qualified,
the declaration shall refer to a previously declared member of the class or namespace to which the qualifier
refers (or, in the case of a namespace, of an element of the inline namespace set of that namespace (7.3.1))
or to a specialization thereof; the member shall not merely have been introduced by a wusing-declaration
in the scope of the class or namespace nominated by the nested-name-specifier of the declarator-id. The
nested-name-specifier of a qualified declarator-id shall not begin with a decltype-specifier. [Note: if the

§ 8.3 179

©ISO/IEC N3092

qualifier is the global :: scope resolution operator, the declarator-id refers to a name declared in the global
namespace scope. — end note] The optional attribute-specifier following a declarator-id appertains to the
entity that is declared.

A static, thread_local, extern, register, mutable, friend, inline, virtual, or typedef specifier ap-
plies directly to each declarator-id in an init-declarator-list; the type specified for each declarator-id depends
on both the decl-specifier-seq and its declarator.

Thus, a declaration of a particular identifier has the form
TD
where T is of the form attribute-specifierq,: decl-specifier-seq and D is a declarator. Following is a recursive
procedure for determining the type specified for the contained declarator-id by such a declaration.
First, the decl-specifier-seq determines a type. In a declaration

TD

the decl-specifier-seq T determines the type T. [Ezample: in the declaration

int unsigned i;

the type specifiers int unsigned determine the type “unsigned int” (7.1.6.2). — end example]
In a declaration attribute-specifiero,: T D where D is an unadorned identifier the type of this identifier is “T”.
In a declaration T D where D has the form
(D1)
the type of the contained declarator-id is the same as that of the contained declarator-id in the declaration
T D1

Parentheses do not alter the type of the embedded declarator-id, but they can alter the binding of complex
declarators.

8.3.1 Pointers [dcl.ptr]

In a declaration T D where D has the form
* attribute-specifierop; cv-qualifier-seqop: D1

and the type of the identifier in the declaration T D1 is “derived-declarator-type-list T,” then the type of the
identifier of D is “derived-declarator-type-list cv-qualifier-seq pointer to T.” The cv-qualifiers apply to the pointer
and not to the object pointed to. Similarly, the optional attribute-specifier (7.6.1) appertains to the pointer
and not to the object pointed to.

[Ezample: the declarations
const int ci = 10, *pc = &ci, *const cpc = pc, **ppc;

int i, *p, *const cp = &i;

declare ci, a constant integer; pc, a pointer to a constant integer; cpc, a constant pointer to a constant
integer; ppc, a pointer to a pointer to a constant integer; i, an integer; p, a pointer to integer; and cp, a
constant pointer to integer. The value of ci, cpc, and cp cannot be changed after initialization. The value
of pc can be changed, and so can the object pointed to by cp. Examples of some correct operations are

§8.3.1 180

©ISO/IEC N3092

i = ci;
*cp = ci;
pctt;

pc = cpc;
pc = p;
ppc = &pc;

Examples of ill-formed operations are

ci=1; // error
ci++; // error
*pc = 2; // error
cp = &ci; // error
cpc+t; // error
P = PC; // error
ppc = &p; // error

Each is unacceptable because it would either change the value of an object declared const or allow it to be
changed through a cv-unqualified pointer later, for example:

*ppc = &ci; // OK, but would make p point to ci ...
// ... because of previous error
*p = 5; // clobber ci

— end example|
See also 5.17 and 8.5.

[Note: there are no pointers to references; see 8.3.2. Since the address of a bit-field (9.6) cannot be taken,
a pointer can never point to a bit-field. — end note]

8.3.2 References [dcl.ref]

In a declaration T D where D has either of the forms

& attribute-specifierop: D1
&& attribute-specifierop: D1

and the type of the identifier in the declaration T D1 is “derived-declarator-type-list T,” then the type of the
identifier of D is “derived-declarator-type-list reference to T.” The optional attribute-specifier appertains to the
reference type. Cv-qualified references are ill-formed except when the cv-qualifiers are introduced through
the use of a typedef (7.1.3) or of a template type argument (14.3), in which case the cv-qualifiers are ignored.
[Example:

typedef int& A;

const A aref = 3; // ill-formed; lvalue reference to non-const initialized with rvalue
The type of aref is “lvalue reference to int”, not “lvalue reference to const int”. — end example| [Note:
a reference can be thought of as a name of an object. — end note] A declarator that specifies the type

“reference to cv void” is ill-formed.

A reference type that is declared using & is called an lvalue reference, and a reference type that is declared
using && is called an rvalue reference. Lvalue references and rvalue references are distinct types. Except
where explicitly noted, they are semantically equivalent and commonly referred to as references.

[Example:

§ 8.3.2 181

©ISO/IEC N3092

void f(double& a) { a += 3.14; }

/..

double d = 0;
£f(d);

declares a to be a reference parameter of £ so the call £(d) will add 3.14 to d.

int v[20];

/).

int& g(int i) { return v[il; }

g(3) =7;

declares the function g() to return a reference to an integer so g(3)=7 will assign 7 to the fourth element
of the array v. For another example,

struct link {
link* next;

};
link* first;

void h(link*& p) { //p is a reference to pointer
p—>next = first;
first = p;
p=0;

}

void k() {
link* q = new link;
h(q);

}

declares p to be a reference to a pointer to 1ink so h(q) will leave q with the value zero. See also 8.5.3.
— end example|

It is unspecified whether or not a reference requires storage (3.7).

There shall be no references to references, no arrays of references, and no pointers to references. The
declaration of a reference shall contain an ingtializer (8.5.3) except when the declaration contains an explicit
extern specifier (7.1.1), is a class member (9.2) declaration within a class definition, or is the declaration
of a parameter or a return type (8.3.5); see 3.1. A reference shall be initialized to refer to a valid object
or function. [Note: in particular, a null reference cannot exist in a well-defined program, because the only
way to create such a reference would be to bind it to the “object” obtained by dereferencing a null pointer,
which causes undefined behavior. As described in 9.6, a reference cannot be bound directly to a bit-field.
— end note]

If a typedef (7.1.3), a type template-parameter (14.3.1), or a decltype-specifier (7.1.6.2) denotes a type TR
that is a reference to a type T, an attempt to create the type “lvalue reference to cv TR” creates the type
“lvalue reference to T”, while an attempt to create the type “rvalue reference to cv TR” creates the type TR.
[Ezample:

int i;

typedef int& LRI;

typedef int&& RRI;

§ 8.3.2 182

©ISO/IEC N3092

LRI& rl1 = i; // rl has the type int&
const LRI& r2 = i; // 2 has the type int&
const LRI&& r3 = i; // 3 has the type int&
RRI& r4 = i; // 4 has the type int&
RRI&& r5 = i; // 5 has the type int&&
decltype(r2)& r6 = i; // 6 has the type int&
decltype(r2)&& r7 = i; // TT has the type int&

— end example]

8.3.3 Pointers to members [dcl.mptr]

1 In a declaration T D where D has the form
tiopt mested-name-specifier * attribute-specifierop: cv-qualifier-seqop: D1

and the nested-name-specifier denotes a class, and the type of the identifier in the declaration T D1 is “derived-
declarator-type-list T”, then the type of the identifier of D is “derived-declarator-type-list cv-qualifier-seq pointer
to member of class nested-name-specifier of type T”. The optional attribute-specifier (7.6.1) appertains to the
pointer-to-member.

2 [Ezample:

struct X {
void f(int);
int a;

};

struct Y;

int X::* pmi = &X::a;

void (X::* pmf) (int) = &X::f;
double X::* pmd;

char Y::* pmc;

declares pmi, pmf, pmd and pmc to be a pointer to a member of X of type int, a pointer to a member of
X of type void(int), a pointer to a member of X of type double and a pointer to a member of Y of type
char respectively. The declaration of pmd is well-formed even though X has no members of type double.
Similarly, the declaration of pmc is well-formed even though Y is an incomplete type. pmi and pmf can be
used like this:

X obj;
obj.*pmi = 7; // assign 7 to an integer
// member of obj
(obj.*pmf) (7); // call a function member of obj

// with the argument 7

— end example|

3 A pointer to member shall not point to a static member of a class (9.4), a member with reference type, or
“cv void.”

§8.3.3 183

©ISO/IEC N3092

[Note: see also 5.3 and 5.5. The type “pointer to member” is distinct from the type “pointer”, that is, a
pointer to member is declared only by the pointer to member declarator syntax, and never by the pointer
declarator syntax. There is no “reference-to-member” type in C++. — end note]

8.3.4 Arrays [dcl.array]

In a declaration T D where D has the form
D1 [constant-expression.p: 1 attribute-specifierop:

and the type of the identifier in the declaration T D1 is “derived-declarator-type-list T”, then the type of the
identifier of D is an array type; if the type of the identifier of D contains the auto type-specifier, the program
is ill-formed. T is called the array element type; this type shall not be a reference type, the (possibly cv-
qualified) type void, a function type or an abstract class type. If the constant-expression (5.19) is present,
it shall be an integral constant expression and its value shall be greater than zero. The constant expression
specifies the bound of (number of elements in) the array. If the value of the constant expression is N, the
array has N elements numbered 0 to N-1, and the type of the identifier of D is “derived-declarator-type-list
array of N T”. An object of array type contains a contiguously allocated non-empty set of N subobjects of
type T. If the constant expression is omitted, the type of the identifier of D is “derived-declarator-type-list array
of unknown bound of T”, an incomplete object type. The type “derived-declarator-type-list array of N T” is a
different type from the type “derived-declarator-type-list array of unknown bound of T”, see 3.9. Any type of
the form “cv-qualifier-seq array of N T” is adjusted to “array of N cv-qualifier-seq T”, and similarly for “array
of unknown bound of T”. The optional attribute-specifier appertains to the array. [Example:

typedef int A[5], AA[2][3];

typedef const A CA; // type is “array of 5 const int”
typedef const AA CAA; // type is “array of 2 array of 8 const int”
— end example] [Note: an “array of N cv-qualifier-seq T” has cv-qualified type; see 3.9.3. — end note]

An array can be constructed from one of the fundamental types (except void), from a pointer, from a pointer
to member, from a class, from an enumeration type, or from another array.

When several “array of” specifications are adjacent, a multidimensional array is created; the constant ex-
pressions that specify the bounds of the arrays can be omitted only for the first member of the sequence.
[Note: this elision is useful for function parameters of array types, and when the array is external and the
definition, which allocates storage, is given elsewhere. — end note| The first constant-expression can also
be omitted when the declarator is followed by an initializer (8.5). In this case the bound is calculated from
the number of initial elements (say, N) supplied (8.5.1), and the type of the identifier of D is “array of N T.”

[Ezample:
float fa[17], *afpl[17];

declares an array of float numbers and an array of pointers to float numbers. For another example,

static int x3d[3][5][7];

declares a static three-dimensional array of integers, with rank 3 x 5 x 7. In complete detail, x3d is an array
of three items; each item is an array of five arrays; each of the latter arrays is an array of seven integers. Any
of the expressions x3d, x3d[i], x3d[i] [j], x3d[i] [j] [k] can reasonably appear in an expression. — end
example]

[Note: conversions affecting expressions of array type are described in 4.2. Objects of array types cannot
be modified, see 3.10. — end note]

§ 8.3.4 184

©ISO/IEC N3092

[Note: Except where it has been declared for a class (13.5.5), the subscript operator [] is interpreted in such
a way that E1[E2] is identical to * ((E1)+(E2)). Because of the conversion rules that apply to +, if E1 is an
array and E2 an integer, then E1[E2] refers to the E2-th member of E1. Therefore, despite its asymmetric
appearance, subscripting is a commutative operation.

A consistent rule is followed for multidimensional arrays. If E is an n-dimensional array of rank i x j x ... Xk,
then E appearing in an expression that is subject to the array-to-pointer conversion (4.2) is converted to a
pointer to an (n — 1)-dimensional array with rank j x ... x k. If the * operator, either explicitly or implicitly
as a result of subscripting, is applied to this pointer, the result is the pointed-to (n — 1)-dimensional array,
which itself is immediately converted into a pointer.

[Ezample: consider

int x[3][5];

Here x is a 3 x 5 array of integers. When x appears in an expression, it is converted to a pointer to (the
first of three) five-membered arrays of integers. In the expression x[i] which is equivalent to *(x+1i), x is
first converted to a pointer as described; then x+i is converted to the type of x, which involves multiplying
i by the length of the object to which the pointer points, namely five integer objects. The results are added
and indirection applied to yield an array (of five integers), which in turn is converted to a pointer to the
first of the integers. If there is another subscript the same argument applies again; this time the result is an
integer. — end example] — end note]

[Note: it follows from all this that arrays in C++ are stored row-wise (last subscript varies fastest) and that
the first subscript in the declaration helps determine the amount of storage consumed by an array but plays
no other part in subscript calculations. — end note|

8.3.5 Functions [dcl.fct]

In a declaration T D where D has the form

D1 (parameter-declaration-clause) cv-qualifier-seqopt
ref-qualifierop. exception-specificationoy: attribute-specifierop:

and the type of the contained declarator-id in the declaration T D1 is “derived-declarator-type-list T”, the
type of the declarator-id in D is “derived-declarator-type-list function of (parameter-declaration-clause) cv-qualifier-
seqopt Tef-qualifieroy,: returning T”. The optional attribute-specifier appertains to the function type.

In a declaration T D where D has the form

D1 (parameter-declaration-clause) cv-qualifier-seqopt
ref-qualifierop: exception-specificationop: attribute-specifierop: trailing-return-type

and the type of the contained declarator-id in the declaration T D1 is “derived-declarator-type-list T”, T shall
be the single type-specifier auto. The type of the declarator-id in D is “function of (parameter-declaration-
clause) cv-qualifier-seqop ref-qualifier ,p, returning type-id”. The optional attribute-specifier appertains to
the function type.

A type of either form is a function type.””

parameter-declaration-clause:
parameter-declaration-listopt ...opt
parameter-declaration-list , ...

parameter-declaration-list:
parameter-declaration
parameter-declaration-list , parameter-declaration

97) As indicated by syntax, cv-qualifiers are a signficant component in function return types.

§8.3.5 185

©ISO/IEC N3092

parameter-declaration:
attribute-specifierop: decl-specifier-seq declarator
attribute-specifierop; decl-specifier-seq declarator = assignment-expression
attribute-specifierop; decl-specifier-seq abstract-declaratorop:
attribute-specifierop: decl-specifier-seq abstract-declaratorop: = assignment-expression

The optional attribute-specifier in a parameter-declaration appertains to the parameter.

The parameter-declaration-clause determines the arguments that can be specified, and their processing, when
the function is called. [Note: the parameter-declaration-clause is used to convert the arguments specified
on the function call; see 5.2.2. —end note] If the parameter-declaration-clause is empty, the function
takes no arguments. The parameter list (void) is equivalent to the empty parameter list. Except for this
special case, void shall not be a parameter type (though types derived from void, such as void*, can).
If the parameter-declaration-clause terminates with an ellipsis or a function parameter pack (14.5.3), the
number of arguments shall be equal to or greater than the number of parameters that do not have a default
argument and are not function parameter packs. Where syntactically correct and where “...” is not part of

“ »

an abstract-declarator, “, ...” is synonymous with “...”. [Ezample: the declaration

int printf(const char*, ...);

declares a function that can be called with varying numbers and types of arguments.

printf ("hello world");
printf("a=Y%d b=)d", a, b);

However, the first argument must be of a type that can be converted to a const char* —end example]
[Note: the standard header <cstdarg> contains a mechanism for accessing arguments passed using the
ellipsis (see 5.2.2 and 18.10). — end note]

A single name can be used for several different functions in a single scope; this is function overloading
(Clause 13). All declarations for a function shall agree exactly in both the return type and the parameter-
type-list. The type of a function is determined using the following rules. The type of each parameter
(including function parameter packs) is determined from its own decl-specifier-seq and declarator. After
determining the type of each parameter, any parameter of type “array of T” or “function returning T” is
adjusted to be “pointer to T” or “pointer to function returning T,” respectively. After producing the list
of parameter types, several transformations take place upon these types to determine the function type.
Any cv-qualifier modifying a parameter type is deleted. [Example: the type void(*) (const int) becomes
void (%) (int) — end example] Such cv-qualifiers affect only the definition of the parameter within the body
of the function; they do not affect the function type. If a storage-class-specifier modifies a parameter type,
the specifier is deleted. [Ezample: register char* becomes char* — end example| Such storage-class-
specifiers affect only the definition of the parameter within the body of the function; they do not affect the
function type. The resulting list of transformed parameter types and the presence or absence of the ellipsis
or a function parameter pack is the function’s parameter-type-list.

A cv-qualifier-seq shall only be part of the function type for a non-static member function, the function type
to which a pointer to member refers, or the top-level function type of a function typedef declaration. [Note:
a function type that has a cv-qualifier-seq is not a cv-qualified type; there are no cv-qualified function types.
— end note] The effect of a cv-qualifier-seq in a function declarator is not the same as adding cv-qualification
on top of the function type. In the latter case, the cv-qualifiers are ignored. [Ezample:

typedef void F();
struct S {

const F f; // OK: equivalent to: void £();
};

§8.3.5 186

10

11

©ISO/IEC N3092

— end example] A ref-qualifier shall only be part of the function type for a non-static member function,
the function type to which a pointer to member refers, or the top-level function type of a function typedef
declaration. The return type, the parameter-type-list, the ref-qualifier, and the cv-qualifier-seq, but not the
default arguments (8.3.6) or the exception specification (15.4), are part of the function type. [Note: function
types are checked during the assignments and initializations of pointer-to-functions, reference-to-functions,
and pointer-to-member-functions. — end note]

[Example: the declaration

int fseek(FILE*, long, int);

declares a function taking three arguments of the specified types, and returning int (7.1.6). — end ezample]

If the type of a parameter includes a type of the form “pointer to array of unknown bound of T” or “reference
to array of unknown bound of T,” the program is ill-formed.”® Functions shall not have a return type of
type array or function, although they may have a return type of type pointer or reference to such things.
There shall be no arrays of functions, although there can be arrays of pointers to functions.

Types shall not be defined in return or parameter types. The type of a parameter or the return type for a
function definition shall not be an incomplete class type (possibly cv-qualified) unless the function definition
is nested within the member-specification for that class (including definitions in nested classes defined within
the class).

A typedef of function type may be used to declare a function but shall not be used to define a function (8.4).
[Example:

typedef void F();

F fv; // OK: equivalent to void fv();
F fv{} // ill-formed
void fv() { } // OK: definition of fv

—end example] A typedef of a function type whose declarator includes a cv-qualifier-seq shall be used
only to declare the function type for a non-static member function, to declare the function type to which a
pointer to member refers, or to declare the top-level function type of another function typedef declaration.
[Ezample:

typedef int FIC(int) const;

FIC f; // ill-formed: does not declare a member function
struct S {

FIC f£; // OK
};

FIC S::*pm = &S::f; // OK

— end example]

An identifier can optionally be provided as a parameter name; if present in a function definition (8.4), it
names a parameter (sometimes called “formal argument”). [Note: in particular, parameter names are also
optional in function definitions and names used for a parameter in different declarations and the definition
of a function need not be the same. If a parameter name is present in a function declaration that is not
a definition, it cannot be used outside of its function declarator because that is the extent of its potential
scope (3.3.4). — end note]

[Ezample: the declaration

98) This excludes parameters of type “ptr-arr-seq T2” where T2 is “pointer to array of unknown bound of T” and where ptr-
arr-seq means any sequence of “pointer to” and “array of” derived declarator types. This exclusion applies to the parameters
of the function, and if a parameter is a pointer to function or pointer to member function then to its parameters also, etc.

§8.3.5 187

12

©ISO/IEC N3092

int i,
*pi,
£0,
*fpi(int),
(*pif) (const charx, const charx),
(*#fpif(int)) (int);

declares an integer i, a pointer pi to an integer, a function f taking no arguments and returning an integer,
a function fpi taking an integer argument and returning a pointer to an integer, a pointer pif to a function
which takes two pointers to constant characters and returns an integer, a function fpif taking an integer
argument and returning a pointer to a function that takes an integer argument and returns an integer. It
is especially useful to compare fpi and pif. The binding of *fpi(int) is *(fpi(int)), so the declaration
suggests, and the same construction in an expression requires, the calling of a function fpi, and then using
indirection through the (pointer) result to yield an integer. In the declarator (¥pif) (const char*, const
charx*), the extra parentheses are necessary to indicate that indirection through a pointer to a function yields
a function, which is then called. — end ezample] [Note: typedefs and trailing-return-types are sometimes
convenient when the return type of a function is complex. For example, the function fpif above could have
been declared

typedef int IFUNC(int);

IFUNC* fpif(int);
or

auto fpif(int)->int(*) (int)
A trailing-return-type is most useful for a type that would be more complicated to specify before the
declarator-id:

template <class T, class U> auto add(T t, U u) -> decltype(t + u);

rather than

template <class T, class U> decltype((*(T*)0) + (*(U*)0)) add(T t, U u);

— end note]

A declarator-id or abstract-declarator containing an ellipsis shall only be used in a parameter-declaration.
Such a parameter-declaration is a parameter pack (14.5.3). When it is part of a parameter-declaration-clause,
the parameter pack is a function parameter pack (14.5.3). [Note: Otherwise, the parameter-declaration is
part of a template-parameter-list and the parameter pack is a template parameter pack; see 14.1. —end
note] The type T of the declarator-id of the function parameter pack shall contain a template parameter
pack; each template parameter pack in T is expanded by the function parameter pack. [Ezample:

template<typename... T> void f(T (* ...t)(int, int));

int add(int, int);
float subtract(int, int);

void g() {
f(add, subtract);
}

— end example]

§8.3.5 188

13

©ISO/IEC N3092

There is a syntactic ambiguity when an ellipsis occurs at the end of a parameter-declaration-clause without
a preceding comma. In this case, the ellipsis is parsed as part of the abstract-declarator if the type of the
parameter names a template parameter pack that has not been expanded; otherwise, it is parsed as part of
the parameter-declaration-clause.””

8.3.6 Default arguments [dcl.fct.default]

If an expression is specified in a parameter declaration this expression is used as a default argument. Default
arguments will be used in calls where trailing arguments are missing.

[Example: the declaration

void point(int = 3, int = 4);

declares a function that can be called with zero, one, or two arguments of type int. It can be called in any
of these ways:

point(1,2); point(1l); point();

The last two calls are equivalent to point(1,4) and point(3,4), respectively. — end example]

A default argument expression shall be specified only in the parameter-declaration-clause of a function
declaration or in a template-parameter (14.1). It shall not be specified for a parameter pack. If it is
specified in a parameter-declaration-clause, it shall not occur within a declarator or abstract-declarator of a
parameter-declaration.%0

For non-template functions, default arguments can be added in later declarations of a function in the
same scope. Declarations in different scopes have completely distinct sets of default arguments. That is,
declarations in inner scopes do not acquire default arguments from declarations in outer scopes, and vice
versa. In a given function declaration, each parameter subsequent to a parameter with a default argument
shall have a default argument supplied in this or a previous declaration or shall be a function parameter pack.
A default argument shall not be redefined by a later declaration (not even to the same value). [Example:

void g(int = 0, ...); // OK, ellipsis is not a parameter so it can follow
// a parameter with a default argument

void f(int, int);

void f(int, int = 7);

void h() {
£(3); // OK, calls £(3, 7)
void f(int = 1, int); // error: does not use default
// from surrounding scope
}
void m() {
void f(int, int); // has no defaults
£(4); // error: wrong number of arguments
void f(int, int = 5); // OK
£(4); // OK, calls £(4, 5);
void f(int, int = 5); // error: cannot redefine, even to

// same value

}
void n() {

99) One can explicitly disambiguate the parse either by introducing a comma (so the ellipsis will be parsed as part of the
parameter-declaration-clause) or by introducing a name for the parameter (so the ellipsis will be parsed as part of the declarator-
id).

100) This means that default arguments cannot appear, for example, in declarations of pointers to functions, references to
functions, or typedef declarations.

§8.3.6 189

©ISO/IEC N3092

£(6); // OK, calls £(6, 7)
}

—end example] For a given inline function defined in different translation units, the accumulated sets of
default arguments at the end of the translation units shall be the same; see 3.2. If a friend declaration specifies
a default argument expression, that declaration shall be a definition and shall be the only declaration of the
function or function template in the translation unit.

5 A default argument expression is implicitly converted (Clause 4) to the parameter type. The default argu-
ment expression has the same semantic constraints as the initializer expression in a declaration of a variable
of the parameter type, using the copy-initialization semantics (8.5). The names in the expression are bound,
and the semantic constraints are checked, at the point where the default argument expression appears.
Name lookup and checking of semantic constraints for default arguments in function templates and in mem-
ber functions of class templates are performed as described in 14.7.1. [Ezample: in the following code, g
will be called with the value £ (2):

int a = 1;
int f(int);
int g(int x = £(a)); // default argument: £(::a)

void h() {
a = 2;
{
int a = 3;

gQ; //g(f(::a))
}
}

— end example| [Note: in member function declarations, names in default argument expressions are looked
up as described in 3.4.1. Access checking applies to names in default argument expressions as described in
Clause 11. — end note|

6 Except for member functions of class templates, the default arguments in a member function definition that
appears outside of the class definition are added to the set of default arguments provided by the member
function declaration in the class definition. Default arguments for a member function of a class template
shall be specified on the initial declaration of the member function within the class template. [Example:

class C {
void f(int i = 3);
void g(int i, int j = 99);

};

void C::f(int i = 3) { // error: default argument already

} // specified in class scope

void C::g(int i = 88, int j) { // in this translation unit,

} // C::g can be called with no argument

— end example|
7 Local variables shall not be used in default argument expressions. [Ezample:
void £() {
int i;
extern void g(int x = i); //error

/).
}

§8.3.6 190

©ISO/IEC N3092

— end example]
The keyword this shall not be used in a default argument of a member function. [Ezample:

class A {
void f(A* p = this) { } // error
};

— end example |

Default arguments are evaluated each time the function is called. The order of evaluation of function
arguments is unspecified. Consequently, parameters of a function shall not be used in default argument
expressions, even if they are not evaluated. Parameters of a function declared before a default argument
expression are in scope and can hide namespace and class member names. | Ezample:

int a;

int f(int a, int b

a); // error: parameter a

// used as default argument
typedef int I;
int g(float I, int b = I(2)); // error: parameter I found
int h(int a, int b = sizeof(a)); // error, parameter a used
// in default argument

— end example | Similarly, a non-static member shall not be used in a default argument expression, even if it
is not evaluated, unless it appears as the id-expression of a class member access expression (5.2.5) or unless
it is used to form a pointer to member (5.3.1). [Ezample: the declaration of X::mem1() in the following
example is ill-formed because no object is supplied for the non-static member X: :a used as an initializer.

int b;
class X {
int a;
int memi(int i = a); // error: non-static member a
// used as default argument
int mem2(int i = b); // OK; use X::b

static int b;

};

The declaration of X: :mem2() is meaningful, however, since no object is needed to access the static member
X::Db. Classes, objects, and members are described in Clause 9. — end ezample] A default argument is not
part of the type of a function. [Ezample:

int f(int = 0);

void h() {

int j = £(1);

int k = £0); // OK, means £(0)
}

int (*p1) (int) = &f;
int (xp2)) = &f; // error: type mismatch

— end example] When a declaration of a function is introduced by way of a using-declaration (7.3.3), any
default argument information associated with the declaration is made known as well. If the function is
redeclared thereafter in the namespace with additional default arguments, the additional arguments are also
known at any point following the redeclaration where the using-declaration is in scope.

§8.3.6 191

10

©ISO/IEC N3092

A virtual function call (10.3) uses the default arguments in the declaration of the virtual function determined
by the static type of the pointer or reference denoting the object. An overriding function in a derived class
does not acquire default arguments from the function it overrides. [Ezample:

struct A {

virtual void f(int a = 7);
};
struct B : public A {

void f(int a);

};
void m() {

B* pb = new B;

Ax pa = pb;

pa—>f(); // OK, calls pa->B: :£(7)

pb—>£0); // error: wrong number of arguments for B::£()
}

— end example]

8.4 Function definitions [dcl.fct.def]

8.4.1 In general [dcl.fct.def.general]

Function definitions have the form

function-definition:
attribute-specifierop: decl-specifier-seqop: declarator function-body
attribute-specifierop; decl-specifier-seqop: declarator = default ;
attribute-specifierop; decl-specifier-seqop: declarator = delete ;

function-body:
ctor-initializer,p: compound-statement
function-try-block

Any informal reference to the body of a function should be interpreted as a reference to the non-terminal
function-body. The optional attribute-specifier in a function-definition appertains to the function.
The declarator in a function-definition shall have the form

D1 (parameter-declaration-clause) cv-qualifier-seqopt
ref-qualifierop. exception-specificationop: attribute-specifierop: trailing-return-typeop:

as described in 8.3.5. A function shall be defined only in namespace or class scope.
[Ezample: a simple example of a complete function definition is

int max(int a, int b, int c) {
int m=(a>b) ? a: b;
return (m > c) ?m : c;

}
Here int is the decl-specifier-seq; max(int a, int b, int c) is the declarator; { /* ... */ } is the
function-body. — end example]

A ctor-initializer is used only in a constructor; see 12.1 and 12.6.

A cv-qualifier-seq or a ref-qualifier (or both) can be part of a non-static member function declaration,
non-static member function definition, or pointer to member function only (8.3.5); see 9.3.2.

[Note: unused parameters need not be named. For example,

§8.4.1 192

©ISO/IEC N3092

void print(int a, int) {
std: :printf("a = %d\n",a);
}

— end note

In the function-body, a function-local predefined variable denotes a block-scope object of static storage du-
ration that is implicitly defined (see 3.3.3).

The function-local predefined variable __func__ is defined as if a definition of the form

static const char __func__[] = "function-name ";

had been provided, where function-name is an implementation-defined string. It is unspecified whether such

a variable has an address distinct from that of any other object in the program.'®!
[Example:
struct S {
SO : s(__func_) {} // OK
const char *s;
};
void f(const char * s = __func__); // error: __func__ is undeclared
— end example]
8.4.2 Explicitly-defaulted functions [dcl.fct.def.default]

A function definition of the form:
attribute-specifierop; decl-specifier-seqop: declarator = default ;
is called an explicitly-defaulted definition. A function that is explicitly defaulted shall
— be a special member function,

— have the same declared function type (except for possibly differing ref-qualifiers and except that in
the case of a copy constructor or copy assignment operator, the parameter type may be “reference to
non-const T”, where T is the name of the member function’s class) as if it had been implicitly declared,

— not have default arguments, and
— not have an exception-specification.

[Note: This implies that parameter types, return type, and cv-qualifiers must match the hypothetical implicit
declaration. — end note] An explicitly-defaulted function may be declared constexpr only if it would have
been implicitly declared as constexpr. If it is explicitly defaulted on its first declaration,

— it shall be public,
— it shall not be explicit,
— it shall not be virtual,

— it is implicitly considered to have the same exception-specification as if it had been implicitly de-
clared (15.4), and

101) Implementations are permitted to provide additional predefined variables with names that are reserved to the implemen-
tation (17.6.3.3.2). If a predefined variable is not used (3.2), its string value need not be present in the program image.

§ 8.4.2 193

3

4

5

©ISO/IEC N3092

— in the case of a copy constructor, move constructor, copy assignment operator, or move assignment
operator, it shall have the same parameter type as if it had been implicitly declared.

[Note: Such a special member function may be trivial, and thus its accessibility and explicitness should

match the hypothetical implicit definition; see below. — end note| [Example:
struct S {
S(int a = 0) = default; // ill-formed: default argument
void operator=(const S&) = default; // ill-formed: non-matching return type
“S() throw() = default; // ill-formed: exception specification
private:
S(8&) ; // OK: private copy constructor
};
S::8(8%) = default; // OK: defines copy constructor

— end example]

Explicitly-defaulted functions and implicitly-declared functions are collectively called defaulted functions,
and the implementation shall provide implicit definitions for them (12.1 12.4, 12.8), which might mean
defining them as deleted. A special member function is user-provided if it is user-declared and not explicitly
defaulted on its first declaration. A user-provided explicitly-defaulted function is defined at the point where
it is explicitly defaulted; if such a function is implicitly defined as deleted, the program is ill-formed. [Note:
while an implicitly-declared special member function is inline (Clause 12), an explicitly-defaulted definition
may be non-inline. Non-inline definitions are user-provided, and hence non-trivial (12.1, 12.4, 12.8). This
rule enables efficient execution and concise definition while enabling a stable binary interface to an evolving
code base. — end note]

[Example:

struct trivial {
trivial() = default;
trivial (const trivial&) = default;
trivial(trivial&&) = default;
trivial& operator=(const trivial&) = default;
trivial& operator=(trivial&&) = default;
~“trivial() = default;

};

struct nontriviall {
nontriviall();
};

nontriviall::nontriviall() = default; // not inline

struct nontrivial2 {
nontrivial2();
};

inline nontrivial2::nontrivial2() = default; // not first declaration
struct nontrivial3 {
virtual “nontrivial3() = 0; // virtual

};

inline nontrivial3::“nontrivial3() = default; // not first declaration

— end example]

§ 8.4.2 194

3

©ISO/IEC N3092

8.4.3 Deleted definitions [dcl.fct.def.delete]

A function definition of the form:
attribute-specifierop: decl-specifier-seqop: declarator = delete ;
is called a deleted definition. A function with a deleted definition is also called a deleted function.

A program that refers to a deleted function implicitly or explicitly, other than to declare it, is ill-formed.
[Note: This includes calling the function implicitly or explicitly and forming a pointer or pointer-to-member
to the function. It applies even for references in expressions that are not potentially-evaluated. If a function
is overloaded, it is referenced only if the function is selected by overload resolution. — end note|

[Ezample: One can enforce non-default initialization and non-integral initialization with

struct sometype {

sometype() = delete;
some_type(std::intmax_t) = delete;
some_type (double) ;

}

// OK, but redundant

— end example]
[Example: One can prevent use of a class in certain new expressions by using deleted definitions of a user-

declared operator new for that class.

struct sometype {
void *operator new(std::size_t) =
void *operator new[](std::size_t)

};

sometype *p = new sometype;

sometype *q = new sometypel[3];

delete;
= delete;

// error, deleted class operator new
// error, deleted class operator newl[]

— end example]

[Example: One can make a class uncopyable, i.e. move-only, by using deleted definitions of the copy
constructor and copy assignment operator, and then providing defaulted definitions of the move constuctor

and move assignment operator.

struct moveonly {
moveonly() = default;
moveonly(const moveonly&) = delete;
moveonly (moveonly&&) = default;
moveonly& operator=(const moveonly&) = delete;
moveonly& operator=(moveonly&&) = default;
“moveonly() = default;

};

moveonly *p;

moveonly q(xp); // error, deleted copy constructor

— end example|

A deleted function is implicitly inline. [Note: The one-definition rule (3.2) applies to deleted definitions.
— end note| A deleted definition of a function shall be the first declaration of the function or, for an explicit
specialization of a function template, the first declaration of that specialization. [Ezample:

struct sometype {
sometype() ;
};

§8.4.3 195

©ISO/IEC N3092

sometype: :sometype() = delete; // ill-formed; not first declaration

— end example]

8.5 Initializers [dcl.init]

A declarator can specify an initial value for the identifier being declared. The identifier designates a variable
being initialized. The process of initialization described in the remainder of 8.5 applies also to initializa-
tions specified by other syntactic contexts, such as the initialization of function parameters with argument
expressions (5.2.2) or the initialization of return values (6.6.3).
initializer:
brace-or-equal-initializer
(expression-list)
brace-or-equal-initializer:
= {nitializer-clause
braced-init-list
initializer-clause:
assignment-expression
braced-init-list
initializer-list:
initializer-clause . . . opt
initializer-list , initializer-clause . . . op¢
braced-init-list:
{ initializer-list ,op; ¥}
{3
Automatic, register, thread_local, static, and namespace-scoped external variables can be initialized by
arbitrary expressions involving literals and previously declared variables and functions. [Example:

int f(int);
int a = 2;
int b = £(a);
int c(b);
— end example]
[Note: default argument expressions are more restricted; see 8.3.6.
The order of initialization of variables with static storage duration is described in 3.6 and 6.7. — end note|

To zero-initialize an object or reference of type T means:

— if T is a scalar type (3.9), the object is set to the value 0 (zero), taken as an integral constant expression,
converted to T;102

— if T is a (possibly cv-qualified) non-union class type, each non-static data member and each base-class
subobject is zero-initialized;

— if T is a (possibly cv-qualified) union type, the object’s first non-static named data member is zero-
initialized;
— if T is an array type, each element is zero-initialized;

— if T is a reference type, no initialization is performed.

102) As specified in 4.10, converting an integral constant expression whose value is 0 to a pointer type results in a null pointer
value.

§ 8.5 196

10

11

12

©ISO/IEC N3092

To default-initialize an object of type T means:

— if T is a (possibly cv-qualified) class type (Clause 9), the default constructor for T is called (and the
initialization is ill-formed if T has no accessible default constructor);

— if T is an array type, each element is default-initialized;
— otherwise, no initialization is performed.

If a program calls for the default initialization of an object of a const-qualified type T, T shall be a class type
with a user-provided default constructor.

To value-initialize an object of type T means:

— if T is a (possibly cv-qualified) class type (Clause 9) with a user-provided constructor (12.1), then the
default constructor for T is called (and the initialization is ill-formed if T has no accessible default
constructor);

— if Tis a (possibly cv-qualified) non-union class type without a user-provided constructor, then the object
is zero-initialized and, if T’s implicitly-declared default constructor is non-trivial, that constructor is
called.

— if T is an array type, then each element is value-initialized;
— otherwise, the object is zero-initialized.
A program that calls for default-initialization or value-initialization of an entity of reference type is ill-formed.

[Note: Every object of static storage duration is zero-initialized at program startup before any other initial-
ization takes place. In some cases, additional initialization is done later. — end note]

An object whose initializer is an empty set of parentheses, i.e., (), shall be value-initialized.
[Note: since () is not permitted by the syntax for initializer,

X aQ);

is not the declaration of an object of class X, but the declaration of a function taking no argument and
returning an X. The form () is permitted in certain other initialization contexts (5.3.4, 5.2.3, 12.6.2). — end
note |

If no initializer is specified for an object, the object is default-initialized; if no initialization is performed, an
object with automatic or dynamic storage duration has indeterminate value. [Note: objects with static or
thread storage duration are zero-initialized, see 3.6.2. — end note]

An initializer for a static member is in the scope of the member’s class. [Example:
int a;
struct X {
static int a;

static int b;

};

int X::a = 1;
int X::b = a; //X:i:b = X::a

— end example|

§ 8.5 197

13

14

15

16

©ISO/IEC N3092

The form of initialization (using parentheses or =) is generally insignificant, but does matter when the
initializer or the entity being initialized has a class type; see below. A parenthesized initializer can be a list
of expressions only when the entity being initialized has a class type.

The initialization that occurs in the form

T x = a;

as well as in argument passing, function return, throwing an exception (15.1), handling an exception (15.3),
and aggregate member initialization (8.5.1) is called copy-initialization. [Note: Copy-initialization may
invoke a move (12.8). — end note]

The initialization that occurs in the forms

T x(a);
T x{a};

as well as in new expressions (5.3.4), static_cast expressions (5.2.9), functional notation type conversions
(5.2.3), and base and member initializers (12.6.2) is called direct-initialization.

The semantics of initializers are as follows. The destination type is the type of the object or reference being
initialized and the source type is the type of the initializer expression. The source type is not defined when
the initializer is a braced-init-list or when it is a parenthesized list of expressions.

— If the initializer is a braced-init-list, the object is list-initialized (8.5.4).
— If the destination type is a reference type, see 8.5.3.

— If the destination type is an array of characters, an array of chari16_t, an array of char32_t, or an
array of wchar_t, and the initializer is a string literal, see 8.5.2.

— If the initializer is (), the object is value-initialized.
— Otherwise, if the destination type is an array, the program is ill-formed.
— If the destination type is a (possibly cv-qualified) class type:

— If the initialization is direct-initialization, or if it is copy-initialization where the cv-unqualified
version of the source type is the same class as, or a derived class of, the class of the destination,
constructors are considered. The applicable constructors are enumerated (13.3.1.3), and the best
one is chosen through overload resolution (13.3). The constructor so selected is called to initialize
the object, with the initializer expression(s) as its argument(s). If no constructor applies, or the
overload resolution is ambiguous, the initialization is ill-formed.

— Otherwise (i.e., for the remaining copy-initialization cases), user-defined conversion sequences
that can convert from the source type to the destination type or (when a conversion function
is used) to a derived class thereof are enumerated as described in 13.3.1.4, and the best one is
chosen through overload resolution (13.3). If the conversion cannot be done or is ambiguous, the
initialization is ill-formed. The function selected is called with the initializer expression as its
argument; if the function is a constructor, the call initializes a temporary of the cv-unqualified
version of the destination type. The temporary is a prvalue. The result of the call (which is the
temporary for the constructor case) is then used to direct-initialize, according to the rules above,
the object that is the destination of the copy-initialization. In certain cases, an implementation
is permitted to eliminate the copying inherent in this direct-initialization by constructing the
intermediate result directly into the object being initialized; see 12.2, 12.8.

— Otherwise, if the source type is a (possibly cv-qualified) class type, conversion functions are considered.
The applicable conversion functions are enumerated (13.3.1.5), and the best one is chosen through

§ 8.5 198

17

©ISO/IEC N3092

overload resolution (13.3). The user-defined conversion so selected is called to convert the initializer
expression into the object being initialized. If the conversion cannot be done or is ambiguous, the
initialization is ill-formed.

— Otherwise, the initial value of the object being initialized is the (possibly converted) value of the ini-
tializer expression. Standard conversions (Clause 4) will be used, if necessary, to convert the initializer
expression to the cv-unqualified version of the destination type; no user-defined conversions are con-
sidered. If the conversion cannot be done, the initialization is ill-formed. | Note: an expression of type
“cvl T” can initialize an object of type “cv2 T” independently of the cv-qualifiers cv! and cv2.

int a;
const int b = a;
int ¢ = b;

— end note]

An initializer-clause followed by an ellipsis is a pack expansion (14.5.3).

8.5.1 Aggregates [dcl.init.aggr]

An aggregate is an array or a class (Clause 9) with no user-provided constructors (12.1), no brace-or-equal-
initializers for non-static data members (9.2), no private or protected non-static data members (Clause 11),
no base classes (Clause 10), and no virtual functions (10.3).

When an aggregate is initialized by an initializer list, as specified in 8.5.4, the elements of the initializer list
are taken as initializers for the members of the aggregate, in increasing subscript or member order. Each
member is copy-initialized from the corresponding initializer-clause. If the initializer-clause is an expression
and a narrowing conversion (8.5.4) is required to convert the expression, the program is ill-formed. [Note:
If an initializer-clause is itself an initializer list, the member is list-initialized, which will result in a recursive
application of the rules in this section if the member is an aggregate. — end note] [Example:

struct A {
int x;
struct B {
int i;
int j;
} b;
Ya=9{1,{2,3%}1}

initializes a.x with 1, a.b.1i with 2, a.b.j with 3. — end example]

An aggregate that is a class can also be initialized with a single expression not enclosed in braces, as described
in 8.5.

An array of unknown size initialized with a brace-enclosed initializer-list containing n initializer-clauses,
where n shall be greater than zero, is defined as having n elements (8.3.4). [Ezample:

int x[1 = {1, 3, 5 };

declares and initializes x as a one-dimensional array that has three elements since no size was specified and
there are three initializers. — end ezample] An empty initializer list {} shall not be used as the initializer-
clause for an array of unknown bound.!?3

Static data members and anonymous bit fields are not considered members of the class for purposes of
aggregate initialization. [Example:

103) The syntax provides for empty ¢nitializer-lists, but nonetheless C++ does not have zero length arrays.

§ 8.5.1 199

9

10

©ISO/IEC N3092

struct A {
int i;
static int s;
int j;
int :17;
int k;
Ya={1, 2, 3}

Here, the second initializer 2 initializes a.j and not the static data member A::s, and the third initializer
3 initializes a.k and not the anonymous bit field before it. — end ezample]

An initializer-list is ill-formed if the number of initializer-clauses exceeds the number of members or elements
to initialize. [Example:

char cv[4] = { ’a’, ’s’, °d’, ’f’, 0 }; // error

is ill-formed. — end ezample]

If there are fewer initializer-clauses in the list than there are members in the aggregate, then each member
not explicitly initialized shall be value-initialized (8.5). [Example:

struct S { int a; char* b; int c; };
S ss =91, "asdf" };

initializes ss.a with 1, ss.b with "asdf", and ss.c with the value of an expression of the form int (), that
is, 0. — end example]

If an aggregate class C contains a subaggregate member m that has no members for purposes of aggregate
initialization, the initializer-clause for m shall not be omitted from an initializer-list for an object of type C
unless the initializer-clauses for all members of C following m are also omitted. [Ezample:

struct S { } s;
struct A {
S si;
int i1;
S s2;
int i2;
S s3;
int i3;
Ya=A{
{1, // Required initialization
0,
s, // Required initialization
0
}; // Initialization not required for A::s3 because A::1i3 is also not initialized

— end example]

If an incomplete or empty initializer-list leaves a member of reference type uninitialized, the program is
ill-formed.

When initializing a multi-dimensional array, the initializer-clauses initialize the elements with the last (right-
most) index of the array varying the fastest (8.3.4). [Ezample:

int x[2][2] = {3, 1, 4, 2 };

initializes x[0] [0] to 3, x[0] [1] to 1, x[1] [0] to 4, and x[1] [1] to 2. On the other hand,

§ 8.5.1 200

11

12

©ISO/IEC N3092

float y[4]1[3] = {
{13} {23} {313}, {42
};

initializes the first column of y (regarded as a two-dimensional array) and leaves the rest zero. — end
example]

In a declaration of the form

Tx={{a};

braces can be elided in an initializer-list as follows.'% If the instializer-list begins with a left brace, then
the succeeding comma-separated list of initializer-clauses initializes the members of a subaggregate; it is
erroneous for there to be more initializer-clauses than members. If, however, the initializer-list for a sub-
aggregate does not begin with a left brace, then only enough initializer-clauses from the list are taken to
initialize the members of the subaggregate; any remaining initializer-clauses are left to initialize the next
member of the aggregate of which the current subaggregate is a member. [Ezample:

float y[4]1[3
{1, 3,5
{2, 4,6
{3,5,7
};

is a completely-braced initialization: 1, 3, and 5 initialize the first row of the array y[0], namely y[0] [0],
y[0] [1], and y[0] [2]. Likewise the next two lines initialize y[1] and y[2]. The initializer ends early and
therefore y[3]s elements are initialized as if explicitly initialized with an expression of the form float(),
that is, are initialized with 0.0. In the following example, braces in the initializer-list are elided; however
the initializer-list has the same effect as the completely-braced initializer-list of the above example,

float y[4]1[3] = {
1, 3, 5, 2, 4, 6, 3, 5,7
};

The initializer for y begins with a left brace, but the one for y[0] does not, therefore three elements from
the list are used. Likewise the next three are taken successively for y[1] and y[2]. — end example]

All implicit type conversions (Clause 4) are considered when initializing the aggregate member with an
assignment-expression. If the assignment-expression can initialize a member, the member is initialized.
Otherwise, if the member is itself a subaggregate, brace elision is assumed and the assignment-expression
is considered for the initialization of the first member of the subaggregate. [Note: As specified above,
brace elision cannot apply to subaggregates with no members for purposes of aggregate initialization; an
initializer-clause for the entire subobject is required. — end note|

[Example:
struct A {
int i;
operator int();
};
struct B {
A al, a2;
int z;
};

104) Braces cannot be elided in other uses of list-initialization.

§ 8.5.1 201

13

14

15

16

17

©ISO/IEC N3092

A a;
Bb={4, a, al;

Braces are elided around the initializer-clause for b.al.i. b.al.i is initialized with 4, b.a2 is initialized
with a, b.z is initialized with whatever a.operator int() returns. — end ezample]

[Note: An aggregate array or an aggregate class may contain members of a class type with a user-provided
constructor (12.1). Initialization of these aggregate objects is described in 12.6.1. — end note]

[Note: Whether the initialization of aggregates with static storage duration is static or dynamic is specified
in 3.6.2 and 6.7. — end note]

When a union is initialized with a brace-enclosed initializer, the braces shall only contain an initializer-clause
for the first non-static data member of the union. [Example:

union u { int a; char* b; };

ua=9{1}%};

ub=a;

uc-=1; // error
ud={0, "asdf" }; // error
ue=q{ "asdf" }; // error

— end example |

[Note: As described above, the braces around the initializer-clause for a union member can be omitted if
the union is a member of another aggregate. — end note|

The full-expressions in an initializer-clause are evaluated in the order in which they appear.
8.5.2 Character arrays [dcl.init.string]

A char array (whether plain char, signed char, or unsigned char), char16_t array, char32_t array, or
wchar_t array can be initialized by a narrow character literal, char16_t string literal, char32_t string
literal, or wide string literal, respectively, or by an appropriately-typed string literal enclosed in braces.
Successive characters of the value of the string literal initialize the elements of the array. [Example:

char msg[] = "Syntax error on line %s\n";
shows a character array whose members are initialized with a string-literal. Note that because ’\n’ is a
single character and because a trailing >\0’ is appended, sizeof (msg) is 25. — end ezample]
There shall not be more initializers than there are array elements. [Ezample:

char cv[4] = "asdf"; // error

is ill-formed since there is no space for the implied trailing *\0’. — end ezample]

If there are fewer initializers than there are array elements, each element not explicitly initialized shall be
zero-initialized (8.5).

8.5.3 References [dcl.init.ref]

A variable declared to be a T& or T&&, that is, “reference to type T” (8.3.2), shall be initialized by an object,
or function, of type T or by an object that can be converted into a T. [Ezample:

int g(int);
void £() {
int i;

§8.5.3 202

2

5

©ISO/IEC N3092

int& r = i; // r refers to i

r=1; // the value of i becomes 1

int* p = &r; // p points to i

int& rr = r; // T refers to what T refers to, that is, to i
int (&rg) (int) = g; // xg refers to the function g

rg(i); // calls function g

int al3];

int (&ra)[3] = a; // ra refers to the array a

ra[1] = i; // modifies al[1]

}

— end example]

A reference cannot be changed to refer to another object after initialization. Note that initialization of a
reference is treated very differently from assignment to it. Argument passing (5.2.2) and function value
return (6.6.3) are initializations.

The initializer can be omitted for a reference only in a parameter declaration (8.3.5), in the declaration of
a function return type, in the declaration of a class member within its class definition (9.2), and where the
extern specifier is explicitly used. [Ezample:

int& ri; // error: initializer missing
extern int& r2; // OK

— end example]

Given types “cvi T1” and “cv2 T2,” “cvi T1” is reference-related to “cv2 T2” if T1 is the same type as T2, or
T1 is a base class of T2. “cvi T1” is reference-compatible with “cv2 T2” if T1 is reference-related to T2 and cvi
is the same cv-qualification as, or greater cv-qualification than, cv2. For purposes of overload resolution,
cases for which cwv! is greater cv-qualification than cv2 are identified as reference-compatible with added
qualification (see 13.3.3.2). In all cases where the reference-related or reference-compatible relationship of
two types is used to establish the validity of a reference binding, and T1 is a base class of T2, a program
that necessitates such a binding is ill-formed if T1 is an inaccessible (Clause 11) or ambiguous (10.2) base
class of T2.

A reference to type “cvl T1” is initialized by an expression of type “cv2 T2” as follows:
— If the reference is an lvalue reference and the initializer expression
— is an lvalue (but is not a bit-field), and “cvi T1” is reference-compatible with “cv2 T2,” or

— has a class type (i.e., T2 is a class type), where T1 is not reference-related to T2, and can be
implicitly converted to an lvalue of type “cv8 T3,” where “cvi T1” is reference-compatible with “cv8
T3719% (this conversion is selected by enumerating the applicable conversion functions (13.3.1.6)
and choosing the best one through overload resolution (13.3)),

then the reference is bound to the initializer expression lvalue in the first case and to the lvalue result
of the conversion in the second case (or, in either case, to the appropriate base class subobject of the
object). [Note: the usual lvalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3)
standard conversions are not needed, and therefore are suppressed, when such direct bindings to lvalues
are done. — end note]

[Example:

105) This requires a conversion function (12.3.2) returning a reference type.

§8.5.3 203

©ISO/IEC N3092

double d = 2.0;
double& rd = d; // rd refers to d
const double& rcd = d; // rcd refers to d

struct A { };

struct B : A { } b;

A% ra = b; // ra refers to A subobject in b
const A& rca = b; // rca refers to A subobject in b

— end example]

— Otherwise, the reference shall be an lvalue reference to a non-volatile const type (i.e., cv! shall be
const), or the reference shall be an rvalue reference and the initializer expression shall be an rvalue or
have a function type. [Ezample:

double& rd2 = 2.0; // error: not an lvalue and reference not const
int i = 2;

double& rd3 = i; // error: type mismatch and reference not const
double&& rd4 = ij; // error: rvalue reference cannot bind to lvalue

— end example]
— If T1 is a function type, then
— if T2 is the same type as T1, the reference is bound to the initializer expression lvalue;

— if T2 is a class type and the initializer expression can be implicitly converted to an lvalue of
type T1 (this conversion is selected by enumerating the applicable conversion functions (13.3.1.6)
and choosing the best one through overload resolution (13.3)), the reference is bound to the
function lvalue that is the result of the conversion;

— otherwise, the program is ill-formed.
— Otherwise, if T2 is a class type and
— the initializer expression is an rvalue and “cvl T1” is reference-compatible with “cv2 T2”, or

— T1 is not reference-related to T2 and the initializer expression can be implicitly converted to an
rvalue of type “cvg T3” (this conversion is selected by enumerating the applicable conversion
functions (13.3.1.6) and choosing the best one through overload resolution (13.3)),

then the reference is bound to the initializer expression rvalue in the first case and to the object
that is the result of the conversion in the second case (or, in either case, to the appropriate base
class subobject of the object).

[Example:

struct A { };
struct B : A { } b;
extern B £();

const A% rca = £(); // bound to the A subobject of the B rvalue.
Ak& rcb = £Q); // same as above
struct X {
operator B();
} x;
const A& r = x; // bound to the A subobject of the result of the conversion

— end example]

§8.5.3 204

©ISO/IEC N3092

— If the initializer expression is an rvalue, with T2 an array type, and “cvI T1” is reference-compatible
with “cv2 T2,” the reference is bound to the object represented by the rvalue (see 3.10).

— Otherwise, a temporary of type “cvl T1” is created and initialized from the initializer expression
using the rules for a non-reference copy-initialization (8.5). The reference is then bound to the
temporary. If T1 is reference-related to T2, cv! must be the same cv-qualification as, or greater
cv-qualification than, cv2; otherwise, the program is ill-formed. [Ezample:

const double& rcd2 = 2; // red2 refers to temporary with value 2.0
double&& rcd3 = 2; // rcd3 refers to temporary with value 2.0
const volatile int cvi = 1;

const int& r = cvi; // error: type qualifiers dropped

— end example]

In all cases except the last (i.e., creating and initializing a temporary from the initializer expression), the
reference is said to bind directly to the initializer expression.

[Note: 12.2 describes the lifetime of temporaries bound to references. — end note|

8.5.4 List-initialization [dcl.init.list]

List-initialization is initialization of an object or reference from a braced-init-list. Such an initializer is
called an initializer list, and the comma-separated initializer-clauses of the list are called the elements of the
initializer list. An initializer list may be empty. List-initialization can occur in direct-initialization or copy-
initialization contexts; list-initialization in a direct-initialization context is called direct-list-initialization and
list-initialization in a copy-initialization context is called copy-list-initialization. [Note: List-initialization
can be used

— as the initializer in a variable definition (8.5)

as the initializer in a new expression (5.3.4)

— in a return statement (6.6.3)

as a function argument (5.2.2)

as a subscript (5.2.1)

as an argument to a constructor invocation (8.5, 5.2.3)
as an initializer for a non-static data member (9.2)

as a base-or-member initializer (12.6.2)

— on the right-hand side of an assignment (5.17)
[Example:

int a = {1};

std::complex<double> z{1,2};

new std::vector<std::string>{"once", "upon", "a", "time"}; //4 string elements
£({"Nicholas","Annemarie"}); // pass list of two elements

return { "Norah" }; // return list of one element
int* e {}; // initialization to zero / null pointer
x = double{1}; // explicitly construct a double

std::map<std::string,int> anim = { {"bear",4}, {"cassowary",2}, {"tiger",7} };

§ 8.5.4 205

©ISO/IEC N3092

— end example] — end note]

2 A constructor is an initializer-list constructor if its first parameter is of type std::initializer_list<E>
or reference to possibly cv-qualified std::initializer_list<E> for some type E, and either there are
no other parameters or else all other parameters have default arguments (8.3.6). [Note: Initializer-list
constructors are favored over other constructors in list-initialization (13.3.1.7). —end note] The template
std::initializer_list is not predefined; if the header <initializer_list> is not included prior to a use
of std::initializer_list — even an implicit use in which the type is not named (7.1.6.4) — the program
is ill-formed.

