
c© ISO 2010 — All rights reserved

ISO/IEC JTC1 SC22 WG21 N 3092
Date: 2010-03-26

ISO/IEC IS 14882

ISO/IEC JTC1 SC22

Secretariat: ANSI

Programming Languages — C++

Langages de programmation — C++

Warning

This document is not an ISO International Standard. It is distributed for review and comment. It is subject
to change without notice and may not be referred to as an International Standard.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights
of which they are aware and to provide supporting documentation.

Document type: Draft International Standard
Document stage: (30) Final Committee Draft
Document Language: E

Copyright notice

This ISO document is a working draft or committee draft and is copyright-protected by ISO. While the
reproduction of working drafts or committee drafts in any form for use by participants in the ISO standards
development process is permitted without prior permission from ISO, neither this document nor any extract
from it may be reproduced, stored or transmitted in any form for any other purpose without prior written
permission from ISO.

Requests for permission to reproduce this document for the purpose of selling it should be addressed as
shown below or to ISO’s member body in the country of the requestor.

ISO copyright office
Case postale 56, CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Reproduction for sales purposes may be subject to royalty payments or a licensing agreement.

Violators may be prosecuted.

c© ISO/IEC N3092

Contents
Contents iii

List of Tables xi

List of Figures xv

1 General 1
1.1 Scope . 1
1.2 Normative references . 1
1.3 Definitions . 2
1.4 Implementation compliance . 4
1.5 Structure of this International Standard . 5
1.6 Syntax notation . 5
1.7 The C++ memory model . 5
1.8 The C++ object model . 6
1.9 Program execution . 7
1.10 Multi-threaded executions and data races . 10
1.11 Acknowledgments . 14

2 Lexical conventions 15
2.1 Separate translation . 15
2.2 Phases of translation . 15
2.3 Character sets . 16
2.4 Trigraph sequences . 17
2.5 Preprocessing tokens . 18
2.6 Alternative tokens . 18
2.7 Tokens . 19
2.8 Comments . 19
2.9 Header names . 19
2.10 Preprocessing numbers . 20
2.11 Identifiers . 20
2.12 Keywords . 21
2.13 Operators and punctuators . 21
2.14 Literals . 22

3 Basic concepts 31
3.1 Declarations and definitions . 31
3.2 One definition rule . 33
3.3 Scope . 35
3.4 Name lookup . 41
3.5 Program and linkage . 55
3.6 Start and termination . 58
3.7 Storage duration . 61
3.8 Object lifetime . 65
3.9 Types . 69
3.10 Lvalues and rvalues . 74

CONTENTS iii

c© ISO/IEC N3092

3.11 Alignment . 76

4 Standard conversions 77
4.1 Lvalue-to-rvalue conversion . 78
4.2 Array-to-pointer conversion . 78
4.3 Function-to-pointer conversion . 78
4.4 Qualification conversions . 78
4.5 Integral promotions . 79
4.6 Floating point promotion . 80
4.7 Integral conversions . 80
4.8 Floating point conversions . 80
4.9 Floating-integral conversions . 81
4.10 Pointer conversions . 81
4.11 Pointer to member conversions . 81
4.12 Boolean conversions . 82
4.13 Integer conversion rank . 82

5 Expressions 83
5.1 Primary expressions . 85
5.2 Postfix expressions . 92
5.3 Unary expressions . 104
5.4 Explicit type conversion (cast notation) . 112
5.5 Pointer-to-member operators . 113
5.6 Multiplicative operators . 114
5.7 Additive operators . 114
5.8 Shift operators . 116
5.9 Relational operators . 116
5.10 Equality operators . 117
5.11 Bitwise AND operator . 118
5.12 Bitwise exclusive OR operator . 118
5.13 Bitwise inclusive OR operator . 118
5.14 Logical AND operator . 118
5.15 Logical OR operator . 119
5.16 Conditional operator . 119
5.17 Assignment and compound assignment operators . 120
5.18 Comma operator . 122
5.19 Constant expressions . 122

6 Statements 125
6.1 Labeled statement . 125
6.2 Expression statement . 125
6.3 Compound statement or block . 125
6.4 Selection statements . 126
6.5 Iteration statements . 128
6.6 Jump statements . 131
6.7 Declaration statement . 132
6.8 Ambiguity resolution . 133

7 Declarations 135
7.1 Specifiers . 137
7.2 Enumeration declarations . 150

CONTENTS iv

c© ISO/IEC N3092

7.3 Namespaces . 153
7.4 The asm declaration . 166
7.5 Linkage specifications . 167
7.6 Attributes . 170

8 Declarators 176
8.1 Type names . 177
8.2 Ambiguity resolution . 178
8.3 Meaning of declarators . 179
8.4 Function definitions . 192
8.5 Initializers . 196

9 Classes 210
9.1 Class names . 212
9.2 Class members . 214
9.3 Member functions . 216
9.4 Static members . 219
9.5 Unions . 221
9.6 Bit-fields . 222
9.7 Nested class declarations . 223
9.8 Local class declarations . 224
9.9 Nested type names . 225

10 Derived classes 226
10.1 Multiple base classes . 227
10.2 Member name lookup . 229
10.3 Virtual functions . 233
10.4 Abstract classes . 236

11 Member access control 239
11.1 Access specifiers . 241
11.2 Accessibility of base classes and base class members . 242
11.3 Access declarations . 244
11.4 Friends . 245
11.5 Protected member access . 248
11.6 Access to virtual functions . 249
11.7 Multiple access . 250
11.8 Nested classes . 250

12 Special member functions 251
12.1 Constructors . 251
12.2 Temporary objects . 253
12.3 Conversions . 255
12.4 Destructors . 258
12.5 Free store . 261
12.6 Initialization . 263
12.7 Construction and destruction . 269
12.8 Copying and moving class objects . 271
12.9 Inheriting Constructors . 279

13 Overloading 283

CONTENTS v

c© ISO/IEC N3092

13.1 Overloadable declarations . 283
13.2 Declaration matching . 285
13.3 Overload resolution . 286
13.4 Address of overloaded function . 305
13.5 Overloaded operators . 306
13.6 Built-in operators . 311

14 Templates 315
14.1 Template parameters . 316
14.2 Names of template specializations . 319
14.3 Template arguments . 320
14.4 Type equivalence . 326
14.5 Template declarations . 327
14.6 Name resolution . 343
14.7 Template instantiation and specialization . 356
14.8 Function template specializations . 367

15 Exception handling 387
15.1 Throwing an exception . 388
15.2 Constructors and destructors . 390
15.3 Handling an exception . 390
15.4 Exception specifications . 392
15.5 Special functions . 395

16 Preprocessing directives 397
16.1 Conditional inclusion . 399
16.2 Source file inclusion . 400
16.3 Macro replacement . 401
16.4 Line control . 406
16.5 Error directive . 407
16.6 Pragma directive . 407
16.7 Null directive . 407
16.8 Predefined macro names . 407
16.9 Pragma operator . 408

17 Library introduction 410
17.1 General . 410
17.2 The C standard library . 411
17.3 Definitions . 411
17.4 Additional definitions . 414
17.5 Method of description (Informative) . 414
17.6 Library-wide requirements . 421

18 Language support library 432
18.1 General . 432
18.2 Types . 432
18.3 Implementation properties . 433
18.4 Integer types . 442
18.5 Start and termination . 443
18.6 Dynamic memory management . 445
18.7 Type identification . 450

CONTENTS vi

c© ISO/IEC N3092

18.8 Exception handling . 452
18.9 Initializer lists . 458
18.10 Other runtime support . 459

19 Diagnostics library 461
19.1 General . 461
19.2 Exception classes . 461
19.3 Assertions . 465
19.4 Error numbers . 466
19.5 System error support . 466

20 General utilities library 478
20.1 General . 478
20.2 Requirements . 478
20.3 Utility components . 488
20.4 Tuples . 495
20.5 Class template bitset . 504
20.6 Compile-time rational arithmetic . 511
20.7 Metaprogramming and type traits . 513
20.8 Function objects . 529
20.9 Memory . 550
20.10 Time utilities . 594
20.11 Date and time functions . 608
20.12 Class type_index . 608

21 Strings library 611
21.1 General . 611
21.2 Character traits . 611
21.3 String classes . 617
21.4 Class template basic_string . 620
21.5 Numeric Conversions . 648
21.6 Hash support . 650
21.7 Null-terminated sequence utilities . 650

22 Localization library 654
22.1 General . 654
22.2 Header <locale> synopsis . 654
22.3 Locales . 655
22.4 Standard locale categories . 667
22.5 Standard code conversion facets . 708
22.6 C Library Locales . 709

23 Containers library 710
23.1 General . 710
23.2 Container requirements . 710
23.3 Sequence containers . 737
23.4 Associative containers . 777
23.5 Unordered associative containers . 794

24 Iterators library 810
24.1 General . 810

CONTENTS vii

c© ISO/IEC N3092

24.2 Iterator requirements . 810
24.3 Header <iterator> synopsis . 815
24.4 Iterator primitives . 818
24.5 Iterator adaptors . 822
24.6 Stream iterators . 836

25 Algorithms library 844
25.1 General . 844
25.2 Non-modifying sequence operations . 854
25.3 Mutating sequence operations . 859
25.4 Sorting and related operations . 868
25.5 C library algorithms . 882

26 Numerics library 884
26.1 General . 884
26.2 Numeric type requirements . 884
26.3 The floating-point environment . 885
26.4 Complex numbers . 886
26.5 Random number generation . 895
26.6 Numeric arrays . 942
26.7 Generalized numeric operations . 964
26.8 C Library . 967

27 Input/output library 972
27.1 General . 972
27.2 Iostreams requirements . 973
27.3 Forward declarations . 973
27.4 Standard iostream objects . 975
27.5 Iostreams base classes . 977
27.6 Stream buffers . 997
27.7 Formatting and manipulators . 1007
27.8 String-based streams . 1034
27.9 File-based streams . 1045

28 Regular expressions library 1060
28.1 General . 1060
28.2 Definitions . 1060
28.3 Requirements . 1061
28.4 Header <regex> synopsis . 1063
28.5 Namespace std::regex_constants . 1069
28.6 Class regex_error . 1074
28.7 Class template regex_traits . 1074
28.8 Class template basic_regex . 1076
28.9 Class template sub_match . 1082
28.10 Class template match_results . 1088
28.11 Regular expression algorithms . 1093
28.12 Regular expression Iterators . 1098
28.13 Modified ECMAScript regular expression grammar . 1104

29 Atomic operations library 1107
29.1 General . 1107

CONTENTS viii

c© ISO/IEC N3092

29.2 Header <atomic> synopsis . 1107
29.3 Order and Consistency . 1110
29.4 Lock-free Property . 1112
29.5 Atomic Types . 1113
29.6 Operations on Atomic Types . 1122
29.7 Flag Type and Operations . 1126
29.8 Fences . 1127

30 Thread support library 1129
30.1 General . 1129
30.2 Requirements . 1129
30.3 Threads . 1130
30.4 Mutual exclusion . 1136
30.5 Condition variables . 1150
30.6 Futures . 1158

A Grammar summary 1178
A.1 Keywords . 1178
A.2 Lexical conventions . 1178
A.3 Basic concepts . 1183
A.4 Expressions . 1183
A.5 Statements . 1186
A.6 Declarations . 1187
A.7 Declarators . 1191
A.8 Classes . 1193
A.9 Derived classes . 1193
A.10 Special member functions . 1194
A.11 Overloading . 1194
A.12 Templates . 1194
A.13 Exception handling . 1195
A.14 Preprocessing directives . 1196

B Implementation quantities 1198

C Compatibility 1200
C.1 C++ and ISO C . 1200
C.2 Standard C library . 1209

D Compatibility features 1214
D.1 Increment operator with bool operand . 1214
D.2 static keyword . 1214
D.3 Access declarations . 1214
D.4 register keyword . 1214
D.5 Dynamic exception specifications . 1214
D.6 C standard library headers . 1214
D.7 Old iostreams members . 1215
D.8 char* streams . 1216
D.9 Binders . 1225
D.10 auto_ptr . 1227

E Cross references 1230

CONTENTS ix

c© ISO/IEC N3092

Index 1247

Index of Grammar Productions 1272

Index of Library Names 1275

Index of Implementation Defined Behavior 1309

CONTENTS x

c© ISO/IEC N3092

List of Tables
1 Trigraph sequences . 17
2 Alternative tokens . 19
3 Keywords . 21
4 Alternative representations . 21
5 Types of integer constants . 23
6 Escape sequences . 25
7 String literal concatenations . 28

8 Relations on const and volatile . 74

9 simple-type-specifiers and the types they specify . 147

10 Relationship between operator and function call notation . 291
11 Conversions . 299

12 Library categories . 410
13 C++ library headers . 422
14 C++ headers for C library facilities . 422
15 C++ headers for freestanding implementations . 423

16 Language support library summary . 432
17 Header <cstddef> synopsis . 432
18 Header <climits> synopsis . 442
19 Header <cfloat> synopsis . 442
20 Header <cstdlib> synopsis . 443
21 Header <cstdarg> synopsis . 459
22 Header <csetjmp> synopsis . 459
23 Header <ctime> synopsis . 459
24 Header <csignal> synopsis . 460
25 Header <cstdlib> synopsis . 460
26 Header <cstdbool> synopsis . 460

27 Diagnostics library summary . 461
28 Header <cassert> synopsis . 465
29 Header <cerrno> synopsis . 466

30 General utilities library summary . 478
31 EqualityComparable requirements . 479
32 LessThanComparable requirements . 479
33 DefaultConstructible requirements . 479
34 MoveConstructible requirements . 479
35 CopyConstructible requirements (in addition to MoveConstructible) 479
36 MoveAssignable requirements . 479
37 CopyAssignable requirements(in addition to MoveAssignable) 480
38 Destructible requirements . 480
39 NullablePointer requirements . 483

List of Tables List of Tables xi

c© ISO/IEC N3092

40 Hash requirements . 483
41 Descriptive variable definitions . 483
42 Allocator requirements . 485
43 Primary type category predicates . 516
44 Composite type category predicates . 517
45 Type property predicates . 518
46 Type property queries . 522
47 Type relationship predicates . 523
48 Const-volatile modifications . 524
49 Reference modifications . 525
50 Sign modifications . 525
51 Array modifications . 526
52 Pointer modifications . 527
53 Other transformations . 527
54 Header <cstdlib> synopsis . 593
55 Header <cstring> synopsis . 594
56 Clock requirements . 597
57 Header <ctime> synopsis . 608

58 Strings library summary . 611
59 Character traits requirements . 612
60 basic_string(const Allocator&) effects . 625
61 basic_string(const basic_string&) effects . 626
62 basic_string(const basic_string&, size_type, size_type, const Allocator&) effects . 626
63 basic_string(const charT*, size_type, const Allocator&) effects 626
64 basic_string(const charT*, const Allocator&) effects . 627
65 basic_string(size_t, charT, const Allocator&) effects . 627
66 basic_string(const basic_string&, const Allocator&) and basic_string(basic_string&&,

const Allocator&) effects . 628
67 operator=(const basic_string<charT, traits, Allocator>&) effects 628
68 operator=(const basic_string<charT, traits, Allocator>&&) effects 628
69 compare() results . 642
70 Potential mbstate_t data races . 651
71 Header <cctype> synopsis . 652
72 Header <cwctype> synopsis . 652
73 Header <cstring> synopsis . 652
74 Header <cwchar> synopsis . 652
75 Header <cstdlib> synopsis . 653
76 Header <cuchar> synopsis . 653

77 Localization library summary . 654
78 Locale category facets . 658
79 Required specializations . 659
80 do_in/do_out result values . 677
81 do_unshift result values . 677
82 Integer conversions . 681
83 Length modifier . 681
84 Integer conversions . 685
85 Floating-point conversions . 685
86 Length modifier . 686
87 Numeric conversions . 686

List of Tables List of Tables xii

c© ISO/IEC N3092

88 Fill padding . 687
89 do_get_date effects . 694
90 Header <clocale> synopsis . 709
91 Potential setlocale data races . 709

92 Containers library summary . 710
93 Container requirements . 711
94 Reversible container requirements . 714
95 Optional container operations . 715
96 Allocator-aware container requirements . 715
97 Sequence container requirements (in addition to container) . 718
98 Optional sequence container operations . 721
99 Associative container requirements (in addition to container) . 723
100 Unordered associative container requirements (in addition to container) 729

101 Iterators library summary . 810
102 Relations among iterator categories . 810
103 Iterator requirements . 812
104 Input iterator requirements (in addition to Iterator) . 812
105 Output iterator requirements (in addition to Iterator) . 813
106 Forward iterator requirements (in addition to input iterator) . 814
107 Bidirectional iterator requirements (in addition to forward iterator) 814
108 Random access iterator requirements (in addition to bidirectional iterator) 815

109 Algorithms library summary . 844
110 Header <cstdlib> synopsis . 882

111 Numerics library summary . 884
112 Seed sequence requirements . 897
113 Uniform random number generator requirements . 898
114 Random number engine requirements . 899
115 Random number distribution requirements . 903
116 Header <cmath> synopsis . 967
117 Header <cstdlib> synopsis . 968

118 Input/output library summary . 972
119 fmtflags effects . 982
120 fmtflags constants . 982
121 iostate effects . 983
122 openmode effects . 983
123 seekdir effects . 984
124 Position type requirements . 988
125 basic_ios::init() effects . 991
126 basic_ios::copyfmt() effects . 992
127 seekoff positioning . 1038
128 newoff values . 1039
129 File open modes . 1049
130 seekoff effects . 1051
131 Header <cstdio> synopsis . 1059
132 Header <cinttypes> synopsis . 1059

133 Regular expressions library summary . 1060

List of Tables List of Tables xiii

c© ISO/IEC N3092

134 Regular expression traits class requirements . 1061
135 syntax_option_type effects . 1071
136 regex_constants::match_flag_type effects when obtaining a match against a character con-

tainer sequence [first,last). 1072
137 error_type values in the C locale . 1073
138 match_results assignment operator effects . 1090
139 Effects of regex_match algorithm . 1093
140 Effects of regex_search algorithm . 1095

141 Atomics library summary . 1107
142 Atomics for built-in types . 1117
143 Atomics for standard typedef types . 1118
144 Atomic arithmetic computations . 1125

145 Thread support library summary . 1129

146 Standard macros . 1210
147 Standard values . 1210
148 Standard types . 1210
149 Standard structs . 1210
150 Standard functions . 1211

151 C headers . 1214
152 strstreambuf(streamsize) effects . 1218
153 strstreambuf(void* (*)(size_t), void (*)(void*)) effects 1218
154 strstreambuf(charT*, streamsize, charT*) effects . 1219
155 seekoff positioning . 1221
156 newoff values . 1221

List of Tables List of Tables xiv

c© ISO/IEC N3092

List of Figures
1 Expression category taxonomy . 74

2 Directed acyclic graph . 227
3 Non-virtual base . 228
4 Virtual base . 229
5 Virtual and non-virtual base . 229
6 Name lookup . 231

7 Stream position, offset, and size types [non-normative] . 972

List of Figures List of Figures xv

c© ISO/IEC N3092

1 General [intro]
1.1 Scope [intro.scope]

1 This International Standard specifies requirements for implementations of the C++ programming language.
The first such requirement is that they implement the language, and so this International Standard also
defines C++. Other requirements and relaxations of the first requirement appear at various places within
this International Standard.

2 C++ is a general purpose programming language based on the C programming language as described in
ISO/IEC 9899:1999 Programming languages — C (hereinafter referred to as the C standard). In addition
to the facilities provided by C, C++ provides additional data types, classes, templates, exceptions, name-
spaces, inline functions, operator overloading, function name overloading, references, free store management
operators, and additional library facilities.

1.2 Normative references [intro.refs]

1 The following standards contain provisions which, through reference in this text, constitute provisions of
this International Standard. At the time of publication, the editions indicated were valid. All standards
are subject to revision, and parties to agreements based on this International Standard are encouraged to
investigate the possibility of applying the most recent editions of the standards indicated below. Members
of IEC and ISO maintain registers of currently valid International Standards.

— Ecma International, ECMAScript Language Specification, Standard Ecma-262, third edition, 1999.

— ISO/IEC 2382 (all parts), Information technology — Vocabulary

— ISO/IEC 9899:1999, Programming languages — C

— ISO/IEC 9899:1999/Cor.1:2001(E), Programming languages — C, Technical Corrigendum 1

— ISO/IEC 9899:1999/Cor.2:2004(E), Programming languages — C, Technical Corrigendum 2

— ISO/IEC 9899:1999/Cor.3:2007(E), Programming languages — C, Technical Corrigendum 3

— ISO/IEC 9945:2003, Information Technology — Portable Operating System Interface (POSIX)

— ISO/IEC TR 10176:2003, Information technology — Guidelines for the preparation of programming
language standards

— ISO/IEC 10646-1:1993, Information technology — Universal Multiple-Octet Coded Character Set (UCS)
— Part 1: Architecture and Basic Multilingual Plane

— ISO/IEC TR 19769:2004, Information technology — Programming languages, their environments and
system software interfaces — Extensions for the programming language C to support new character
data types

2 The library described in Clause 7 of ISO/IEC 9899:1999 and Clause 7 of ISO/IEC 9899:1999/Cor.1:2001
and Clause 7 of ISO/IEC 9899:1999/Cor.2:2003 is hereinafter called the C standard library.1

3 The library described in ISO/IEC TR 19769:2004 is hereinafter called the C Unicode TR.

1) With the qualifications noted in Clauses 18 through 30 and in C.2, the C standard library is a subset of the C++ standard
library.

§ 1.2 1

c© ISO/IEC N3092

4 The operating system interface described in ISO/IEC 9945:2003 is hereinafter called POSIX .

5 The ECMAScript Language Specification described in Standard Ecma-262 is hereinafter called ECMA-262.

1.3 Definitions [intro.defs]

1 For the purposes of this International Standard, the definitions given in ISO/IEC 2382 and the following
definitions apply. 17.3 defines additional terms that are used only in Clauses 17 through 27 and Annex D.

2 Terms that are used only in a small portion of this International Standard are defined where they are used
and italicized where they are defined.

1.3.1 [defns.argument]
argument
an expression in the comma-separated list bounded by the parentheses in a function call expression; a
sequence of preprocessing tokens in the comma-separated list bounded by the parentheses in a function-like
macro invocation; the operand of throw; or an expression, type-id or template-name in the comma-separated
list bounded by the angle brackets in a template instantiation. Also known as an actual argument or actual
parameter .

1.3.2 [defns.cond.supp]
conditionally-supported
a program construct that an implementation is not required to support. [Note: Each implementation
documents all conditionally-supported constructs that it does not support. — end note]

1.3.3 [defns.diagnostic]
diagnostic message
a message belonging to an implementation-defined subset of the implementation’s output messages.

1.3.4 [defns.dynamic.type]
dynamic type
the type of the most derived object (1.8) to which the glvalue denoted by a glvalue expression refers.
[Example: if a pointer (8.3.1) p whose static type is “pointer to class B” is pointing to an object of class
D, derived from B (Clause 10), the dynamic type of the expression *p is “D.” References (8.3.2) are treated
similarly. — end example] The dynamic type of a prvalue expression is its static type.

1.3.5 [defns.ill.formed]
ill-formed program
a program that is not well formed.

1.3.6 [defns.impl.defined]
implementation-defined behavior
behavior, for a well-formed program construct and correct data, that depends on the implementation and
that each implementation documents.

1.3.7 [defns.impl.limits]

§ 1.3 2

c© ISO/IEC N3092

implementation limits
restrictions imposed upon programs by the implementation.

1.3.8 [defns.locale.specific]
locale-specific behavior
behavior that depends on local conventions of nationality, culture, and language that each implementation
documents.

1.3.9 [defns.multibyte]
multibyte character
a sequence of one or more bytes representing a member of the extended character set of either the source or
the execution environment. The extended character set is a superset of the basic character set (2.3).

1.3.10 [defns.parameter]
parameter
an object or reference declared as part of a function declaration or definition, or in the catch Clause of an
exception handler, that acquires a value on entry to the function or handler; an identifier from the comma-
separated list bounded by the parentheses immediately following the macro name in a function-like macro
definition; or a template-parameter . Parameters are also known as formal arguments or formal parameters.

1.3.11 [defns.signature]
signature
the name and the parameter type list (8.3.5) of a function, as well as the class or namespace of which it
is a member. If a function or function template is a class member its signature additionally includes the
cv-qualifiers (if any) and the ref-qualifier (if any) on the function or function template itself. The signature
of a function template additionally includes its return type and its template parameter list. The signature
of a function template specialization includes the signature of the template of which it is a specialization
and its template arguments (whether explicitly specified or deduced). [Note: Signatures are used as a basis
for name mangling and linking. — end note]

1.3.12 [defns.static.type]
static type
the type of an expression (3.9), which type results from analysis of the program without considering execution
semantics. The static type of an expression depends only on the form of the program in which the expression
appears, and does not change while the program is executing.

1.3.13 [defns.undefined]
undefined behavior
behavior, such as might arise upon use of an erroneous program construct or erroneous data, for which
this International Standard imposes no requirements. Undefined behavior may also be expected when this
International Standard omits the description of any explicit definition of behavior. [Note: permissible
undefined behavior ranges from ignoring the situation completely with unpredictable results, to behaving
during translation or program execution in a documented manner characteristic of the environment (with or
without the issuance of a diagnostic message), to terminating a translation or execution (with the issuance
of a diagnostic message). Many erroneous program constructs do not engender undefined behavior; they are
required to be diagnosed. — end note]

§ 1.3 3

c© ISO/IEC N3092

1.3.14 [defns.unspecified]
unspecified behavior
behavior, for a well-formed program construct and correct data, that depends on the implementation. The
implementation is not required to document which behavior occurs. [Note: usually, the range of possible
behaviors is delineated by this International Standard. — end note]

1.3.15 [defns.well.formed]
well-formed program
a C++ program constructed according to the syntax rules, diagnosable semantic rules, and the One Definition
Rule (3.2).

1.4 Implementation compliance [intro.compliance]

1 The set of diagnosable rules consists of all syntactic and semantic rules in this International Standard except
for those rules containing an explicit notation that “no diagnostic is required” or which are described as
resulting in “undefined behavior.”

2 Although this International Standard states only requirements on C++ implementations, those requirements
are often easier to understand if they are phrased as requirements on programs, parts of programs, or
execution of programs. Such requirements have the following meaning:

— If a program contains no violations of the rules in this International Standard, a conforming imple-
mentation shall, within its resource limits, accept and correctly execute2 that program.

— If a program contains a violation of any diagnosable rule or an occurrence of a construct described in
this Standard as “conditionally-supported” when the implementation does not support that construct,
a conforming implementation shall issue at least one diagnostic message.

— If a program contains a violation of a rule for which no diagnostic is required, this International
Standard places no requirement on implementations with respect to that program.

3 For classes and class templates, the library Clauses specify partial definitions. Private members (Clause 11)
are not specified, but each implementation shall supply them to complete the definitions according to the
description in the library Clauses.

4 For functions, function templates, objects, and values, the library Clauses specify declarations. Implemen-
tations shall supply definitions consistent with the descriptions in the library Clauses.

5 The names defined in the library have namespace scope (7.3). A C++ translation unit (2.2) obtains access
to these names by including the appropriate standard library header (16.2).

6 The templates, classes, functions, and objects in the library have external linkage (3.5). The implementation
provides definitions for standard library entities, as necessary, while combining translation units to form a
complete C++ program (2.2).

7 Two kinds of implementations are defined: hosted and freestanding. For a hosted implementation, this
International Standard defines the set of available libraries. A freestanding implementation is one in which
execution may take place without the benefit of an operating system, and has an implementation-defined
set of libraries that includes certain language-support libraries (17.6.1.3).

8 A conforming implementation may have extensions (including additional library functions), provided they do
not alter the behavior of any well-formed program. Implementations are required to diagnose programs that
use such extensions that are ill-formed according to this International Standard. Having done so, however,
they can compile and execute such programs.

2) “Correct execution” can include undefined behavior, depending on the data being processed; see 1.3 and 1.9.

§ 1.4 4

c© ISO/IEC N3092

9 Each implementation shall include documentation that identifies all conditionally-supported constructs that
it does not support and defines all locale-specific characteristics.3

1.5 Structure of this International Standard [intro.structure]

1 Clauses 2 through 16 describe the C++ programming language. That description includes detailed syntactic
specifications in a form described in 1.6. For convenience, Annex A repeats all such syntactic specifications.

2 Clauses 18 through 30 and Annex D (the library clauses) describe the Standard C++ library. That description
includes detailed descriptions of the templates, classes, functions, constants, and macros that constitute the
library, in a form described in Clause 17.

3 Annex B recommends lower bounds on the capacity of conforming implementations.

4 Annex C summarizes the evolution of C++ since its first published description, and explains in detail the
differences between C++ and C. Certain features of C++ exist solely for compatibility purposes; Annex D
describes those features.

5 Throughout this International Standard, each example is introduced by “[Example:” and terminated by
“ — end example]”. Each note is introduced by “[Note:” and terminated by “ — end note]”. Examples and
notes may be nested.