3 List-initialization of an object or reference of type T is defined as follows:

— If the initializer list has no elements and T is a class type with a default constructor, the object is
value-initialized.

— Otherwise, if the initializer list has no elements and T is an aggregate, each of the members of T is
initialized from an empty initializer list. [Ezample:

struct A {
A(std::initializer_list<int>); /) #1
};
struct B {
A a;
};
Bb{}; // OK, uses #1
Bb{1}; // error

— end example]

— Otherwise, if T is an aggregate, aggregate initialization is performed (8.5.1).

[Example:
double ad[] = { 1, 2.0 }; // OK
int aill = { 1, 2.0 }; // error: narrowing
struct S2 {
int mi;
double m2, m3;
};
8232={, ,3.0}; // OK
S2 s22 { 1.0, 2, 3 }; // error: narrowing
S2 523 { }; // OK: default to 0,0,0

— end example]

— Otherwise, if T is a specialization of std::initializer_list<E>, an initializer_list object is
constructed as described below and used to initialize the object according to the rules for initialization
of an object from a class of the same type (8.5).

— Otherwise, if T is a class type, constructors are considered. If T has an initializer-list constructor, the
argument list consists of the initializer list as a single argument; otherwise, the argument list consists
of the elements of the initializer list. The applicable constructors are enumerated (13.3.1.7) and the
best one is chosen through overload resolution (13.3). If a narrowing conversion (see below) is required
to convert any of the arguments, the program is ill-formed.

[Example:

§ 8.5.4 206

©ISO/IEC N3092

struct S {
S(std::initializer_list<double>); // #1
S(std::initializer_list<int>); /) #2
SO; /) #38
};
Sst=9{1.0, 2.0, 3.0 }; // invoke #1
Ss2=4{1, 2, 31} // invoke #2
Ss3={1%} // invoke #3

— end example]
[Example:

struct Map {
Map(std::initializer_list<std::pair<std::string,int>>);

3

Map ship = {{"Sophie",14}, {"Surprise",28}};

— end example]

[Ezample:
struct S {
// no initializer-list constructors
S(int, double, double); /) #1
SO; /) #2
};
Sst=9{1,2, 3.03%}; // OK: invoke #1
Ss2{1.0, 2, 33%; // error: narrowing
S s3 {1} // OK: invoke #2

— end example]

— Otherwise, if T is a reference to class type or if T is any reference type and the initializer list has no
elements, a prvalue temporary of the type referenced by T is list-initialized, and the reference is bound
to that temporary. [Note: As usual, the binding will fail and the program is ill-formed if the reference

type is an lvalue reference to a non-const type. — end note|
[Example:
struct S {
S(std::initializer_list<double>); // #1
S(const std::stringl); /) #2
};
const S& r1 = {1, 2, 3.0 }; // OK: invoke #1
const S& r2 { "Spinach" }; // OK: invoke #2
s« r3=4{1, 2, 313} // error: initializer is not an lvalue

— end example]

— Otherwise, if the initializer list has a single element, the object is initialized from that element; if a
narrowing conversion (see below) is required to convert the element to T, the program is ill-formed.

[Example:

§ 8.5.4 207

©ISO/IEC N3092

int x1 {2}; // OK
int x2 {2.0}; // error: narrowing

— end example]
— Otherwise, if the initializer list has no elements, the object is value-initialized.
[Example:

int** pp {}; // initialized to null pointer

— end example]

— Otherwise, the program is ill-formed.

[Ezample:
struct A { int i; int j; };
Aat {1, 23 // aggregate initialization
Aa2{1.2}; // error: narrowing
struct B {
B(std::initializer_list<int>);
};
Bbi {1, 23 // creates initializer list<int> and calls constructor
Bb2{1, 2.0 3}; // error: narrowing
struct C {
C(int i, double j);
};
Ccl=4{1, 2.2} // calls constructor with arguments (1, 2.2)
Cc2={1.1, 2 }; // error: narrowing
int j {1 3}; // initialize to 1
int k { }; // initialize to 0

— end example]

4 An object of type std: :initializer_list<E> is constructed from an initializer list as if the implementation
allocated an array of N elements of type E, where N is the number of elements in the initializer list.
Each element of that array is copy-initialized with the corresponding element of the initializer list, and
the std::initializer_list<E> object is constructed to refer to that array. If a narrowing conversion is
required to initialize any of the elements, the program is ill-formed.| Ezample:

struct X {
X(std::initializer_list<double> v);

};

X x{ 1,2,3 };

The initialization will be implemented in a way roughly equivalent to this:

double a[3] = {double{1}, double{2}, double{3}};

X x(std::initializer_list<double>(__a, __a+3));

assuming that the implementation can construct an initializer_list object with a pair of pointers. — end
example]

5 The lifetime of the array is the same as that of the initializer_list object. [Ezample:

§ 8.5.4 208

©ISO/IEC N3092

typedef std::complex<double> cmplx;
std::vector<cmplx> vl = { 1, 2, 3 };

void £() {
std: :vector<cmplx> v2{ 1, 2, 3 };
std::initializer_list<int> i3 = { 1, 2, 3 };

}

For v1 and v2, the initializer_list object and array created for { 1, 2, 3 } have full-expression lifetime.
For i3, the initializer_list object and array have automatic lifetime. — end example] [Note: The
implementation is free to allocate the array in read-only memory if an explicit array with the same initializer
could be so allocated. — end note]

6 A marrowing conversion is an implicit conversion

from a floating-point type to an integer type, or

from long double to double or float, or from double to float, except where the source is a constant
expression and the actual value after conversion is within the range of values that can be represented
(even if it cannot be represented exactly), or

from an integer type or unscoped enumeration type to a floating-point type, except where the source
is a constant expression and the actual value after conversion will fit into the target type and will
produce the original value when converted back to the original type, or

from an integer type or unscoped enumeration type to an integer type that cannot represent all the
values of the original type, except where the source is a constant expression and the actual value after
conversion will fit into the target type and will produce the original value when converted back to the
original type.

[Note: As indicated above, such conversions are not allowed at the top level in list-initializations. — end
note| [Example:

int x = 999; // x is not a constant expression
const int y = 999;

const int z = 99;

char cl = x; // OK, though it might narrow (in this case, it does narrow)
char c2{x}; // error: might narrow

char c3{y}; // error: narrows (assuming char is 8 bits)

char c4{z}; // OK: no narrowing needed

unsigned char ucl

{5}; // OK: no narrowing needed

unsigned char uc2 = {-1}; // error: narrows
unsigned int uil = {-1}; // error: narrows
signed int sil =

{ (unsigned int)-1 }; // error: narrows
int ii = {2.0}; // error: narrows
float f1 { x }; // error: might narrow
float f2 { 7 }; // OK: 7 can be exactly represented as a float
int f(int);
int af] =
{2, £(2), £(2.0) }; // OK: the double-to-int conversion is not at the top level

— end example|

§ 8.5.4 209

©ISO/IEC N3092

9 Classes [class]

A class is a type. Its name becomes a class-name (9.1) within its scope.

class-name:
identifier
stmple-template-id
Class-specifiers and elaborated-type-specifiers (7.1.6.3) are used to make class-names. An object of a class
consists of a (possibly empty) sequence of members and base class objects.

class-specifier:

class-head { member-specification,p: }
class-head:

class-key attribute-specifierop: identifierop: base-clauseopt

class-key attribute-specifieropy: nested-name-specifier identifier base-clauseopt

class-key attribute-specifieroy: nested-name-specifieroy: simple-template-id base-clauseopt
class-key:

class

struct

union

A class-specifier where the class-head omits the optional identifier defines an unnamed class.

A class-name is inserted into the scope in which it is declared immediately after the class-name is seen.
The class-name is also inserted into the scope of the class itself; this is known as the injected-class-name.
For purposes of access checking, the injected-class-name is treated as if it were a public member name. A
class-specifier is commonly referred to as a class definition. A class is considered defined after the closing
brace of its class-specifier has been seen even though its member functions are in general not yet defined.
The optional attribute-specifier appertains to the class; the attributes in the attribute-specifier are thereafter
considered attributes of the class whenever it is named.

Complete objects and member subobjects of class type shall have nonzero size.!%6 | Note: Class objects can

be assigned, passed as arguments to functions, and returned by functions (except objects of classes for which
copying or moving has been restricted; see 12.8). Other plausible operators, such as equality comparison,
can be defined by the user; see 13.5. — end note]

A union is a class defined with the class-key union; it holds only one data member at a time (9.5). [Note:
aggregates of class type are described in 8.5.1. — end note]

A trivially copyable class is a class that:
— has no non-trivial copy constructors (12.8),
— has no non-trivial move constructors (12.8),
— has no non-trivial copy assignment operators (13.5.3, 12.8),
— has no non-trivial move assignment operators (13.5.3, 12.8), and

— has a trivial destructor (12.4).

106) Base class subobjects are not so constrained.

210

©ISO/IEC N3092

A trivial class is a class that has a trivial default constructor (12.1) and is trivially copyable.

[Note: in particular, a trivially copyable or trivial class does not have virtual functions or virtual base
classes. — end note]

A standard-layout class is a class that:
— has no non-static data members of type non-standard-layout class (or array of such types) or reference,
— has no virtual functions (10.3) and no virtual base classes (10.1),
— has the same access control (Clause 11) for all non-static data members,
— has no non-standard-layout base classes,

— either has no non-static data members in the most-derived class and at most one base class with
non-static data members, or has no base classes with non-static data members, and

— has no base classes of the same type as the first non-static data member.'%7

A standard-layout struct is a standard-layout class defined with the class-key struct or the class-key class.
A standard-layout union is a standard-layout class defined with the class-key union.

[Note: standard-layout classes are useful for communicating with code written in other programming lan-
guages. Their layout is specified in 9.2. — end note]

A POD struct is a class that is both a trivial class and a standard-layout class, and has no non-static data
members of type non-POD struct, non-POD union (or array of such types). Similarly, a POD union is a
union that is both a trivial class and a standard layout class, and has no non-static data members of type
non-POD struct, non-POD union (or array of such types). A POD class is a class that is either a POD
struct or a POD union.

[Example:

struct N { // neither trivial nor standard-layout
int i;
int j;
virtual “NQ);

};

struct T { // trivial but not standard-layout
int i;

private:
int j;

};

struct SL { // standard-layout but not trivial
int i;
int j;
“SLO);

};

struct POD { // both trivial and standard-layout
int i;
int j;

};

107) This ensures that two subobjects that have the same class type and that belong to the same most-derived object are not
allocated at the same address (5.10).

211

10

©ISO/IEC N3092

— end example]

If a class-head contains a nested-name-specifier, the class-specifier shall refer to a class that was previously
declared directly in the class or namespace to which the nested-name-specifier refers, or in an element of
the inline namespace set (7.3.1) of that namespace (i.e., not merely inherited or introduced by a wusing-
declaration), and the class-specifier shall appear in a namespace enclosing the previous declaration. In such
cases, the nested-name-specifier of the class-head of the definition shall not begin with a decltype-specifier.

9.1 Class names [class.name]

A class definition introduces a new type. [Example:

struct X { int a; };
struct Y { int a; };
X al;

Y a2;

int a3;

declares three variables of three different types. This implies that
al = a2; // error: Y assigned to X
al = a3; // error: int assigned to X
are type mismatches, and that
int £(X);
int £(Y);
declare an overloaded (Clause 13) function £ () and not simply a single function £ () twice. For the same
reason,
struct S { int a; };
struct S { int a; }; // error, double definition
is ill-formed because it defines S twice. — end example|

A class declaration introduces the class name into the scope where it is declared and hides any class, variable,
function, or other declaration of that name in an enclosing scope (3.3). If a class name is declared in a scope
where a variable, function, or enumerator of the same name is also declared, then when both declarations
are in scope, the class can be referred to only using an elaborated-type-specifier (3.4.4). [Example:

struct stat {

};
stat gstat; // use plain stat to
// define variable
int stat(struct stat*); // redeclare stat as function
void £() {
struct stat* ps; // struct prefiz needed
// to name struct stat
stat (ps); // call stat()
}

§9.1 212

©ISO/IEC N3092

— end example] A declaration consisting solely of class-key identifier; is either a redeclaration of the name
in the current scope or a forward declaration of the identifier as a class name. It introduces the class name
into the current scope. [Example:

struct s { int a; };

void g() {
struct s; // hide global struct s
// with a block-scope declaration
s* p; // refer to local struct s
struct s { char*x p; }; // define local struct s
struct s; // redeclaration, has no effect
}

—end example| [Note: Such declarations allow definition of classes that refer to each other. [Ezample:

class Vector;

class Matrix {

friend Vector operator*(const Matrix&, const Vector&);
};
class Vector {
friend Vector operator*(const Matrix&, const Vector&);
};
Declaration of friends is described in 11.4, operator functions in 13.5. — end example] — end note|

[Note: An elaborated-type-specifier (7.1.6.3) can also be used as a type-specifier as part of a declaration. It
differs from a class declaration in that if a class of the elaborated name is in scope the elaborated name will
refer to it. — end note| [Example:

struct s { int a; };
void g(int s) {
struct s* p = new struct s; // global s
p~>a = s; // parameter s
}
— end example]

[Note: The declaration of a class name takes effect immediately after the identifier is seen in the class
definition or elaborated-type-specifier. For example,

class A * A;
first specifies A to be the name of a class and then redefines it as the name of a pointer to an object of that

class. This means that the elaborated form class A must be used to refer to the class. Such artistry with
names can be confusing and is best avoided. — end note]

A typedef-name (7.1.3) that names a class type, or a cv-qualified version thereof, is also a class-name. If a
typedef-name that names a cv-qualified class type is used where a class-name is required, the cv-qualifiers

§9.1 213

1

©ISO/IEC N3092

are ignored. A typedef-name shall not be used as the identifier in a class-head.
9.2 Class members [class.mem)]

member-specification:
member-declaration member-specificationop:
access-specifier : member-specificationqp:

member-declaration:
attribute-specifierop: decl-specifier-seqopt
member-declarator-listop: ;
function-definition ; opt
tiopt mested-name-specifier templateo,: unqualified-id ;
using-declaration
static__assert-declaration
template-declaration

member-declarator-list:
member-declarator
member-declarator-list , member-declarator

member-declarator:
declarator pure-specifierop:
declarator brace-or-equal-initializerop:
identifierop: attribute-specifierop: : constant-expression
pure-specifier:
=0
The member-specification in a class definition declares the full set of members of the class; no member
can be added elsewhere. Members of a class are data members, member functions (9.3), nested types,
and enumerators. Data members and member functions are static or non-static; see 9.4. Nested types are
classes (9.1, 9.7) and enumerations (7.2) defined in the class, and arbitrary types declared as members by use
of a typedef declaration (7.1.3). The enumerators of an unscoped enumeration (7.2) defined in the class are
members of the class. Except when used to declare friends (11.4) or to introduce the name of a member of a
base class into a derived class (7.3.3, 11.3), member-declarations declare members of the class, and each such
member-declaration shall declare at least one member name of the class. A member shall not be declared
twice in the member-specification, except that a nested class or member class template can be declared and
then later defined, and except that an enumeration can be introduced with an opaque-enum-declearation
and later redeclared with an enum-specifier.

A class is considered a completely-defined object type (3.9) (or complete type) at the closing } of the
class-specifier. Within the class member-specification, the class is regarded as complete within function
bodies, default arguments, exception-specifications, and brace-or-equal-initializers for non-static data mem-
bers (including such things in nested classes). Otherwise it is regarded as incomplete within its own class
member-specification.

[Note: a single name can denote several function members provided their types are sufficiently different
(Clause 13). — end note]

A member can be initialized using a constructor; see 12.1. [Note: see Clause 12 for a description of
constructors and other special member functions. — end note]

A member can be initialized using a brace-or-equal-initializer. (For static data members, see 9.4.2; for
non-static data members, see 12.6.2).

A member shall not be declared with the extern or register storage-class-specifier. Within a class definition,
a member shall not be declared with the thread_local storage-class-specifier unless also declared static.

§9.2 214

10

11

12

13

14

©ISO/IEC N3092

The decl-specifier-seq is omitted in constructor, destructor, and conversion function declarations only. The
member-declarator-list can be omitted only after a class-specifier or an enum-specifier or in a friend dec-
laration (11.4). A pure-specifier shall be used only in the declaration of a virtual function (10.3).

The optional attribute-specifier in a member-declaration appertains to each of the entities declared by the
member-declarators; it shall not appear if the optional member-declarator-list is omitted.

Non-static (9.4) data members shall not have incomplete types. In particular, a class C shall not contain
a non-static member of class C, but it can contain a pointer or reference to an object of class C.

[Note: See 5.1 for restrictions on the use of non-static data members and non-static member functions.
— end note]

[Note: the type of a non-static member function is an ordinary function type, and the type of a non-static
data member is an ordinary object type. There are no special member function types or data member types.
— end note]

[Ezample: A simple example of a class definition is

struct tnode {
char tword[20];
int count;
tnode *left;
tnode *right;
};

which contains an array of twenty characters, an integer, and two pointers to objects of the same type. Once
this definition has been given, the declaration

tnode s, *sp;
declares s to be a tnode and sp to be a pointer to a tnode. With these declarations, sp->count refers to
the count member of the object to which sp points; s.left refers to the left subtree pointer of the object

s; and s.right->tword[0] refers to the initial character of the tword member of the right subtree of s.
— end example |

Nonstatic data members of a (non-union) class with the same access control (Clause 11) are allocated so
that later members have higher addresses within a class object. The order of allocation of non-static data
members with different access control is unspecified (11). Implementation alignment requirements might
cause two adjacent members not to be allocated immediately after each other; so might requirements for
space for managing virtual functions (10.3) and virtual base classes (10.1).

If T is the name of a class, then each of the following shall have a name different from T:
— every static data member of class T;

— every member function of class T [Note: this restriction does not apply to constructors, which do not
have names (12.1) — end note];

— every member of class T that is itself a type;
— every enumerator of every member of class T that is an enumerated type; and
— every member of every anonymous union that is a member of class T.

In addition, if class T has a user-declared constructor (12.1), every non-static data member of class T shall
have a name different from T.

§9.2 215

15

16

17

18

©ISO/IEC N3092

Two standard-layout struct (Clause 9) types are layout-compatible if they have the same number of non-static
data members and corresponding non-static data members (in declaration order) have layout-compatible
types (3.9).

Two standard-layout union (Clause 9) types are layout-compatible if they have the same number of non-
static data members and corresponding non-static data members (in any order) have layout-compatible
types (3.9).

If a standard-layout union contains two or more standard-layout structs that share a common initial sequence,
and if the standard-layout union object currently contains one of these standard-layout structs, it is permitted
to inspect the common initial part of any of them. Two standard-layout structs share a common initial
sequence if corresponding members have layout-compatible types and either neither member is a bit-field or
both are bit-fields with the same width for a sequence of one or more initial members.

A pointer to a standard-layout struct object, suitably converted using a reinterpret_cast, points to its
initial member (or if that member is a bit-field, then to the unit in which it resides) and vice versa. [Note:
There might therefore be unnamed padding within a standard-layout struct object, but not at its beginning,
as necessary to achieve appropriate alignment. — end note]

9.3 Member functions [class.mfct]

Functions declared in the definition of a class, excluding those declared with a friend specifier (11.4), are
called member functions of that class. A member function may be declared static in which case it is a static
member function of its class (9.4); otherwise it is a non-static member function of its class (9.3.1, 9.3.2).

A member function may be defined (8.4) in its class definition, in which case it is an inline member func-
tion (7.1.2), or it may be defined outside of its class definition if it has already been declared but not defined
in its class definition. A member function definition that appears outside of the class definition shall appear
in a namespace scope enclosing the class definition. Except for member function definitions that appear
outside of a class definition, and except for explicit specializations of member functions of class templates
and member function templates (14.7) appearing outside of the class definition, a member function shall not
be redeclared.

An inline member function (whether static or non-static) may also be defined outside of its class definition
provided either its declaration in the class definition or its definition outside of the class definition declares
the function as inline. [Note: member functions of a class in namespace scope have external linkage.
Member functions of a local class (9.8) have no linkage. See 3.5. — end note]

There shall be at most one definition of a non-inline member function in a program; no diagnostic is required.
There may be more than one inline member function definition in a program. See 3.2 and 7.1.2.

If the definition of a member function is lexically outside its class definition, the member function name

shall be qualified by its class name using the :: operator. [Note: a name used in a member function
definition (that is, in the parameter-declaration-clause including the default arguments (8.3.6) or in the
member function body) is looked up as described in 3.4. — end note| [Example:

struct X {

typedef int T;
static T count;
void £(T);
};
void X::f(T t = count) { }

The member function f of class X is defined in global scope; the notation X: :f specifies that the function f
is a member of class X and in the scope of class X. In the function definition, the parameter type T refers to

§9.3 216

©ISO/IEC N3092

the typedef member T declared in class X and the default argument count refers to the static data member
count declared in class X. — end example]

A static local variable in a member function always refers to the same object, whether or not the member
function is inline.

Member functions may be mentioned in friend declarations after their class has been defined.
Member functions of a local class shall be defined inline in their class definition, if they are defined at all.

[Note: a member function can be declared (but not defined) using a typedef for a function type. The
resulting member function has exactly the same type as it would have if the function declarator were
provided explicitly, see 8.3.5. For example,

typedef void fv(void);
typedef void fvc(void) const;

struct S {

fv memfunci; // equivalent to: void memfuncl(void);

void memfunc2();

fvc memfunc3; // equivalent to: void memfunc3(void) const;
3

fv S::x pmfvl = &S::memfuncil;
fv S::*% pmfv2 = &S::memfunc2;
fvc S::*% pmfv3 = &S::memfunc3;

Also see 14.3. — end note]

9.3.1 Nonstatic member functions [class.mfct.non-static|

A non-static member function may be called for an object of its class type, or for an object of a class derived
(Clause 10) from its class type, using the class member access syntax (5.2.5, 13.3.1.1). A non-static member
function may also be called directly using the function call syntax (5.2.2, 13.3.1.1) from within the body of
a member function of its class or of a class derived from its class.

If a non-static member function of a class X is called for an object that is not of type X, or of a type derived
from X, the behavior is undefined.

When an id-expression (5.1) that is not part of a class member access syntax (5.2.5) and not used to form a
pointer to member (5.3.1) is used in the body of a non-static member function of class X, if name lookup (3.4)
resolves the name in the id-expression to a non-static non-type member of some class C, the id-expression is
transformed into a class member access expression (5.2.5) using (*this) (9.3.2) as the postfir-expression to
the left of the . operator. [Note: if C is not X or a base class of X, the class member access expression is
ill-formed. — end note] Similarly during name lookup, when an unqualified-id (5.1) used in the definition of
a member function for class X resolves to a static member, an enumerator or a nested type of class X or of a
base class of X, the unqualified-id is transformed into a qualified-id (5.1) in which the nested-name-specifier
names the class of the member function. [Example:

struct tnode {
char tword[20];
int count;
tnode *left;
tnode *right;
void set(char*, tnodex 1, tnode* r);

};

void tnode::set(char* w, tnodex 1, tnodex r) {
count = strlen(w)+1;

§9.3.1 217

©ISO/IEC N3092

if (sizeof (tword)<=count)
perror("tnode string too long");

strcpy (tword,w) ;
left = 1;
right = r;

}

void f(tnode nl, tnode n2) {
nl.set("abc",&n2,0);
n2.set("def",0,0);

}

In the body of the member function tnode: : set, the member names tword, count, left, and right refer to
members of the object for which the function is called. Thus, in the call nl.set("abc",&n2,0), tword refers
to nl.tword, and in the call n2.set("def",0,0), it refers to n2.tword. The functions strlen, perror,
and strcpy are not members of the class tnode and should be declared elsewhere.!%® — end example]

A non-static member function may be declared const, volatile, or const volatile. These cv-qualifiers
affect the type of the this pointer (9.3.2). They also affect the function type (8.3.5) of the member function;
a member function declared const is a const member function, a member function declared volatile is
a volatile member function and a member function declared const volatile is a const volatile member
function. [Ezample:

struct X {
void g() const;
void h() const volatile;

};

X::g is a const member function and X: :h is a const volatile member function. — end ezample]
A non-static member function may be declared with a ref-qualifier (8.3.5); see 13.3.1.

A non-static member function may be declared virtual (10.3) or pure virtual (10.4).

9.3.2 The this pointer [class.this]

In the body of a non-static (9.3) member function, the keyword this is a prvalue expression whose value
is the address of the object for which the function is called. The type of this in a member function of
a class X is X*. If the member function is declared const, the type of this is const X*, if the member
function is declared volatile, the type of this is volatile X*, and if the member function is declared
const volatile, the type of this is const volatile X*.

In a const member function, the object for which the function is called is accessed through a const access
path; therefore, a const member function shall not modify the object and its non-static data members.
[Example:

struct s {
int a;
int f() const;
int g() { return a++; }
int h() const { return a++; } // error

};

int s::f() const { return a; }

108) See, for example, <cstring> (21.7).

§9.3.2 218

©ISO/IEC N3092

The a++ in the body of s: :h is ill-formed because it tries to modify (a part of) the object for which s: :h()
is called. This is not allowed in a const member function because this is a pointer to const; that is, *this
has const type. — end example]

Similarly, volatile semantics (7.1.6.1) apply in volatile member functions when accessing the object and
its non-static data members.

A cv-qualified member function can be called on an object-expression (5.2.5) only if the object-expression is
as cv-qualified or less-cv-qualified than the member function. [Example:

void k(s& x, const s& y) {
x.fO;
x.g0);
y.£0;

y-80; // error
}

The call y.g() is ill-formed because y is const and s: :g() is a non-const member function, that is, s: :g()
is less-qualified than the object-expression y. — end example]

Constructors (12.1) and destructors (12.4) shall not be declared const, volatile or const volatile. [Note:
However, these functions can be invoked to create and destroy objects with cv-qualified types, see (12.1)
and (12.4). — end note]

9.4 Static members [class.static]

A data or function member of a class may be declared static in a class definition, in which case it is a
static member of the class.

A static member s of class X may be referred to using the qualified-id expression X: :s; it is not necessary to
use the class member access syntax (5.2.5) to refer to a static member. A static member may be referred
to using the class member access syntax, in which case the object-expression is evaluated. [Example:

struct process {

static void reschedule();
};
process& g();

void £() {
process: :reschedule() ; // OK: no object necessary
g() .reschedule(); // g0 is called

}

— end example]

A static member may be referred to directly in the scope of its class or in the scope of a class derived
(Clause 10) from its class; in this case, the static member is referred to as if a qualified-id expression was
used, with the nested-name-specifier of the qualified-id naming the class scope from which the static member
is referenced. [Example:
int gO;
struct X {
static int g();
};
struct Y : X {
static int i;
};
int Y::i = gO; // equivalent to Y::g() ;

§9.4 219

©ISO/IEC N3092

— end example]

If an unqualified-id (5.1) is used in the definition of a static member following the member’s declarator-id,
and name lookup (3.4.1) finds that the unqualified-id refers to a static member, enumerator, or nested
type of the member’s class (or of a base class of the member’s class), the unqualified-id is transformed into
a qualified-id expression in which the nested-name-specifier names the class scope from which the member
is referenced. [Note: See 5.1 for restrictions on the use of non-static data members and non-static member
functions. — end note]

Static members obey the usual class member access rules (Clause 11). When used in the declaration of
a class member, the static specifier shall only be used in the member declarations that appear within
the member-specification of the class definition. [Note: it cannot be specified in member declarations that
appear in namespace scope. — end note |

9.4.1 Static member functions [class.static.mfct]
[Note: the rules described in 9.3 apply to static member functions. — end note]
[Note: a static member function does not have a this pointer (9.3.2). —end note] A static member

function shall not be virtual. There shall not be a static and a non-static member function with the
same name and the same parameter types (13.1). A static member function shall not be declared const,
volatile, or const volatile.

9.4.2 Static data members [class.static.data]

A static data member is not part of the subobjects of a class. If a static data member is declared
thread_local there is one copy of the member per thread. If a static data member is not declared
thread_local there is one copy of the data member that is shared by all the objects of the class.

The declaration of a static data member in its class definition is not a definition and may be of an incomplete
type other than cv-qualified void. The definition for a static data member shall appear in a namespace
scope enclosing the member’s class definition. In the definition at namespace scope, the name of the static
data member shall be qualified by its class name using the :: operator. The initializer expression in the
definition of a static data member is in the scope of its class (3.3.7). [Ezample:

class process {
static process* run_chain;
static process* running;

};

process* process::running = get_main();
process* process::run_chain = running;

The static data member run_chain of class process is defined in global scope; the notation process: :run_-
chain specifies that the member run_chain is a member of class process and in the scope of class process.
In the static data member definition, the initializer expression refers to the static data member running
of class process. — end example]

[Note: once the static data member has been defined, it exists even if no objects of its class have been
created. [Example: in the example above, run_chain and running exist even if no objects of class process
are created by the program. — end example] — end note]

If a static data member is of const literal type, its declaration in the class definition can specify a brace-or-
equal-initializer in which every initializer-clause that is an assignment-expression is a constant expression.
A static data member of literal type can be declared in the class definition with the constexpr specifier;
if so, its declaration shall specify a brace-or-equal-initializer in which every initializer-clause that is an

§9.4.2 220

©ISO/IEC N3092

assignment-expression is a constant expression. [Note: In both these cases, the member may appear in
constant expressions. — end note] The member shall still be defined in a namespace scope if it is used in
the program and the namespace scope definition shall not contain an initializer.

There shall be exactly one definition of a static data member that is used in a program; no diagnostic is
required; see 3.2. Unnamed classes and classes contained directly or indirectly within unnamed classes shall
not contain static data members.

Static data members of a class in namespace scope have external linkage (3.5). A local class shall not have
static data members.

Static data members are initialized and destroyed exactly like non-local variables (3.6.2, 3.6.3).

A static data member shall not be mutable (7.1.1).

9.5 TUnions [class.union]

In a union, at most one of the non-static data members can be active at any time, that is, the value of at
most one of the non-static data members can be stored in a union at any time. [Note: one special guarantee
is made in order to simplify the use of unions: If a standard-layout union contains several standard-layout
structs that share a common initial sequence (9.2), and if an object of this standard-layout union type
contains one of the standard-layout structs, it is permitted to inspect the common initial sequence of any of
standard-layout struct members; see 9.2. — end note| The size of a union is sufficient to contain the largest
of its non-static data members. Each non-static data member is allocated as if it were the sole member of a
struct.

A union can have member functions (including constructors and destructors), but not virtual (10.3) functions.
A union shall not have base classes. A union shall not be used as a base class. If a union contains a non-static
data member of reference type the program is ill-formed. At most one non-static data member of a union may
have a brace-or-equal-initializer. | Note: if any non-static data member of a union has a non-trivial default
constructor (12.1), copy constructor (12.8), move constructor (12.8), copy assignment operator (12.8), move
assignment operator (12.8), or destructor (12.4), the corresponding member function of the union must be
user-provided or it will be implicitly deleted (8.4.3) for the union. — end note|

[Example: Consider the following union:

union U {

int i;

float f;
std::string s;

}’

Since std::string (21.3) declares non-trivial versions of all of the special member functions, U will have
an implicitly deleted default constructor, copy/move constructor, copy/move assignment operator, and de-
structor. To use U, some or all of these member functions must be user-provided. — end ezxample]

[Note: In general, one must use explicit destructor calls and placement new operators to change the active
member of a union. — end note] [Ezample: Consider an object u of a union type U having non-static data
members m of type M and n of type N. If M has a non-trivial destructor and N has a non-trivial constructor
(for instance, if they declare or inherit virtual functions), the active member of u can be safely switched
from m to n using the destructor and placement new operator as follows:

u.m. M(Q);
new (&u.n) N;

— end example|

§9.5 221

©ISO/IEC N3092

A union of the form
union { member-specification } ;

is called an anonymous union; it defines an unnamed object of unnamed type. The member-specification of
an anonymous union shall only define non-static data members. [Note: nested types and functions cannot
be declared within an anonymous union. — end note| The names of the members of an anonymous union
shall be distinct from the names of any other entity in the scope in which the anonymous union is declared.
For the purpose of name lookup, after the anonymous union definition, the members of the anonymous union
are considered to have been defined in the scope in which the anonymous union is declared. [Example:

void £() {
union { int a; char* p; };
a=1;
p = "Jennifer";

}

Here a and p are used like ordinary (nonmember) variables, but since they are union members they have
the same address. — end ezample]

Anonymous unions declared in a named namespace or in the global namespace shall be declared static.
Anonymous unions declared at block scope shall be declared with any storage class allowed for a block-scope
variable, or with no storage class. A storage class is not allowed in a declaration of an anonymous union
in a class scope. An anonymous union shall not have private or protected members (Clause 11). An
anonymous union shall not have function members.

A union for which objects or pointers are declared is not an anonymous union. [Ezample:

union { int aa; char* p; } obj, *ptr = &obj;
aa = 1; // error
ptr->aa = 1; // OK

The assignment to plain aa is ill-formed since the member name is not visible outside the union, and even
if it were visible, it is not associated with any particular object. — end example] [Note: Initialization of
unions with no user-declared constructors is described in (8.5.1). — end note]

A union-like class is a union or a class that has an anonymous union as a direct member. A union-like
class X has a set of variant members. If X is a union its variant members are the non-static data members;
otherwise, its variant members are the non-static data members of all anonymous unions that are members
of X.

9.6 Bit-fields [class.bit]

A member-declarator of the form
identifierop: attribute-specifierop: : constant-expression

specifies a bit-field; its length is set off from the bit-field name by a colon. The optional attribute-specifier
appertains to the entity being declared. The bit-field attribute is not part of the type of the class member.
The constant-expression shall be an integral constant expression with a value greater than or equal to
zero. The value of the integral constant expression may be larger than the number of bits in the object
representation (3.9) of the bit-field’s type; in such cases the extra bits are used as padding bits and do not
participate in the value representation (3.9) of the bit-field. Allocation of bit-fields within a class object is
implementation-defined. Alignment of bit-fields is implementation-defined. Bit-fields are packed into some
addressable allocation unit. [Note: bit-fields straddle allocation units on some machines and not on others.
Bit-fields are assigned right-to-left on some machines, left-to-right on others. — end note|

§9.6 222

©ISO/IEC N3092

A declaration for a bit-field that omits the identifier declares an unnamed bit-field. Unnamed bit-fields
are not members and cannot be initialized. [Note: an unnamed bit-field is useful for padding to conform
to externally-imposed layouts. — end note] As a special case, an unnamed bit-field with a width of zero
specifies alignment of the next bit-field at an allocation unit boundary. Only when declaring an unnamed
bit-field may the value of the constant-expression be equal to zero.

A bit-field shall not be a static member. A bit-field shall have integral or enumeration type (3.9.1). It is
implementation-defined whether a plain (neither explicitly signed nor unsigned) char, short, int or long
bit-field is signed or unsigned. A bool value can successfully be stored in a bit-field of any nonzero size. The
address-of operator & shall not be applied to a bit-field, so there are no pointers to bit-fields. A non-const
reference shall not be bound to a bit-field (8.5.3). [Note: if the initializer for a reference of type const T& is
an lvalue that refers to a bit-field, the reference is bound to a temporary initialized to hold the value of the
bit-field; the reference is not bound to the bit-field directly. See 8.5.3. — end note]

If the value true or false is stored into a bit-field of type bool of any size (including a one bit bit-field),
the original bool value and the value of the bit-field shall compare equal. If the value of an enumerator is
stored into a bit-field of the same enumeration type and the number of bits in the bit-field is large enough
to hold all the values of that enumeration type (7.2), the original enumerator value and the value of the
bit-field shall compare equal. [Example:

enum BOOL { FALSE=0, TRUE=1 };
struct A {
BOOL b:1;
};
A a;
void £() {
a.b = TRUE;
if (a.b == TRUE) // yields true
{ /x ... %/}
}

— end example]

9.7 Nested class declarations [class.nest]

A class can be declared within another class. A class declared within another is called a nested class. The
name of a nested class is local to its enclosing class. The nested class is in the scope of its enclosing class.
[Note: see 5.1 for restrictions on the use of non-static data members and non-static member functions.
— end note]

[Example:

int x;
int y;

struct enclose {
int x;
static int s;

struct inner {
void f(int i) {
int a = sizeof(x); // OK: operand of sizeof is an unevaluated operand
x = 1i; // error: assign to enclose: :x
s = // OK: assign to enclose: :s
// OK: assign to global x
i; // OK: assign to global y

I ™o
BT
[

§9.7 223

©ISO/IEC N3092

}
void g(enclosex p, int i) {
p->x = i; // OK: assign to enclose: :x
}
};
}
inner* p = 0; // error: inner not in scope

— end example]

Member functions and static data members of a nested class can be defined in a namespace scope enclosing
the definition of their class. [Example:

struct enclose {
struct inner {
static int x;
void f(int i);
};
};

int enclose::inner::x = 1;
void enclose::inner::f(int i) { /x ... %/}

— end example]

If class X is defined in a namespace scope, a nested class Y may be declared in class X and later defined in the
definition of class X or be later defined in a namespace scope enclosing the definition of class X. [Example:

class E {
class I1; // forward declaration of nested class
class I2;
class I1 { }; // definition of nested class

};

class E::I2 { }; // definition of nested class

— end example|

Like a member function, a friend function (11.4) defined within a nested class is in the lexical scope of that
class; it obeys the same rules for name binding as a static member function of that class (9.4), but it has no
special access rights to members of an enclosing class.

9.8 Local class declarations [class.local]

A class can be declared within a function definition; such a class is called a local class. The name of a
local class is local to its enclosing scope. The local class is in the scope of the enclosing scope, and has the
same access to names outside the function as does the enclosing function. Declarations in a local class can
use only type names, static variables, extern variables and functions, and enumerators from the enclosing
scope. | Example:

int x;

void £() {
static int s ;
int x;
extern int g();

§9.8 224

©ISO/IEC N3092

struct local {
int g() { return x; } // error: x has automatic storage duration
int h() { return s; 2} // OK
int k() { return ::x; } // OK
int 1() { return gO; } // OK
I
}

local* p = 0; // error: local not in scope

— end example]

An enclosing function has no special access to members of the local class; it obeys the usual access rules
(Clause 11). Member functions of a local class shall be defined within their class definition, if they are
defined at all.

If class X is a local class a nested class Y may be declared in class X and later defined in the definition of
class X or be later defined in the same scope as the definition of class X. A class nested within a local class
is a local class.

A local class shall not have static data members.

9.9 Nested type names [class.nested.type]

Type names obey exactly the same scope rules as other names. In particular, type names defined within a
class definition cannot be used outside their class without qualification. [Ezample:

struct X {
typedef int I;
class Y { /x ... x/ };

I a;
3

b; // error
Y c; // error
X::Y 4; // OK
X::I e; // OK

— end example|

§9.9 225

©ISO/IEC N3092

10 Derived classes [class.derived]

1 A list of base classes can be specified in a class definition using the notation:

base-clause:
: base-specifier-list
base-specifier-list:
base-specifier . . . opt
base-specifier-list , base-specifier ... opt
base-specifier:
attribute-specifierop: base-type-specifier
attribute-specifier,p; virtual access-specifierop: base-type-specifier
attribute-specifierop: access-specifier virtuale,: base-type-specifier

class-or-decltype:
t:opt Mested-name-specifierop: class-name
decltype-specifier
base-type-specifier:
class-or-decltype
access-specifier:
private
protected
public

The optional attribute-specifier appertains to the base-specifier.

2 The type denoted by a base-type-specifier shall be a class type that is not an incompletely defined class
(Clause 9); this class is called a direct base class for the class being defined. During the lookup for a base
class name, non-type names are ignored (3.3.10). If the name found is not a class-name, the program is
ill-formed. A class B is a base class of a class D if it is a direct base class of D or a direct base class of one of
D’s base classes. A class is an indirect base class of another if it is a base class but not a direct base class.
A class is said to be (directly or indirectly) derived from its (direct or indirect) base classes. [Note: see
Clause 11 for the meaning of access-specifier. — end note] Unless redeclared in the derived class, members
of a base class are also considered to be members of the derived class. The base class members are said to
be inherited by the derived class. Inherited members can be referred to in expressions in the same manner
as other members of the derived class, unless their names are hidden or ambiguous (10.2). [Note: the scope
resolution operator :: (5.1) can be used to refer to a direct or indirect base member explicitly. This allows
access to a name that has been redeclared in the derived class. A derived class can itself serve as a base class
subject to access control; see 11.2. A pointer to a derived class can be implicitly converted to a pointer to
an accessible unambiguous base class (4.10). An lvalue of a derived class type can be bound to a reference
to an accessible unambiguous base class (8.5.3). — end note]

3 The base-specifier-list specifies the type of the base class subobjects contained in an object of the derived
class type. [Example:

struct Base {
int a, b, c;

};

struct Derived : Base {
int b;

226

©ISO/IEC N3092

};

struct Derived2 : Derived {
int c;

};
Here, an object of class Derived2 will have a subobject of class Derived which in turn will have a subobject
of class Base. — end example]
A base-specifier followed by an ellipsis is a pack expansion (14.5.3).

The order in which the base class subobjects are allocated in the most derived object (1.8) is unspecified.
[Note: a derived class and its base class subobjects can be represented by a directed acyclic graph (DAG)
where an arrow means “directly derived from.” A DAG of subobjects is often referred to as a “subobject
lattice.”

Base
Derivedl

Derived2
Figure 2 — Directed acyclic graph

The arrows need not have a physical representation in memory. — end note|
[Note: initialization of objects representing base classes can be specified in constructors; see 12.6.2. — end
note |

[Note: A base class subobject might have a layout (3.7) different from the layout of a most derived object
of the same type. A base class subobject might have a polymorphic behavior (12.7) different from the
polymorphic behavior of a most derived object of the same type. A base class subobject may be of zero
size (Clause 9); however, two subobjects that have the same class type and that belong to the same most
derived object must not be allocated at the same address (5.10). — end note]

10.1 Multiple base classes [class.mi]
A class can be derived from any number of base classes. [Note: the use of more than one direct base class
is often called multiple inheritance. — end note] [Example:

class A { /x ... x/ };
class B { /* ... x/ };
class C { /x ... x/ };
class D : public A, public B, public C { /fx ...x/ };

— end example]

[Note: the order of derivation is not significant except as specified by the semantics of initialization by
constructor (12.6.2), cleanup (12.4), and storage layout (9.2, 11.1). — end note]

A class shall not be specified as a direct base class of a derived class more than once. [Note: a class can
be an indirect base class more than once and can be a direct and an indirect base class. There are limited

§ 10.1 227

©ISO/IEC N3092

things that can be done with such a class. The non-static data members and member functions of the direct
base class cannot be referred to in the scope of the derived class. However, the static members, enumerations

and types can be unambiguously referred to. — end note| [Example:
class X { /x ... %/ };
class Y : public X, public X { /f*x ...x/ }; // dll-formed

class L { public: int next; /x ... x/};

class A : public L { /x ...x/ };

class B : public L { /x ... x/ };

class C : public A, public B { void £Q); /* ...x/}; // well-formed
class D : public A, public L { void £Q); /* ...x/}; // well-formed

— end example]

A base class specifier that does not contain the keyword virtual, specifies a non-virtual base class. A base
class specifier that contains the keyword virtual, specifies a virtual base class. For each distinct occurrence
of a non-virtual base class in the class lattice of the most derived class, the most derived object (1.8) shall
contain a corresponding distinct base class subobject of that type. For each distinct base class that is
specified virtual, the most derived object shall contain a single base class subobject of that type. [Ezample:
for an object of class type C, each distinct occurrence of a (non-virtual) base class L in the class lattice of
C corresponds one-to-one with a distinct L subobject within the object of type C. Given the class C defined
above, an object of class C will have two subobjects of class L as shown below.

f t
\ /

C

Figure 3 — Non-virtual base

In such lattices, explicit qualification can be used to specify which subobject is meant. The body of function
C::f could refer to the member next of each L subobject:

void C::f() { A::next = B::next; } // well-formed

Without the A:: or B:: qualifiers, the definition of C::f above would be ill-formed because of ambigu-
ity (10.2).

For another example,

class V. { /*x ... x/ };

class A : virtual public V { /% ...x/ };
class B : virtual public V { /x ... %/ };
class C : public A, public B { /x ... x/ };

for an object c of class type C, a single subobject of type V is shared by every base subobject of ¢ that has
a virtual base class of type V. Given the class C defined above, an object of class C will have one subobject
of class V, as shown below.

A class can have both virtual and non-virtual base classes of a given type.

§ 10.1 228

©ISO/IEC N3092

Figure 4 — Virtual base

class B { /*x ... x/ };

class X : virtual public B { /x ... %/ };

class Y : virtual public B { /x ... x/ };

class Z : public B { /x ... x/ };

class AA : public X, public Y, public Z { /x ... %/ };

For an object of class AA, all virtual occurrences of base class B in the class lattice of AA correspond to a
single B subobject within the object of type AA, and every other occurrence of a (non-virtual) base class B
in the class lattice of AA corresponds one-to-one with a distinct B subobject within the object of type AA.
Given the class AA defined above, class AA has two subobjects of class B: Z’s B and the virtual B shared by X
and Y, as shown below.

/ \ '
Figure 5 — Virtual and non-virtual base

— end example]

10.2 Member name lookup [class.member.lookup]

Member name lookup determines the meaning of a name (id-expression) in a class scope (3.3.7). Name
lookup can result in an ambiguity, in which case the program is ill-formed. For an id-expression, name
lookup begins in the class scope of this; for a qualified-id, name lookup begins in the scope of the nested-
name-specifier. Name lookup takes place before access control (3.4, Clause 11).

The following steps define the result of name lookup for a member name £ in a class scope C.

The lookup set for £ in C, called S(f, C'), consists of two component sets: the declaration set, a set of members
named f; and the subobject set, a set of subobjects where declarations of these members (possibly including
using-declarations) were found. In the declaration set, using-declarations are replaced by the members they
designate, and type declarations (including injected-class-names) are replaced by the types they designate.
S(f,C) is calculated as follows:

If C contains a declaration of the name £, the declaration set contains every declaration of f declared in
C that satisfies the requirements of the language construct in which the lookup occurs. [Note: Looking

§10.2 229

6

7

8

©ISO/IEC N3092

up a name in an elaborated-type-specifier (3.4.4) or base-specifier (Clause 10), for instance, ignores all non-
type declarations, while looking up a name in a nested-name-specifier (3.4.3) ignores function, variable, and
enumerator declarations. As another example, looking up a name in a using-declaration (7.3.3) includes the
declaration of a class or enumeration that would ordinarily be hidden by another declaration of that name
in the same scope. — end note] If the resulting declaration set is not empty, the subobject set contains C
itself, and calculation is complete.

Otherwise (i.e., C does not contain a declaration of £ or the resulting declaration set is empty), S(f,C) is
initially empty. If C has base classes, calculate the lookup set for £ in each direct base class subobject B;,
and merge each such lookup set S(f, B;) in turn into S(f,C).

The following steps define the result of merging lookup set S(f, B;) into the intermediate S(f, C):

— If each of the subobject members of S(f, B;) is a base class subobject of at least one of the subobject
members of S(f,C), or if S(f, B;) is empty, S(f,C) is unchanged and the merge is complete. Con-
versely, if each of the subobject members of S(f,C) is a base class subobject of at least one of the
subobject members of S(f, B;), or if S(f,C) is empty, the new S(f,C) is a copy of S(f, B;).

— Otherwise, if the declaration sets of S(f, B;) and S(f,C) differ, the merge is ambiguous: the new
S(f,C) is alookup set with an invalid declaration set and the union of the subobject sets. In subsequent
merges, an invalid declaration set is considered different from any other.

— Otherwise, the new S(f,C) is a lookup set with the shared set of declarations and the union of the
subobject sets.

The result of name lookup for £ in C is the declaration set of S(f,C). If it is an invalid set, the program is
ill-formed. [Ezample:

struct A { int x; }; J/S(wA) ={{A:x}, {A}}
struct B { float x; }; // S(x,B) ={{B::x },{B}}
struct C: public A, public B { }; // S(x,C) = { invalid, { Ain C,Bin C } }
struct D: public virtual C { }; // S(x,D) = S(z,C)
struct E: public virtual C { char x; }; //S@@FE)={{E::x },{E}}
struct F: public D, public E { }; // S(z,F) = S(z,E)
int main() {
F f;
f.x = 0; // OK, lookup finds E: :x
}

S(z, F') is unambiguous because the A and B base subobjects of D are also base subobjects of E, so S(z, D)
is discarded in the first merge step. — end example|

If the name of an overloaded function is unambiguously found, overloading resolution (13.3) also takes
place before access control. Ambiguities can often be resolved by qualifying a name with its class name.
[Example:

struct A {
int £Q);
};

struct B {
int £Q);
};

struct C : A, B {
int £() { return A::f() + B::f(); }
}s

§ 10.2 230

©ISO/IEC N3092

— end example]

[Note: A static member, a nested type or an enumerator defined in a base class T can unambiguously be
found even if an object has more than one base class subobject of type T. Two base class subobjects share
the non-static member subobjects of their common virtual base classes. — end note| [Example:

struct V {
int v;
};
struct A {
int a;
static int s;
enum { e };
};
struct B : A, virtual V { };
struct C : A, virtual V { };
struct D : B, C { };

void £(D* pd) {

pd->v++; // OK: only one v (virtual)

pd->s++; // OK: only one s (static)

int i = pd->e; // OK: only one e (enumerator)

pd->at+; // error, ambiguous: two as in D
}

— end example]

[Note: When virtual base classes are used, a hidden declaration can be reached along a path through the
subobject lattice that does not pass through the hiding declaration. This is not an ambiguity. The identical
use with non-virtual base classes is an ambiguity; in that case there is no unique instance of the name that
hides all the others. — end note] [Example:

struct V { int £(); int x; };

struct W { int g(); int y; };

struct B : virtual V, W {
int £(); int x;
int g(); int y;
};
struct C : virtual V, W { };

struct D : B, C { void glorp(); };
Vv\\\\\\\ //////"\/\\\\\\\ /////)VVV
B\ /C

D
Figure 6 — Name lookup

— end example]

[Note: The names declared in V and the left-hand instance of W are hidden by those in B, but the names
declared in the right-hand instance of W are not hidden at all. — end note]

§10.2 231

©ISO/IEC N3092

void D::glorp() {

X+t // OK: B::x hides V::x

£0; // OK:B::£() hides V::£()
yt+; // error: B::y and C’s W::y
gO; // error: B::g() and C’s W::g()

— end example]

12 An explicit or implicit conversion from a pointer to or an expression designating an object of a derived class
to a pointer or reference to one of its base classes shall unambiguously refer to a unique object representing
the base class. [Ezample:

struct V { }

struct {1}

struct : A, virtual
A
B

3

};
}.

)

v {
struct , virtual V {
struct , C {3}

oaQw=

void g() {
D d;
Bx pb
Ax pa
Vx pv

&d;
&d; // error, ambiguous: C’s A or B’s A?
&d; // OK: only one V subobject

— end example]

13 [Note: Even if the result of name lookup is unambiguous, use of a name found in multiple subobjects might
still be ambiguous (4.11, 5.2.5, 5.3.1, 11.2). — end note] [Example:

struct Bl {
void f();
static void f(int);
int i;
}s
struct B2 {
void f(double);
};
struct I1: Bl { };
struct I2: Bl { };

struct D: I1, I2, B2 {

using Bl::f;

using B2::f;

void g() {
£O; // Ambiguous conversion of this
£(0); // Unambiguous (static)
£(0.0); // Unambiguous (only one B2)
int Bl::* mpBl = &D::i; // Unambiguous
int D::* mpD = &D::i; // Ambiguous conversion

}

};

— end example|

§10.2 232

©ISO/IEC N3092

10.3 Virtual functions [class.virtual]

Virtual functions support dynamic binding and object-oriented programming. A class that declares or
inherits a virtual function is called a polymorphic class.

If a virtual member function vf is declared in a class Base and in a class Derived, derived directly or indirectly
from Base, a member function vf with the same name, parameter-type-list (8.3.5), cv-qualification, and ref-
qualifier (or absence of same) as Base: : vf is declared, then Derived: : vf is also virtual (whether or not it is
so declared) and it overrides'®® Base: :vf. For convenience we say that any virtual function overrides itself.
A virtual member function C: :vf of a class object S is a final overrider unless the most derived class (1.8)
of which S is a base class subobject (if any) declares or inherits another member function that overrides vf.
In a derived class, if a virtual member function of a base class subobject has more than one final overrider
the program is ill-formed. [Ezample:

struct A {
virtual void f£();

};

struct B : virtual A {
virtual void f£();

};
struct C : B , virtual A {
using A::f;
};
void foo() {
C c;
c.fO; // calls B: : £, the final overrider
c.C::fQ); // calls A: : £ because of the using-declaration

}

— end example|
[Example:

struct A { virtual void £(); };

struct B : A { };

struct C : A { void £(); };

struct D : B, C { }; // OK: A::f and C::f are the final overriders
// for the B and C subobjects, respectively

— end example]
[Note: a virtual member function does not have to be visible to be overridden, for example,

struct B {
virtual void f();
};
struct D : B {
void f(int);
}s
struct D2 : D {
void £();
};

109) A function with the same name but a different parameter list (Clause 13) as a virtual function is not necessarily virtual
and does not override. The use of the virtual specifier in the declaration of an overriding function is legal but redundant (has
empty semantics). Access control (Clause 11) is not considered in determining overriding.

§10.3 233

©ISO/IEC N3092

the function f (int) in class D hides the virtual function £ () in its base class B; D: : f (int) is not a virtual
function. However, f () declared in class D2 has the same name and the same parameter list as B: : £ (), and
therefore is a virtual function that overrides the function B: :£() even though B::f () is not visible in class
D2. — end note]

Even though destructors are not inherited, a destructor in a derived class overrides a base class destructor
declared virtual; see 12.4 and 12.5.

The return type of an overriding function shall be either identical to the return type of the overridden
function or covariant with the classes of the functions. If a function D::f overrides a function B::f, the
return types of the functions are covariant if they satisfy the following criteria:

— both are pointers to classes, both are lvalue references to classes, or both are rvalue references to
classes!!0

— the class in the return type of B::f is the same class as the class in the return type of D: :f, or is an
unambiguous and accessible direct or indirect base class of the class in the return type of D: : f

— both pointers or references have the same cv-qualification and the class type in the return type of D: : f
has the same cv-qualification as or less cv-qualification than the class type in the return type of B: : f.

If the return type of D: : £ differs from the return type of B: : £, the class type in the return type of D: : £ shall
be complete at the point of declaration of D::f or shall be the class type D. When the overriding function
is called as the final overrider of the overridden function, its result is converted to the type returned by the
(statically chosen) overridden function (5.2.2). [Ezample:

class B { };
class D : private B { friend class Derived; };
struct Base {

virtual void vf1();

virtual void vf2();

virtual void v£3();

virtual B* vf4();

virtual Bx vf5();

void £();
};
struct No_good : public Base {
Dx vf4(); // error: B (base class of D) inaccessible
};
class A;
struct Derived : public Base {
void vi1(); // virtual and overrides Base: :vE1()
void vE2(int); // not virtual, hides Base: :v£2()
char v£3Q); // error: invalid difference in return type only
Dx vf4(); // OK: returns pointer to derived class
Ax vE5Q); // error: returns pointer to incomplete class
void f();
};
void g() {
Derived d;
Base* bp = &d; // standard conversion:

// Derived* to Basex

110) Multi-level pointers to classes or references to multi-level pointers to classes are not allowed.

§10.3 234

©ISO/IEC N3092

bp—>vE1(); // calls Derived: :vE1()

bp->vE2(); // calls Base: :v£2()

bp—>£(); // calls Base: :£() (not virtual)

Bx p = bp—>vf4(); // calls Derived: :pf () and converts the

// result to Bx
Derived* dp = &d;

Dx q = dp—>vf4(); // calls Derived: :pf () and does not
// convert the result to Bx
dp—>vE2(); // ill-formed: argument mismatch

}

— end example]

7 [Note: the interpretation of the call of a virtual function depends on the type of the object for which it is
called (the dynamic type), whereas the interpretation of a call of a non-virtual member function depends
only on the type of the pointer or reference denoting that object (the static type) (5.2.2). — end note]

8 [Note: the virtual specifier implies membership, so a virtual function cannot be a nonmember (7.1.2)
function. Nor can a virtual function be a static member, since a virtual function call relies on a specific
object for determining which function to invoke. A virtual function declared in one class can be declared a
friend in another class. — end note|

9 A virtual function declared in a class shall be defined, or declared pure (10.4) in that class, or both; but no
diagnostic is required (3.2).

10 [Example: here are some uses of virtual functions with multiple base classes:

struct A {
virtual void £(Q);
};
struct Bl : A { // mote non-virtual derivation
void £();
}
struct B2 : A {
void £();
};
struct D : Bl, B2 { // D has two separate A subobjects
};

void foo() {
D d;

// A* ap = &d; // would be ill-formed: ambiguous
Bl* bilp = &d;
Ax ap = bilp;

D¥ dp = &d;
ap—>£(); // calls D::Bl::f
dp—>£Q); // ill-formed: ambiguous

In class D above there are two occurrences of class A and hence two occurrences of the virtual member
function A: :f. The final overrider of B1::A::f is Bi::f and the final overrider of B2::A::f is B2: : £.

11 The following example shows a function that does not have a unique final overrider:

§10.3 235

12

13

14

©ISO/IEC N3092

struct A {
virtual void f£(Q);
};
struct VB1 : virtual A { // note virtual derivation
void £();
};
struct VB2 : virtual A {
void £();
};
struct Error : VB1, VB2 { // ill-formed
};

struct Okay : VB1, VB2 {
void £();
3

Both VB1::f and VB2::f override A::f but there is no overrider of both of them in class Error. This
example is therefore ill-formed. Class Okay is well formed, however, because Okay: : f is a final overrider.
The following example uses the well-formed classes from above.

struct VBla : virtual A { // does not declare £

};

struct Da : VBla, VB2 {
};

void foe() {
VBla* vblap = new Da;
vblap->£(); // calls VB2: : f
}
— end example]

Explicit qualification with the scope operator (5.1) suppresses the virtual call mechanism. [Example:

class B { public: virtual void £(); };
class D : public B { public: void £(); };

void D::f() { /x ...x/ B::£(); %}

Here, the function call in D: : f really does call B: : £ and not D: :£. — end ezample]

A function with a deleted definition (8.4) shall not override a function that does not have a deleted definition.
Likewise, a function that does not have a deleted definition shall not override a function with a deleted
definition.

10.4 Abstract classes [class.abstract]

The abstract class mechanism supports the notion of a general concept, such as a shape, of which only more
concrete variants, such as circle and square, can actually be used. An abstract class can also be used to
define an interface for which derived classes provide a variety of implementations.

§ 10.4 236

©ISO/IEC N3092

An abstract class is a class that can be used only as a base class of some other class; no objects of an abstract
class can be created except as subobjects of a class derived from it. A class is abstract if it has at least
one pure virtual function. [Note: such a function might be inherited: see below. — end note] A virtual
function is specified pure by using a pure-specifier (9.2) in the function declaration in the class definition. A
pure virtual function need be defined only if called with, or as if with (12.4), the qualified-id syntax (5.1).
[Example:

class point { /* ... x/ };

class shape { // abstract class
point center;

public:
point where() { return center; }
void move(point p) { center=p; draw(); }
virtual void rotate(int) = 0; // pure virtual
virtual void draw() = 0; // pure virtual

};
— end example] [Note: a function declaration cannot provide both a pure-specifier and a definition — end
note] [Example:

struct C {
virtual void £() = 0 { }; // ill-formed
};

— end example]

An abstract class shall not be used as a parameter type, as a function return type, or as the type of an
explicit conversion. Pointers and references to an abstract class can be declared. | Ezample:

shape x; // error: object of abstract class
shapex p; // OK

shape £(); // error

void g(shape); // error

shape& h(shape&) ; // OK

— end example|

A class is abstract if it contains or inherits at least one pure virtual function for which the final overrider is
pure virtual. [Ezample:

class ab_circle : public shape {
int radius;
public:
void rotate(int) { }
// ab_circle: :draw() is a pure virtual

}1

Since shape::draw() is a pure virtual function ab_circle::draw() is a pure virtual by default. The
alternative declaration,

class circle : public shape {
int radius;
public:
void rotate(int) { }
void draw(); // a definition is required somewhere

};

§ 10.4 237

©ISO/IEC N3092

would make class circle nonabstract and a definition of circle::draw() must be provided. — end exam-
ple]

[Note: an abstract class can be derived from a class that is not abstract, and a pure virtual function may
override a virtual function which is not pure. — end note]

Member functions can be called from a constructor (or destructor) of an abstract class; the effect of making a
virtual call (10.3) to a pure virtual function directly or indirectly for the object being created (or destroyed)
from such a constructor (or destructor) is undefined.

§ 10.4 238

©ISO/IEC N3092

11 Member access control [class.access]

A member of a class can be
— private; that is, its name can be used only by members and friends of the class in which it is declared.

— protected; that is, its name can be used only by members and friends of the class in which it is
declared, by classes derived from that class, and by their friends (see 11.5).

— public; that is, its name can be used anywhere without access restriction.

A member of a class can also access all the names to which the class has access. A local class of a member
function may access the same names that the member function itself may access.!!!

Members of a class defined with the keyword class are private by default. Members of a class defined
with the keywords struct or union are public by default. [Example:

class X {

int a; // X::a is private by default
};
struct S {

int a; // S::a is public by default
};

— end example]

Access control is applied uniformly to all names, whether the names are referred to from declarations or
expressions. | Note: access control applies to names nominated by friend declarations (11.4) and using-
declarations (7.3.3). — end note] In the case of overloaded function names, access control is applied to the
function selected by overload resolution. [Note: because access control applies to names, if access control is
applied to a typedef name, only the accessibility of the typedef name itself is considered. The accessibility
of the entity referred to by the typedef is not considered. For example,

class A {
class B { };

public:

typedef B BB;

};

void £() {
A::BB x; // OK, typedef name A: :BB is public
A::B y; // access error, A::B is private

}

— end note]

It should be noted that it is access to members and base classes that is controlled, not their visibility. Names
of members are still visible, and implicit conversions to base classes are still considered, when those members
and base classes are inaccessible. The interpretation of a given construct is established without regard to

111) Access permissions are thus transitive and cumulative to nested and local classes.

239

©ISO/IEC N3092

access control. If the interpretation established makes use of inaccessible member names or base classes, the
construct is ill-formed.

All access controls in Clause 11 affect the ability to access a class member name from a particular scope.
For purposes of access control, the base-specifiers of a class and the definitions of class members that appear
outside of the class definition are considered to be within the scope of that class. In particular, access
controls apply as usual to member names accessed as part of a function return type, even though it is not
possible to determine the access privileges of that use without first parsing the rest of the function declarator.
Similarly, access control for implicit calls to the constructors, the conversion functions, or the destructor
called to create and destroy a static data member is performed as if these calls appeared in the scope of the
member’s class. [Example:

class A {
typedef int I; // private member
I£0;
friend I g(I);
static I x;
protected:
struct B { };

};

A::T A::f() { return O; }
A::T g(A::I p = A::x);

A::T g(A::I p) { return O0; }
A::I A::x = 0;

struct D: A::B, A { };

Here, all the uses of A::I are well-formed because A::f and A::x are members of class A and g is a friend
of class A. This implies, for example, that access checking on the first use of A::I must be deferred until it
is determined that this use of A::I is as the return type of a member of class A. Similarly, the use of A::B
as a base-specifier is well-formed because D is derived from A, so checking of base-specifiers must be deferred
until the entire base-specifier-list has been seen. — end example |

The names in a default argument expression (8.3.6) are bound at the point of declaration, and access is
checked at that point rather than at any points of use of the default argument expression. Access checking
for default arguments in function templates and in member functions of class templates is performed as
described in 14.7.1.

The names in a default template-argument (14.1) have their access checked in the context in which they
appear rather than at any points of use of the default template-argument. [Example:

class B { };

template <class T> class C {
protected:

typedef T TT;

};

template <class U, class V = typename U::TT>
class D : public U { };

D <C >* d; // access error, C::TT is protected

— end example]

240

©ISO/IEC N3092

11.1 Access specifiers [class.access.spec]

1 Member declarations can be labeled by an access-specifier (Clause 10):
access-specifier : member-specificationop:

An access-specifier specifies the access rules for members following it until the end of the class or until
another access-specifier is encountered. [Example:

class X {

int a; // X::a is private by default: class used
public:

int b; // X::b is public

int c; // X::c is public
};

— end example|

2 Any number of access specifiers is allowed and no particular order is required. [Ezample:

struct S {
int a; // S::a is public by default: struct used
protected:
int b; // S::b is protected
private:
int c; // S::c is private
public:
int d; // 8::d is public
};

— end example]

3 [Note: the effect of access control on the order of allocation of data members is described in 9.2. — end note]

4 When a member is redeclared within its class definition, the access specified at its redeclaration shall be the
same as at its initial declaration. [Ezample:

struct S {
class A;
enum E : int;
private:
class A { }; // error: cannot change access
enum E: int { e0 }; // error: cannot change access
};

— end example]

5 [Note: In a derived class, the lookup of a base class name will find the injected-class-name instead of the
name of the base class in the scope in which it was declared. The injected-class-name might be less accessible
than the name of the base class in the scope in which it was declared. — end note]

[Example:

class A { };
class B : private A { };

class C : public B {
A xp; // error: injected-class-name A is inaccessible

1:A *q; // OK
+;

§11.1 241

©ISO/IEC N3092

— end example]

11.2 Accessibility of base classes and base class members [class.access.base]

If a class is declared to be a base class (Clause 10) for another class using the public access specifier, the
public members of the base class are accessible as public members of the derived class and protected
members of the base class are accessible as protected members of the derived class. If a class is declared to
be a base class for another class using the protected access specifier, the public and protected members
of the base class are accessible as protected members of the derived class. If a class is declared to be a base
class for another class using the private access specifier, the public and protected members of the base
class are accessible as private members of the derived class!!2.

In the absence of an access-specifier for a base class, public is assumed when the derived class is defined with
the class-key struct and private is assumed when the class is defined with the class-key class. [Example:

class B { /* ... x/ };

class D1 : private B { /* ... x/ };

class D2 : public B { /f* ... %/ };

class D3 : B { /fx ... %/ }; // B private by default
struct D4 : public B { /* ... x/ };

struct D5 : private B { /x ... %/ };

struct D6 : B { /x ...x/ }; // B public by default
class D7 : protected B { /x ... x/ };

struct D8 : protected B { /x ... x/ };

Here B is a public base of D2, D4, and D6, a private base of D1, D3, and D5, and a protected base of D7 and
D8. — end example]

[Note: A member of a private base class might be inaccessible as an inherited member name, but accessible
directly. Because of the rules on pointer conversions (4.10) and explicit casts (5.4), a conversion from
a pointer to a derived class to a pointer to an inaccessible base class might be ill-formed if an implicit
conversion is used, but well-formed if an explicit cast is used. For example,

class B {

public:
int mi; // non-static member
static int si; // static member

}

class D : private B {

};

class DD : public D {

void £();

}

void DD::f() {

mi = 3; // error: mi is private in D

si = 3; // error: si is private in D

::B by

b.mi = 3; // OK (b.mi is different from this->mi)
b.si = 3; // OK (b.si is different from this->si)
::Bi:si = 3; // OK

::B* bpl = this; // error: B is a private base class

::B* bp2 = (::Bx)this; // OK with cast

112) As specified previously in Clause 11, private members of a base class remain inaccessible even to derived classes unless
friend declarations within the base class definition are used to grant access explicitly.

§11.2 242

©ISO/IEC N3092

bp2->mi = 3; // OK: access through a pointer to B.
}
— end note]
A base class B of N is accessible at R, if
— an invented public member of B would be a public member of N, or

— R occurs in a member or friend of class N, and an invented public member of B would be a private or
protected member of N, or

— R occurs in a member or friend of a class P derived from N, and an invented public member of B would
be a private or protected member of P, or

— there exists a class S such that B is a base class of S accessible at R and S is a base class of N accessible
at R.

[Example:

class B {
public:
int m;

};

class S: private B {
friend class N;

};
class N: private S {
void £() {
Bx p = this; // OK because class S satisfies the fourth condition
// above: B is a base class of N accessible in £() because
// B is an accessible base class of S and S is an accessible
// base class of N.
}

};

— end example]

If a base class is accessible, one can implicitly convert a pointer to a derived class to a pointer to that base
class (4.10, 4.11). [Note: it follows that members and friends of a class X can implicitly convert an X* to a
pointer to a private or protected immediate base class of X. — end note] The access to a member is affected
by the class in which the member is named. This naming class is the class in which the member name was
looked up and found. [Note: this class can be explicit, e.g., when a qualified-id is used, or implicit, e.g.,
when a class member access operator (5.2.5) is used (including cases where an implicit “this->" is added).
If both a class member access operator and a qualified-id are used to name the member (as in p->T: :m), the
class naming the member is the class denoted by the nested-name-specifier of the qualified-id (that is, T).
—end note] A member m is accessible at the point R when named in class N if

— m as a member of N is public, or
— m as a member of N is private, and R occurs in a member or friend of class N, or

— m as a member of N is protected, and R occurs in a member or friend of class N, or in a member or
friend of a class P derived from N, where m as a member of P is public, private, or protected, or

§11.2 243

©ISO/IEC N3092

— there exists a base class B of N that is accessible at R, and m is accessible at R when named in class B.
[Example:

class B;
class A {
private:
int i;
friend void f(B*);
};
class B : public A { };
void £(B* p) {
p—>i = 1; // OK: B* can be implicitly converted to A,
// and £ has access to i in A

— end example]

6 If a class member access operator, including an implicit “this->,” is used to access a non-static data member
or non-static member function, the reference is ill-formed if the left operand (considered as a pointer in the
“.” operator case) cannot be implicitly converted to a pointer to the naming class of the right operand.

[Note: this requirement is in addition to the requirement that the member be accessible as named. — end
note |
11.3 Access declarations [class.access.dcl]

1 The access of a member of a base class can be changed in the derived class by mentioning its qualified-id in
the derived class definition. Such mention is called an access declaration. The effect of an access declaration
qualified-id ; is defined to be equivalent to the declaration using qualified-id ;.*'3

[Example:

class A {

public:
int z;
int z1;

};

class B : public A {
int a;
public:
int b, c;
int bfQ);
protected:
int x;
int y;
};

class D : private B {
int d;
public:
B::c; // adjust access to B::c

113) Access declarations are deprecated; member using-declarations (7.3.3) provide a better means of doing the same things.
In earlier versions of the C++ language, access declarations were more limited; they were generalized and made equivalent to
using-declarations in the interest of simplicity. Programmers are encouraged to use using-declarations, rather than the new
capabilities of access declarations, in new code.

§11.3 244

2

©ISO/IEC N3092

B::z; // adjust access to A::z
A::z1; // adjust access to A::z1
int e;
int dfQ;

protected:
B::x; // adjust access to B::x
int g;

};

class X : public D {
int x£f(Q);
};

int ef (D&);
int £f(X&);

The external function ef can use only the names c, z, z1, e, and df. Being a member of D, the function df
can use the names b, c, z, z1, bf, x, y, d, e, df, and g, but not a. Being a member of B, the function bf
can use the members a, b, ¢, z, z1, bf, x, and y. The function xf can use the public and protected names
from D, that is, c, z, z1, e, and df (public), and x, and g (protected). Thus the external function £f has
access only to c, z, z1, e, and df. If D were a protected or private base class of X, xf would have the same
privileges as before, but £f would have no access at all. — end ezample]

11.4 Friends [class.friend]

A friend of a class is a function or class that is given permission to use the private and protected member
names from the class. A class specifies its friends, if any, by way of friend declarations. Such declarations give
special access rights to the friends, but they do not make the nominated friends members of the befriending
class. [Ezample: the following example illustrates the differences between members and friends:

class X {

int a;

friend void friend_set(X*, int);
public:

void member_set (int);

};

void friend_set(X* p, int i) { p->a = i; }
void X::member_set(int i) { a = i; }

void £() {
X obj;
friend_set(&obj,10);
obj.member_set (10);
}

— end example]

Declaring a class to be a friend implies that the names of private and protected members from the class
granting friendship can be accessed in the base-specifiers and member declarations of the befriended class.
[Example:

class A {
class B { };
friend class X;

};

§11.4 245

©ISO/IEC N3092

struct X : A::B { // OK: A::B accessible to friend

A::B mx; // OK: A::B accessible to member of friend
class Y {
A::B my; // OK: A::B accessible to nested member of friend
s
};

— end example]| A class shall not be defined in a friend declaration. [Ezample:

class X {
enum { a=100 };
friend class Y;

};
class Y {

int v[X::a]l; // OK, Y is a friend of X
};
class Z {

int v[X::al; // error: X::a is private
};

— end example]

3 A friend declaration that does not declare a function shall have one of the following forms:

friend elaborated-type-specifier ;

friend simple-type-specifier ;

friend typename-specifier ;
[Note: a friend declaration may be the declaration in a template-declaration (Clause 14, 14.5.4). — end
note] If the type specifier in a friend declaration designates a (possibly cv-qualified) class type, that class
is declared as a friend; otherwise, the friend declaration is ignored. [Ezample:

class C;
typedef C Ct;

class X1 {
friend C; // OK: class C is a friend
}
class X2 {
friend Ct; // OK: class C is a friend
friend D; // error: no type-name D in scope
friend class D; // OK: elaborated-type-specifier declares new class
I
template <typename T> class R {
friend T;
};
R<C> rc; // class C is a friend of R<C>
R<int> Ri; // OK: "friend int;" is ignored

— end example]

§11.4 246

10

©ISO/IEC N3092

A function first declared in a friend declaration has external linkage (3.5). Otherwise, the function retains
its previous linkage (7.1.1).

When a friend declaration refers to an overloaded name or operator, only the function specified by the
parameter types becomes a friend. A member function of a class X can be a friend of a class Y. [Example:

class Y {
friend char* X::foo(int);
friend X::X(char); // constructors can be friends
friend X::7X(); // destructors can be friends
};

— end example |

A function can be defined in a friend declaration of a class if and only if the class is a non-local class (9.8),
the function name is unqualified, and the function has namespace scope. [Ezxample:

class M {
friend void £() { } // definition of global £, a friend of M,
// mot the definition of a member function

};

— end example]

Such a function is implicitly inline. A friend function defined in a class is in the (lexical) scope of the
class in which it is defined. A friend function defined outside the class is not (3.4.1).

No storage-class-specifier shall appear in the decl-specifier-seq of a friend declaration.

A name nominated by a friend declaration shall be accessible in the scope of the class containing the friend
declaration. The meaning of the friend declaration is the same whether the friend declaration appears in
the private, protected or public (9.2) portion of the class member-specification.

Friendship is neither inherited nor transitive. [Ezample:

class A {
friend class B;
int a;

};

class B {
friend class C;

};

class C {
void f(A* p) {
p->at+; // error: C is not a friend of A
// despite being a friend of a friend
}
3

class D : public B {
void f(A* p) {
p->at+; // error: D is not a friend of A
// despite being derived from a friend

§11.4 247

11

©ISO/IEC N3092

— end example]

If a friend declaration appears in a local class (9.8) and the name specified is an unqualified name, a prior
declaration is looked up without considering scopes that are outside the innermost enclosing non-class scope.
For a friend function declaration, if there is no prior declaration, the program is ill-formed. For a friend class
declaration, if there is no prior declaration, the class that is specified belongs to the innermost enclosing
non-class scope, but if it is subsequently referenced, its name is not found by name lookup until a matching
declaration is provided in the innermost enclosing nonclass scope. [Example:

class X;

void a();

void £() {
class Y;
extern void b();
class A {
friend class X; // OK, but X is a local class, not ::X
friend class Y; // OK
friend class Z; // OK, introduces local class Z
friend void a(); // error, ::a is not considered
friend void b(); // OK
friend void c¢(; // error

};

X *px; // OK, but ::X is found

Z *pz; // error, no Z is found
}

— end example]

11.5 Protected member access [class.protected]

An additional access check beyond those described earlier in Clause 11 is applied when a non-static data
member or non-static member function is a protected member of its naming class (11.2)''* As described
earlier, access to a protected member is granted because the reference occurs in a friend or member of some
class C. If the access is to form a pointer to member (5.3.1), the nested-name-specifier shall denote C or a
class derived from C. All other accesses involve a (possibly implicit) object expression (5.2.5). In this case,
the class of the object expression shall be C or a class derived from C. [Ezample:

class B {
protected:
int i;
static int j;

};

class D1 : public B {
};

class D2 : public B {
friend void fr(B#*,D1%,D2%);
void mem(B*,D1%);

};

void fr(B* pb, Dix pl, D2* p2) {
pb->i = 1; // ill-formed
pl->i = 2; // ill-formed

114) This additional check does not apply to other members, e.g., static data members or enumerator member constants.

§115 248

©ISO/IEC N3092

p2->i = 3; // OK (access through a D2)
p2->B::i = 4; // OK (access through a D2, even though
// naming class is B)
int B::* pmi_B = &B::i; // ill-formed
int B::* pmi_B2 = &D2::i; // OK (type of &D2::1i is int B::*)
B::j = 5; // OK (because refers to static member)
D2::j =6; // OK (because refers to static member)
}
void D2::mem(B* pb, Dix pl) {
pb->i = 1; // ill-formed
pl->i = 2; // ill-formed
i=3; // OK (access through this)
B::i = 4; // OK (access through this, qualification ignored)
int B::* pmi_B = &B::i; // ill-formed
int B::* pmi_B2 = &D2::i; // OK
j =5; // OK (because j refers to static member)
B::j = 6; // OK (because B: :j refers to static member)
}
void g(B* pb, Dix pl, D2* p2) {
pb—>i = 1; // ill-formed
pl->i = 2; // ill-formed
p2->i = 3; // ill-formed

}

— end example]

11.6 Access to virtual functions [class.access.virt]

The access rules (Clause 11) for a virtual function are determined by its declaration and are not affected by
the rules for a function that later overrides it. [Example:

class B {
public:
virtual int £(Q);

};

class D : public B {
private:

int £Q);

3

void £() {
D 4d;
B*x pb
D* pd

&d;
&d;

pb—>£(); // OK:B::£Q) is public,
//D::£Q) is invoked
pd—>£(0); // error: D: :£() is private
}

— end example|

§11.6 249

©ISO/IEC N3092

Access is checked at the call point using the type of the expression used to denote the object for which the
member function is called (B* in the example above). The access of the member function in the class in
which it was defined (D in the example above) is in general not known.

11.7 Multiple access [class.paths]

If a name can be reached by several paths through a multiple inheritance graph, the access is that of the
path that gives most access. [Example:

class W { public: void £(); };

class A : private virtual W { };

class B : public virtual W { };

class C : public A, public B {

void £() { W::f(); } // OK
};

Since W: :£() is available to C: :£() along the public path through B, access is allowed. — end example |

11.8 Nested classes [class.access.nest)]

A nested class is a member and as such has the same access rights as any other member. The members of
an enclosing class have no special access to members of a nested class; the usual access rules (Clause 11)
shall be obeyed. [Ezample:

class E {
int x;
class B { };

class I {
B b; // OK: E::1 can access E: :B
int y;
void f(Ex p, int i) {

p—>x = i; // OK: E::1 can access E: :x

}

LN

int g(I* p) {
return p->y; // error: 1::y is private

}

};

— end example]

§11.8 250

©ISO/IEC N3092

12 Special member functions [speciall]

The default constructor (12.1), copy constructor and copy assignment operator (12.8), move constructor
and move assignment operator (12.8), and destructor (12.4) are special member functions. [Note: The
implementation will implicitly declare these member functions for some class types when the program does
not explicitly declare them. The implementation will implicitly define them if they are used. See 12.1, 12.4
and 12.8. — end note| Programs shall not define implicitly-declared special member functions.

Programs may explicitly refer to implicitly-declared special member functions. [Ezample: a program may
explicitly call, take the address of or form a pointer to member to an implicitly-declared special member
function.

struct A { }; // implicitly-declared A::operator=
struct B : A {
B& operator=(const B &);
};
B& B::operator=(const B& s) {
this->A::operator=(s); // well-formed
return *this;

}

— end example|

[Note: The special member functions affect the way objects of class type are created, copied, moved, and
destroyed, and how values can be converted to values of other types. Often such special member functions
are called implicitly. — end note]

Special member functions obey the usual access rules (Clause 11). [FEzample: declaring a constructor
protected ensures that only derived classes and friends can create objects using it. — end ezample]|

12.1 Constructors [class.ctor]

Constructors do not have names. A special declarator syntax using an optional sequence of function-
specifiers (7.1.2) followed by the constructor’s class name followed by a parameter list is used to declare or
define the constructor. In such a declaration, optional parentheses around the constructor class name are
ignored. [Example:

struct S {

SQO; // declares the constructor
};
S::80 {1} // defines the constructor

— end example]

A constructor is used to initialize objects of its class type. Because constructors do not have names, they are
never found during name lookup; however an explicit type conversion using the functional notation (5.2.3)
will cause a constructor to be called to initialize an object. [Note: for initialization of objects of class type
see 12.6. — end note]|

A typedef-name shall not be used as the class-name in the declarator-id for a constructor declaration.

§12.1 251

©ISO/IEC N3092

A constructor shall not be virtual (10.3) or static (9.4). A constructor can be invoked for a const,
volatile or const volatile object. A constructor shall not be declared const, volatile, or const
volatile (9.3.2). const and volatile semantics (7.1.6.1) are not applied on an object under construction.
They come into effect when the constructor for the most derived object (1.8) ends. A constructor shall not
be declared with a ref-qualifier.

A default constructor for a class X is a constructor of class X that can be called without an argument. If
there is no user-declared constructor for class X, a constructor having no parameters is implicitly declared
as defaulted (8.4). An implicitly-declared default constructor is an inline public member of its class. A
defaulted default constructor for class X is defined as deleted if:

— X is a union-like class that has a variant member with a non-trivial default constructor,
— any non-static data member with no brace-or-equal-initializer is of reference type,

— any non-variant non-static data member of const-qualified type (or array thereof) with no brace-or-
equal-initializer does not have a user-provided default constructor,

— X is a union and all of its variant members are of const-qualified type (or array thereof),

— X is a non-union class and all members of any anonymous union member are of const-qualified type
(or array thereof), or

— any direct or virtual base class, or non-static data member with no brace-or-equal-initializer, has class
type M (or array thereof) and either M has no default constructor or overload resolution (13.3) as applied
to M’s default constructor results in an ambiguity or in a function that is deleted or inaccessible from
the defaulted default constructor.

A default constructor is trivial if it is neither user-provided nor deleted and if:
— its class has no virtual functions (10.3) and no virtual base classes (10.1), and
— no non-static data member of its class has a brace-or-equal-initializer, and
— all the direct base classes of its class have trivial default constructors, and

— for all the non-static data members of its class that are of class type (or array thereof), each such class
has a trivial default constructor.

Otherwise, the default constructor is non-trivial.

A default constructor that is defaulted and not defined as deleted is implicitly defined when it is used (3.2)
to create an object of its class type (1.8) or when it is explicitly defaulted after its first declaration. The
implicitly-defined default constructor performs the set of initializations of the class that would be per-
formed by a user-written default constructor for that class with no ctor-initializer (12.6.2) and an empty
compound-statement. If that user-written default constructor would be ill-formed, the program is ill-formed.
If that user-written default constructor would satisfy the requirements of a constexpr constructor (7.1.5), the
implicitly-defined default constructor is constexpr. Before the defaulted default constructor for a class is im-
plicitly defined, all the non-user-provided default constructors for its base classes and its non-static data mem-
bers shall have been implicitly defined. [Note: an implicitly-declared default constructor has an ezception-
specification (15.4). An explicitly-defaulted definition might have an implicit ezception-specification, see 8.4.
— end note]

Default constructors are called implicitly to create class objects of static, thread, or automatic storage
duration (3.7.1, 3.7.2, 3.7.3) defined without an initializer (8.5), are called to create class objects of dynamic
storage duration (3.7.4) created by a new-ezpression in which the new-initializer is omitted (5.3.4), or
are called when the explicit type conversion syntax (5.2.3) is used. A program is ill-formed if the default
constructor for an object is implicitly used and the constructor is not accessible (Clause 11).

§12.1 252

10

11

12

13

14

©ISO/IEC N3092

[Note: 12.6.2 describes the order in which constructors for base classes and non-static data members are
called and describes how arguments can be specified for the calls to these constructors. — end note|

A copy constructor (12.8) is used to copy objects of class type. A move constructor (12.8) is used to move
the contents of objects of class type.

No return type (not even void) shall be specified for a constructor. A return statement in the body of a
constructor shall not specify a return value. The address of a constructor shall not be taken.

A functional notation type conversion (5.2.3) can be used to create new objects of its type. [Note: The
syntax looks like an explicit call of the constructor. — end note] [Example:

complex zz = complex(1,2.3);

cprint(complex(7.8,1.2));

— end example|

An object created in this way is unnamed. [Note: 12.2 describes the lifetime of temporary objects. — end
note| [Note: explicit constructor calls do not yield lvalues, see 3.10. — end note]

[Note: some language constructs have special semantics when used during construction; see 12.6.2 and 12.7.
— end note]

During the construction of a const object, if the value of the object or any of its subobjects is accessed
through a glvalue that is not obtained, directly or indirectly, from the constructor’s this pointer, the value
of the object or subobject thus obtained is unspecified. [Ezample:

struct C;

void no_opt(C*);

struct C {

int c;

C(O : c(0) { no_opt(this); }
};

const C cobj;

void no_opt(C* cptr) {

int i = cobj.c * 100; // value of cobj.c is unspecified

cptr->c = 1;

cout << cobj.c * 100 // value of cobj.c is unspecified
<< ’\n’;

}

— end example]

12.2 Temporary objects [class.temporary]

Temporaries of class type are created in various contexts: binding a reference to a prvalue (8.5.3), returning
a prvalue (6.6.3), a conversion that creates a prvalue (4.1, 5.2.9, 5.2.11, 5.4), throwing an exception (15.1),
entering a handler (15.3), and in some initializations (8.5). [Note: the lifetime of exception objects is
described in 15.1. — end note] Even when the creation of the temporary object is avoided (12.8), all the
semantic restrictions shall be respected as if the temporary object had been created. [Note: Even if the
copy/move constructor is not called, all the semantic restrictions, such as accessibility (Clause 11), shall be
satisfied. — end note|

[Example: Consider the following code:

§ 12.2 253

©ISO/IEC N3092

class X {

public:
X(int);
X(const X&);
X0 ;

};

class Y {
public:
Y(int);
Y(Y&&) ;
YO ;
};

X £X);
Y g(¥);

void h() {
X a(l);
Xb=£fX2);
Y c = g(Y(3));
a = f(a);

An implementation might use a temporary in which to construct X(2) before passing it to £ () using X’s copy
constructor; alternatively, X(2) might be constructed in the space used to hold the argument. Likewise, an
implementation might use a temporary in which to construct Y(3) before passing it to g() using Y’s move
constructor; alternatively, Y(3) might be constructed in the space used to hold the argument. Also, a
temporary might be used to hold the result of £(X(2)) before copying it to b using X’s copy constructor;
alternatively, £ ()’s result might be constructed in b. Likewise, a temporary might be used to hold the result
of g(Y(3)) before moving it to c using Y’s move constructor; alternatively, g()’s result might be constructed
in c. On the other hand, the expression a=f (a) requires a temporary for the result of f(a), which is then
assigned to a. — end example]

When an implementation introduces a temporary object of a class that has a non-trivial constructor (12.1,
12.8), it shall ensure that a constructor is called for the temporary object. Similarly, the destructor shall be
called for a temporary with a non-trivial destructor (12.4). Temporary objects are destroyed as the last step
in evaluating the full-expression (1.9) that (lexically) contains the point where they were created. This is true
even if that evaluation ends in throwing an exception. The value computations and side effects of destroying
a temporary object are associated only with the full-expression, not with any specific subexpression.

There are two contexts in which temporaries are destroyed at a different point than the end of the full-
expression. The first context is when a default constructor is called to initialize an element of an array. If
the constructor has one or more default arguments, the destruction of every temporary created in a default
argument expression is sequenced before the construction of the next array element, if any.

The second context is when a reference is bound to a temporary. The temporary to which the reference is
bound or the temporary that is the complete object of a subobject to which the reference is bound persists
for the lifetime of the reference except:

— A temporary bound to a reference member in a constructor’s ctor-initializer (12.6.2) persists until the
constructor exits.

— A temporary bound to a reference parameter in a function call (5.2.2) persists until the completion of
the full-expression containing the call.

§12.2 254

©ISO/IEC N3092

— The lifetime of a temporary bound to the returned value in a function return statement (6.6.3) is not
extended; the temporary is destroyed at the end of the full-expression in the return statement.

— A temporary bound to a reference in a new-initializer (5.3.4) persists until the completion of the
full-expression containing the new-initializer. | Example:

struct S { int mi; const std::pair<int,int>& mp; };
Sad{1, {2,3} };
Sx p = new S{ 1, {2,3} }; // Creates dangling reference

— end example] [Note: This may introduce a dangling reference, and implementations are encouraged
to issue a warning in such a case. — end note]

The destruction of a temporary whose lifetime is not extended by being bound to a reference is sequenced
before the destruction of every temporary which is constructed earlier in the same full-expression. If the
lifetime of two or more temporaries to which references are bound ends at the same point, these temporaries
are destroyed at that point in the reverse order of the completion of their construction. In addition, the
destruction of temporaries bound to references shall take into account the ordering of destruction of objects
with static, thread, or automatic storage duration (3.7.1, 3.7.2, 3.7.3); that is, if obj1 is an object with the
same storage duration as the temporary and created before the temporary is created the temporary shall be
destroyed before obj1 is destroyed; if obj2 is an object with the same storage duration as the temporary and
created after the temporary is created the temporary shall be destroyed after obj2 is destroyed. [Example:

struct S {
SO;
S(int);
friend S operator+(const S&, const S&);
80 ;
};
S objil;
const S& cr = S(16)+S(23);
S obj2;

the expression S(16) + S(23) creates three temporaries: a first temporary T1 to hold the result of the
expression S(16), a second temporary T2 to hold the result of the expression S(23), and a third temporary
T3 to hold the result of the addition of these two expressions. The temporary T3 is then bound to the reference
cr. It is unspecified whether T1 or T2 is created first. On an implementation where T1 is created before
T2, it is guaranteed that T2 is destroyed before T1. The temporaries T1 and T2 are bound to the reference
parameters of operator+; these temporaries are destroyed at the end of the full-expression containing the
call to operator+. The temporary T3 bound to the reference cr is destroyed at the end of cr’s lifetime,
that is, at the end of the program. In addition, the order in which T3 is destroyed takes into account the
destruction order of other objects with static storage duration. That is, because obj1 is constructed before
T3, and T3 is constructed before obj2, it is guaranteed that obj2 is destroyed before T3, and that T3 is
destroyed before objl. — end example]

12.3 Conversions [class.conv]

Type conversions of class objects can be specified by constructors and by conversion functions. These
conversions are called user-defined conversions and are used for implicit type conversions (Clause 4), for
initialization (8.5), and for explicit type conversions (5.4, 5.2.9).

User-defined conversions are applied only where they are unambiguous (10.2, 12.3.2). Conversions obey the
access control rules (Clause 11). Access control is applied after ambiguity resolution (3.4).

§12.3 255

©ISO/IEC N3092

[Note: See 13.3 for a discussion of the use of conversions in function calls as well as examples below. — end
note |
At most one user-defined conversion (constructor or conversion function) is implicitly applied to a single

value.
[Example:

struct X {
operator int();

};

struct Y {
operator X();

};

Y a;
int b

a; // error

// a.operator X().operator int() not tried
X(a); // OK: a.operator X().operator int()

int c

— end example]

User-defined conversions are used implicitly only if they are unambiguous. A conversion function in a
derived class does not hide a conversion function in a base class unless the two functions convert to the same
type. Function overload resolution (13.3.3) selects the best conversion function to perform the conversion.

[Example:

struct X {
operator int();

};

struct Y : X {
operator char();

};

void (Y& a) {

if (a) { // ill-formed:
// X::operator int() or Y::operator char()

}
}

— end example]
12.3.1 Conversion by constructor [class.conv.ctor]

A constructor declared without the function-specifier explicit specifies a conversion from the types of its
parameters to the type of its class. Such a constructor is called a converting constructor. [Example:

struct X {
X(int);
X(const char*, int =0);
};
void £f(X arg) {
Xa=1; //a =X
X b = "Jessie"; //b = X("Jessie",0)

§12.3.1 256

©ISO/IEC N3092

a = 2; //a = X(2)
£(3); // £(X(3))
}

— end example]

An explicit constructor constructs objects just like non-explicit constructors, but does so only where the
direct-initialization syntax (8.5) or where casts (5.2.9, 5.4) are explicitly used. A default constructor
may be an explicit constructor; such a constructor will be used to perform default-initialization or value-
initialization (8.5). [Example:

struct Z {
explicit ZQ);
explicit Z(int);

};

Z a; // OK: default-initialization performed
Z al = 1; // error: no implicit conversion

Z a3 = Z2(1); // OK: direct initialization syntax used
Z a2(1); // OK: direct initialization syntaz used
Z* p = new Z(1); // OK: direct initialization syntaz used
Z a4 = (2)1; // OK: explicil cast used

Z ab = static_cast<Z>(1); // OK: explicit cast used

— end example]

A non-explicit copy/move constructor (12.8) is a converting constructor. An implicitly-declared copy/move
constructor is not an explicit constructor; it may be called for implicit type conversions.

12.3.2 Conversion functions [class.conv.fct]

A member function of a class X having no parameters with a name of the form

conversion-function-id:
operator conversion-type-id

conversion-type-id:
type-specifier-seq conversion-declarator,p;

conversion-declarator:
ptr-operator conversion-declaratoropt

specifies a conversion from X to the type specified by the conversion-type-id. Such functions are called
conversion functions. No return type can be specified. If a conversion function is a member function, the
type of the conversion function (8.3.5) is “function taking no parameter returning conversion-type-id”. A
conversion function is never used to convert a (possibly cv-qualified) object to the (possibly cv-qualified)
same object type (or a reference to it), to a (possibly cv-qualified) base class of that type (or a reference to
it), or to (possibly cv-qualified) void.!1?

[Ezample:

struct X {
operator int();

};

115) These conversions are considered as standard conversions for the purposes of overload resolution (13.3.3.1, 13.3.3.1.4) and
therefore initialization (8.5) and explicit casts (5.2.9). A conversion to void does not invoke any conversion function (5.2.9).
Even though never directly called to perform a conversion, such conversion functions can be declared and can potentially be
reached through a call to a virtual conversion function in a base class.

§12.3.2 257

©ISO/IEC N3092

void £(X a) {
int i = int(a);

i = (int)a;
i= a;
}
In all three cases the value assigned will be converted by X: :operator int(). — end example]

A conversion function may be explicit (7.1.2), in which case it is only considered as a user-defined conversion
for direct-initialization (8.5). Otherwise, user-defined conversions are not restricted to use in assignments
and initializations. [Example:

class Y { };
struct Z {
explicit operator Y() const;
}
void h(Z z) {
Y yi(2); // OK: direct-initialization
Y y2 = z; // ill-formed: copy-initialization
Y y3 = (Vz; // OK: cast notation

}

void g(X a, X b) {
int i = (a) ? 1+a : 0;
int j = (a&&b) 7 a+b : i;
if (a) {
}

}

— end example]

3 The conversion-type-id shall not represent a function type nor an array type. The conversion-type-id in

a conversion-function-id is the longest possible sequence of conversion-declarators. [Note: this prevents
ambiguities between the declarator operator * and its expression counterparts. | Example:

&ac.operator int*i; // syntax error:
// parsed as: &(ac.operator int *)i
// mot as: &(ac.operator int)*i
The * is the pointer declarator and not the multiplication operator. — end example] — end note]
Conversion functions are inherited.

Conversion functions can be virtual.

Conversion functions cannot be declared static.

12.4 Destructors [class.dtor]

A special declarator syntax using an optional function-specifier (7.1.2) followed by ~ followed by the destruc-
tor’s class name followed by an empty parameter list is used to declare the destructor in a class definition.
In such a declaration, the ~ followed by the destructor’s class name can be enclosed in optional parentheses;
such parentheses are ignored. A typedef-name shall not be used as the class-name following the ~ in the
declarator for a destructor declaration.

§ 12.4 258

©ISO/IEC N3092

A destructor is used to destroy objects of its class type. A destructor takes no parameters, and no return type
can be specified for it (not even void). The address of a destructor shall not be taken. A destructor shall
not be static. A destructor can be invoked for a const, volatile or const volatile object. A destructor
shall not be declared const, volatile or const volatile (9.3.2). const and volatile semantics (7.1.6.1)
are not applied on an object under destruction. They stop being in effect when the destructor for the most
derived object (1.8) starts. A destructor shall not be declared with a ref-qualifier.

If a class has no user-declared destructor, a destructor is implicitly declared as defaulted (8.4). An implicitly-
declared destructor is an inline public member of its class.

A defaulted destructor for a class X is defined as deleted if:
— X is a union-like class that has a variant member with a non-trivial destructor,

— any of the non-static data members has class type M (or array thereof) and M has a deleted destructor
or a destructor that is inaccessible from the defaulted destructor, or

— any direct or virtual base class has a deleted destructor or a destructor that is inaccessible from the
defaulted destructor.

A destructor is trivial if it is neither user-provided nor deleted and if:
— the destructor is not virtual,
— all of the direct base classes of its class have trivial destructors, and

— for all of the non-static data members of its class that are of class type (or array thereof), each such
class has a trivial destructor.

Otherwise, the destructor is non-trivial.

A destructor that is defaulted and not defined as deleted is implicitly defined when it is used to destroy an
object of its class type (3.7) or when it is explicitly defaulted after its first declaration.

Before the defaulted destructor for a class is implicitly defined, all the non-user-provided destructors for
its base classes and its non-static data members shall have been implicitly defined. [Note: an implicitly-
declared destructor has an exception-specification (15.4). An explictly defaulted definition has no implicit
exception-specification. — end note]

After executing the body of the destructor and destroying any automatic objects allocated within the body,
a destructor for class X calls the destructors for X’s direct non-variant members, the destructors for X’s direct
base classes and, if X is the type of the most derived class (12.6.2), its destructor calls the destructors for
X’s virtual base classes. All destructors are called as if they were referenced with a qualified name, that is,
ignoring any possible virtual overriding destructors in more derived classes. Bases and members are destroyed
in the reverse order of the completion of their constructor (see 12.6.2). A return statement (6.6.3) in a
destructor might not directly return to the caller; before transferring control to the caller, the destructors
for the members and bases are called. Destructors for elements of an array are called in reverse order of
their construction (see 12.6).

A destructor can be declared virtual (10.3) or pure virtual (10.4); if any objects of that class or any
derived class are created in the program, the destructor shall be defined. If a class has a base class with a
virtual destructor, its destructor (whether user- or implicitly- declared) is virtual.

[Note: some language constructs have special semantics when used during destruction; see 12.7. — end
note]

Destructors are invoked implicitly

— for constructed objects with static storage duration (3.7.1) at program termination (3.6.3),

§ 12.4 259

10

11

©ISO/IEC N3092

— for constructed objects with thread storage duration (3.7.2) at thread exit,

— for constructed objects with automatic storage duration (3.7.3) when the block in which an object is
created exits (6.7),

— for constructed temporary objects when the lifetime of a temporary object ends (12.2),
— for constructed objects allocated by a new-expression (5.3.4), through use of a delete-expression (5.3.5),
— in several situations due to the handling of exceptions (15.3).

A program is ill-formed if an object of class type or array thereof is declared and the destructor for the class
is not accessible at the point of the declaration. Destructors can also be invoked explicitly.

At the point of definition of a virtual destructor (including an implicit definition (12.8)), the non-array
deallocation function is looked up in the scope of the destructor’s class (10.2), and, if no declaration is
found, the function is looked up in the global scope. If the result of this lookup is ambiguous or inaccessible,
or if the lookup selects a placement deallocation function or a function with a deleted definition (8.4), the
program is ill-formed. [Note: this assures that a deallocation function corresponding to the dynamic type
of an object is available for the delete-expression (12.5). — end note]

In an explicit destructor call, the destructor name appears as a ~ followed by a type-name or decltype-
specifier that denotes the destructor’s class type. The invocation of a destructor is subject to the usual
rules for member functions (9.3), that is, if the object is not of the destructor’s class type and not of a class
derived from the destructor’s class type, the program has undefined behavior (except that invoking delete
on a null pointer has no effect). [Example:

struct B {
virtual “BQ) { }

};

struct D : B {
DO {1}

};

D D_object;
typedef B B_alias;
B* B_ptr = &D_object;

void f£() {
D_object.B::"B(); // calls B’s destructor
B_ptr->"B(); // calls D’s destructor
B_ptr->"B_alias(); // calls D’s destructor
B_ptr->B_alias::"B(); // calls B’s destructor
B_ptr->B_alias::"B_alias(); // calls B’s destructor
}

—end example] [Note: an explicit destructor call must always be written using a member access opera-
tor (5.2.5) or a qualified-id (5.1); in particular, the unary-ezpression “X() in a member function is not an
explicit destructor call (5.3.1). — end note]

[Note: explicit calls of destructors are rarely needed. One use of such calls is for objects placed at specific
addresses using a new-expression with the placement option. Such use of explicit placement and destruction
of objects can be necessary to cope with dedicated hardware resources and for writing memory management
facilities. For example,

void* operator new(std::size_t, void* p) { return p; }
struct X {

§ 12.4 260

12

13

©ISO/IEC N3092

X(int);
X0

};

void £(X* p);

void g() { // rare, specialized use:
char* buf = new char[sizeof(X)];
X* p = new(buf) X(222); // use buf [1 and initialize
f(p);
p—>X::"XO; // cleanup

}

— end note

Once a destructor is invoked for an object, the object no longer exists; the behavior is undefined if the
destructor is invoked for an object whose lifetime has ended (3.8). [FEzample: if the destructor for an
automatic object is explicitly invoked, and the block is subsequently left in a manner that would ordinarily
invoke implicit destruction of the object, the behavior is undefined. — end example|

[Note: the notation for explicit call of a destructor can be used for any scalar type name (5.2.4). Allowing
this makes it possible to write code without having to know if a destructor exists for a given type. For
example,

typedef int I;

I* p;
p—>I::"I0;

— end note]

12.5 Free store [class.free]

Any allocation function for a class T is a static member (even if not explicitly declared static).

[Ezample:

class Arena;
struct B {
void* operator new(std::size_t, Arenax);
};
struct D1 : B {
};

Arena* ap;
void foo(int i) {

new (ap) D1; // calls B: :operator new(std::size_t, Arenax*)

new D1[i]; // calls ::operator new[](std::size_t)

new D1; // ill-formed: ::operator new(std::size_t) hidden
}

— end example]

When an object is deleted with a delete-expression (5.3.5), a deallocation function (operator delete() for
non-array objects or operator delete[] () for arrays) is (implicitly) called to reclaim the storage occupied
by the object (3.7.4.2).

If a delete-expression begins with a unary :: operator, the deallocation function’s name is looked up in
global scope. Otherwise, if the delete-expression is used to deallocate a class object whose static type has

§125 261

©ISO/IEC N3092

a virtual destructor, the deallocation function is the one selected at the point of definition of the dynamic
type’s virtual destructor (12.4).116 Otherwise, if the delete-expression is used to deallocate an object of
class T or array thereof, the static and dynamic types of the object shall be identical and the deallocation
function’s name is looked up in the scope of T. If this lookup fails to find the name, the name is looked up in
the global scope. If the result of the lookup is ambiguous or inaccessible, or if the lookup selects a placement
deallocation function, the program is ill-formed.

When a delete-expression is executed, the selected deallocation function shall be called with the address of
the block of storage to be reclaimed as its first argument and (if the two-parameter style is used) the size of
the block as its second argument.'?

Any deallocation function for a class X is a static member (even if not explicitly declared static). [Ezample:

class X {
void operator delete(voidx);
void operator delete[] (void*, std::size_t);

};

class Y {
void operator delete(void*, std::size_t);
void operator deletel[] (voidx);

};

— end example]

Since member allocation and deallocation functions are static they cannot be virtual. [Note: however,
when the cast-expression of a delete-expression refers to an object of class type, because the deallocation
function actually called is looked up in the scope of the class that is the dynamic type of the object, if the
destructor is virtual, the effect is the same. For example,

struct B {
virtual “B();
void operator delete(void#*, std::size_t);

};

struct D : B {
void operator delete(voidx);

};

void £() {

Bx bp = new D;

delete bp; // uses D: :operator delete(voidx)
}

Here, storage for the non-array object of class D is deallocated by D: :operator delete(), due to the virtual
destructor. — end note] [Note: virtual destructors have no effect on the deallocation function actually called
when the cast-expression of a delete-expression refers to an array of objects of class type. For example,

struct B {
virtual “BQ);
void operator deletel[] (void*, std::size_t);

};

116) A similar provision is not needed for the array version of operator delete because 5.3.5 requires that in this situation,
the static type of the object to be deleted be the same as its dynamic type.

117) If the static type of the object to be deleted is different from the dynamic type and the destructor is not virtual the size
might be incorrect, but that case is already undefined; see 5.3.5.

§125 262

©ISO/IEC N3092

struct D : B {
void operator delete[] (void*, std::size_t);

};

void f(int i) {
D* dp = new D[i];

delete [] dp; // uses D: :operator delete[](void#*, std::size_t)
B* bp = new D[i];
delete[] bp; // undefined behavior
}
— end note]

Access to the deallocation function is checked statically. Hence, even though a different one might actually
be executed, the statically visible deallocation function is required to be accessible. [Example: for the call
on line //1 above, if B::operator delete() had been private, the delete expression would have been
ill-formed. — end example]

12.6 Initialization [class.init]

When no initializer is specified for an object of (possibly cv-qualified) class type (or array thereof), or the
initializer has the form (), the object is initialized as specified in 8.5.

An object of class type (or array thereof) can be explicitly initialized; see 12.6.1 and 12.6.2.

When an array of class objects is initialized (either explicitly or implicitly) and the elements are initialized
by constructor, the constructor shall be called for each element of the array, following the subscript order;

see 8.3.4. [Note: destructors for the array elements are called in reverse order of their construction. — end
note |
12.6.1 Explicit initialization [class.expl.init]

An object of class type can be initialized with a parenthesized expression-list, where the expression-list
is construed as an argument list for a constructor that is called to initialize the object. Alternatively, a
single assignment-expression can be specified as an initializer using the = form of initialization. Either
direct-initialization semantics or copy-initialization semantics apply; see 8.5. [Example:

struct complex {
complex();
complex(double) ;
complex(double,double) ;

};

complex sqrt(complex,complex);

complex a(1); // initialize by a call of
// complex(double)

complex b = a; // initialize by a copy of a

complex c = complex(1,2); // construct complex(1,2)

// using complex(double,double)
// copy/move it into ¢

complex d = sqrt(b,c); // call sqrt(complex,complex)
// and copy/move the result into d
complex e; // initialize by a call of
// complex()

§ 12.6.1 263

©ISO/IEC N3092

complex f = 3; // construct complex(3) using
// complex(double)
// copy/move it into £
complex g = { 1, 2 }; // construct complex (1, 2)
// using complex(double, double)
// and copy/move it into g
— end example] [Note: overloading of the assignment operator (13.5.3) has no effect on initialization. — end
note |

An object of class type can also be initialized by a braced-init-list. List-initialization semantics apply; see 8.5
and 8.5.4. [Example:

complex v[6] = { 1, complex(1,2), complex(), 2 };

Here, complex: : complex(double) is called for the initialization of v[0] and v[3], complex: : complex(double,
double) is called for the initialization of v[1], complex: :complex() is called for the initialization v[2],
v[4], and v[5]. For another example,

struct X {
int i;
float f;
complex c;
}x=4{99, 88.8, 77.7 };

Here, x. 1 is initialized with 99, x. f is initialized with 88.8, and complex: : complex(double) is called for the
initialization of x.c. —end example] [Note: braces can be elided in the initializer-list for any aggregate,
even if the aggregate has members of a class type with user-defined type conversions; see 8.5.1. — end note]

[Note: if T is a class type with no default constructor, any declaration of an object of type T (or array
thereof) is ill-formed if no initializer is explicitly specified (see 12.6 and 8.5). — end note]|

[Note: the order in which objects with static or thread storage duration are initialized is described in 3.6.2
and 6.7. — end note]

12.6.2 Initializing bases and members [class.base.init]

In the definition of a constructor for a class, initializers for direct and virtual base subobjects and non-static
data members can be specified by a ctor-initializer, which has the form
ctor-initializer:
1 mem-initializer-list
mem-initializer-list:
mem-initializer . . . opi
mem-initializer , mem-initializer-list . . . ,p
mem-initializer:
mem-initializer-id (expression-listop)
mem-initializer-id braced-init-list
mem-initializer-id:
class-or-decltype
identifier
In a mem-initializer-id an initial unqualified identifier is looked up in the scope of the constructor’s class
and, if not found in that scope, it is looked up in the scope containing the constructor’s definition. [Note:
if the constructor’s class contains a member with the same name as a direct or virtual base class of the
class, a mem-initializer-id naming the member or base class and composed of a single identifier refers to

§12.6.2 264

©ISO/IEC N3092

the class member. A mem-initializer-id for the hidden base class may be specified using a qualified name.
— end note] Unless the mem-initializer-id names the constructor’s class, a non-static data member of the
constructor’s class, or a direct or virtual base of that class, the mem-initializer is ill-formed.

A mem-initializer-list can initialize a base class using any class-or-decltype that denotes that base class type.
[Example:

struct A { AQ); };
typedef A global_A;
struct B { };
struct C: public A, public B { C(); };
C::C(: global AQ { } // mem-initializer for base A

— end example]

If a mem-initializer-id is ambiguous because it designates both a direct non-virtual base class and an inherited
virtual base class, the mem-initializer is ill-formed. [Ezample:

struct A { AQ; };

struct B: public virtual A { };

struct C: public A, public B { CO; };

C::CO: AO {1} // ill-formed: which A?

— end example]

A ctor-initializer may initialize the member of an anonymous union that is a member of the constructor’s
class. If a ctor-initializer specifies more than one mem-initializer for the same member or for the same base
class, the ctor-initializer is ill-formed.

A mem-initializer-list can delegate to another constructor of the constructor’s class using any class-or-
decltype that denotes the constructor’s class itself. If a mem-initializer-id designates the constructor’s class,
it shall be the only mem-initializer; the constructor is a delegating constructor, and the constructor selected
by the mem-initializer is the target constructor. The principal constructor is the first constructor invoked
in the construction of an object (that is, not a target constructor for that object’s construction). The
target constructor is selected by overload resolution. Once the target constructor returns, the body of the
delegating constructor is executed. If a constructor delegates to itself directly or indirectly, the program is
ill-formed; no diagnostic is required. [Ezample:

struct C {
CCint) { } // #1: non-delegating constructor
CO: c@42) {12 // #2: delegates to #1
C(char ¢) : C(42.0) { } // #38: dll-formed due to recursion with #4

C(double d) : C(C’a’) { } // #4: ill-formed due to recursion with #3
};

— end example]

The expression-list or braced-init-list in a mem-initializer is used to initialize the base class or non-static
data member subobject denoted by the mem-initializer-id according to the initialization rules of 8.5 for
direct-initialization.

[Example:

struct Bl { Bi(int); /x .../ };
struct B2 { B2(int); /x .../ };
struct D : B1l, B2 {

D(int);

§ 12.6.2 265

©ISO/IEC N3092

Bl b;
const int c;

};

D::D(int a) : B2(a+1), B1(a+2), c(a+3), b(a+d)
{ /x ... x/}

D d(10);

— end example] The initialization of each base and member constitutes a full-expression. Any expression in
a mem-initializer is evaluated as part of the full-expression that performs the initialization. A mem-initializer
where the mem-initializer-id denotes a virtual base class is ignored during execution of a constructor of any
class that is not the most derived class.