1.6 Syntax notation [syntax]

1 In the syntax notation used in this International Standard, syntactic categories are indicated by italic type,
and literal words and characters in constant width type. Alternatives are listed on separate lines except in
a few cases where a long set of alternatives is marked by the phrase “one of.” If the text of an alternative is
too long to fit on a line, the text is continued on subsequent lines indented from the first one. An optional
terminal or nonterminal symbol is indicated by the subscript “opt ”, so

{ expressionopt }

indicates an optional expression enclosed in braces.

2 Names for syntactic categories have generally been chosen according to the following rules:

— X-name is a use of an identifier in a context that determines its meaning (e.g., class-name, typedef-
name).

— X-id is an identifier with no context-dependent meaning (e.g., qualified-id).

— X-seq is one or more X ’s without intervening delimiters (e.g., declaration-seq is a sequence of declara-
tions).

— X-list is one or more X ’s separated by intervening commas (e.g., expression-list is a sequence of
expressions separated by commas).

1.7 The C++ memory model [intro.memory]

1 The fundamental storage unit in the C++ memory model is the byte. A byte is at least large enough to
contain any member of the basic execution character set and the eight-bit code units of the Unicode UTF-8
encoding form and is composed of a contiguous sequence of bits, the number of which is implementation-
defined. The least significant bit is called the low-order bit; the most significant bit is called the high-order
bit. The memory available to a C++ program consists of one or more sequences of contiguous bytes. Every
byte has a unique address.

3) This documentation also defines implementation-defined behavior; see 1.9.

§ 1.7 5

c© ISO/IEC N3092

2 [Note: the representation of types is described in 3.9. — end note]

3 A memory location is either an object of scalar type or a maximal sequence of adjacent bit-fields all having
non-zero width. [Note: Various features of the language, such as references and virtual functions, might
involve additional memory locations that are not accessible to programs but are managed by the imple-
mentation. — end note] Two threads of execution (1.10) can update and access separate memory locations
without interfering with each other.

4 [Note: Thus a bit-field and an adjacent non-bit-field are in separate memory locations, and therefore can be
concurrently updated by two threads of execution without interference. The same applies to two bit-fields,
if one is declared inside a nested struct declaration and the other is not, or if the two are separated by
a zero-length bit-field declaration, or if they are separated by a non-bit-field declaration. It is not safe to
concurrently update two bit-fields in the same struct if all fields between them are also bit-fields of non-zero
width. — end note]

5 [Example: A structure declared as
struct {

char a;
int b:5,
c:11,
:0,
d:8;
struct {int ee:8;} e;

}

contains four separate memory locations: The field a and bit-fields d and e.ee are each separate memory
locations, and can be modified concurrently without interfering with each other. The bit-fields b and c
together constitute the fourth memory location. The bit-fields b and c cannot be concurrently modified, but
b and a, for example, can be. — end example]

1.8 The C++ object model [intro.object]

1 The constructs in a C++ program create, destroy, refer to, access, and manipulate objects. An object is a
region of storage. [Note: A function is not an object, regardless of whether or not it occupies storage in the
way that objects do. — end note] An object is created by a definition (3.1), by a new-expression (5.3.4) or
by the implementation (12.2) when needed. The properties of an object are determined when the object is
created. An object can have a name (Clause 3). An object has a storage duration (3.7) which influences
its lifetime (3.8). An object has a type (3.9). The term object type refers to the type with which the object
is created. Some objects are polymorphic (10.3); the implementation generates information associated with
each such object that makes it possible to determine that object’s type during program execution. For other
objects, the interpretation of the values found therein is determined by the type of the expressions (Clause 5)
used to access them.

2 Objects can contain other objects, called subobjects. A subobject can be a member subobject (9.2), a base
class subobject (Clause 10), or an array element. An object that is not a subobject of any other object is
called a complete object.

3 For every object x, there is some object called the complete object of x, determined as follows:

— If x is a complete object, then x is the complete object of x.

— Otherwise, the complete object of x is the complete object of the (unique) object that contains x.

4 If a complete object, a data member (9.2), or an array element is of class type, its type is considered the
most derived class, to distinguish it from the class type of any base class subobject; an object of a most
derived class type or of a non-class type is called a most derived object.

§ 1.8 6

c© ISO/IEC N3092

5 Unless it is a bit-field (9.6), a most derived object shall have a non-zero size and shall occupy one or more
bytes of storage. Base class subobjects may have zero size. An object of trivially copyable or standard-layout
type (3.9) shall occupy contiguous bytes of storage.

6 Unless an object is a bit-field or a base class subobject of zero size, the address of that object is the address
of the first byte it occupies. Two distinct objects that are neither bit-fields nor base class subobjects of zero
size shall have distinct addresses.4

[Example:
static const char test1 = ’x’;
static const char test2 = ’x’;
const bool b = &test1 != &test2; // always true

— end example]

7 [Note: C++ provides a variety of built-in types and several ways of composing new types from existing
types (3.9). — end note]

1.9 Program execution [intro.execution]

1 The semantic descriptions in this International Standard define a parameterized nondeterministic abstract
machine. This International Standard places no requirement on the structure of conforming implementations.
In particular, they need not copy or emulate the structure of the abstract machine. Rather, conforming
implementations are required to emulate (only) the observable behavior of the abstract machine as explained
below.5

2 Certain aspects and operations of the abstract machine are described in this International Standard as
implementation-defined (for example, sizeof(int)). These constitute the parameters of the abstract ma-
chine. Each implementation shall include documentation describing its characteristics and behavior in these
respects.6 Such documentation shall define the instance of the abstract machine that corresponds to that
implementation (referred to as the “corresponding instance” below).

3 Certain other aspects and operations of the abstract machine are described in this International Standard as
unspecified (for example, order of evaluation of arguments to a function). Where possible, this International
Standard defines a set of allowable behaviors. These define the nondeterministic aspects of the abstract
machine. An instance of the abstract machine can thus have more than one possible execution for a given
program and a given input.

4 Certain other operations are described in this International Standard as undefined (for example, the effect of
dereferencing the null pointer). [Note: this International Standard imposes no requirements on the behavior
of programs that contain undefined behavior. — end note]

5 A conforming implementation executing a well-formed program shall produce the same observable behavior
as one of the possible executions of the corresponding instance of the abstract machine with the same program
and the same input. However, if any such execution contains an undefined operation, this International
Standard places no requirement on the implementation executing that program with that input (not even
with regard to operations preceding the first undefined operation).

4) Under the “as-if” rule an implementation is allowed to store two objects at the same machine address or not store an
object at all if the program cannot observe the difference (1.9).

5) This provision is sometimes called the “as-if” rule, because an implementation is free to disregard any requirement of this
International Standard as long as the result is as if the requirement had been obeyed, as far as can be determined from the
observable behavior of the program. For instance, an actual implementation need not evaluate part of an expression if it can
deduce that its value is not used and that no side effects affecting the observable behavior of the program are produced.

6) This documentation also includes conditonally-supported constructs and locale-specific behavior. See 1.4.

§ 1.9 7

c© ISO/IEC N3092

6 When the processing of the abstract machine is interrupted by receipt of a signal, the values of objects which
are neither

— of type volatile std::sig_atomic_t nor

— lock-free atomic objects (29.4)

are unspecified, and the value of any object not in either of these two categories that is modified by the
handler becomes undefined.

7 An instance of each object with automatic storage duration (3.7.3) is associated with each entry into its
block. Such an object exists and retains its last-stored value during the execution of the block and while the
block is suspended (by a call of a function or receipt of a signal).

8 The least requirements on a conforming implementation are:

— Access to volatile objects are evaluated strictly according to the rules of the abstract machine.

— At program termination, all data written into files shall be identical to one of the possible results that
execution of the program according to the abstract semantics would have produced.

— The input and output dynamics of interactive devices shall take place in such a fashion that prompting
output is actually delivered before a program waits for input. What constitutes an interactive device
is implementation-defined.

These collectively are referred to as the observable behavior of the program. [Note: more stringent corre-
spondences between abstract and actual semantics may be defined by each implementation. — end note]

9 [Note: operators can be regrouped according to the usual mathematical rules only where the operators really
are associative or commutative.7 For example, in the following fragment

int a, b;
/∗ ... ∗/
a = a + 32760 + b + 5;

the expression statement behaves exactly the same as
a = (((a + 32760) + b) + 5);

due to the associativity and precedence of these operators. Thus, the result of the sum (a + 32760) is next
added to b, and that result is then added to 5 which results in the value assigned to a. On a machine in which
overflows produce an exception and in which the range of values representable by an int is [-32768,+32767],
the implementation cannot rewrite this expression as

a = ((a + b) + 32765);

since if the values for a and b were, respectively, -32754 and -15, the sum a + b would produce an exception
while the original expression would not; nor can the expression be rewritten either as

a = ((a + 32765) + b);

or
a = (a + (b + 32765));

7) Overloaded operators are never assumed to be associative or commutative.

§ 1.9 8

c© ISO/IEC N3092

since the values for a and b might have been, respectively, 4 and -8 or -17 and 12. However on a machine in
which overflows do not produce an exception and in which the results of overflows are reversible, the above
expression statement can be rewritten by the implementation in any of the above ways because the same
result will occur. — end note]

10 A full-expression is an expression that is not a subexpression of another expression. If a language construct
is defined to produce an implicit call of a function, a use of the language construct is considered to be an
expression for the purposes of this definition. A call to a destructor generated at the end of the lifetime of
an object other than a temporary object is an implicit full-expression. Conversions applied to the result of
an expression in order to satisfy the requirements of the language construct in which the expression appears
are also considered to be part of the full-expression.

[Example:
struct S {

S(int i): I(i) { }
int& v() { return I; }

private:
int I;

};

S s1(1); // full-expression is call of S::S(int)
S s2 = 2; // full-expression is call of S::S(int)

void f() {
if (S(3).v()) // full-expression includes lvalue-to-rvalue and

// int to bool conversions, performed before
// temporary is deleted at end of full-expression

{ }
}

— end example]

11 [Note: the evaluation of a full-expression can include the evaluation of subexpressions that are not lexically
part of the full-expression. For example, subexpressions involved in evaluating default argument expres-
sions (8.3.6) are considered to be created in the expression that calls the function, not the expression that
defines the default argument. — end note]

12 Accessing an object designated by a volatile glvalue (3.10), modifying an object, calling a library I/O
function, or calling a function that does any of those operations are all side effects, which are changes in the
state of the execution environment. Evaluation of an expression (or a sub-expression) in general includes
both value computations (including determining the identity of an object for glvalue evaluation and fetching
a value previously assigned to an object for prvalue evaluation) and initiation of side effects. When a call
to a library I/O function returns or an access to a volatile object is evaluated the side effect is considered
complete, even though some external actions implied by the call (such as the I/O itself) or by the volatile
access may not have completed yet.

13 Sequenced before is an asymmetric, transitive, pair-wise relation between evaluations executed by a single
thread (1.10), which induces a partial order among those evaluations. Given any two evaluations A and B, if
A is sequenced before B, then the execution of A shall precede the execution of B. If A is not sequenced before
B and B is not sequenced before A, then A and B are unsequenced. [Note: The execution of unsequenced
evaluations can overlap. — end note] Evaluations A and B are indeterminately sequenced when either A
is sequenced before B or B is sequenced before A, but it is unspecified which. [Note: Indeterminately
sequenced evaluations cannot overlap, but either could be executed first. — end note]

§ 1.9 9

c© ISO/IEC N3092

14 Every value computation and side effect associated with a full-expression is sequenced before every value
computation and side effect associated with the next full-expression to be evaluated.8.

15 Except where noted, evaluations of operands of individual operators and of subexpressions of individual
expressions are unsequenced. [Note: In an expression that is evaluated more than once during the execution
of a program, unsequenced and indeterminately sequenced evaluations of its subexpressions need not be
performed consistently in different evaluations. — end note] The value computations of the operands of an
operator are sequenced before the value computation of the result of the operator. If a side effect on a scalar
object is unsequenced relative to either another side effect on the same scalar object or a value computation
using the value of the same scalar object, the behavior is undefined.

[Example:
void f(int, int);
void g(int i, int* v) {

i = v[i++]; // the behavior is undefined
i = 7, i++, i++; // i becomes 9

i = i++ + 1; // the behavior is undefined
i = i + 1; // the value of i is incremented

f(i = -1, i = -1); // the behavior is undefined
}

— end example]

When calling a function (whether or not the function is inline), every value computation and side effect
associated with any argument expression, or with the postfix expression designating the called function, is
sequenced before execution of every expression or statement in the body of the called function. [Note: Value
computations and side effects associated with different argument expressions are unsequenced. — end note]
Every evaluation in the calling function (including other function calls) that is not otherwise specifically
sequenced before or after the execution of the body of the called function is indeterminately sequenced with
respect to the execution of the called function.9 Several contexts in C++ cause evaluation of a function call,
even though no corresponding function call syntax appears in the translation unit. [Example: Evaluation of
a new expression invokes one or more allocation and constructor functions; see 5.3.4. For another example,
invocation of a conversion function (12.3.2) can arise in contexts in which no function call syntax appears.
— end example] The sequencing constraints on the execution of the called function (as described above)
are features of the function calls as evaluated, whatever the syntax of the expression that calls the function
might be.

1.10 Multi-threaded executions and data races [intro.multithread]

1 A thread of execution (also known as a thread) is a single flow of control within a program, including the initial
invocation of a specific top-level function, and recursively including every function invocation subsequently
executed by the thread. [Note: when one thread creates another, the initial call to the top-level function of
the new thread is executed by the new thread, not by the creating thread. — end note] Every thread in a
program can potentially access every object and function in a program.10 Under a hosted implementation, a
C++ program can have more than one thread running concurrently. The execution of each thread proceeds
as defined by the remainder of this standard. The execution of the entire program consists of an execution of

8) As specified in 12.2, after a full-expression is evaluated, a sequence of zero or more invocations of destructor functions for
temporary objects takes place, usually in reverse order of the construction of each temporary object.

9) In other words, function executions do not interleave with each other.
10) An object with automatic or thread storage duration (3.7) is associated with one specific thread, and can be accessed by

a different thread only indirectly through a pointer or reference (3.9.2).

§ 1.10 10

c© ISO/IEC N3092

all of its threads. [Note: Usually the execution can be viewed as an interleaving of all its threads. However,
some kinds of atomic operations, for example, allow executions inconsistent with a simple interleaving, as
described below. — end note] Under a freestanding implementation, it is implementation-defined whether
a program can have more than one thread of execution.

2 The value of an object visible to a thread T at a particular point is the initial value of the object, a value
assigned to the object by T , or a value assigned to the object by another thread, according to the rules
below. [Note: In some cases, there may instead be undefined behavior. Much of this section is motivated
by the desire to support atomic operations with explicit and detailed visibility constraints. However, it also
implicitly supports a simpler view for more restricted programs. — end note]

3 Two expression evaluations conflict if one of them modifies a memory location and the other one accesses or
modifies the same memory location.

4 The library defines a number of atomic operations (Clause 29) and operations on locks (Clause 30) that
are specially identified as synchronization operations. These operations play a special role in making as-
signments in one thread visible to another. A synchronization operation on one or more memory locations
is either a consume operation, an acquire operation, a release operation, or both an acquire and release
operation. A synchronization operation without an associated memory location is a fence and can be either
an acquire fence, a release fence, or both an acquire and release fence. In addition, there are relaxed atomic
operations, which are not synchronization operations, and atomic read-modify-write operations, which have
special characteristics. [Note: For example, a call that acquires a lock will perform an acquire operation
on the locations comprising the lock. Correspondingly, a call that releases the same lock will perform a
release operation on those same locations. Informally, performing a release operation on A forces prior side
effects on other memory locations to become visible to other threads that later perform a consume or an
acquire operation on A. “Relaxed” atomic operations are not synchronization operations even though, like
synchronization operations, they cannot contribute to data races. — end note]

5 All modifications to a particular atomic object M occur in some particular total order, called the modification
order of M . If A and B are modifications of an atomic object M and A happens before (as defined below) B,
then A shall precede B in the modification order of M , which is defined below. [Note: This states that the
modification orders must respect the “happens before” relationship. — end note] [Note: There is a separate
order for each atomic object. There is no requirement that these can be combined into a single total order for
all objects. In general this will be impossible since different threads may observe modifications to different
objects in inconsistent orders. — end note]

6 A release sequence on an atomic object M is a maximal contiguous sub-sequence of side effects in the
modification order of M , where the first operation is a release, and every subsequent operation

— is performed by the same thread that performed the release, or

— is an atomic read-modify-write operation.

7 Certain library calls synchronize with other library calls performed by another thread. In particular, an
atomic operation A that performs a release operation on an atomic object M synchronizes with an atomic
operation B that performs an acquire operation on M and reads a value written by any side effect in
the release sequence headed by A. [Note: Except in the specified cases, reading a later value does not
necessarily ensure visibility as described below. Such a requirement would sometimes interfere with efficient
implementation. — end note] [Note: The specifications of the synchronization operations define when one
reads the value written by another. For atomic objects, the definition is clear. All operations on a given
lock occur in a single total order. Each lock acquisition “reads the value written” by the last lock release.
— end note]

8 An evaluation A carries a dependency to an evaluation B if

— the value of A is used as an operand of B, unless:

§ 1.10 11

c© ISO/IEC N3092

— B is an invocation of any specialization of std::kill_dependency (29.3), or

— A is the left operand of a built-in logical AND (&&, see 5.14) or logical OR (||, see 5.15) operator,
or

— A is the left operand of a conditional (?:, see 5.16) operator, or

— A is the left operand of the built-in comma (,) operator (5.18);

or

— A writes a scalar object or bit-field M , B reads the value written by A from M , and A is sequenced
before B, or

— for some evaluation X , A carries a dependency to X , and X carries a dependency to B.

[Note: “Carries a dependency to” is a subset of “is sequenced before”, and is similarly strictly intra-thread.
— end note]

9 An evaluation A is dependency-ordered before an evaluation B if

— A performs a release operation on an atomic object M , and B performs a consume operation on M
and reads a value written by any side effect in the release sequence headed by A, or

— for some evaluation X , A is dependency-ordered before X and X carries a dependency to B.

[Note: The relation “is dependency-ordered before” is analogous to “synchronizes with”, but uses release/-
consume in place of release/acquire. — end note]

10 An evaluation A inter-thread happens before an evaluation B if

— A synchronizes with B, or

— A is dependency-ordered before B, or

— for some evaluation X

— A synchronizes with X and X is sequenced before B, or

— A is sequenced before X and X inter-thread happens before B, or

— A inter-thread happens before X and X inter-thread happens before B.

[Note: The “inter-thread happens before” relation describes arbitrary concatenations of “sequenced before”,
“synchronizes with” and “dependency-ordered before” relationships, with two exceptions. The first exception
is that a concatenation is not permitted to end with “dependency-ordered before” followed by “sequenced
before”. The reason for this limitation is that a consume operation participating in a “dependency-ordered
before” relationship provides ordering only with respect to operations to which this consume operation
actually carries a dependency. The reason that this limitation applies only to the end of such a concatenation
is that any subsequent release operation will provide the required ordering for a prior consume operation.
The second exception is that a concatenation is not permitted to consist entirely of “sequenced before”.
The reasons for this limitation are (1) to permit “inter-thread happens before” to be transitively closed and
(2) the “happens before” relation, defined below, provides for relationships consisting entirely of “sequenced
before”. — end note]

11 An evaluation A happens before an evaluation B if:

— A is sequenced before B, or

— A inter-thread happens before B.

§ 1.10 12

c© ISO/IEC N3092

12 A visible side effect A on a scalar object or bit-field M with respect to a value computation B of M satisfies
the conditions:

— A happens before B and

— there is no other side effect X to M such that A happens before X and X happens before B.

The value of a non-atomic scalar object or bit-field M , as determined by evaluation B, shall be the value
stored by the visible side effect A. [Note: If there is ambiguity about which side effect to a non-atomic object
or bit-field is visible, then the behavior is either unspecified or undefined. — end note] [Note: This states
that operations on ordinary objects are not visibly reordered. This is not actually detectable without data
races, but it is necessary to ensure that data races, as defined here, and with suitable restrictions on the
use of atomics, correspond to data races in a simple interleaved (sequentially consistent) execution. — end
note]

13 The visible sequence of side effects on an atomic object M , with respect to a value computation B of M , is
a maximal contiguous sub-sequence of side effects in the modification order of M , where the first side effect
is visible with respect to B, and for every subsequent side effect, it is not the case that B happens before it.
The value of an atomic object M , as determined by evaluation B, shall be the value stored by some operation
in the visible sequence of M with respect to B. Furthermore, if a value computation A of an atomic object M
happens before a value computation B of M , and the value computed by A corresponds to the value stored
by side effect X , then the value computed by B shall either equal the value computed by A, or be the value
stored by side effect Y , where Y follows X in the modification order of M . [Note: This effectively disallows
compiler reordering of atomic operations to a single object, even if both operations are “relaxed” loads.
This effectively makes the “cache coherence” guarantee provided by most hardware available to C++ atomic
operations. — end note] [Note: The visible sequence depends on the “happens before” relation, which
depends on the values observed by loads of atomics, which we are restricting here. The intended reading
is that there must exist an association of atomic loads with modifications they observe that, together with
suitably chosen modification orders and the “happens before” relation derived as described above, satisfy
the resulting constraints as imposed here. — end note]

14 The execution of a program contains a data race if it contains two conflicting actions in different threads,
at least one of which is not atomic, and neither happens before the other. Any such data race results in
undefined behavior. [Note: It can be shown that programs that correctly use simple locks to prevent all
data races and use no other synchronization operations behave as though the executions of their constituent
threads were simply interleaved, with each observed value of an object being the last value assigned in that
interleaving. This is normally referred to as “sequential consistency”. However, this applies only to race-free
programs, and race-free programs cannot observe most program transformations that do not change single-
threaded program semantics. In fact, most single-threaded program transformations continue to be allowed,
since any program that behaves differently as a result must perform an undefined operation. — end note]

15 [Note: Compiler transformations that introduce assignments to a potentially shared memory location that
would not be modified by the abstract machine are generally precluded by this standard, since such an
assignment might overwrite another assignment by a different thread in cases in which an abstract machine
execution would not have encountered a data race. This includes implementations of data member assign-
ment that overwrite adjacent members in separate memory locations. Reordering of atomic loads in cases
in which the atomics in question may alias is also generally precluded, since this may violate the “visible
sequence” rules. — end note]

16 [Note: Transformations that introduce a speculative read of a potentially shared memory location may not
preserve the semantics of the C++ program as defined in this standard, since they potentially introduce a
data race. However, they are typically valid in the context of an optimizing compiler that targets a specific
machine with well-defined semantics for data races. They would be invalid for a hypothetical machine that
is not tolerant of races or provides hardware race detection. — end note]

§ 1.10 13

c© ISO/IEC N3092

1.11 Acknowledgments [intro.ack]

1 The C++ programming language as described in this International Standard is based on the language as
described in Chapter R (Reference Manual) of Stroustrup: The C++ Programming Language (second edition,
Addison-Wesley Publishing Company, ISBN 0-201-53992-6, copyright c©1991 AT&T). That, in turn, is based
on the C programming language as described in Appendix A of Kernighan and Ritchie: The C Programming
Language (Prentice-Hall, 1978, ISBN 0-13-110163-3, copyright c©1978 AT&T).

2 Portions of the library Clauses of this International Standard are based on work by P.J. Plauger, which was
published as The Draft Standard C++ Library (Prentice-Hall, ISBN 0-13-117003-1, copyright c©1995 P.J.
Plauger).

3 All rights in these originals are reserved.

§ 1.11 14

c© ISO/IEC N3092

2 Lexical conventions [lex]
2.1 Separate translation [lex.separate]

1 The text of the program is kept in units called source files in this International Standard. A source file
together with all the headers (17.6.1.2) and source files included (16.2) via the preprocessing directive
#include, less any source lines skipped by any of the conditional inclusion (16.1) preprocessing directives, is
called a translation unit. [Note: a C++ program need not all be translated at the same time. — end note]

2 [Note: previously translated translation units and instantiation units can be preserved individually or in
libraries. The separate translation units of a program communicate (3.5) by (for example) calls to functions
whose identifiers have external linkage, manipulation of objects whose identifiers have external linkage, or
manipulation of data files. Translation units can be separately translated and then later linked to produce
an executable program (3.5). — end note]

2.2 Phases of translation [lex.phases]

1 The precedence among the syntax rules of translation is specified by the following phases.11

1. Physical source file characters are mapped, in an implementation-defined manner, to the basic source
character set (introducing new-line characters for end-of-line indicators) if necessary. The set of phys-
ical source file characters accepted is implementation-defined. Trigraph sequences (2.4) are replaced
by corresponding single-character internal representations. Any source file character not in the basic
source character set (2.3) is replaced by the universal-character-name that designates that charac-
ter. (An implementation may use any internal encoding, so long as an actual extended character
encountered in the source file, and the same extended character expressed in the source file as a
universal-character-name (i.e., using the \uXXXX notation), are handled equivalently.)

2. Each instance of a backslash character (\) immediately followed by a new-line character is deleted,
splicing physical source lines to form logical source lines. Only the last backslash on any physical
source line shall be eligible for being part of such a splice. If, as a result, a character sequence that
matches the syntax of a universal-character-name is produced, the behavior is undefined. A source file
that is not empty and that does not end in a new-line character, or that ends in a new-line character
immediately preceded by a backslash character before any such splicing takes place, shall be processed
as if an additional new-line character were appended to the file.

3. The source file is decomposed into preprocessing tokens (2.5) and sequences of white-space characters
(including comments). A source file shall not end in a partial preprocessing token or in a partial com-
ment.12 Each comment is replaced by one space character. New-line characters are retained. Whether
each nonempty sequence of white-space characters other than new-line is retained or replaced by one
space character is unspecified. The process of dividing a source file’s characters into preprocessing to-
kens is context-dependent. [Example: see the handling of < within a #include preprocessing directive.
— end example] Within the r-char-sequence of a raw string literal, any transformations performed in
phases 1 and 2 (trigraphs, universal-character-names, and line splicing) are reverted.

11) Implementations must behave as if these separate phases occur, although in practice different phases might be folded
together.

12) A partial preprocessing token would arise from a source file ending in the first portion of a multi-character token that
requires a terminating sequence of characters, such as a header-name that is missing the closing " or >. A partial comment
would arise from a source file ending with an unclosed /* comment.

§ 2.2 15

c© ISO/IEC N3092

4. Preprocessing directives are executed, macro invocations are expanded, and _Pragma unary operator
expressions are executed. If a character sequence that matches the syntax of a universal-character-name
is produced by token concatenation (16.3.3), the behavior is undefined. A #include preprocessing di-
rective causes the named header or source file to be processed from phase 1 through phase 4, recursively.
All preprocessing directives are then deleted.

5. Each source character set member and universal-character-name in a character literal or a string literal,
as well as each escape sequence in a character literal or a non-raw string literal, is converted to the
corresponding member of the execution character set (2.14.3, 2.14.5); if there is no corresponding
member, it is converted to an implementation-defined member other than the null (wide) character.13

6. Adjacent string literal tokens are concatenated.

7. White-space characters separating tokens are no longer significant. Each preprocessing token is con-
verted into a token. (2.7). The resulting tokens are syntactically and semantically analyzed and trans-
lated as a translation unit. [Note: The process of analyzing and translating the tokens may occasionally
result in one token being replaced by a sequence of other tokens (14.2). — end note] [Note: Source
files, translation units and translated translation units need not necessarily be stored as files, nor need
there be any one-to-one correspondence between these entities and any external representation. The
description is conceptual only, and does not specify any particular implementation. — end note]

8. Translated translation units and instantiation units are combined as follows: [Note: some or all of
these may be supplied from a library. — end note] Each translated translation unit is examined to
produce a list of required instantiations. [Note: this may include instantiations which have been
explicitly requested (14.7.2). — end note] The definitions of the required templates are located.
It is implementation-defined whether the source of the translation units containing these definitions
is required to be available. [Note: an implementation could encode sufficient information into the
translated translation unit so as to ensure the source is not required here. — end note] All the
required instantiations are performed to produce instantiation units. [Note: these are similar to
translated translation units, but contain no references to uninstantiated templates and no template
definitions. — end note] The program is ill-formed if any instantiation fails.

9. All external entity references are resolved. Library components are linked to satisfy external references
to entities not defined in the current translation. All such translator output is collected into a program
image which contains information needed for execution in its execution environment.

2.3 Character sets [lex.charset]

1 The basic source character set consists of 96 characters: the space character, the control characters repre-
senting horizontal tab, vertical tab, form feed, and new-line, plus the following 91 graphical characters:14

a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9

_ { } [] # () < > % : ; . ? * + - / ^ & | ∼ ! = , \ " ’

13) An implementation need not convert all non-corresponding source characters to the same execution character.
14) The glyphs for the members of the basic source character set are intended to identify characters from the subset of

ISO/IEC 10646 which corresponds to the ASCII character set. However, because the mapping from source file characters to the
source character set (described in translation phase 1) is specified as implementation-defined, an implementation is required to
document how the basic source characters are represented in source files.