If a given non-static data member or base class is not designated by a mem-initializer-id (including the case
where there is no mem-initializer-list because the constructor has no ctor-initializer) and the entity is not
a virtual base class of an abstract class (10.4), then

— if the entity is a non-static data member that has a brace-or-equal-initializer, the entity is initialized
as specified in 8.5;

— otherwise, if the entity is a variant member (9.5), no initialization is performed;
— otherwise, the entity is default-initialized (8.5).

[Note: an abstract class (10.4) is never a most derived class, thus its constructors never initialize virtual
base classes, therefore the corresponding mem-initializers may be omitted. — end note] An attempt to
initialize more than one non-static data member of a union renders the program ill-formed. After the call
to a constructor for class X has completed, if a member of X is neither initialized nor given a value during
execution of the compound-statement of the body of the constructor, the member has indeterminate value.
[Example:

struct A {
AQ;
};
struct B {
B(int);
};
struct C {
cO{1? // initializes members as follows:
A a; // OK: calls A::AQ)
const B b; // error: B has no default constructor
int i; // OK: i has indeterminate value
int j = 5; // OK: j has the value 5
};

— end example]

If a given non-static data member has both a brace-or-equal-initializer and a mem-initializer, the initializa-
tion specified by the mem-initializer is performed, and the non-static data member’s brace-or-equal-initializer
is ignored. [Example: Given

struct A {
int i = /% some integer expression with side effects x/ ;
A(int arg) : i(arg) { 2}

/..

§ 12.6.2 266

10

11

12

©ISO/IEC N3092

};

the A(int) constructor will simply initialize i to the value of arg, and the side effects in i’s brace-or-equal-
initializer will not take place. — end ezample]

Initialization proceeds in the following order:

— First, and only for the constructor of the most derived class (1.8), virtual base classes are initialized in
the order they appear on a depth-first left-to-right traversal of the directed acyclic graph of base classes,
where “left-to-right” is the order of appearance of the base classes in the derived class base-specifier-list.

— Then, direct base classes are initialized in declaration order as they appear in the base-specifier-list
(regardless of the order of the mem-initializers).

— Then, non-static data members are initialized in the order they were declared in the class definition
(again regardless of the order of the mem-initializers).

— Finally, the compound-statement of the constructor body is executed.

[Note: the declaration order is mandated to ensure that base and member subobjects are destroyed in the
reverse order of initialization. — end note]

[Ezample:

struct V {
VO ;
V(int);
};

struct A : virtual V {
AQ;

A(int);

};

struct B : virtual V {
BO;

B(int);

};

struct C : A, B, virtual V {
cO;

C(int);

};

A::A(int 1) : V@) { fx...x/}
B::B(int i) { /x ... %/}
C::C(int i) { /fx ...x/}

vV v(1); // use V(int)
A a(2); // use V(int)
B b(3); // use VOO
Cc(d; // use V()

— end example]

Names in the expression-list of a mem-initializer are evaluated in the scope of the constructor for which the
mem-initializer is specified. [Ezample:

§ 12.6.2 267

13

14

©ISO/IEC N3092

class X {
int a;
int b;
int i;
int j;
public:
const int& r;
X(int i): r(a), b(i), i(i), j(this->i) { }
};

initializes X: : r to refer to X: : a, initializes X: : b with the value of the constructor parameter i, initializes X: : i
with the value of the constructor parameter i, and initializes X: : j with the value of X::i; this takes place
each time an object of class X is created. — end ezample] [Note: because the mem-initializer are evaluated
in the scope of the constructor, the this pointer can be used in the expression-list of a mem-initializer to
refer to the object being initialized. — end note]

Member functions (including virtual member functions, 10.3) can be called for an object under construction.
Similarly, an object under construction can be the operand of the typeid operator (5.2.8) or of a dynamic_-
cast (5.2.7). However, if these operations are performed in a ctor-initializer (or in a function called directly
or indirectly from a ctor-initializer) before all the mem-initializers for base classes have completed, the result
of the operation is undefined. [Ezample:

class A {
public:

A(int);
};

class B : public A {
int j;
public:
int £Q);
BO : A(£0)), // undefined: calls member function
// but base A not yet initialized
JjEO) {3} // well-defined: bases are all initialized
};

class C {
public:

C(int);
};

class D : public B, C {
int i;
public:
D(O) : C(£0)), // undefined: calls member function
// but base C not yet initialized
i(f0) {1} // well-defined: bases are all initialized
};

— end example]

[Note: 12.7 describes the result of virtual function calls, typeid and dynamic_casts during construction for
the well-defined cases; that is, describes the polymorphic behavior of an object under construction. — end
note]

§ 12.6.2 268

15

2

3

©ISO/IEC N3092

A meme-initializer followed by an ellipsis is a pack expansion (14.5.3) that initializes the base classes specified
by a pack expansion in the base-specifier-list for the class. [Example:

template<class... Mixins>
class X : public Mixins... {
public:
X(const Mixins&... mixins) : Mixins(mixins)... { }
};

— end example]

12.7 Construction and destruction [class.cdtor]

For an object with a non-trivial constructor, referring to any non-static member or base class of the object
before the constructor begins execution results in undefined behavior. For an object with a non-trivial
destructor, referring to any non-static member or base class of the object after the destructor finishes
execution results in undefined behavior. [Ezample:

struct X { int i; };

struct Y : X { YO; }; // mon-trivial
struct A { int a; };
struct B : public A { int j; Y y; 1}; // non-trivial

extern B bobj;

B* pb = &bobj; // OK

int* pl = &bobj.a; // undefined, refers to base class member
int* p2 = &bobj.y.i; // undefined, refers to member’s member
Ax pa = &bobj; // undefined, upcast to a base class type
B bobj; // definition of bobj

extern X xobj;

int* p3 = &xobj.i; //OK, X is a trivial class

X xobj;

For another example,

struct W { int j; };
struct X : public virtual W { };

struct Y {
int *p;
X x;
YO : plx.j) { // undefined, x is not yet constructed
}
};

— end example]

To explicitly or implicitly convert a pointer (a glvalue) referring to an object of class X to a pointer (reference)
to a direct or indirect base class B of X, the construction of X and the construction of all of its direct or
indirect bases that directly or indirectly derive from B shall have started and the destruction of these classes
shall not have completed, otherwise the conversion results in undefined behavior. To form a pointer to (or
access the value of) a direct non-static member of an object obj, the construction of obj shall have started
and its destruction shall not have completed, otherwise the computation of the pointer value (or accessing
the member value) results in undefined behavior. [Ezample:

§ 12.7 269

©ISO/IEC N3092

struct A { };

struct B : virtual A { };

struct C : B { };

struct D : virtual A { D(Ax%); };
struct X { X(&%); };

struct E : C, D, X {
EQ : D(this), // undefined: upcast from Ex to Ax
// might use path E¥ — D¥ — Ax
// but D is not constructed
// D((Cx)this), // defined:
// Ex — Cx defined because E() has started
// and C* — A* defined because
// C fully constructed
X(this) { // defined: upon construction of X,
// C/B/D/A sublattice is fully constructed
}
};

— end example]

4 Member functions, including virtual functions (10.3), can be called during construction or destruction (12.6.2).
When a virtual function is called directly or indirectly from a constructor (including the mem-initializer or
brace-or-equal-initializer for a non-static data member) or from a destructor, and the object to which the
call applies is the object under construction or destruction, the function called is the one defined in the
constructor or destructor’s own class or in one of its bases, but not a function overriding it in a class derived
from the constructor or destructor’s class, or overriding it in one of the other base classes of the most derived
object (1.8). If the virtual function call uses an explicit class member access (5.2.5) and the object-expression
refers to the object under construction or destruction but its type is neither the constructor or destructor’s
own class or one of its bases, the result of the call is undefined. [Example:

struct V {
virtual void f£(Q);
virtual void g();

};

struct A : virtual V {
virtual void £(Q);

};

struct B : virtual V {
virtual void g();
B(Vx, Ax);

};

struct D : A, B {

virtual void f£(Q);

virtual void g();

D() : B((A*)this, this) { }

}’
B::B(Vx v, A% a) {
£0O; // calls V::f, not A::f
g0); // calls B::g, not D: :g
v->g(); // v is base of B, the call is well-defined, calls B: :g

§ 12.7 270

©ISO/IEC N3092

a->f(); // undefined behavior, a’s type not a base of B
}

— end example |

The typeid operator (5.2.8) can be used during construction or destruction (12.6.2). When typeid is used
in a constructor (including the mem-initializer or brace-or-equal-initializer for a non-static data member) or
in a destructor, or used in a function called (directly or indirectly) from a constructor or destructor, if the
operand of typeid refers to the object under construction or destruction, typeid yields the std: :type_info
object representing the constructor or destructor’s class. If the operand of typeid refers to the object under
construction or destruction and the static type of the operand is neither the constructor or destructor’s class
nor one of its bases, the result of typeid is undefined.

Dynamic_casts (5.2.7) can be used during construction or destruction (12.6.2). When a dynamic_cast
is used in a constructor (including the mem-initializer or brace-or-equal-initializer for a non-static data
member) or in a destructor, or used in a function called (directly or indirectly) from a constructor or
destructor, if the operand of the dynamic_cast refers to the object under construction or destruction, this
object is considered to be a most derived object that has the type of the constructor or destructor’s class. If
the operand of the dynamic_cast refers to the object under construction or destruction and the static type
of the operand is not a pointer to or object of the constructor or destructor’s own class or one of its bases,
the dynamic_cast results in undefined behavior.

[Example:

struct V {
virtual void f£(Q);

};

struct A : virtual V { };
struct B : virtual V {
B(Vk, Ax);

};

struct D : A, B {
D() : B((Ax)this, this) { }

};
B::B(V* v, Ax a) {
typeid(*this); // type_info for B
typeid(xv); // well-defined: *v has type V, a base of B
// yields type_info for B
typeid(*a); // undefined behavior: type A not a base of B
dynamic_cast<B*>(v); // well-defined: v of type V*, V base of B
// results in Bx
dynamic_cast<B*>(a); // undefined behavior,

// a has type Ax, A not a base of B
}

— end example |
12.8 Copying and moving class objects [class.copy]

A class object can be copied or moved in two ways: by initialization (12.1, 8.5), including for function argu-
ment passing (5.2.2) and for function value return (6.6.3); and by assignment (5.17). Conceptually, these two
operations are implemented by a copy/move constructor (12.1) and copy/move assignment operator (13.5.3).

§12.8 271

©ISO/IEC N3092

2 A non-template constructor for class X is a copy constructor if its first parameter is of type X&, const X&,
volatile X& or const volatile X&, and either there are no other parameters or else all other parameters
have default arguments (8.3.6). [Ezample: X::X(const X&) and X::X(X&,int=1) are copy constructors.

struct X {
X(int);
X(const X&, int = 1);
};
X a(1); // calls X(int) ;
X b(a, 0); // calls X(const X&, int);
X c = b; // calls X(const X&, int);

— end example]

3 A non-template constructor for class X is a move constructor if its first parameter is of type X&&, const
X&&, volatile X&&, or const volatile X&&, and either there are no other parameters or else all other
parameters have default arguments (8.3.6). [Ezample: Y::Y(Y&&) is a move constructor.

struct Y {
Y(const Y&);
Y(Y&&) ;
};
extern Y f(int);
Y d(£(1)); // calls Y(Y&&)
Y e=d; // calls Y(const Y&)

— end example|

4 [Note: All forms of copy/move constructor may be declared for a class. [Ezample:

struct X {
X(const X&);
X (X&) ; // OK
X(X&&) ;
X(const X&&); // OK, but possibly not sensible
};
— end example] — end note|

5 [Note: if a class X only has a copy constructor with a parameter of type X&, an initializer of type const X
or volatile X cannot initialize an object of type (possibly cv-qualified) X. [Ezample:

struct X {
XO; // default constructor
X (X&) ; // copy constructor with a nonconst parameter
};
const X cx;
X x = cx; // error: X::X(X&) cannot copy cx into x
— end example] — end note]

6 A declaration of a constructor for a class X is ill-formed if its first parameter is of type (optionally cv-qualified)
X and either there are no other parameters or else all other parameters have default arguments.

7 A member function template is never instantiated to perform the copy of a class object to an object of its
class type. [Example:

§12.8 272

10

©ISO/IEC N3092

struct S {
template<typename T> S(T);
template<typename T> S(T&&);

SO;
};
S £0;
const S g;
void h() {
Sa(C £0); // does not instantiate member template;
// uses the implicitly generated move constructor
S a(g); // does not instantiate the member template;
// uses the implicitly generated copy constructor
}

— end example]

If the class definition does not explicitly declare a copy constructor and there is no user-declared move
constructor, a copy constructor is implicitly declared as defaulted (8.4). Thus, for the class definition

struct X {
X(const X&, int);
};
a copy constructor is implicitly-declared. If the user-declared constructor is later defined as

X::X(const X& x, int i =0) { /* ...x/ }

then any use of X’s copy constructor is ill-formed because of the ambiguity; no diagnostic is required.
The implicitly-declared copy constructor for a class X will have the form
X::X(const X&)
if
— each direct or virtual base class B of X has a copy constructor whose first parameter is of type const
B& or const volatile B&, and

— for all the non-static data members of X that are of a class type M (or array thereof), each such class
type has a copy constructor whose first parameter is of type const M& or const volatile Mg 118

Otherwise, the implicitly-declared copy constructor will have the form

X:: X (X&)
If the class definition does not explicitly declare a move constructor, one will be implicitly declared as
defaulted if and only if

— X does not have a user-declared copy constructor and

— the move constructor would not be implicitly defined as deleted.

118) This implies that the reference parameter of the implicitly-declared copy constructor cannot bind to a volatile lvalue;
see C.1.8.

§ 12.8 273

11

12

13

14

15

16

17

©ISO/IEC N3092

[Note: When the move constructor is not implicitly declared or explicitly supplied, expressions that otherwise
would have invoked the move constructor may instead invoke a copy constructor. — end note]

The implicitly-declared move constructor for class X will have the form

X X(X&&)
An implicitly-declared copy/move constructor is an inline public member of its class. A defaulted copy-
/move constructor for a class X is defined as deleted (8.4.3) if X has:

— a variant member with a non-trivial corresponding constructor and X is a union-like class,

— a non-static data member of class type M (or array thereof) that cannot be copied/moved because
overload resolution (13.3), as applied to M’s corresponding constructor, results in an ambiguity or a
function that is deleted or inaccessible from the defaulted constructor, or

— a direct or virtual base class B that cannot be copied/moved because overload resolution (13.3), as
applied to B’s corresponding constructor, results in an ambiguity or a function that is deleted or
inaccessible from the defaulted constructor, or

— for the move constructor, a non-static data member or direct or virtual base class with a type that
does not have a move constructor and is not trivially copyable.

A copy/move constructor for class X is trivial if it is neither user-provided nor deleted and if
— class X has no virtual functions (10.3) and no virtual base classes (10.1), and
— the constructor selected to copy/move each direct base class subobject is trivial, and

— for each non-static data member of X that is of class type (or array thereof), the constructor selected
to copy/move that member is trivial;

otherwise the copy/move constructor is non-trivial.

A copy/move constructor that is defaulted and not defined as deleted is implicitly defined if it is used to
initialize an object of its class type from a copy of an object of its class type or of a class type derived from its
class type''® or when it is explicitly defaulted after its first declaration. [Note: the copy/move constructor
is implicitly defined even if the implementation elided its use (12.2). — end note]

Before the defaulted copy/move constructor for a class is implicitly defined, all non-user-provided copy/move
constructors for its direct and virtual base classes and its non-static data members shall have been implicitly
defined. [Note: an implicitly-declared copy/move constructor has an exception-specification (15.4). An
explicitly-defaulted definition (8.4.2) has no implicit exception-specification. — end note|

The implicitly-defined copy constructor for a non-union class X performs a memberwise copy of its subobjects.
[Note: brace-or-equal-initializers of non-static data members are ignored. See also the example in 12.6.2.
— end note] The order of copying is the same as the order of initialization of bases and members in a
user-defined constructor (see 12.6.2). Each subobject is copied in the manner appropriate to its type:

— if the subobject is of class type, the copy constructor for the class is used;
— if the subobject is an array, each element is copied, in the manner appropriate to the element type;
— if the subobject is of scalar type, the built-in assignment operator is used.

Virtual base class subobjects shall be copied only once by the implicitly-defined copy constructor (see 12.6.2).

The implicitly-defined move constructor for a non-union class X performs a memberwise move of its sub-
objects. [Note: brace-or-equal-initializers of non-static data members are ignored. See also the example

119) See 8.5 for more details on direct and copy initialization.

§12.8 274

18

19

20

©ISO/IEC N3092

in 12.6.2. — end note| The order of moving is the same as the order of initialization of bases and members
in a user-defined constructor (see 12.6.2). Given a parameter named x, each base or non-static data member
is moved in the manner appropriate to its type:

— a named member m of reference or class type T is direct-initialized with the expression static_-
cast<T&&> (x.m);

— a base class B is direct-initialized with the expression static_cast<B&&>(x);

— an array is initialized by moving each element in the manner appropriate to the element type;

— a scalar type is initialized with the built-in assignment operator.
Virtual base class subobjects shall be moved only once by the implicitly-defined move constructor (see 12.6.2).
The implicitly-defined copy constructor for a union X copies the object representation (3.9) of X.

A user-declared copy assignment operator X: :operator= is a non-static non-template member function of
class X with exactly one parameter of type X, X&, const X&, volatile X& or const volatile X&.!2 [Note:
an overloaded assignment operator must be declared to have only one parameter; see 13.5.3. — end note]
[Note: more than one form of copy assignment operator may be declared for a class. — end note] [Note:
if a class X only has a copy assignment operator with a parameter of type X&, an expression of type const X
cannot be assigned to an object of type X. [Ezample:

struct X {
X0;
X& operator=(X&) ;
};
const X cx;
X x;
void £() {
X = cx; // error: X::operator=(X&) cannot assign cx into x

}

— end example] — end note]

If the class definition does not explicitly declare a copy assignment operator and there is no user-declared
move assignment operator, a copy assignment operator is implicitly declared as defaulted (8.4). The
implicitly-declared copy assignment operator for a class X will have the form

X& X::operator=(const X&)
if
— each direct base class B of X has a copy assignment operator whose parameter is of type const B&,
const volatile B& or B, and

— for all the non-static data members of X that are of a class type M (or array thereof), each such class
type has a copy assignment operator whose parameter is of type const M&, const volatile M& or M.!2!

Otherwise, the implicitly-declared copy assignment operator will have the form

X& X::operator=(X&)

120) Because a template assignment operator or an assignment operator taking an rvalue reference parameter is never a
copy assignment operator, the presence of such an assignment operator does not suppress the implicit declaration of a copy
assignment operator. Such assignment operators participate in overload resolution with other assignment operators, including
copy assignment operators, and, if selected, will be used to assign an object.

121) This implies that the reference parameter of the implicitly-declared copy assignment operator cannot bind to a volatile
lvalue; see C.1.8.

§ 12.8 275

21

22

23

24

25

©ISO/IEC N3092

A user-declared move assignment operator X: :operator= is a non-static non-template member function of
class X with exactly one parameter of type X&&, const X&&, volatile X&&, or const volatile X&&. [Note:
An overloaded assignment operator must be declared to have only one parameter; see 13.5.3. — end note]
[Note: More than one form of move assignment operator may be declared for a class. — end note]|

If the class definition does not explicitly declare a move assignment operator, one will be implicitly declared
as defaulted if and only if

the copy assignment operator is not user-declared and

the move assignment operator would not be implicitly defined as deleted.

[Ezample: The class definition

struct S {
int a;
S& operator=(const S&) = default;

};

will not have a default move assignment operator implicitly declared because the copy assignment operator
has been user-declared. The move assignment operator may be explicitly defaulted.

struct S {
int a;
S& operator=(const S&) = default;

})

S& operator=(S&%) = default;

— end example]

The implicitly-declared move assignment operator for a class X will have the form

& X::operator=(X&&);

The implicitly-declared copy/move assignment operator for class X has the return type X&; it returns the
object for which the assignment operator is invoked, that is, the object assigned to. An implicitly-declared
copy/move assignment operator is an inline public member of its class.

A defaulted copy/move assignment operator for class X is defined as deleted if X has:

a variant member with a non-trivial corresponding assignment operator and X is a union-like class, or
a non-static data member of const non-class type (or array thereof), or
a non-static data member of reference type, or

a non-static data member of class type M (or array thereof) that cannot be copied/moved because
overload resolution (13.3), as applied to M’s corresponding assignment operator, results in an ambiguity
or a function that is deleted or inaccessible from the defaulted assignment operator, or

a direct or virtual base class B that cannot be copied/moved because overload resolution (13.3), as
applied to B’s corresponding assignment operator, results in an ambiguity or a function that is deleted
or inaccessible from the defaulted assignment operator, or

for the move assignment operator, a non-static data member or direct base class with a type that does
not have a move assignment operator and is not trivially copyable, or any direct or indirect virtual
base class.

§ 12.8 276

26

27

28

29

30

31

©ISO/IEC N3092

Because a copy/move assignment operator is implicitly declared for a class if not declared by the user, a
base class copy/move assignment operator is always hidden by the corresponding assignment operator of a
derived class (13.5.3). A wusing-declaration (7.3.3) that brings in from a base class an assignment operator
with a parameter type that could be that of a copy/move assignment operator for the derived class is not
considered an explicit declaration of such an operator and does not suppress the implicit declaration of the
derived class operator; the operator introduced by the using-declaration is hidden by the implicitly-declared
operator in the derived class.

A copy/move assignment operator for class X is trivial if it is neither user-provided nor deleted and if
— class X has no virtual functions (10.3) and no virtual base classes (10.1), and
— the assignment operator selected to copy/move each direct base class subobject is trivial, and

— for each non-static data member of X that is of class type (or array thereof), the assignment operator
selected to copy/move that member is trivial;

otherwise the copy/move assignment operator is non-trivial.

A copy/move assignment operator that is defaulted and not defined as deleted is implicitly defined when an
object of its class type is assigned a value of its class type or a value of a class type derived from its class
type or when it is explicitly defaulted after its first declaration.

Before the defaulted copy/move assignment operator for a class is implicitly defined, all non-user-provided
copy/move assignment operators for its direct base classes and its non-static data members shall have
been implicitly defined. [Note: An implicitly-declared copy/move assignment operator has an exzception-
specification (15.4). An explicitly-defaulted definition has no implicit exception-specification. — end note|

The implicitly-defined copy assignment operator for a non-union class X performs memberwise copy assign-
ment of its subobjects. The direct base classes of X are assigned first, in the order of their declaration in the
base-specifier-list, and then the immediate non-static data members of X are assigned, in the order in which
they were declared in the class definition. Each subobject is assigned in the manner appropriate to its type:

— if the subobject is of class type, the copy assignment operator for the class is used (as if by explicit
qualification; that is, ignoring any possible virtual overriding functions in more derived classes);

— if the subobject is an array, each element is assigned, in the manner appropriate to the element type;
— if the subobject is of scalar type, the built-in assignment operator is used.

It is unspecified whether subobjects representing virtual base classes are assigned more than once by the
implicitly-defined copy assignment operator. [Example:

struct V { };

struct A : virtual V { };
struct B : virtual V { };
struct C : B, A { };

It is unspecified whether the virtual base class subobject V is assigned twice by the implicitly-defined copy
assignment operator for C. — end example|

The implicitly-defined move assignment operator for a non-union class X performs memberwise assignment
of its subobjects. The direct base classes of X are assigned first, in the order of their declaration in the
base-specifier-list, and then the immediate non-static data members of X are assigned, in the order in which
they were declared in the class definition. Given a parameter named x, each subobject is assigned in the
manner appropriate to its type:

— if the subobject is a named member c of class type C, as if by the expression
this->c = static_cast<C&&>(x.c);

§ 12.8 277

32

33

34

©ISO/IEC N3092

— if the subobject is a direct base class B, as if by the expression this->B::operator=(static_-
cast<B&&>(x));

— if the subobject is an array, each element is moved, in the manner appropriate to the element type;
— if the subobject is of scalar type, the built-in assignment operator is used.
The implicitly-defined copy assignment operator for a union X copies the object representation (3.9) of X.

A program is ill-formed if the copy/move constructor or the copy/move assignment operator for an object
is implicitly used and the special member function is not accessible (Clause 11). [Note: Copying/moving
one object into another using the copy/move constructor or the copy/move assignment operator does not
change the layout or size of either object. — end note|

When certain criteria are met, an implementation is allowed to omit the copy/move construction of a class
object, even if the copy/move constructor and/or destructor for the object have side effects. In such cases,
the implementation treats the source and target of the omitted copy/move operation as simply two different
ways of referring to the same object, and the destruction of that object occurs at the later of the times
when the two objects would have been destroyed without the optimization.'?? This elision of copy/move
operations, called copy elision, is permitted in the following circumstances (which may be combined to
eliminate multiple copies):

— in a return statement in a function with a class return type, when the expression is the name of
a non-volatile automatic object with the same cv-unqualified type as the function return type, the
copy/move operation can be omitted by constructing the automatic object directly into the function’s
return value

— in a throw-expression, when the operand is the name of a non-volatile automatic object whose scope
does not extend beyond the end of the innermost enclosing try-block (if there is one), the copy/move
operation from the operand to the exception object (15.1) can be omitted by constructing the automatic
object directly into the exception object

— when a temporary class object that has not been bound to a reference (12.2) would be copied/moved
to a class object with the same cv-unqualified type, the copy/move operation can be omitted by
constructing the temporary object directly into the target of the omitted copy/move

— when the ezception-declaration of an exception handler (Clause 15) declares an object of the same type
(except for cv-qualification) as the exception object (15.1), the copy/move operation can be omitted
by treating the ezception-declaration as an alias for the exception object if the meaning of the program
will be unchanged except for the execution of constructors and destructors for the object declared by
the exception-declaration.

[Example:

class Thing {
public:
Thing();
“Thing();
Thing(const Thing&);
};

Thing £ {
Thing t;
return t;

}

122) Because only one object is destroyed instead of two, and one copy/move constructor is not executed, there is still one
object destroyed for each one constructed.

§ 12.8 278

35

©ISO/IEC N3092

Thing t2 = £();

Here the criteria for elision can be combined to eliminate two calls to the copy constructor of class Thing:
the copying of the local automatic object t into the temporary object for the return value of function f ()
and the copying of that temporary object into object t2. Effectively, the construction of the local object
t can be viewed as directly initializing the global object t2, and that object’s destruction will occur at
program exit. Adding a move constructor to Thing has the same effect, but it is the move construction from
the temporary object to t2 that is elided. — end example]

When the criteria for elision of a copy operation are met and the object to be copied is designated by an
Ivalue, overload resolution to select the constructor for the copy is first performed as if the object were
designated by an rvalue. If overload resolution fails, or if the type of the first parameter of the selected
constructor is not an rvalue reference to the object’s type (possibly cv-qualified), overload resolution is
performed again, considering the object as an lvalue. [Note: This two-stage overload resolution must be
performed regardless of whether copy elision will occur. It determines the constructor to be called if elision
is not performed, and the selected constructor must be accessible even if the call is elided. — end note]

[Example:

class Thing {
public:

Thing();

“Thing();

Thing (Thing&&) ;
private:

Thing(const Thing&);
}

Thing f(bool b) {
Thing t;
if ()
throw t; // OK: Thing(Thing&&) used (or elided) to throw ¢
return t; // OK: Thing(Thing&&) used (or elided) to return t
}

Thing t2 = f(false); // OK: Thing(Thing&&) used (or elided) to construct ¢2

— end example|

12.9 Inheriting Constructors [class.inhctor]

A using-declaration (7.3.3) that names a constructor implicitly declares a set of inheriting constructors. The
candidate set of inherited constructors from the class X named in the using-declaration consists of actual
constructors and notional constructors that result from the transformation of defaulted parameters as follows:

— all non-template constructors of X, and

— for each non-template constructor of X that has at least one parameter with a default argument, the set
of constructors that results from omitting any ellipsis parameter specification and successively omitting
parameters with a default argument from the end of the parameter-type-list, and

— all constructor templates of X, and

§ 12.9 279

©ISO/IEC N3092

— for each constructor template of X that has at least one parameter with a default argument, the set of
constructor templates that results from omitting any ellipsis parameter specification and successively
omitting parameters with a default argument from the end of the parameter-type-list.

The constructor characteristics of a constructor or constructor template are
— the template parameter list (14.1), if any,
— the parameter-type-list (8.3.5),
— the exception-specification (15.4),
— absence or presence of explicit (12.3.1), and
— absence or presence of constexpr (7.1.5).

For each non-template constructor in the candidate set of inherited constructors other than a constructor
having no parameters or a copy/move constructor having a single parameter, a constructor is implicitly
declared with the same constructor characteristics unless there is a user-declared constructor with the same
signature in the class where the using-declaration appears. Similarly, for each constructor template in
the candidate set of inherited constructors, a constructor template is implicitly declared with the same
constructor characteristics unless there is an equivalent user-declared constructor template (14.5.6.1) in the
class where the using-declaration appears. [Note: Default arguments are not inherited. — end note]

A constructor so declared has the same access as the corresponding constructor in X. It is deleted if the
corresponding constructor in X is deleted (8.4).

[Note: Default and copy/move constructors may be implicitly declared as specified in 12.1 and 12.8. — end
note |

[Ezample:

struct Bl {
Bi(int);
};

struct B2 {
B2(int = 13, int = 42);
};

struct D1 : Bl {
using B1::Bi;
}

struct D2 : B2 {
using B2::B2;
};
The candidate set of inherited constructors in D1 for B1 is
— Bi1(const B1&)
— B1(B1&&)
— Bi1(int)
The set of constructors present in D1 is

— D1(), implicitly-declared default constructor, ill-formed if used

§ 12.9 280

©ISO/IEC N3092

— D1(const D1&), implicitly-declared copy constructor, not inherited
— D1(D1&&), implicitly-declared move constructor, not inherited
— D1(int), implicitly-declared inheriting constructor
The candidate set of inherited constructors in D2 for B2 is
— B2(const B2&)
— B2(B2&&)
— B2(int = 13, int = 42)
— B2(int = 13)
— B20)
The set of constructors present in D2 is
— D2Q), implicitly-declared default constructor, not inherited
— D2(const D2&), implicitly-declared copy constructor, not inherited
— D2(D2&&), implicitly-declared move constructor, not inherited
— D2(int, int), implicitly-declared inheriting constructor
— D2(int), implicitly-declared inheriting constructor
— end example]

[Note: If two using-declarations declare inheriting constructors with the same signatures, the program is
ill-formed (9.2, 13.1), because an implicitly-declared constructor introduced by the first using-declaration is
not a user-declared constructor and thus does not preclude another declaration of a constructor with the
same signature by a subsequent using-declaration. [Example:

struct Bl {
B1(int);
};

struct B2 {
B2(int);
};

struct D1 : B1l, B2 {
using B1::Bi;
using B2::B2;

}; // ill-formed: attempts to declare D1(int) twice

struct D2 : B1l, B2 {

using B1::Bi;

using B2::B2;

D2(int); // OK: user declaration supersedes both implicit declarations

};

— end example] — end note]

An inheriting constructor for a class is implicitly defined when it is used (3.2) to create an object of its class
type (1.8). An implicitly-defined inheriting constructor performs the set of initializations of the class that
would be performed by a user-written inline constructor for that class with a mem-initializer-list whose

§12.9 281

9

©ISO/IEC N3092

only mem-initializer has a mem-initializer-id that names the base class denoted in the nested-name-specifier
of the using-declaration and an expression-list as specified below, and where the compound-statement in
its function body is empty (12.6.2). If that user-written constructor would be ill-formed, the program is
ill-formed. Each expression in the expression-list is of the form static_cast<T&&>(p), where p is the name
of the corresponding constructor parameter and T is the declared type of p.

[Example:

struct Bl {
Bi(int) { }
};

struct B2 {
B2(double) { }
};

struct D1 : Bl {
using B1::Bi1; // implicitly declares D1(int)
int x;

};

void test() {
D1 d(6); // OK: d.x is not initialized
D1 e; // error: D1 has no default constructor

}

struct D2 : B2 {

using B2::B2; // OK: implicitly declares D2(double)
Bl b;

};

D2 £(1.0); // error: Bl has no default constructor

template< class T >
struct D : T {
using T::T; // declares all constructors from class T
“D() { std::clog << "Destroying wrapper" << std::endl; }
};

Class template D wraps any class and forwards all of its contructors, while writing a message to the standard
log whenever an object of class D is destroyed. — end ezample]

§12.9 282

2

©ISO/IEC N3092

13 Overloading [over]

When two or more different declarations are specified for a single name in the same scope, that name is said
to be overloaded. By extension, two declarations in the same scope that declare the same name but with
different types are called overloaded declarations. Only function declarations can be overloaded; object and
type declarations cannot be overloaded.

When an overloaded function name is used in a call, which overloaded function declaration is being referenced
is determined by comparing the types of the arguments at the point of use with the types of the parameters
in the overloaded declarations that are visible at the point of use. This function selection process is called
overload resolution and is defined in 13.3. [Example:

double abs(double);
int abs(int);

abs(1); // calls abs(int) ;
abs(1.0); // calls abs (double) ;

— end example]
13.1 Overloadable declarations [over.load]

Not all function declarations can be overloaded. Those that cannot be overloaded are specified here. A
program is ill-formed if it contains two such non-overloadable declarations in the same scope. [Note: this
restriction applies to explicit declarations in a scope, and between such declarations and declarations made
through a using-declaration (7.3.3). It does not apply to sets of functions fabricated as a result of name
lookup (e.g., because of using-directives) or overload resolution (e.g., for operator functions). — end note]

Certain function declarations cannot be overloaded:
— Function declarations that differ only in the return type cannot be overloaded.

— Member function declarations with the same name and the same parameter-type-list cannot be over-
loaded if any of them is a static member function declaration (9.4). Likewise, member function
template declarations with the same name, the same parameter-type-list, and the same template pa-
rameter lists cannot be overloaded if any of them is a static member function template declaration.
The types of the implicit object parameters constructed for the member functions for the purpose of
overload resolution (13.3.1) are not considered when comparing parameter-type-lists for enforcement of
this rule. In contrast, if there is no static member function declaration among a set of member func-
tion declarations with the same name and the same parameter-type-list, then these member function
declarations can be overloaded if they differ in the type of their implicit object parameter. [Ezample:
the following illustrates this distinction:

class X {
static void £f();
void £Q); // dll-formed
void £() const; // ill-formed
void f() const volatile; // ill-formed
void g();
void g() const; // OK: no static g
void g() const volatile; // OK: no static g
};

§13.1 283

©ISO/IEC N3092

— end example]

— Member function declarations with the same name and the same parameter-type-list as well as mem-
ber function template declarations with the same name, the same parameter-type-list, and the same
template parameter lists cannot be overloaded if any of them, but not all, have a ref-qualifier (8.3.5).

[Example:

class Y {
void h() &;
void h() const &; // OK
void h() &%&; // OK, all declarations have a ref-qualifier
void i() &;
void i() const; // ill-formed, prior declaration of i

// has a ref-qualifier
}

— end example]

3 [Note: as specified in 8.3.5, function declarations that have equivalent parameter declarations declare the
same function and therefore cannot be overloaded:

— Parameter declarations that differ only in the use of equivalent typedef “types” are equivalent. A
typedef is not a separate type, but only a synonym for another type (7.1.3). [Ezample:

typedef int Int;

void f(int 1i);

void f(Int i); // OK: redeclaration of £ (int)
void f(int i) { /* ... =*/ }
void £f(Int i) { /* ... %/} // error: redefinition of f£(int)

— end example]

Enumerations, on the other hand, are distinct types and can be used to distinguish overloaded function
declarations. | Ezample:

enum E { a };

void f(int i) { /x ... x/ %}
void f(E i) { fx .. %/}

— end example]

— Parameter declarations that differ only in a pointer * versus an array [] are equivalent. That is, the
array declaration is adjusted to become a pointer declaration (8.3.5). Only the second and subsequent
array dimensions are significant in parameter types (8.3.4). [Ezample:

§13.1

int
int
int
int

int
int
int
int

f (charx*);

f(char[]); // same as f(char*);
f(char[7]); // same as £ (charx*) ;
f(char[9]); // same as £ (char*) ;

g(char (x) [10]1);

g(char[5][10]); // same as g(char (%) [10]);
g(char [7]1[10]1); // same as g(char (*) [10]);
g(char (%) [20]); // different from g(char (x) [10]);

— end example]

284

©ISO/IEC

N3092

— Parameter declarations that differ only in that one is a function type and the other is a pointer to

the same function type are equivalent. That is, the function type is adjusted to become a pointer to
function type (8.3.5). [Example:

void h(int());

void h(int (*)());
void h(int x(O)) { }
void h(int (*x) Q) { }

// redeclaration of h(int())
// definition of h(int())
// dll-formed: redefinition of h(int())

— end example]

Parameter declarations that differ only in the presence or absence of const and/or volatile are
equivalent. That is, the const and volatile type-specifiers for each parameter type are ignored when
determining which function is being declared, defined, or called. [Ezample:

typedef const int cInt;

int £ (int);

int £ (const int); // redeclaration of £(int)

int £ (int) { ... } // definition of £(int)

int £ (cInt) { ... } // error: redefinition of f(int)

— end example]

Only the const and volatile type-specifiers at the outermost level of the parameter type specifica-
tion are ignored in this fashion; const and volatile type-specifiers buried within a parameter type
specification are significant and can be used to distinguish overloaded function declarations.'?® In
particular, for any type T, “pointer to T,” “pointer to const T,” and “pointer to volatile T” are
considered distinct parameter types, as are “reference to T,” “reference to const T,” and “reference to

volatile T.”

— Two parameter declarations that differ only in their default arguments are equivalent. [Ezample:

consider the following:

void £ (int i, int j);
void £ (int i, int j = 99);
void £ (int i = 88, int j);
void £ ();

void prog OO {
£ (1, 2);

f (1);
£ O;

— end example] — end note]

13.2 Declaration matching

// OK: redeclaration of £(int, int)
// OK: redeclaration of £(int, int)
// OK: overloaded declaration of £

// OK: call £(int, int)
// OK: call £(int, int)
// Error: £(int, int) or £()?

[over.dcl]

Two function declarations of the same name refer to the same function if they are in the same scope and
have equivalent parameter declarations (13.1). A function member of a derived class is not in the same scope
as a function member of the same name in a base class. [Example:

123) When a parameter type includes a function type, such as in the case of a parameter type that is a pointer to function,
the const and volatile type-specifiers at the outermost level of the parameter type specifications for the inner function type

are also ignored.

§13.2

285

©ISO/IEC N3092

struct B {
int f(int);
};

struct D : B {
int f(charx);
};
Here D: : f (char*) hides B: :f(int) rather than overloading it.

void h(D* pd) {

pd->f(1); // error:
// D::f(char*) hides B::f(int)
pd->B::f(1); // OK
pd->£("Ben"); // OK, calls D: : £
}

— end example]

2 A locally declared function is not in the same scope as a function in a containing scope. [Ezample:

void f(charx);

void g() {
extern void f(int);
f("asdf"); // error: £(int) hides £ (char*)
// so there is no £ (char*) in this scope
}

void caller () {
extern void callee(int, int);
{
extern void callee(int); // hides callee(int, int)
callee(88, 99); // error: only callee(int) in scope
}
}

— end example]

3 Different versions of an overloaded member function can be given different access rules. [Example:

class buffer {
private:
char* p;
int size;
protected:
buffer(int s, char* store) { size = s; p = store; }
public:
buffer(int s) { p = new char[size

sl; }
};
— end example]

13.3 Overload resolution [over.match]

1 Overload resolution is a mechanism for selecting the best function to call given a list of expressions that are
to be the arguments of the call and a set of candidate functions that can be called based on the context of
the call. The selection criteria for the best function are the number of arguments, how well the arguments

§13.3 286

©ISO/IEC N3092

match the parameter-type-list of the candidate function, how well (for non-static member functions) the
object matches the implicit object parameter, and certain other properties of the candidate function. [Note:
the function selected by overload resolution is not guaranteed to be appropriate for the context. Other
restrictions, such as the accessibility of the function, can make its use in the calling context ill-formed.
— end note]

Overload resolution selects the function to call in seven distinct contexts within the language:
— invocation of a function named in the function call syntax (13.3.1.1.1);

— invocation of a function call operator, a pointer-to-function conversion function, a reference-to-pointer-
to-function conversion function, or a reference-to-function conversion function on a class object named
in the function call syntax (13.3.1.1.2);

— invocation of the operator referenced in an expression (13.3.1.2);
— invocation of a constructor for direct-initialization (8.5) of a class object (13.3.1.3);
— invocation of a user-defined conversion for copy-initialization (8.5) of a class object (13.3.1.4);

— invocation of a conversion function for initialization of an object of a nonclass type from an expression
of class type (13.3.1.5); and

— invocation of a conversion function for conversion to a glvalue or class prvalue to which a refer-

ence (8.5.3) will be directly bound (13.3.1.6).

Each of these contexts defines the set of candidate functions and the list of arguments in its own unique way.
But, once the candidate functions and argument lists have been identified, the selection of the best function
is the same in all cases:

— First, a subset of the candidate functions (those that have the proper number of arguments and meet
certain other conditions) is selected to form a set of viable functions (13.3.2).

— Then the best viable function is selected based on the implicit conversion sequences (13.3.3.1) needed
to match each argument to the corresponding parameter of each viable function.

If a best viable function exists and is unique, overload resolution succeeds and produces it as the result.
Otherwise overload resolution fails and the invocation is ill-formed. When overload resolution succeeds, and
the best viable function is not accessible (Clause 11) in the context in which it is used, the program is
ill-formed.

13.3.1 Candidate functions and argument lists [over.match.funcs]

The subclauses of 13.3.1 describe the set of candidate functions and the argument list submitted to overload
resolution in each of the seven contexts in which overload resolution is used. The source transformations
and constructions defined in these subclauses are only for the purpose of describing the overload resolution
process. An implementation is not required to use such transformations and constructions.

The set of candidate functions can contain both member and non-member functions to be resolved against
the same argument list. So that argument and parameter lists are comparable within this heterogeneous
set, a member function is considered to have an extra parameter, called the implicit object parameter, which
represents the object for which the member function has been called. For the purposes of overload resolution,
both static and non-static member functions have an implicit object parameter, but constructors do not.

Similarly, when appropriate, the context can construct an argument list that contains an implied object
argument to denote the object to be operated on. Since arguments and parameters are associated by

§13.3.1 287

©ISO/IEC N3092

position within their respective lists, the convention is that the implicit object parameter, if present, is
always the first parameter and the implied object argument, if present, is always the first argument.

For non-static member functions, the type of the implicit object parameter is
— “lvalue reference to cv X” for functions declared without a ref-qualifier or with the & ref-qualifier
— “rvalue reference to cv X” for functions declared with the && ref-qualifier

where X is the class of which the function is a member and cv is the cv-qualification on the member function
declaration. [Fzample: for a const member function of class X, the extra parameter is assumed to have
type “reference to const X”. —end example] For conversion functions, the function is considered to be
a member of the class of the implied object argument for the purpose of defining the type of the implicit
object parameter. For non-conversion functions introduced by a using-declaration into a derived class, the
function is considered to be a member of the derived class for the purpose of defining the type of the implicit
object parameter. For static member functions, the implicit object parameter is considered to match any
object (since if the function is selected, the object is discarded). [Note: no actual type is established for
the implicit object parameter of a static member function, and no attempt will be made to determine a
conversion sequence for that parameter (13.3.3). — end note]

During overload resolution, the implied object argument is indistinguishable from other arguments. The
implicit object parameter, however, retains its identity since conversions on the corresponding argument
shall obey these additional rules:

— no temporary object can be introduced to hold the argument for the implicit object parameter; and
— no user-defined conversions can be applied to achieve a type match with it.
For non-static member functions declared without a ref-qualifier, an additional rule applies:

— even if the implicit object parameter is not const-qualified, an rvalue can be bound to the parameter as
long as in all other respects the argument can be converted to the type of the implicit object parameter.
[Note: The fact that such an argument is an rvalue does not affect the ranking of implicit conversion
sequences (13.3.3.2). — end note]

Because other than in list-initialization only one user-defined conversion is allowed in an implicit conversion
sequence, special rules apply when selecting the best user-defined conversion (13.3.3, 13.3.3.1). [Ezample:

class T {
public:
TO;

};

class C : T {
public:
C(int);

};
Ta=1; // ill-formed: T(C(1)) not tried

— end example|

In each case where a candidate is a function template, candidate function template specializations are gen-
erated using template argument deduction (14.8.3, 14.8.2). Those candidates are then handled as candidate
functions in the usual way.'?* A given name can refer to one or more function templates and also to a set

124) The process of argument deduction fully determines the parameter types of the function template specializations, i.e.,
the parameters of function template specializations contain no template parameter types. Therefore the function template
specializations can be treated as normal (non-template) functions for the remainder of overload resolution.

§ 13.3.1 288

©ISO/IEC N3092

of overloaded non-template functions. In such a case, the candidate functions generated from each function
template are combined with the set of non-template candidate functions.

13.3.1.1 Function call syntax [over.match.call]

In a function call (5.2.2)
postfix-expression (expression-listop;)

if the postfiz-expression denotes a set of overloaded functions and/or function templates, overload resolution
is applied as specified in 13.3.1.1.1. If the postfiz-ezpression denotes an object of class type, overload
resolution is applied as specified in 13.3.1.1.2.

If the postfiz-expression denotes the address of a set of overloaded functions and/or function templates,
overload resolution is applied using that set as described above. If the function selected by overload resolution
is a non-static member function, the program is ill-formed. [Note: the resolution of the address of an overload
set in other contexts is described in 13.4. — end note]

13.3.1.1.1 Call to named function [over.call.func]

Of interest in 13.3.1.1.1 are only those function calls in which the postfiz-expression ultimately contains a
name that denotes one or more functions that might be called. Such a postfiz-expression, perhaps nested
arbitrarily deep in parentheses, has one of the following forms:
postfiz-expression:

postfiz-expression . id-expression

postfir-expression —> id-expression

Primary-expression
These represent two syntactic subcategories of function calls: qualified function calls and unqualified function
calls.

In qualified function calls, the name to be resolved is an id-expression and is preceded by an —=> or . operator.
Since the construct A->B is generally equivalent to (*A) .B, the rest of Clause 13 assumes, without loss of
generality, that all member function calls have been normalized to the form that uses an object and the

operator. Furthermore, Clause 13 assumes that the postfiz-expression that is the left operand of the .
operator has type “cv T” where T denotes a class'?®. Under this assumption, the id-expression in the call
is looked up as a member function of T following the rules for looking up names in classes (10.2). The
function declarations found by that lookup constitute the set of candidate functions. The argument list
is the expression-list in the call augmented by the addition of the left operand of the . operator in the
normalized member function call as the implied object argument (13.3.1).

In unqualified function calls, the name is not qualified by an => or . operator and has the more general form
of a primary-expression. The name is looked up in the context of the function call following the normal rules
for name lookup in function calls (3.4). The function declarations found by that lookup constitute the set of
candidate functions. Because of the rules for name lookup, the set of candidate functions consists (1) entirely
of non-member functions or (2) entirely of member functions of some class T. In case (1), the argument list
is the same as the expression-list in the call. In case (2), the argument list is the ezpression-list in the call
augmented by the addition of an implied object argument as in a qualified function call. If the keyword
this (9.3.2) is in scope and refers to class T, or a derived class of T, then the implied object argument is
(xthis). If the keyword this is not in scope or refers to another class, then a contrived object of type

125) Note that cv-qualifiers on the type of objects are significant in overload resolution for both glvalue and class prvalue
objects.

§13.3.1.1.1 289

©ISO/IEC N3092

T becomes the implied object argument!'?6. If the argument list is augmented by a contrived object and
overload resolution selects one of the non-static member functions of T, the call is ill-formed.

13.3.1.1.2 Call to object of class type [over.call.object]

If the primary-expression E in the function call syntax evaluates to a class object of type “cv T”, then the
set of candidate functions includes at least the function call operators of T. The function call operators of T
are obtained by ordinary lookup of the name operator () in the context of (E).operator().

In addition, for each non-explicit conversion function declared in T of the form
operator conversion-type-id () attribute-specifieroy: cv-qualifier ;

where cv-qualifier is the same cv-qualification as, or a greater cv-qualification than, cv, and where conversion-
type-id denotes the type “pointer to function of (P1,...,Pn) returning R”, or the type “reference to pointer to
function of (P1,...,Pn) returning R”, or the type “reference to function of (P1,...,Pn) returning R”, a surrogate
call function with the unique name call-function and having the form

R call-function (conversion-type-id F, P1 al, ... ,Pn an) { return F (al,... ,an); }

is also considered as a candidate function. Similarly, surrogate call functions are added to the set of candidate
functions for each non-explicit conversion function declared in a base class of T provided the function is not
hidden within T by another intervening declaration!27.

If such a surrogate call function is selected by overload resolution, the corresponding conversion function will
be called to convert E to the appropriate function pointer or reference, and the function will then be invoked
with the arguments of the call. If the conversion function cannot be called (e.g., because of an ambiguity),
the program is ill-formed.

The argument list submitted to overload resolution consists of the argument expressions present in the
function call syntax preceded by the implied object argument (E). [Note: when comparing the call against
the function call operators, the implied object argument is compared against the implicit object parameter
of the function call operator. When comparing the call against a surrogate call function, the implied object
argument is compared against the first parameter of the surrogate call function. The conversion function
from which the surrogate call function was derived will be used in the conversion sequence for that parameter
since it converts the implied object argument to the appropriate function pointer or reference required by
that first parameter. — end note] [Example:

int f1(int);
int f2(float);
typedef int (*fpl) (int);
typedef int (*fp2) (float);
struct A {
operator fp1() { return f1; 2
operator fp2() { return £2; }
} a;
int i = a(1); // calls £1 via pointer returned from
// conversion function

126) An implied object argument must be contrived to correspond to the implicit object parameter attributed to member
functions during overload resolution. It is not used in the call to the selected function. Since the member functions all have
the same implicit object parameter, the contrived object will not be the cause to select or reject a function.

127) Note that this construction can yield candidate call functions that cannot be differentiated one from the other by overload
resolution because they have identical declarations or differ only in their return type. The call will be ambiguous if overload
resolution cannot select a match to the call that is uniquely better than such undifferentiable functions.

§13.3.1.1.2 290

©ISO/IEC N3092

— end example]

13.3.1.2 Operators in expressions [over.match.oper]

If no operand of an operator in an expression has a type that is a class or an enumeration, the operator
is assumed to be a built-in operator and interpreted according to Clause 5. [Note: because ., .*, and ::
cannot be overloaded, these operators are always built-in operators interpreted according to Clause 5. ?7:
cannot be overloaded, but the rules in this subclause are used to determine the conversions to be applied to
the second and third operands when they have class or enumeration type (5.16). — end note] [Ezample:

struct String {
String (const String);
String (charx);
operator char* ();

};

String operator + (const String&, const String);

void f(void) {

char* p= "one" + "two"; // ill-formed because neither
// operand has user-defined type
int I =1 + 1; // Always evaluates to 2 even if

// user-defined types exist which
// would perform the operation.
}

— end example]

If either operand has a type that is a class or an enumeration, a user-defined operator function might be
declared that implements this operator or a user-defined conversion can be necessary to convert the operand
to a type that is appropriate for a built-in operator. In this case, overload resolution is used to determine
which operator function or built-in operator is to be invoked to implement the operator. Therefore, the
operator notation is first transformed to the equivalent function-call notation as summarized in Table 10
(where @ denotes one of the operators covered in the specified subclause).

Table 10 — Relationship between operator and function call notation

Subclause \ Expression \ As member function \ As non-member function

13.5.1 @a (a).operator@ () operator@ (a)
13.5.2 a@b (a).operator@ (b) operator@ (a, b)
13.5.3 a=b (a).operator= (b)

13.5.5 a[b] (a).operator[](b)

13.5.6 a-> (a).operator-> ()

13.5.7 a@ (a).operator@ (0) operator@ (a, 0)

For a unary operator @ with an operand of a type whose cv-unqualified version is T1, and for a binary
operator @ with a left operand of a type whose cv-unqualified version is T1 and a right operand of a type
whose cv-unqualified version is T2, three sets of candidate functions, designated member candidates, non-
member candidates and built-in candidates, are constructed as follows:

— If T1 is a complete class type, the set of member candidates is the result of the qualified lookup of
T1::operator@ (13.3.1.1.1); otherwise, the set of member candidates is empty.

— The set of non-member candidates is the result of the unqualified lookup of operator@ in the context
of the expression according to the usual rules for name lookup in unqualified function calls (3.4.2)
except that all member functions are ignored. However, if no operand has a class type, only those

§13.3.1.2 291

4

5

6

10

©ISO/IEC N3092

non-member functions in the lookup set that have a first parameter of type T1 or “reference to (possibly
cv-qualified) T1”, when T1 is an enumeration type, or (if there is a right operand) a second parameter
of type T2 or “reference to (possibly cv-qualified) T2”, when T2 is an enumeration type, are candidate
functions.

— For the operator ,, the unary operator &, or the operator ->, the built-in candidates set is empty.
For all other operators, the built-in candidates include all of the candidate operator functions defined
in 13.6 that, compared to the given operator,

— have the same operator name, and
— accept the same number of operands, and

— accept operand types to which the given operand or operands can be converted according to 13.3.3.1,
and

— do not have the same parameter-type-list as any non-template non-member candidate.
For the built-in assignment operators, conversions of the left operand are restricted as follows:
— no temporaries are introduced to hold the left operand, and

— no user-defined conversions are applied to the left operand to achieve a type match with the left-most
parameter of a built-in candidate.

For all other operators, no such restrictions apply.

The set of candidate functions for overload resolution is the union of the member candidates, the non-member
candidates, and the built-in candidates. The argument list contains all of the operands of the operator. The
best function from the set of candidate functions is selected according to 13.3.2 and 13.3.3.12% [Ezample:

struct A {
operator int();
};
A operator+(const A&, const A&);
void m() {
A a, b;
a + b; // operator+(a,b) chosen over int(a) + int(b)

}

— end example|

If a built-in candidate is selected by overload resolution, the operands are converted to the types of the cor-
responding parameters of the selected operation function. Then the operator is treated as the corresponding
built-in operator and interpreted according to Clause 5.

The second operand of operator -> is ignored in selecting an operator-> function, and is not an argument
when the operator-> function is called. When operator-> returns, the operator -> is applied to the value
returned, with the original second operand.'??

If the operator is the operator ,, the unary operator &, or the operator —>, and there are no viable functions,
then the operator is assumed to be the built-in operator and interpreted according to Clause 5.

[Note: the lookup rules for operators in expressions are different than the lookup rules for operator function
names in a function call, as shown in the following example:

128) If the set of candidate functions is empty, overload resolution is unsuccessful.
129) If the value returned by the operator-> function has class type, this may result in selecting and calling another operator->
function. The process repeats until an operator-> function returns a value of non-class type.

§ 13.3.1.2 292

©ISO/IEC N3092

struct A { };
void operator + (A, A);

struct B {

void operator + (B);
void £ (;

};
A a;

void B::f() {

operator+ (a,a); // error: global operator hidden by member
a + a; // OK: calls global operator+
}
— end note]
13.3.1.3 Initialization by constructor [over.match.ctor]

When objects of class type are direct-initialized (8.5), or copy-initialized from an expression of the same or
a derived class type (8.5), overload resolution selects the constructor. For direct-initialization, the candidate
functions are all the constructors of the class of the object being initialized. For copy-initialization, the
candidate functions are all the converting constructors (12.3.1) of that class. The argument list is the
expression-list or assignment-expression of the initializer.

13.3.1.4 Copy-initialization of class by user-defined conversion [over.match.copy]

Under the conditions specified in 8.5, as part of a copy-initialization of an object of class type, a user-defined
conversion can be invoked to convert an initializer expression to the type of the object being initialized.
Overload resolution is used to select the user-defined conversion to be invoked. Assuming that “cvi T” is
the type of the object being initialized, with T a class type, the candidate functions are selected as follows:

— The converting constructors (12.3.1) of T are candidate functions.