§ 2.3 16

c© ISO/IEC N3092

2 The universal-character-name construct provides a way to name other characters.
hex-quad:

hexadecimal-digit hexadecimal-digit hexadecimal-digit hexadecimal-digit
universal-character-name:

\u hex-quad
\U hex-quad hex-quad

The character designated by the universal-character-name \UNNNNNNNN is that character whose character
short name in ISO/IEC 10646 is NNNNNNNN; the character designated by the universal-character-name \uNNNN
is that character whose character short name in ISO/IEC 10646 is 0000NNNN. If the hexadecimal value for a
universal-character-name corresponds to a surrogate code point (in the range 0xD800–0xDFFF, inclusive),
the program is ill-formed. Additionally, if the hexadecimal value for a universal-character-name outside the
c-char-sequence, s-char-sequence, or r-char-sequence of a character or string literal corresponds to a control
character (in either of the ranges 0x00–0x1F or 0x7F–0x9F, both inclusive) or to a character in the basic
source character set, the program is ill-formed.

3 The basic execution character set and the basic execution wide-character set shall each contain all the
members of the basic source character set, plus control characters representing alert, backspace, and carriage
return, plus a null character (respectively, null wide character), whose representation has all zero bits. For
each basic execution character set, the values of the members shall be non-negative and distinct from one
another. In both the source and execution basic character sets, the value of each character after 0 in the
above list of decimal digits shall be one greater than the value of the previous. The execution character set
and the execution wide-character set are implementation-defined supersets of the basic execution character
set and the basic execution wide-character set, respectively. The values of the members of the execution
character sets and the sets of additional members are locale-specific.

2.4 Trigraph sequences [lex.trigraph]

1 Before any other processing takes place, each occurrence of one of the following sequences of three characters
(“trigraph sequences”) is replaced by the single character indicated in Table 1.

Table 1 — Trigraph sequences

Trigraph Replacement Trigraph Replacement Trigraph Replacement
??= # ??([??< {
??/ \ ??)] ??> }
??’ ˆ ??! | ??- ∼

2 [Example:
??=define arraycheck(a,b) a??(b??) ??!??! b??(a??)

becomes
#define arraycheck(a,b) a[b] || b[a]

— end example]

3 No other trigraph sequence exists. Each ? that does not begin one of the trigraphs listed above is not
changed.

§ 2.4 17

c© ISO/IEC N3092

2.5 Preprocessing tokens [lex.pptoken]

preprocessing-token:
header-name
identifier
pp-number
character-literal
user-defined-character-literal
string-literal
user-defined-string-literal
preprocessing-op-or-punc
each non-white-space character that cannot be one of the above

1 Each preprocessing token that is converted to a token (2.7) shall have the lexical form of a keyword, an
identifier, a literal, an operator, or a punctuator.

2 A preprocessing token is the minimal lexical element of the language in translation phases 3 through 6. The
categories of preprocessing token are: header names, identifiers, preprocessing numbers, character literals
(including user-defined character literals), string literals (including user-defined string literals), preprocessing
operators and punctuators, and single non-white-space characters that do not lexically match the other
preprocessing token categories. If a ’ or a " character matches the last category, the behavior is undefined.
Preprocessing tokens can be separated by white space; this consists of comments (2.8), or white-space
characters (space, horizontal tab, new-line, vertical tab, and form-feed), or both. As described in Clause 16,
in certain circumstances during translation phase 4, white space (or the absence thereof) serves as more
than preprocessing token separation. White space can appear within a preprocessing token only as part of
a header name or between the quotation characters in a character literal or string literal.

3 If the input stream has been parsed into preprocessing tokens up to a given character:

— if the next character begins a sequence of characters that could be the prefix and initial double quote
of a raw string literal, such as R", the next preprocessing token shall be a raw string literal;

— otherwise, the next preprocessing token is the longest sequence of characters that could constitute a
preprocessing token, even if that would cause further lexical analysis to fail.

[Example:
#define R "x"
const char* s = R"y"; // ill-formed raw string, not "x" "y"

— end example]

4 [Example: The program fragment 1Ex is parsed as a preprocessing number token (one that is not a valid
floating or integer literal token), even though a parse as the pair of preprocessing tokens 1 and Ex might
produce a valid expression (for example, if Ex were a macro defined as +1). Similarly, the program fragment
1E1 is parsed as a preprocessing number (one that is a valid floating literal token), whether or not E is a
macro name. — end example]

5 [Example: The program fragment x+++++y is parsed as x ++ ++ + y, which, if x and y are of built-in types,
violates a constraint on increment operators, even though the parse x ++ + ++ y might yield a correct
expression. — end example]

2.6 Alternative tokens [lex.digraph]

1 Alternative token representations are provided for some operators and punctuators.15

15) These include “digraphs” and additional reserved words. The term “digraph” (token consisting of two characters) is not

§ 2.6 18

c© ISO/IEC N3092

2 In all respects of the language, each alternative token behaves the same, respectively, as its primary token,
except for its spelling.16 The set of alternative tokens is defined in Table 2.

Table 2 — Alternative tokens
Alternative Primary Alternative Primary Alternative Primary

<% { and && and_eq &=
%> } bitor | or_eq |=
<: [or || xor_eq ˆ=
:>] xor ˆ not !
%: # compl ∼ not_eq !=

%:%: ## bitand &

2.7 Tokens [lex.token]

token:
identifier
keyword
literal
operator
punctuator

1 There are five kinds of tokens: identifiers, keywords, literals,17 operators, and other separators. Blanks,
horizontal and vertical tabs, newlines, formfeeds, and comments (collectively, “white space”), as described
below, are ignored except as they serve to separate tokens. [Note: Some white space is required to sepa-
rate otherwise adjacent identifiers, keywords, numeric literals, and alternative tokens containing alphabetic
characters. — end note]

2.8 Comments [lex.comment]

1 The characters /* start a comment, which terminates with the characters */. These comments do not
nest. The characters // start a comment, which terminates with the next new-line character. If there is a
form-feed or a vertical-tab character in such a comment, only white-space characters shall appear between it
and the new-line that terminates the comment; no diagnostic is required. [Note: The comment characters
//, /*, and */ have no special meaning within a // comment and are treated just like other characters.
Similarly, the comment characters // and /* have no special meaning within a /* comment. — end note]

2.9 Header names [lex.header]

header-name:
< h-char-sequence >
" q-char-sequence "

h-char-sequence:
h-char
h-char-sequence h-char

h-char:
any member of the source character set except new-line and >

perfectly descriptive, since one of the alternative preprocessing-tokens is %:%: and of course several primary tokens contain two
characters. Nonetheless, those alternative tokens that aren’t lexical keywords are colloquially known as “digraphs”.

16) Thus the “stringized” values (16.3.2) of [and <: will be different, maintaining the source spelling, but the tokens can
otherwise be freely interchanged.

17) Literals include strings and character and numeric literals.

§ 2.9 19

c© ISO/IEC N3092

q-char-sequence:
q-char
q-char-sequence q-char

q-char:
any member of the source character set except new-line and "

1 Header name preprocessing tokens shall only appear within a #include preprocessing directive (16.2). The
sequences in both forms of header-names are mapped in an implementation-defined manner to headers or
to external source file names as specified in 16.2.

2 The appearance of either of the characters ’ or \ or of either of the character sequences /* or // in a
q-char-sequence or an h-char-sequence is conditionally supported with implementation-defined semantics, as
is the appearance of the character " in an h-char-sequence.18

2.10 Preprocessing numbers [lex.ppnumber]

pp-number:
digit
. digit
pp-number digit
pp-number identifier-nondigit
pp-number e sign
pp-number E sign
pp-number .

1 Preprocessing number tokens lexically include all integral literal tokens (2.14.2) and all floating literal to-
kens (2.14.4).

2 A preprocessing number does not have a type or a value; it acquires both after a successful conversion to an
integral literal token or a floating literal token.

2.11 Identifiers [lex.name]

identifier:
identifier-nondigit
identifier identifier-nondigit
identifier digit

identifier-nondigit:
nondigit
universal-character-name
other implementation-defined characters

nondigit: one of
a b c d e f g h i j k l m
n o p q r s t u v w x y z
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z _

digit: one of
0 1 2 3 4 5 6 7 8 9

1 An identifier is an arbitrarily long sequence of letters and digits. Each universal-character-name in an
identifier shall designate a character whose encoding in ISO 10646 falls into one of the ranges specified in
Annex A of TR 10176:2003. Upper- and lower-case letters are different. All characters are significant.19

18) Thus, a sequence of characters that resembles an escape sequence might result in an error, be interpreted as the character
corresponding to the escape sequence, or have a completely different meaning, depending on the implementation.

19) On systems in which linkers cannot accept extended characters, an encoding of the universal-character-name may be used
in forming valid external identifiers. For example, some otherwise unused character or sequence of characters may be used to

§ 2.11 20

c© ISO/IEC N3092

2 In addition, some identifiers are reserved for use by C++ implementations and standard libraries (17.6.3.3.2)
and shall not be used otherwise; no diagnostic is required.

2.12 Keywords [lex.key]

1 The identifiers shown in Table 3 are reserved for use as keywords (that is, they are unconditionally treated
as keywords in phase 7) except in an attribute-token (7.6.1) [Note: The export keyword is unused but is
reserved for future use. — end note]:

Table 3 — Keywords

alignof decltype goto reinterpret_cast try
asm default if return typedef
auto delete inline short typeid
bool do int signed typename
break double long sizeof union
case dynamic_cast mutable static unsigned
catch else namespace static_assert using
char enum new static_cast virtual
char16_t explicit noexcept struct void
char32_t export nullptr switch volatile
class extern operator template wchar_t
const false private this while
constexpr float protected thread_local
const_cast for public throw
continue friend register true

2 Furthermore, the alternative representations shown in Table 4 for certain operators and punctuators (2.6)
are reserved and shall not be used otherwise:

Table 4 — Alternative representations

and and_eq bitand bitor compl not
not_eq or or_eq xor xor_eq

2.13 Operators and punctuators [lex.operators]

1 The lexical representation of C++ programs includes a number of preprocessing tokens which are used in
the syntax of the preprocessor or are converted into tokens for operators and punctuators:

preprocessing-op-or-punc: one of
{ } [] # ## ()
<: :> <% %> %: %:%: ; : ...
new delete ? :: . .*
+ - * / % ˆ & | ∼
! = < > += -= *= /= %=
ˆ= &= |= << >> >>= <<= == !=
<= >= && || ++ -- , ->* ->
and and_eq bitand bitor compl not not_eq
or or_eq xor xor_eq

encode the \u in a universal-character-name. Extended characters may produce a long external identifier, but C++ does not
place a translation limit on significant characters for external identifiers. In C++, upper- and lower-case letters are considered
different for all identifiers, including external identifiers.

§ 2.13 21

c© ISO/IEC N3092

Each preprocessing-op-or-punc is converted to a single token in translation phase 7 (2.2).

2.14 Literals [lex.literal]

2.14.1 Kinds of literals [lex.literal.kinds]

1 There are several kinds of literals.20

literal:
integer-literal
character-literal
floating-literal
string-literal
boolean-literal
pointer-literal
user-defined-literal

2.14.2 Integer literals [lex.icon]

integer-literal:
decimal-literal integer-suffixopt

octal-literal integer-suffixopt

hexadecimal-literal integer-suffixopt

decimal-literal:
nonzero-digit
decimal-literal digit

octal-literal:
0
octal-literal octal-digit

hexadecimal-literal:
0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-literal hexadecimal-digit

nonzero-digit: one of
1 2 3 4 5 6 7 8 9

octal-digit: one of
0 1 2 3 4 5 6 7

hexadecimal-digit: one of
0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E F

integer-suffix:
unsigned-suffix long-suffixopt

unsigned-suffix long-long-suffixopt

long-suffix unsigned-suffixopt

long-long-suffix unsigned-suffixopt

unsigned-suffix: one of
u U

long-suffix: one of
l L

long-long-suffix: one of
ll LL

20) The term “literal” generally designates, in this International Standard, those tokens that are called “constants” in ISO C.

§ 2.14.2 22

c© ISO/IEC N3092

1 An integer literal is a sequence of digits that has no period or exponent part. An integer literal may have
a prefix that specifies its base and a suffix that specifies its type. The lexically first digit of the sequence
of digits is the most significant. A decimal integer literal (base ten) begins with a digit other than 0 and
consists of a sequence of decimal digits. An octal integer literal (base eight) begins with the digit 0 and
consists of a sequence of octal digits.21 A hexadecimal integer literal (base sixteen) begins with 0x or 0X and
consists of a sequence of hexadecimal digits, which include the decimal digits and the letters a through f
and A through F with decimal values ten through fifteen. [Example: the number twelve can be written 12,
014, or 0XC. — end example]

2 The type of an integer literal is the first of the corresponding list in Table 5 in which its value can be
represented.

Table 5 — Types of integer constants

Suffix Decimal constant Octal or hexadecimal constant
none int int

long int unsigned int
long long int long int

unsigned long int
long long int
unsigned long long int

u or U unsigned int unsigned int
unsigned long int unsigned long int
unsigned long long int unsigned long long int

l or L long int long int
long long int unsigned long int

long long int
unsigned long long int

Both u or U unsigned long int unsigned long int
and l or L unsigned long long int unsigned long long int
ll or LL long long int long long int

unsigned long int
Both u or U unsigned long long int unsigned long long int
and ll or LL

3 If an integer literal cannot be represented by any type in its list and an extended integer type can represent
its value, it may have that extended integer type. If all of the types in the list for the literal are signed, the
extended integer type shall be signed. If all of the types in the list for the literal are unsigned, the extended
integer type shall be unsigned. If the list contains both signed and unsigned types, the extended integer
type may be signed or unsigned. A program is ill-formed if one of its translation units contains an integer
literal that cannot be represented by any of the allowed types.

2.14.3 Character literals [lex.ccon]

character-literal:
’ c-char-sequence ’
u’ c-char-sequence ’
U’ c-char-sequence ’
L’ c-char-sequence ’

21) The digits 8 and 9 are not octal digits.

§ 2.14.3 23

c© ISO/IEC N3092

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any member of the source character set except

the single-quote ’, backslash \, or new-line character
escape-sequence
universal-character-name

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

simple-escape-sequence: one of
\’ \" \? \\
\a \b \f \n \r \t \v

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

1 A character literal is one or more characters enclosed in single quotes, as in ’x’, optionally preceded by
one of the letters u, U, or L, as in u’y’, U’z’, or L’x’, respectively. A character literal that does not begin
with u, U, or L is an ordinary character literal, also referred to as a narrow-character literal. An ordinary
character literal that contains a single c-char has type char, with value equal to the numerical value of the
encoding of the c-char in the execution character set. An ordinary character literal that contains more than
one c-char is a multicharacter literal. A multicharacter literal has type int and implementation-defined
value.

2 A character literal that begins with the letter u, such as u’y’, is a character literal of type char16_t. The
value of a char16_t literal containing a single c-char is equal to its ISO 10646 code point value, provided that
the code point is representable with a single 16-bit code unit. (That is, provided it is a basic multi-lingual
plane code point.) If the value is not representable within 16 bits, the program is ill-formed. A char16_t
literal containing multiple c-chars is ill-formed. A character literal that begins with the letter U, such as
U’z’, is a character literal of type char32_t. The value of a char32_t literal containing a single c-char is
equal to its ISO 10646 code point value. A char32_t literal containing multiple c-chars is ill-formed. A
character literal that begins with the letter L, such as L’x’, is a wide-character literal. A wide-character
literal has type wchar_t.22 The value of a wide-character literal containing a single c-char has value equal
to the numerical value of the encoding of the c-char in the execution wide-character set, unless the c-char
has no representation in the execution wide-character set, in which case the value is implementation-defined.
[Note: the type wchar_t is able to represent all members of the execution wide-charater set (see 3.9.1).
— end note]. The value of a wide-character literal containing multiple c-chars is implementation-defined.

3 Certain nongraphic characters, the single quote ’, the double quote ", the question mark ?,23 and the
backslash \, can be represented according to Table 6. The double quote " and the question mark ?, can
be represented as themselves or by the escape sequences \" and \? respectively, but the single quote ’
and the backslash \ shall be represented by the escape sequences \’ and \\ respectively. Escape sequences

22) They are intended for character sets where a character does not fit into a single byte.
23) Using an escape sequence for a question mark can avoid accidentally creating a trigraph.

§ 2.14.3 24

c© ISO/IEC N3092

in which the character following the backslash is not listed in Table 6 are conditionally-supported, with
implementation-defined semantics. An escape sequence specifies a single character.

Table 6 — Escape sequences

new-line NL(LF) \n
horizontal tab HT \t
vertical tab VT \v
backspace BS \b
carriage return CR \r
form feed FF \f
alert BEL \a
backslash \ \\
question mark ? \?
single quote ’ \’
double quote " \"
octal number ooo \ooo
hex number hhh \xhhh

4 The escape \ooo consists of the backslash followed by one, two, or three octal digits that are taken to specify
the value of the desired character. The escape \xhhh consists of the backslash followed by x followed by one
or more hexadecimal digits that are taken to specify the value of the desired character. There is no limit to
the number of digits in a hexadecimal sequence. A sequence of octal or hexadecimal digits is terminated by
the first character that is not an octal digit or a hexadecimal digit, respectively. The value of a character
literal is implementation-defined if it falls outside of the implementation-defined range defined for char (for
literals with no prefix), char16_t (for literals prefixed by ’u’), char32_t (for literals prefixed by ’U’), or
wchar_t (for literals prefixed by ’L’).

5 A universal-character-name is translated to the encoding, in the appropriate execution character set, of the
character named. If there is no such encoding, the universal-character-name is translated to an implementation-
defined encoding. [Note: in translation phase 1, a universal-character-name is introduced whenever an actual
extended character is encountered in the source text. Therefore, all extended characters are described in
terms of universal-character-names. However, the actual compiler implementation may use its own native
character set, so long as the same results are obtained. — end note]

2.14.4 Floating literals [lex.fcon]

floating-literal:
fractional-constant exponent-partopt floating-suffixopt

digit-sequence exponent-part floating-suffixopt

fractional-constant:
digit-sequenceopt . digit-sequence
digit-sequence .

exponent-part:
e signopt digit-sequence
E signopt digit-sequence

sign: one of
+ -

digit-sequence:
digit
digit-sequence digit

§ 2.14.4 25

c© ISO/IEC N3092

floating-suffix: one of
f l F L

1 A floating literal consists of an integer part, a decimal point, a fraction part, an e or E, an optionally signed
integer exponent, and an optional type suffix. The integer and fraction parts both consist of a sequence of
decimal (base ten) digits. Either the integer part or the fraction part (not both) can be omitted; either the
decimal point or the letter e (or E) and the exponent (not both) can be omitted. The integer part, the
optional decimal point and the optional fraction part form the significant part of the floating literal. The
exponent, if present, indicates the power of 10 by which the significant part is to be scaled. If the scaled
value is in the range of representable values for its type, the result is the scaled value if representable, else the
larger or smaller representable value nearest the scaled value, chosen in an implementation-defined manner.
The type of a floating literal is double unless explicitly specified by a suffix. The suffixes f and F specify
float, the suffixes l and L specify long double. If the scaled value is not in the range of representable
values for its type, the program is ill-formed.

2.14.5 String literals [lex.string]

string-literal:
encoding-prefixopt " s-char-sequenceopt "
encoding-prefixopt R raw-string

encoding-prefix:
u8
u
U
L

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source character set except

the double-quote ", backslash \, or new-line character
escape-sequence
universal-character-name

raw-string:
" d-char-sequenceopt (r-char-sequenceopt) d-char-sequenceopt "

r-char-sequence:
r-char
r-char-sequence r-char

r-char:
any member of the source character set, except

a right parenthesis) followed by the initial d-char-sequence
(which may be empty) followed by a double quote ".

d-char-sequence:
d-char
d-char-sequence d-char

d-char:
any member of the basic source character set except:

space, the left parenthesis (, the right parenthesis), the backslash \,
and the control characters representing horizontal tab,
vertical tab, form feed, and newline.

§ 2.14.5 26

c© ISO/IEC N3092

1 A string literal is a sequence of characters (as defined in 2.14.3) surrounded by double quotes, optionally
prefixed by R, u8, u8R, u, uR, U, UR, L, or LR, as in "...", R"(...)", u8"...", u8R"**(...)**", u"...",
uR"*∼(...)*∼", U"...", UR"zzz(...)zzz", L"...", or LR"(...)", respectively.

2 A string literal that has an R in the prefix is a raw string literal. The d-char-sequence serves as a delimiter.
The terminating d-char-sequence of a raw-string is the same sequence of characters as the initial d-char-
sequence. A d-char-sequence shall consist of at most 16 characters.24

3 [Note: The characters ’(’ and ’)’ are permitted in a raw-string. Thus, R"delimiter((a|b))delimiter"
is equivalent to "(a|b)". — end note]

4 [Note: A source-file new-line in a raw string literal results in a new-line in the resulting execution string-
literal. Assuming no whitespace at the beginning of lines in the following example, the assert will succeed:

const char *p = R"(a\
b
c)";
assert(std::strcmp(p, "a\\\nb\nc") == 0);

— end note]

5 After translation phase 6, a string literal that does not begin with an encoding-prefix is an ordinary string
literal, and is initialized with the given characters.

6 A string literal that begins with u8, such as u8"asdf", is a UTF-8 string literal and is initialized with the
given characters as encoded in UTF-8.

7 Ordinary string literals and UTF-8 string literals are also referred to as narrow string literals. A narrow
string literal has type “array of n const char”, where n is the size of the string as defined below, and has
static storage duration (3.7).

8 A string literal that begins with u, such as u"asdf", is a char16_t string literal. A char16_t string literal
has type “array of n const char16_t”, where n is the size of the string as defined below; it has static storage
duration and is initialized with the given characters. A single c-char may produce more than one char16_t
character in the form of surrogate pairs.

9 A string literal that begins with U, such as U"asdf", is a char32_t string literal. A char32_t string literal
has type “array of n const char32_t”, where n is the size of the string as defined below; it has static storage
duration and is initialized with the given characters.

10 A string literal that begins with L, such as L"asdf", is a wide string literal. A wide string literal has type
“array of n const wchar_t”, where n is the size of the string as defined below; it has static storage duration
and is initialized with the given characters.

11 Whether all string literals are distinct (that is, are stored in nonoverlapping objects) is implementation-
defined. The effect of attempting to modify a string literal is undefined.

12 In translation phase 6 (2.2), adjacent string literals are concatenated. If both string literals have the same
encoding-prefix, the resulting concatenated string literal has that encoding-prefix. If one string literal has
no encoding-prefix, it is treated as a string literal of the same encoding-prefix as the other operand. If a
UTF-8 string literal token is adjacent to a wide string literal token, the program is ill-formed. Any other
concatenations are conditionally supported with implementation-defined behavior. [Note: This concatena-
tion is an interpretation, not a conversion. Because the interpretation happens in translation phase 6 (after
each character from a literal has been translated into a value from the appropriate character set), a string

§ 2.14.5 27

c© ISO/IEC N3092

Table 7 — String literal concatenations

Source Means Source Means Source Means
u"a" u"b" u"ab" U"a" U"b" U"ab" L"a" L"b" L"ab"
u"a" "b" u"ab" U"a" "b" U"ab" L"a" "b" L"ab"
"a" u"b" u"ab" "a" U"b" U"ab" "a" L"b" L"ab"

literal’s initial rawness has no effect on the interpretation or well-formedness of the concatenation. — end
note] Table 7 has some examples of valid concatenations.

Characters in concatenated strings are kept distinct.

[Example:
"\xA" "B"

contains the two characters ’\xA’ and ’B’ after concatenation (and not the single hexadecimal character
’\xAB’). — end example]

13 After any necessary concatenation, in translation phase 7 (2.2), ’\0’ is appended to every string literal so
that programs that scan a string can find its end.

14 Escape sequences and universal-character-names in non-raw string literals have the same meaning as in
character literals (2.14.3), except that the single quote ’ is representable either by itself or by the escape
sequence \’, and the double quote " shall be preceded by a \. In a narrow string literal, a universal-character-
name may map to more than one char element due to multibyte encoding. The size of a char32_t or wide
string literal is the total number of escape sequences, universal-character-names, and other characters, plus
one for the terminating U’\0’ or L’\0’. The size of a char16_t string literal is the total number of escape
sequences, universal-character-names, and other characters, plus one for each character requiring a surrogate
pair, plus one for the terminating u’\0’. [Note: The size of a char16_t string literal is the number of code
units, not the number of characters. — end note] Within char32_t and char16_t literals, any universal-
character-names shall be within the range 0x0 to 0x10FFFF. The size of a narrow string literal is the total
number of escape sequences and other characters, plus at least one for the multibyte encoding of each
universal-character-name, plus one for the terminating ’\0’.

2.14.6 Boolean literals [lex.bool]

boolean-literal:
false
true

1 The Boolean literals are the keywords false and true. Such literals are prvalues and have type bool.

2.14.7 Pointer literals [lex.nullptr]

pointer-literal:
nullptr

24) Use of characters with trigraph equivalents in a d-char-sequence may produce unintended results.

§ 2.14.7 28

c© ISO/IEC N3092

1 The pointer literal is the keyword nullptr. It is a prvalue of type std::nullptr_t.

2.14.8 User-defined literals [lex.ext]

user-defined-literal:
user-defined-integer-literal
user-defined-floating-literal
user-defined-string-literal
user-defined-character-literal

user-defined-integer-literal:
decimal-literal ud-suffix
octal-literal ud-suffix
hexadecimal-literal ud-suffix

user-defined-floating-literal:
fractional-constant exponent-partopt ud-suffix
digit-sequence exponent-part ud-suffix

user-defined-string-literal:
string-literal ud-suffix

user-defined-character-literal:
character-literal ud-suffix

ud-suffix:
identifier

1 If a token matches both user-defined-literal and another literal kind, it is treated as the latter. [Example:
123_km, 1.2LL, "Hello"s are all user-defined-literals, but 12LL is an integer-literal. — end example]

2 A user-defined-literal is treated as a call to a literal operator or literal operator template (13.5.8). To
determine the form of this call for a given user-defined-literal L with ud-suffix X , the literal-operator-id
whose literal suffix identifier is X is looked up in the context of L using the rules for unqualified name
lookup (3.4.1). Let S be the set of declarations found by this lookup. S shall not be empty.

3 If L is a user-defined-integer-literal, let n be the literal without its ud-suffix. If S contains a literal operator
with parameter type unsigned long long, the literal L is treated as a call of the form

operator "" X (n ULL)

Otherwise, S shall contain a raw literal operator or a literal operator template (13.5.8) but not both. If S
contains a raw literal operator the literal L is treated as a call of the form

operator "" X ("n")

Otherwise (S contains a literal operator template), L is treated as a call of the form
operator "" X <’c1’, ’c2’, ... ’ck’>()

where n is the source character sequence c1c2...ck. [Note: the sequence c1c2...ck can only contain characters
from the basic source character set. — end note]

4 If L is a user-defined-floating-literal, let f be the literal without its ud-suffix. If S contains a literal operator
with parameter type long double, the literal L is treated as a call of the form

operator "" X (f L)

Otherwise, S shall contain a raw literal operator or a literal operator template (13.5.8) but not both. If S
contains a raw literal operator the literal L is treated as a call of the form

operator "" X ("f")

§ 2.14.8 29

c© ISO/IEC N3092

Otherwise (S contains a literal operator template), L is treated as a call of the form
operator "" X <’c1’, ’c2’, ... ’ck’>()

where f is the source character sequence c1c2...ck. [Note: the sequence c1c2...ck can only contain characters
from the basic source character set. — end note]

5 If L is a user-defined-string-literal, let str be the literal without its ud-suffix and let len be the number of
code units in str (i.e., its length excluding the terminating null character). The literal L is treated as a call
of the form

operator "" X (str , len)

6 If L is a user-defined-character-literal, let ch be the literal without its ud-suffix. The literal L is treated as
a call of the form

operator "" X (ch)

7 [Example:
long double operator "" w(long double);
std::string operator "" w(const char16_t*, size_t);
unsigned operator "" w(const char*);
int main() {

1.2w; // calls operator "" w(1.2L)
u"one"w; // calls operator "" w(u"one", 3)
12w; // calls operator "" w("12")
"two"w; // error: no applicable literal operator

}

— end example]

8 In translation phase 6 (2.2), adjacent string literals are concatenated and user-defined-string-literals are
considered string literals for that purpose. During concatenation, ud-suffixes are removed and ignored and
the concatenation process occurs as described in 2.14.5. At the end of phase 6, if a string literal is the result
of a concatenation involving at lease one user-defined-string-literal, all the participating user-defined-string-
literals shall have the same ud-suffix and that suffix is applied to the result of the concatenation.

9 [Example:
int main() {

L"A" "B" "C"x; // OK: same as L"ABC"x
"P"x "Q" "R"y; // error: two different ud-suffixes

}

— end example]

§ 2.14.8 30

c© ISO/IEC N3092

3 Basic concepts [basic]
1 [Note: this Clause presents the basic concepts of the C++ language. It explains the difference between an

object and a name and how they relate to the value categories for expressions. It introduces the concepts
of a declaration and a definition and presents C++’s notion of type, scope, linkage, and storage duration.
The mechanisms for starting and terminating a program are discussed. Finally, this Clause presents the
fundamental types of the language and lists the ways of constructing compound types from these. — end
note]

2 [Note: this Clause does not cover concepts that affect only a single part of the language. Such concepts are
discussed in the relevant Clauses. — end note]

3 An entity is a value, object, reference, function, enumerator, type, class member, template, template spe-
cialization, namespace, parameter pack, or this.

4 A name is a use of an identifier (2.11), operator-function-id (13.5), literal-operator-id (13.5.8), conversion-
function-id (12.3.2), or template-id (14.2) that denotes an entity or label (6.6.4, 6.1).

5 Every name that denotes an entity is introduced by a declaration. Every name that denotes a label is
introduced either by a goto statement (6.6.4) or a labeled-statement (6.1).

6 A variable is introduced by the declaration of a reference other than a non-static data member or of an
object. The variable’s name denotes the reference or object.

7 Some names denote types or templates. In general, whenever a name is encountered it is necessary to
determine whether that name denotes one of these entities before continuing to parse the program that
contains it. The process that determines this is called name lookup (3.4).

8 Two names are the same if

— they are identifiers composed of the same character sequence, or

— they are operator-function-ids formed with the same operator, or

— they are conversion-function-ids formed with the same type, or

— they are template-ids that refer to the same class or function (14.4), or

— they are the names of literal operators (13.5.8) formed with the same literal suffix identifier.

9 A name used in more than one translation unit can potentially refer to the same entity in these translation
units depending on the linkage (3.5) of the name specified in each translation unit.

3.1 Declarations and definitions [basic.def]

1 A declaration (Clause 7) introduces names into a translation unit or redeclares names introduced by previous
declarations. A declaration specifies the interpretation and attributes of these names.

2 A declaration is a definition unless it declares a function without specifying the function’s body (8.4), it
contains the extern specifier (7.1.1) or a linkage-specification25 (7.5) and neither an initializer nor a function-
body, it declares a static data member in a class definition (9.4), it is a class name declaration (9.1), it is

25) Appearing inside the braced-enclosed declaration-seq in a linkage-specification does not affect whether a declaration is a
definition.

§ 3.1 31

c© ISO/IEC N3092

an opaque-enum-declaration (7.2), or it is a typedef declaration (7.1.3), a using-declaration (7.3.3), or a
using-directive (7.3.4).

[Example: all but one of the following are definitions:
int a; // defines a
extern const int c = 1; // defines c
int f(int x) { return x+a; } // defines f and defines x
struct S { int a; int b; }; // defines S, S::a, and S::b
struct X { // defines X

int x; // defines non-static data member x
static int y; // declares static data member y
X(): x(0) { } // defines a constructor of X

};
int X::y = 1; // defines X::y
enum { up, down }; // defines up and down
namespace N { int d; } // defines N and N::d
namespace N1 = N; // defines N1
X anX; // defines anX

whereas these are just declarations:
extern int a; // declares a
extern const int c; // declares c
int f(int); // declares f
struct S; // declares S
typedef int Int; // declares Int
extern X anotherX; // declares anotherX
using N::d; // declares N::d

— end example]

3 [Note: In some circumstances, C++ implementations implicitly define the default constructor (12.1), copy
constructor (12.8), move constructor (12.8), copy assignment operator (12.8), move assignment opera-
tor (12.8), or destructor (12.4) member functions. — end note] [Example: given

#include <string>

struct C {
std::string s; // std::string is the standard library class (Clause 21)

};

int main() {
C a;
C b = a;
b = a;

}

the implementation will implicitly define functions to make the definition of C equivalent to
struct C {

std::string s;
C() : s() { }
C(const C& x): s(x.s) { }
C(C&& x): s(static_cast<std::string&&>(x.s)) { }

// : s(std::move(x.s)) { }
C& operator=(const C& x) { s = x.s; return *this; }

§ 3.1 32

c© ISO/IEC N3092

C& operator=(C&& x) { s = static_cast<std::string&&>(x.s); return *this; }
// { s = std::move(x.s); return *this; }

~C() { }
};

— end example]

4 [Note: a class name can also be implicitly declared by an elaborated-type-specifier (7.1.6.3). — end note]

5 A program is ill-formed if the definition of any object gives the object an incomplete type (3.9).

3.2 One definition rule [basic.def.odr]

1 No translation unit shall contain more than one definition of any variable, function, class type, enumeration
type, or template.

2 An expression is potentially evaluated unless it is an unevaluated operand (Clause 5) or a subexpression
thereof. A variable or non-overloaded function whose name appears as a potentially-evaluated expression
is used unless it is an object that satisfies the requirements for appearing in a constant expression (5.19)
and the lvalue-to-rvalue conversion (4.1) is immediately applied. this is used if it appears as a potentially-
evaluated expression (including as the result of the implicit transformation in the body of a non-static member
function (9.3.1)). A virtual member function is used if it is not pure. An overloaded function is used if it
is selected by overload resolution when referred to from a potentially-evaluated expression. [Note: this
covers calls to named functions (5.2.2), operator overloading (Clause 13), user-defined conversions (12.3.2),
allocation function for placement new (5.3.4), as well as non-default initialization (8.5). A copy constructor or
move constructor is used even if the call is actually elided by the implementation. — end note] An allocation
or deallocation function for a class is used by a new expression appearing in a potentially-evaluated expression
as specified in 5.3.4 and 12.5. A deallocation function for a class is used by a delete expression appearing in
a potentially-evaluated expression as specified in 5.3.5 and 12.5. A non-placement allocation or deallocation
function for a class is used by the definition of a constructor of that class. A non-placement deallocation
function for a class is used by the definition of the destructor of that class, or by being selected by the lookup
at the point of definition of a virtual destructor (12.4).26 A copy-assignment function for a class is used
by an implicitly-defined copy-assignment function for another class as specified in 12.8. A move-assignment
function for a class is used by an implicitly-defined move-assignment function for another class as specified
in 12.8. A default constructor for a class is used by default initialization or value initialization as specified
in 8.5. A constructor for a class is used as specified in 8.5. A destructor for a class is used as specified
in 12.4.

3 Every program shall contain exactly one definition of every non-inline function or variable that is used in
that program; no diagnostic required. The definition can appear explicitly in the program, it can be found
in the standard or a user-defined library, or (when appropriate) it is implicitly defined (see 12.1, 12.4 and
12.8). An inline function shall be defined in every translation unit in which it is used.

4 Exactly one definition of a class is required in a translation unit if the class is used in a way that requires the
class type to be complete. [Example: the following complete translation unit is well-formed, even though it
never defines X:

struct X; // declare X as a struct type
struct X* x1; // use X in pointer formation
X* x2; // use X in pointer formation

— end example] [Note: the rules for declarations and expressions describe in which contexts complete class
types are required. A class type T must be complete if:

26) An implementation is not required to call allocation and deallocation functions from constructors or destructors; however,
this is a permissible implementation technique.

§ 3.2 33

c© ISO/IEC N3092

— an object of type T is defined (3.1), or

— a non-static class data member of type T is declared (9.2), or

— T is used as the object type or array element type in a new-expression (5.3.4), or

— an lvalue-to-rvalue conversion is applied to a glvalue referring to an object of type T (4.1), or

— an expression is converted (either implicitly or explicitly) to type T (Clause 4, 5.2.3, 5.2.7, 5.2.9, 5.4),
or

— an expression that is not a null pointer constant, and has type other than void*, is converted to the
type pointer to T or reference to T using an implicit conversion (Clause 4), a dynamic_cast (5.2.7) or
a static_cast (5.2.9), or

— a class member access operator is applied to an expression of type T (5.2.5), or

— the typeid operator (5.2.8) or the sizeof operator (5.3.3) is applied to an operand of type T, or

— a function with a return type or argument type of type T is defined (3.1) or called (5.2.2), or

— a class with a base class of type T is defined (10), or

— an lvalue of type T is assigned to (5.17), or

— the type T is the subject of an alignof expression (5.3.6), or

— an exception-declaration has type T, reference to T, or pointer to T (15.3).

— end note]

5 There can be more than one definition of a class type (Clause 9), enumeration type (7.2), inline function with
external linkage (7.1.2), class template (Clause 14), non-static function template (14.5.6), static data member
of a class template (14.5.1.3), member function of a class template (14.5.1.1), or template specialization for
which some template parameters are not specified (14.7, 14.5.5) in a program provided that each definition
appears in a different translation unit, and provided the definitions satisfy the following requirements. Given
such an entity named D defined in more than one translation unit, then

— each definition of D shall consist of the same sequence of tokens; and

— in each definition of D, corresponding names, looked up according to 3.4, shall refer to an entity defined
within the definition of D, or shall refer to the same entity, after overload resolution (13.3) and after
matching of partial template specialization (14.8.3), except that a name can refer to a const object
with internal or no linkage if the object has the same literal type in all definitions of D, and the object
is initialized with a constant expression (5.19), and the value (but not the address) of the object is
used, and the object has the same value in all definitions of D; and

— in each definition of D, the overloaded operators referred to, the implicit calls to conversion functions,
constructors, operator new functions and operator delete functions, shall refer to the same function,
or to a function defined within the definition of D; and

— in each definition of D, a default argument used by an (implicit or explicit) function call is treated as
if its token sequence were present in the definition of D; that is, the default argument is subject to
the three requirements described above (and, if the default argument has sub-expressions with default
arguments, this requirement applies recursively).27

— if D is a class with an implicitly-declared constructor (12.1), it is as if the constructor was implicitly
defined in every translation unit where it is used, and the implicit definition in every translation unit
shall call the same constructor for a base class or a class member of D. [Example:

27) 8.3.6 describes how default argument names are looked up.

§ 3.2 34

c© ISO/IEC N3092

//translation unit 1:
struct X {

X(int);
X(int, int);

};
X::X(int = 0) { }
class D: public X { };
D d2; // X(int) called by D()

//translation unit 2:
struct X {

X(int);
X(int, int);

};
X::X(int = 0, int = 0) { }
class D: public X { }; // X(int, int) called by D();

// D()’s implicit definition
// violates the ODR

— end example]

If D is a template and is defined in more than one translation unit, then the last four requirements from the
list above shall apply to names from the template’s enclosing scope used in the template definition (14.6.3),
and also to dependent names at the point of instantiation (14.6.2). If the definitions of D satisfy all these
requirements, then the program shall behave as if there were a single definition of D. If the definitions of D
do not satisfy these requirements, then the behavior is undefined.

3.3 Scope [basic.scope]

3.3.1 Declarative regions and scopes [basic.scope.declarative]

1 Every name is introduced in some portion of program text called a declarative region, which is the largest part
of the program in which that name is valid, that is, in which that name may be used as an unqualified name
to refer to the same entity. In general, each particular name is valid only within some possibly discontiguous
portion of program text called its scope. To determine the scope of a declaration, it is sometimes convenient
to refer to the potential scope of a declaration. The scope of a declaration is the same as its potential scope
unless the potential scope contains another declaration of the same name. In that case, the potential scope
of the declaration in the inner (contained) declarative region is excluded from the scope of the declaration
in the outer (containing) declarative region.

2 [Example: in
int j = 24;
int main() {

int i = j, j;
j = 42;

}

the identifier j is declared twice as a name (and used twice). The declarative region of the first j includes
the entire example. The potential scope of the first j begins immediately after that j and extends to the
end of the program, but its (actual) scope excludes the text between the , and the }. The declarative region
of the second declaration of j (the j immediately before the semicolon) includes all the text between { and
}, but its potential scope excludes the declaration of i. The scope of the second declaration of j is the same
as its potential scope. — end example]

§ 3.3.1 35

c© ISO/IEC N3092

3 The names declared by a declaration are introduced into the scope in which the declaration occurs, except
that the presence of a friend specifier (11.4), certain uses of the elaborated-type-specifier (7.1.6.3), and
using-directives (7.3.4) alter this general behavior.

4 Given a set of declarations in a single declarative region, each of which specifies the same unqualified name,

— they shall all refer to the same entity, or all refer to functions and function templates; or

— exactly one declaration shall declare a class name or enumeration name that is not a typedef name
and the other declarations shall all refer to the same variable or enumerator, or all refer to functions
and function templates; in this case the class name or enumeration name is hidden (3.3.10). [Note: a
namespace name or a class template name must be unique in its declarative region (7.3.2, Clause 14).
— end note]

[Note: these restrictions apply to the declarative region into which a name is introduced, which is not neces-
sarily the same as the region in which the declaration occurs. In particular, elaborated-type-specifiers (7.1.6.3)
and friend declarations (11.4) may introduce a (possibly not visible) name into an enclosing namespace; these
restrictions apply to that region. Local extern declarations (3.5) may introduce a name into the declarative
region where the declaration appears and also introduce a (possibly not visible) name into an enclosing
namespace; these restrictions apply to both regions. — end note]

5 [Note: the name lookup rules are summarized in 3.4. — end note]

3.3.2 Point of declaration [basic.scope.pdecl]

1 The point of declaration for a name is immediately after its complete declarator (Clause 8) and before its
initializer (if any), except as noted below. [Example:

int x = 12;
{ int x = x; }

Here the second x is initialized with its own (indeterminate) value. — end example]

2 [Note: a name from an outer scope remains visible up to the point of declaration of the name that hides
it.[Example:

const int i = 2;
{ int i[i]; }

declares a block-scope array of two integers. — end example] — end note]

3 The point of declaration for a class or class template first declared by a class-specifier is immediately after
the identifier or simple-template-id (if any) in its class-head (Clause 9). The point of declaration for an
enumeration is immediately after the identifier (if any) in either its enum-specifier (7.2) or its first opaque-
enum-declaration (7.2), whichever comes first. The point of declaration of a template alias immediately
follows the identifier for the alias being declared.

4 The point of declaration for an enumerator is immediately after its enumerator-definition.[Example:
const int x = 12;
{ enum { x = x }; }

Here, the enumerator x is initialized with the value of the constant x, namely 12. — end example]

5 After the point of declaration of a class member, the member name can be looked up in the scope of its
class. [Note: this is true even if the class is an incomplete class. For example,

§ 3.3.2 36

c© ISO/IEC N3092

struct X {
enum E { z = 16 };
int b[X::z]; // OK

};

— end note]

6 The point of declaration of a class first declared in an elaborated-type-specifier is as follows:

— for a declaration of the form

class-key attribute-specifieropt identifier ;

the identifier is declared to be a class-name in the scope that contains the declaration, otherwise

— for an elaborated-type-specifier of the form

class-key identifier

if the elaborated-type-specifier is used in the decl-specifier-seq or parameter-declaration-clause of a
function defined in namespace scope, the identifier is declared as a class-name in the namespace that
contains the declaration; otherwise, except as a friend declaration, the identifier is declared in the
smallest non-class, non-function-prototype scope that contains the declaration. [Note: these rules also
apply within templates. — end note] [Note: other forms of elaborated-type-specifier do not declare a
new name, and therefore must refer to an existing type-name. See 3.4.4 and 7.1.6.3. — end note]

7 The point of declaration for an injected-class-name (9) is immediately following the opening brace of the
class definition.

8 The point of declaration for a function-local predefined variable (8.4) is immediately before the function-body
of a function definition.

9 The point of declaration for a template parameter is immediately after its complete template-parameter .
[Example:

typedef unsigned char T;
template<class T

= T // lookup finds the typedef name of unsigned char
, T // lookup finds the template parameter

N = 0> struct A { };

— end example]

10 [Note: friend declarations refer to functions or classes that are members of the nearest enclosing namespace,
but they do not introduce new names into that namespace (7.3.1.2). Function declarations at block scope
and variable declarations with the extern specifier at block scope refer to declarations that are members of
an enclosing namespace, but they do not introduce new names into that scope. — end note]

11 [Note: for point of instantiation of a template, see 14.6.4.1. — end note]

3.3.3 Block scope [basic.scope.local]

1 A name declared in a block (6.3) is local to that block; it has block scope. Its potential scope begins at its
point of declaration (3.3.2) and ends at the end of its block. A variable declared at block scope is a local
variable.

2 The potential scope of a function parameter name (including one appearing in a lambda-declarator) or of
a function-local predefined variable in a function definition (8.4) begins at its point of declaration. If the

§ 3.3.3 37

c© ISO/IEC N3092

function has a function-try-block the potential scope of a parameter or of a function-local predefined variable
ends at the end of the last associated handler, otherwise it ends at the end of the outermost block of
the function definition. A parameter name shall not be redeclared in the outermost block of the function
definition nor in the outermost block of any handler associated with a function-try-block.

3 The name declared in an exception-declaration is local to the handler and shall not be redeclared in the
outermost block of the handler .

4 Names declared in the for-init-statement, the for-range-declaration, and in the condition of if, while, for,
and switch statements are local to the if, while, for, or switch statement (including the controlled
statement), and shall not be redeclared in a subsequent condition of that statement nor in the outermost
block (or, for the if statement, any of the outermost blocks) of the controlled statement; see 6.4.

3.3.4 Function prototype scope [basic.scope.proto]

1 In a function declaration, or in any function declarator except the declarator of a function definition (8.4),
names of parameters (if supplied) have function prototype scope, which terminates at the end of the nearest
enclosing function declarator.

3.3.5 Function scope [basic.funscope]

1 Labels (6.1) have function scope and may be used anywhere in the function in which they are declared. Only
labels have function scope.

3.3.6 Namespace scope [basic.scope.namespace]

1 The declarative region of a namespace-definition is its namespace-body. The potential scope denoted by
an original-namespace-name is the concatenation of the declarative regions established by each of the
namespace-definitions in the same declarative region with that original-namespace-name. Entities declared
in a namespace-body are said to be members of the namespace, and names introduced by these declarations
into the declarative region of the namespace are said to be member names of the namespace. A namespace
member name has namespace scope. Its potential scope includes its namespace from the name’s point of
declaration (3.3.2) onwards; and for each using-directive (7.3.4) that nominates the member’s namespace,
the member’s potential scope includes that portion of the potential scope of the using-directive that follows
the member’s point of declaration. [Example:

namespace N {
int i;
int g(int a) { return a; }
int j();
void q();

}
namespace { int l=1; }
// the potential scope of l is from its point of declaration
// to the end of the translation unit

namespace N {
int g(char a) { // overloads N::g(int)

return l+a; // l is from unnamed namespace
}

int i; // error: duplicate definition
int j(); // OK: duplicate function declaration

int j() { // OK: definition of N::j()
return g(i); // calls N::g(int)

§ 3.3.6 38

c© ISO/IEC N3092

}
int q(); // error: different return type

}

— end example]

2 A namespace member can also be referred to after the :: scope resolution operator (5.1) applied to the name
of its namespace or the name of a namespace which nominates the member’s namespace in a using-directive;
see 3.4.3.2.

3 The outermost declarative region of a translation unit is also a namespace, called the global namespace. A
name declared in the global namespace has global namespace scope (also called global scope). The potential
scope of such a name begins at its point of declaration (3.3.2) and ends at the end of the translation unit
that is its declarative region. Names with global namespace scope are said to be global.

3.3.7 Class scope [basic.scope.class]

1 The following rules describe the scope of names declared in classes.

1) The potential scope of a name declared in a class consists not only of the declarative region following
the name’s point of declaration, but also of all function bodies, brace-or-equal-initializers of non-static
data members, and default arguments in that class (including such things in nested classes).

2) A name N used in a class S shall refer to the same declaration in its context and when re-evaluated in
the completed scope of S. No diagnostic is required for a violation of this rule.

3) If reordering member declarations in a class yields an alternate valid program under (1) and (2), the
program is ill-formed, no diagnostic is required.

4) A name declared within a member function hides a declaration of the same name whose scope extends
to or past the end of the member function’s class.

5) The potential scope of a declaration that extends to or past the end of a class definition also ex-
tends to the regions defined by its member definitions, even if the members are defined lexically
outside the class (this includes static data member definitions, nested class definitions, member func-
tion definitions (including the member function body and any portion of the declarator part of such
definitions which follows the declarator-id, including a parameter-declaration-clause and any default
arguments (8.3.6).[Example:

typedef int c;
enum { i = 1 };

class X {
char v[i]; // error: i refers to ::i

// but when reevaluated is X::i
int f() { return sizeof(c); } // OK: X::c
char c;
enum { i = 2 };

};

typedef char* T;
struct Y {

T a; // error: T refers to ::T
// but when reevaluated is Y::T

typedef long T;
T b;

};

§ 3.3.7 39

c© ISO/IEC N3092

typedef int I;
class D {

typedef I I; // error, even though no reordering involved
};

— end example]

2 The name of a class member shall only be used as follows:

— in the scope of its class (as described above) or a class derived (Clause 10) from its class,

— after the . operator applied to an expression of the type of its class (5.2.5) or a class derived from its
class,

— after the -> operator applied to a pointer to an object of its class (5.2.5) or a class derived from its
class,

— after the :: scope resolution operator (5.1) applied to the name of its class or a class derived from its
class.

3.3.8 Enumeration scope [basic.scope.enum]

1 The name of a scoped enumerator (7.2) has enumeration scope. Its potential scope begins at its point of
declaration and terminates at the end of the enum-specifier .

3.3.9 Template Parameter Scope [basic.scope.temp]

1 The declarative region of the name of a template parameter of a template template-parameter is the smallest
template-parameter-list in which the name was introduced.

2 The declarative region of the name of a template parameter of a template is the smallest template-declaration
in which the name was introduced. Only template parameter names belong to this declarative region; any
other kind of name introduced by the declaration of a template-declaration is instead introduced into the
same declarative region where it would be introduced as a result of a non-template declaration of the same
name. [Example:

namespace N {
template<class T> struct A { }; // #1
template<class U> void f(U) { } // #2
struct B {

template<class V> friend int g(struct C*); // #3
};

}

The declarative regions of T, U and V are the template-declarations on lines #1, #2 and #3, respectively.
But the names A, f, g and C all belong to the same declarative region — namely, the namespace-body of N.
(g is still considered to belong to this declarative region in spite of its being hidden during qualified and
unqualified name lookup.) — end example]

3 The potential scope of a template parameter name begins at its point of declaration (3.3.2) and ends at the
end of its declarative region. [Note: this implies that a template-parameter can be used in the declaration
of subsequent template-parameters and their default arguments but cannot be used in preceding template-
parameters or their default arguments. For example,

template<class T, T* p, class U = T> class X { /∗ ... ∗/ };
template<class T> void f(T* p = new T);

§ 3.3.9 40

c© ISO/IEC N3092

This also implies that a template-parameter can be used in the specification of base classes. For example,
template<class T> class X : public Array<T> { /∗ ... ∗/ };
template<class T> class Y : public T { /∗ ... ∗/ };

The use of a template parameter as a base class implies that a class used as a template argument must be
defined and not just declared when the class template is instantiated. — end note]

4 The declarative region of the name of a template parameter is nested within the immediately-enclosing
declarative region. [Note: as a result, a template-parameter hides any entity with the same name in an
enclosing scope (3.3.10). [Example:

typedef int N;
template<N X, typename N, template<N Y> class T> struct A;

Here, X is a non-type template parameter of type int and Y is a non-type template parameter of the same
type as the second template parameter of A. — end example] — end note]

5 [Note: because the name of a template parameter cannot be redeclared within its potential scope (14.6.1), a
template parameter’s scope is often its potential scope. However, it is still possible for a template parameter
name to be hidden; see 14.6.1. — end note]

3.3.10 Name hiding [basic.scope.hiding]

1 A name can be hidden by an explicit declaration of that same name in a nested declarative region or derived
class (10.2).

2 A class name (9.1) or enumeration name (7.2) can be hidden by the name of a variable, data member,
function, or enumerator declared in the same scope. If a class or enumeration name and a variable, data
member, function, or enumerator are declared in the same scope (in any order) with the same name, the
class or enumeration name is hidden wherever the variable, data member, function, or enumerator name is
visible.

3 In a member function definition, the declaration of a name at block scope hides the declaration of a member
of the class with the same name; see 3.3.7. The declaration of a member in a derived class (Clause 10) hides
the declaration of a member of a base class of the same name; see 10.2.

4 During the lookup of a name qualified by a namespace name, declarations that would otherwise be made
visible by a using-directive can be hidden by declarations with the same name in the namespace containing
the using-directive; see (3.4.3.2).

5 If a name is in scope and is not hidden it is said to be visible.

3.4 Name lookup [basic.lookup]

1 The name lookup rules apply uniformly to all names (including typedef-names (7.1.3), namespace-names (7.3),
and class-names (9.1)) wherever the grammar allows such names in the context discussed by a particular
rule. Name lookup associates the use of a name with a declaration (3.1) of that name. Name lookup shall
find an unambiguous declaration for the name (see 10.2). Name lookup may associate more than one dec-
laration with a name if it finds the name to be a function name; the declarations are said to form a set
of overloaded functions (13.1). Overload resolution (13.3) takes place after name lookup has succeeded.
The access rules (Clause 11) are considered only once name lookup and function overload resolution (if
applicable) have succeeded. Only after name lookup, function overload resolution (if applicable) and access
checking have succeeded are the attributes introduced by the name’s declaration used further in expression
processing (Clause 5).

§ 3.4 41

c© ISO/IEC N3092

2 A name “looked up in the context of an expression” is looked up as an unqualified name in the scope where
the expression is found.

3 The injected-class-name of a class (Clause 9) is also considered to be a member of that class for the purposes
of name hiding and lookup.

4 [Note: 3.5 discusses linkage issues. The notions of scope, point of declaration and name hiding are discussed
in 3.3. — end note]

3.4.1 Unqualified name lookup [basic.lookup.unqual]

1 In all the cases listed in 3.4.1, the scopes are searched for a declaration in the order listed in each of the
respective categories; name lookup ends as soon as a declaration is found for the name. If no declaration is
found, the program is ill-formed.

2 The declarations from the namespace nominated by a using-directive become visible in a namespace enclosing
the using-directive; see 7.3.4. For the purpose of the unqualified name lookup rules described in 3.4.1, the
declarations from the namespace nominated by the using-directive are considered members of that enclosing
namespace.

3 The lookup for an unqualified name used as the postfix-expression of a function call is described in 3.4.2.
[Note: for purposes of determining (during parsing) whether an expression is a postfix-expression for a func-
tion call, the usual name lookup rules apply. The rules in 3.4.2 have no effect on the syntactic interpretation
of an expression. For example,

typedef int f;
namespace N {

struct A {
friend void f(A &);
operator int();
void g(A a) {

int i = f(a); // f is the typedef, not the friend
// function: equivalent to int(a)

}
};

}

Because the expression is not a function call, the argument-dependent name lookup (3.4.2) does not apply
and the friend function f is not found. — end note]

4 A name used in global scope, outside of any function, class or user-declared namespace, shall be declared
before its use in global scope.

5 A name used in a user-declared namespace outside of the definition of any function or class shall be declared
before its use in that namespace or before its use in a namespace enclosing its namespace.

6 A name used in the definition of a function following the function’s declarator-id28 that is a member of
namespace N (where, only for the purpose of exposition, N could represent the global scope) shall be declared
before its use in the block in which it is used or in one of its enclosing blocks (6.3) or, shall be declared
before its use in namespace N or, if N is a nested namespace, shall be declared before its use in one of N’s
enclosing namespaces. [Example:

namespace A {
namespace N {

28) This refers to unqualified names that occur, for instance, in a type or default argument expression in the parameter-
declaration-clause or used in the function body.

§ 3.4.1 42

c© ISO/IEC N3092

void f();
}

}
void A::N::f() {

i = 5;
// The following scopes are searched for a declaration of i:
// 1) outermost block scope of A::N::f, before the use of i
// 2) scope of namespace N
// 3) scope of namespace A
// 4) global scope, before the definition of A::N::f

}

— end example]

7 A name used in the definition of a class X outside of a member function body or nested class definition29

shall be declared in one of the following ways:

— before its use in class X or be a member of a base class of X (10.2), or

— if X is a nested class of class Y (9.7), before the definition of X in Y, or shall be a member of a base
class of Y (this lookup applies in turn to Y ’s enclosing classes, starting with the innermost enclosing
class),30 or

— if X is a local class (9.8) or is a nested class of a local class, before the definition of class X in a block
enclosing the definition of class X, or

— if X is a member of namespace N, or is a nested class of a class that is a member of N, or is a local class
or a nested class within a local class of a function that is a member of N, before the definition of class
X in namespace N or in one of N ’s enclosing namespaces.

[Example:
namespace M {

class B { };
}

namespace N {
class Y : public M::B {

class X {
int a[i];

};
};

}

// The following scopes are searched for a declaration of i:
// 1) scope of class N::Y::X, before the use of i
// 2) scope of class N::Y, before the definition of N::Y::X
// 3) scope of N::Y’s base class M::B
// 4) scope of namespace N, before the definition of N::Y
// 5) global scope, before the definition of N

29) This refers to unqualified names following the class name; such a name may be used in the base-clause or may be used in
the class definition.

30) This lookup applies whether the definition of X is nested within Y’s definition or whether X’s definition appears in a
namespace scope enclosing Y ’s definition (9.7).

§ 3.4.1 43

c© ISO/IEC N3092

— end example] [Note: when looking for a prior declaration of a class or function introduced by a friend
declaration, scopes outside of the innermost enclosing namespace scope are not considered; see 7.3.1.2. —
end note] [Note: 3.3.7 further describes the restrictions on the use of names in a class definition. 9.7 further
describes the restrictions on the use of names in nested class definitions. 9.8 further describes the restrictions
on the use of names in local class definitions. — end note]

8 A name used in the definition of a member function (9.3) of class X following the function’s declarator-id 31

or in the brace-or-equal-initializer of a non-static data member (9.2) of class X shall be declared in one of
the following ways:

— before its use in the block in which it is used or in an enclosing block (6.3), or

— shall be a member of class X or be a member of a base class of X (10.2), or

— if X is a nested class of class Y (9.7), shall be a member of Y, or shall be a member of a base class of Y
(this lookup applies in turn to Y’s enclosing classes, starting with the innermost enclosing class),32 or

— if X is a local class (9.8) or is a nested class of a local class, before the definition of class X in a block
enclosing the definition of class X, or

— if X is a member of namespace N, or is a nested class of a class that is a member of N, or is a local class
or a nested class within a local class of a function that is a member of N, before the use of the name,
in namespace N or in one of N ’s enclosing namespaces.