— When the type of the initializer expression is a class type “cv S”, the non-explicit conversion functions of
S and its base classes are considered. When initializing a temporary to be bound to the first parameter
of a copy constructor (12.8) called with a single argument in the context of direct-initialization, explicit
conversion functions are also considered. Those that are not hidden within S and yield a type whose
cv-unqualified version is the same type as T or is a derived class thereof are candidate functions.
Conversion functions that return “reference to X” return lvalues or xvalues, depending on the type
of reference, of type X and are therefore considered to yield X for this process of selecting candidate
functions.

In both cases, the argument list has one argument, which is the initializer expression. [Note: this argument
will be compared against the first parameter of the constructors and against the implicit object parameter
of the conversion functions. — end note|

13.3.1.5 Initialization by conversion function [over.match.conv]

Under the conditions specified in 8.5, as part of an initialization of an object of nonclass type, a conversion
function can be invoked to convert an initializer expression of class type to the type of the object being
initialized. Overload resolution is used to select the conversion function to be invoked. Assuming that “cvi
T” is the type of the object being initialized, and “cv S” is the type of the initializer expression, with S a
class type, the candidate functions are selected as follows:

§13.3.15 293

©ISO/IEC N3092

— The conversion functions of S and its base classes are considered. Those non-explicit conversion
functions that are not hidden within S and yield type T or a type that can be converted to type T
via a standard conversion sequence (13.3.3.1.1) are candidate functions. For direct-initialization, those
explicit conversion functions that are not hidden within S and yield type T or a type that can be
converted to type T with a qualification conversion (4.4) are also candidate functions. Conversion
functions that return a cv-qualified type are considered to yield the cv-unqualified version of that type
for this process of selecting candidate functions. Conversion functions that return “reference to cv2
X” return lvalues or xvalues, depending on the type of reference, of type “cv2 X” and are therefore
considered to yield X for this process of selecting candidate functions.

The argument list has one argument, which is the initializer expression. [Note: this argument will be
compared against the implicit object parameter of the conversion functions. — end note|

13.3.1.6 Initialization by conversion function for direct reference binding [over.match.ref]

Under the conditions specified in 8.5.3, a reference can be bound directly to a glvalue or class prvalue that is
the result of applying a conversion function to an initializer expression. Overload resolution is used to select
the conversion function to be invoked. Assuming that “cv! T” is the underlying type of the reference being
initialized, and “cv S” is the type of the initializer expression, with S a class type, the candidate functions
are selected as follows:

— The conversion functions of S and its base classes are considered, except that for copy-initialization,
only the non-explicit conversion functions are considered. Those that are not hidden within S and yield
type “lvalue reference to cv2 T2” (when 8.5.3 requires an lvalue result) or “cv2 T2” or “rvalue reference
to cv2 T2” (when 8.5.3 requires an rvalue result), where “cvl T” is reference-compatible (8.5.3) with
“cv2 T2”, are candidate functions.

The argument list has one argument, which is the initializer expression. [Note: this argument will be
compared against the implicit object parameter of the conversion functions. — end note|

13.3.1.7 Initialization by list-initialization [over.match.list]

When objects of non-aggregate class type are list-initialized (8.5.4), overload resolution selects the constructor
as follows, where T is the cv-unqualified class type of the object being initialized:

— If T has an initializer-list constructor (8.5.4), the argument list consists of the initializer list as a single
argument; otherwise, the argument list consists of the elements of the initializer list.

— For direct-list-initialization, the candidate functions are all the constructors of the class T.

— For copy-list-initialization, the candidate functions are all the constructors of T. However, if an
explicit constructor is chosen, the initialization is ill-formed. [Note: This restriction only applies if
this initialization is part of the final result of overload resolution — end note |

13.3.2 Viable functions [over.match.viable]

From the set of candidate functions constructed for a given context (13.3.1), a set of viable functions is
chosen, from which the best function will be selected by comparing argument conversion sequences for the
best fit (13.3.3). The selection of viable functions considers relationships between arguments and function
parameters other than the ranking of conversion sequences.

First, to be a viable function, a candidate function shall have enough parameters to agree in number with
the arguments in the list.

— If there are m arguments in the list, all candidate functions having exactly m parameters are viable.

§ 13.3.2 294

©ISO/IEC N3092

— A candidate function having fewer than m parameters is viable only if it has an ellipsis in its parameter
list (8.3.5). For the purposes of overload resolution, any argument for which there is no corresponding
parameter is considered to “match the ellipsis” (13.3.3.1.3) .

— A candidate function having more than m parameters is viable only if the (m+1)-st parameter has a
default argument (8.3.6).'3° For the purposes of overload resolution, the parameter list is truncated
on the right, so that there are exactly m parameters.

Second, for F to be a viable function, there shall exist for each argument an implicit conversion se-
quence (13.3.3.1) that converts that argument to the corresponding parameter of F. If the parameter has
reference type, the implicit conversion sequence includes the operation of binding the reference, and the fact
that an lvalue reference to non-const cannot be bound to an rvalue and that an rvalue reference cannot be
bound to an lvalue can affect the viability of the function (see 13.3.3.1.4).

13.3.3 Best viable function [over.match.best]

Define ICSi(F) as follows:

— if F is a static member function, ICS1(F) is defined such that ICS1(F) is neither better nor worse than
ICS1(G) for any function G, and, symmetrically, ICS1(G) is neither better nor worse than ICS1(F)!3!;
otherwise,

— let ICS%(F) denote the implicit conversion sequence that converts the i-th argument in the list to the
type of the i-th parameter of viable function F. 13.3.3.1 defines the implicit conversion sequences and
13.3.3.2 defines what it means for one implicit conversion sequence to be a better conversion sequence
or worse conversion sequence than another.

Given these definitions, a viable function F1 is defined to be a better function than another viable function
F2 if for all arguments ¢, ICSi(F1) is not a worse conversion sequence than ICS¢(F2), and then

— for some argument 7, ICSj(F1) is a better conversion sequence than ICSj(F2), or, if not that,

— the context is an initialization by user-defined conversion (see 8.5, 13.3.1.5, and 13.3.1.6) and the
standard conversion sequence from the return type of F1 to the destination type (i.e., the type of the
entity being initialized) is a better conversion sequence than the standard conversion sequence from
the return type of F2 to the destination type. [Ezample:

struct A {
AQ;
operator int();
operator double();
}a;
int i = a; // a.operator int() followed by no conversion
// is better than a.operator double() followed by
// a conversion to int
float x = a; // ambiguous: both possibilities require conversions,
// and neither is better than the other

— end example] or, if not that,

— F1 is a non-template function and F2 is a function template specialization, or, if not that,

130) According to 8.3.6, parameters following the (m+1)-st parameter must also have default arguments.
131) If a function is a static member function, this definition means that the first argument, the implied object argument, has
no effect in the determination of whether the function is better or worse than any other function.

§13.3.3 295

©ISO/IEC N3092

— F1 and F2 are function template specializations, and the function template for F1 is more specialized
than the template for F2 according to the partial ordering rules described in 14.5.6.2.

2 If there is exactly one viable function that is a better function than all other viable functions, then it is the
one selected by overload resolution; otherwise the call is ill-formed 2.

[Example:

void Fcn(const int*, short);
void Fen(int*, int);

int i;
short s = 0;

void £() {
Fen(&i, s); // is ambiguous because
// &i — intx is better than &1 — const intx
// but s — short is also better than s — int

Fen(&i, 1L); // calls Fen(int*, int), because
// &i — int* is better than &1 — const int*
// and 1L — short and 1L — int are indistinguishable

Fen(&i,’c?’); // calls Fcn(int#*, int), because
// &i — int* is better than &i — const int*
// and ¢ — int is better than ¢ — short

— end example]

3 If the best viable function resolves to a function for which multiple declarations were found, and if at least
two of these declarations — or the declarations they refer to in the case of using-declarations — specify a
default argument that made the function viable, the program is ill-formed. [Ezample:

namespace A {

extern "C" void f(int
}
namespace B {

extern "C" void f(int = 5);

5);

}

using A::f;

using B::f;

void use() {
£(3); // OK, default argument was not used for viability
£0; // Error: found default argument twice

}

— end example|

132) The algorithm for selecting the best viable function is linear in the number of viable functions. Run a simple tournament
to find a function W that is not worse than any opponent it faced. Although another function F that W did not face might be
at least as good as W, F cannot be the best function because at some point in the tournament F encountered another function
G such that F was not better than G. Hence, W is either the best function or there is no best function. So, make a second pass
over the viable functions to verify that W is better than all other functions.

§13.3.3 296

10

©ISO/IEC N3092

13.3.3.1 Implicit conversion sequences [over.best.ics]

An implicit conversion sequence is a sequence of conversions used to convert an argument in a function call
to the type of the corresponding parameter of the function being called. The sequence of conversions is an
implicit conversion as defined in Clause 4, which means it is governed by the rules for initialization of an
object or reference by a single expression (8.5, 8.5.3).

Implicit conversion sequences are concerned only with the type, cv-qualification, and value category of the
argument and how these are converted to match the corresponding properties of the parameter. Other
properties, such as the lifetime, storage class, alignment, or accessibility of the argument and whether or not
the argument is a bit-field are ignored. So, although an implicit conversion sequence can be defined for a
given argument-parameter pair, the conversion from the argument to the parameter might still be ill-formed
in the final analysis.

A well-formed implicit conversion sequence is one of the following forms:
— a standard conversion sequence (13.3.3.1.1),
— a user-defined conversion sequence (13.3.3.1.2), or
— an ellipsis conversion sequence (13.3.3.1.3).

However, when considering the argument of a constructor or user-defined conversion function that is a
candidate by 13.3.1.3 when invoked for the copying/moving of the temporary in the second step of a class
copy-initialization, by 13.3.1.7 when passing the initializer list as a single argument or when the initializer
list has exactly one element and a conversion to some class X or reference to (possibly cv-qualified) X is
considered for the first parameter of a constructor of X, or by 13.3.1.4, 13.3.1.5, or 13.3.1.6 in all cases, only
standard conversion sequences and ellipsis conversion sequences are considered.

For the case where the parameter type is a reference, see 13.3.3.1.4.

When the parameter type is not a reference, the implicit conversion sequence models a copy-initialization of
the parameter from the argument expression. The implicit conversion sequence is the one required to convert
the argument expression to a prvalue of the type of the parameter. [Note: when the parameter has a class
type, this is a conceptual conversion defined for the purposes of Clause 13; the actual initialization is defined
in terms of constructors and is not a conversion. — end note] Any difference in top-level cv-qualification is
subsumed by the initialization itself and does not constitute a conversion. [Ezample: a parameter of type A
can be initialized from an argument of type const A. The implicit conversion sequence for that case is the
identity sequence; it contains no “conversion” from const A to A. — end example] When the parameter has
a class type and the argument expression has the same type, the implicit conversion sequence is an identity
conversion. When the parameter has a class type and the argument expression has a derived class type,
the implicit conversion sequence is a derived-to-base Conversion from the derived class to the base class.
[Note: there is no such standard conversion; this derived-to-base Conversion exists only in the description of
implicit conversion sequences. — end note| A derived-to-base Conversion has Conversion rank (13.3.3.1.1).

In all contexts, when converting to the implicit object parameter or when converting to the left operand of
an assignment operation only standard conversion sequences that create no temporary object for the result
are allowed.

If no conversions are required to match an argument to a parameter type, the implicit conversion sequence
is the standard conversion sequence consisting of the identity conversion (13.3.3.1.1).

If no sequence of conversions can be found to convert an argument to a parameter type or the conversion is
otherwise ill-formed, an implicit conversion sequence cannot be formed.

If several different sequences of conversions exist that each convert the argument to the parameter type, the
implicit conversion sequence associated with the parameter is defined to be the unique conversion sequence

§13.3.3.1 297

11

©ISO/IEC N3092

designated the ambiguous conversion sequence. For the purpose of ranking implicit conversion sequences
as described in 13.3.3.2, the ambiguous conversion sequence is treated as a user-defined sequence that is
indistinguishable from any other user-defined conversion sequence!3. If a function that uses the ambiguous
conversion sequence is selected as the best viable function, the call will be ill-formed because the conversion
of one of the arguments in the call is ambiguous.

The three forms of implicit conversion sequences mentioned above are defined in the following subclauses.

13.3.3.1.1 Standard conversion sequences [over.ics.scs]

Table 11 summarizes the conversions defined in Clause 4 and partitions them into four disjoint categories:
Lvalue Transformation, Qualification Adjustment, Promotion, and Conversion. [Note: these categories are
orthogonal with respect to value category, cv-qualification, and data representation: the Lvalue Transforma-
tions do not change the cv-qualification or data representation of the type; the Qualification Adjustments
do not change the value category or data representation of the type; and the Promotions and Conversions
do not change the value category or cv-qualification of the type. — end note]

[Note: As described in Clause 4, a standard conversion sequence is either the Identity conversion by itself
(that is, no conversion) or consists of one to three conversions from the other four categories. At most one
conversion from each category is allowed in a single standard conversion sequence. If there are two or more
conversions in the sequence, the conversions are applied in the canonical order: Lvalue Transformation,
Promotion or Conversion, Qualification Adjustment. — end note |

Each conversion in Table 11 also has an associated rank (Exact Match, Promotion, or Conversion). These are
used to rank standard conversion sequences (13.3.3.2). The rank of a conversion sequence is determined by
considering the rank of each conversion in the sequence and the rank of any reference binding (13.3.3.1.4). If
any of those has Conversion rank, the sequence has Conversion rank; otherwise, if any of those has Promotion
rank, the sequence has Promotion rank; otherwise, the sequence has Exact Match rank.

13.3.3.1.2 User-defined conversion sequences [over.ics.user]

A user-defined conversion sequence consists of an initial standard conversion sequence followed by a user-
defined conversion (12.3) followed by a second standard conversion sequence. If the user-defined conversion
is specified by a constructor (12.3.1), the initial standard conversion sequence converts the source type to the
type required by the argument of the constructor. If the user-defined conversion is specified by a conversion

133) The ambiguous conversion sequence is ranked with user-defined conversion sequences because multiple conversion se-
quences for an argument can exist only if they involve different user-defined conversions. The ambiguous conversion sequence is
indistinguishable from any other user-defined conversion sequence because it represents at least two user-defined conversion se-
quences, each with a different user-defined conversion, and any other user-defined conversion sequence must be indistinguishable
from at least one of them.

This rule prevents a function from becoming non-viable because of an ambiguous conversion sequence for one of its parameters.
Consider this example,

class B;

class A { A (B&);1};

class B { operator A (); };

class C { C (B&); };

void £(4) { }

void £(C) { }

B b;

£(b); // ambiguous because b — C via constructor and

// b — A via constructor or conversion function.

If it were not for this rule, £(A) would be eliminated as a viable function for the call £(b) causing overload resolution to
select £(C) as the function to call even though it is not clearly the best choice. On the other hand, if an £f(B) were to be
declared then f(b) would resolve to that £(B) because the exact match with £ (B) is better than any of the sequences required
to match f(A).

§13.3.3.1.2 298

©ISO/IEC N3092

Table 11 — Conversions

] Conversion \ Category \ Rank \ Subclause \

No conversions required Identity

Lvalue-to-rvalue conversion 4.1
Array-to-pointer conversion Lvalue Transformation Exact Match 4.2
Function-to-pointer conversion 4.3
Qualification conversions Qualification Adjustment 4.4
Integr.al prot otions - Promotion Promotion 4.5
Floating point promotion 4.6
Integral conversions 4.7
Floating point conversions 4.8
Floating-integral conversions C y ’ 4.9

' _ onversion Conversion

Pointer conversions 4.10
Pointer to member conversions 4.11
Boolean conversions 4.12

function (12.3.2), the initial standard conversion sequence converts the source type to the implicit object
parameter of the conversion function.

The second standard conversion sequence converts the result of the user-defined conversion to the target type
for the sequence. Since an implicit conversion sequence is an initialization, the special rules for initialization
by user-defined conversion apply when selecting the best user-defined conversion for a user-defined conversion
sequence (see 13.3.3 and 13.3.3.1).

If the user-defined conversion is specified by a specialization of a conversion function template, the second
standard conversion sequence shall have exact match rank.

A conversion of an expression of class type to the same class type is given Exact Match rank, and a conversion
of an expression of class type to a base class of that type is given Conversion rank, in spite of the fact that
a copy/move constructor (i.e., a user-defined conversion function) is called for those cases.

13.3.3.1.3 Ellipsis conversion sequences [over.ics.ellipsis]

An ellipsis conversion sequence occurs when an argument in a function call is matched with the ellipsis
parameter specification of the function called (see 5.2.2).

13.3.3.1.4 Reference binding [over.ics.ref]

When a parameter of reference type binds directly (8.5.3) to an argument expression, the implicit conversion
sequence is the identity conversion, unless the argument expression has a type that is a derived class of the
parameter type, in which case the implicit conversion sequence is a derived-to-base Conversion (13.3.3.1).
[Example:

struct A {};

struct B : public A {} b;

int f(A&);

int £(B&);

int i = £(b); // calls £(B&), an exact match, rather than
// £(A&), a conversion

—end example] If the parameter binds directly to the result of applying a conversion function to the
argument expression, the implicit conversion sequence is a user-defined conversion sequence (13.3.3.1.2),

§13.3.3.1.4 299

©ISO/IEC N3092

with the second standard conversion sequence either an identity conversion or, if the conversion function
returns an entity of a type that is a derived class of the parameter type, a derived-to-base Conversion.

2 When a parameter of reference type is not bound directly to an argument expression, the conversion sequence
is the one required to convert the argument expression to the underlying type of the reference according
to 13.3.3.1. Conceptually, this conversion sequence corresponds to copy-initializing a temporary of the
underlying type with the argument expression. Any difference in top-level cv-qualification is subsumed by
the initialization itself and does not constitute a conversion.

3 Except for an implicit object parameter, for which see 13.3.1, a standard conversion sequence cannot be
formed if it requires binding an lvalue reference to non-const to an rvalue or binding an rvalue reference to
an lvalue. [Note: this means, for example, that a candidate function cannot be a viable function if it has
a non-const lvalue reference parameter (other than the implicit object parameter) and the corresponding
argument is a temporary or would require one to be created to initialize the lvalue reference (see 8.5.3).
— end note]

4 Other restrictions on binding a reference to a particular argument that are not based on the types of
the reference and the argument do not affect the formation of a standard conversion sequence, however.
[Example: a function with an “lvalue reference to int” parameter can be a viable candidate even if the
corresponding argument is an int bit-field. The formation of implicit conversion sequences treats the int
bit-field as an int lvalue and finds an exact match with the parameter. If the function is selected by overload
resolution, the call will nonetheless be ill-formed because of the prohibition on binding a non-const lvalue
reference to a bit-field (8.5.3). — end ezample]

5 The binding of a reference to an expression that is reference-compatible with added qualification influences
the rank of a standard conversion; see 13.3.3.2 and 8.5.3.

13.3.3.1.5 List-initialization sequence [over.ics.list]
1 When an argument is an initializer list (8.5.4), it is not an expression and special rules apply for converting
it to a parameter type.

2 If the parameter type is std::initializer_list<X> and all the elements of the initializer list can be
implicitly converted to X, the implicit conversion sequence is the worst conversion necessary to convert an
element of the list to X. This conversion can be a user-defined conversion even in the context of a call to an
initializer-list constructor. [Ezample:

void f(std::initializer_list<int>);

£({1,2,3}); // OK: f(initializer_list<int>) identity conversion

£f({’a’,’b’}); // OK: f(initializer_list<int>) integral promotion

£(C {1.0}); // error: narrowing

struct A {
A(std::initializer_list<double>); /) #1
A(std::initializer_list<complex<double>>); // #&2
A(std::initializer_list<std::string>); // #3

};

A af 1.0,2.0 }; // OK, uses #1

void g(A);

g({ "foo", "bar" }); // OK, uses #3

— end example]

3 Otherwise, if the parameter is a non-aggregate class X and overload resolution per 13.3.1.7 chooses a single
best constructor of X to perform the initialization of an object of type X from the argument initializer list, the

§13.3.3.1.5 300

©ISO/IEC N3092

implicit conversion sequence is a user-defined conversion sequence. If multiple constructors are viable but
none is better than the others, the implicit conversion sequence is the ambiguous conversion sequence. User-
defined conversions are allowed for conversion of the initializer list elements to the constructor parameter
types except as noted in 13.3.3.1. [Ezample:

struct A {
A(std::initializer_list<int>);
};
void f(A);
£f({’a’, b’}); // OK: £(A(std::initializer_list<int>)) user-defined conversion

struct B {
B(int, double);
};
void g(B);
g {’a’, v’}); // OK: g(B(int,double)) user-defined conversion
g({1.0, 1,0}); // error: narrowing

void £(B);
£f(C {’a’, v’}); // error: ambiguous £(A) or £(B)

struct C {
C(std::string);
3
void h(C);
h({"foo"}); // OK: h(C(std::string("foo")))

struct D {
C(A, ©);
};
void i(D);
i({ {1,2}, {"bar"} }); // OK: i(D(A(std::initializer_list<int>{1,2}),C(std::string("bar"))))

— end example]

4 Otherwise, if the parameter has an aggregate type which can be initialized from the initializer list according
to the rules for aggregate initialization (8.5.1), the implicit conversion sequence is a user-defined conversion
sequence. [Example:

struct A {
int mi;
double m2;
};

void f(A);
£f({’a’, 'b’}); // OK: £(A(int,double)) user-defined conversion
£C {1.0}); // error: narrowing

— end example]

5 Otherwise, if the parameter is a reference, see 13.3.3.1.4. [Note: The rules in this section will apply for
initializing the underlying temporary for the reference. — end note| [Example:

struct A {
int mi;
double m2;
};

§13.3.3.1.5 301

©ISO/IEC N3092

void f(const A&);
£f({’a’, 'b’}); // OK: £(A(int,double)) user-defined conversion
£({1.0}); // error: narrowing

void g(const double &);
g{1}); // same conversion as int to double
— end example]
6 Otherwise, if the parameter type is not a class:

— if the initializer list has one element, the implicit conversion sequence is the one required to convert
the element to the parameter type; [Example:

void f(int);
£ {’a’}); // OK: same conversion as char to int
£ {1.0}); // error: narrowing

— end example]

— if the initializer list has no elements, the implicit conversion sequence is the identity conversion.
[Example:

void f(int);
fC{3}) // OK: identity conversion
— end example]

7 In all cases other than those enumerated above, no conversion is possible.

13.3.3.2 Ranking implicit conversion sequences [over.ics.rank]

1 13.3.3.2 defines a partial ordering of implicit conversion sequences based on the relationships better conversion
sequence and better conversion. If an implicit conversion sequence S1 is defined by these rules to be a better
conversion sequence than S2, then it is also the case that S2 is a worse conversion sequence than S1. If
conversion sequence S1 is neither better than nor worse than conversion sequence S2, S1 and S2 are said to
be indistinguishable conversion sequences.

2 When comparing the basic forms of implicit conversion sequences (as defined in 13.3.3.1)

— a standard conversion sequence (13.3.3.1.1) is a better conversion sequence than a user-defined con-
version sequence or an ellipsis conversion sequence, and

— a user-defined conversion sequence (13.3.3.1.2) is a better conversion sequence than an ellipsis conver-
sion sequence (13.3.3.1.3).

3 Two implicit conversion sequences of the same form are indistinguishable conversion sequences unless one of
the following rules applies:

— Standard conversion sequence S1 is a better conversion sequence than standard conversion sequence
S2 if

— S1 is a proper subsequence of S2 (comparing the conversion sequences in the canonical form
defined by 13.3.3.1.1, excluding any Lvalue Transformation; the identity conversion sequence is
considered to be a subsequence of any non-identity conversion sequence) or, if not that,

§ 13.3.3.2 302

©ISO/IEC

N3092

— the rank of S1 is better than the rank of S2, or S1 and S2 have the same rank and are distin-

guishable by the rules in the paragraph below, or, if not that,

— 81 and 82 differ only in their qualification conversion and yield similar types T1 and T2 (4.4),

int f(const int *);
int f(int *);

int i;

int j = £(&i);

— end example] or, if not that,

respectively, and the cv-qualification signature of type T1 is a proper subset of the cv-qualification
signature of type T2. [Example:

// calls £ (int*)

— S1 and S2 are reference bindings (8.5.3) and neither refers to an implicit object parameter of a

[Ezxample:
int i;
int £10);
int&& £20);
int g(const int&);
int g(const int&&);

int j = g(i);
int k = g(£10);
int 1 = g(£20));
struct A {
A& operator<<(int);
void p(O) &;
void p() &&;
};
A% operator<<(A&&, char);
A() << 1;
A() << ¢’y
A a;
a << 1;
a << ’c’;
AQ .pO;
a.pQ;

— end example] or, if not that,

non-static member function declared without a ref-qualifier, and S1 binds an rvalue reference to
an rvalue and S2 binds an lvalue reference.

// calls g(const int&)
// calls g(const int&&)
// calls g(const int&&)

// calls A: :operator<<(int)
// calls operator<<(A&&, char)

// calls A: :operator<<(int)
// calls A: :operator<<(int)
// calls A: :p)&&

// calls A::pQ&

— S1 and 82 are reference bindings (8.5.3), and the types to which the references refer are the same

§ 13.3.3.2

int f(const int &);
int f(int &);
int g(const int &);

int g(int);
int i;

int j = £(i);
int k = g(i);

type except for top-level cv-qualifiers, and the type to which the reference initialized by S2 refers
is more cv-qualified than the type to which the reference initialized by S1 refers. [Example:

// calls £(int &)
// ambiguous

303

©ISO/IEC N3092

struct X {
void f() const;
void £();
};
void g(const X& a, X b) {
a.fO; // calls X: :£() const
b.£(0); // calls X::£Q)
}

— end example]

— User-defined conversion sequence Ul is a better conversion sequence than another user-defined conver-
sion sequence U2 if they contain the same user-defined conversion function or constructor and if the
second standard conversion sequence of U1l is better than the second standard conversion sequence of
U2. [Example:

struct A {
operator short();
} oa;
int f(int);
int f(float);
int i = f(a); // calls £(int), because short — int is
// better than short — float.

— end example]

— List-initialization sequence L1 is a better conversion sequence than list-initialization sequence L2 if L1
converts to std: :initializer_list<X> for some X and L2 does not.

Standard conversion sequences are ordered by their ranks: an Exact Match is a better conversion than a
Promotion, which is a better conversion than a Conversion. Two conversion sequences with the same rank
are indistinguishable unless one of the following rules applies:

— A conversion that does not convert a pointer, a pointer to member, or std: :nullptr_t to bool is
better than one that does.

— If class B is derived directly or indirectly from class A, conversion of Bx to A* is better than conversion
of B* to void*, and conversion of A* to voidx* is better than conversion of Bx to void.

— If class B is derived directly or indirectly from class A and class C is derived directly or indirectly from
B

— conversion of Cx to B* is better than conversion of C* to A, [Example:

struct A {};

struct B : public A {};

struct C : public B {};

C *pc;

int £(A *);

int £(B *);

int i = f(pc); // calls £ (B*)

— end example]

— binding of an expression of type C to a reference of type B& is better than binding an expression
of type C to a reference of type A&,

§ 13.3.3.2 304

©ISO/IEC N3092

— conversion of A::* to B::* is better than conversion of A: :* to C: : *,
— conversion of C to B is better than conversion of C to A,
— conversion of B to A* is better than conversion of Cx to Ax*,

— binding of an expression of type B to a reference of type A& is better than binding an expression
of type C to a reference of type A&,

— conversion of B::* to C: :* is better than conversion of A::* to C: :*, and
— conversion of B to A is better than conversion of C to A.

[Note: compared conversion sequences will have different source types only in the context of comparing
the second standard conversion sequence of an initialization by user-defined conversion (see 13.3.3);

in all other contexts, the source types will be the same and the target types will be different. — end
note |
13.4 Address of overloaded function [over.over]

A use of an overloaded function name without arguments is resolved in certain contexts to a function, a
pointer to function or a pointer to member function for a specific function from the overload set. A function
template name is considered to name a set of overloaded functions in such contexts. The function selected
is the one whose type matches the target type required in the context. The target can be

— an object or reference being initialized (8.5, 8.5.3),

— the left side of an assignment (5.17),

— a parameter of a function (5.2.2),

— a parameter of a user-defined operator (13.5),

— the return value of a function, operator function, or conversion (6.6.3),
— an explicit type conversion (5.2.3, 5.2.9, 5.4), or

— a non-type template-parameter (14.3.2).

The overloaded function name can be preceded by the & operator. An overloaded function name shall not
be used without arguments in contexts other than those listed. [Note: any redundant set of parentheses
surrounding the overloaded function name is ignored (5.1). — end note|

If the name is a function template, template argument deduction is done (14.8.2.2), and if the argument
deduction succeeds, the resulting template argument list is used to generate a single function template
specialization, which is added to the set of overloaded functions considered. [Note: As described in 14.8.1,
if deduction fails and the function template name is followed by an explicit template argument list, the
template-id is then examined to see whether it identifies a single function template specialization. If it does,
the template-id is considered to be an lvalue for that function template specialization. The target type is
not used in that determination. — end note]

Non-member functions and static member functions match targets of type “pointer-to-function” or “reference-
to-function.” Nonstatic member functions match targets of type “pointer-to-member-function;” the function
type of the pointer to member is used to select the member function from the set of overloaded member
functions. If a non-static member function is selected, the reference to the overloaded function name is
required to have the form of a pointer to member as described in 5.3.1.

If more than one function is selected, any function template specializations in the set are eliminated if the
set also contains a non-template function, and any given function template specialization F1 is eliminated if

§ 13.4 305

5

©ISO/IEC N3092

the set contains a second function template specialization whose function template is more specialized than
the function template of F1 according to the partial ordering rules of 14.5.6.2. After such eliminations, if
any, there shall remain exactly one selected function.

[Ezample:
int f(double);
int f(int);
int (*pfd) (double) = &f; // selects £ (double)
int (*pfi) (int) = &f; // selects £ (int)
int (xpfe)(...) = &f; // error: type mismatch
int (&rfi) (int) = f; // selects £ (int)
int (&rfd) (double) = f; // selects £ (double)
void g() {

(int (%) (int))&f; // cast expression as selector

}

The initialization of pfe is ill-formed because no £ () with type int(...) has been declared, and not because
of any ambiguity. For another example,

struct X {
int f(int);
static int f(long);
};
int (X::*p1)(int) = &X::f; // OK
int (*xp2) (int) = &X::f; // error: mismatch
int (*p3) (Long) = &X::f; // OK
int (X::*p4) (long) = &X::f; // error: mismatch

&(X::£); // error: wrong syntax for
// pointer to member

&(X::£); // OK

int (X::*p5) (int)

int (*p6) (long)

— end example]

[Note: if £() and g() are both overloaded functions, the cross product of possibilities must be considered
to resolve f (&g), or the equivalent expression f£(g). — end note]

[Note: there are no standard conversions (Clause 4) of one pointer-to-function type into another. In partic-
ular, even if B is a public base of D, we have

Dx £Q);
Bx (xp1) () = &f; // error
void g(D*);
void (*p2) (B¥) = &g; // error
— end note]
13.5 Overloaded operators [over.oper]

A function declaration having one of the following operator-function-ids as its name declares an operator
function. A function template declaration having one of the following operator-function-ids as its name
declares an operator function template. A specialization of an operator function template is also an operator
function. An operator function is said to implement the operator named in its operator-function-id.

§13.5 306

©ISO/IEC N3092

operator-function-id:
operator operator

operator: one of

new delete newl[] deletel[]

+ - * / % - & | ~
! = < > += -= *= = Y=
o= &= |= << >> >>= <<= == 1=
<= >= && I ++ —-- s —>% ->
(@) [1]

[Note: the last two operators are function call (5.2.2) and subscripting (5.2.1). The operators new[],
deletel], (), and [] are formed from more than one token. — end note]

Both the unary and binary forms of

+ - x &

can be overloaded.

The following operators cannot be overloaded:

¥ HH 7

nor can the preprocessing symbols # and ## (Clause 16).

Operator functions are usually not called directly; instead they are invoked to evaluate the operators they
implement (13.5.1 — 13.5.7). They can be explicitly called, however, using the operator-function-id as the
name of the function in the function call syntax (5.2.2). [Ezample:

complex z = a.operator+(b); // complex z = a+b;
void* p = operator new(sizeof (int)*n);

— end example]

The allocation and deallocation functions, operator new, operator new[], operator delete and operator
delete[], are described completely in 3.7.4. The attributes and restrictions found in the rest of this
subclause do not apply to them unless explicitly stated in 3.7.4.

An operator function shall either be a non-static member function or be a non-member function and have
at least one parameter whose type is a class, a reference to a class, an enumeration, or a reference to an
enumeration. It is not possible to change the precedence, grouping, or number of operands of operators.
The meaning of the operators =, (unary) &, and , (comma), predefined for each type, can be changed for
specific class and enumeration types by defining operator functions that implement these operators. Operator
functions are inherited in the same manner as other base class functions.

The identities among certain predefined operators applied to basic types (for example, ++a = a+=1) need
not hold for operator functions. Some predefined operators, such as +=, require an operand to be an lvalue
when applied to basic types; this is not required by operator functions.

An operator function cannot have default arguments (8.3.6), except where explicitly stated below. Operator
functions cannot have more or fewer parameters than the number required for the corresponding operator,
as described in the rest of this subclause.

§13.5 307

©ISO/IEC N3092

Operators not mentioned explicitly in subclauses 13.5.3 through 13.5.7 act as ordinary unary and binary
operators obeying the rules of 13.5.1 or 13.5.2.

13.5.1 Unary operators [over.unary]

A prefix unary operator shall be implemented by a non-static member function (9.3) with no parameters or
a non-member function with one parameter. Thus, for any prefix unary operator @, @x can be interpreted
as either x.operator@() or operator@(x). If both forms of the operator function have been declared, the
rules in 13.3.1.2 determine which, if any, interpretation is used. See 13.5.7 for an explanation of the postfix
unary operators ++ and --.

The unary and binary forms of the same operator are considered to have the same name. [Note: consequently,
a unary operator can hide a binary operator from an enclosing scope, and vice versa. — end note

13.5.2 Binary operators [over.binary]

A binary operator shall be implemented either by a non-static member function (9.3) with one parameter
or by a non-member function with two parameters. Thus, for any binary operator @, x@y can be interpreted
as either x.operator@(y) or operator@(x,y). If both forms of the operator function have been declared,
the rules in 13.3.1.2 determine which, if any, interpretation is used.

13.5.3 Assignment [over.ass]

An assignment operator shall be implemented by a non-static member function with exactly one parameter.
Because a copy assignment operator operator= is implicitly declared for a class if not declared by the
user (12.8), a base class assignment operator is always hidden by the copy assignment operator of the
derived class.

Any assignment operator, even the copy and move assignment operators, can be virtual. [Note: for a derived
class D with a base class B for which a virtual copy/move assignment has been declared, the copy/move
assignment operator in D does not override B’s virtual copy/move assignment operator. [Ezample:

struct B {
virtual int operator= (int);
virtual B& operator= (const B&);
};
struct D : B {
virtual int operator= (int);
virtual D& operator= (const B&);

};

D dobji;

D dobj2;

B* bptr = &dobji;

void £() {
bptr->operator=(99); // calls D: :operator=(int)
*bptr = 99; // ditto
bptr->operator=(dobj2); // calls D: :operator=(const B&)
*bptr = dobj2; // ditto
dobj1l = dobj2; // calls implicitly-declared

// D::operator=(const D&)
}

§ 13.5.3 308

©ISO/IEC N3092

— end example] — end note]

13.5.4 Function call [over.call]

operator () shall be a non-static member function with an arbitrary number of parameters. It can have
default arguments. It implements the function call syntax

postfiz-expression (expression-listop:)

where the postfiz-expression evaluates to a class object and the possibly empty expression-list matches the
parameter list of an operator () member function of the class. Thus, a call x(argl,...) is interpreted as
x.operator () (argl, ...) for a class object x of type T if T::operator() (T1, T2, T3) exists and if the
operator is selected as the best match function by the overload resolution mechanism (13.3.3).

13.5.5 Subscripting [over.sub]

operator [] shall be a non-static member function with exactly one parameter. It implements the subscript-
ing syntax

postfiz-expression [expression]

Thus, a subscripting expression x[y] is interpreted as x.operator[](y) for a class object x of type T
if T::operator[]1(T1) exists and if the operator is selected as the best match function by the overload
resolution mechanism (13.3.3).

13.5.6 Class member access [over.ref]

operator-> shall be a non-static member function taking no parameters. It implements the class member
access syntax that uses ->.

postfiz-expression —> templateo,; id-expression

postfiz-expression => pseudo-destructor-name
An expression x—>m is interpreted as (x.operator—>())->m for a class object x of type T if T: : operator->()
exists and if the operator is selected as the best match function by the overload resolution mechanism (13.3).

13.5.7 Increment and decrement [over.inc]

The user-defined function called operator++ implements the prefix and postfix ++ operator. If this function is
a member function with no parameters, or a non-member function with one parameter of class or enumeration
type, it defines the prefix increment operator ++ for objects of that type. If the function is a member function
with one parameter (which shall be of type int) or a non-member function with two parameters (the second
of which shall be of type int), it defines the postfix increment operator ++ for objects of that type. When
the postfix increment is called as a result of using the ++ operator, the int argument will have value zero.'34
[Example:

struct X {
X& operator++(); // prefix ++a
X operator++(int) ; // postfiz a++
};
struct Y { };
Y& operator++(Y&); // prefix ++b
Y operator++(Y&, int); // postfiz b++

134) Calling operator++ explicitly, as in expressions like a.operator++(2), has no special properties: The argument to oper-
ator++ is 2.

§ 13.5.7 309

©ISO/IEC N3092

void £f(X a, Y b) {

++a; // a.operator++();
at+; // a.operator++(0) ;
++b; // operator++(b);

bt+; // operator++(b, 0);
a.operator++(); // explicit call: like ++a;
a.operator++(0); // explicit call: like a++;
operator++(b); // explicit call: like ++b;
operator++(b, 0); // explicit call: like b++;

}

— end example |
The prefix and postfix decrement operators —- are handled analogously.

13.5.8 User-defined literals [over.literal]

literal-operator-id:
operator "" identifier

The identifier in a literal-operator-id is called a literal suffix identifier.

A declaration whose declarator-id is a literal-operator-id shall be a declaration of a namespace-scope function
or function template (it could be a friend function (11.4)), an explicit instantiation or specialization of a
function template, or a using-declaration (7.3.3). A function declared with a literal-operator-id is a literal
operator. A function template declared with a literal-operator-id is a literal operator template.

The declaration of a literal operator shall have a parameter-declaration-clause equivalent to one of the
following:

const charx

unsigned long long int

long double

char

wchar_t

charl6_t

char32_t

const charx, std::size_t
const wchar_t*, std::size_t
const charl16_tx, std::size_t
const char32_t*, std::size_t

A raw literal operator is a literal operator with a single parameter whose type is const char*.

The declaration of a literal operator template shall have an empty parameter-declaration-clause and its
template-parameter-list shall have a single template-parameter that is a non-type template parameter pack (14.5.3)
with element type char.

Literal operators and literal operator templates shall not have C language linkage.

[Note: literal operators and literal operator templates are usually invoked implicitly through user-defined
literals (2.14.8). However, except for the constraints described above, they are ordinary namespace-scope
functions and function templates. In particular, they are looked up like ordinary functions and function tem-
plates and they follow the same overload resolution rules. Also, they can be declared inline or constexpr,
they may have internal or external linkage, they can be called explicitly, their addresses can be taken, etc.
— end note]

§ 13.5.8 310

8

©ISO/IEC N3092

[Example:
void operator "" _km(long double); // OK
string operator "" _il8n(const char*, std::size_t); // OK
template <char...> int operator "" \u03CO0Q); // OK: UCN for lowercase pi
float operator ""E(const charx); // error: ""E (with no intervening space)
// is a single token
float operator " " B(const charx); // error: non-adjacent quotes
string operator "" 5X(const charx, std::size_t); // error: invalid lteral suffiz identifier
double operator "" _miles(double); // error: invalid parameter-declaration-clause
template <char...> int operator "" j(comst charx); // error: invalid parameter-declaration-clause
— end example|
13.6 Built-in operators [over.built]

The candidate operator functions that represent the built-in operators defined in Clause 5 are specified in
this subclause. These candidate functions participate in the operator overload resolution process as described
in 13.3.1.2 and are used for no other purpose. [Note: because built-in operators take only operands with
non-class type, and operator overload resolution occurs only when an operand expression originally has class
or enumeration type, operator overload resolution can resolve to a built-in operator only when an operand
has a class type that has a user-defined conversion to a non-class type appropriate for the operator, or when
an operand has an enumeration type that can be converted to a type appropriate for the operator. Also note
that some of the candidate operator functions given in this subclause are more permissive than the built-in
operators themselves. As described in 13.3.1.2, after a built-in operator is selected by overload resolution
the expression is subject to the requirements for the built-in operator given in Clause 5, and therefore to
any additional semantic constraints given there. If there is a user-written candidate with the same name
and parameter types as a built-in candidate operator function, the built-in operator function is hidden and
is not included in the set of candidate functions. — end note|

In this subclause, the term promoted integral type is used to refer to those integral types which are preserved
by integral promotion (including e.g. int and long but excluding e.g. char). Similarly, the term promoted
arithmetic type refers to floating types plus promoted integral types. [Note: in all cases where a promoted
integral type or promoted arithmetic type is required, an operand of enumeration type will be acceptable
by way of the integral promotions. — end note |

For every pair (7T, V@), where T is an arithmetic type, and V@ is either volatile or empty, there exist
candidate operator functions of the form

VG T& operator++(VG T&);
T operator++(V@ T&, int);

For every pair (T, V@), where T is an arithmetic type other than bool, and V@ is either volatile or empty,
there exist candidate operator functions of the form

VQ T& operator—--(V{ T&);
T operator--(Vg T&, int);

For every pair (T, VQ), where T is a cv-qualified or cv-unqualified object type, and V() is either volatile
or empty, there exist candidate operator functions of the form

T*VQ& operator++(T*V@&) ;
T*VQ& operator—--(T*VQ&) ;
T* operator++(T*VQ@&, int);
T* operator-—-(T*V@&, int);

§13.6 311

10

11

12

13

14

15

©ISO/IEC N3092

For every cv-qualified or cv-unqualified object type T, there exist candidate operator functions of the form
T& operatorx (T*) ;

For every function type T that does not have cv-qualifiers or a ref-qualifier, there exist candidate operator

functions of the form

T& operator*(T*) ;

For every type T there exist candidate operator functions of the form

T* operator+(T*);

For every promoted arithmetic type T, there exist candidate operator functions of the form
T operator+(T);
T operator-(T);
For every promoted integral type T, there exist candidate operator functions of the form
T operator~(T);
For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type, CI is the same type as C2 or is a

derived class of C2, T is an object type or a function type, and CVI and CV2 are cv-qualifier-seqs, there
exist candidate operator functions of the form

CV12 T& operator->*(CV1 C1*, CV2 T C2::%);

where CV12 is the union of CV1 and CV2.

For every pair of promoted arithmetic types L and R, there exist candidate operator functions of the form

LR operator*(L, R);
LR operator/(L, R);
LR operator+(L, R);
LR operator-(L, R);

bool operator<(L, R);
bool operator>(L, R);
bool operator<=(L, R);
bool operator>=(L, R);
bool operator==(L, R);
bool operator!=(L, R);

where LR is the result of the usual arithmetic conversions between types L and R.

For every cv-qualified or cv-unqualified object type T there exist candidate operator functions of the form

T* operator+(T*, std::ptrdiff_t);
T& operator[](T*, std::ptrdiff_t);
T* operator-(T*, std::ptrdiff_t);
T* operator+(std::ptrdiff_t, T*);
T& operator[](std::ptrdiff_t, T*);

For every T, where T is a pointer to object type, there exist candidate operator functions of the form

std::ptrdiff_t operator-(T , T);

For every T, where T is an enumeration type, a pointer type, or std::nullptr_t, there exist candidate
operator functions of the form

§13.6 312

16

17

18

19

20

21

22

©ISO/IEC N3092

bool operator<(T , T);
T)

bool operator>(T , ;
bool operator<=(T , T);
bool operator>=(T , T);
bool operator==(T , T);
bool operator!=(T , T);

For every pointer to member type T there exist candidate operator functions of the form

bool operator==(T , T);
bool operator!=(T , T);

For every pair of promoted integral types L and R, there exist candidate operator functions of the form

LR operator%(L , R);
LR operator&(L , R);
LR operator™(L , R);
LR operator|(L , R);
L operator<<(L , R);
L operator>>(L , R);

where LR is the result of the usual arithmetic conversions between types L and R.

For every triple (L, V@, R), where L is an arithmetic type, V(@ is either volatile or empty, and R is a
promoted arithmetic type, there exist candidate operator functions of the form

VQ L & operator=(V@Q L &, R);
VQ L & operatorx=(V{ L &, R
Vg L & operator/=(VQ L &, R
R
R

>

>

VQ L & operator+=(Vg L &,
VQ L & operator-=(Vg L &,

>

NN NS W

>

For every pair (T, VQ), where T is any type and V@ is either volatile or empty, there exist candidate
operator functions of the form

T xVQ & operator=(T *VQ &, T *);

For every pair (T, V@), where T is an enumeration or pointer to member type and V@ is either volatile
or empty, there exist candidate operator functions of the form

Vg T & operator=(VQ T &, T);

For every pair (T, V@), where T is a cv-qualified or cv-unqualified object type and V@ is either volatile
or empty, there exist candidate operator functions of the form

T xVg & operator+=(T *VQ &, std::ptrdiff_t);
T V@ & operator-=(T *V{ &, std::ptrdiff_t);

For every triple (L, V@, R), where L is an integral type, V(@ is either volatile or empty, and R is a
promoted integral type, there exist candidate operator functions of the form

VQ L & operator)=(VQ L &, R);
VQ L & operator<<=(V{ L &, R);
VQ L & operator>>=(VQ L &, R);
V@ L & operator&=(VQ L &, R);
VQ L & operator™=(VQ L &, R);
VQ L & operator|=(VQ L &, R)

>

§ 13.6 313

23

24

25

©ISO/IEC N3092

There also exist candidate operator functions of the form

bool operator! (bool) ;
bool operator&&(bool, bool);
bool operator| | (bool, bool);

For every pair of promoted arithmetic types L and R, there exist candidate operator functions of the form
LR operator?(bool, L , R);
where LR is the result of the usual arithmetic conversions between types L and R. [Note: as with all these

descriptions of candidate functions, this declaration serves only to describe the built-in operator for purposes
of overload resolution. The operator “?” cannot be overloaded. — end note|

For every type T, where T is a pointer, pointer-to-member, or scoped enumeration type, there exist candidate
operator functions of the form

T operator?(bool, T , T);

§13.6 314

©ISO/IEC N3092

14 Templates [temp]

A template defines a family of classes or functions or an alias for a family of types.

template-declaration:
template < template-parameter-list > declaration

template-parameter-list:
template-parameter
template-parameter-list , template-parameter

[Note: The > token following the template-parameter-list of a template-declaration may be the product of
replacing a >> token by two consecutive > tokens (14.2). — end note|

The declaration in a template-declaration shall
— declare or define a function or a class, or

— define a member function, a member class or a static data member of a class template or of a class
nested within a class template, or

— define a member template of a class or class template, or
— be an alias-declaration.

A template-declaration is a declaration. A template-declaration is also a definition if its declaration defines
a function, a class, or a static data member.

A template-declaration can appear only as a namespace scope or class scope declaration. In a function
template declaration, the last component of the declarator-id shall be a template-name or operator-function-
id (i.e., not a template-id). [Note: in a class template declaration, if the class name is a simple-template-id,
the declaration declares a class template partial specialization (14.5.5). — end note]

In a template-declaration, explicit specialization, or explicit instantiation the init-declarator-list in the dec-
laration shall contain at most one declarator. When such a declaration is used to declare a class template,
no declarator is permitted.

A template name has linkage (3.5). A non-member function template can have internal linkage; any other
template name shall have external linkage. Entities generated from a template with internal linkage are
distinct from all entities generated in other translation units. A template, a template explicit specializa-
tion (14.7.3), and a class template partial specialization shall not have C linkage. Use of a linkage specification
other than C or C++ with any of these constructs is conditionally-supported, with implementation-defined
semantics. Template definitions shall obey the one definition rule (3.2). [Note: default arguments for func-
tion templates and for member functions of class templates are considered definitions for the purpose of
template instantiation (14.5) and must also obey the one definition rule. — end note]|

A class template shall not have the same name as any other template, class, function, variable, enumeration,
enumerator, namespace, or type in the same scope (3.3), except as specified in (14.5.5). Except that a
function template can be overloaded either by (non-template) functions with the same name or by other
function templates with the same name (14.8.3), a template name declared in namespace scope or in class
scope shall be unique in that scope.

315

©ISO/IEC N3092

14.1 Template parameters [temp.param]

1 The syntax for template-parameters is:

template-parameter:
type-parameter
parameter-declaration

type-parameter:
class ...opt tdentifierop:
class identifierop; = type-id
typename . ..oy identifierop:
typename identifier,p: = type-id
template < template-parameter-list > class . ..op: identifierop:
template < template-parameter-list > class identifierop, = id-expression

[Note: The > token following the template-parameter-list of a type-parameter may be the product of replacing
a >> token by two consecutive > tokens (14.2). — end note]

2 There is no semantic difference between class and typename in a template-parameter. typename followed
by an ungqualified-id names a template type parameter. typename followed by a qualified-id denotes the
type in a non-type '3 parameter-declaration. A storage class shall not be specified in a template-parameter
declaration. [Note: a template parameter may be a class template. For example,

template<class T> class myarray { /* ... %/ };

template<class K, class V, template<class T> class C = myarray>
class Map {

C<K> key;

C<V> value;

};

— end note]

3 A type-parameter whose identifier does not follow an ellipsis defines its identifier to be a typedef-name (if
declared with class or typename) or template-name (if declared with template) in the scope of the template
declaration. [Note: because of the name lookup rules, a template-parameter that could be interpreted as
either a non-type template-parameter or a type-parameter (because its identifier is the name of an already
existing class) is taken as a type-parameter. For example,

class T { /* ... x/ };

int i;

template<class T, T i> void £(T t) {
T tl1 = i; // template-parameters T and i
2:T t2 = ::i; // global namespace members T and i

Here, the template f has a type-parameter called T, rather than an unnamed non-type template-parameter
of class T. — end note]|

4 A non-type template-parameter shall have one of the following (optionally cv-qualified) types:
— integral or enumeration type,

— pointer to object or pointer to function,

135) Since template template-parameters and template template-arguments are treated as types for descriptive purposes, the
terms non-type parameter and non-type argument are used to refer to non-type, non-template parameters and arguments.

§ 14.1 316

©ISO/IEC N3092

— lvalue reference to object or lvalue reference to function,
— pointer to member.

5 [Note: other types are disallowed either explicitly below or implicitly by the rules governing the form of
template-arguments (14.3). — end note] The top-level cv-qualifiers on the template-parameter are ignored
when determining its type.

6 A non-type non-reference template-parameter is a prvalue. It shall not be assigned to or in any other way
have its value changed. A non-type non-reference template-parameter cannot have its address taken. When
a non-type non-reference template-parameter is used as an initializer for a reference, a temporary is always
used. [Ezample:

template<const X& x, int i> void £() {

i++; // error: change of template-parameter value

&x; // OK

&i; // error: address of non-reference template-parameter
int& ri = i; // error: non-const reference bound to temporary
const int& cri = i; // OK: const reference bound to temporary

}

— end example]
7 A non-type template-parameter shall not be declared to have floating point, class, or void type. [Ezample:

template<double d> class X; // error
template<double* pd> class Y; // OK
template<double& rd> class Z; // OK

— end example]

8 A non-type template-parameter of type “array of T” or “function returning T” is adjusted to be of type
“pointer to T” or “pointer to function returning T”, respectively. [Example:

template<int *a> struct R { /* ...x/ };
template<int b[5]> struct S { /* ... x/ };

int p;

R<&p> w; // OK

S<&p> x; // OK due to parameter adjustment

int v[5];

R<v> ;5 // OK due to implicit argument conversion
S<v> z; // OK due to both adjustment and conversion

— end example|

9 A default template-argument is a template-argument (14.3) specified after = in a template-parameter. A de-
fault template-argument may be specified for any kind of template-parameter (type, non-type, template) that
is not a template parameter pack (14.5.3). A default template-argument may be specified in a template dec-
laration. A default template-argument shall not be specified in the template-parameter-lists of the definition
of a member of a class template that appears outside of the member’s class. A default template-argument
shall not be specified in a friend class template declaration. If a friend function template declaration specifies
a default template-argument, that declaration shall be a definition and shall be the only declaration of the
function template in the translation unit.

§ 14.1 317

©ISO/IEC N3092

10 The set of default template-arguments available for use with a template declaration or definition is obtained
by merging the default arguments from the definition (if in scope) and all declarations in scope in the same
way default function arguments are (8.3.6). [Ezample:

template<class T1l, class T2 = int> class A;
template<class Tl = int, class T2> class A;
is equivalent to

template<class Tl = int, class T2 = int> class A;

— end example]

11 If a template-parameter of a class template has a default template-argument, each subsequent template-
parameter shall either have a default template-argument supplied or be a template parameter pack. If
a template-parameter of a class template is a template parameter pack, it shall be the last template-
parameter. | Note: These are not requirements for function templates because template arguments might be
deduced (14.8.2). [Ezample:

template<class T1 = int, class T2> class B; // error

— end example] — end note]

12 A template-parameter shall not be given default arguments by two different declarations in the same scope.
[Ezample:

template<class T = int> class X;
template<class T = int> class X { /*...x/ }; // error

— end example |

13 When parsing a default template-argument for a non-type template-parameter, the first non-nested > is taken
as the end of the template-parameter-list rather than a greater-than operator. [Ezample:

template<int i = 3 > 4 > // syntax error
class X { /x ... %/ };

template<int i = (3 > 4) > // OK
class Y { /x ... %/ };

— end example]

14 A template-parameter of a template template-parameter is permitted to have a default template-argument.
When such default arguments are specified, they apply to the template template-parameter in the scope of
the template template-parameter. | Example:

template <class T = float> struct B {};

template <template <class TT = float> class T> struct A {
inline void £(Q);
inline void gQ);

};
template <template <class TT> class T> void A<T>::f() {
T<> t; // error - TT has no default template argument
}
template <template <class TT = char> class T> void A<T>::g() {
T<> t; // OK - T<char>
}

§ 14.1 318

15

1

©ISO/IEC N3092

— end example]

If a template-parameter is a type-parameter with an ellipsis prior to its optional identifier or is a parameter-
declaration that declares a parameter pack (8.3.5), then the template-parameter is a template parameter
pack (14.5.3). [Ezample:

template <class... Types> class Tuple; // Types is a template type parameter pack
template <class T, int... Dims> struct multi_array; //Dims is a non-type template parameter pack

— end example |

14.2 Names of template specializations [temp.names]

A template specialization (14.7) can be referred to by a template-id:

stmple-template-id:
template-name < template-argument-listop: >
template-id:
stmple-template-id
operator-function-id < template-argument-listop; >
literal-operator-id < template-argument-listop: >
template-name:
identifier
template-argument-list:

template-argument . . . opt
template-argument-list , template-argument . . . ,p;

template-argument:
constant-expression
type-id
id-expression
[Note: the name lookup rules (3.4) are used to associate the use of a name with a template declaration; that
is, to identify a name as a template-name. — end note]

For a template-name to be explicitly qualified by the template arguments, the name must be known to refer
to a template.

After name lookup (3.4) finds that a name is a template-name or that an operator-function-id or a literal-
operator-id refers to a set of overloaded functions any member of which is a function template if this is
followed by a <, the < is always taken as the delimiter of a template-argument-list and never as the less-than
operator. When parsing a template-argument-list, the first non-nested >3 is taken as the ending delimiter
rather than a greater-than operator. Similarly, the first non-nested >> is treated as two consecutive but
distinct > tokens, the first of which is taken as the end of the template-argument-list and completes the
template-id. [Note: The second > token produced by this replacement rule may terminate an enclosing
template-id construct or it may be part of a different construct (e.g. a cast). — end note] [Example:

template<int i> class X { /f*x ... */ };

X< 1>2 > x1; // syntax error
X<(1>2)> x2; // OK

template<class T> class Y { /* ... %/ };

136) A > that encloses the type-id of a dynamic_cast, static_cast, reinterpret_cast or const_cast, or which encloses the
template-arguments of a subsequent template-id, is considered nested for the purpose of this description.