[Example:
class B { };
namespace M {

namespace N {
class X : public B {

void f();
};

}
}
void M::N::X::f() {

i = 16;
}

// The following scopes are searched for a declaration of i:
// 1) outermost block scope of M::N::X::f, before the use of i
// 2) scope of class M::N::X
// 3) scope of M::N::X’s base class B
// 4) scope of namespace M::N
// 5) scope of namespace M
// 6) global scope, before the definition of M::N::X::f

— end example] [Note: 9.3 and 9.4 further describe the restrictions on the use of names in member function
definitions. 9.7 further describes the restrictions on the use of names in the scope of nested classes. 9.8
further describes the restrictions on the use of names in local class definitions. — end note]

9 Name lookup for a name used in the definition of a friend function (11.4) defined inline in the class granting
friendship shall proceed as described for lookup in member function definitions. If the friend function is

31) That is, an unqualified name that occurs, for instance, in a type or default argument expression in the parameter-
declaration-clause or in the function body.

32) This lookup applies whether the member function is defined within the definition of class X or whether the member function
is defined in a namespace scope enclosing X’s definition.

§ 3.4.1 44

c© ISO/IEC N3092

not defined in the class granting friendship, name lookup in the friend function definition shall proceed as
described for lookup in namespace member function definitions.

10 In a friend declaration naming a member function, a name used in the function declarator and not part of a
template-argument in the declarator-id is first looked up in the scope of the member function’s class (10.2). If
it is not found, or if the name is part of a template-argument in the declarator-id, the look up is as described
for unqualified names in the definition of the class granting friendship. [Example:

struct A {
typedef int AT;
void f1(AT);
void f2(float);
template <class T> void f3();

};
struct B {

typedef char AT;
typedef float BT;
friend void A::f1(AT); // parameter type is A::AT
friend void A::f2(BT); // parameter type is B::BT
friend void A::f3<AT>(); // template argument is B::AT

};

— end example]

11 During the lookup for a name used as a default argument (8.3.6) in a function parameter-declaration-clause
or used in the expression of a mem-initializer for a constructor (12.6.2), the function parameter names are
visible and hide the names of entities declared in the block, class or namespace scopes containing the function
declaration. [Note: 8.3.6 further describes the restrictions on the use of names in default arguments. 12.6.2
further describes the restrictions on the use of names in a ctor-initializer . — end note]

12 During the lookup of a name used in the constant-expression of an enumerator-definition, previously declared
enumerators of the enumeration are visible and hide the names of entities declared in the block, class, or
namespace scopes containing the enum-specifier .

13 A name used in the definition of a static data member of class X (9.4.2) (after the qualified-id of the static
member) is looked up as if the name was used in a member function of X. [Note: 9.4.2 further describes the
restrictions on the use of names in the definition of a static data member. — end note]

14 If a variable member of a namespace is defined outside of the scope of its namespace then any name that
appears in the definition of the member (after the declarator-id) is looked up as if the definition of the
member occurred in its namespace. [Example:

namespace N {
int i = 4;
extern int j;

}

int i = 2;

int N::j = i; // N::j == 4

— end example]

15 A name used in the handler for a function-try-block (Clause 15) is looked up as if the name was used in
the outermost block of the function definition. In particular, the function parameter names shall not be
redeclared in the exception-declaration nor in the outermost block of a handler for the function-try-block.

§ 3.4.1 45

c© ISO/IEC N3092

Names declared in the outermost block of the function definition are not found when looked up in the scope
of a handler for the function-try-block. [Note: but function parameter names are found. — end note]

16 [Note: the rules for name lookup in template definitions are described in 14.6. — end note]

3.4.2 Argument-dependent name lookup [basic.lookup.argdep]

1 When the postfix-expression in a function call (5.2.2) is an unqualified-id, other namespaces not considered
during the usual unqualified lookup (3.4.1) may be searched, and in those namespaces, namespace-scope
friend function declarations (11.4) not otherwise visible may be found. These modifications to the search
depend on the types of the arguments (and for template template arguments, the namespace of the template
argument). [Example:

namespace N {
struct S { };
void f(S);

}

void g() {
N::S s;
f(s); // OK: calls N::f
(f)(s); // error: N::f not considered; parentheses

// prevent argument-dependent lookup
}

— end example]

2 For each argument type T in the function call, there is a set of zero or more associated namespaces and a
set of zero or more associated classes to be considered. The sets of namespaces and classes is determined
entirely by the types of the function arguments (and the namespace of any template template argument).
Typedef names and using-declarations used to specify the types do not contribute to this set. The sets of
namespaces and classes are determined in the following way:

— If T is a fundamental type, its associated sets of namespaces and classes are both empty.

— If T is a class type (including unions), its associated classes are: the class itself; the class of which it is a
member, if any; and its direct and indirect base classes. Its associated namespaces are the namespaces
of which its associated classes are members. Furthermore, if T is a class template specialization,
its associated namespaces and classes also include: the namespaces and classes associated with the
types of the template arguments provided for template type parameters (excluding template template
parameters); the namespaces of which any template template arguments are members; and the classes
of which any member templates used as template template arguments are members. [Note: non-type
template arguments do not contribute to the set of associated namespaces. — end note]

— If T is an enumeration type, its associated namespace is the namespace in which it is defined. If it is
class member, its associated class is the member’s class; else it has no associated class.

— If T is a pointer to U or an array of U, its associated namespaces and classes are those associated with
U.

— If T is a function type, its associated namespaces and classes are those associated with the function
parameter types and those associated with the return type.

— If T is a pointer to a member function of a class X, its associated namespaces and classes are those
associated with the function parameter types and return type, together with those associated with X.

§ 3.4.2 46

c© ISO/IEC N3092

— If T is a pointer to a data member of class X, its associated namespaces and classes are those associated
with the member type together with those associated with X.

If an associated namespace is an inline namespace (7.3.1), its enclosing namespace is also included in the set.
If an associated namespace directly contains inline namespaces, those inline namespaces are also included in
the set. In addition, if the argument is the name or address of a set of overloaded functions and/or function
templates, its associated classes and namespaces are the union of those associated with each of the members
of the set, i.e., the classes and namespaces associated with its (non-dependent) parameter types and return
type.

3 Let X be the lookup set produced by unqualified lookup (3.4.1) and let Y be the lookup set produced by
argument dependent lookup (defined as follows). If X contains

— a declaration of a class member, or

— a block-scope function declaration that is not a using-declaration, or

— a declaration that is neither a function or a function template

then Y is empty. Otherwise Y is the set of declarations found in the namespaces associated with the
argument types as described below. The set of declarations found by the lookup of the name is the union of
X and Y . [Note: the namespaces and classes associated with the argument types can include namespaces
and classes already considered by the ordinary unqualified lookup. — end note] [Example:

namespace NS {
class T { };
void f(T);
void g(T, int);

}
NS::T parm;
void g(NS::T, float);
int main() {

f(parm); // OK: calls NS::f
extern void g(NS::T, float);
g(parm, 1); // OK: calls g(NS::T, float)

}

— end example]

4 When considering an associated namespace, the lookup is the same as the lookup performed when the
associated namespace is used as a qualifier (3.4.3.2) except that:

— Any using-directives in the associated namespace are ignored.

— Any namespace-scope friend functions or friend function templates declared in associated classes are
visible within their respective namespaces even if they are not visible during an ordinary lookup (11.4).

— All names except those of (possibly overloaded) functions and function templates are ignored.

3.4.3 Qualified name lookup [basic.lookup.qual]

1 The name of a class or namespace member or enumerator can be referred to after the :: scope resolution
operator (5.1) applied to a nested-name-specifier that denotes its class, namespace, or enumeration. If a ::
scope resolution operator in a nested-name-specifier is not preceded by a decltype-specifier , lookup of the
name preceding that :: considers only namespaces, types, and templates whose specializations are types.
If the name found does not designate a namespace or a class, enumeration, or dependent type, the program
is ill-formed.[Example:

§ 3.4.3 47

c© ISO/IEC N3092

class A {
public:

static int n;
};
int main() {

int A;
A::n = 42; // OK
A b; // ill-formed: A does not name a type

}

— end example]

2 [Note: multiply qualified names, such as N1::N2::N3::n, can be used to refer to members of nested
classes (9.7) or members of nested namespaces. — end note]

3 In a declaration in which the declarator-id is a qualified-id, names used before the qualified-id being declared
are looked up in the defining namespace scope; names following the qualified-id are looked up in the scope
of the member’s class or namespace. [Example:

class X { };
class C {

class X { };
static const int number = 50;
static X arr[number];

};
X C::arr[number]; // ill-formed:

// equivalent to: ::X C::arr[C::number];
// not to: C::X C::arr[C::number];

— end example]

4 A name prefixed by the unary scope operator :: (5.1) is looked up in global scope, in the translation unit
where it is used. The name shall be declared in global namespace scope or shall be a name whose declaration
is visible in global scope because of a using-directive (3.4.3.2). The use of :: allows a global name to be
referred to even if its identifier has been hidden (3.3.10).

5 A name prefixed by a nested-name-specifier that nominates an enumeration type shall represent an enumer-
ator of that enumeration.

6 If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier , the type-names are looked up as types
in the scope designated by the nested-name-specifier . Similarly, in a qualified-id of the form:

::opt nested-name-specifieropt class-name :: ∼ class-name

the second class-name is looked up in the same scope as the first. [Example:
struct C {

typedef int I;
};
typedef int I1, I2;
extern int* p;
extern int* q;
p->C::I::~I(); // I is looked up in the scope of C
q->I1::~I2(); // I2 is looked up in the scope of

// the postfix-expression

struct A {
~A();

§ 3.4.3 48

c© ISO/IEC N3092

};
typedef A AB;
int main() {

AB *p;
p->AB::~AB(); // explicitly calls the destructor for A

}

— end example] [Note: 3.4.5 describes how name lookup proceeds after the . and -> operators. — end
note]

3.4.3.1 Class members [class.qual]

1 If the nested-name-specifier of a qualified-id nominates a class, the name specified after the nested-name-
specifier is looked up in the scope of the class (10.2), except for the cases listed below. The name shall
represent one or more members of that class or of one of its base classes (Clause 10). [Note: a class member
can be referred to using a qualified-id at any point in its potential scope (3.3.7). — end note] The exceptions
to the name lookup rule above are the following:

— a destructor name is looked up as specified in 3.4.3;

— a conversion-type-id of an conversion-function-id is looked up both in the scope of the class and in the
context in which the entire postfix-expression occurs and shall refer to the same type in both contexts;

— the names in a template-argument of a template-id are looked up in the context in which the entire
postfix-expression occurs.

— the lookup for a name specified in a using-declaration (7.3.3) also finds class or enumeration names
hidden within the same scope (3.3.10).

2 In a lookup in which the constructor is an acceptable lookup result and the nested-name-specifier nominates
a class C:

— if the name specified after the nested-name-specifier , when looked up in C, is the injected-class-name
of C (Clause 9), or

— in a using-declaration (7.3.3) that is a member-declaration, if the name specified after the nested-name-
specifier is the same as the identifier or the simple-template-id’s template-name in the last component
of the nested-name-specifier ,

the name is instead considered to name the constructor of class C. [Note: for example, the constructor is
not an acceptable lookup result in an elaborated-type-specifier so the constructor would not be used in place
of the injected-class-name. — end note] Such a constructor name shall be used only in the declarator-id of
a declaration that names a constructor or in a using-declaration. [Example:

struct A { A(); };
struct B: public A { B(); };

A::A() { }
B::B() { }

B::A ba; // object of type A
A::A a; // error, A::A is not a type name
struct A::A a2; // object of type A

— end example]

3 A class member name hidden by a name in a nested declarative region or by the name of a derived class
member can still be found if qualified by the name of its class followed by the :: operator.

§ 3.4.3.1 49

c© ISO/IEC N3092

3.4.3.2 Namespace members [namespace.qual]

1 If the nested-name-specifier of a qualified-id nominates a namespace, the name specified after the nested-
name-specifier is looked up in the scope of the namespace, except that the names in a template-argument of
a template-id are looked up in the context in which the entire postfix-expression occurs.

2 For a namespace X and name m, the namespace-qualified lookup set S(X, m) is defined as follows: Let
S′(X, m) be the set of all declarations of m in X and the inline namespace set of X (7.3.1). If S′(X, m) is not
empty, S(X, m) is S′(X, m); otherwise, S(X, m) is the union of S(Ni,m) for all namespaces Ni nominated
by using-directives in X and its inline namespace set.

3 Given X::m (where X is a user-declared namespace), or given ::m (where X is the global namespace), if
S(X, m) is the empty set, the program is ill-formed. Otherwise, if S(X, m) has exactly one member, or if
the context of the reference is a using-declaration (7.3.3), S(X, m) is the required set of declarations of m.
Otherwise if the use of m is not one that allows a unique declaration to be chosen from S(X, m), the program
is ill-formed. [Example:

int x;
namespace Y {

void f(float);
void h(int);

}

namespace Z {
void h(double);

}

namespace A {
using namespace Y;
void f(int);
void g(int);
int i;

}

namespace B {
using namespace Z;
void f(char);
int i;

}

namespace AB {
using namespace A;
using namespace B;
void g();

}

void h()
{

AB::g(); // g is declared directly in AB,
// therefore S is { AB::g() } and AB::g() is chosen

AB::f(1); // f is not declared directly in AB so the rules are
// applied recursively to A and B;
// namespace Y is not searched and Y::f(float)
// is not considered;
// S is { A::f(int), B::f(char) } and overload
// resolution chooses A::f(int)

§ 3.4.3.2 50

c© ISO/IEC N3092

AB::f(’c’); // as above but resolution chooses B::f(char)

AB::x++; // x is not declared directly in AB, and
// is not declared in A or B , so the rules are
// applied recursively to Y and Z,
// S is { } so the program is ill-formed

AB::i++; // i is not declared directly in AB so the rules are
// applied recursively to A and B,
// S is { A::i , B::i } so the use is ambiguous
// and the program is ill-formed

AB::h(16.8); // h is not declared directly in AB and
// not declared directly in A or B so the rules are
// applied recursively to Y and Z,
// S is { Y::h(int), Z::h(double) } and overload
// resolution chooses Z::h(double)

}

4 The same declaration found more than once is not an ambiguity (because it is still a unique declaration).
For example:

namespace A {
int a;

}

namespace B {
using namespace A;

}

namespace C {
using namespace A;

}

namespace BC {
using namespace B;
using namespace C;

}

void f()
{

BC::a++; // OK: S is { A::a, A::a }
}

namespace D {
using A::a;

}

namespace BD {
using namespace B;
using namespace D;

}

void g()
{

BD::a++; // OK: S is { A::a, A::a }
}

§ 3.4.3.2 51

c© ISO/IEC N3092

5 Because each referenced namespace is searched at most once, the following is well-defined:
namespace B {

int b;
}

namespace A {
using namespace B;
int a;

}

namespace B {
using namespace A;

}

void f()
{

A::a++; // OK: a declared directly in A, S is {A::a}
B::a++; // OK: both A and B searched (once), S is {A::a}
A::b++; // OK: both A and B searched (once), S is {B::b}
B::b++; // OK: b declared directly in B, S is {B::b}

}

— end example]

6 During the lookup of a qualified namespace member name, if the lookup finds more than one declaration of
the member, and if one declaration introduces a class name or enumeration name and the other declarations
either introduce the same variable, the same enumerator or a set of functions, the non-type name hides
the class or enumeration name if and only if the declarations are from the same namespace; otherwise (the
declarations are from different namespaces), the program is ill-formed. [Example:

namespace A {
struct x { };
int x;
int y;

}

namespace B {
struct y { };

}

namespace C {
using namespace A;
using namespace B;
int i = C::x; // OK, A::x (of type int)
int j = C::y; // ambiguous, A::y or B::y

}

— end example]

7 In a declaration for a namespace member in which the declarator-id is a qualified-id, given that the qualified-id
for the namespace member has the form

nested-name-specifier unqualified-id

the unqualified-id shall name a member of the namespace designated by the nested-name-specifier or of an
element of the inline namespace set (7.3.1) of that namespace. [Example:

§ 3.4.3.2 52

c© ISO/IEC N3092

namespace A {
namespace B {

void f1(int);
}
using namespace B;

}
void A::f1(int){ } // ill-formed, f1 is not a member of A

— end example] However, in such namespace member declarations, the nested-name-specifier may rely on
using-directives to implicitly provide the initial part of the nested-name-specifier . [Example:

namespace A {
namespace B {

void f1(int);
}

}

namespace C {
namespace D {

void f1(int);
}

}

using namespace A;
using namespace C::D;
void B::f1(int){ } // OK, defines A::B::f1(int)

— end example]

3.4.4 Elaborated type specifiers [basic.lookup.elab]

1 An elaborated-type-specifier (7.1.6.3) may be used to refer to a previously declared class-name or enum-name
even though the name has been hidden by a non-type declaration (3.3.10).

2 If the elaborated-type-specifier has no nested-name-specifier , and unless the elaborated-type-specifier appears
in a declaration with the following form:

class-key attribute-specifieropt identifier ;

the identifier is looked up according to 3.4.1 but ignoring any non-type names that have been declared. If
the elaborated-type-specifier is introduced by the enum keyword and this lookup does not find a previously
declared type-name, the elaborated-type-specifier is ill-formed. If the elaborated-type-specifier is introduced by
the class-key and this lookup does not find a previously declared type-name, or if the elaborated-type-specifier
appears in a declaration with the form:

class-key attribute-specifieropt identifier ;

the elaborated-type-specifier is a declaration that introduces the class-name as described in 3.3.2.

3 If the elaborated-type-specifier has a nested-name-specifier , qualified name lookup is performed, as described
in 3.4.3, but ignoring any non-type names that have been declared. If the name lookup does not find a
previously declared type-name, the elaborated-type-specifier is ill-formed. [Example:

struct Node {
struct Node* Next; // OK: Refers to Node at global scope
struct Data* Data; // OK: Declares type Data

// at global scope and member Data

§ 3.4.4 53

c© ISO/IEC N3092

};

struct Data {
struct Node* Node; // OK: Refers to Node at global scope
friend struct ::Glob; // error: Glob is not declared

// cannot introduce a qualified type (7.1.6.3)
friend struct Glob; // OK: Refers to (as yet) undeclared Glob

// at global scope.
/∗ ... ∗/

};

struct Base {
struct Data; // OK: Declares nested Data
struct ::Data* thatData; // OK: Refers to ::Data
struct Base::Data* thisData; // OK: Refers to nested Data
friend class ::Data; // OK: global Data is a friend
friend class Data; // OK: nested Data is a friend
struct Data { /* ... */ }; // Defines nested Data

};

struct Data; // OK: Redeclares Data at global scope
struct ::Data; // error: cannot introduce a qualified type (7.1.6.3)
struct Base::Data; // error: cannot introduce a qualified type (7.1.6.3)
struct Base::Datum; // error: Datum undefined
struct Base::Data* pBase; // OK: refers to nested Data

— end example]

3.4.5 Class member access [basic.lookup.classref]

1 In a class member access expression (5.2.5), if the . or -> token is immediately followed by an identifier
followed by a <, the identifier must be looked up to determine whether the < is the beginning of a template
argument list (14.2) or a less-than operator. The identifier is first looked up in the class of the object
expression. If the identifier is not found, it is then looked up in the context of the entire postfix-expression
and shall name a class template. If the lookup in the class of the object expression finds a template, the
name is also looked up in the context of the entire postfix-expression and

— if the name is not found, the name found in the class of the object expression is used, otherwise

— if the name is found in the context of the entire postfix-expression and does not name a class template,
the name found in the class of the object expression is used, otherwise

— if the name found is a class template, it shall refer to the same entity as the one found in the class of
the object expression, otherwise the program is ill-formed.

2 If the id-expression in a class member access (5.2.5) is an unqualified-id, and the type of the object expression
is of a class type C, the unqualified-id is looked up in the scope of class C. If the type of the object expression
is of pointer to scalar type, the unqualified-id is looked up in the context of the complete postfix-expression.

3 If the unqualified-id is ∼type-name, the type-name is looked up in the context of the entire postfix-expression.
If the type T of the object expression is of a class type C, the type-name is also looked up in the scope of
class C. At least one of the lookups shall find a name that refers to (possibly cv-qualified) T. [Example:

struct A { };

struct B {
struct A { };

§ 3.4.5 54

c© ISO/IEC N3092

void f(::A* a);
};

void B::f(::A* a) {
a->~A(); // OK: lookup in *a finds the injected-class-name

}

— end example]

4 If the id-expression in a class member access is a qualified-id of the form

class-name-or-namespace-name::...

the class-name-or-namespace-name following the . or -> operator is looked up both in the context of the
entire postfix-expression and in the scope of the class of the object expression. If the name is found only in
the scope of the class of the object expression, the name shall refer to a class-name. If the name is found
only in the context of the entire postfix-expression, the name shall refer to a class-name or namespace-name.
If the name is found in both contexts, the class-name-or-namespace-name shall refer to the same entity.

5 If the qualified-id has the form

::class-name-or-namespace-name::...

the class-name-or-namespace-name is looked up in global scope as a class-name or namespace-name.

6 If the nested-name-specifier contains a simple-template-id (14.2), the names in its template-arguments are
looked up in the context in which the entire postfix-expression occurs.

7 If the id-expression is a conversion-function-id, its conversion-type-id shall denote the same type in both the
context in which the entire postfix-expression occurs and in the context of the class of the object expression
(or the class pointed to by the pointer expression).

3.4.6 Using-directives and namespace aliases [basic.lookup.udir]

1 When looking up a namespace-name in a using-directive or namespace-alias-definition, only namespace
names are considered.

3.5 Program and linkage [basic.link]

1 A program consists of one or more translation units (Clause 2) linked together. A translation unit consists
of a sequence of declarations.

translation-unit:
declaration-seqopt

2 A name is said to have linkage when it might denote the same object, reference, function, type, template,
namespace or value as a name introduced by a declaration in another scope:

— When a name has external linkage, the entity it denotes can be referred to by names from scopes of
other translation units or from other scopes of the same translation unit.

— When a name has internal linkage, the entity it denotes can be referred to by names from other scopes
in the same translation unit.

— When a name has no linkage, the entity it denotes cannot be referred to by names from other scopes.

3 A name having namespace scope (3.3.6) has internal linkage if it is the name of

— a variable, function or function template that is explicitly declared static; or,

§ 3.5 55

c© ISO/IEC N3092

— a variable that is explicitly declared const and neither explicitly declared extern nor previously
declared to have external linkage; or

— a data member of an anonymous union.

4 A name having namespace scope has external linkage if it is the name of

— a variable, unless it has internal linkage; or

— a function, unless it has internal linkage; or

— a named class (Clause 9), or an unnamed class defined in a typedef declaration in which the class has
the typedef name for linkage purposes (7.1.3); or

— a named enumeration (7.2), or an unnamed enumeration defined in a typedef declaration in which the
enumeration has the typedef name for linkage purposes (7.1.3); or

— an enumerator belonging to an enumeration with external linkage; or

— a template, unless it is a function template that has internal linkage (Clause 14); or

— a namespace (7.3), unless it is declared within an unnamed namespace.

5 In addition, a member function, static data member, a named class or enumeration of class scope, or an
unnamed class or enumeration defined in a class-scope typedef declaration such that the class or enumeration
has the typedef name for linkage purposes (7.1.3), has external linkage if the name of the class has external
linkage.

6 The name of a function declared in block scope and the name of a variable declared by a block scope extern
declaration have linkage. If there is a visible declaration of an entity with linkage having the same name and
type, ignoring entities declared outside the innermost enclosing namespace scope, the block scope declaration
declares that same entity and receives the linkage of the previous declaration. If there is more than one such
matching entity, the program is ill-formed. Otherwise, if no matching entity is found, the block scope entity
receives external linkage.[Example:

static void f();
static int i = 0; // #1
void g() {

extern void f(); // internal linkage
int i; // #2 i has no linkage
{

extern void f(); // internal linkage
extern int i; // #3 external linkage

}
}

There are three objects named i in this program. The object with internal linkage introduced by the
declaration in global scope (line #1), the object with automatic storage duration and no linkage introduced
by the declaration on line #2, and the object with static storage duration and external linkage introduced
by the declaration on line #3. — end example]

7 When a block scope declaration of an entity with linkage is not found to refer to some other declaration,
then that entity is a member of the innermost enclosing namespace. However such a declaration does not
introduce the member name in its namespace scope. [Example:

namespace X {
void p() {

q(); // error: q not yet declared
extern void q(); // q is a member of namespace X

§ 3.5 56

c© ISO/IEC N3092

}

void middle() {
q(); // error: q not yet declared

}

void q() { /* ... */ } // definition of X::q
}

void q() { /* ... */ } // some other, unrelated q

— end example]

8 Names not covered by these rules have no linkage. Moreover, except as noted, a name declared at block
scope (3.3.3) has no linkage. A type is said to have linkage if and only if:

— it is a class or enumeration type that is named (or has a name for linkage purposes (7.1.3)) and the
name has linkage; or

— it is an unnamed class or enumeration member of a class with linkage; or

— it is a specialization of a class template (14)33; or

— it is a fundamental type (3.9.1); or

— it is a compound type (3.9.2) other than a class or enumeration, compounded exclusively from types
that have linkage; or

— it is a cv-qualified (3.9.3) version of a type that has linkage.

A type without linkage shall not be used as the type of a variable or function with external linkage unless

— the entity has C language linkage (7.5), or

— the entity is declared within an unnamed namespace (7.3.1), or

— the entity is not used (3.2) or is defined in the same translation unit.

[Note: in other words, a type without linkage contains a class or enumeration that cannot be named outside
its translation unit. An entity with external linkage declared using such a type could not correspond to any
other entity in another translation unit of the program and thus must be defined in the translation unit if
it is used. Also note that classes with linkage may contain members whose types do not have linkage, and
that typedef names are ignored in the determination of whether a type has linkage. — end note]

[Example:
template <class T> struct B {

void g(T) { }
void h(T);
friend void i(B, T) { }

};

void f() {
struct A { int x; }; // no linkage
A a = { 1 };
B<A> ba; // declares B<A>::g(A) and B<A>::h(A)
ba.g(a); // OK

33) A class template always has external linkage, and the requirements of 14.3.1 and 14.3.2 ensure that the template arguments
will also have appropriate linkage.

§ 3.5 57

c© ISO/IEC N3092

ba.h(a); // error: B<A>::h(A) not defined in the translation unit
i(ba, a); // OK

}

— end example]

9 Two names that are the same (Clause 3) and that are declared in different scopes shall denote the same
variable, function, type, enumerator, template or namespace if

— both names have external linkage or else both names have internal linkage and are declared in the
same translation unit; and

— both names refer to members of the same namespace or to members, not by inheritance, of the same
class; and

— when both names denote functions, the parameter-type-lists of the functions (8.3.5) are identical; and

— when both names denote function templates, the signatures (14.5.6.1) are the same.

10 After all adjustments of types (during which typedefs (7.1.3) are replaced by their definitions), the types
specified by all declarations referring to a given variable or function shall be identical, except that decla-
rations for an array object can specify array types that differ by the presence or absence of a major array
bound (8.3.4). A violation of this rule on type identity does not require a diagnostic.

11 [Note: linkage to non-C++ declarations can be achieved using a linkage-specification (7.5). — end note]

3.6 Start and termination [basic.start]

3.6.1 Main function [basic.start.main]

1 A program shall contain a global function called main, which is the designated start of the program. It
is implementation-defined whether a program in a freestanding environment is required to define a main
function. [Note: in a freestanding environment, start-up and termination is implementation-defined; start-
up contains the execution of constructors for objects of namespace scope with static storage duration;
termination contains the execution of destructors for objects with static storage duration. — end note]

2 An implementation shall not predefine the main function. This function shall not be overloaded. It shall
have a return type of type int, but otherwise its type is implementation-defined. All implementations shall
allow both of the following definitions of main:

int main() { /* ... */ }

and
int main(int argc, char* argv[]) { /* ... */ }

In the latter form argc shall be the number of arguments passed to the program from the environ-
ment in which the program is run. If argc is nonzero these arguments shall be supplied in argv[0]
through argv[argc-1] as pointers to the initial characters of null-terminated multibyte strings (ntmbs
s) (17.5.2.1.4.2) and argv[0] shall be the pointer to the initial character of a ntmbs that represents the
name used to invoke the program or "". The value of argc shall be non-negative. The value of argv[argc]
shall be 0. [Note: it is recommended that any further (optional) parameters be added after argv. — end
note]

3 The function main shall not be used (3.2) within a program. The linkage (3.5) of main is implementation-
defined. A program that defines main as deleted or that declares main to be inline, static, or constexpr

§ 3.6.1 58

c© ISO/IEC N3092

is ill-formed. The name main is not otherwise reserved. [Example: member functions, classes, and enumer-
ations can be called main, as can entities in other namespaces. — end example]

4 Terminating the program without leaving the current block (e.g., by calling the function std::exit(int) (18.5))
does not destroy any objects with automatic storage duration (12.4). If std::exit is called to end a pro-
gram during the destruction of an object with static or thread storage duration, the program has undefined
behavior.