§ 14.2 319

©ISO/IEC N3092

Y<X<1>> x3; // OK, same as Y<X<1> > x3;
Y<X<6>>1>> x4; // syntax error
Y<X<(6>>1)>> x5; // OK

— end example]

When the name of a member template specialization appears after . or -> in a postfiz-expression, or after
a nested-name-specifier in a qualified-id, and the postfiz-expression or qualified-id explicitly depends on a
template-parameter (14.6.2) but does not refer to a member of the current instantiation (14.6.2.1), the
member template name must be prefixed by the keyword template. Otherwise the name is assumed to
name a non-template. [Example:

struct X {
template<std::size_t> X* alloc();
template<std::size_t> static X* adjust();

};
template<class T> void f£(T* p) {
T* pl = p->alloc<200>(); // ill-formed: < means less than
T* p2 = p->template alloc<200>(); // OK: < starts template argument list
T::adjust<100>Q); // ill-formed: < means less than
T::template adjust<100>(); // OK: < starts template argument list
}

— end example]

If a name prefixed by the keyword template is not the name of a template, the program is ill-formed.
[Note: the keyword template may not be applied to non-template members of class templates. — end
note] [Note: as is the case with the typename prefix, the template prefix is allowed in cases where it is not
strictly necessary; i.e., when the nested-name-specifier or the expression on the left of the -=> or . is not
dependent on a template-parameter, or the use does not appear in the scope of a template. — end note]

A simple-template-id that names a class template specialization is a class-name (Clause 9).

A template-id that names a template alias specialization is a type-name.

14.3 Template arguments [temp.arg]

There are three forms of template-argument, corresponding to the three forms of template-parameter: type,
non-type and template. The type and form of each template-argument specified in a template-id shall
match the type and form specified for the corresponding parameter declared by the template in its template-
parameter-list. When the parameter declared by the template is a template parameter pack (14.5.3), it will
correspond to zero or more template-arguments. [Example:

template<class T> class Array {
T*x v;
int sz;
public:
explicit Array(int);
T& operator[] (int);
T& elem(int i) { return v[il; }
};

Array<int> v1(20);

typedef std::complex<double> dcomplex; // std::complex is a standard
// library template

Array<dcomplex> v2(30);

§ 14.3 320

©ISO/IEC N3092

Array<dcomplex> v3(40);

void bar() {

v1[3] = 7;

v2[3] = v3.elem(4) = dcomplex(7,8);
}

— end example]

In a template-argument, an ambiguity between a type-id and an expression is resolved to a type-id, regardless

of the form of the corresponding template-parameter.*>” | Example:
template<class T> void f();
template<int I> void fQ);
void g() {
£<int O)>Q; // int () is a type-id: call the first £()
}

— end example]

The name of a template-argument shall be accessible at the point where it is used as a template-argument.
[Note: if the name of the template-argument is accessible at the point where it is used as a template-
argument, there is no further access restriction in the resulting instantiation where the corresponding

template-parameter name is used. — end note| [Example:
template<class T> class X {
static T t;
};
class Y {
private:
struct S { /% ... x/ };
X<S> x; // OK: S is accessible
// X<Y::S> has a static member of type Y::8
// OK: even though Y::S is private
};
X<Y::8> y; // error: S not accessible

—end example] For a template-argument that is a class type or a class template, the template definition
has no special access rights to the members of the template-argument. | Example:

template <template <class TT> class T> class A {
typename T<int>::S s;

};

template <class U> class B {
private:

struct S { /fx .../ };

};

A b; // ill-formed: A has no access to B::S

137) There is no such ambiguity in a default template-argument because the form of the template-parameter determines the
allowable forms of the template-argument.

§14.3 321

©ISO/IEC N3092

— end example]

When template argument packs or default template-arguments are used, a template-argument list can be
empty. In that case the empty <> brackets shall still be used as the template-argument-list. [Example:

template<class T = char> class String;

String<>* p; // OK: String<char>
String* q; // syntax error
template<class ... Elements> class Tuple;

Tuple<>* t; // OK: Elements is empty
Tuple* u; // syntax error

— end example]

An explicit destructor call (12.4) for an object that has a type that is a class template specialization may
explicitly specify the template-arguments. | Example:

template<class T> struct A {

“A0;
};
void f(A<int>* p, A<int>* q) {
p->A<int>::"AQ); // OK: destructor call
g->A<int>::"A<int>(); // OK: destructor call
}

— end example]

If the use of a template-argument gives rise to an ill-formed construct in the instantiation of a template
specialization, the program is ill-formed.

When the template in a template-id is an overloaded function template, both non-template functions in the
overload set and function templates in the overload set for which the template-arguments do not match the
template-parameters are ignored. If none of the function templates have matching template-parameters, the
program is ill-formed.

A template-argument followed by an ellipsis is a pack expansion (14.5.3).

14.3.1 Template type arguments [temp.arg.type]

A template-argument for a template-parameter which is a type shall be a type-id.

[Example:

template <class T> class X { };
template <class T> void £(T t) { }
struct { } unnamed_obj;

void f£() {
struct A { };
enum { el };
typedef struct { } B;

B b;

X<A> x1; // OK
X<A*> x2; // OK
X x3; // OK
flel); // OK
f(unnamed_obj); // OK
£(b); // OK

§14.3.1 322

©ISO/IEC N3092

— end example] [Note: a template type argument may be an incomplete type (3.9). — end note]

3 If a declaration acquires a function type through a type dependent on a template-parameter and this causes a
declaration that does not use the syntactic form of a function declarator to have function type, the program
is ill-formed. [Ezample:

template<class T> struct A {
static T t;
}
typedef int function();
A<function> a; // ill-formed: would declare A<function>::t
// as a static member function

— end example]

14.3.2 Template non-type arguments [temp.arg.nontype]

1 A template-argument for a non-type, non-template template-parameter shall be one of:

— an integral constant expression (including a constant expression of literal class type that can be used
as an integral constant expression as described in 5.19); or

— the name of a non-type template-parameter; or

— the address of an object or function with external linkage, including function templates and function
template-ids but excluding non-static class members, expressed as & id-expression where the & is
optional if the name refers to a function or array, or if the corresponding template-parameter is a
reference; or

— a constant expression that evaluates to a null pointer value (4.10); or
— a constant expression that evaluates to a null member pointer value (4.11); or
— a pointer to member expressed as described in 5.3.1.

2 [Note: A string literal (2.14.5) does not satisfy the requirements of any of these categories and thus is not
an acceptable template-argument. | Example:

template<class T, char* p> class X {
X0;
X(const char* q) { /x .../}

};

X<int, "Studebaker"> x1; // error: string literal as template-argument

char p[] = "Vivisectionist";
X<int,p> x2; // OK

— end example] — end note]

3 [Note: Addresses of array elements and names or addresses of non-static class members are not acceptable
template-arguments. [Example:

template<int* p> class X { };

int a[10];
struct S { int m; static int s; } s;

X<&al[2]> x3; // error: address of array element

§ 14.3.2 323

©ISO/IEC N3092

X<&s.m> x4; // error: address of non-static member
X<&s.s> x5; // error: &S::s must be used
X<&S::s> x6; // OK: address of static member

— end example] — end note]

[Note: Temporaries, unnamed lvalues, and named lvalues that do not have external linkage are not accept-
able template-arguments when the corresponding template-parameter has reference type. | Ezample:

template<const int& CRI> struct B { /x ... %/ };
B<1> b2; // error: temporary would be required for template argument

int ¢ = 1;

B<c> bi; // OK

— end example] — end note]

The following conversions are performed on each expression used as a non-type template-argument. If a
non-type template-argument cannot be converted to the type of the corresponding template-parameter then
the program is ill-formed.

— for a non-type template-parameter of integral or enumeration type, integral promotions (4.5) and
integral conversions (4.7) are applied.

— for a non-type template-parameter of type pointer to object, qualification conversions (4.4) and the
array-to-pointer conversion (4.2) are applied; if the template-argument is of type std: :nullptr_t, the
null pointer conversion (4.10) is applied. [Note: In particular, neither the null pointer conversion for
a zero-valued integral constant expression (4.10) nor the derived-to-base conversion (4.10) are applied.
Although 0 is a valid template-argument for a non-type template-parameter of integral type, it is not
a valid template-argument for a non-type template-parameter of pointer type. However, both (int*)0
and nullptr are valid template-arguments for a non-type template-parameter of type “pointer to int.”
— end note

— For a non-type template-parameter of type reference to object, no conversions apply. The type referred
to by the reference may be more cv-qualified than the (otherwise identical) type of the template-
argument. The template-parameter is bound directly to the template-argument, which shall be an
lvalue.

— For a non-type template-parameter of type pointer to function, the function-to-pointer conversion (4.3)
is applied; if the template-argument is of type std: :nullptr_t, the null pointer conversion (4.10) is
applied. If the template-argument represents a set of overloaded functions (or a pointer to such), the
matching function is selected from the set (13.4).

— For a non-type template-parameter of type reference to function, no conversions apply. If the template-
argument represents a set of overloaded functions, the matching function is selected from the set (13.4).

— For a non-type template-parameter of type pointer to member function, if the template-argument is of
type std: :nullptr_t, the null member pointer conversion (4.11) is applied; otherwise, no conversions
apply. If the template-argument represents a set of overloaded member functions, the matching member
function is selected from the set (13.4).

— For a non-type template-parameter of type pointer to data member, qualification conversions (4.4) are
applied; if the template-argument is of type std: :nullptr_t, the null member pointer conversion (4.11)
is applied.

[Ezample:

§ 14.3.2 324

©ISO/IEC N3092

template<const int* pci> struct X { /x ... %/ };
int ail10];
X<ai> xi; // array to pointer and qualification conversions

struct Y { /fx ... %/ };

template<const Y& b> struct Z { /x ... x/ };

Yy;

Z<y> z; // mo conversion, but note extra cv-qualification

template<int (&pa) [5]> struct W { /* .../ };
int b[5];
W w; // mo conversion

void f(char);
void f(int);

template<void (*pf)(int)> struct A { /x ... %/ };

A&E> a; // selects £ (int)

— end example]

14.3.3 Template template arguments [temp.arg.template]

A template-argument for a template template-parameter shall be the name of a class template or a template
alias, expressed as id-expression. When the template-argument names a class template, only primary class
templates are considered when matching the template template argument with the corresponding parameter;
partial specializations are not considered even if their parameter lists match that of the template template
parameter.

Any partial specializations (14.5.5) associated with the primary class template are considered when a spe-
cialization based on the template template-parameter is instantiated. If a specialization is not visible at the
point of instantiation, and it would have been selected had it been visible, the program is ill-formed; no
diagnostic is required. [Ezample:

template<class T> class A { // primary template
int x;

};

template<class T> class A<T*> { // partial specialization
long x;

};

template<template<class U> class V> class C {
V<int> y;
V<int*> z;

};

C<A> c; // V<int> within C<A> uses the primary template,

// so c.y.x has type int
// V<int*> within C<A> uses the partial specialization,
// so c.z.x has type long

— end example]

[Ezample:

template<class T> class A { /x ... %/ };

§ 14.3.3 325

©ISO/IEC

template<class T, class U = T> class B { /x ... %/ };
template <class ... Types> class C { /x ... x/ };

template<template<class> class P> class X { /x ... %/ };
template<template<class ...> class Q> class Y { /x ... x/ };

X<A> xa;
X xb;
X<C> xc;

Y<A> ya;
Y yb;
Y<C> yc;

// OK

N3092

// ill-formed: default arguments for the parameters of a template argument are ignored
// ill-formed: a template parameter pack does not match a template parameter

// OK
// OK
// OK

— end example]

3 A template-argument matches a template template-parameter (call it P) when each of the template parameters
in the template-parameter-list of the template-argument’s corresponding class template or template alias (call
it A) matches the corresponding template parameter in the template-parameter-list of P. When P’s template-
parameter-list contains a template parameter pack (14.5.3), the template parameter pack will match zero
or more template parameters or template parameter packs in the template-parameter-list of A with the
same type and form as the template parameter pack in P (ignoring whether those template parameters are
template parameter packs) [Ezample:

template

template

<class T> struct eval;

<template <class, class...> class TT, class T1, class... Rest>

struct eval<TT<T1, Rest...>> { };

template <class T1> struct A;

template <class T1, class T2> struct B;

template <int N> struct C;

template <class T1, int N> struct D;

template <class T1, class T2, int N = 17> struct E;

eval<A<int>> el; // OK: matches partial specialization of eval
eval<B<int, float>> eB; // OK: matches partial specialization of eval
eval<C<17>> eC; // error: C does not match TT in partial specialization
eval<D<int, 17>> eD; // error: D does not match TT in partial specialization
eval<E<int, float>> eE; // error: E does not match TT in partial specialization

— end example|

14.4 Type equivalence

1 Two template-ids refer to the same class or function if

[temp.type]

— their template-names, operator-function-ids, or literal-operator-ids refer to the same template and

— their corresponding type template-arguments are the same type and

— their corresponding non-type template arguments of integral or enumeration type have identical values

and

— their corresponding non-type template-arguments of pointer type refer to the same external object or
function or are both the null pointer value and

§ 14.4

326

©ISO/IEC N3092

— their corresponding non-type template-arguments of pointer-to-member type refer to the same class
member or are both the null member pointer value and

— their corresponding non-type template-arguments of reference type refer to the same external object
or function and

— their corresponding template template-arguments refer to the same template.
[Example:

template<class E, int size> class buffer { /* ... x/ };
buffer<char,2*x512> x;
buffer<char,1024> y;

declares x and y to be of the same type, and

template<class T, void(xerr_fct) (0> class list { /* ... %/ };
list<int,&error_handlerl> x1;
list<int,&error_handler2> x2;
list<int,&error_handler2> x3;
list<char,&error_handler2> x4;

declares x2 and x3 to be of the same type. Their type differs from the types of x1 and x4.

template<template<class> class TT> struct X { };
template<class> struct Y { };

template<class T> using Z = Y<T>;

X<Y> y;

X<Z> z;

declares y and z to be of the same type. — end ezample]

14.5 Template declarations [temp.decls]
A template-id, that is, the template-name followed by a template-argument-list shall not be specified in the
declaration of a primary template declaration. [Ezample:

template<class T1, class T2, int I> class A<T1, T2, I> { }; // error

template<class T1, int I> void sort<T1, I>(T1 datalIl); // error
—end example] [Note: however, this syntax is allowed in class template partial specializations (14.5.5).
— end note]

For purposes of name lookup and instantiation, default arguments of function templates and default argu-
ments of member functions of class templates are considered definitions; each default argument is a separate
definition which is unrelated to the function template definition or to any other default arguments.

Because an alias-declaration cannot declare a template-id, it is not possible to partially or explicitly specialize
a template alias.

14.5.1 Class templates [temp.class]

A class template defines the layout and operations for an unbounded set of related types. [Ezample: a single
class template List might provide a common definition for list of int, list of float, and list of pointers to
Shapes. — end example]

[Example: An array class template might be declared like this:

§ 14.5.1 327

©ISO/IEC N3092

template<class T> class Array {
T*x v;
int sz;
public:
explicit Array(int);
T& operator[](int);
T& elem(int i) { return v[il; }

};
The prefix template <class T> specifies that a template is being declared and that a type-name T will be
used in the declaration. In other words, Array is a parameterized type with T as its parameter. — end
example]

When a member function, a member class, a static data member or a member template of a class template
is defined outside of the class template definition, the member definition is defined as a template definition
in which the template-parameters are those of the class template. The names of the template parameters
used in the definition of the member may be different from the template parameter names used in the class
template definition. The template argument list following the class template name in the member definition
shall name the parameters in the same order as the one used in the template parameter list of the member.
Each template parameter pack shall be expanded with an ellipsis in the template argument list. [Example:

template<class T1, class T2> struct A {
void f1();
void £20);
};

template<class T2, class T1> void A<T2,T1>::f1() { } // OK
template<class T2, class T1> void A<T1,T2>::f2() { } // error

template<class ... Types> struct B {
void £3();
void £4();
};
template<class ... Types> void B<Types ...>::£3() { } // OK
template<class ... Types> void B<Types>::f4() { } // error

— end example]

In a redeclaration, partial specialization, explicit specialization or explicit instantiation of a class template,
the class-key shall agree in kind with the original class template declaration (7.1.6.3).

14.5.1.1 Member functions of class templates [temp.mem.func]

A member function of a class template may be defined outside of the class template definition in which it is
declared. [Ezample:

template<class T> class Array {
T*x v;
int sz;
public:
explicit Array(int);
T& operator[] (int);
T& elem(int i) { return v[il; }
};

§14.5.1.1 328

©ISO/IEC N3092

declares three function templates. The subscript function might be defined like this:

template<class T> T& Array<T>::operator[](int i) {
if (i<0 || sz<=i) error("Array: range error");

return v[i];

}

— end example]

The template-arguments for a member function of a class template are determined by the template-arguments
of the type of the object for which the member function is called. [Ezample: the template-argument for
Array<T> :: operator [] () will be determined by the Array to which the subscripting operation is applied.

Array<int> v1(20);
Array<dcomplex> v2(30);

vi[3] = 7; // Array<int>::operator[] ()
v2[3] = dcomplex(7,8); // Array<dcomplex>::operator[] ()

— end example|
[temp.mem.class]

14.5.1.2 Member classes of class templates
A class member of a class template may be defined outside the class template definition in which it is declared.
[Note: the class member must be defined before its first use that requires an instantiation (14.7.1). For

example,

template<class T> struct A {
class B;

};
A<int>::B* bl; // OK: requires A to be defined but not A::B

template<class T> class A<T>::B { };
A<int>::B b2; // OK: requires A::B to be defined

— end note

14.5.1.3 Static data members of class templates [temp.static]

A definition for a static data member may be provided in a namespace scope enclosing the definition of the

static member’s class template. [Ezample:

template<class T> class X {
static T s;

+;

template<class T> T X<T>::s = O;

— end example |
An explicit specialization of a static data member declared as an array of unknown bound can have a different

bound from its definition, if any. [Ezample:

template <class T> struct A {
static int i[];
};
template <class T> int A<T>::i[4]; // 4 elements
template <> int A<int>::i[] = { 1 }; // OK: 1 element

§14.5.1.3 329

©ISO/IEC N3092

— end example]

14.5.2 Member templates [temp.mem)]
A template can be declared within a class or class template; such a template is called a member template. A
member template can be defined within or outside its class definition or class template definition. A member
template of a class template that is defined outside of its class template definition shall be specified with
the template-parameters of the class template followed by the template-parameters of the member template.

[Ezample:

template<class T> struct string {
template<class T2> int compare(const T2&);
template<class T2> string(const string<T2>& s) { /x ... %/}

};

template<class T> template<class T2> int string<T>::compare(const T2& s) {
}

— end example|

A local class shall not have member templates. Access control rules (Clause 11) apply to member template
names. A destructor shall not be a member template. A normal (non-template) member function with a
given name and type and a member function template of the same name, which could be used to generate
a specialization of the same type, can both be declared in a class. When both exist, a use of that name and
type refers to the non-template member unless an explicit template argument list is supplied. [Ezample:

template <class T> struct A {
void f(int);
template <class T2> void f(T2);
};
// non-template member

template <> void A<int>::f(int) { }
// template member

template <> template <> void A<int>::f<>(int) { }

int main() {
A<char> ac;

ac.f(1); // non-template
ac.f(’c’); // template
ac.f<>(1); // template

}

— end example |

3 A member function template shall not be virtual. [Example:

template <class T> struct AA {
template <class C> virtual void g(C); // error
virtual void £(); // OK

};

— end example]

4 A specialization of a member function template does not override a virtual function from a base class.

[Example:

class B {
virtual void f(int);

§ 14.5.2 330

©ISO/IEC N3092

};

class D : public B {
template <class T> void £(T); // does not override B: :f(int)
void f(int i) { f<>(i); } // overriding function that calls
// the template instantiation
};

— end example]

5 A specialization of a conversion function template is referenced in the same way as a non-template conversion

2

function that converts to the same type. [Ezample:

struct A {
template <class T> operator Tx();
};
template <class T> A::operator T*(){ return 0; }
template <> A::operator char*(){ return 0; } // specialization
template A::operator void*(); // explicit instantiation

int main() {

A a;
int *ip;
ip = a.operator int*(); // explicit call to template operator

// A::operator int*()

—end example] [Note: because the explicit template argument list follows the function template name,
and because conversion member function templates and constructor member function templates are called
without using a function name, there is no way to provide an explicit template argument list for these
function templates. — end note]

A specialization of a conversion function template is not found by name lookup. Instead, any conversion
function templates visible in the context of the use are considered. For each such operator, if argument
deduction succeeds (14.8.2.3), the resulting specialization is used as if found by name lookup.

A using-declaration in a derived class cannot refer to a specialization of a conversion function template in a
base class.

Overload resolution (13.3.3.2) and partial ordering (14.5.6.2) are used to select the best conversion function
among multiple specializations of conversion function templates and/or non-template conversion functions.

14.5.3 Variadic templates [temp.variadic]

A template parameter pack is a template parameter that accepts zero or more template arguments. [Ezample:

template<class ... Types> struct Tuple { };

Tuple<> t0; // Types contains no arguments

Tuple<int> t1; // Types contains one argument: int
Tuple<int, float> t2; // Types contains two arguments: int and float
Tuple<0> eror; // error: 0 is not a type

— end example]

A function parameter pack is a function parameter that accepts zero or more function arguments. | Example:

§ 14.5.3 331

©ISO/IEC N3092

template<class ... Types> void f(Types ... args);

£0; // OK: args contains no arguments

£(1); // OK: args contains one argument: int

£(2, 1.0); // OK: args contains two arguments: int and double

— end example|
3 A parameter pack is either a template parameter pack or a function parameter pack.

4 A pack expansion is a sequence of tokens that names one or more parameter packs, followed by an ellipsis.
The sequence of tokens is called the pattern of the expansion; its syntax depends on the context in which
the expansion occurs. Pack expansions can occur in the following contexts:

— In an indtializer-list (8.5); the pattern is an initializer-clause.

— In a base-specifier-list (10); the pattern is a base-specifier.

— In a mem-initializer-list (12.6.2); the pattern is a mem-initializer.

— In a template-argument-list (14.3); the pattern is a template-argument.
— In a dynamic-exception-specification (15.4); the pattern is a type-id.
— In an attribute-list (7.6.1); the pattern is an attribute.

— In a capture-list (5.1.2); the pattern is a capture.

[Example:
template<class ... Types> void f(Types ... rest);
template<class ... Types> void g(Types ... rest) {
f(&rest ...); // “arest ...” is a pack expansion; “&rest” is its pattern
}

— end example|

5 A parameter pack whose name appears within the pattern of a pack expansion is expanded by that pack
expansion. An appearance of the name of a parameter pack is only expanded by the innermost enclosing
pack expansion. The pattern of a pack expansion shall name one or more parameter packs that are not
expanded by a nested pack expansion. All of the parameter packs expanded by a pack expansion shall have
the same number of arguments specified. An appearance of a name of a parameter pack that is not expanded
is ill-formed. [Fzample:

template<typename...> struct Tuple {};
template<typename T1, typename T2> struct Pair {};

template<class ... Argsi> struct zip {
template<class ... Args2> struct with {
typedef Tuple<Pair<Argsl, Args2> ... > type;
I
};

typedef zip<short, int>::with<unsigned short, unsigned>::type T1;
// T1 is Tuple<Pair<short, unsigned short>, Pair<int, unsigned>>
typedef zip<short>::with<unsigned short, unsigned>::type T2;
// error: different number of arguments specified for Argsl and Args2

template<class ... Args> void g(Args ... args) {

§ 14.5.3 332

©ISO/IEC N3092

f(const_cast<const Args*>(&args)...); // OK: “Args” and “args” are expanded

£f(5 ...); // error: pattern does not contain any parameter packs

f (args); // error: parameter pack “args” is not expanded

f(h(args ...) + args ...); // OK: first “args” expanded within h, second “args” expanded
within £

}

— end example]

6 The instantiation of an expansion produces a list E; ®Es @ ... ®Ey, where N is the number of elements in the
pack expansion parameters and & is the syntactically-appropriate separator for the list. Each E; is generated
by instantiating the pattern and replacing each pack expansion parameter with its ith element. All of the
E; become elements in the enclosing list. [Note: The variety of list varies with the context: expression-list,
base-specifier-list, template-argument-list, etc. — end note]

14.5.4 Friends [temp.friend]

1 A friend of a class or class template can be a function template or class template, a specialization of a
function template or class template, or an ordinary (non-template) function or class. For a friend function
declaration that is not a template declaration:

— if the name of the friend is a qualified or unqualified template-id, the friend declaration refers to a
specialization of a function template, otherwise

— if the name of the friend is a qualified-id and a matching non-template function is found in the specified
class or namespace, the friend declaration refers to that function, otherwise,

— if the name of the friend is a qualified-id and a matching specialization of a function template is found in
the specified class or namespace, the friend declaration refers to that function template specialization,
otherwise,

— the name shall be an unqualified-id that declares (or redeclares) an ordinary (non-template) function.

[Example:

template<class T> class task;
template<class T> task<T>* preempt (task<T>*);

template<class T> class task {
friend void next_time();
friend void process(task<T>*);
friend task<T>* preempt<T>(task<T>*);
template<class C> friend int func(C);

friend class task<int>;
template<class P> friend class frd;

};

Here, each specialization of the task class template has the function next_time as a friend; because process
does not have explicit template-arguments, each specialization of the task class template has an appropriately
typed function process as a friend, and this friend is not a function template specialization; because the
friend preempt has an explicit template-argument <T>, each specialization of the task class template has
the appropriate specialization of the function template preempt as a friend; and each specialization of
the task class template has all specializations of the function template func as friends. Similarly, each
specialization of the task class template has the class template specialization task<int> as a friend, and
has all specializations of the class template frd as friends. — end ezample]

§ 14.5.4 333

©ISO/IEC N3092

A friend template may be declared within a class or class template. A friend function template may be
defined within a class or class template, but a friend class template may not be defined in a class or class
template. In these cases, all specializations of the friend class or friend function template are friends of the
class or class template granting friendship. [Ezample:

class A {
template<class T> friend class B; // OK
template<class T> friend void f(T){ /* ... =*/ } //OK
};

— end example]

A template friend declaration specifies that all specializations of that template, whether they are implicitly
instantiated (14.7.1), partially specialized (14.5.5) or explicitly specialized (14.7.3), are friends of the class
containing the template friend declaration. [Ezample:

class X {
template<class T> friend struct A;
class Y { };
};
template<class T> struct A { X::Y ab; }; // OK
template<class T> struct A<T*> { X::Y ab; }; // OK

— end example]

When a function is defined in a friend function declaration in a class template, the function is instantiated
when the function is used. The same restrictions on multiple declarations and definitions that apply to
non-template function declarations and definitions also apply to these implicit definitions.

A member of a class template may be declared to be a friend of a non-template class. In this case, the
corresponding member of every specialization of the class template is a friend of the class granting friendship.
For explicit specializations the corresponding member is the member (if any) that has the same name, kind
(type, function, class template, or function template), template parameters, and signature as the member
of the class template instantiation that would otherwise have been generated. [Example:

template<class T> struct A {
struct B { };
void £();
struct D {
void g();
};
};
template<> struct A<int> {
struct B { };

int £Q);
struct D {
void g();
3
};
class C {
template<class T> friend struct A<T>::B; // grants friendship to A<int>::B even though
// it is not a specialization of A<T>::B
template<class T> friend void A<T>::f(); // does not grant friendship to A<int>::£()

// because its return type does not match

§ 14.5.4 334

©ISO/IEC N3092

template<class T> friend void A<T>::D::g(); // does not grant friendship to A<int>::D::g()
// because A<int>::D is not a specialization of A<T>::D

};

— end example]

[Note: a friend declaration may first declare a member of an enclosing namespace scope (14.6.5). —end
note]

A friend template shall not be declared in a local class.
Friend declarations shall not declare partial specializations. [Example:

template<class T> class A { };
class X {
template<class T> friend class A<T*>; // error

};

— end example]

When a friend declaration refers to a specialization of a function template, the function parameter declara-
tions shall not include default arguments, nor shall the inline specifier be used in such a declaration.

14.5.5 Class template partial specializations [temp.class.spec]

A primary class template declaration is one in which the class template name is an identifier. A template
declaration in which the class template name is a simple-template-id is a partial specialization of the class
template named in the simple-template-id. A partial specialization of a class template provides an alternative
definition of the template that is used instead of the primary definition when the arguments in a specialization
match those given in the partial specialization (14.5.5.1). The primary template shall be declared before
any specializations of that template. A partial specialization shall be declared before the first use of a class
template specialization that would make use of the partial specialization as the result of an implicit or
explicit instantiation in every translation unit in which such a use occurs; no diagnostic is required.

Each class template partial specialization is a distinct template and definitions shall be provided for the
members of a template partial specialization (14.5.5.3).

[Example:
template<class T1, class T2, int I> class A {3} /) #1
template<class T, int I> class A<T, T, I> { }; /) #2
template<class T1l, class T2, int I> class A<T1x, T2, I> { }; /) #3
template<class T> class A<int, T*x, 5> { }; // #4
template<class T1, class T2, int I> class A<T1, T2x, I> { }; /) #5

The first declaration declares the primary (unspecialized) class template. The second and subsequent dec-
larations declare partial specializations of the primary template. — end example]

The template parameters are specified in the angle bracket enclosed list that immediately follows the keyword
template. For partial specializations, the template argument list is explicitly written immediately following
the class template name. For primary templates, this list is implicitly described by the template parameter
list. Specifically, the order of the template arguments is the sequence in which they appear in the template
parameter list. [Ezample: the template argument list for the primary template in the example above is <T1,
T2, I>. —end example] [Note: the template argument list shall not be specified in the primary template
declaration. For example,

template<class T1, class T2, int I> class A<T1, T2, I> { }; // error

§ 14.5.5 335

©ISO/IEC N3092

— end note

A class template partial specialization may be declared or redeclared in any namespace scope in which its
definition may be defined (14.5.1 and 14.5.2). [Example:

template<class T> struct A {
struct C {
template<class T2> struct B { };
};
};

// partial specialization of A<T>::C::B<T2>
template<class T> template<class T2>
struct A<T>::C::B<T2x> { };

A<short>::C::B<int*> absip; // uses partial specialization

— end example|

Partial specialization declarations themselves are not found by name lookup. Rather, when the primary
template name is used, any previously-declared partial specializations of the primary template are also
considered. One consequence is that a using-declaration which refers to a class template does not restrict
the set of partial specializations which may be found through the using-declaration. | Example:

namespace N {
template<class T1, class T2> class A { }; // primary template

}
using N::A; // refers to the primary template

namespace N {
template<class T> class A<T, T*> { }; // partial specialization

}

A<int,int*> a; // uses the partial specialization, which is found through
// the using declaration which refers to the primary template
— end example]

A non-type argument is non-specialized if it is the name of a non-type parameter. All other non-type
arguments are specialized.

Within the argument list of a class template partial specialization, the following restrictions apply:

— A partially specialized non-type argument expression shall not involve a template parameter of the
partial specialization except when the argument expression is a simple identifier. [Example:

template <int I, int J> struct A {};
template <int I> struct A<I+5, I*2> {}; // error

template <int I, int J> struct B {};
template <int I> struct B<I, I> {}; // OK

— end example]

— The type of a template parameter corresponding to a specialized non-type argument shall not be
dependent on a parameter of the specialization. [Ezample:

§ 14.5.5 336

©ISO/IEC N3092

template <class T, T t> struct C {};
template <class T> struct C<T, 1>; / error

template< int X, int (*array_ptr) [X] > class A {3};
int array[5];
template< int X > class A<X,&array> { }; // error

— end example]

— The argument list of the specialization shall not be identical to the implicit argument list of the primary
template.

— The template parameter list of a specialization shall not contain default template argument values.!3®

— An argument shall not contain an unexpanded parameter pack. If an argument is a pack expan-
sion (14.5.3), it shall be the last argument in the template argument list.

14.5.5.1 Matching of class template partial specializations [temp.class.spec.match)]

1 When a class template is used in a context that requires an instantiation of the class, it is necessary to
determine whether the instantiation is to be generated using the primary template or one of the partial
specializations. This is done by matching the template arguments of the class template specialization with
the template argument lists of the partial specializations.

— If exactly one matching specialization is found, the instantiation is generated from that specialization.

— If more than one matching specialization is found, the partial order rules (14.5.5.2) are used to deter-
mine whether one of the specializations is more specialized than the others. If none of the specializations
is more specialized than all of the other matching specializations, then the use of the class template is
ambiguous and the program is ill-formed.

— If no matches are found, the instantiation is generated from the primary template.

2 A partial specialization matches a given actual template argument list if the template arguments of the
partial specialization can be deduced from the actual template argument list (14.8.2). [Ezample:

A<int, int, 1> al; // uses #1

A<int, intx, 1> a2; // uses #2, T is int, I is 1

A<int, char*, 5> a3; // uses #4, T is char

A<int, char*, 1> a4; // uses #5, T1 is int, T2 is char, I is 1
A<int*, int*, 2> ab; // ambiguous: matches #8 and #5

— end example|

3 A non-type template argument can also be deduced from the value of an actual template argument of a
non-type parameter of the primary template. [Ezample: the declaration of a2 above. — end example|

4 In a type name that refers to a class template specialization, (e.g., A<int, int, 1>) the argument list shall
match the template parameter list of the primary template. The template arguments of a specialization are
deduced from the arguments of the primary template.

138) There is no way in which they could be used.

§ 14.5.5.1 337

©ISO/IEC N3092

14.5.5.2 Partial ordering of class template specializations [temp.class.order]

For two class template partial specializations, the first is at least as specialized as the second if, given the
following rewrite to two function templates, the first function template is at least as specialized as the second
according to the ordering rules for function templates (14.5.6.2):

— the first function template has the same template parameters as the first partial specialization and has
a single function parameter whose type is a class template specialization with the template arguments
of the first partial specialization, and

— the second function template has the same template parameters as the second partial specialization
and has a single function parameter whose type is a class template specialization with the template
arguments of the second partial specialization.

[Example:
template<int I, int J, class T> class X { };
template<int I, int J> class X<I, J, int> { }; // #1
template<int I> class X<I, I, int> { }; // #2
template<int I, int J> void f£(X<I, J, int>); // A
template<int I> void f(X<I, I, int>); // B

The partial specialization #2 is more specialized than the partial specialization #1 because the function
template B is more specialized than the function template A according to the ordering rules for function
templates. — end ezample]

14.5.5.3 Members of class template specializations [temp.class.spec.mfunc]

The template parameter list of a member of a class template partial specialization shall match the template
parameter list of the class template partial specialization. The template argument list of a member of a class
template partial specialization shall match the template argument list of the class template partial special-
ization. A class template specialization is a distinct template. The members of the class template partial
specialization are unrelated to the members of the primary template. Class template partial specialization
members that are used in a way that requires a definition shall be defined; the definitions of members of the
primary template are never used as definitions for members of a class template partial specialization. An
explicit specialization of a member of a class template partial specialization is declared in the same way as
an explicit specialization of the primary template. [Ezample:

// primary template

template<class T, int I> struct A {
void £();

};

template<class T, int I> void A<T,I>::f() { }

// class template partial specialization
template<class T> struct A<T,2> {
void £();
void g(O;
void h();
};

// member of class template partial specialization
template<class T> void A<T,2>::g() { }

§ 14.5.5.3 338

2

©ISO/IEC N3092

// explicit specialization
template<> void A<char,2>::h() { }

int main() {
A<char,0> a0;
A<char,2> a2;

a0.£(); // OK, uses definition of primary template’s member
a2.g0); // OK, uses definition of
// partial specialization’s member
a2.h(); // OK, uses definition of
// explicit specialization’s member
a2.f0); // ill-formed, no definition of £ for A<T,2>

// the primary template is not used here
}

— end example]

If a member template of a class template is partially specialized, the member template partial specializations
are member templates of the enclosing class template; if the enclosing class template is instantiated (14.7.1,
14.7.2), a declaration for every member template partial specialization is also instantiated as part of creating
the members of the class template specialization. If the primary member template is explicitly specialized
for a given (implicit) specialization of the enclosing class template, the partial specializations of the member
template are ignored for this specialization of the enclosing class template. If a partial specialization of the
member template is explicitly specialized for a given (implicit) specialization of the enclosing class template,
the primary member template and its other partial specializations are still considered for this specialization
of the enclosing class template. [Ezample:

template<class T> struct A {
template<class T2> struct B {}; // #1
template<class T2> struct B<T2%> {}; /) #2

}
template<> template<class T2> struct A<short>::B {}; // #3

A<char>::B<int*> abcip; // uses #2
A<short>::B<int*> absip; // uses #3
A<char>::B<int> abci; // uses #1

— end example|

14.5.6 Function templates [temp.fct]

A function template defines an unbounded set of related functions. [Ezample: a family of sort functions
might be declared like this:

template<class T> class Array { };
template<class T> void sort(Array<T>&);

— end example]

A function template can be overloaded with other function templates and with normal (non-template)
functions. A normal function is not related to a function template (i.e., it is never considered to be a special-

§ 14.5.6 339

©ISO/IEC N3092

ization), even if it has the same name and type as a potentially generated function template specialization.!3?

14.5.6.1 Function template overloading [temp.over.link]

It is possible to overload function templates so that two different function template specializations have the
same type. | Example:

// filel.c // file2.c
template<class T> template<class T>
void £(T*); void £(T);
void g(int* p) { void h(int* p) {
£(p); // calls £<int>(int*) £(p); // calls £<int*>(int*)
} }

— end example]
Such specializations are distinct functions and do not violate the one definition rule (3.2).

The signature of a function template is defined in 1.3. The names of the template parameters are significant
only for establishing the relationship between the template parameters and the rest of the signature. [Note:
two distinct function templates may have identical function return types and function parameter lists, even
if overload resolution alone cannot distinguish them.

template<class T> void f();
template<int I> void £(); // OK: overloads the first template
// distinguishable with an explicit template argument list

— end note

When an expression that references a template parameter is used in the function parameter list or the return
type in the declaration of a function template, the expression that references the template parameter is part
of the signature of the function template. This is necessary to permit a declaration of a function template
in one translation unit to be linked with another declaration of the function template in another translation
unit and, conversely, to ensure that function templates that are intended to be distinct are not linked with
one another. [Example:

template <int I, int J> A<I+J> £(A<I>, AJ>); // #1
template <int K, int L> A<K+L> f(A<K>, A<L>); // same as #1
template <int I, int J> A<I-J> f£(A<I>, A<J>); // different from #1

— end example] [Note: Most expressions that use template parameters use non-type template parameters,
but it is possible for an expression to reference a type parameter. For example, a template type parameter
can be used in the sizeof operator. — end note|

Two expressions involving template parameters are considered equivalent if two function definitions con-
taining the expressions would satisfy the one definition rule (3.2), except that the tokens used to name the
template parameters may differ as long as a token used to name a template parameter in one expression is
replaced by another token that names the same template parameter in the other expression. [Ezample:

template <int I, int J> void f(A<I+J>); /) #1
template <int K, int L> void f(A<K+L>); // same as #1

139) That is, declarations of non-template functions do not merely guide overload resolution of function template specializations
with the same name. If such a non-template function is used in a program, it must be defined; it will not be implicitly instantiated
using the function template definition.

§ 14.5.6.1 340

©ISO/IEC N3092

— end example] Two expressions involving template parameters that are not equivalent are functionally
equivalent if, for any given set of template arguments, the evaluation of the expression results in the same
value.

Two function templates are equivalent if they are declared in the same scope, have the same name, have
identical template parameter lists, and have return types and parameter lists that are equivalent using the
rules described above to compare expressions involving template parameters. Two function templates are
functionally equivalent if they are equivalent except that one or more expressions that involve template
parameters in the return types and parameter lists are functionally equivalent using the rules described
above to compare expressions involving template parameters. If a program contains declarations of function
templates that are functionally equivalent but not equivalent, the program is ill-formed; no diagnostic is
required.

[Note: This rule guarantees that equivalent declarations will be linked with one another, while not requiring
implementations to use heroic efforts to guarantee that functionally equivalent declarations will be treated
as distinct. For example, the last two declarations are functionally equivalent and would cause a program
to be ill-formed:

// Guaranteed to be the same
template <int I> void f(A<I>, A<I+10>);
template <int I> void f(A<I>, A<I+10>);

// Guaranteed to be different
template <int I> void f(A<I>, A<I+10>);
template <int I> void f(A<I>, A<I+11>);

// Ill-formed, no diagnostic required
template <int I> void f(A<I>, A<I+10>);
template <int I> void f(A<I>, A<I+1+2+3+4>);

— end note

14.5.6.2 Partial ordering of function templates [temp.func.order]

If a function template is overloaded, the use of a function template specialization might be ambiguous
because template argument deduction (14.8.2) may associate the function template specialization with more
than one function template declaration. Partial ordering of overloaded function template declarations is
used in the following contexts to select the function template to which a function template specialization
refers:

— during overload resolution for a call to a function template specialization (13.3.3);
— when the address of a function template specialization is taken;

— when a placement operator delete that is a function template specialization is selected to match a
placement operator new (3.7.4.2, 5.3.4);

— when a friend function declaration (14.5.4), an explicit instantiation (14.7.2) or an explicit specializa-
tion (14.7.3) refers to a function template specialization.

Partial ordering selects which of two function templates is more specialized than the other by transforming
each template in turn (see next paragraph) and performing template argument deduction using the function
parameter types, or in the case of a conversion function the return type. The deduction process determines
whether one of the templates is more specialized than the other. If so, the more specialized template is the
one chosen by the partial ordering process.

§ 14.5.6.2 341

5

©ISO/IEC N3092

To produce the transformed template, for each type, non-type, or template template parameter (including
template parameter packs (14.5.3) thereof) synthesize a unique type, value, or class template respectively
and substitute it for each occurrence of that parameter in the function type of the template.

Using the transformed function template’s function parameter list, or in the case of a conversion function
its transformed return type, perform type deduction against the function parameter list (or return type) of
the other function. The mechanism for performing these deductions is given in 14.8.2.4.

[Example:

template<class T> struct A { AQ; };

template<class T> void f(T);
template<class T> void f(T*);
template<class T> void f(const T*);

template<class T> void g(T);
template<class T> void g(T&);

template<class T> void h(const T&);
template<class T> void h(A<T>&);

void m() {

const int *p;

£(p); // £(const T*) is more specialized than £(T) or f£(T*)

float x;

g(x); // Ambiguous: g(T) or g(T&)

A<int> z;

h(z); // overload resolution selects h(A<T>&)

const A<int> z2;

h(z2); // h(const T&) is called because h(A<T>&) is not callable
}

— end example]

The presence of unused ellipsis and default arguments has no effect on the partial ordering of function
templates. [Example:

template<class T> void £(T); /) #1
template<class T> void f(T*, int=1); /) #2
template<class T> void g(T); /) #3
template<class T> void g(T*, ...); /) #4

int main() {

int* ip;
f(ip); // calls #2
g(ip); // calls #4

}

— end example|

14.5.7 Template aliases [temp.alias]

A template-declaration in which the declaration is an alias-declaration (clause 7) declares the identifier to
be a template alias. A template alias is a name for a family of types. The name of the template alias is a
template-name.

§ 14.5.7 342

©ISO/IEC

N3092

When a template-id refers to the specialization of a template alias, it is equivalent to the associated type
obtained by substitution of its template-arguments for the template-parameters in the type-id of the template
alias. [Note: A template alias name is never deduced. — end note] [Ezample:

template<class T> struct Alloc { /% ... %/ };
template<class T> using Vec =
Vec<int> v; // same as vector<int, Alloc<int>> v;

template<class T>

void process(Vec<T>& v)

{ /x ... %/}

template<class T>

vector<T, Alloc<T>>;

void process(vector<T, Alloc<T>>& w)

{/x ... %/} // error: redefinition

template<template<class> class TT>

void f(TT<int>);

f(v); // error: Vec not deduced

template<template<class,class> class TT>

void g(TT<int, Alloc<int>>);

g(v); // OK: TT = vector

— end example|

14.6 Name resolution

[temp.res]

Three kinds of names can be used within a template definition:

— The name of the template itself, and names declared within the template itself.

— Names dependent on a template-parameter (14.6.2).

— Names from scopes which are visible within the template definition.

A name used in a template declaration or definition and that is dependent on a template-parameter is
assumed not to name a type unless the applicable name lookup finds a type name or the name is qualified
by the keyword typename. [Example:

// mo B declared here

class X;

template<class T> class Y {

class Z;

void £() {
X* al;
T*x a2;
Y* a3;
Z* a4;

typedef typename T:

TA* ab;
typename T::A* a6;
T::Ax a7;

§ 14.6

:A TA;

// forward declaration of member class

// declare pointer to X
// declare pointer to T
// declare pointer to Y<T>
// declare pointer to Z

// declare pointer to T’s A

// declare pointer to T’s A
// T::A is not a type name:

343

©ISO/IEC N3092

// multiply T::A by aT7; ill-formed,
// mo visible declaration of a7
B* a8; // B is not a type name:
// multiply B by a8; ill-formed,
// mo visible declarations of B and a8
}
};

— end example]

When a qualified-id is intended to refer to a type that is not a member of the current instantiation (14.6.2.1)
and its nested-name-specifier depends on a template-parameter (14.6.2), it shall be prefixed by the keyword
typename, forming a typename-specifier. If the qualified-id in a typename-specifier does not denote a type,
the program is ill-formed.

typename-specifier:
typename ::,, nested-name-specifier identifier
typename ::,,: mnested-name-specifier template,y,: simple-template-id

If a specialization of a template is instantiated for a set of template-arguments such that the qualified-id
prefixed by typename does not denote a type, the specialization is ill-formed. The usual qualified name
lookup (3.4.3) is used to find the qualified-id even in the presence of typename. [Ezample:

struct A {
struct X { };
int X;
};
struct B {
struct X { };
};
template<class T> void £(T t) {
typename T::X x;

}
void foo() {

A a;

B b;

£(b); // OK: T::X refers to B: :X

f(a); // error: T::X refers to the data member A::X not the struct A::X
}

— end example|

A qualified name used as the name in a mem-initializer-id, a base-specifier, or an elaborated-type-specifier is
implicitly assumed to name a type, without the use of the typename keyword. [Note: the typename keyword
is not permitted by the syntax of these constructs. — end note]

If, for a given set of template arguments, a specialization of a template is instantiated that refers to a
qualified-id that denotes a type, and the nested-name-specifier of the qualified-id depends on a template
parameter, the qualified-id shall either be prefixed by typename or shall be used in a context in which it
implicitly names a type as described above. [Ezample:

template <class T> void f(int i) {
T::x * i; // T::x must not be a type
}

struct Foo {
typedef int x;

§ 14.6 344

©ISO/IEC N3092

};

struct Bar {
static int const x = 5;

};
int main() {
f<Bar>(1); // OK
f<Foo>(1); // error: Foo::x is a type

}

— end example]

Within the definition of a class template or within the definition of a member of a class template, the keyword
typename is not required when referring to the unqualified name of a previously declared member of the
class template that declares a type. [Example:

template<class T> struct A {

typedef int B;

B b; // OK, no typename required
};

— end example]

Knowing which names are type names allows the syntax of every template definition to be checked. No
diagnostic shall be issued for a template definition for which a valid specialization can be generated. If
no valid specialization can be generated for a template definition, and that template is not instantiated,
the template definition is ill-formed, no diagnostic required. If a type used in a non-dependent name is
incomplete at the point at which a template is defined but is complete at the point at which an instantiation
is done, and if the completeness of that type affects whether or not the program is well-formed or affects
the semantics of the program, the program is ill-formed; no diagnostic is required. [Note: if a template
is instantiated, errors will be diagnosed according to the other rules in this Standard. Exactly when these
errors are diagnosed is a quality of implementation issue. — end note| [Example:

int j;

template<class T> class X {

void £(T t, int i, char* p) {

t = i; // diagnosed if X::f is instantiated
// and the assignment to t is an error
p = i; // may be diagnosed even if X::f is
// not instantiated
P =3 // may be diagnosed even if X::f is
// mot instantiated
}
void g(T t) {
+; // may be diagnosed even if X::g is
// not instantiated
}

};

— end example]

When looking for the declaration of a name used in a template definition, the usual lookup rules (3.4.1,
3.4.2) are used for non-dependent names. The lookup of names dependent on the template parameters is
postponed until the actual template argument is known (14.6.2). [Ezample:

§ 14.6 345

10

11

©ISO/IEC N3092

#include <iostream>
using namespace std;

template<class T> class Set {
T* p;
int cnt;
public:
Set();
Set<T>(const Set<T>&);
void printall() {
for (int i = 0; i<cnt; i++)
cout << p[i] << ’\n’;
}
};

in the example, i is the local variable i declared in printall, cnt is the member cnt declared in Set, and
cout is the standard output stream declared in iostream. However, not every declaration can be found this
way; the resolution of some names must be postponed until the actual template-arguments are known. For
example, even though the name operator<< is known within the definition of printall() and a declaration
of it can be found in <iostream>, the actual declaration of operator<< needed to print p[i] cannot be
known until it is known what type T is (14.6.2). — end example|]

If a name does not depend on a template-parameter (as defined in 14.6.2), a declaration (or set of declarations)
for that name shall be in scope at the point where the name appears in the template definition; the name is
bound to the declaration (or declarations) found at that point and this binding is not affected by declarations
that are visible at the point of instantiation. [Ezample:

void f(char);

template<class T> void g(T t) {

£(1); // f(char)
£(T(1)); // dependent
£(t); // dependent
dd++; // mot dependent
// error: declaration for dd not found
}
enum E { e };
void f(E);
double dd;
void h() {
g(e); // will cause one call of £(char) followed
// by two calls of £(E)
g’a’); // will cause three calls of £ (char)
}

— end example]

[Note: for purposes of name lookup, default arguments of function templates and default arguments of
member functions of class templates are considered definitions (14.5). — end note]

14.6.1 Locally declared names [temp.local]

Like normal (non-template) classes, class templates have an injected-class-name (Clause 9). The injected-

§ 14.6.1 346

©ISO/IEC N3092

class-name can be used with or without a template-argument-list. When it is used without a template-
argument-list, it is equivalent to the injected-class-name followed by the template-parameters of the class
template enclosed in <>. When it is used with a template-argument-list, it refers to the specified class
template specialization, which could be the current specialization or another specialization.

Within the scope of a class template specialization or partial specialization, when the injected-class-name
is not followed by a <, it is equivalent to the injected-class-name followed by the template-arguments of the
class template specialization or partial specialization enclosed in <>. [Ezample:

template<class T> class Y;
template<> class Y<int> {
Y* p; // meaning Y<int>
Y<char>* q; // meaning Y<char>
};

— end example]

The injected-class-name of a class template or class template specialization can be used either with or without
a template-argument-list wherever it is in scope. [Example:

template <class T> struct Base {

Basex p;
};
template <class T> struct Derived: public Base<T> {
typename Derived::Basex p; // meaning Derived: :Base<T>
};

— end example|

A lookup that finds an injected-class-name (10.2) can result in an ambiguity in certain cases (for example, if it
is found in more than one base class). If all of the injected-class-names that are found refer to specializations
of the same class template, and if the name is followed by a template-argument-list, the reference refers to
the class template itself and not a specialization thereof, and is not ambiguous. [Example:

template <class T> struct Base { };

template <class T> struct Derived: Base<int>, Base<char> {
typename Derived::Base b; // error: ambiguous
typename Derived::Base<double> d; // OK

};

— end example|

When the normal name of the template (i.e., the name from the enclosing scope, not the injected-class-name)
is used without a template-argument-list, it refers to the class template itself and not a specialization of the
template. [Example:

template <class T> class X {

X* p; // meaning X<T>

X<T>* p2;

X<int>* p3;

1:X*x p4d; // error: missing template argument list

// :X does not refer to the injected-class-name

};

— end example]

§ 14.6.1 347

©ISO/IEC N3092

6 A template-parameter shall not be redeclared within its scope (including nested scopes). A template-
parameter shall not have the same name as the template name. [Example:

template<class T, int i> class Y {

int T; // error: template-parameter redeclared
void £() {
char T; // error: template-parameter redeclared
}
3
template<class X> class X; // error: template-parameter redeclared

— end example]

7 In the definition of a member of a class template that appears outside of the class template definition, the
name of a member of this template hides the name of a template-parameter. | Example:

template<class T> struct A {
struct B { /fx .../ };

void £();
};
template<class B> void A::f() {

B b; // A’s B, not the template parameter
}

— end example]

8 In the definition of a member of a class template that appears outside of the namespace containing the
class template definition, the name of a template-parameter hides the name of a member of this namespace.
[Ezample:

namespace N {

class C { };
template<class T> class B {
void f(T);

};
}
template<class C> void N::B<C>::f(C) {

C b; // C is the template parameter, not N::C
}

— end example]

9 In the definition of a class template or in the definition of a member of such a template that appears outside
of the template definition, for each base class which does not depend on a template-parameter (14.6.2), if
the name of the base class or the name of a member of the base class is the same as the name of a template-
parameter, the base class name or member name hides the template-parameter name (3.3.10). [Ezample:

struct A {
struct B { /fx ... x/ };
int a;
int Y;

};

template<class B, class a> struct X : A {
B b; // A’s B

§ 14.6.1 348

©ISO/IEC N3092

a b; // error: A’s a isn’t a type name

};

— end example]

14.6.2 Dependent names [temp.dep]

Inside a template, some constructs have semantics which may differ from one instantiation to another. Such a
construct depends on the template parameters. In particular, types and expressions may depend on the type
and/or value of template parameters (as determined by the template arguments) and this determines the
context for name lookup for certain names. Expressions may be type-dependent (on the type of a template
parameter) or value-dependent (on the value of a non-type template parameter). In an expression of the
form:

postfiz-expression (expression-listop:)

where the postfiz-expression is an unqualified-id, the unqualified-id denotes a dependent name if and only
if any of the expressions in the expression-list is a type-dependent expression (14.6.2.2). If an operand of
an operator is a type-dependent expression, the operator also denotes a dependent name. Such names are
unbound and are looked up at the point of the template instantiation (14.6.4.1) in both the context of the
template definition and the context of the point of instantiation.

[Example:

template<class T> struct X : B<T> {
typename T::A* pa;
void f(B<T>* pb) {
static int i = B<T>::1i;
pb—>j++;
}
};

the base class name B<T>, the type name T::A, the names B<T>::i and pb->j explicitly depend on the
template-parameter. — end example |

In the definition of a class or class template, if a base class depends on a template-parameter, the base class
scope is not examined during unqualified name lookup either at the point of definition of the class template
or member or during an instantiation of the class template or member. [Example:

typedef double A;
template<class T> class B {
typedef int A;

} bl
template<class T> struct X : B<T> {
A a; // a has type double
};
The type name A in the definition of X<T> binds to the typedef name defined in the global namespace scope,
not to the typedef name defined in the base class B<T>. — end example] [Ezample:
struct A {
struct B { /fx ... x/ };
int a;
int Y;
};
int a;

§ 14.6.2 349

©ISO/IEC N3092

template<class T> struct Y : T {
struct B { /fx ... x/ };

B b; // The B defined in Y
void f(int i) { a = i; } // i:a
Y p; // Y<T>

};

Y<A> ya;

The members A: :B, A::a, and A: :Y of the template argument A do not affect the binding of names in Y<A>.
— end example]

14.6.2.1 Dependent types [temp.dep.type]

In the definition of a class template, a nested class of a class template, a member of a class template, or a
member of a nested class of a class template, a name refers to the current instantiation if it is

— the injected-class-name (9) of the class template or nested class,

— in the definition of a primary class template, the name of the class template followed by the template
argument list of the primary template (as described below) enclosed in <>,

— in the definition of a nested class of a class template, the name of the nested class referenced as a
member of the current instantiation, or

— in the definition of a partial specialization, the name of the class template followed by the template
argument list of the partial specialization enclosed in <>. If the nth template parameter is a parameter
pack, the nth template argument is a pack expansion (14.5.3) whose pattern is the name of the
parameter pack.

The template argument list of a primary template is a template argument list in which the nth template
argument has the value of the nth template parameter of the class template. If the nth template parameter
is a template parameter pack (14.5.3), the nth template argument is a pack expansion (14.5.3) whose pattern
is the name of the template parameter pack.