5 A return statement in main has the effect of leaving the main function (destroying any objects with automatic
storage duration) and calling std::exit with the return value as the argument. If control reaches the end
of main without encountering a return statement, the effect is that of executing

return 0;

3.6.2 Initialization of non-local variables [basic.start.init]

1 There are two broad classes of named non-local variables: those with static storage duration (3.7.1) and
those with thread storage duration (3.7.2). Non-local variables with static storage duration are initialized
as a consequence of program initiation. Non-local variables with thread storage duration are initialized as a
consequence of thread execution. Within each of these phases of initiation, initialization occurs as follows.

2 Variables with static storage duration (3.7.1) or thread storage duration (3.7.2) shall be zero-initialized (8.5)
before any other initialization takes place.

Constant initialization is performed:

— if each full-expression (including implicit conversions) that appears in the initializer of a reference with
static or thread storage duration is a constant expression (5.19) and the reference is bound to an lvalue
designating an object with static storage duration or to a temporary (see 12.2)

— if an object with static or thread storage duration is initialized such that the initialization satisfies the
requirements for the object being declared with constexpr (7.1.5).

Together, zero-initialization and constant initialization are called static initialization; all other initialization is
dynamic initialization. Static initialization shall be performed before any dynamic initialization takes place.
Dynamic initialization of a non-local variable with static storage duration is either ordered or unordered.
Definitions of explicitly specialized class template static data members have ordered initialization. Other
class template static data members (i.e., implicitly or explicitly instantiated specializations) have unordered
initialization. Other non-local variables with static storage duration have ordered initialization. Variables
with ordered initialization defined within a single translation unit shall be initialized in the order of their
definitions in the translation unit. If a program starts a thread (30.3), the subsequent initialization of a
variable is unsequenced with respect to the initialization of a variable defined in a different translation unit.
Otherwise, the initialization of a variable is indeterminately sequenced with respect to the initialization of
a variable defined in a different translation unit. If a program starts a thread, the subsequent unordered
initialization of a variable is unsequenced with respect to every other dynamic initialization. Otherwise,
the unordered initialization of a variable is indeterminately sequenced with respect to every other dynamic
initialization. [Note: This definition permits initialization of a sequence of ordered variables concurrently
with another sequence. — end note] [Note: The initialization of local static variables is described in 6.7.
— end note]

3 An implementation is permitted to perform the initialization of a non-local variable with static storage
duration as a static initialization even if such initialization is not required to be done statically, provided
that

— the dynamic version of the initialization does not change the value of any other object of namespace
scope prior to its initialization, and

§ 3.6.2 59

c© ISO/IEC N3092

— the static version of the initialization produces the same value in the initialized variable as would be
produced by the dynamic initialization if all variables not required to be initialized statically were
initialized dynamically.

— [Note: as a consequence, if the initialization of an object obj1 refers to an object obj2 of namespace
scope potentially requiring dynamic initialization and defined later in the same translation unit, it is
unspecified whether the value of obj2 used will be the value of the fully initialized obj2 (because obj2
was statically initialized) or will be the value of obj2 merely zero-initialized. For example,

inline double fd() { return 1.0; }
extern double d1;
double d2 = d1; // unspecified:

// may be statically initialized to 0.0 or
// dynamically initialized to 1.0

double d1 = fd(); // may be initialized statically to 1.0

— end note]

4 It is implementation-defined whether the dynamic initialization of a non-local variable with static storage
duration is done before the first statement of main. If the initialization is deferred to some point in time
after the first statement of main, it shall occur before the first use of any function or variable defined in the
same translation unit as the variable to be initialized.34 [Example:

// - File 1 -
#include "a.h"
#include "b.h"
B b;
A::A(){

b.Use();
}

// - File 2 -
#include "a.h"
A a;

// - File 3 -
#include "a.h"
#include "b.h"
extern A a;
extern B b;

int main() {
a.Use();
b.Use();

}

It is implementation-defined whether either a or b is initialized before main is entered or whether the
initializations are delayed until a is first used in main. In particular, if a is initialized before main is entered,
it is not guaranteed that b will be initialized before it is used by the initialization of a, that is, before A::A
is called. If, however, a is initialized at some point after the first statement of main, b will be initialized
prior to its use in A::A. — end example]

5 It is implementation-defined whether the dynamic initialization of a non-local variable with static or thread
storage duration is done before the first statement of the initial function of the thread. If the initialization

34) A non-local variable with static storage duration having initialization with side-effects must be initialized even if it is not
used (3.7.1).

§ 3.6.2 60

c© ISO/IEC N3092

is deferred to some point in time after the first statement of the initial function of the thread, it shall occur
before the first use of any variable with thread storage duration defined in the same translation unit as the
variable to be initialized.

6 [Note: If the initialization of a non-local variable with static or thread storage duration terminates by
throwing an exception, std::terminate is called (see 15.5.1). — end note]

3.6.3 Termination [basic.start.term]

1 Destructors (12.4) for initialized objects (that is, objects whose lifetime (3.8) has begun) with static storage
duration are called as a result of returning from main and as a result of calling std::exit (18.5). Destructors
for initialized objects with thread storage duration within a given thread are called as a result of returning
from the initial function of that thread and as a result of that thread calling std::exit. The completions
of the destructors for all initialized objects with thread storage duration within that thread are sequenced
before the initiation of the destructors of any object with static storage duration. If the completion of the
constructor or dynamic initialization of an object with thread storage duration is sequenced before that of
another, the completion of the destructor of the second is sequenced before the initiation of the destructor
of the first. If the completion of the constructor or dynamic initialization of an object with static storage
duration is sequenced before that of another, the completion of the destructor of the second is sequenced
before the initiation of the destructor of the first. [Note: this definition permits concurrent destruction.
— end note] If an object is initialized statically, the object is destroyed in the same order as if the object was
dynamically initialized. For an object of array or class type, all subobjects of that object are destroyed before
any block-scope object with static storage duration initialized during the construction of the subobjects is
destroyed. [Note: If the destruction of a non-local object with static or thread storage duration terminates
by throwing an exception, std::terminate is called (see 15.5.1). — end note]

2 If a function contains a block-scope object of static or thread storage duration that has been destroyed and
the function is called during the destruction of an object with static or thread storage duration, the program
has undefined behavior if the flow of control passes through the definition of the previously destroyed block-
scope object. Likewise, the behavior is undefined if the block-scope object is used indirectly (i.e., through a
pointer) after its destruction.

3 If the completion of the initialization of an object with static storage duration is sequenced before a call
to std::atexit (see <cstdlib>, 18.5), the call to the function passed to std::atexit is sequenced before
the call to the destructor for the object. If a call to std::atexit is sequenced before the completion of the
initialization of an object with static storage duration, the call to the destructor for the object is sequenced
before the call to the function passed to std::atexit. If a call to std::atexit is sequenced before another
call to std::atexit, the call to the function passed to the second std::atexit call is sequenced before the
call to the function passed to the first std::atexit call.

4 If there is a use of a standard library object or function not permitted within signal handlers (18.10) that
does not happen before (1.10) completion of destruction of objects with static storage duration and execution
of std::atexit registered functions (18.5), the program has undefined behavior. [Note: if there is a use
of an object with static storage duration that does not happen before the object’s destruction, the program
has undefined behavior. Terminating every thread before a call to std::exit or the exit from main is
sufficient, but not necessary, to satisfy these requirements. These requirements permit thread managers as
static-storage-duration objects. — end note]

5 Calling the function std::abort() declared in <cstdlib> terminates the program without executing any
destructors and without calling the functions passed to std::atexit() or std::at_quick_exit().

3.7 Storage duration [basic.stc]

1 Storage duration is the property of an object that defines the minimum potential lifetime of the storage

§ 3.7 61

c© ISO/IEC N3092

containing the object. The storage duration is determined by the construct used to create the object and is
one of the following:

— static storage duration

— thread storage duration

— automatic storage duration

— dynamic storage duration

2 Static, thread, and automatic storage durations are associated with objects introduced by declarations (3.1)
and implicitly created by the implementation (12.2). The dynamic storage duration is associated with objects
created with operator new (5.3.4).

3 The storage duration categories apply to references as well. The lifetime of a reference is its storage duration.

3.7.1 Static storage duration [basic.stc.static]

1 All variables which do not have dynamic storage duration, do not have thread storage duration, and are
not local have static storage duration. The storage for these entities shall last for the duration of the
program (3.6.2, 3.6.3).

2 If a variable with static storage duration has initialization or a destructor with side effects, it shall not be
eliminated even if it appears to be unused, except that a class object or its copy/move may be eliminated
as specified in 12.8.

3 The keyword static can be used to declare a local variable with static storage duration. [Note: 6.7 describes
the initialization of local static variables; 3.6.3 describes the destruction of local static variables. — end
note]

4 The keyword static applied to a class data member in a class definition gives the data member static
storage duration.

3.7.2 Thread storage duration [basic.stc.thread]

1 All variables declared with the thread_local keyword have thread storage duration. The storage for these
entities shall last for the duration of the thread in which they are created. There is a distinct object or
reference per thread, and use of the declared name refers to the entity associated with the current thread.

2 A variable with thread storage duration shall be initialized before its first use and, if constructed, shall be
destroyed on thread exit.

3.7.3 Automatic storage duration [basic.stc.auto]

1 Local variables explicitly declared register or not explicitly declared static or extern have automatic
storage duration. The storage for these entities lasts until the block in which they are created exits.

2 [Note: these variables are initialized and destroyed as described in 6.7. — end note]

3 If a variable with automatic storage duration has initialization or a destructor with side effects, it shall not
be destroyed before the end of its block, nor shall it be eliminated as an optimization even if it appears to
be unused, except that a class object or its copy/move may be eliminated as specified in 12.8.

3.7.4 Dynamic storage duration [basic.stc.dynamic]

1 Objects can be created dynamically during program execution (1.9), using new-expressions (5.3.4), and
destroyed using delete-expressions (5.3.5). A C++ implementation provides access to, and management

§ 3.7.4 62

c© ISO/IEC N3092

of, dynamic storage via the global allocation functions operator new and operator new[] and the global
deallocation functions operator delete and operator delete[].

2 The library provides default definitions for the global allocation and deallocation functions. Some global
allocation and deallocation functions are replaceable (18.6.1). A C++ program shall provide at most one
definition of a replaceable allocation or deallocation function. Any such function definition replaces the
default version provided in the library (17.6.3.6). The following allocation and deallocation functions (18.6)
are implicitly declared in global scope in each translation unit of a program.

void* operator new(std::size_t) throw(std::bad_alloc);
void* operator new[](std::size_t) throw(std::bad_alloc);
void operator delete(void*) throw();
void operator delete[](void*) throw();

These implicit declarations introduce only the function names operator new, operator new[], operator
delete, operator delete[]. [Note: the implicit declarations do not introduce the names std, std::bad_-
alloc, and std::size_t, or any other names that the library uses to declare these names. Thus, a new-
expression, delete-expression or function call that refers to one of these functions without including the
header <new> is well-formed. However, referring to std, std::bad_alloc, and std::size_t is ill-formed
unless the name has been declared by including the appropriate header. — end note] Allocation and/or
deallocation functions can also be declared and defined for any class (12.5).

3 Any allocation and/or deallocation functions defined in a C++ program, including the default versions in
the library, shall conform to the semantics specified in 3.7.4.1 and 3.7.4.2.

3.7.4.1 Allocation functions [basic.stc.dynamic.allocation]

1 An allocation function shall be a class member function or a global function; a program is ill-formed if an
allocation function is declared in a namespace scope other than global scope or declared static in global
scope. The return type shall be void*. The first parameter shall have type std::size_t (18.2). The first
parameter shall not have an associated default argument (8.3.6). The value of the first parameter shall be
interpreted as the requested size of the allocation. An allocation function can be a function template. Such
a template shall declare its return type and first parameter as specified above (that is, template parameter
types shall not be used in the return type and first parameter type). Template allocation functions shall
have two or more parameters.

2 The allocation function attempts to allocate the requested amount of storage. If it is successful, it shall
return the address of the start of a block of storage whose length in bytes shall be at least as large as
the requested size. There are no constraints on the contents of the allocated storage on return from the
allocation function. The order, contiguity, and initial value of storage allocated by successive calls to an
allocation function are unspecified. The pointer returned shall be suitably aligned so that it can be converted
to a pointer of any complete object type with a fundamental alignment requirement (3.11) and then used
to access the object or array in the storage allocated (until the storage is explicitly deallocated by a call to
a corresponding deallocation function). Even if the size of the space requested is zero, the request can fail.
If the request succeeds, the value returned shall be a non-null pointer value (4.10) p0 different from any
previously returned value p1, unless that value p1 was subsequently passed to an operator delete. The
effect of dereferencing a pointer returned as a request for zero size is undefined.35

3 An allocation function that fails to allocate storage can invoke the currently installed new-handler func-
tion (18.6.2.3), if any. [Note: A program-supplied allocation function can obtain the address of the currently
installed new_handler using the std::set_new_handler function (18.6.2.4). — end note] If an allocation
function declared with a non-throwing exception-specification (15.4) fails to allocate storage, it shall return

35) The intent is to have operator new() implementable by calling std::malloc() or std::calloc(), so the rules are sub-
stantially the same. C++ differs from C in requiring a zero request to return a non-null pointer.

§ 3.7.4.1 63

c© ISO/IEC N3092

a null pointer. Any other allocation function that fails to allocate storage shall indicate failure only by
throwing an exception of a type that would match a handler (15.3) of type std::bad_alloc (18.6.2.1).

4 A global allocation function is only called as the result of a new expression (5.3.4), or called directly using the
function call syntax (5.2.2), or called indirectly through calls to the functions in the C++ standard library.
[Note: in particular, a global allocation function is not called to allocate storage for objects with static
storage duration (3.7.1), for objects or references with thread storage duration (3.7.2), for objects of type
std::type_info (5.2.8), or for the copy of an object thrown by a throw expression (15.1). — end note]

3.7.4.2 Deallocation functions [basic.stc.dynamic.deallocation]

1 Deallocation functions shall be class member functions or global functions; a program is ill-formed if deal-
location functions are declared in a namespace scope other than global scope or declared static in global
scope.

2 Each deallocation function shall return void and its first parameter shall be void*. A deallocation function
can have more than one parameter. If a class T has a member deallocation function named operator delete
with exactly one parameter, then that function is a usual (non-placement) deallocation function. If class T
does not declare such an operator delete but does declare a member deallocation function named operator
delete with exactly two parameters, the second of which has type std::size_t (18.2), then this function
is a usual deallocation function. Similarly, if a class T has a member deallocation function named operator
delete[] with exactly one parameter, then that function is a usual (non-placement) deallocation function.
If class T does not declare such an operator delete[] but does declare a member deallocation function
named operator delete[] with exactly two parameters, the second of which has type std::size_t, then
this function is a usual deallocation function. A deallocation function can be an instance of a function
template. Neither the first parameter nor the return type shall depend on a template parameter. [Note:
that is, a deallocation function template shall have a first parameter of type void* and a return type of
void (as specified above). — end note] A deallocation function template shall have two or more function
parameters. A template instance is never a usual deallocation function, regardless of its signature.

3 If a deallocation function terminates by throwing an exception, the behavior is undefined. The value of the
first argument supplied to a deallocation function may be a null pointer value; if so, and if the deallocation
function is one supplied in the standard library, the call has no effect. Otherwise, the value supplied
to operator delete(void*) in the standard library shall be one of the values returned by a previous
invocation of either operator new(std::size_t) or operator new(std::size_t, const std::nothrow_-
t&) in the standard library, and the value supplied to operator delete[](void*) in the standard library
shall be one of the values returned by a previous invocation of either operator new[](std::size_t) or
operator new[](std::size_t, const std::nothrow_t&) in the standard library.

4 If the argument given to a deallocation function in the standard library is a pointer that is not the null pointer
value (4.10), the deallocation function shall deallocate the storage referenced by the pointer, rendering invalid
all pointers referring to any part of the deallocated storage. The effect of using an invalid pointer value
(including passing it to a deallocation function) is undefined.36

3.7.4.3 Safely-derived pointers [basic.stc.dynamic.safety]

1 A traceable pointer object is

— an object of pointer-to-object type, or

— an object of an integral type that is at least as large as std::intptr_t, or

— a sequence of elements in an array of character type, where the size and alignment of the sequence
match that of some pointer-to-object type.

36) On some implementations, it causes a system-generated runtime fault.

§ 3.7.4.3 64

c© ISO/IEC N3092

2 A pointer value is a safely-derived pointer to a dynamic object only if it has pointer-to-object type and it is
one of the following:

— the value returned by a call to the C++ standard library implementation of ::operator new(std::size_-
t);37

— the result of taking the address of an object (or one of its subobjects) designated by an lvalue resulting
from dereferencing a safely-derived pointer value;

— the result of well-defined pointer arithmetic using a safely-derived pointer value;

— the result of a well-defined pointer conversion of a safely-derived pointer value;

— the result of a reinterpret_cast of a safely-derived pointer value;

— the result of a reinterpret_cast of an integer representation of a safely-derived pointer value;

— the value of an object whose value was copied from a traceable pointer object, where at the time of
the copy the source object contained a copy of a safely-derived pointer value.

3 An integer value is an integer representation of a safely-derived pointer only if its type is at least as large as
std::intptr_t and it is one of the following:

— the result of a reinterpret_cast of a safely-derived pointer value;

— the result of a valid conversion of an integer representation of a safely-derived pointer value;

— the value of an object whose value was copied from a traceable pointer object, where at the time of
the copy the source object contained an integer representation of a safely-derived pointer value;

— the result of an additive or bitwise operation, one of whose operands is an integer representation of a
safely-derived pointer value P, if that result converted by reinterpret_cast<void*> would compare
equal to a safely-derived pointer computable from reinterpret_cast<void*>(P).

4 An implementation may have relaxed pointer safety, in which case the validity of a pointer value does not
depend on whether it is a safely-derived pointer value. Alternatively, an implementation may have strict
pointer safety, in which case, if a pointer value that is not a safely-derived pointer value is dereferenced
or deallocated, and the referenced complete object is of dynamic storage duration and has not previously
been declared reachable (20.9.12), the behavior is undefined. [Note: this is true even if the unsafely-derived
pointer value might compare equal to some safely-derived pointer value. — end note] It is implementation
defined whether an implementation has relaxed or strict pointer safety.

3.7.5 Duration of subobjects [basic.stc.inherit]

1 The storage duration of member subobjects, base class subobjects and array elements is that of their complete
object (1.8).

3.8 Object lifetime [basic.life]

1 The lifetime of an object is a runtime property of the object. An object is said to have non-trivial initialization
if it is of a class or aggregate type and it or one of its members is initialized by a constructor other
than a trivial default constructor. [Note: initialization by a trivial copy/move constructor is non-trivial
initialization. — end note] The lifetime of an object of type T begins when:

— storage with the proper alignment and size for type T is obtained, and

37) This section does not impose restrictions on dereferencing pointers to memory not allocated by ::operator new. This
maintains the ability of many C++ implementations to use binary libraries and components written in other languages. In
particular, this applies to C binaries, because dereferencing pointers to memory allocated by malloc is not restricted.

§ 3.8 65

c© ISO/IEC N3092

— if the object has non-trivial initialization, its initialization is complete.

The lifetime of an object of type T ends when:

— if T is a class type with a non-trivial destructor (12.4), the destructor call starts, or

— the storage which the object occupies is reused or released.

2 [Note: the lifetime of an array object starts as soon as storage with proper size and alignment is obtained,
and its lifetime ends when the storage which the array occupies is reused or released. 12.6.2 describes the
lifetime of base and member subobjects. — end note]

3 The properties ascribed to objects throughout this International Standard apply for a given object only
during its lifetime. [Note: in particular, before the lifetime of an object starts and after its lifetime ends
there are significant restrictions on the use of the object, as described below, in 12.6.2 and in 12.7. Also,
the behavior of an object under construction and destruction might not be the same as the behavior of an
object whose lifetime has started and not ended. 12.6.2 and 12.7 describe the behavior of objects during the
construction and destruction phases. — end note]

4 A program may end the lifetime of any object by reusing the storage which the object occupies or by
explicitly calling the destructor for an object of a class type with a non-trivial destructor. For an object
of a class type with a non-trivial destructor, the program is not required to call the destructor explicitly
before the storage which the object occupies is reused or released; however, if there is no explicit call to
the destructor or if a delete-expression (5.3.5) is not used to release the storage, the destructor shall not be
implicitly called and any program that depends on the side effects produced by the destructor has undefined
behavior.

5 Before the lifetime of an object has started but after the storage which the object will occupy has been
allocated38 or, after the lifetime of an object has ended and before the storage which the object occupied is
reused or released, any pointer that refers to the storage location where the object will be or was located
may be used but only in limited ways. For an object under construction or destruction, see 12.7. Otherwise,
such a pointer refers to allocated storage (3.7.4.2), and using the pointer as if the pointer were of type void*,
is well-defined. Such a pointer may be dereferenced but the resulting lvalue may only be used in limited
ways, as described below. The program has undefined behavior if:

— the object will be or was of a class type with a non-trivial destructor and the pointer is used as the
operand of a delete-expression,

— the pointer is used to access a non-static data member or call a non-static member function of the
object, or

— the pointer is implicitly converted (4.10) to a pointer to a base class type, or

— the pointer is used as the operand of a static_cast (5.2.9) (except when the conversion is to void*,
or to void* and subsequently to char*, or unsigned char*), or

— the pointer is used as the operand of a dynamic_cast (5.2.7). [Example:
#include <cstdlib>

struct B {
virtual void f();
void mutate();
virtual ~B();

};

38) For example, before the construction of a global object of non-POD class type (12.7).

§ 3.8 66

c© ISO/IEC N3092

struct D1 : B { void f(); };
struct D2 : B { void f(); };

void B::mutate() {
new (this) D2; // reuses storage — ends the lifetime of *this
f(); // undefined behavior
... = this; // OK, this points to valid memory

}

void g() {
void* p = std::malloc(sizeof(D1) + sizeof(D2));
B* pb = new (p) D1;
pb->mutate();
&pb; // OK: pb points to valid memory
void* q = pb; // OK: pb points to valid memory
pb->f(); // undefined behavior, lifetime of *pb has ended

}

— end example]

6 Similarly, before the lifetime of an object has started but after the storage which the object will occupy
has been allocated or, after the lifetime of an object has ended and before the storage which the object
occupied is reused or released, any glvalue that refers to the original object may be used but only in limited
ways. For an object under construction or destruction, see 12.7. Otherwise, such a glvalue refers to allocated
storage (3.7.4.2), and using the properties of the glvalue that do not depend on its value is well-defined. The
program has undefined behavior if:

— an lvalue-to-rvalue conversion (4.1) is applied to such a glvalue,

— the glvalue is used to access a non-static data member or call a non-static member function of the
object, or

— the glvalue is implicitly converted (4.10) to a reference to a base class type, or

— the glvalue is used as the operand of a static_cast (5.2.9) except when the conversion is ultimately
to cv char& or cv unsigned char&, or

— the glvalue is used as the operand of a dynamic_cast (5.2.7) or as the operand of typeid.

7 If, after the lifetime of an object has ended and before the storage which the object occupied is reused or
released, a new object is created at the storage location which the original object occupied, a pointer that
pointed to the original object, a reference that referred to the original object, or the name of the original
object will automatically refer to the new object and, once the lifetime of the new object has started, can
be used to manipulate the new object, if:

— the storage for the new object exactly overlays the storage location which the original object occupied,
and

— the new object is of the same type as the original object (ignoring the top-level cv-qualifiers), and

— the type of the original object is not const-qualified, and, if a class type, does not contain any non-static
data member whose type is const-qualified or a reference type, and

— the original object was a most derived object (1.8) of type T and the new object is a most derived
object of type T (that is, they are not base class subobjects). [Example:

struct C {
int i;

§ 3.8 67

c© ISO/IEC N3092

void f();
const C& operator=(const C&);

};

const C& C::operator=(const C& other) {
if (this != &other) {

this->~C(); // lifetime of *this ends
new (this) C(other); // new object of type C created
f(); // well-defined

}
return *this;

}

C c1;
C c2;
c1 = c2; // well-defined
c1.f(); // well-defined; c1 refers to a new object of type C

— end example]

8 If a program ends the lifetime of an object of type T with static (3.7.1), thread (3.7.2), or automatic (3.7.3)
storage duration and if T has a non-trivial destructor,39 the program must ensure that an object of the
original type occupies that same storage location when the implicit destructor call takes place; otherwise the
behavior of the program is undefined. This is true even if the block is exited with an exception. [Example:

class T { };
struct B {

~B();
};

void h() {
B b;
new (&b) T;

} // undefined behavior at block exit

— end example]

9 Creating a new object at the storage location that a const object with static, thread, or automatic storage
duration occupies or, at the storage location that such a const object used to occupy before its lifetime
ended results in undefined behavior. [Example:

struct B {
B();
~B();

};

const B b;

void h() {
b.~B();
new (&b) const B; // undefined behavior

}

39) That is, an object for which a destructor will be called implicitly—upon exit from the block for an object with automatic
storage duration, upon exit from the thread for an object with thread storage duration, or upon exit from the program for an
object with static storage duration.

§ 3.8 68

c© ISO/IEC N3092

— end example]

10 In this section, “before” and “after” refer to the “happens before” relation (1.10). [Note: Therefore, undefined
behavior results if an object that is being constructed in one thread is referenced from another thread without
adequate synchronization. — end note]

3.9 Types [basic.types]

1 [Note: 3.9 and the subclauses thereof impose requirements on implementations regarding the representation
of types. There are two kinds of types: fundamental types and compound types. Types describe objects
(1.8), references (8.3.2), or functions (8.3.5).

2 For any object (other than a base-class subobject) of trivially copyable type T, whether or not the object
holds a valid value of type T, the underlying bytes (1.7) making up the object can be copied into an array
of char or unsigned char.40 If the content of the array of char or unsigned char is copied back into the
object, the object shall subsequently hold its original value. [Example:

#define N sizeof(T)
char buf[N];
T obj; // obj initialized to its original value
std::memcpy(buf, &obj, N); // between these two calls to std::memcpy,

// obj might be modified
std::memcpy(&obj, buf, N); // at this point, each subobject of obj of scalar type

// holds its original value

— end example]

3 For any trivially copyable type T, if two pointers to T point to distinct T objects obj1 and obj2, where
neither obj1 nor obj2 is a base-class subobject, if the underlying bytes (1.7) making up obj1 are copied
into obj2,41 obj2 shall subsequently hold the same value as obj1. [Example:

T* t1p;
T* t2p;

// provided that t2p points to an initialized object ...
std::memcpy(t1p, t2p, sizeof(T));

// at this point, every subobject of trivially copyable type in *t1p contains
// the same value as the corresponding subobject in *t2p

— end example]

4 The object representation of an object of type T is the sequence of N unsigned char objects taken up by
the object of type T, where N equals sizeof(T). The value representation of an object is the set of bits that
hold the value of type T. For trivially copyable types, the value representation is a set of bits in the object
representation that determines a value, which is one discrete element of an implementation-defined set of
values.42

5 A class that has been declared but not defined, or an array of unknown size or of incomplete element type, is
an incompletely-defined object type.43 Incompletely-defined object types and the void types are incomplete
types (3.9.1). Objects shall not be defined to have an incomplete type.

6 A class type (such as “class X”) might be incomplete at one point in a translation unit and complete later
on; the type “class X” is the same type at both points. The declared type of an array object might be

40) By using, for example, the library functions (17.6.1.2) std::memcpy or std::memmove.
41) By using, for example, the library functions (17.6.1.2) std::memcpy or std::memmove.
42) The intent is that the memory model of C++ is compatible with that of ISO/IEC 9899 Programming Language C.
43) The size and layout of an instance of an incompletely-defined object type is unknown.

§ 3.9 69

c© ISO/IEC N3092

an array of incomplete class type and therefore incomplete; if the class type is completed later on in the
translation unit, the array type becomes complete; the array type at those two points is the same type. The
declared type of an array object might be an array of unknown size and therefore be incomplete at one point
in a translation unit and complete later on; the array types at those two points (“array of unknown bound
of T” and “array of N T”) are different types. The type of a pointer to array of unknown size, or of a type
defined by a typedef declaration to be an array of unknown size, cannot be completed. [Example:

class X; // X is an incomplete type
extern X* xp; // xp is a pointer to an incomplete type
extern int arr[]; // the type of arr is incomplete
typedef int UNKA[]; // UNKA is an incomplete type
UNKA* arrp; // arrp is a pointer to an incomplete type
UNKA** arrpp;

void foo() {
xp++; // ill-formed: X is incomplete
arrp++; // ill-formed: incomplete type
arrpp++; // OK: sizeof UNKA* is known

}

struct X { int i; }; // now X is a complete type
int arr[10]; // now the type of arr is complete

X x;
void bar() {

xp = &x; // OK; type is “pointer to X”
arrp = &arr; // ill-formed: different types
xp++; // OK: X is complete
arrp++; // ill-formed: UNKA can’t be completed

}

— end example]

7 [Note: the rules for declarations and expressions describe in which contexts incomplete types are prohibited.
— end note]

8 An object type is a (possibly cv-qualified) type that is not a function type, not a reference type, and not a
void type.

9 Arithmetic types (3.9.1), enumeration types, pointer types, pointer to member types (3.9.2), std::nullptr_-
t, and cv-qualified versions of these types (3.9.3) are collectively called scalar types. Scalar types, POD
classes (Clause 9), arrays of such types and cv-qualified versions of these types (3.9.3) are collectively called
POD types. Scalar types, trivially copyable class types (Clause 9), arrays of such types, and cv-qualified
versions of these types (3.9.3) are collectively called trivially copyable types. Scalar types, trivial class types
(Clause 9), arrays of such types and cv-qualified versions of these types (3.9.3) are collectively called trivial
types. Scalar types, standard-layout class types (Clause 9), arrays of such types and cv-qualified versions of
these types (3.9.3) are collectively called standard-layout types.

10 A type is a literal type if it is:

— a scalar type; or

— a class type (Clause 9) with

— a trivial copy constructor,

— no non-trivial move constructor,

§ 3.9 70

c© ISO/IEC N3092

— a trivial destructor,

— a trivial default constructor or at least one constexpr constructor other than the copy or move
constructor, and

— all non-static data members and base classes of literal types; or

— an array of literal type.

11 If two types T1 and T2 are the same type, then T1 and T2 are layout-compatible types. [Note: Layout-
compatible enumerations are described in 7.2. Layout-compatible standard-layout structs and standard-
layout unions are described in 9.2. — end note]

3.9.1 Fundamental types [basic.fundamental]

1 Objects declared as characters (char) shall be large enough to store any member of the implementation’s ba-
sic character set. If a character from this set is stored in a character object, the integral value of that character
object is equal to the value of the single character literal form of that character. It is implementation-defined
whether a char object can hold negative values. Characters can be explicitly declared unsigned or signed.
Plain char, signed char, and unsigned char are three distinct types. A char, a signed char, and an
unsigned char occupy the same amount of storage and have the same alignment requirements (3.11); that
is, they have the same object representation. For character types, all bits of the object representation par-
ticipate in the value representation. For unsigned character types, all possible bit patterns of the value
representation represent numbers. These requirements do not hold for other types. In any particular imple-
mentation, a plain char object can take on either the same values as a signed char or an unsigned char;
which one is implementation-defined.

2 There are five standard signed integer types : “signed char”, “short int”, “int”, “long int”, and “long
long int”. In this list, each type provides at least as much storage as those preceding it in the list.
There may also be implementation-defined extended signed integer types. The standard and extended signed
integer types are collectively called signed integer types. Plain ints have the natural size suggested by the
architecture of the execution environment44; the other signed integer types are provided to meet special
needs.

3 For each of the standard signed integer types, there exists a corresponding (but different) standard un-
signed integer type: “unsigned char”, “unsigned short int”, “unsigned int”, “unsigned long int”,
and “unsigned long long int”, each of which occupies the same amount of storage and has the same
alignment requirements (3.11) as the corresponding signed integer type45; that is, each signed integer type
has the same object representation as its corresponding unsigned integer type. Likewise, for each of the
extended signed integer types there exists a corresponding extended unsigned integer type with the same
amount of storage and alignment requirements. The standard and extended unsigned integer types are
collectively called unsigned integer types. The range of non-negative values of a signed integer type is a
subrange of the corresponding unsigned integer type, and the value representation of each corresponding
signed/unsigned type shall be the same. The standard signed integer types and standard unsigned integer
types are collectively called the standard integer types, and the extended signed integer types and extended
unsigned integer types are collectively called the extended integer types.

4 Unsigned integers, declared unsigned, shall obey the laws of arithmetic modulo 2n where n is the number
of bits in the value representation of that particular size of integer.46

44) that is, large enough to contain any value in the range of INT_MIN and INT_MAX, as defined in the header <climits>.
45) See 7.1.6.2 regarding the correspondence between types and the sequences of type-specifiers that designate them.
46) This implies that unsigned arithmetic does not overflow because a result that cannot be represented by the resulting

unsigned integer type is reduced modulo the number that is one greater than the largest value that can be represented by the
resulting unsigned integer type.

§ 3.9.1 71

c© ISO/IEC N3092

5 Type wchar_t is a distinct type whose values can represent distinct codes for all members of the largest
extended character set specified among the supported locales (22.3.1). Type wchar_t shall have the same
size, signedness, and alignment requirements (3.11) as one of the other integral types, called its underlying
type. Types char16_t and char32_t denote distinct types with the same size, signedness, and alignment as
uint_least16_t and uint_least32_t, respectively, in <stdint.h>, called the underlying types.

6 Values of type bool are either true or false.47 [Note: there are no signed, unsigned, short, or long
bool types or values. — end note] Values of type bool participate in integral promotions (4.5).

7 Types bool, char, char16_t, char32_t, wchar_t, and the signed and unsigned integer types are collectively
called integral types.48 A synonym for integral type is integer type. The representations of integral types
shall define values by use of a pure binary numeration system.49 [Example: this International Standard
permits 2’s complement, 1’s complement and signed magnitude representations for integral types. — end
example]

8 There are three floating point types: float, double, and long double. The type double provides at least
as much precision as float, and the type long double provides at least as much precision as double.
The set of values of the type float is a subset of the set of values of the type double; the set of values
of the type double is a subset of the set of values of the type long double. The value representation of
floating-point types is implementation-defined. Integral and floating types are collectively called arithmetic
types. Specializations of the standard template std::numeric_limits (18.3) shall specify the maximum
and minimum values of each arithmetic type for an implementation.

9 The void type has an empty set of values. The void type is an incomplete type that cannot be completed. It
is used as the return type for functions that do not return a value. Any expression can be explicitly converted
to type cv void (5.4). An expression of type void shall be used only as an expression statement (6.2), as an
operand of a comma expression (5.18), as a second or third operand of ?: (5.16), as the operand of typeid,
or as the expression in a return statement (6.6.3) for a function with the return type void.

10 A value of type std::nullptr_t is a null pointer constant (4.10). Such values participate in the pointer and
the pointer to member conversions (4.10, 4.11). sizeof(std::nullptr_t) shall be equal to sizeof(void*).

11 [Note: even if the implementation defines two or more basic types to have the same value representation,
they are nevertheless different types. — end note]

3.9.2 Compound types [basic.compound]

1 Compound types can be constructed in the following ways:

— arrays of objects of a given type, 8.3.4;

— functions, which have parameters of given types and return void or references or objects of a given
type, 8.3.5;

— pointers to void or objects or functions (including static members of classes) of a given type, 8.3.1;

— references to objects or functions of a given type, 8.3.2. There are two types of references:

— lvalue reference

— rvalue reference

47) Using a bool value in ways described by this International Standard as “undefined,” such as by examining the value of an
uninitialized automatic object, might cause it to behave as if it is neither true nor false.

48) Therefore, enumerations (7.2) are not integral; however, enumerations can be promoted to integral types as specified in 4.5.
49) A positional representation for integers that uses the binary digits 0 and 1, in which the values represented by successive

bits are additive, begin with 1, and are multiplied by successive integral power of 2, except perhaps for the bit with the highest
position. (Adapted from the American National Dictionary for Information Processing Systems.)

§ 3.9.2 72

c© ISO/IEC N3092

— classes containing a sequence of objects of various types (Clause 9), a set of types, enumerations and
functions for manipulating these objects (9.3), and a set of restrictions on the access to these entities
(Clause 11);

— unions, which are classes capable of containing objects of different types at different times, 9.5;

— enumerations, which comprise a set of named constant values. Each distinct enumeration constitutes
a different enumerated type, 7.2;

— pointers to non-static 50 class members, which identify members of a given type within objects of a
given class, 8.3.3.

2 These methods of constructing types can be applied recursively; restrictions are mentioned in 8.3.1, 8.3.4,
8.3.5, and 8.3.2.

3 A pointer to objects of type T is referred to as a “pointer to T.” [Example: a pointer to an object of type
int is referred to as “pointer to int ” and a pointer to an object of class X is called a “pointer to X.” — end
example] Except for pointers to static members, text referring to “pointers” does not apply to pointers to
members. Pointers to incomplete types are allowed although there are restrictions on what can be done with
them (3.11). A valid value of an object pointer type represents either the address of a byte in memory (1.7)
or a null pointer (4.10). If an object of type T is located at an address A, a pointer of type cv T* whose value
is the address A is said to point to that object, regardless of how the value was obtained. [Note: for instance,
the address one past the end of an array (5.7) would be considered to point to an unrelated object of the
array’s element type that might be located at that address. There are further restrictions on pointers to
objects with dynamic storage duration; see 3.7.4.3. — end note] The value representation of pointer types
is implementation-defined. Pointers to cv-qualified and cv-unqualified versions (3.9.3) of layout-compatible
types shall have the same value representation and alignment requirements (3.11). [Note: pointers to
over-aligned types (3.11) have no special representation, but their range of valid values is restricted by the
extended alignment requirement. This International Standard specifies only two ways of obtaining such a
pointer: taking the address of a valid object with an over-aligned type, and using one of the runtime pointer
alignment functions. An implementation may provide other means of obtaining a valid pointer value for an
over-aligned type. — end note]

4 Objects of cv-qualified (3.9.3) or cv-unqualified type void* (pointer to void), can be used to point to objects
of unknown type. A void* shall be able to hold any object pointer. A cv-qualified or cv-unqualified (3.9.3)
void* shall have the same representation and alignment requirements as a cv-qualified or cv-unqualified
char*.

3.9.3 CV-qualifiers [basic.type.qualifier]

1 A type mentioned in 3.9.1 and 3.9.2 is a cv-unqualified type. Each type which is a cv-unqualified complete
or incomplete object type or is void (3.9) has three corresponding cv-qualified versions of its type: a
const-qualified version, a volatile-qualified version, and a const-volatile-qualified version. The term object
type (1.8) includes the cv-qualifiers specified when the object is created. The presence of a const specifier
in a decl-specifier-seq declares an object of const-qualified object type; such object is called a const object.
The presence of a volatile specifier in a decl-specifier-seq declares an object of volatile-qualified object type;
such object is called a volatile object. The presence of both cv-qualifiers in a decl-specifier-seq declares an
object of const-volatile-qualified object type; such object is called a const volatile object. The cv-qualified or
cv-unqualified versions of a type are distinct types; however, they shall have the same representation and
alignment requirements (3.9).51

50) Static class members are objects or functions, and pointers to them are ordinary pointers to objects or functions.
51) The same representation and alignment requirements are meant to imply interchangeability as arguments to functions,

return values from functions, and non-static data members of unions.

§ 3.9.3 73

c© ISO/IEC N3092

2 A compound type (3.9.2) is not cv-qualified by the cv-qualifiers (if any) of the types from which it is com-
pounded. Any cv-qualifiers applied to an array type affect the array element type, not the array type (8.3.4).

3 Each non-static, non-mutable, non-reference data member of a const-qualified class object is const-quali-
fied, each non-static, non-reference data member of a volatile-qualified class object is volatile-qualified and
similarly for members of a const-volatile class. See 8.3.5 and 9.3.2 regarding function types that have
cv-qualifiers.

4 There is a partial ordering on cv-qualifiers, so that a type can be said to be more cv-qualified than another.
Table 8 shows the relations that constitute this ordering.

Table 8 — Relations on const and volatile

no cv-qualifier < const
no cv-qualifier < volatile
no cv-qualifier < const volatile

const < const volatile
volatile < const volatile

5 In this International Standard, the notation cv (or cv1, cv2, etc.), used in the description of types, represents
an arbitrary set of cv-qualifiers, i.e., one of {const}, {volatile}, {const, volatile}, or the empty set.
Cv-qualifiers applied to an array type attach to the underlying element type, so the notation “cv T,” where
T is an array type, refers to an array whose elements are so-qualified. Such array types can be said to be
more (or less) cv-qualified than other types based on the cv-qualification of the underlying element types.

3.10 Lvalues and rvalues [basic.lval]

1 Expressions are categorized according to the taxonomy in Figure 1.

expression

glvalue rvalue

lvalue xvalue prvalue

Figure 1 — Expression category taxonomy

— An lvalue (so called, historically, because lvalues could appear on the left-hand side of an assignment
expression) designates a function or an object. [Example: If E is an expression of pointer type, then
*E is an lvalue expression referring to the object or function to which E points. As another example,
the result of calling a function whose return type is an lvalue reference is an lvalue. — end example]

— An xvalue (an “eXpiring” value) also refers to an object, usually near the end of its lifetime (so that its
resources may be moved, for example). An xvalue is the result of certain kinds of expressions involving
rvalue references (8.3.2). [Example: The result of calling a function whose return type is an rvalue
reference is an xvalue. — end example]

— A glvalue (“generalized” lvalue) is an lvalue or an xvalue.

§ 3.10 74

c© ISO/IEC N3092

— An rvalue (so called, historically, because rvalues could appear on the right-hand side of an assignment
expressions) is an xvalue, a temporary object (12.2) or subobject thereof, or a value that is not
associated with an object.

— A prvalue (“pure” rvalue) is an rvalue that is not an xvalue. [Example: The result of calling a function
whose return type is not a reference is a prvalue. The value of a literal such as 12, 7.3e5, or true is
also a prvalue. — end example]

Every expression belongs to exactly one of the fundamental classifications in this taxonomy: lvalue, xvalue,
or prvalue. This property of an expression is called its value category. [Note: The discussion of each built-in
operator in Clause 5 indicates the category of the value it yields and the value categories of the operands it
expects. For example, the built-in assignment operators expect that the left operand is an lvalue and that
the right operand is a prvalue and yield an lvalue as the result. User-defined operators are functions, and
the categories of values they expect and yield are determined by their parameter and return types. — end
note]

2 Whenever a glvalue appears in a context where a prvalue is expected, the glvalue is converted to a prvalue;
see 4.1, 4.2, and 4.3.

3 The discussion of reference initialization in 8.5.3 and of temporaries in 12.2 indicates the behavior of lvalues
and rvalues in other significant contexts.

4 Class prvalues can have cv-qualified types; non-class prvalues always have cv-unqualified types. Prvalues shall
always have complete types or the void type; in addition to these types, glvalues can also have incomplete
types.

5 An lvalue for an object is necessary in order to modify the object except that an rvalue of class type can
also be used to modify its referent under certain circumstances. [Example: a member function called for an
object (9.3) can modify the object. — end example]

6 Functions cannot be modified, but pointers to functions can be modifiable.

7 A pointer to an incomplete type can be modifiable. At some point in the program when the pointed to type
is complete, the object at which the pointer points can also be modified.

8 The referent of a const-qualified expression shall not be modified (through that expression), except that if
it is of class type and has a mutable component, that component can be modified (7.1.6.1).

9 If an expression can be used to modify the object to which it refers, the expression is called modifiable. A
program that attempts to modify an object through a nonmodifiable lvalue or rvalue expression is ill-formed.

10 If a program attempts to access the stored value of an object through a glvalue of other than one of the
following types the behavior is undefined52

— the dynamic type of the object,

— a cv-qualified version of the dynamic type of the object,

— a type similar (as defined in 4.4) to the dynamic type of the object,

— a type that is the signed or unsigned type corresponding to the dynamic type of the object,

— a type that is the signed or unsigned type corresponding to a cv-qualified version of the dynamic type
of the object,

— an aggregate or union type that includes one of the aforementioned types among its elements or non-
static data members (including, recursively, an element or non-static data member of a subaggregate
or contained union),

52) The intent of this list is to specify those circumstances in which an object may or may not be aliased.

§ 3.10 75

c© ISO/IEC N3092

— a type that is a (possibly cv-qualified) base class type of the dynamic type of the object,

— a char or unsigned char type.

3.11 Alignment [basic.align]

1 Object types have alignment requirements (3.9.1, 3.9.2) which place restrictions on the addressses at which
an object of that type may be allocated. An aligment is an implementation-defined integer value representing
the number of bytes between successive addresses at which a given object can be allocated. An object type
imposes an alignment requirement on every object of that type; stricter alignment can be requested using
the alignment attribute (7.6.2).

2 A fundamental alignment is represented by an alignment less than or equal to the greatest alignment sup-
ported by the implementation in all contexts, which is equal to alignof(std::max_align_t) (18.2).

3 An extended alignment is represented by an alignment greater than alignof(std::max_align_t). It is
implementation-defined whether any extended alignments are supported and the contexts in which they are
supported (7.6.2). A type having an extended alignment requirement is an over-aligned type. [Note: every
over-aligned type is or contains a class type with a non-static data member to which an extended alignment
has been applied. — end note]

4 Alignments are represented as values of the type std::size_t. Valid alignments include only those values
returned by an alignof expression for the fundamental types plus an additional implementation-defined set
of values which may be empty.53

5 Alignments have an order from weaker to stronger or stricter alignments. Stricter alignments have larger
alignment values. An address that satisfies an alignment requirement also satisfies any weaker valid alignment
requirement.

6 The alignment requirement of a complete type can be queried using an alignof expression (5.3.6). Fur-
thermore, the types char, signed char, and unsigned char shall have the weakest alignment require-
ment. [Note: this enables the character types to be used as the underlying type for an aligned memory
area (7.6.2). — end note]

7 Comparing alignments is meaningful and provides the obvious results:

— Two alignments are equal when their numeric values are equal.

— Two alignments are different when their numeric values are not equal.

— When an alignment is larger than another it represents a stricter alignment.

8 [Note: the runtime pointer alignment function (20.9.13) can be used to obtain an aligned pointer within a
buffer; the aligned-storage templates in the library (20.7.6.6) can be used to obtain aligned storage. — end
note]

9 If a request for a specific extended alignment in a specific context is not supported by an implementation,
the program is ill-formed. Additionally, a request for runtime allocation of dynamic storage for which the
requested alignment cannot be honored shall be treated as an allocation failure.

53) It is intended that every valid alignment value be an integral power of two.

§ 3.11 76

c© ISO/IEC N3092

4 Standard conversions [conv]
1 Standard conversions are implicit conversions defined for built-in types. Clause 4 enumerates the full set

of such conversions. A standard conversion sequence is a sequence of standard conversions in the following
order:

— Zero or one conversion from the following set: lvalue-to-rvalue conversion, array-to-pointer conversion,
and function-to-pointer conversion.

— Zero or one conversion from the following set: integral promotions, floating point promotion, integral
conversions, floating point conversions, floating-integral conversions, pointer conversions, pointer to
member conversions, and boolean conversions.

— Zero or one qualification conversion.

[Note: a standard conversion sequence can be empty, i.e., it can consist of no conversions. — end note]
A standard conversion sequence will be applied to an expression if necessary to convert it to a required
destination type.

2 [Note: expressions with a given type will be implicitly converted to other types in several contexts:

— When used as operands of operators. The operator’s requirements for its operands dictate the desti-
nation type (Clause 5).

— When used in the condition of an if statement or iteration statement (6.4, 6.5). The destination type
is bool.

— When used in the expression of a switch statement. The destination type is integral (6.4).

— When used as the source expression for an initialization (which includes use as an argument in a
function call and use as the expression in a return statement). The type of the entity being initialized
is (generally) the destination type. See 8.5, 8.5.3.

— end note]

3 An expression e can be implicitly converted to a type T if and only if the declaration T t=e; is well-formed,
for some invented temporary variable t (8.5). Certain language constructs require that an expression be
converted to a Boolean value. An expression e appearing in such a context is said to be contextually
converted to bool and is well-formed if and only if the declaration bool t(e); is well-formed, for some
invented temporary variable t (8.5). The effect of either implicit conversion is the same as performing the
declaration and initialization and then using the temporary variable as the result of the conversion. The
result is an lvalue if T is an lvalue reference type or an rvalue reference to function type (8.3.2), an xvalue
if T is an rvalue reference to object type, and a prvalue otherwise. The expression e is used as a glvalue if
and only if the initialization uses it as a glvalue.

4 [Note: For user-defined types, user-defined conversions are considered as well; see 12.3. In general, an
implicit conversion sequence (13.3.3.1) consists of a standard conversion sequence followed by a user-defined
conversion followed by another standard conversion sequence. — end note]

5 [Note: There are some contexts where certain conversions are suppressed. For example, the lvalue-to-
rvalue conversion is not done on the operand of the unary & operator. Specific exceptions are given in the
descriptions of those operators and contexts. — end note]

77

c© ISO/IEC N3092

4.1 Lvalue-to-rvalue conversion [conv.lval]

1 A glvalue (3.10) of a non-function, non-array type T can be converted to a prvalue.54 If T is an incomplete
type, a program that necessitates this conversion is ill-formed. If the object to which the glvalue refers is not
an object of type T and is not an object of a type derived from T, or if the object is uninitialized, a program
that necessitates this conversion has undefined behavior. If T is a non-class type, the type of the prvalue is
the cv-unqualified version of T. Otherwise, the type of the prvalue is T.55

2 When an lvalue-to-rvalue conversion occurs in an unevaluated operand or a subexpression thereof (Clause 5)
the value contained in the referenced object is not accessed. Otherwise, if the glvalue has a class type,
the conversion copy-initializes a temporary of type T from the glvalue and the result of the conversion is a
prvalue for the temporary. Otherwise, if the glvalue has (possibly cv-qualified) type std::nullptr_t, the
prvalue result is a null pointer constant (4.10). Otherwise, the value contained in the object indicated by
the glvalue is the prvalue result.

3 [Note: See also 3.10. — end note]

4.2 Array-to-pointer conversion [conv.array]

1 An lvalue or rvalue of type “array of N T” or “array of unknown bound of T” can be converted to a prvalue
of type “pointer to T”. The result is a pointer to the first element of the array.

4.3 Function-to-pointer conversion [conv.func]

1 An lvalue of function type T can be converted to a prvalue of type “pointer to T.” The result is a pointer to
the function.56

2 [Note: See 13.4 for additional rules for the case where the function is overloaded. — end note]

4.4 Qualification conversions [conv.qual]

1 A prvalue of type “pointer to cv1 T” can be converted to a prvalue of type “pointer to cv2 T” if “cv2 T” is
more cv-qualified than “cv1 T”.

2 A prvalue of type “pointer to member of X of type cv1 T” can be converted to a prvalue of type “pointer to
member of X of type cv2 T” if “cv2 T” is more cv-qualified than “cv1 T”.

3 [Note: Function types (including those used in pointer to member function types) are never cv-qualified (8.3.5).
— end note]

4 A conversion can add cv-qualifiers at levels other than the first in multi-level pointers, subject to the following
rules:57

Two pointer types T1 and T2 are similar if there exists a type T and integer n > 0 such that:

T1 is cv1,0 pointer to cv1,1 pointer to · · · cv1,n−1 pointer to cv1,n T

and

T2 is cv2,0 pointer to cv2,1 pointer to · · · cv2,n−1 pointer to cv2,n T

54) For historical reasons, this conversion is called the “lvalue-to-rvalue” conversion, even though that name does not accurately
reflect the taxonomy of expressions described in 3.10.

55) In C++ class prvalues can have cv-qualified types (because they are objects). This differs from ISO C, in which non-lvalues
never have cv-qualified types.

56) This conversion never applies to non-static member functions because an lvalue that refers to a non-static member function
cannot be obtained.

57) These rules ensure that const-safety is preserved by the conversion.

§ 4.4 78

c© ISO/IEC N3092

where each cv i,j is const, volatile, const volatile, or nothing. The n-tuple of cv-qualifiers after the
first in a pointer type, e.g., cv1,1, cv1,2, · · · , cv1,n in the pointer type T1, is called the cv-qualification
signature of the pointer type. An expression of type T1 can be converted to type T2 if and only if the
following conditions are satisfied:

— the pointer types are similar.

— for every j > 0, if const is in cv1,j then const is in cv2,j , and similarly for volatile.

— if the cv1,j and cv2,j are different, then const is in every cv2,k for 0 < k < j.

[Note: if a program could assign a pointer of type T** to a pointer of type const T** (that is, if line #1
below were allowed), a program could inadvertently modify a const object (as it is done on line #2). For
example,

int main() {
const char c = ’c’;
char* pc;
const char** pcc = &pc; // #1: not allowed
*pcc = &c;
*pc = ’C’; // #2: modifies a const object

}

— end note]

5 A multi-level pointer to member type, or a multi-level mixed pointer and pointer to member type has the
form:

cv0P0 to cv1P1 to · · · cvn−1Pn−1 to cvn T

where Pi is either a pointer or pointer to member and where T is not a pointer type or pointer to member
type.

6 Two multi-level pointer to member types or two multi-level mixed pointer and pointer to member types T1
and T2 are similar if there exists a type T and integer n > 0 such that:

T1 is cv1,0P0 to cv1,1P1 to · · · cv1,n−1Pn−1 to cv1,n T

and

T2 is cv2,0P0 to cv2,1P1 to · · · cv2,n−1Pn−1 to cv2,n T

7 For similar multi-level pointer to member types and similar multi-level mixed pointer and pointer to member
types, the rules for adding cv-qualifiers are the same as those used for similar pointer types.

4.5 Integral promotions [conv.prom]

1 A prvalue of an integer type other than bool, char16_t, char32_t, or wchar_t whose integer conversion
rank (4.13) is less than the rank of int can be converted to a prvalue of type int if int can represent all
the values of the source type; otherwise, the source prvalue can be converted to a prvalue of type unsigned
int.

2 A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted to a prvalue of the first of
the following types that can represent all the values of its underlying type: int, unsigned int, long int,
unsigned long int, long long int, or unsigned long long int. If none of the types in that list can
represent all the values of its underlying type, a prvalue of type char16_t, char32_t, or wchar_t can be
converted to a prvalue of its underlying type.

§ 4.5 79

c© ISO/IEC N3092

3 A prvalue of an unscoped enumeration type whose underlying type is not fixed (7.2) can be converted to a
prvalue of the first of the following types that can represent all the values of the enumeration (i.e., the values
in the range bmin to bmax as described in 7.2): int, unsigned int, long int, unsigned long int, long
long int, or unsigned long long int. If none of the types in that list can represent all the values of
the enumeration, a prvalue of an unscoped enumeration type can be converted to a prvalue of the extended
integer type with lowest integer conversion rank (4.13) greater than the rank of long long in which all the
values of the enumeration can be represented. If there are two such extended types, the signed one is chosen.

4 A prvalue of an unscoped enumeration type whose underlying type is fixed (7.2) can be converted to a
prvalue of its underlying type. Moreover, if integral promotion can be applied to its underlying type, a
prvalue of an unscoped enumeration type whose underlying type is fixed can also be converted to a prvalue
of the promoted underlying type.

5 A prvalue for an integral bit-field (9.6) can be converted to a prvalue of type int if int can represent all
the values of the bit-field; otherwise, it can be converted to unsigned int if unsigned int can represent
all the values of the bit-field. If the bit-field is larger yet, no integral promotion applies to it. If the bit-field
has an enumerated type, it is treated as any other value of that type for promotion purposes.

6 A prvalue of type bool can be converted to a prvalue of type int, with false becoming zero and true
becoming one.

7 These conversions are called integral promotions.

4.6 Floating point promotion [conv.fpprom]

1 A prvalue of type float can be converted to a prvalue of type double. The value is unchanged.

2 This conversion is called floating point promotion.

4.7 Integral conversions [conv.integral]

1 A prvalue of an integer type can be converted to a prvalue of another integer type. A prvalue of an unscoped
enumeration type can be converted to a prvalue of an integer type.

2 If the destination type is unsigned, the resulting value is the least unsigned integer congruent to the source
integer (modulo 2n where n is the number of bits used to represent the unsigned type). [Note: In a two’s
complement representation, this conversion is conceptual and there is no change in the bit pattern (if there
is no truncation). — end note]

3 If the destination type is signed, the value is unchanged if it can be represented in the destination type (and
bit-field width); otherwise, the value is implementation-defined.

4 If the destination type is bool, see 4.12. If the source type is bool, the value false is converted to zero and
the value true is converted to one.

5 The conversions allowed as integral promotions are excluded from the set of integral conversions.

4.8 Floating point conversions [conv.double]

1 A prvalue of floating point type can be converted to a prvalue of another floating point type. If the
source value can be exactly represented in the destination type, the result of the conversion is that exact
representation. If the source value is between two adjacent destination values, the result of the conversion
is an implementation-defined choice of either of those values. Otherwise, the behavior is undefined.

§ 4.8 80

c© ISO/IEC N3092

2 The conversions allowed as floating point promotions are excluded from the set of floating point conversions.

4.9 Floating-integral conversions [conv.fpint]

1 A prvalue of a floating point type can be converted to a prvalue of an integer type. The conversion trun-
cates; that is, the fractional part is discarded. The behavior is undefined if the truncated value cannot be
represented in the destination type. [Note: If the destination type is bool, see 4.12. — end note]

2 A prvalue of an integer type or of an unscoped enumeration type can be converted to a prvalue of a floating
point type. The result is exact if possible. If the value being converted is in the range of values that can
be represented but the value cannot be represented exactly, it is an implementation-defined choice of either
the next lower or higher representable value. [Note: loss of precision occurs if the integral value cannot be
represented exactly as a value of the floating type. — end note] If the value being converted is outside the
range of values that can be represented, the behavior is undefined. If the source type is bool, the value
false is converted to zero and the value true is converted to one.