A template argument that is equivalent to a template parameter (i.e., has the same constant value or the
same type as the template parameter) can be used in place of that template parameter in a reference to
the current instantiation. In the case of a non-type template argument, the argument must have been given
the value of the template parameter and not an expression in which the template parameter appears as a
subexpression. | Ezample:

template <class T> class A {

Ax p1; // A is the current instantiation
A<T>* p2; // A<T> is the current instantiation
A<T*> p3; // A<T*> is not the current instantiation
11 A<T>* p4; // ::A<T> is the current instantiation
class B {
B* pi; // B is the current instantiation
A<T>::Bx p2; // A<T>::B is the current instantiation
typename A<T*>::Bx p3; // A<T*>::B is not the

// current instantiation
};
¥

template <class T> class A<T*> {
A<T*>* pl; // A<T*> is the current instantiation

§ 14.6.2.1 350

©ISO/IEC N3092

A<T>* p2; // A<T> is not the current instantiation
};
template <class T1, class T2, int I> struct B {
B<T1, T2, I>* bl; // refers to the current instantiation
B<T2, T1, I>* b2; // mot the current instantiation

typedef T1 my_T1;

static const int my_I = I;
static const int my_I2 = I+0;
static const int my_I3 = my_I;

B<my_T1, T2, my_I>* b3; // refers to the current instantiation
B<my_T1, T2, my_I2>* b4; // mot the current instantiation
B<my_T1, T2, my_I3>* bb; // refers to the current instantiation

};

— end example|
A name is a member of the current instantiation if it is

— An unqualified name that, when looked up, refers to a member of a class template. [Note: this can
only occur when looking up a name in a scope enclosed by the definition of a class template. — end
note |

— A qualified-id in which the nested-name-specifier refers to the current instantiation.
[Example:

template <class T> class A {
static const int i = 5;

int n1[il; // i refers to a member of the current instantiation

int n2[A::i]; // A::1 refers to a member of the current instantiation
int n3[A<T>::i]l; // A<T>::i refers to a member of the current instantiation
int £Q);

};

template <class T> int A<T>::f() {
return i; // i refers to a member of the current instantiation
}

— end example]

A name is a member of an unknown specialization if the name is a qualified-id in which the nested-name-
specifier names a dependent type that is not the current instantiation.

A type is dependent if it is
— a template parameter,
— a member of an unknown specialization,
— a nested class that is a member of the current instantiation,
— a cv-qualified type where the cv-unqualified type is dependent,
— a compound type constructed from any dependent type,

— an array type constructed from any dependent type or whose size is specified by a constant expression
that is value-dependent,

§ 14.6.2.1 351

©ISO/IEC N3092

— a simple-template-id in which either the template name is a template parameter or any of the template
arguments is a dependent type or an expression that is type-dependent or value-dependent, or

— denoted by decltype (expression), where expression is type-dependent (14.6.2.2).

7 [Note: because typedefs do not introduce new types, but instead simply refer to other types, a name that
refers to a typedef that is a member of the current instantiation is dependent only if the type referred to is
dependent. — end note]|

14.6.2.2 Type-dependent expressions [temp.dep.expr]

1 Except as described below, an expression is type-dependent if any subexpression is type-dependent.
2 this is type-dependent if the class type of the enclosing member function is dependent (14.6.2.1).
3 An id-expression is type-dependent if it contains
— an identifier associated by name lookup with one or more declarations declared with a dependent type,
— a template-id that is dependent,
— a conwversion-function-id that specifies a dependent type, or
— a nested-name-specifier or a qualified-id that names a member of an unknown specialization;

or if it names a static data member of the current instantiation that has type “array of unknown bound of
T” for some T (14.5.1.3). Expressions of the following forms are type-dependent only if the type specified by
the type-id, simple-type-specifier or new-type-id is dependent, even if any subexpression is type-dependent:

simple-type-specifier (expression-listop:)

tiopt New new-placement,p: new-type-id new-initializerop;
tiopt new new-placementop: (type-id) new-initializeryp;
dynamic_cast < type-id > (expression)

static_cast < type-id > (expression)

const_cast < type-id > (expression)
reinterpret_cast < type-id > (expression)

(type-id) cast-expression

4 Expressions of the following forms are never type-dependent (because the type of the expression cannot be
dependent):

literal

postfir-expression . pseudo-destructor-name
postfiz-expression => pseudo-destructor-name
sizeof unary-expression

sizeof (type-id)

sizeof ... (identifier)

alignof (type-id)

typeid (expression)

typeid (type-id)

tiopt delete cast-expression

tiopt delete [] cast-expression

throw assignment-expressionop:

noexcept (expression)

[Note: For the standard library macro offsetof, see 18.2. — end note]|

5 A class member access expression (5.2.5) is type-dependent if the type of the referenced member is dependent.
[Note: in an expression of the form x.y or xp->y the type of the expression is usually the type of the member

§ 14.6.2.2 352

©ISO/IEC N3092

y of the class of x (or the class pointed to by xp). However, if x or xp refers to a dependent type that is not
the current instantiation, the type of y is always dependent. If x or xp refers to a non-dependent type or

refers to the current instantiation, the type of y is the type of the class member access expression. — end
note]
14.6.2.3 Value-dependent expressions [temp.dep.constexpr]

Except as described below, a constant expression is value-dependent if any subexpression is value-dependent.
An identifier is value-dependent if it is:

— a name declared with a dependent type,

— the name of a non-type template parameter,

— a constant with literal type and is initialized with an expression that is value-dependent.

Expressions of the following form are value-dependent if the unary-expression or expression is type-dependent
or the type-id is dependent:

sizeof wunary-expression
sizeof (type-id)
alignof (type-id)
noexcept (expression)

[Note: For the standard library macro offsetof, see 18.2. — end note]|

Expressions of the following form are value-dependent if either the type-id or simple-type-specifier is depen-
dent or the expression or cast-expression is value-dependent:

simple-type-specifier (expression-listop:)
static_cast < type-id > (expression)
const_cast < type-id > (expression)
reinterpret_cast < type-id > (expression)
(type-id) cast-expression

noexcept (expression)

Expressions of the following form are value-dependent:

sizeof ... (identifier)

14.6.2.4 Dependent template arguments [temp.dep.temp]

A type template-argument is dependent if the type it specifies is dependent.
An integral non-type template-argument is dependent if the constant expression it specifies is value-dependent.

A non-integral non-type template-argument is dependent if its type is dependent or it has either of the
following forms

qualified-id
& qualified-id

and contains a nested-name-specifier which specifies a class-name that names a dependent type.

§ 14.6.2.4 353

©ISO/IEC N3092

A template template-argument is dependent if it names a template-parameter or is a qualified-id with a
nested-name-specifier which contains a class-name or a decltype-specifier that denotes a dependent type.

14.6.3 Non-dependent names [temp.nondep]

Non-dependent names used in a template definition are found using the usual name lookup and bound at
the point they are used. [Example:

void g(double);

void h();

template<class T> class Z {

public:
void £() {
g(1); // calls g(double)
ht+; // ill-formed: cannot increment function;
// this could be diagnosed either here or
// at the point of instantiation
}
};
void g(int); // not in scope at the point of the template

// definition, not considered for the call g(1)

— end example]

14.6.4 Dependent name resolution [temp.dep.res]

In resolving dependent names, names from the following sources are considered:
— Declarations that are visible at the point of definition of the template.

— Declarations from namespaces associated with the types of the function arguments both from the
instantiation context (14.6.4.1) and from the definition context.

14.6.4.1 Point of instantiation [temp.point]

For a function template specialization, a member function template specialization, or a specialization for a
member function or static data member of a class template, if the specialization is implicitly instantiated
because it is referenced from within another template specialization and the context from which it is ref-
erenced depends on a template parameter, the point of instantiation of the specialization is the point of
instantiation of the enclosing specialization. Otherwise, the point of instantiation for such a specialization
immediately follows the namespace scope declaration or definition that refers to the specialization.

If a function template or member function of a class template is called in a way which uses the definition of
a default argument of that function template or member function, the point of instantiation of the default
argument is the point of instantiation of the function template or member function specialization.

For a class template specialization, a class member template specialization, or a specialization for a class
member of a class template, if the specialization is implicitly instantiated because it is referenced from
within another template specialization, if the context from which the specialization is referenced depends
on a template parameter, and if the specialization is not instantiated previous to the instantiation of the
enclosing template, the point of instantiation is immediately before the point of instantiation of the enclosing
template. Otherwise, the point of instantiation for such a specialization immediately precedes the namespace
scope declaration or definition that refers to the specialization.

§ 14.6.4.1 354

©ISO/IEC N3092

If a virtual function is implicitly instantiated, its point of instantiation is immediately following the point of
instantiation of its enclosing class template specialization.

An explicit instantiation definition is an instantiation point for the specialization or specializations specified
by the explicit instantiation.

The instantiation context of an expression that depends on the template arguments is the set of declarations
with external linkage declared prior to the point of instantiation of the template specialization in the same
translation unit.

A specialization for a function template, a member function template, or of a member function or static
data member of a class template may have multiple points of instantiations within a translation unit.
A specialization for a class template has at most one point of instantiation within a translation unit. A
specialization for any template may have points of instantiation in multiple translation units. If two different
points of instantiation give a template specialization different meanings according to the one definition
rule (3.2), the program is ill-formed, no diagnostic required.

14.6.4.2 Candidate functions [temp.dep.candidate]

For a function call that depends on a template parameter, if the function name is an unqualified-id or if
the function is called using operator notation, the candidate functions are found using the usual lookup
rules (3.4.1, 3.4.2) except that:

— For the part of the lookup using unqualified name lookup (3.4.1), only function declarations from the
template definition context are found.

— For the part of the lookup using associated namespaces (3.4.2), only function declarations found in
either the template definition context or the template instantiation context are found.

If the call would be ill-formed or would find a better match had the lookup within the associated namespaces
considered all the function declarations with external linkage introduced in those namespaces in all transla-
tion units, not just considering those declarations found in the template definition and template instantiation
contexts, then the program has undefined behavior.

14.6.5 Friend names declared within a class template [temp.inject]

Friend classes or functions can be declared within a class template. When a template is instantiated, the
names of its friends are treated as if the specialization had been explicitly declared at its point of instantiation.

As with non-template classes, the names of namespace-scope friend functions of a class template specializa-
tion are not visible during an ordinary lookup unless explicitly declared at namespace scope (11.4). Such
names may be found under the rules for associated classes (3.4.2).14° [Ezample:

template<typename T> struct number {
number (int) ;
friend number gcd(number x, number y) { return 0; };

};
void g() {
number<double> a(3), b(4);
a = gcd(a,b); // finds gcd because number<double> is an
// associated class, making ged visible
// in its namespace (global scope)
b = gcd(3,4); // ill-formed; ged is not visible

140) Friend declarations do not introduce new names into any scope, either when the template is declared or when it is
instantiated.

§ 14.6.5 355

©ISO/IEC N3092

— end example]

14.7 Template instantiation and specialization [temp.spec]

1 The act of instantiating a function, a class, a member of a class template or a member template is referred
to as template instantiation.

2 A function instantiated from a function template is called an instantiated function. A class instantiated from
a class template is called an instantiated class. A member function, a member class, or a static data member
of a class template instantiated from the member definition of the class template is called, respectively, an
instantiated member function, member class or static data member. A member function instantiated from
a member function template is called an instantiated member function. A member class instantiated from
a member class template is called an instantiated member class.

3 An explicit specialization may be declared for a function template, a class template, a member of a class
template or a member template. An explicit specialization declaration is introduced by template<>. In
an explicit specialization declaration for a class template, a member of a class template or a class member
template, the name of the class that is explicitly specialized shall be a simple-template-id. In the explicit
specialization declaration for a function template or a member function template, the name of the function
or member function explicitly specialized may be a template-id. | Ezample:

template<class T = int> struct A {
static int x;

};

template<class U> void g(U) { }

template<> struct A<double> { }; // specialize for T == double
template<> struct A<> { }; // specialize for T == int
template<> void g(char) { } // specialize for U == char

// U is deduced from the parameter type
template<> void g<int>(int) { } // specialize for U == int
template<> int A<char>::x = 0; // specialize for T == char

template<class T = int> struct B {
static int x;

¥
template<> int B<>::x = 1; // specialize for T == int
— end example]

4 An instantiated template specialization can be either implicitly instantiated (14.7.1) for a given argument
list or be explicitly instantiated (14.7.2). A specialization is a class, function, or class member that is either
instantiated or explicitly specialized (14.7.3).

5 For a given template and a given set of template-arguments,
— an explicit instantiation definition shall appear at most once in a program,
— an explicit specialization shall be defined at most once in a program (according to 3.2), and

— both an explicit instantiation and a declaration of an explicit specialization shall not appear in a
program unless the explicit instantiation follows a declaration of the explicit specialization.

An implementation is not required to diagnose a violation of this rule.

§ 14.7 356

3

©ISO/IEC N3092

Each class template specialization instantiated from a template has its own copy of any static members.
[Example:

template<class T> class X {
static T s;

};

template<class T> T X<T>::s = 0;

X<int> aa;

X<char*> bb;

X<int> has a static member s of type int and X<char*> has a static member s of type charx. —end
example]
14.7.1 Implicit instantiation [temp.inst]

Unless a class template specialization has been explicitly instantiated (14.7.2) or explicitly specialized (14.7.3),
the class template specialization is implicitly instantiated when the specialization is referenced in a context
that requires a completely-defined object type or when the completeness of the class type affects the se-
mantics of the program. The implicit instantiation of a class template specialization causes the implicit
instantiation of the declarations, but not of the definitions or default arguments, of the class member func-
tions, member classes, static data members and member templates; and it causes the implicit instantiation
of the definitions of member anonymous unions. Unless a member of a class template or a member template
has been explicitly instantiated or explicitly specialized, the specialization of the member is implicitly in-
stantiated when the specialization is referenced in a context that requires the member definition to exist; in
particular, the initialization (and any associated side-effects) of a static data member does not occur unless
the static data member is itself used in a way that requires the definition of the static data member to exist.

Unless a function template specialization has been explicitly instantiated or explicitly specialized, the func-
tion template specialization is implicitly instantiated when the specialization is referenced in a context that
requires a function definition to exist. Unless a call is to a function template explicit specialization or to a
member function of an explicitly specialized class template, a default argument for a function template or a
member function of a class template is implicitly instantiated when the function is called in a context that
requires the value of the default argument.

[Example:

template<class T> struct Z {
void £();
void g();

};

void h() {
Z<int> a; // instantiation of class Z<int> required
Z<char>* p; // instantiation of class Z<char> not required
Z<double>* q; // instantiation of class Z<double> not required
a.f(); // instantiation of Z<int>::£() required
p—>g0; // instantiation of class Z<char> required, and

// instantiation of Z<char>::g() required
}

Nothing in this example requires class Z<double>, Z<int>::g(), or Z<char>::f() to be implicitly instan-
tiated. — end example]

§ 14.7.1 357

©ISO/IEC N3092

4 A class template specialization is implicitly instantiated if the class type is used in a context that requires
a completely-defined object type or if the completeness of the class type might affect the semantics of the
program. [Note: in particular, if the semantics of an expression depend on the member or base class lists
of a class template specialization, the class template specialization is implicitly generated. For instance,
deleting a pointer to class type depends on whether or not the class declares a destructor, and conversion
between pointer to class types depends on the inheritance relationship between the two classes involved.
— end note] [Example:

template<class T> class B { /x ... %/ };
template<class T> class D : public B<T> { /% ... x/ };

void f(voidx);
void f(B<int>*);

void g(D<int>* p, D<char>* pp, D<double>* ppp) {
£(p); // instantiation of D<int> required: call £ (B<int>*)
B<char>* q = pp; // instantiation of D<char> required:
// convert D<char>* to B<char>*
delete ppp; // instantiation of D<double> required

}
— end example|

5 If the overload resolution process can determine the correct function to call without instantiating a class
template definition, it is unspecified whether that instantiation actually takes place. [Example:

template <class T> struct S {
operator int();

};

void f(int);
void f(S<int>&);
void f(S<float>);

void g(S<int>& sr) {
£(s1); // instantiation of S<int> allowed but not required
// instantiation of S<float> allowed but not required
};
— end example|

6 If an implicit instantiation of a class template specialization is required and the template is declared but not
defined, the program is ill-formed. [Ezample:

template<class T> class X;
X<char> ch; // error: definition of X required

— end example|

7 The implicit instantiation of a class template does not cause any static data members of that class to be
implicitly instantiated.

8 If a function template or a member function template specialization is used in a way that involves overload
resolution, a declaration of the specialization is implicitly instantiated (14.8.3).

§ 14.7.1 358

10

11

12

©ISO/IEC N3092

An implementation shall not implicitly instantiate a function template, a member template, a non-virtual
member function, a member class, or a static data member of a class template that does not require instan-
tiation. It is unspecified whether or not an implementation implicitly instantiates a virtual member function
of a class template if the virtual member function would not otherwise be instantiated. The use of a template
specialization in a default argument shall not cause the template to be implicitly instantiated except that
a class template may be instantiated where its complete type is needed to determine the correctness of the
default argument. The use of a default argument in a function call causes specializations in the default
argument to be implicitly instantiated.

Implicitly instantiated class and function template specializations are placed in the namespace where the
template is defined. Implicitly instantiated specializations for members of a class template are placed in
the namespace where the enclosing class template is defined. Implicitly instantiated member templates are
placed in the namespace where the enclosing class or class template is defined. [Example:

namespace N {
template<class T> class List {
public:
Tx get();
I
}

template<class K, class V> class Map {
public:

N::List<V> 1t;

V get(X);

};

void g(Map<char*,int>& m) {
int i = m.get("Nicholas");

}
a call of 1t.get () from Map<char*,int>::get() would place List<int>::get () in the namespace N rather
than in the global namespace. — end example]

If a function template f is called in a way that requires a default argument expression to be used, the
dependent names are looked up, the semantics constraints are checked, and the instantiation of any template
used in the default argument expression is done as if the default argument expression had been an expression
used in a function template specialization with the same scope, the same template parameters and the same
access as that of the function template £ used at that point. This analysis is called default argument
instantiation. The instantiated default argument is then used as the argument of f.

Each default argument is instantiated independently. [Example:

template<class T> void f(T x, Ty = ydef(T()), T z = zdef(T()));
class A { };
A zdef(A);

void g(A a, A b, A c) {

f(a, b, c); // mo default argument instantiation
f(a, b); // default argument z = zdef (T()) instantiated
f(a); // ill-formed; ydef is not declared

}
— end example]

§ 14.7.1 359

13

14

©ISO/IEC N3092

[Note: 14.6.4.1 defines the point of instantiation of a template specialization. — end note]

There is an implementation-defined quantity that specifies the limit on the total depth of recursive instan-
tiations, which could involve more than one template. The result of an infinite recursion in instantiation is
undefined. [Example:

template<class T> class X {
X<T>* p; // OK
X<T*> a; // implicit generation of X<T> requires
// the implicit instantiation of X<T*> which requires
// the implicit instantiation of X<T**> which ...
};

— end example]

14.7.2 Explicit instantiation [temp.explicit]

A class, a function or member template specialization can be explicitly instantiated from its template. A
member function, member class or static data member of a class template can be explicitly instantiated from
the member definition associated with its class template. An explicit instantiation of a function template or
member function of a class template shall not use the inline or constexpr specifiers.

The syntax for explicit instantiation is:
explicit-instantiation:
extern,,; template declaration
There are two forms of explicit instantiation: an explicit instantiation definition and an explicit instantiation
declaration. An explicit instantiation declaration begins with the extern keyword.

If the explicit instantiation is for a class or member class, the elaborated-type-specifier in the declaration shall
include a simple-template-id. If the explicit instantiation is for a function or member function, the unqualified-
id in the declaration shall be either a template-id or, where all template arguments can be deduced, a
template-name or operator-function-id. | Note: the declaration may declare a qualified-id, in which case the
unqualified-id of the qualified-id must be a template-id. — end note] If the explicit instantiation is for a
member function, a member class or a static data member of a class template specialization, the name of
the class template specialization in the qualified-id for the member name shall be a simple-template-id. An
explicit instantiation shall appear in an enclosing namespace of its template. If the name declared in the
explicit instantiation is an unqualified name, the explicit instantiation shall appear in the namespace where
its template is declared or, if that namespace is inline (7.3.1), any namespace from its enclosing namespace
set. [Note: regarding qualified names in declarators, see 8.3. — end note| [Example:

template<class T> class Array { void mf(); };
template class Array<char>;
template void Array<int>::mf();

template<class T> void sort(Array<T>& v) { /x .../}
template void sort(Array<char>&); // argument is deduced here

namespace N {

template<class T> void £(T&) { }
}
template void N::f<int>(int&);

— end example]

3 A declaration of a function template shall be in scope at the point of the explicit instantiation of the function

template. A definition of the class or class template containing a member function template shall be in scope

§ 14.7.2 360

©ISO/IEC N3092

at the point of the explicit instantiation of the member function template. A definition of a class template
or class member template shall be in scope at the point of the explicit instantiation of the class template
or class member template. A definition of a class template shall be in scope at the point of an explicit
instantiation of a member function or a static data member of the class template. A definition of a member
class of a class template shall be in scope at the point of an explicit instantiation of the member class. If the
declaration of the explicit instantiation names an implicitly-declared special member function (Clause 12),
the program is ill-formed.

4 For a given set of template parameters, if an explicit instantiation of a template appears after a declaration
of an explicit specialization for that template, the explicit instantiation has no effect. Otherwise, for an
explicit instantiation definition the definition of a function template, a member function template, or a
member function or static data member of a class template shall be present in every translation unit in
which it is explicitly instantiated.

5 An explicit instantiation of a class or function template specialization is placed in the namespace in which
the template is defined. An explicit instantiation for a member of a class template is placed in the namespace
where the enclosing class template is defined. An explicit instantiation for a member template is placed in
the namespace where the enclosing class or class template is defined. | Ezample:

namespace N {
template<class T> class Y { void mf() { } };

}

template class Y<int>; // error: class template Y not visible
// in the global namespace

using N::Y;

template class Y<int>; // error: explicit instantiation outside of the
// namespace of the template

template class N::Y<charx>; // OK: explicit instantiation in namespace N

template void N::Y<double>::mf(); // OK: explicit instantiation

// in namespace N

— end example]

6 A trailing template-argument can be left unspecified in an explicit instantiation of a function template
specialization or of a member function template specialization provided it can be deduced from the type of
a function parameter (14.8.2). [Ezample:

template<class T> class Array { /x ... *x/ };
template<class T> void sort(Array<T>& v);

// instantiate sort (Array<int>&) - template-argument deduced
template void sort<>(Array<int>&);

— end example]

7 An explicit instantiation that names a class template specialization is also an explicit instantiation of the
same kind (declaration or definition) of each of its members (not including members inherited from base
classes) that has not been previously explicitly specialized in the translation unit containing the explicit
instantiation, except as described below. [Note: In addition, it will typically be an explicit instantiation of
certain implementation-dependent data about the class. — end note]|

§ 14.7.2 361

10

11

12

©ISO/IEC N3092

An explicit instantiation definition that names a class template specialization explicitly instantiates the class
template specialization and is an explicit instantiation definition of only those members whose definition is
visible at the point of instantiation.

Except for inline functions and class template specializations, explicit instantiation declarations have the
effect of suppressing the implicit instantiation of the entity to which they refer. [Note: The intent is that an
inline function that is the subject of an explicit instantiation declaration will still be implicitly instantiated
when used so that the body can be considered for inlining, but that no out-of-line copy of the inline function
would be generated in the translation unit. — end note]

If an entity is the subject of both an explicit instantiation declaration and an explicit instantiation definition
in the same translation unit, the definition shall follow the declaration. An entity that is the subject of
an explicit instantiation declaration and that is also used in the translation unit shall be the subject of an
explicit instantiation definition somewhere in the program; otherwise the program is ill-formed, no diagnostic
required. [Note: This rule does apply to inline functions even though an explicit instantiation declaration
of such an entity has no other normative effect. This is needed to ensure that if the address of an inline
function is taken in a translation unit in which the implementation chose to suppress the out-of-line body,
another translation unit will supply the body. — end note] An explicit instantiation declaration shall not
name a specialization of a template with internal linkage.

The usual access checking rules do not apply to names used to specify explicit instantiations. [Note: In
particular, the template arguments and names used in the function declarator (including parameter types,
return types and exception specifications) may be private types or objects which would normally not be
accessible and the template may be a member template or member function which would not normally be
accessible. — end note]

An explicit instantiation does not constitute a use of a default argument, so default argument instantiation
is not done. [Example:

charx p = 0;
template<class T> T g(T = &p);
template int g<int>(int); // OK even though &p isn’t an int.

— end example]

14.7.3 Explicit specialization [temp.expl.spec]

An explicit specialization of any of the following:
— non-deleted function template
— class template
— non-deleted member function of a class template
— static data member of a class template
— member class of a class template
— member class template of a class or class template
— non-deleted member function template of a class or class template

can be declared by a declaration introduced by template<>; that is:

explicit-specialization:
template < > declaration

[Example:

§14.7.3 362

©ISO/IEC N3092

template<class T> class stream;
template<> class stream<char> { /x ... x/ };

template<class T> class Array { /x ... x/ };
template<class T> void sort(Array<T>& v) { /x .../}

template<> void sort<char*>(Array<char*>&) ;

Given these declarations, stream<char> will be used as the definition of streams of chars; other streams will
be handled by class template specializations instantiated from the class template. Similarly, sort<char*>
will be used as the sort function for arguments of type Array<charx*>; other Array types will be sorted by
functions generated from the template. — end ezample]

An explicit specialization shall be declared in a namespace enclosing the specialized template. An explicit
specialization whose declarator-id is not qualified shall be declared in the nearest enclosing namespace of
the template, or, if the namespace is inline (7.3.1), any namespace from its enclosing namespace set. Such a
declaration may also be a definition. If the declaration is not a definition, the specialization may be defined
later (7.3.1.2).

A declaration of a function template or class template being explicitly specialized shall precede the declaration
of the explicit specialization. [Note: a declaration, but not a definition of the template is required. — end
note| The definition of a class or class template shall precede the declaration of an explicit specialization for
a member template of the class or class template. [Example:

template<> class X<int> { /*x ... x/ }; // error: X not a template
template<class T> class X;

template<> class X<char*> { /x ... x/ }; // OK: X is a template

— end example]

A member function, a member class or a static data member of a class template may be explicitly specialized
for a class specialization that is implicitly instantiated; in this case, the definition of the class template shall
precede the explicit specialization for the member of the class template. If such an explicit specialization
for the member of a class template names an implicitly-declared special member function (Clause 12), the
program is ill-formed.

A member of an explicitly specialized class is not implicitly instantiated from the member declaration of
the class template; instead, the member of the class template specialization shall itself be explicitly defined.
In this case, the definition of the class template explicit specialization shall be in scope at the point of
declaration of the explicit specialization of the member. The definition of an explicitly specialized class is
unrelated to the definition of a generated specialization. That is, its members need not have the same names,
types, etc. as the members of a generated specialization. Definitions of members of an explicitly specialized
class are defined in the same manner as members of normal classes, and not using the syntax for explicit
specialization. [Example:

template<class T> struct A {
void £(T) { /x ... %/}
}

template<> struct A<int> {

void f(int);
};

§14.7.3 363

©ISO/IEC N3092

void h() {

A<int> a;

a.f(16); // A<int>::f must be defined somewhere
}

// explicit specialization syntaz not used for a member of
// explicitly specialized class template specialization
void A<int>::f(int) { /x ...x/}

— end example]

6 If a template, a member template or the member of a class template is explicitly specialized then that
specialization shall be declared before the first use of that specialization that would cause an implicit instan-
tiation to take place, in every translation unit in which such a use occurs; no diagnostic is required. If the
program does not provide a definition for an explicit specialization and either the specialization is used in a
way that would cause an implicit instantiation to take place or the member is a virtual member function,
the program is ill-formed, no diagnostic required. An implicit instantiation is never generated for an explicit
specialization that is declared but not defined. | Ezample:

template<class T> class Array { /x ... %/ };
template<class T> void sort(Array<T>& v) { /x .../}

void f(Array<String>& v) {
sort(v); // use primary template
// sort(Array<T>&), T is String
}

template<> void sort<String>(Array<String>& v); // error: specialization
// after use of primary template
template<> void sort<>(Array<char*>& v); // OK: sort<char*> not yet used

— end example]

7 The placement of explicit specialization declarations for function templates, class templates, member func-
tions of class templates, static data members of class templates, member classes of class templates, member
class templates of class templates, member function templates of class templates, member functions of mem-
ber templates of class templates, member functions of member templates of non-template classes, member
function templates of member classes of class templates, etc., and the placement of partial specialization
declarations of class templates, member class templates of non-template classes, member class templates of
class templates, etc., can affect whether a program is well-formed according to the relative positioning of
the explicit specialization declarations and their points of instantiation in the translation unit as specified
above and below. When writing a specialization, be careful about its location; or to make it compile will be
such a trial as to kindle its self-immolation.

8 A template explicit specialization is in the scope of the namespace in which the template was defined.
[Example:

namespace N {
template<class T> class X { /x ... x/ };
template<class T> class Y { /x ... x/ };

template<> class X<int> { /*x .../ }; // OK: specialization
// in same namespace
template<> class Y<double>; // forward declare intent to

// specialize for double

§14.7.3 364

10

11

12

13

14

©ISO/IEC N3092

}

template<> class N::Y<double> { /x ... x/ }; // OK: specialization
// in same namespace
— end example]

A simple-template-id that names a class template explicit specialization that has been declared but not
defined can be used exactly like the names of other incompletely-defined classes (3.9). [Example:

template<class T> class X; // X is a class template

template<> class X<int>;

X<int>* p; // OK: pointer to declared class X<int>
X<int> x; // error: object of incomplete class X<int>

— end example |

A trailing template-argument can be left unspecified in the template-id naming an explicit function template
specialization provided it can be deduced from the function argument type. [Ezample:

template<class T> class Array { /x ... x/ };
template<class T> void sort(Array<T>& v);

// explicit specialization for sort(Array<int>&)
// with deduced template-argument of type int
template<> void sort(Array<int>&);

— end example|

A function with the same name as a template and a type that exactly matches that of a template special-
ization is not an explicit specialization (14.5.6).

An explicit specialization of a function template is inline only if it is declared with the inline specifier or
defined as deleted, and independently of whether its function template is inline. [Ezample:

template<class T> void f(T) { /* ...x/ }
template<class T> inline T g(T) { /* ...x/ }

template<> inline void f<>(int) { /* ... %/} // OK: inline
template<> int g<>(int) { /f*x ... %/} // OK: not inline

— end example|

An explicit specialization of a static data member of a template is a definition if the declaration includes an
initializer; otherwise, it is a declaration. [Note: the definition of a static data member of a template that
requires default initialization must use a braced-init-list:

template<> X Q<int>::x; // declaration
template<> X Q<int>::x (); // error: declares a function
template<> X Q<int>::x { }; // definition

— end note]

A member or a member template of a class template may be explicitly specialized for a given implicit
instantiation of the class template, even if the member or member template is defined in the class template
definition. An explicit specialization of a member or member template is specified using the syntax for
explicit specialization. [Ezample:

§14.7.3 365

15

16

©ISO/IEC N3092

template<class T> struct A {

void f(T);

template<class X1> void gi(T, X1);
template<class X2> void g2(T, X2);
void h(T) { }

};

// specialization
template<> void A<int>::f(int);

// out of class member template definition
template<class T> template<class X1> void A<T>::gi(T, X1) { }

// member template specialization
template<> template<class X1> void A<int>::gl(int, X1);

//member template specialization
template<> template<>

void A<int>::gl(int, char); // X1 deduced as char
template<> template<>
void A<int>::g2<char>(int, char); // X2 specified as char

// member specialization even if defined in class definition
template<> void A<int>::h(int) { }

— end example]

A member or a member template may be nested within many enclosing class templates. In an explicit
specialization for such a member, the member declaration shall be preceded by a template<> for each
enclosing class template that is explicitly specialized. [Ezample:

template<class T1> class A {
template<class T2> class B {

void mf();

I

};

template<> template<> class A<int>::B<double>;

template<> template<> void A<char>::B<char>::mf();

— end example|

In an explicit specialization declaration for a member of a class template or a member template that ap-
pears in namespace scope, the member template and some of its enclosing class templates may remain
unspecialized, except that the declaration shall not explicitly specialize a class member template if its en-
closing class templates are not explicitly specialized as well. In such explicit specialization declaration, the
keyword template followed by a template-parameter-list shall be provided instead of the template<> pre-
ceding the explicit specialization declaration of the member. The types of the template-parameters in the
template-parameter-list shall be the same as those specified in the primary template definition. [Ezample:

template <class T1> class A {
template<class T2> class B {

template<class T3> void mf1(T3);

void mf2();

I

}

template <> template <class X>

§14.7.3 366

17

18

19

©ISO/IEC N3092

class A<int>::B {
template <class T> void mf1(T);
};
template <> template <> template<class T>
void A<int>::B<double>::mf1(T t) { }
template <class Y> template <>
void A<Y>::B<double>::mf2() { } // ill-formed; B<double> is specialized but
// its enclosing class template A is not

— end example|

A specialization of a member function template or member class template of a non-specialized class template
is itself a template.

An explicit specialization declaration shall not be a friend declaration.

Default function arguments shall not be specified in a declaration or a definition for one of the following
explicit specializations:

— the explicit specialization of a function template;
— the explicit specialization of a member function template;

— the explicit specialization of a member function of a class template where the class template special-
ization to which the member function specialization belongs is implicitly instantiated. [Note: default
function arguments may be specified in the declaration or definition of a member function of a class
template specialization that is explicitly specialized. — end note]

14.8 Function template specializations [temp.fct.spec]

A function instantiated from a function template is called a function template specialization; so is an
explicit specialization of a function template. Template arguments can be explicitly specified when naming
the function template specialization, deduced from the context (e.g., deduced from the function arguments
in a call to the function template specialization, see 14.8.2), or obtained from default template arguments.

Each function template specialization instantiated from a template has its own copy of any static variable.
[Ezample:

template<class T> void f(T* p) {
static T s;

};

void g(int a, char* b) {
f(&a); // calls £<int>(int*)
£(&b); // calls £<char*>(char**)

}

Here f<int>(int*) has a static variable s of type int and f<char*>(char**) has a static variable s of
type charx. — end example]

14.8.1 Explicit template argument specification [temp.arg.explicit]

Template arguments can be specified when referring to a function template specialization by qualifying the
function template name with the list of template-arguments in the same way as template-arguments are
specified in uses of a class template specialization. [Example:

§ 14.8.1 367

©ISO/IEC N3092

template<class T> void sort(Array<T>& v);

void f(Array<dcomplex>& cv, Array<int>& ci) {
sort<dcomplex>(cv); // sort (Array<dcomplex>&)
sort<int>(ci); // sort(Array<int>&)

}

and
template<class U, class V> U convert(V v);
void g(double d) {
int i = convert<int,double>(d); // int convert (double)

char ¢ = convert<char,double>(d); // char convert(double)

}

— end example|
2 A template argument list may be specified when referring to a specialization of a function template
— when a function is called,

— when the address of a function is taken, when a function initializes a reference to function, or when a
pointer to member function is formed,

— in an explicit specialization,
— in an explicit instantiation, or
— in a friend declaration.

3 Trailing template arguments that can be deduced (14.8.2) or obtained from default template-arguments may
be omitted from the list of explicit template-arguments. A trailing template parameter pack (14.5.3) not
otherwise deduced will be deduced to an empty sequence of template arguments. If all of the template
arguments can be deduced, they may all be omitted; in this case, the empty template argument list <>
itself may also be omitted. In contexts where deduction is done and fails, or in contexts where deduction
is not done, if a template argument list is specified and it, along with any default template arguments,
identifies a single function template specialization, then the template-id is an lvalue for the function template
specialization. [Ezample:

template<class X, class Y> X f(Y);

template<class X, class Y, class ... Z> X g(Y);
void h() {
int i = f<int>(5.6); // Y is deduced to be double
int j = £(5.6); // ill-formed: X cannot be deduced
f<void>(f<int, bool>); // Y for outer £ deduced to be
// int () (bool)
f<void>(f<int>); // ill-formed: £<int> does not denote a
// single function template specialization
int k = g<int>(5.6); // Y is deduced to be double, Z is deduced to an empty sequence
f<void>(g<int, bool>); // Y for outer £ is deduced to be

// int (%) (bool), Z is deduced to an empty sequence

— end example|

4 [Note: An empty template argument list can be used to indicate that a given use refers to a specialization
of a function template even when a normal (i.e., non-template) function is visible that would otherwise be
used. For example:

§ 14.8.1 368

©ISO/IEC N3092

template <class T> int £(T); /) #1

int f(int); // #2

int k = £(1); // uses #2

int 1 = £<>(1); // uses #1
— end note]

Template arguments that are present shall be specified in the declaration order of their corresponding
template-parameters. The template argument list shall not specify more template-arguments than there
are corresponding template-parameters unless one of the template-parameters is a template parameter pack.
[Example:

template<class X, class Y, class Z> X £(Y,Z);

template<class ... Args> void £2();

void g() {
f<int,char*,double>("aa",3.0);
f<int,char*>("aa",3.0); // Z is deduced to be double
f<int>("aa",3.0); // Y is deduced to be const char*, and

// Z is deduced to be double

f("aa",3.0); // error: X cannot be deduced
f2<char, short, int, long>(); // OK

}

— end example]

Implicit conversions (Clause 4) will be performed on a function argument to convert it to the type of the
corresponding function parameter if the parameter type contains no template-parameters that participate
in template argument deduction. [Note: template parameters do not participate in template argument
deduction if they are explicitly specified. For example,

template<class T> void f(T);

class Complex {
Complex(double) ;
};

void g() {
f<Complex>(1); // OK, means £<Complex>(Complex (1))

}

— end note

[Note: because the explicit template argument list follows the function template name, and because con-
version member function templates and constructor member function templates are called without using a
function name, there is no way to provide an explicit template argument list for these function templates.
— end note]

[Note: For simple function names, argument dependent lookup (3.4.2) applies even when the function name
is not visible within the scope of the call. This is because the call still has the syntactic form of a function
call (3.4.1). But when a function template with explicit template arguments is used, the call does not have
the correct syntactic form unless there is a function template with that name visible at the point of the call.
If no such name is visible, the call is not syntactically well-formed and argument-dependent lookup does not
apply. If some such name is visible, argument dependent lookup applies and additional function templates
may be found in other namespaces. [Example:

namespace A {

§ 14.8.1 369

©ISO/IEC N3092

struct B { };
template<int X> void f(B);
}
namespace C {
template<class T> void f(T t);

}
void g(A::B b) {
£<3>(b); // ill-formed: not a function call
A::£<3>(b); // well-formed
C::£<3>(b); // ill-formed; argument dependent lookup
// applies only to unqualified names
using C::f;
£<3>(b); // well-formed because C: :£f is visible; then
// A:: £ is found by argument dependent lookup
}
— end example] — end note]

9 Template argument deduction can extend the sequence of template arguments corresponding to a template
parameter pack, even when the sequence contains explicitly specified template arguments. | Ezample:

template<class ... Types> void f(Types ... values);
void g() {

f<int*, float*>(0, 0, 0); // Types is deduced to the sequence int*, float*, int
}

— end example|

14.8.2 Template argument deduction [temp.deduct]

1 When a function template specialization is referenced, all of the template arguments shall have values.
The values can be explicitly specified or, in some cases, be deduced from the use or obtained from default
template-arguments. [Example:

void f(Array<dcomplex>& cv, Array<int>& ci) {

sort(cv) ; // calls sort (Array<dcomplex>&)
sort(ci); // calls sort (Array<int>&)

}

and

void g(double d) {
int i = convert<int>(d); // calls convert<int,double>(double)
int ¢ = convert<char>(d); // calls convert<char,double>(double)

}

— end example]

2 When an explicit template argument list is specified, the template arguments must be compatible with the
template parameter list and must result in a valid function type as described below; otherwise type deduc-
tion fails. Specifically, the following steps are performed when evaluating an explicitly specified template
argument list with respect to a given function template:

— The specified template arguments must match the template parameters in kind (i.e., type, non-type,
template). There must not be more arguments than there are parameters unless at least one parameter

§ 14.8.2 370

©ISO/IEC N3092

is a template parameter pack, and there shall be an argument for each non-pack parameter. Otherwise,
type deduction fails.

— Non-type arguments must match the types of the corresponding non-type template parameters, or must
be convertible to the types of the corresponding non-type parameters as specified in 14.3.2, otherwise
type deduction fails.

— The specified template argument values are substituted for the corresponding template parameters as
specified below.

After this substitution is performed, the function parameter type adjustments described in 8.3.5 are per-
formed. [Ezample: A parameter type of “void () (const int, int[5])” becomes “void (*) (int,int*)".
— end example] [Note: A top-level qualifier in a function parameter declaration does not affect the function
type but still affects the type of the function parameter variable within the function. — end note| [Example:

template <class T> void £(T t);
template <class X> void g(const X x);
template <class Z> void h(Z, Z*);

int main() {
// #1: function type is £(int), t is non const
f<int>(1);

// #2: function type is £(int), t is const
f<const int>(1);

// #3: function type is g(int), x is const
g<int>(1);

// #4: function type is g(int), x is const
g<const int>(1);

// #5: function type is h(int, const int*)
h<const int>(1,0);
}

— end example]

[Note: £<int>(1) and f<const int>(1) call distinct functions even though both of the functions called
have the same function type. — end note]

The resulting substituted and adjusted function type is used as the type of the function template for template
argument deduction. If a template argument has not been deduced, its default template argument, if any,
is used. [Example:

template <class T, class U = double>
void f(T t = 0, U u = 0);

void g() {
£(1, ’c’); // £<int,char>(1,’c’
£(1); // £<int,double>(1,0)
£0; // error: T cannot be deduced
f<int>(); // £<int,double>(0,0)
f<int,char>(); // £<int,char>(0,0)

}

— end example]

§ 14.8.2 371

©ISO/IEC N3092

When all template arguments have been deduced or obtained from default template arguments, all uses
of template parameters in non-deduced contexts are replaced with the corresponding deduced or default
argument values. If the substitution results in an invalid type, as described above, type deduction fails.

At certain points in the template argument deduction process it is necessary to take a function type that
makes use of template parameters and replace those template parameters with the corresponding template
arguments. This is done at the beginning of template argument deduction when any explicitly specified tem-
plate arguments are substituted into the function type, and again at the end of template argument deduction
when any template arguments that were deduced or obtained from default arguments are substituted.

The substitution occurs in all types and expressions that are used in the function type and in template
parameter declarations. The expressions include not only constant expressions such as those that appear in
array bounds or as nontype template arguments but also general expressions (i.e., non-constant expressions)
inside sizeof, decltype, and other contexts that allow non-constant expressions. [Note: The equivalent
substitution in exception specifications is done only when the function is instantiated, at which point a
program is ill-formed if the substitution results in an invalid type or expression. — end note|

If a substitution results in an invalid type or expression, type deduction fails. An invalid type or expression
is one that would be ill-formed if written using the substituted arguments. Access checking is not done as
part of the substitution process. Consequently, when deduction succeeds, an access error could still result
when the function is instantiated. Only invalid types and expressions in the immediate context of the
function type and its template parameter types can result in a deduction failure. [Note: The evaluation of
the substituted types and expressions can result in side effects such as the instantiation of class template
specializations and/or function template specializations, the generation of implicitly-defined functions, etc.
Such side effects are not in the “immediate context” and can result in the program being ill-formed. — end
note |

[Ezample:

struct X { };
struct Y {
Y(X) {3}

};

template <class T> auto f(T tl1, T t2) -> decltype(tl + t2); // #I1
X £, V); // #2

X x1, x2;
X x3 = £(x1, x2); // deduction fails on #1 (cannot add X+X), calls #2
— end example|
[Note: Type deduction may fail for the following reasons:
— Attempting to instantiate a pack expansion containing multiple parameter packs of differing lengths.

— Attempting to create an array with an element type that is void, a function type, a reference type, or
an abstract class type, or attempting to create an array with a size that is zero or negative. [Example:

template <class T> int £(T[5]);
int I = £<int>(0);
int j = f<void>(0); // invalid array

— end example]

— Attempting to use a type that is not a class type in a qualified name. [Example:

§ 14.8.2 372

©ISO/IEC N3092

template <class T> int f(typename T::Bx*);
int i = £<int>(0);

— end example]

— Attempting to use a type in a nested-name-specifier of a qualified-id when that type does not contain
the specified member, or

— the specified member is not a type where a type is required, or
— the specified member is not a template where a template is required, or
— the specified member is not a non-type where a non-type is required.

[Example:

template <int I> struct X { };
template <template <class T> class> struct Z { };
template <class T> void f(typename T::Y*){}
template <class T> void g(X<T::N>x*){}
template <class T> void h(Z<T::template TT>*){}
struct A {};
struct B { int Y; };
struct C {
typedef int N;
};
struct D {
typedef int TT;
};

int main() {
// Deduction fails in each of these cases:
£<A>(0); // A does not contain a member Y
£(0); // The Y member of B is not a type
g<C>(0); // The N member of C is not a non-type
h<D>(0); // The TT member of D is not a template

— end example]
— Attempting to create a pointer to reference type.
— Attempting to create a reference to void.
— Attempting to create “pointer to member of T” when T is not a class type. [Example:
template <class T> int f(int T::*);
int i = £<int>(0);
— end example]

— Attempting to give an invalid type to a non-type template parameter. [Example:

template <class T, T> struct S {};
template <class T> int f(S<T, T()>*);
struct X {};

int i0 = £<X>(0);

— end example]

§ 14.8.2 373

©ISO/IEC N3092

— Attempting to perform an invalid conversion in either a template argument expression, or an expression
used in the function declaration. [Example:

template <class T, T*> int f(int);
int i2 = f<int,1>(0); // can’t conv 1 to intx

— end example]

— Attempting to create a function type in which a parameter has a type of void, or in which the return
type is a function type or array type.

— Attempting to create a function type in which a parameter type or the return type is an abstract class
type (10.4).

— end note]

9 Except as described above, the use of an invalid value shall not cause type deduction to fail. [Ezample:
In the following example 1000 is converted to signed char and results in an implementation-defined value
as specified in (4.7). In other words, both templates are considered even though 1000, when converted to
signed char, results in an implementation-defined value.

template <int> int f(int);

template <signed char> int f(int);

int il = £<1>(0); // ambiguous
int i2 = £<1000>(0); // ambiguous

— end example]

14.8.2.1 Deducing template arguments from a function call [temp.deduct.call]

1 Template argument deduction is done by comparing each function template parameter type (call it P) with
the type of the corresponding argument of the call (call it A) as described below. If removing references
and cv-qualifiers from P gives std::initializer_list<P’> for some P’ and the argument is an initializer
list (8.5.4), then deduction is performed instead for each element of the initializer list, taking P’ as a function
template parameter type and the initializer element as its argument. Otherwise, an initializer list argument
causes the parameter to be considered a non-deduced context (14.8.2.5). [Ezample:

template<class T> void f(std::initializer_list<T>);
£({1,2,3}1); // T deduced to int
£({1,"asdf"}); // error: T deduced to both int and const charx

template<class T> void g(T);
g({1,2,3}); // error: no argument deduced for T

— end example] For a function parameter pack that occurs at the end of the parameter-declaration-list,
the type A of each remaining argument of the call is compared with the type P of the declarator-id of the
function parameter pack. Each comparison deduces template arguments for subsequent positions in the
template parameter packs expanded by the function parameter pack. For a function parameter pack that
does not occur at the end of the parameter-declaration-list, the type of the parameter pack is a non-deduced
context. [Example:

template<class ... Types> void f(Types& ...);
template<class T1, class ... Types> void g(T1, Types ...);

void h(int x, float& y) {
const int z = x;

§14.8.2.1 374

©ISO/IEC N3092

f(x, y, 2); // Types is deduced to int, float, const int
gx, y, z); // T1 is deduced to int; Types is deduced to float, int
}

— end example]

2 If P is not a reference type:

— If A is an array type, the pointer type produced by the array-to-pointer standard conversion (4.2) is
used in place of A for type deduction; otherwise,

— If A is a function type, the pointer type produced by the function-to-pointer standard conversion (4.3)
is used in place of A for type deduction; otherwise,

— If A is a cv-qualified type, the top level cv-qualifiers of A’s type are ignored for type deduction.

3 If Pis a cv-qualified type, the top level cv-qualifiers of P’s type are ignored for type deduction. If P is a
reference type, the type referred to by P is used for type deduction. If P is an rvalue reference to a cv-
unqualified template parameter and the argument is an lvalue, the type “lvalue reference to A” is used in
place of A for type deduction. [Example:

template <class T> int f(T&&);
template <class T> int g(const T&&);

int i;

int nl = £(i); // calls £<int&>(int&)

int n2 = £(0); // calls £<int>(int&&)

int n3 = g(i); // error: would call g<int>(const int&&), which

// would bind an rvalue reference to an lvalue

— end example]

4 In general, the deduction process attempts to find template argument values that will make the deduced A
identical to A (after the type A is transformed as described above). However, there are three cases that allow
a difference:

— If the original P is a reference type, the deduced A (i.e., the type referred to by the reference) can be
more cv-qualified than the transformed A.

— The transformed A can be another pointer or pointer to member type that can be converted to the
deduced A via a qualification conversion (4.4).

— If P is a class and P has the form simple-template-id, then the transformed A can be a derived class of
the deduced A. Likewise, if P is a pointer to a class of the form simple-template-id, the transformed A
can be a pointer to a derived class pointed to by the deduced A.

5 These alternatives are considered only if type deduction would otherwise fail. If they yield more than one
possible deduced A, the type deduction fails. [Note: if a template-parameter is not used in any of the
function parameters of a function template, or is used only in a non-deduced context, its corresponding
template-argument cannot be deduced from a function call and the template-argument must be explicitly
specified. — end note|

6 When P is a function type, pointer to function type, or pointer to member function type:

— If the argument is an overload set containing one or more function templates, the parameter is treated
as a non-deduced context.

— If the argument is an overload set (not containing function templates), trial argument deduction is
attempted using each of the members of the set. If deduction succeeds for only one of the overload

§14.8.2.1 375

©ISO/IEC N3092

set members, that member is used as the argument value for the deduction. If deduction succeeds for
more than one member of the overload set the parameter is treated as a non-deduced context.

[Ezample:

// Only one function of an overload set matches the call so the function
// parameter is a deduced context.

template <class T> int f£(T (*p)(T));

int g(int);

int g(char);

int i = £(g); // calls £(int (%) (int))

— end example]
[Example:

// Ambiguous deduction causes the second function parameter to be a
// non-deduced context.

template <class T> int £(T, T (xp)(T));

int g(int);

char g(char);

int i = £(1, g); // calls £(int, int (*)(int))

— end example]

[Example:

// The overload set contains a template, causing the second function
// parameter to be a non-deduced context.

template <class T> int f£(T, T (*xp)(T));

char g(char);

template <class T> T g(T);

int i = £(1, g); // calls £(int, int (*)(int))

— end example]

14.8.2.2 Deducing template arguments taking the address of a function template
[temp.deduct.funcaddr]

Template arguments can be deduced from the type specified when taking the address of an overloaded
function (13.4). The function template’s function type and the specified type are used as the types of P and
A, and the deduction is done as described in 14.8.2.5.

14.8.2.3 Deducing conversion function template arguments [temp.deduct.conv]

Template argument deduction is done by comparing the return type of the conversion function template
(call it P; see 8.5, 13.3.1.5, and 13.3.1.6 for the determination of that type) with the type that is required as
the result of the conversion (call it A) as described in 14.8.2.5.

If P is a reference type, the type referred to by P is used in place of P for type deduction and for any further
references to or transformations of P in the remainder of this section.

If A is not a reference type:

— If P is an array type, the pointer type produced by the array-to-pointer standard conversion (4.2) is
used in place of P for type deduction; otherwise,

§14.8.2.3 376

©ISO/IEC N3092

— If P is a function type, the pointer type produced by the function-to-pointer standard conversion (4.3)
is used in place of P for type deduction; otherwise,

— If P is a cv-qualified type, the top level cv-qualifiers of P’s type are ignored for type deduction.

If A is a cv-qualified type, the top level cv-qualifiers of A’s type are ignored for type deduction. If A is a
reference type, the type referred to by A is used for type deduction.

In general, the deduction process attempts to find template argument values that will make the deduced A
identical to A. However, there are two cases that allow a difference:

— If the original A is a reference type, A can be more cv-qualified than the deduced A (i.e., the type
referred to by the reference)

— The deduced A can be another pointer or pointer to member type that can be converted to A via a
qualification conversion.

These alternatives are considered only if type deduction would otherwise fail. If they yield more than one
possible deduced A, the type deduction fails.

When the deduction process requires a qualification conversion for a pointer or pointer to member type as
described above, the following process is used to determine the deduced template argument values:

If A is a type

cv1,0 “pointer to ...” cvy p,—1 “pointer to” cvy , T1
and P is a type

cva,0 “pointer to ...” cvyn_1 “pointer to” cva, T2

The cv-unqualified T1 and T2 are used as the types of A and P respectively for type deduction. [Example:

struct A {
template <class T> operator T***();
};
A a;
const int * const * const * pl = a; // T is deduced as int, not const int

— end example]

14.8.2.4 Deducing template arguments during partial ordering [temp.deduct.partial]

Template argument deduction is done by comparing certain types associated with the two function templates
being compared.

Two sets of types are used to determine the partial ordering. For each of the templates involved there is
the original function type and the transformed function type. [Note: the creation of the transformed type
is described in 14.5.6.2. — end note| The deduction process uses the transformed type as the argument
template and the original type of the other template as the parameter template. This process is done twice
for each type involved in the partial ordering comparison: once using the transformed template-1 as the
argument template and template-2 as the parameter template and again using the transformed template-2
as the argument template and template-1 as the parameter template.

The types used to determine the ordering depend on the context in which the partial ordering is done:
— In the context of a function call, the function parameter types are used.

— In the context of a call to a conversion operator, the return types of the conversion function templates
are used.

§14.8.2.4 377

10

11

12

©ISO/IEC N3092

— In other contexts (14.5.6.2) the function template’s function type is used.

Each type from the parameter template and the corresponding type from the argument template are used
as the types of P and A.

Before the partial ordering is done, certain transformations are performed on the types used for partial
ordering:

— If P is a reference type, P is replaced by the type referred to.
— If A is a reference type, A is replaced by the type referred to.

If both P and A were reference types (before being replaced with the type referred to above), determine
which of the two types (if any) is more cv-qualified than the other; otherwise the types are considered to be
equally cv-qualified for partial ordering purposes. The result of this determination will be used below.

Remove any top-level cv-qualifiers:
— If P is a cv-qualified type, P is replaced by the cv-unqualified version of P.
— If A is a cv-qualified type, A is replaced by the cv-unqualified version of A.

Using the resulting types P and A the deduction is then done as described in 14.8.2.5. If deduction succeeds
for a given type, the type from the argument template is considered to be at least as specialized as the type
from the parameter template.

If, for a given type, deduction succeeds in both directions (i.e., the types are identical after the transfor-
mations above) and if the type from the argument template is more cv-qualified than the type from the
parameter template (as described above) that type is considered to be more specialized than the other. If
neither type is more cv-qualified than the other then neither type is more specialized than the other.

If for each type being considered a given template is at least as specialized for all types and more specialized
for some set of types and the other template is not more specialized for any types or is not at least as
specialized for any types, then the given template is more specialized than the other template. Otherwise,
neither template is more specialized than the other.

In most cases, all template parameters must have values in order for deduction to succeed, but for partial
ordering purposes a template parameter may remain without a value provided it is not used in the types
being used for partial ordering. [Note: a template parameter used in a non-deduced context is considered
used. — end note] [Example:

template <class T> T f(int); /) #1
template <class T, class U> T £(U); // #2
void g() {

£<int>(1); // calls #1
}

— end example]

[Note: Partial ordering of function templates containing template parameter packs is independent of the

number of deduced arguments for those template parameter packs. — end note] [Example:
template<class ...> struct Tuple { };
template<class ... Types> void g(Tuple<Types ...>); /) #1
template<class T1, class ... Types> void g(Tuple<T1, Types ...>); // #2
template<class T1, class ... Types> void g(Tuple<T1, Types& ...>); // #3
g(Tuple<>()); // calls #1
g(Tuple<int, float>()); // calls #2

§14.8.2.4 378

©ISO/IEC N3092

g(Tuple<int, float&>()); // calls #3
g(Tuple<int>()); // calls #3

— end example|

14.8.2.5 Deducing template arguments from a type [temp.deduct.type]

Template arguments can be deduced in several different contexts, but in each case a type that is specified
in terms of template parameters (call it P) is compared with an actual type (call it A), and an attempt is
made to find template argument values (a type for a type parameter, a value for a non-type parameter, or
a template for a template parameter) that will make P, after substitution of the deduced values (call it the
deduced A), compatible with A.

In some cases, the deduction is done using a single set of types P and A, in other cases, there will be a set
of corresponding types P and A. Type deduction is done independently for each P/A pair, and the deduced
template argument values are then combined. If type deduction cannot be done for any P/A pair, or if for any
pair the deduction leads to more than one possible set of deduced values, or if different pairs yield different
deduced values, or if any template argument remains neither deduced nor explicitly specified, template
argument deduction fails.

A given type P can be composed from a number of other types, templates, and non-type values:
— A function type includes the types of each of the function parameters and the return type.

— A pointer to member type includes the type of the class object pointed to and the type of the member
pointed to.

— A type that is a specialization of a class template (e.g., A<int>) includes the types, templates, and
non-type values referenced by the template argument list of the specialization.

— An array type includes the array element type and the value of the array bound.

In most cases, the types, templates, and non-type values that are used to compose P participate in template
argument deduction. That is, they may be used to determine the value of a template argument, and the
value so determined must be consistent with the values determined elsewhere. In certain contexts, however,
the value does not participate in type deduction, but instead uses the values of template arguments that
were either deduced elsewhere or explicitly specified. If a template parameter is used only in non-deduced
contexts and is not explicitly specified, template argument deduction fails.

The non-deduced contexts are:
— The nested-name-specifier of a type that was specified using a qualified-id.

— A non-type template argument or an array bound in which a subexpression references a template
parameter.

— A template parameter used in the parameter type of a function parameter that has a default argument
that is being used in the call for which argument deduction is being done.

— A function parameter for which argument deduction cannot be done because the associated function
argument is a function, or a set of overloaded functions (13.4), and one or more of the following apply:

— more than one function matches the function parameter type (resulting in an ambiguous deduc-
tion), or

— no function matches the function parameter type, or

— the set of functions supplied as an argument contains one or more function templates.

§14.8.25 379

©ISO/IEC N3092

— A function parameter for which the associated argument is an initializer list (8.5.4) but the parameter
does not have std::initializer_list or reference to possibly cv-qualified std::initializer_list
type. [Ezample:

template<class T> void g(T);
g({1,2,31); // error: no argument deduced for T

— end example]
— A function parameter pack that does not occur at the end of the parameter-declaration-clause.

When a type name is specified in a way that includes a non-deduced context, all of the types that comprise
that type name are also non-deduced. However, a compound type can include both deduced and non-deduced
types. [Example: If a type is specified as A<T>: :B<T2>, both T and T2 are non-deduced. Likewise, if a type is
specified as A<I+J>::X<T>, I, J, and T are non-deduced. If a type is specified as void f (typename A<T>::B,
A<T>), the T in A<T>::B is non-deduced but the T in A<T> is deduced. — end ezample]

[Example: Here is an example in which different parameter/argument pairs produce inconsistent template
argument deductions:

template<class T> void £f(T x, Ty) { /x ...x/}
struct A { /x ... x/ };

struct B : A { /fx...x/ };

void g(A a, B b) {

f(a,b); // error: T could be A or B
f(b,a); // error: T could be A or B
f(a,a); // OK: T is A
f(b,b); // OK: T isB

}

Here is an example where two template arguments are deduced from a single function parameter/argument
pair. This can lead to conflicts that cause type deduction to fail:

template <class T, class U> void £(T (*)(T, U, U));
int g1(int, float, float);

char g2(int, float, float);
int g3(int, char, float);

void r() {
f(gl); // OK: T is int and U is float
£(g2); // error: T could be char or int
£(g3); // error: U could be char or float
}

Here is an example where a qualification conversion applies between the argument type on the function call
and the deduced template argument type:

template<class T> void f(const Tx) { }
int *p;
void s() {
£(p); // £(const int*)
}

Here is an example where the template argument is used to instantiate a derived class type of the corre-
sponding function parameter type:

§14.8.25 380

8

10

©ISO/IEC N3092

template <class T> struct B { };

template <class T> struct D : public B<T> {};
struct D2 : public B<int> {};

template <class T> void f(B<T>&){}

void t() {
D<int> d;
D2 d2;
£(d); // calls £(B<int>&)
£(d2); // calls £(B<int>&)
}

— end example]

A template type argument T, a template template argument TT or a template non-type argument i can be
deduced if P and A have one of the following forms:

T

cv-list T

T*

T&

T&&
T[integer-constant]
template-name <T> (where template-name refers to a class template)
type (T)

TO

T(T)

T type ::%

type T::%

T T::*

T (type ::%)Q0)

type (T::%)(

type (type ::%)(T)
type (T::%)(T)

T (type ::%)(T)

T (T::%) O

T (T::%)(T)

type [il

template-name <i> (where template-name refers to a class template)
TT<T>

TT<i>

TT<>

where (T) represents a parameter-type-list where at least one parameter type contains a T, and () represents
a parameter-type-list where no parameter type contains a T. Similarly, <T> represents template argument
lists where at least one argument contains a T, <i> represents template argument lists where at least one
argument contains an i and <> represents template argument lists where no argument contains a T or an i.

If P has a form that contains <T> or <i>, then each argument P; of the respective template argument list
P is compared with the corresponding argument A; of the corresponding template argument list of A. If
the template argument list of P contains a pack expansion that is not the last template argument, the
entire template argument list is a non-deduced context. If P; is a pack expansion, then the pattern of P;
is compared with each remaining argument in the template argument list of A. Each comparison deduces
template arguments for subsequent positions in the template parameter packs expanded by P;.

Similarly, if P has a form that contains (T), then each parameter type P; of the respective parameter-type-list
of P is compared with the corresponding parameter type A; of the corresponding parameter-type-list of A. If

§14.8.25 381

11

12

13

14

15

16

©ISO/IEC N3092

the parameter-declaration corresponding to P; is a function parameter pack, then the type of its declarator-id
is compared with each remaining parameter type in the parameter-type-list of A. Each comparison deduces
template arguments for subsequent positions in the template parameter packs expanded by the function
parameter pack. [Note: A function parameter pack can only occur at the end of a parameter-declaration-
list (8.3.5). — end note]

These forms can be used in the same way as T is for further composition of types. [Ezample:

X<int> () (char[6])

is of the form

template-name <T> () (type [i])

which is a variant of

type (x)(T)

where type is X<int> and T is char[6]. — end example]

Template arguments cannot be deduced from function arguments involving constructs other than the ones
specified above.

A template type argument cannot be deduced from the type of a non-type template-argument.
[Ezample:

template<class T, T i> void f(double a[10][i]);
int v[10] [20];
f(v); // error: argument for template-parameter T cannot be deduced

— end example]

[Note: except for reference and pointer types, a major array bound is not part of a function parameter type
and cannot be deduced from an argument:

template<int i> void f1(int a[10][i]);
template<int i> void f£2(int al[i][20]);
template<int i> void £3(int (&a)[i][201);

void g() {
int v[10][20];
£f1(v); // OK: i deduced to be 20
£1<20>(v) ; // OK
£2(v); // error: cannot deduce template-argument i
£2<10>(v) ; // OK
£3(v); // OK: i deduced to be 10
}

If, in the declaration of a function template with a non-type template parameter, the non-type template
parameter is used in a subexpression in the function parameter list, the expression is a non-deduced context
as specified above. [Ezample:

template <int i> class A { /x ... x/ };
template <int i> void g(A<i+1>);
template <int i> void f(A<i>, A<i+1>);
void k() {

A<1> al;

§14.8.25 382

©ISO/IEC N3092

A<2> a2;
g(al); // error: deduction fails for expression i+1
g<0>(al); // OK
f(al, a2); // OK
}
— end example] — end note| [Note: template parameters do not participate in template argument deduc-

tion if they are used only in non-deduced contexts. For example,

template<int i, typename T>
T deduce(typename A<T>::X x, // T is not deduced here

T t, // but T is deduced here
typename B<i>::Y y); // i is not deduced here
A<int> a;
B<77> b;

int x = deduce<77>(a.xm, 62, b.ym);

// T is deduced to be int, a.xm must be convertible to

// A<int>::X

// i is explicitly specified to be 77, b.ym must be convertible
// to BLT7>::Y

— end note]

17 If, in the declaration of a function template with a non-type template-parameter, the non-type template-
parameter is used in an expression in the function parameter-list and, if the corresponding template-argument
is deduced, the template-argument type shall match the type of the template-parameter exactly, except that
a template-argument deduced from an array bound may be of any integral type.!*! [Ezample:

template<int i> class A { /fx ... x/ };
template<short s> void f(A<s>);

void k1) {
A<1> a;
f(a); // error: deduction fails for conversion from int to short
£<1>(a); // OK

}

template<const short cs> class B { };
template<short s> void g(B<s>);
void k2() {
B<1> b;
g(b); // OK: cv-qualifiers are ignored on template parameter types
}

— end example]

18 A template-argument can be deduced from a function, pointer to function, or pointer to member function
type.

[Example:

template<class T> void f(void(*) (T,int));
template<class T> void foo(T,int);
void g(int,int);

141) Although the template-argument corresponding to a template-parameter of type bool may be deduced from an array
bound, the resulting value will always be true because the array bound will be non-zero.

§14.8.25 383

©ISO/IEC N3092

void g(char,int);

void h(int,int,int);
void h(char,int);

int m() {

£(&g); // error: ambiguous

£(&h); // OK: void h(char,int) is a unique match

f(&foo) ; // error: type deduction fails because foo is a template
}

— end example]

19 A template type-parameter cannot be deduced from the type of a function default argument. [Ezample:

template <class T> void £(T =5, T = 7);

void g() {
£(1); // OK: call £<int>(1,7)
£0; // error: cannot deduce T
f<int>(); // OK: call £<int>(5,7)
}

— end example]

20 The template-argument corresponding to a template template-parameter is deduced from the type of the

21

22

template-argument of a class template specialization used in the argument list of a function call. [Ezample:

template <template <class T> class X> struct A { };
template <template <class T> class X> void f(A<X>) { }
template<class T> struct B { };

A ab;

f(ab); // calls £ (A)

— end example]

[Note: Template argument deduction involving parameter packs (14.5.3) can deduce zero or more arguments
for each parameter pack. — end note] [Ezample:

template<class> struct X { };

template<class R, class ... ArgTypes> struct X<R(int, ArgTypes ...)> { };
template<class ... Types> struct Y { };

template<class T, class ... Types> struct Y<T, Types& ...> { };
template<class ... Types> int f(void (*)(Types ...));

void g(int, float);

X<int> x1; // uses primary template

X<int(int, float, double)> x2; // uses partial specialization; ArgTypes contains float, double
X<int(float, int)> x3; // uses primary template

Y<> yi; // use primary template; Types is empty

Y<int&, float&, double&> y2; // uses partial specialization; T is int&, Types contains £loat, double
Y<int, float, double> y3; // uses primary template; Types contains int, float, double

int fv = £(g); // OK; Types contains int, float

— end example]

If the original function parameter associated with A is a function parameter pack and the function parameter
associated with P is not a function parameter pack, then template argument deduction fails. [Example:

§14.8.25 384

©ISO/IEC N3092

template<class ... Args> void f(Args ... args); /) #1
template<class T1, class ... Args> void f(T1 al, Args ... args); /) #2
template<class T1, class T2> void £(T1 al, T2 a2); /) #8
£0O; // calls #1

£f(1, 2, 3); // calls #2

£(1, 2); // calls #8; non-variadic template #3 is more

// specialized than the variadic templates #1 and #2

— end example|

14.8.3 Overload resolution [temp.over]|

A function template can be overloaded either by (non-template) functions of its name or by (other) function
templates of the same name. When a call to that name is written (explicitly, or implicitly using the operator
notation), template argument deduction (14.8.2) and checking of any explicit template arguments (14.3) are
performed for each function template to find the template argument values (if any) that can be used with
that function template to instantiate a function template specialization that can be invoked with the call
arguments. For each function template, if the argument deduction and checking succeeds, the template-
arguments (deduced and/or explicit) are used to synthesize the declaration of a single function template
specialization which is added to the candidate functions set to be used in overload resolution. If, for a given
function template, argument deduction fails, no such function is added to the set of candidate functions for
that template. The complete set of candidate functions includes all the synthesized declarations and all of
the non-template overloaded functions of the same name. The synthesized declarations are treated like any
other functions in the remainder of overload resolution, except as explicitly noted in 13.3.3.142

[Example:

template<class T> T max(T a, T b) { return a>b?a:b; }

void f(int a, int b, char c, char d) {

int m1 = max(a,b); // max(int a, int b)

char m2 = max(c,d); // max(char a, char b)

int m3 = max(a,c); // error: cannot generate max(int,char)
}

Adding the non-template function
int max(int,int);
to the example above would resolve the third call, by providing a function that could be called for max (a,c)
after using the standard conversion of char to int for c.
Here is an example involving conversions on a function argument involved in template-argument deduction:

template<class T> struct B { /% ... x/ };
template<class T> struct D : public B<T> { /* ... %/ };
template<class T> void f(B<T>&);

void g(B<int>& bi, D<int>& di) {

142) The parameters of function template specializations contain no template parameter types. The set of conversions allowed
on deduced arguments is limited, because the argument deduction process produces function templates with parameters that
either match the call arguments exactly or differ only in ways that can be bridged by the allowed limited conversions. Non-
deduced arguments allow the full range of conversions. Note also that 13.3.3 specifies that a non-template function will be given
preference over a template specialization if the two functions are otherwise equally good candidates for an overload match.

§ 14.8.3 385

©ISO/IEC N3092

£(bi); // £(bi)
£(di); // £((B<int>&)di)
}

Here is an example involving conversions on a function argument not involved in template-parameter deduc-
tion:

template<class T> void f(T*,int); /) #1
template<class T> void f(T,char); /) #2

void h(int* pi, int i, char c) {

f(pi,i); // #1: £<int>(pi,1i)
f(pi,c); // #2: £<int*>(pi,c)
f(i,c); // #2: £<int>(i,c);
£(i,i); // #2: £<int>(i,char(i))

}

— end example]

Only the signature of a function template specialization is needed to enter the specialization in a set of
candidate functions. Therefore only the function template declaration is needed to resolve a call for which
a template specialization is a candidate. [Example:

template<class T> void £(T); // declaration
void g() {

f ("Annemarie") ; // call of f<const char*>
}

The call of f is well-formed even if the template f is only declared and not defined at the point of the call.
The program will be ill-formed unless a specialization for f<const char*>, either implicitly or explicitly
generated, is present in some translation unit. — end example|

§ 14.8.3 386

©ISO/IEC N3092

15 Exception handling [except]

Exception handling provides a way of transferring control and information from a point in the execution of a
program to an exception handler associated with a point previously passed by the execution. A handler will
be invoked only by a throw-expression invoked in code executed in the handler’s try block or in functions
called from the handler’s try block .

try-block:
try compound-statement handler-seq

function-try-block:
try ctor-initializerops compound-statement handler-seq

handler-seq:
handler handler-seqopt

handler:
catch (exception-declaration) compound-statement

exception-declaration:
attribute-specifieropt type-specifier-seq declarator
attribute-specifierop: type-specifier-seq abstract-declaratorop:

throw-expression:
throw assignment-expressionop:

The optional attribute-specifier in an exception-declaration appertains to the formal parameter of the catch
clause (15.3).

A try-block is a statement (Clause 6). A throw-expression is of type void. Code that executes a throw-
expression is said to “throw an exception;” code that subsequently gets control is called a “handler.” [Note:
within this Clause “try block” is taken to mean both try-block and function-try-block. — end note|

A goto or switch statement shall not be used to transfer control into a try block or into a handler.
[Example:

void £() {
goto 11; // Ill-formed
goto 12; // 1ll-formed
try {
goto 11; // OK
goto 12; // 1ll-formed
11: ;
} catch (...) {
12: ;
goto 11; // Ill-formed
goto 12; // OK
}
}

— end example] A goto, break, return, or continue statement can be used to transfer control out of a
try block or handler. When this happens, each variable declared in the try block will be destroyed in the
context that directly contains its declaration. [Ezample:

387

©ISO/IEC N3092

lab: try {

T1 t1;
try {

T2 t2;

if (condition)

goto lab;

} catch(...) { /x handler 2 x/ }

} catch(...) { /x handler 1%/}

Here, executing goto lab; will destroy first t2, then t1, assuming the condition does not declare a variable.
Any exception raised while destroying t2 will result in executing handler 2; any exception raised while
destroying t1 will result in executing handler 1. — end example]

A function-try-block associates a handler-seq with the ctor-initializer, if present, and the compound-statement.
An exception thrown during the execution of the initializer expressions in the ctor-initializer or during the
execution of the compound-statement transfers control to a handler in a function-try-block in the same way
as an exception thrown during the execution of a try-block transfers control to other handlers. [Ezample:

int f(int);
class C {

int i;

double d;
public:

C(int, double);
};

C::C(int ii, double id)

try @ i(£(ii)), d(id) {
// constructor statements

}

catch (...) {
// handles exceptions thrown from the ctor-initializer
// and from the constructor statements

}

— end example|

15.1 Throwing an exception [except.throw|
Throwing an exception transfers control to a handler. An object is passed and the type of that object
determines which handlers can catch it. [Ezample:

throw "Help!";

can be caught by a handler of const char* type:

try {
}
catch(const char* p) {
// handle character string exceptions here

}

and

class Overflow {
public:

§ 15.1 388

©ISO/IEC N3092

Overflow(char,double,double);
};

void f(double x) {
throw Overflow(’+’,x,3.45e107);
}

can be caught by a handler for exceptions of type Overflow

try {

£(1.2);
} catch(Overflow& oo) {

// handle exceptions of type Overflow here
}

— end example]

When an exception is thrown, control is transferred to the nearest handler with a matching type (15.3);
“nearest” means the handler for which the compound-statement or ctor-initializer following the try keyword
was most recently entered by the thread of control and not yet exited.

A throw-expression initializes a temporary object, called the exception object, the type of which is determined
by removing any top-level cu-qualifiers from the static type of the operand of throw and adjusting the type
from “array of T” or “function returning T” to “pointer to T” or “pointer to function returning T”, respectively.
The temporary is an lvalue and is used to initialize the variable named in the matching handler (15.3). If
the type of the exception object would be an incomplete type or a pointer to an incomplete type other
than (possibly cv-qualified) void the program is ill-formed. Except for these restrictions and the restrictions
on type matching mentioned in 15.3, the operand of throw is treated exactly as a function argument in a
call (5.2.2) or the operand of a return statement.

The memory for the exception object is allocated in an unspecified way, except as noted in 3.7.4.1. If a
handler exits by rethrowing, control is passed to another handler for the same exception. The exception
object is destroyed after either the last remaining active handler for the exception exits by any means other
than rethrowing, or the last object of type std: :exception_ptr (18.8.5) that refers to the exception object is
destroyed, whichever is later. In the former case, the destruction occurs when the handler exits, immediately
after the destruction of the object declared in the exception-declaration in the handler, if any. In the latter
case, the destruction occurs before the destructor of std::exception_ptr returns. The implementation
may then deallocate the memory for the exception object; any such deallocation is done in an unspecified
way.

When the thrown object is a class object, the copy/move constructor and the destructor shall be accessible,
even if the copy/move operation is elided (12.8).

An exception is considered caught when a handler for that exception becomes active (15.3). [Note: an
exception can have active handlers and still be considered uncaught if it is rethrown. — end note]

A throw-expression with no operand rethrows the currently handled exception (15.3). The exception is
reactivated with the existing temporary; no new temporary exception object is created. The exception is
no longer considered to be caught; therefore, the value of std: :uncaught_exception() will again be true.
[Example: code that must be executed because of an exception yet cannot completely handle the exception
can be written like this:

try {

/) ..

} catch (...) { // catch all exceptions
// respond (partially) to exception

§ 15.1 389

©ISO/IEC N3092

throw; // pass the exception to some
// other handler
}

— end example]

If no exception is presently being handled, executing a throw-expression with no operand calls std::
terminate() (15.5.1).

15.2 Constructors and destructors [except.ctor]

As control passes from a throw-expression to a handler, destructors are invoked for all automatic objects
constructed since the try block was entered. The automatic objects are destroyed in the reverse order of the
completion of their construction.

An object that is partially constructed or partially destroyed will have destructors executed for all of its
fully constructed base classes and non-variant members, that is, for subobjects for which the principal
constructor (12.6.2) has completed execution and the destructor has not yet begun execution. Similarly,
if the non-delegating constructor for an object has completed execution and a delegating constructor for
that object exits with an exception, the object’s destructor will be invoked. If the object was allocated in a
new-expression, the matching deallocation function (3.7.4.2, 5.3.4, 12.5), if any, is called to free the storage
occupied by the object.

The process of calling destructors for automatic objects constructed on the path from a try block to a throw-
expression is called “stack unwinding.” [Note: If a destructor called during stack unwinding exits with an
exception, std::terminate is called (15.5.1). So destructors should generally catch exceptions and not let
them propagate out of the destructor. — end note

15.3 Handling an exception [except.handle]

The exzception-declaration in a handler describes the type(s) of exceptions that can cause that handler to
be entered. The exception-declaration shall not denote an incomplete type or an rvalue reference type. The
exception-declaration shall not denote a pointer or reference to an incomplete type, other than void*, const
void*, volatile void*, or const volatile voidx.

A handler of type “array of T” or “function returning T” is adjusted to be of type “pointer to T” or “pointer
to function returning T”, respectively.

A handler is a match for an exception object of type E if

— The handler is of type cv T or cv T& and E and T are the same type (ignoring the top-level cv-qualifiers),
or

— the handler is of type cv T or cv T& and T is an unambiguous public base class of E, or

— the handler is of type cvl T* cv2 and E is a pointer type that can be converted to the type of the
handler by either or both of

— a standard pointer conversion (4.10) not involving conversions to pointers to private or protected
or ambiguous classes

— a qualification conversion
— the handler is a pointer or pointer to member type and E is std: :nullptr_t.

[Note: a throw-expression whose operand is an integral constant expression of integer type that evaluates
to zero does not match a handler of pointer or pointer to member type. — end note|

[Example:

§15.3 390

10

11

12

13

©ISO/IEC N3092

class Matherr { /x ... x/ virtual void vi(); };
class Overflow: public Matherr { /x ... %/ };

class Underflow: public Matherr { /x ... %/ };
class Zerodivide: public Matherr { /x ... %/ };

void f£() {
try {
g0
} catch (Overflow oo) {
Y
} catch (Matherr mm) {
/) ..
}
}

Here, the Overflow handler will catch exceptions of type Overflow and the Matherr handler will catch
exceptions of type Matherr and of all types publicly derived from Matherr including exceptions of type
Underflow and Zerodivide. — end example]

The handlers for a try block are tried in order of appearance. That makes it possible to write handlers that
can never be executed, for example by placing a handler for a derived class after a handler for a corresponding
base class.

A ... in a handler’s exception-declaration functions similarly to ... in a function parameter declaration;
it specifies a match for any exception. If present, a ... handler shall be the last handler for its try block.

If no match is found among the handlers for a try block, the search for a matching handler continues in a
dynamically surrounding try block.

A handler is considered active when initialization is complete for the formal parameter (if any) of the catch
clause. [Note: the stack will have been unwound at that point. — end note] Also, an implicit handler is
considered active when std::terminate() or std::unexpected() is entered due to a throw. A handler
is no longer considered active when the catch Clause exits or when std: :unexpected() exits after being
entered due to a throw.

The exception with the most recently activated handler that is still active is called the currently handled
exception.

If no matching handler is found, the function std::terminate() is called; whether or not the stack is
unwound before this call to std: :terminate() is implementation-defined (15.5.1).

Referring to any non-static member or base class of an object in the handler for a function-try-block of a
constructor or destructor for that object results in undefined behavior.

The fully constructed base classes and members of an object shall be destroyed before entering the handler
of a function-try-block of a constructor for that object. Similarly, if a delegating constructor for an object
exits with an exception after the non-delegating constructor for that object has completed execution, the
object’s destructor shall be executed before entering the handler of a function-try-block of a constructor for
that object. The base classes and non-variant members of an object shall be destroyed before entering the
handler of a function-try-block of a destructor for that object (12.4).

The scope and lifetime of the parameters of a function or constructor extend into the handlers of a function-
try-block.

Exceptions thrown in destructors of objects with static storage duration or in constructors of namespace-
scope objects with static storage duration are not caught by a function-try-block on main(). Exceptions

§15.3 391

14

15

16

17

©ISO/IEC N3092

thrown in destructors of objects with thread storage duration or in constructors of namespace-scope objects
with thread storage duration are not caught by a function-try-block on the initial function of the thread.

If a return statement appears in a handler of the function-try-block of a constructor, the program is ill-formed.

The currently handled exception is rethrown if control reaches the end of a handler of the function-try-block
of a constructor or destructor. Otherwise, a function returns when control reaches the end of a handler for
the function-try-block (6.6.3). Flowing off the end of a function-try-block is equivalent to a return with no
value; this results in undefined behavior in a value-returning function (6.6.3).

The object declared in an exception-declaration or, if the exception-declaration does not specify a name, a
temporary (12.2) is copy-initialized (8.5) from the exception object. The object shall not have an abstract
class type. The object is destroyed when the handler exits, after the destruction of any automatic objects
initialized within the handler.

When the handler declares a non-constant object, any changes to that object will not affect the temporary
object that was initialized by execution of the throw-expression. When the handler declares a reference to
a non-constant object, any changes to the referenced object are changes to the temporary object initialized
when the throw-expression was executed and will have effect should that object be rethrown.

15.4 Exception specifications [except.spec]

A function declaration lists exceptions that its function might directly or indirectly throw by using an
exception-specification as a suffix of its declarator.
exception-specification:
dynamic-exception-specification
noexcept-specification
dynamic-exception-specification:
throw (type-id-listop:)
type-id-list:
type-id . . . opt
type-id-list , type-id .. .,pt
noexcept-specification:
noexcept (constant-expression)
noexcept

In a noexcept-specification, the constant-expression, if supplied, shall be a constant expression (5.19) that is
contextually converted to bool (Clause 4). A noezcept-specification noexcept is equivalent to noexcept (true).

An exception-specification shall appear only on a function declarator for a function type, pointer to function
type, reference to function type, or pointer to member function type that is the top-level type of a declaration
or definition, or on such a type appearing as a parameter or return type in a function declarator. An
exception-specification shall not appear in a typedef declaration or alias-declaration. [Example:

void £() throw(int); // OK
void (xfp) () throw (int); // OK
void g(void pfa() throw(int)); // OK
typedef int (*pf) () throw(int); // ill-formed

— end example] A type denoted in an exception-specification shall not denote an incomplete type. A type
denoted in an exception-specification shall not denote a pointer or reference to an incomplete type, other
than void*, const void*, volatile void*, or const volatile void*. A type cv T, “array of T”, or
“function returning T” denoted in an exception-specification is adjusted to type T, “pointer to T”, or “pointer
to function returning T”, respectively.

§ 15.4 392

©ISO/IEC N3092

Two exception-specifications are compatible if:
— both are non-throwing (see below), regardless of their form,
— both have the form noexcept (constant-expression) and the constant-expressions are equivalent,

— one exception-specification is a moexcept-specification allowing all exceptions and the other is of the
form throw (type-id-list), or

— both are dynamic-exception-specifications that have the same set of adjusted types.

If any declaration of a function has an exception-specification that is not a noexcept-specification allowing
all exceptions, all declarations, including the definition and any explicit specialization, of that function shall
have a compatible exception-specification. If any declaration of a pointer to function, reference to function,
or pointer to member function has an exception-specification, all occurrences of that declaration shall have
a compatible exception-specification In an explicit instantiation an exception-specification may be specified,
but is not required. If an exception-specification is specified in an explicit instantiation directive, it shall be
compatible with the exception-specifications of other declarations of that function. A diagnostic is required
only if the exception-specifications are not compatible within a single translation unit.

If a virtual function has an exception-specification, all declarations, including the definition, of any function
that overrides that virtual function in any derived class shall only allow exceptions that are allowed by the
exception-specification of the base class virtual function. [Ezample:

struct B {
virtual void f() throw (int, double);
virtual void g();

};
struct D: B {
void £Q); // ill-formed

void g() throw (int); // OK
};

The declaration of D::f is ill-formed because it allows all exceptions, whereas B: :f allows only int and
double. —end example] A similar restriction applies to assignment to and initialization of pointers to
functions, pointers to member functions, and references to functions: the target entity shall allow at least
the exceptions allowed by the source value in the assignment or initialization. [Example:

class A { /x ... x/ };
void (xpf1)(); // no exception specification
void (*pf2) () throw(A);

void £() {
pfl = pf2; // OK: pfl is less restrictive
pf2 = pfi; // error: p£2 is more restrictive
}

— end example|

In such an assignment or initialization, exception-specifications on return types and parameter types shall
be compatible. In other assignments or initializations, exception-specifications shall be compatible.

An exception-specification can include the same type more than once and can include classes that are related
by inheritance, even though doing so is redundant. [Note: An exception-specification can also include the
class std: :bad_exception (18.8.2.1). — end note]

§ 15.4 393

10

11

12

13

14

©ISO/IEC N3092

A function is said to allow an exception of type E if its dynamic-exception-specification contains a type T for
which a handler of type T would be a match (15.3) for an exception of type E.

Whenever an exception is thrown and the search for a handler (15.3) encounters the outermost block of a
function with an ezception-specification that does not allow the exception, then,

— if the exception-specification is a dynamic-exception-specification, the function std: :unexpected() is
called (15.5.2),

— otherwise, the function std: :terminate () is called (15.5.1).
[Ezample:

class X { };
class Y { };
class Z: public X { };
class W { };

void £() throw (X, Y) {
int n = 0;

if (n) throw X(); // OK
if (n) throw Z(); // also OK
throw W(Q); // will call std: :unexpected()

}

— end example]

The function std::unexpected() may throw an exception that will satisfy the exception-specification for
which it was invoked, and in this case the search for another handler will continue at the call of the function
with this exception-specification (see 15.5.2), or it may call std: :terminate().

An implementation shall not reject an expression merely because when executed it throws or might throw
an exception that the containing function does not allow. [Ezample:

extern void f() throw(X, Y);

void g() throw(X) {
£0; // OK
}

the call to f is well-formed even though when called, £ might throw exception Y that g does not allow.
— end example]

A function with no exception-specification or with an exception-specification of the form noexcept (constant-
expression) where the constant-expression yields false allows all exceptions. An exception-specification is
non-throwing if it is of the form throw(), noexcept, or noexcept (constant-expression) where the constant-
expression yields true. A function with a non-throwing exception-specification does not allow any exceptions.

An exception-specification is not considered part of a function’s type.

An implicitly declared special member function (Clause 12) shall have an ezception-specification. If f is
an implicitly declared default constructor, copy constructor, move constructor, destructor, copy assignment
operator, or move assignment operator, its implicit exception-specification specifies the type-id T if and only
if T is allowed by the exception-specification of a function directly invoked by f’s implicit definition; £ shall
allow all exceptions if any function it directly invokes allows all exceptions, and f shall allow no exceptions
if every function it directly invokes allows no exceptions. [Example:

§ 15.4 394

15

16

©ISO/IEC N3092

struct A {
AO;
A(const A&) throw();
A(A&%) throw();
“A() throw(X);
}
struct B {
B() throw();
B(const B&) throw();
B(B&&) throw(Y);
“B() throw(Y);
};
struct D : public A, public B {
// Implicit declaration of D::D();
// Implicit declaration of D::D(const D&) throw();
// Implicit declaration of D::D(D&&) throw(Y);
// Implicit declaration of D::~D() throw(X, Y);
};

Furthermore, if A::"A() or B: : "B() were virtual, D: : "D() would not be as restrictive as that of A::~A, and
the program would be ill-formed since a function that overrides a virtual function from a base class shall
have an exception-specification at least as restrictive as that in the base class. — end example]

In a dynamic-exception-specification, a type-id followed by an ellipsis is a pack expansion (14.5.3).

[Note: The use of dynamic-exception-specifications is deprecated (see Annex D). — end note]

15.5 Special functions [except.special]

The functions std: :terminate() (15.5.1) and std: :unexpected() (15.5.2) are used by the exception han-
dling mechanism for coping with errors related to the exception handling mechanism itself. The function
std::current_exception() (18.8.5) and the class std: :nested_exception (18.8.6) can be used by a pro-
gram to capture the currently handled exception.

15.5.1 The std::terminate() function [except.terminate]

In the following situations exception handling must be abandoned for less subtle error handling techniques:

— when the exception handling mechanism, after completing evaluation of the expression to be thrown
but before the exception is caught (15.1), calls a function that exits via an uncaught exception,!43

— when the exception handling mechanism cannot find a handler for a thrown exception (15.3), or

— when the search for a handler (15.3) encounters the outermost block of a function with a noezcept-
specification that does not allow the exception (15.4), or

— when the destruction of an object during stack unwinding (15.2) terminates by throwing an exception,
or

— when initialization of a non-local variable with static or thread storage duration (3.6.2, 3.6.3) terminates
by throwing an exception, or

— when destruction of an object with static or thread storage duration exits using an exception (3.6.3),
or

143) For example, if the object being thrown is of a class with a copy constructor, std: :terminate() will be called if that copy
constructor exits with an exception during a throw.

§ 15.5.1 395

©ISO/IEC N3092

— when execution of a function registered with std: :atexit exits using an exception (18.5), or

— when a throw-expression with no operand attempts to rethrow an exception and no exception is being
handled (15.1), or

— when std: :unexpected throws an exception which is not allowed by the previously violated exception-
specification, and std: :bad_exception is not included in that ezception-specification (15.5.2), or

— when the implementation’s default unexpected exception handler is called (18.8.2.2).

In such cases, std: :terminate() is called (18.8.3). In the situation where no matching handler is found, it
is implementation-defined whether or not the stack is unwound before std: :terminate() is called. In the
situation where the search for a handler (15.3) encounters the outermost block of a function with a noexcept-
specification that does not allow the exception (15.4), it is implementation-defined whether the stack is
unwound before std: :terminate() is called. In all other situations, the stack shall not be unwound before
std: :terminate() is called. An implementation is not permitted to finish stack unwinding prematurely
based on a determination that the unwind process will eventually cause a call to std: :terminate().

15.5.2 The std: :unexpected() function [except.unexpected]

If a function with an exception-specification throws an exception that is not listed in the exception-specification,
the function std::unexpected() is called (18.8.2) immediately after completing the stack unwinding for
the former function.

[Note: By default, std: :unexpected() calls std: :terminate (), but a program can install its own handler
function (18.8.2.3). In either case, the constraints in the following paragraph apply. — end note|

The std: :unexpected () function shall not return, but it can throw (or re-throw) an exception. If it throws a
new exception which is allowed by the exception specification which previously was violated, then the search
for another handler will continue at the call of the function whose exception specification was violated. If it
throws or rethrows an exception that the exception-specification does not allow then the following happens:
If the exception-specification does not include the class std: :bad_exception (18.8.2.1) then the function
std: :terminate () is called, otherwise the thrown exception is replaced by an implementation-defined object
of the type std: :bad_exception and the search for another handler will continue at the call of the function
whose exception-specification was violated.

Thus, an exception-specification guarantees that only the listed exceptions will be thrown. If the exception-
specification includes the type std: :bad_exception then any exception not on the list may be replaced by
std: :bad_exception within the function std: :unexpected().

15.5.3 The std::uncaught_exception() function [except.uncaught]

The function std::uncaught_exception() returns true after completing evaluation of the object to be
thrown until completing the initialization of the ezception-declaration in the matching handler (18.8.4).
This includes stack unwinding. If the exception is rethrown (15.1), std: :uncaught_exception() returns
true from the point of rethrow until the rethrown exception is caught again.

§ 15.5.3 396

©ISO/IEC N3092

16 Preprocessing directives [cpp]

A preprocessing directive consists of a sequence of preprocessing tokens that satisfies the following constraints:
The first token in the sequence is a # preprocessing token that (at the start of translation phase 4) is either
the first character in the source file (optionally after white space containing no new-line characters) or that
follows white space containing at least one new-line character. The last token in the sequence is the first new-
line character that follows the first token in the sequence.'#* A new-line character ends the preprocessing
directive even if it occurs within what would otherwise be an invocation of a function-like macro.
preprocessing-file:
groupopt
group:
group-part
group group-part
group-part:
if-section
control-line
text-line
mon-directive
if-section:
if-group elif-groupsop: else-groupop: endif-line

if-group:
if constant-expression new-line groupopt
ifdef identifier new-line groupop:
ifndef identifier new-line groupop:

elif-groups:
elif-group
elif-groups elif-group
elif-group:
elif constant-expression new-line group,p:

else-group:
else new-line groupopt

endif-line:
endif new-line

144) Thus, preprocessing directives are commonly called “lines.” These “lines” have no other syntactic significance, as all
white space is equivalent except in certain situations during preprocessing (see the # character string literal creation operator
in 16.3.2, for example).

397

©ISO/IEC N3092

control-line:

include pp-tokens new-line
define identifier replacement-list new-line
define identifier lparen identifier-listop:) replacement-list new-line
define identifier lparen ...) replacement-list new-line
define identifier lparen identifier-list, ...) replacement-list new-line
undef identifier new-line
line pp-tokens new-line
error pp-tokensop: new-line
pragma pp-tokensop: new-line
new-line
text-line:

pp-tokensop: mew-line

non-directive:
pp-tokens new-line
Iparen:
a (character not immediately preceded by white-space
identifier-list:
identifier
identifier-list , identifier
replacement-list:
pp-tokensopt

pp-tokens:
preprocessing-token
pp-tokens preprocessing-token
new-line:
the new-line character
A text line shall not begin with a # preprocessing token. A non-directive shall not begin with any of the
directive names appearing in the syntax.

When in a group that is skipped (16.1), the directive syntax is relaxed to allow any sequence of preprocessing
tokens to occur between the directive name and the following new-line character.

The only white-space characters that shall appear between preprocessing tokens within a preprocessing
directive (from just after the introducing # preprocessing token through just before the terminating new-line
character) are space and horizontal-tab (including spaces that have replaced comments or possibly other
white-space characters in translation phase 3).

The implementation can process and skip sections of source files conditionally, include other source files,
and replace macros. These capabilities are called preprocessing, because conceptually they occur before
translation of the resulting translation unit.

The preprocessing tokens within a preprocessing directive are not subject to macro expansion unless other-
wise stated.

[Example: In:

#define EMPTY
EMPTY # include <file.h>

398

©ISO/IEC N3092

the sequence of preprocessing tokens on the second line is not a preprocessing directive, because it does not
begin with a # at the start of translation phase 4, even though it will do so after the macro EMPTY has been
replaced. — end example]

16.1 Conditional inclusion [cpp.cond]

The expression that controls conditional inclusion shall be an integral constant expression except that iden-
tifiers (including those lexically identical to keywords) are interpreted as described below!'4® and it may
contain unary operator expressions of the form

defined identifier
or
defined (identifier)

which evaluate to 1 if the identifier is currently defined as a macro name (that is, if it is predefined or if it
has been the subject of a #define preprocessing directive without an intervening #undef directive with the
same subject identifier), 0 if it is not.

Each preprocessing token that remains (in the list of preprocessing tokens that will become the controlling
expression) after all macro replacements have occurred shall be in the lexical form of a token (2.7).

Preprocessing directives of the forms

if constant-expression new-line groupop:
elif constant-expression new-line group,p:

check whether the controlling constant expression evaluates to nonzero.

Prior to evaluation, macro invocations in the list of preprocessing tokens that will become the controlling
constant expression are replaced (except for those macro names modified by the defined unary operator),
just as in normal text. If the token defined is generated as a result of this replacement process or use
of the defined unary operator does not match one of the two specified forms prior to macro replacement,
the behavior is undefined. After all replacements due to macro expansion and the defined unary operator
have been performed, all remaining identifiers and keywords'#®, except for true and false, are replaced
with the pp-number 0, and then each preprocessing token is converted into a token. The resulting tokens
comprise the controlling constant expression which is evaluated according to the rules of 5.19 using arithmetic
that has at least the ranges specified in 18.3. For the purposes of this token conversion and evaluation all
signed and unsigned integer types act as if they have the same representation as, respectively, intmax_t
or uintmax_t (18.4).147 This includes interpreting character literals, which may involve converting escape
sequences into execution character set members. Whether the numeric value for these character literals
matches the value obtained when an identical character literal occurs in an expression (other than within a
#if or #elif directive) is implementation-defined.'#® Also, whether a single-character character literal may
have a negative value is implementation-defined. Each subexpression with type bool is subjected to integral
promotion before processing continues.

145) Because the controlling constant expression is evaluated during translation phase 4, all identifiers either are or are not
macro names — there simply are no keywords, enumeration constants, etc.
146) An alternative token (2.6) is not an identifier, even when its spelling consists entirely of letters and underscores. Therefore
it is not subject to this replacement.
147) Thus on an implementation where std::numeric_limits<int>::max() is Ox7FFF and std:: numeric_limits<unsigned
int>::max() is OxFFFF, the integer literal 0x8000 is signed and positive within a #if expression even though it is unsigned in
translation phase 7 (2.2).
148) Thus, the constant expression in the following #if directive and if statement is not guaranteed to evaluate to the same
value in these two contexts.

#if 'z’ - ’a’ == 25

if (’z’ - ’a’ == 25)

§ 16.1 399

©ISO/IEC N3092

Preprocessing directives of the forms

ifdef identifier new-line groupop:
ifndef ddentifier new-line groupopt

check whether the identifier is or is not currently defined as a macro name. Their conditions are equivalent
to #if defined identifier and #if !defined identifier respectively.

Each directive’s condition is checked in order. If it evaluates to false (zero), the group that it controls is
skipped: directives are processed only through the name that determines the directive in order to keep track
of the level of nested conditionals; the rest of the directives’ preprocessing tokens are ignored, as are the other
preprocessing tokens in the group. Only the first group whose control condition evaluates to true (nonzero)
is processed. If none of the conditions evaluates to true, and there is a #else directive, the group controlled
by the #else is processed; lacking a #else directive, all the groups until the #endif are skipped.'4?

16.2 Source file inclusion [cpp.include]

A #include directive shall identify a header or source file that can be processed by the implementation.
A preprocessing directive of the form
include < h-char-sequence> new-line

searches a sequence of implementation-defined places for a header identified uniquely by the specified se-
quence between the < and > delimiters, and causes the replacement of that directive by the entire contents
of the header. How the places are specified or the header identified is implementation-defined.

A preprocessing directive of the form
include " ¢-char-sequence" new-line

causes the replacement of that directive by the entire contents of the source file identified by the specified
sequence between the " delimiters. The named source file is searched for in an implementation-defined
manner. If this search is not supported, or if the search fails, the directive is reprocessed as if it read

include < h-char-sequence> new-line
with the identical contained sequence (including > characters, if any) from the original directive.
A preprocessing directive of the form

include pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens after include
in the directive are processed just as in normal text (Each identifier currently defined as a macro name is
replaced by its replacement list of preprocessing tokens.). If the directive resulting after all replacements
does not match one of the two previous forms, the behavior is undefined.'®® The method by which a sequence
of preprocessing tokens between a < and a > preprocessing token pair or a pair of " characters is combined
into a single header name preprocessing token is implementation-defined.

The implementation shall provide unique mappings for sequences consisting of one or more nondigits or
digits (2.11) followed by a period (.) and a single nondigit. The first character shall not be a digit. The
implementation may ignore distinctions of alphabetical case.

149) As indicated by the syntax, a preprocessing token shall not follow a #else or #endif directive before the terminating
new-line character. However, comments may appear anywhere in a source file, including within a preprocessing directive.

150) Note that adjacent string literals are not concatenated into a single string literal (see the translation phases in 2.2); thus,
an expansion that results in two string literals is an invalid directive.

§ 16.2 400

©ISO/IEC N3092

A #include preprocessing directive may appear in a source file that has been read because of a #include
directive in another file, up to an implementation-defined nesting limit.

[Note: Although an implementation may provide a mechanism for making arbitrary source files available to
the < > search, in general programmers should use the < > form for headers provided with the implementa-
tion, and the " " form for sources outside the control of the implementation. For instance:

#tinclude <stdio.h>
#include <unistd.h>
#include "usefullib.h"
#include "myprog.h"

— end note]
[Ezample: This illustrates macro-replaced #include directives:

#if VERSION ==
#define INCFILE "versl.h"
#elif VERSION ==
#define INCFILE ‘"vers2.h" // and so on
#else
#define INCFILE "versN.h"
#endif
#include INCFILE

— end example]

16.3 Macro replacement [cpp.replace]

Two replacement lists are identical if and only if the preprocessing tokens in both have the same number,
ordering, spelling, and white-space separation, where all white-space separations are considered identical.

An identifier currently defined as an object-like macro may be redefined by another #define preprocessing
directive provided that the second definition is an object-like macro definition and the two replacement lists
are identical, otherwise the program is ill-formed. Likewise, an identifier currently defined as a function-like
macro may be redefined by another #define preprocessing directive provided that the second definition is a
function-like macro definition that has the same number and spelling of parameters, and the two replacement
lists are identical, otherwise the program is ill-formed.

There shall be white-space between the identifier and the replacement list in the definition of an object-like
macro.

If the identifier-list in the macro definition does not end with an ellipsis, the number of arguments (including
those arguments consisting of no preprocessing tokens) in an invocation of a function-like macro shall equal
the number of parameters in the macro definition. Otherwise, there shall be more arguments in the invocation
than there are parameters in the macro definition (excluding the ...). There shall exist a) preprocessing
token that terminates the invocation.

The identifier _ _ VA_ARGS _ _ shall occur only in the replacement-list of a function-like macro that uses the
ellipsis notation in the parameters.

A parameter identifier in a function-like macro shall be uniquely declared within its scope.

The identifier immediately following the define is called the macro name. There is one name space for macro
names. Any white-space characters preceding or following the replacement list of preprocessing tokens are
not considered part of the replacement list for either form of macro.

§ 16.3 401

10

11

12

©ISO/IEC N3092

If a # preprocessing token, followed by an identifier, occurs lexically at the point at which a preprocessing
directive could begin, the identifier is not subject to macro replacement.

A preprocessing directive of the form
define identifier replacement-list new-line

defines an object-like macro that causes each subsequent instance of the macro name'®! to be replaced by the
replacement list of preprocessing tokens that constitute the remainder of the directive.!®? The replacement
list is then rescanned for more macro names as specified below.

A preprocessing directive of the form

define identifier lparen identifier-list,p:) replacement-list new-line
define identifier lparen ...) replacement-list new-line
define identifier lparen identifier-list , ...) replacement-list new-line

defines a function-like macro with parameters, whose use is similar syntactically to a function call. The
parameters are specified by the optional list of identifiers, whose scope extends from their declaration in the
identifier list until the new-line character that terminates the #define preprocessing directive. Each subse-
quent instance of the function-like macro name followed by a (as the next preprocessing token introduces
the sequence of preprocessing tokens that is replaced by the replacement list in the definition (an invocation
of the macro). The replaced sequence of preprocessing tokens is terminated by the matching) preprocessing
token, skipping intervening matched pairs of left and right parenthesis preprocessing tokens. Within the
sequence of preprocessing tokens making up an invocation of a function-like macro, new-line is considered a
normal white-space character.

The sequence of preprocessing tokens bounded by the outside-most matching parentheses forms the list of
arguments for the function-like macro. The individual arguments within the list are separated by comma
preprocessing tokens, but comma preprocessing tokens between matching inner parentheses do not separate
arguments. If there are sequences of preprocessing tokens within the list of arguments that would otherwise
act as preprocessing directives,'®® the behavior is undefined.

If there is a ... in the identifier-list in the macro definition, then the trailing arguments, including any
separating comma preprocessing tokens, are merged to form a single item: the variable arguments. The
number of arguments so combined is such that, following merger, the number of arguments is one more than
the number of parameters in the macro definition (excluding the .. .).

16.3.1 Argument substitution [cpp.subst]

After the arguments for the invocation of a function-like macro have been identified, argument substitution
takes place. A parameter in the replacement list, unless preceded by a # or ## preprocessing token or
followed by a ## preprocessing token (see below), is replaced by the corresponding argument after all macros
contained therein have been expanded. Before being substituted, each argument’s preprocessing tokens are
completely macro replaced as if they formed the rest of the preprocessing file; no other preprocessing tokens
are available.

151) Since, by macro-replacement time, all character literals and string literals are preprocessing tokens, not sequences possibly
containing identifier-like subsequences (see 2.2, translation phases), they are never scanned for macro names or parameters.
152) An alternative token (2.6) is not an identifier, even when its spelling consists entirely of letters and underscores. Therefore
it is not possible to define a macro whose name is the same as that of an alternative token.

153) Despite the name, a non-directive is a preprocessing directive.

§16.3.1 402

©ISO/IEC N3092

An identifier _ _ VA_ARGS _ _ that occurs in the replacement list shall be treated as if it were a parameter,
and the variable arguments shall form the preprocessing tokens used to replace it.

16.3.2 The # operator [cpp.stringize]

Each # preprocessing token in the replacement list for a function-like macro shall be followed by a parameter
as the next preprocessing token in the replacement list.

A character string literal is a string-literal with no prefix. If, in the replacement list, a parameter is
immediately preceded by a # preprocessing token, both are replaced by a single character string literal
preprocessing token that contains the spelling of the preprocessing token sequence for the corresponding
argument. Each occurrence of white space between the argument’s preprocessing tokens becomes a single
space character in the character string literal. White space before the first preprocessing token and after
the last preprocessing token comprising the argument is deleted. Otherwise, the original spelling of each
preprocessing token in the argument is retained in the character string literal, except for special handling
for producing the spelling of string literals and character literals: a \ character is inserted before each " and
\ character of a character literal or string literal (including the delimiting " characters). If the replacement
that results is not a valid character string literal, the behavior is undefined. The character string literal
corresponding to an empty argument is "". The order of evaluation of # and ## operators is unspecified.

16.3.3 The ## operator [cpp.concat]

A ## preprocessing token shall not occur at the beginning or at the end of a replacement list for either form
of macro definition.

If, in the replacement list of a function-like macro, a parameter is immediately preceded or followed by
a ## preprocessing token, the parameter is replaced by the corresponding argument’s preprocessing token
sequence; however, if an argument consists of no preprocessing tokens, the parameter is replaced by a
placemarker preprocessing token instead.®*

For both object-like and function-like macro invocations, before the replacement list is reexamined for more
macro names to replace, each instance of a ## preprocessing token in the replacement list (not from an
argument) is deleted and the preceding preprocessing token is concatenated with the following preprocessing
token. Placemarker preprocessing tokens are handled specially: concatenation of two placemarkers results
in a single placemarker preprocessing token, and concatenation of a placemarker with a non-placemarker
preprocessing token results in the non-placemarker preprocessing token. If the result is not a valid prepro-
cessing token, the behavior is undefined. The resulting token is available for further macro replacement.
The order of evaluation of ## operators is unspecified.

[Example: In the following fragment:

#define hash_hash # ## #
#define mkstr(a) # a
#define in_between(a) mkstr(a)
#define join(c, d) in_between(c hash_hash d)
char p[] = join(x, y); // equivalent to
// char pf] = "5 ## y';

The expansion produces, at various stages:

join(x, y)
in_between(x hash_hash y)
in_between(x ## y)

154) Placemarker preprocessing tokens do not appear in the syntax because they are temporary entities that exist only within
translation phase 4.

§ 16.3.3 403

©ISO/IEC N3092

mkstr(x ## y)
IIX ## yll

In other words, expanding hash_hash produces a new token, consisting of two adjacent sharp signs, but this
new token is not the ## operator. — end ezample]

16.3.4 Rescanning and further replacement [cpp.rescan]

After all parameters in the replacement list have been substituted and # and ## processing has taken
place, all placemarker preprocessing tokens are removed. Then the resulting preprocessing token sequence
is rescanned, along with all subsequent preprocessing tokens of the source file, for more macro names to
replace.

If the name of the macro being replaced is found during this scan of the replacement list (not including the
rest of the source file’s preprocessing tokens), it is not replaced. Furthermore, if any nested replacements
encounter the name of the macro being replaced, it is not replaced. These nonreplaced macro name prepro-
cessing tokens are no longer available for further replacement even if they are later (re)examined in contexts
in which that macro name preprocessing token would otherwise have been replaced.

The resulting completely macro-replaced preprocessing token sequence is not processed as a preprocessing
directive even if it resembles one, but all pragma unary operator expressions within it are then processed as
specified in 16.9 below.

16.3.5 Scope of macro definitions [cpp.scope]

A macro definition lasts (independent of block structure) until a corresponding #undef directive is encoun-
tered or (if none is encountered) until the end of the translation unit. Macro definitions have no significance
after translation phase 4.

A preprocessing directive of the form
undef identifier new-line

causes the specified identifier no longer to be defined as a macro name. It is ignored if the specified identifier
is not currently defined as a macro name.

[Note: The simplest use of this facility is to define a “manifest constant,” as in
#define TABSIZE 100
int table[TABSIZE];

— end note

The following defines a function-like macro whose value is the maximum of its arguments. It has the
advantages of working for any compatible types of the arguments and of generating in-line code without
the overhead of function calling. It has the disadvantages of evaluating one or the other of its arguments a
second time (including side effects) and generating more code than a function if invoked several times. It
also cannot have its address taken, as it has none.

#define max(a, b) ((a) > (b) ? (a) : (b))

The parentheses ensure that the arguments and the resulting expression are bound properly.

To illustrate the rules for redefinition and reexamination, the sequence

#define x 3
#define f(a) f(x * (a))
#undef x

§ 16.3.5 404

©ISO/IEC N3092

#define x 2
#define g f
#define z z[0]
#define h g(~
#define m(a) a(w)
#define w 0,1
#define t(a) a
#define p() int

#define q(x) X
#define r(x,y) x ## y
#define str(x) # x

f(y+1) + £(£(2)) % t(t(g)(0) + t)(1);
g(x+(3,4)-w) | h5) &m
(£)"m(m) ;
pO ilqO1 = { q(1), r(2,3), r(4,), r(,5), r(,) };
char c[2][6] = { str(hello), str() };

results in

£(2 * (y+1)) + £(2 * (£(2 * (z[0]1)))) % £(2 * (0)) + t(1);
£(2 x (2+(3,4)-0,1)) | £(2 * (~5)) & £(2 * (0,1))"m(0,1);
int il = { 1, 23, 4, 5, };

char c[2][6] = { "hello", "" };

6 To illustrate the rules for creating character string literals and concatenating tokens, the sequence

#define str(s) # s

#define xstr(s) str(s)

#define debug(s, t) printf("x" # s "= Jd, x" # t "= Ys", \
X ## s, x ## t)

#define INCFILE(n) vers ## n

#define glue(a, b) a ## b

#define xglue(a, b) glue(a, b)

#define HIGHLOW "hello"
#define LOW LOW ", world"
debug(1l, 2);

fputs(str(strncmp("abc\0d", "abc", ’\4’) // this goes away
== 0) str(: @\n), s);

#include xstr(INCFILE(2).h)

glue (HIGH, LOW);

xglue (HIGH, LOW)

results in
printf("x" nqn Nz %d, x" non n= %S", Xl, X2);
fputs("strncmp(\"abc\\0d\", \"abc\", ’\\4’) == 0" ": @\n", s);
#include "vers2.h" (after macro replacement, before file access)
"hello";

"hello" ", world"

or, after concatenation of the character string literals,

printf ("x1= %d, x2= s", x1, x2);
fputs("strncmp(\"abc\\0d\", \"abc\", ’\\4’) == 0: @\n", s);
#include "vers2.h" (after macro replacement, before file access)

§ 16.3.5 405

©ISO/IEC N3092

"hello";
"hello, world"

Space around the # and ## tokens in the macro definition is optional.
7 To illustrate the rules for placemarker preprocessing tokens, the sequence

#define t(x,y,z) x ## y ## z
int j0 ={ t(1,2,3), t(,4,5), t(6,{,}7), t(8,9,),
t(lo’,)’ t(’lli)’ t(’,lz)’ t(”) };

results in

int j[= { 123, 45, 67, 89,
10, 11, 12, };

8 To demonstrate the redefinition rules, the following