4.10 Pointer conversions [conv.ptr]

1 A null pointer constant is an integral constant expression (5.19) prvalue of integer type that evaluates to
zero or a prvalue of type std::nullptr_t. A null pointer constant can be converted to a pointer type; the
result is the null pointer value of that type and is distinguishable from every other value of pointer to object
or pointer to function type. Two null pointer values of the same type shall compare equal. The conversion
of a null pointer constant to a pointer to cv-qualified type is a single conversion, and not the sequence of a
pointer conversion followed by a qualification conversion (4.4). A null pointer constant of integral type can
be converted to a prvalue of type std::nullptr_t. [Note: The resulting prvalue is not a null pointer value.
— end note]

2 A prvalue of type “pointer to cv T,” where T is an object type, can be converted to a prvalue of type “pointer
to cv void”. The result of converting a “pointer to cv T” to a “pointer to cv void” points to the start of
the storage location where the object of type T resides, as if the object is a most derived object (1.8) of type
T (that is, not a base class subobject). The null pointer value is converted to the null pointer value of the
destination type.

3 A prvalue of type “pointer to cv D”, where D is a class type, can be converted to a prvalue of type “pointer
to cv B”, where B is a base class (Clause 10) of D. If B is an inaccessible (Clause 11) or ambiguous (10.2)
base class of D, a program that necessitates this conversion is ill-formed. The result of the conversion is a
pointer to the base class subobject of the derived class object. The null pointer value is converted to the
null pointer value of the destination type.

4.11 Pointer to member conversions [conv.mem]

1 A null pointer constant (4.10) can be converted to a pointer to member type; the result is the null member
pointer value of that type and is distinguishable from any pointer to member not created from a null pointer
constant. Two null member pointer values of the same type shall compare equal. The conversion of a null
pointer constant to a pointer to member of cv-qualified type is a single conversion, and not the sequence of
a pointer to member conversion followed by a qualification conversion (4.4).

2 A prvalue of type “pointer to member of B of type cv T”, where B is a class type, can be converted to a
prvalue of type “pointer to member of D of type cv T”, where D is a derived class (Clause 10) of B. If B is
an inaccessible (Clause 11), ambiguous (10.2), or virtual (10.1) base class of D, or a base class of a virtual
base class of D, a program that necessitates this conversion is ill-formed. The result of the conversion refers
to the same member as the pointer to member before the conversion took place, but it refers to the base
class member as if it were a member of the derived class. The result refers to the member in D’s instance of
B. Since the result has type “pointer to member of D of type cv T”, it can be dereferenced with a D object.

§ 4.11 81

c© ISO/IEC N3092

The result is the same as if the pointer to member of B were dereferenced with the B subobject of D. The
null member pointer value is converted to the null member pointer value of the destination type.58

4.12 Boolean conversions [conv.bool]

1 A prvalue of arithmetic, unscoped enumeration, pointer, or pointer to member type can be converted to a
prvalue of type bool. A zero value, null pointer value, or null member pointer value is converted to false;
any other value is converted to true. A prvalue of type std::nullptr_t can be converted to a prvalue of
type bool; the resulting value is false.

4.13 Integer conversion rank [conv.rank]

1 Every integer type has an integer conversion rank defined as follows:

— No two signed integer types other than char and signed char (if char is signed) shall have the same
rank, even if they have the same representation.

— The rank of a signed integer type shall be greater than the rank of any signed integer type with a
smaller size.

— The rank of long long int shall be greater than the rank of long int, which shall be greater than
the rank of int, which shall be greater than the rank of short int, which shall be greater than the
rank of signed char.

— The rank of any unsigned integer type shall equal the rank of the corresponding signed integer type.

— The rank of any standard integer type shall be greater than the rank of any extended integer type
with the same size.

— The rank of char shall equal the rank of signed char and unsigned char.

— The rank of bool shall be less than the rank of all other standard integer types.

— The ranks of char16_t, char32_t, and wchar_t shall equal the ranks of their underlying types (3.9.1).

— The rank of any extended signed integer type relative to another extended signed integer type with
the same size is implementation-defined, but still subject to the other rules for determining the integer
conversion rank.

— For all integer types T1, T2, and T3, if T1 has greater rank than T2 and T2 has greater rank than T3,
then T1 shall have greater rank than T3.

[Note: The integer conversion rank is used in the definition of the integral promotions (4.5) and the usual
arithmetic conversions (5). — end note]

58) The rule for conversion of pointers to members (from pointer to member of base to pointer to member of derived) appears
inverted compared to the rule for pointers to objects (from pointer to derived to pointer to base) (4.10, Clause 10). This
inversion is necessary to ensure type safety. Note that a pointer to member is not a pointer to object or a pointer to function
and the rules for conversions of such pointers do not apply to pointers to members. In particular, a pointer to member cannot
be converted to a void*.

§ 4.13 82

c© ISO/IEC N3092

5 Expressions [expr]
1 [Note: Clause 5 defines the syntax, order of evaluation, and meaning of expressions.59 An expression is a

sequence of operators and operands that specifies a computation. An expression can result in a value and
can cause side effects. — end note]

2 [Note: Operators can be overloaded, that is, given meaning when applied to expressions of class type (Clause 9)
or enumeration type (7.2). Uses of overloaded operators are transformed into function calls as described
in 13.5. Overloaded operators obey the rules for syntax specified in Clause 5, but the requirements of
operand type, value category, and evaluation order are replaced by the rules for function call. Relations
between operators, such as ++a meaning a+=1, are not guaranteed for overloaded operators (13.5), and are
not guaranteed for operands of type bool. — end note]

3 Clause 5 defines the effects of operators when applied to types for which they have not been overloaded.
Operator overloading shall not modify the rules for the built-in operators, that is, for operators applied to
types for which they are defined by this Standard. However, these built-in operators participate in overload
resolution, and as part of that process user-defined conversions will be considered where necessary to convert
the operands to types appropriate for the built-in operator. If a built-in operator is selected, such conversions
will be applied to the operands before the operation is considered further according to the rules in Clause 5;
see 13.3.1.2, 13.6.

4 If during the evaluation of an expression, the result is not mathematically defined or not in the range of
representable values for its type, the behavior is undefined. [Note: most existing implementations of C++

ignore integer overflows. Treatment of division by zero, forming a remainder using a zero divisor, and all
floating point exceptions vary among machines, and is usually adjustable by a library function. — end note]

5 If an expression initially has the type “reference to T” (8.3.2, 8.5.3), the type is adjusted to T prior to
any further analysis. The expression designates the object or function denoted by the reference, and the
expression is an lvalue or an xvalue, depending on the expression.

6 [Note: An expression is an xvalue if it is:

— the result of calling a function, whether implicitly or explicitly, whose return type is an rvalue reference
to object type,

— a cast to an rvalue reference to object type,

— a class member access expression designating a non-static data member in which the object expression
is an xvalue, or

— a .* pointer-to-member expression in which the first operand is an xvalue and the second operand is
a pointer to data member.

In general, the effect of this rule is that named rvalue references are treated as lvalues and unnamed rvalue
references to objects are treated as xvalues; rvalue references to functions are treated as lvalues whether
named or not. — end note]

[Example:
struct A {

int m;

59) The precedence of operators is not directly specified, but it can be derived from the syntax.

83

c© ISO/IEC N3092

};
A&& operator+(A, A);
A&& f();

A a;
A&& ar = static_cast<A&&>(a);

The expressions f(), f().m, static_cast<A&&>(a), and a + a are xvalues. The expression ar is an lvalue.
— end example]

7 An expression designating an object is called an object-expression.

8 In some contexts, unevaluated operands appear (5.2.8, 5.3.3, 5.3.7, 7.1.6.2). An unevaluated operand is not
evaluated. [Note: In an unevaluated operand, a non-static class member may be named (5.1) and naming
of objects or functions does not, by itself, require that a definition be provided (3.2). — end note]

9 Whenever a glvalue expression appears as an operand of an operator that expects a prvalue for that operand,
the lvalue-to-rvalue (4.1), array-to-pointer (4.2), or function-to-pointer (4.3) standard conversions are applied
to convert the expression to a prvalue. [Note: because cv-qualifiers are removed from the type of an
expression of non-class type when the expression is converted to a prvalue, an lvalue expression of type
const int can, for example, be used where a prvalue expression of type int is required. — end note]

10 Many binary operators that expect operands of arithmetic or enumeration type cause conversions and yield
result types in a similar way. The purpose is to yield a common type, which is also the type of the result.
This pattern is called the usual arithmetic conversions, which are defined as follows:

— If either operand is of scoped enumeration type (7.2), no conversions are performed; if the other
operand does not have the same type, the expression is ill-formed.

— If either operand is of type long double, the other shall be converted to long double.

— Otherwise, if either operand is double, the other shall be converted to double.

— Otherwise, if either operand is float, the other shall be converted to float.

— Otherwise, the integral promotions (4.5) shall be performed on both operands.60 Then the following
rules shall be applied to the promoted operands:

— If both operands have the same type, no further conversion is needed.

— Otherwise, if both operands have signed integer types or both have unsigned integer types, the
operand with the type of lesser integer conversion rank shall be converted to the type of the
operand with greater rank.

— Otherwise, if the operand that has unsigned integer type has rank greater than or equal to the
rank of the type of the other operand, the operand with signed integer type shall be converted to
the type of the operand with unsigned integer type.

— Otherwise, if the type of the operand with signed integer type can represent all of the values of
the type of the operand with unsigned integer type, the operand with unsigned integer type shall
be converted to the type of the operand with signed integer type.

— Otherwise, both operands shall be converted to the unsigned integer type corresponding to the
type of the operand with signed integer type.

60) As a consequence, operands of type bool, char16_t, char32_t, wchar_t, or an enumerated type are converted to some
integral type.

84

c© ISO/IEC N3092

11 The values of the floating operands and the results of floating expressions may be represented in greater
precision and range than that required by the type; the types are not changed thereby.61

5.1 Primary expressions [expr.prim]

5.1.1 General [expr.prim.general]
primary-expression:

literal
this
(expression)
id-expression
lambda-expression

id-expression:
unqualified-id
qualified-id

unqualified-id:
identifier
operator-function-id
conversion-function-id
literal-operator-id
∼ class-name
∼ decltype-specifier
template-id

1 A literal is a primary expression. Its type depends on its form (2.14). A string literal is an lvalue; all other
literals are prvalues.

2 The keyword this names a pointer to the object for which a non-static member function (9.3.2) is invoked
or a non-static data member’s initializer (9.2) is evaluated. The keyword this shall be used only inside the
body of a non-static member function (9.3) of the nearest enclosing class or in a brace-or-equal-initializer
for a non-static data member (9.2). The type of the expression is a pointer to the class of the function or
non-static data member, possibly with cv-qualifiers on the class type. The expression is a prvalue.

[Example:
class Outer {

int a[sizeof(*this)]; // error: not inside a member function
unsigned int sz = sizeof(*this); // OK: in brace-or-equal-initializer

void f() {
int b[sizeof(*this)]; // OK

struct Inner {
int c[sizeof(*this)]; // error: not inside a member function of Inner

};
}

};

— end example]

3 The operator :: followed by an identifier , a qualified-id, an operator-function-id, or a literal-operator-id is a
primary-expression. Its type is specified by the declaration of the identifier, qualified-id, operator-function-
id, or literal-operator-id. The result is the entity denoted by the identifier, qualified-id, operator-function-id,

61) The cast and assignment operators must still perform their specific conversions as described in 5.4, 5.2.9 and 5.17.

§ 5.1.1 85

c© ISO/IEC N3092

or literal-operator-id. The result is an lvalue if the entity is a function or variable and a prvalue otherwise.
The identifier, qualified-id, operator-function-id, or literal-operator-id shall have global namespace scope or
be visible in global scope because of a using-directive (7.3.4). [Note: the use of :: allows an entity declared
in the global namespace to be referred to even if its name has been hidden (3.4.3). — end note]

4 A parenthesized expression is a primary expression whose type and value are identical to those of the
enclosed expression. The presence of parentheses does not affect whether the expression is an lvalue. The
parenthesized expression can be used in exactly the same contexts as those where the enclosed expression
can be used, and with the same meaning, except as otherwise indicated.

5 An id-expression is a restricted form of a primary-expression. [Note: an id-expression can appear after .
and -> operators (5.2.5). — end note]

6 An identifier is an id-expression provided it has been suitably declared (Clause 7). [Note: for operator-
function-ids, see 13.5; for conversion-function-ids, see 12.3.2; for literal-operator-ids, see 13.5.8; for template-
ids, see 14.2. A class-name or decltype-specifier prefixed by ∼ denotes a destructor; see 12.4. Within the
definition of a non-static member function, an identifier that names a non-static member is transformed to a
class member access expression (9.3.1). — end note] The type of the expression is the type of the identifier .
The result is the entity denoted by the identifier. The result is an lvalue if the entity is a function, variable,
or data member and a prvalue otherwise.

qualified-id:
::opt nested-name-specifier templateopt unqualified-id
:: identifier
:: operator-function-id
:: literal-operator-id
:: template-id

nested-name-specifier:
type-name ::
namespace-name ::
decltype-specifier ::
nested-name-specifier identifier ::
nested-name-specifier templateopt simple-template-id ::

A nested-name-specifier that denotes a class, optionally followed by the keyword template (14.2), and then
followed by the name of a member of either that class (9.2) or one of its base classes (Clause 10), is a
qualified-id; 3.4.3.1 describes name lookup for class members that appear in qualified-ids. The result is the
member. The type of the result is the type of the member. The result is an lvalue if the member is a static
member function or a data member and a prvalue otherwise. [Note: a class member can be referred to using
a qualified-id at any point in its potential scope (3.3.7). — end note] Where class-name :: class-name is
used, and the two class-names refer to the same class, this notation names the constructor (12.1). Where
class-name ::∼ class-name is used, the two class-names shall refer to the same class; this notation names
the destructor (12.4). The form ∼ decltype-specifier also denotes the destructor, but it shall not be used as
the unqualified-id in a qualified-id. [Note: a typedef-name that names a class is a class-name (9.1). — end
note]

7 A nested-name-specifier that names a namespace (7.3), followed by the name of a member of that namespace
(or the name of a member of a namespace made visible by a using-directive) is a qualified-id; 3.4.3.2 describes
name lookup for namespace members that appear in qualified-ids. The result is the member. The type of
the result is the type of the member. The result is an lvalue if the member is a function or a variable and a
prvalue otherwise.

8 A nested-name-specifier that denotes an enumeration (7.2), followed by the name of an enumerator of that
enumeration, is a qualified-id that refers to the enumerator. The result is the enumerator. The type of the
result is the type of the enumeration. The result is a prvalue.

§ 5.1.1 86

c© ISO/IEC N3092

9 In a qualified-id, if the id-expression is a conversion-function-id, its conversion-type-id shall denote the same
type in both the context in which the entire qualified-id occurs and in the context of the class denoted by
the nested-name-specifier .

10 An id-expression that denotes a non-static data member or non-static member function of a class can only
be used:

— as part of a class member access (5.2.5) in which the object-expression refers to the member’s class or
a class derived from that class, or

— to form a pointer to member (5.3.1), or

— in the body of a non-static member function of that class or of a class derived from that class (9.3.1),
or

— in a mem-initializer for a constructor for that class or for a class derived from that class (12.6.2), or

— in a brace-or-equal-initializer for a non-static data member of that class or of a class derived from that
class (12.6.2), or

— if that id-expression denotes a non-static data member and it appears in an unevaluated operand.
[Example:

struct S {
int m;

};
int i = sizeof(S::m); // OK
int j = sizeof(S::m + 42); // OK

— end example]

5.1.2 Lambda expressions [expr.prim.lambda]

1 Lambda expressions provide a concise way to create simple function objects. [Example:
#include <algorithm>
#include <cmath>
void abssort(float *x, unsigned N) {

std::sort(x, x + N,
[](float a, float b) {

return std::abs(a) < std::abs(b);
});

}

— end example]
lambda-expression:

lambda-introducer lambda-declaratoropt compound-statement
lambda-introducer:

[lambda-captureopt]

lambda-capture:
capture-default
capture-list
capture-default , capture-list

capture-default:
&
=

§ 5.1.2 87

c© ISO/IEC N3092

capture-list:
capture ...opt

capture-list , capture ...opt

capture:
identifier
& identifier
this

lambda-declarator:
(parameter-declaration-clause) attribute-specifieropt mutableopt

exception-specificationopt trailing-return-typeopt

2 The evaluation of a lambda-expression results in a prvalue temporary (12.2). This temporary is called the
closure object. A lambda-expression shall not appear in an unevaluated operand (Clause 5). [Note: a closure
object behaves like a function object (20.8). — end note]

3 The type of the lambda-expression (which is also the type of the closure object) is a unique, unnamed non-
union class type — called the closure type — whose properties are described below. This class type is not an
aggregate (8.5.1). The closure type is declared in the smallest block scope, class scope, or namespace scope
that contains the corresponding lambda-expression. [Note: this determines the set of namespaces and classes
associated with the closure type (3.4.2). The parameter types of a lambda-declarator do not affect these
associated namespaces and classes. — end note] An implementation may define the closure type differently
from what is described below provided this does not alter the observable behavior of the program other than
by changing:

— the size and/or alignment of the closure type,

— whether the closure type is trivially copyable (Clause 9),

— whether the closure type is a standard-layout class (Clause 9), or

— whether the closure type is a POD class (Clause 9).

An implementation shall not add members of rvalue reference type to the closure type.

4 If a lambda-expression does not include a lambda-declarator , it is as if the lambda-declarator were (). If
a lambda-expression does not include a trailing-return-type, it is as if the trailing-return-type denotes the
following type:

— if the compound-statement if of the form

{ return attribute-specifieropt expression ; }

the type of the returned expression after lvalue-to-rvalue conversion (4.1), array-to-pointer conver-
sion (4.2), and function-to-pointer conversion (4.3);

— otherwise, void.

[Example:
auto x1 = [](int i){ return i; }; // OK: return type is int
auto x2 = []{ return { 1, 2 }; }; // error: the return type is void (a

// braced-init-list is not an expression)

— end example]

5 The closure type for a lambda-expression has a public inline function call operator (13.5.4) whose param-
eters and return type are described by the lambda-expression’s parameter-declaration-clause and trailing-
return-type respectively. This function call operator is declared const (9.3.1) if and only if the lambda-
expression’s parameter-declaration-clause is not followed by mutable. It is neither virtual nor declared

§ 5.1.2 88

c© ISO/IEC N3092

volatile. Default arguments (8.3.6) shall not be specified in the parameter-declaration-clause of a lambda-
declarator . Any exception-specification specified on a lambda-expression applies to the corresponding func-
tion call operator. Any attribute-specifiers appearing immediately after the lambda-expression’s parameter-
declaration-clause appertain to the type of the corresponding function call operator. [Note: names referenced
in the lambda-declarator are looked up in the context in which the lambda-expression appears. — end note]

6 The closure type for a lambda-expression with no lambda-capture has a public non-virtual non-explicit const
conversion function to pointer to function having the same parameter and return types as the closure type’s
function call operator. The value returned by this conversion function shall be the address of a function
that, when invoked, has the same effect as invoking the closure type’s function call operator.

7 The lambda-expression’s compound-statement yields the function-body (8.4) of the function call operator,
but for purposes of name lookup (3.4), determining the type and value of this (9.3.2) and transforming id-
expressions referring to non-static class members into class member access expressions using (*this) (9.3.1),
the compound-statement is considered in the context of the lambda-expression. [Example:

struct S1 {
int x, y;
int operator()(int);
void f() {

[=]()->int {
return operator()(this->x + y); // equivalent to S1::operator()(this->x + (*this).y)

// this has type S1*
};

}
};

— end example]

8 If a lambda-capture includes a capture-default that is &, the identifiers in the lambda-capture shall not be
preceded by &. If a lambda-capture includes a capture-default that is =, the lambda-capture shall not contain
this and each identifier it contains shall be preceded by &. An identifier or this shall not appear more than
once in a lambda-capture. [Example:

struct S2 { void f(int i); };
void S2::f(int i) {

[&, i]{ }; // OK
[&, &i]{ }; // error: i preceded by & when & is the default
[=, this]{ }; // error: this when = is the default
[i, i]{ }; // error: i repeated

}

— end example]

9 A lambda-expression whose smallest enclosing scope is a block scope (3.3.3) is a local lambda expression; any
other lambda-expression shall not have a capture-list in its lambda-introducer . The reaching scope of a local
lambda expression is the set of enclosing scopes up to and including the innermost enclosing function and
its parameters. [Note: this reaching scope includes any intervening lambda-expressions. — end note]

10 The identifiers in a capture-list are looked up using the usual rules for unqualified name lookup (3.4.1); each
such lookup shall find a variable with automatic storage duration declared in the reaching scope of the local
lambda expression. An entity (i.e. a variable or this) is said to be explicitly captured if it appears in the
lambda-expression’s capture-list.

11 If a lambda-expression has an associated capture-default and its compound-statement uses (3.2) this or a
variable with automatic storage duration and the used entity is not explicitly captured, then the used entity

§ 5.1.2 89

c© ISO/IEC N3092

is said to be implicitly captured; such entities shall be declared within the reaching scope of the lambda
expression. [Note: the implicit capture of an entity by a nested lambda-expression can cause its implicit
capture by the containing lambda-expression (see below). Implicit uses of this can result in implicit capture.
— end note]

12 An entity is captured if it is captured explicitly or implicitly. An entity captured by a lambda-expression is
used (3.2) in the scope containing the lambda-expression. If this is captured by a local lambda expression,
its nearest enclosing function shall be a non-static member function. If a lambda-expression uses (3.2) this
or a variable with automatic storage duration from its reaching scope, that entity shall be captured by the
lambda-expression. If a lambda-expression captures an entity and that entity is not defined or captured in
the immediately enclosing lambda expression or function, the program is ill-formed. [Example:

void f1(int i) {
int const N = 20;
auto m1 = [=]{

int const M = 30;
auto m2 = [i]{

int x[N][M]; // OK: N and M are not "used"
x[0][0] = i; // OK: i is explicitly captured by m2

// and implicitly captured by m1
};

};
struct s1 {

int f;
int work(int n) {

int m = n*n;
int j = 40;
auto m3 = [this,m] {

auto m4 = [&,j] { // error: j not captured by m3
int x = n; // error: n implicitly captured by m4

// but not captured by m3
x += m; // OK: m implicitly captured by m4

// and explicitly captured by m3
x += i; // error: i is outside of the reaching scope
x += f; // OK: this captured implicitly by m4

// and explicitly by m3
};

};
}

};
}

— end example]

13 A lambda-expression appearing in a default argument shall not implicitly or explicitly capture any entity.
[Example:

void f2() {
int i = 1;
void g1(int = ([i]{ return i; })()); // ill-formed
void g2(int = ([i]{ return 0; })()); // ill-formed
void g3(int = ([=]{ return i; })()); // ill-formed
void g4(int = ([=]{ return 0; })()); // OK
void g5(int = ([]{ return sizeof i; })()); // OK

}

§ 5.1.2 90

c© ISO/IEC N3092

— end example]

14 An entity is captured by copy if it is implicitly captured and the capture-default is = or if it is explicitly
captured with a capture that does not include an &. For each entity captured by copy, an unnamed non-
static data member is declared in the closure type. The declaration order of these members is unspecified.
The type of such a data member is the type of the corresponding captured entity if the entity is not a
reference to an object, or the referenced type otherwise. [Note: if the captured entity is a reference to a
function, the corresponding data member is also a reference to a function. — end note]

15 An entity is captured by reference if it is implicitly or explicitly captured but not captured by copy. It is
unspecified whether additional unnamed non-static data members are declared in the closure type for entities
captured by reference.

16 If a lambda-expression m1 captures an entity and that entity is captured by an immediately enclosing lambda-
expression m2, then m1’s capture is transformed as follows:

— if m2 captures the entity by copy, m1 captures the corresponding non-static data member of m2’s closure
type;

— if m2 captures the entity by reference, m1 captures the same entity captured by m2.

[Example: the nested lambda expressions and invocations below will output 123234.
int a = 1, b = 1, c = 1;
auto m1 = [a, &b, &c]() mutable {

auto m2 = [a, b, &c]() mutable {
std::cout << a << b << c;
a = 4; b = 4; c = 4;

};
a = 3; b = 3; c = 3;
m2();

};
a = 2; b = 2; c = 2;
m1();
std::cout << a << b << c;

— end example]

17 Every id-expression that is a use (3.2) of an entity captured by copy is transformed into an access to
the corresponding unnamed data member of the closure type. If this is captured, each use of this is
transformed into an access to the corresponding unnamed data member of the closure type, cast (5.4) to the
type of this. [Note: the cast ensures that the transformed expression is a prvalue. — end note]

18 Every occurrence of decltype((x)) where x is a possibly parenthesized id-expression that names an entity
of automatic storage duration is treated as if x were transformed into an access to a corresponding data
member of the closure type that would have been declared if x were a use of the denoted entity. [Example:

void f3() {
float x, &r = x;
[=] { // x and r are not captured (appearance in a decltype operand is not a “use”)

decltype(x) y1; // y1 has type float
decltype((x)) y2 = y1; // y2 has type float const& because this lambda

// is not mutable and x is an lvalue
decltype(r) r1 = y1; // r1 has type float& (transformation not considered)
decltype((r)) r2 = y2; // r2 has type float const&

};
}

§ 5.1.2 91

c© ISO/IEC N3092

— end example]

19 The closure type associated with a lambda-expression has a deleted (8.4.3) default constructor and a deleted
copy assignment operator. It has an implicitly-declared copy constructor (12.8) and may have an implicitly-
declared move constructor (12.8). [Note: the copy/move constructor is implicitly defined in the same way
as any other implicitly declared copy/move constructor would be implicitly defined. — end note]

20 The closure type associated with a lambda-expression has an implicitly-declared destructor (12.4).

21 When the lambda-expression is evaluated, the entities that are captured by copy are used to direct-initialize
each corresponding non-static data member of the resulting closure object. (For array members, the array
elements are direct-initialized in increasing subscript order.) These initializations are performed in the (un-
specified) order in which the non-static data members are declared. [Note: this ensures that the destructions
will occur in the reverse order of the constructions. — end note]

22 [Note: If an entity is implicitly or explicitly captured by reference, invoking the function call operator of
the corresponding lambda-expression after the lifetime of the entity has ended is likely to result in undefined
behavior. — end note]

23 A capture followed by an ellipsis is a pack expansion (14.5.3). [Example:
template<class... Args>
void f(Args... args) {

auto lm = [&, args...] { return g(args...); };
lm();

}

— end example]

5.2 Postfix expressions [expr.post]

1 Postfix expressions group left-to-right.
postfix-expression:

primary-expression
postfix-expression [expression]
postfix-expression [braced-init-list]
postfix-expression (expression-listopt)
simple-type-specifier (expression-listopt)
typename-specifier (expression-listopt)
simple-type-specifier braced-init-list
typename-specifier braced-init-list
postfix-expression . templateopt id-expression
postfix-expression -> templateopt id-expression
postfix-expression . pseudo-destructor-name
postfix-expression -> pseudo-destructor-name
postfix-expression ++
postfix-expression --
dynamic_cast < type-id > (expression)
static_cast < type-id > (expression)
reinterpret_cast < type-id > (expression)
const_cast < type-id > (expression)
typeid (expression)
typeid (type-id)

expression-list:
initializer-list

§ 5.2 92

c© ISO/IEC N3092

pseudo-destructor-name:
::opt nested-name-specifieropt type-name ::∼ type-name
::opt nested-name-specifier template simple-template-id ::∼ type-name
::opt nested-name-specifieropt ∼ type-name
∼ decltype-specifier

2 [Note: The > token following the type-id in a dynamic_cast, static_cast, reinterpret_cast, or const_-
cast may be the product of replacing a >> token by two consecutive > tokens (14.2). — end note]

5.2.1 Subscripting [expr.sub]

1 A postfix expression followed by an expression in square brackets is a postfix expression. One of the expres-
sions shall have the type “pointer to T” and the other shall have unscoped enumeration or integral type.
The result is an lvalue of type “T.” The type “T” shall be a completely-defined object type.62 The expression
E1[E2] is identical (by definition) to *((E1)+(E2)) [Note: see 5.3 and 5.7 for details of * and + and 8.3.4
for details of arrays. — end note]

2 A braced-init-list may appear as a subscript for a user-defined operator[]. In that case, the initializer list
is treated as the initializer for the subscript argument of the operator[]. An initializer list shall not be
used with the built-in subscript operator.

[Example:
struct X {

Z operator[](std::initializer_list<int>);
};
X x;
x[{1,2,3}] = 7; // OK: meaning x.operator[]({1,2,3})
int a[10];
a[{1,2,3}] = 7; // error: built-in subscript operator

— end example]

5.2.2 Function call [expr.call]

1 There are two kinds of function call: ordinary function call and member function63 (9.3) call. A function
call is a postfix expression followed by parentheses containing a possibly empty, comma-separated list of
expressions which constitute the arguments to the function. For an ordinary function call, the postfix
expression shall be either an lvalue that refers to a function (in which case the function-to-pointer standard
conversion (4.3) is suppressed on the postfix expression), or it shall have pointer to function type. Calling
a function through an expression whose function type has a language linkage that is different from the
language linkage of the function type of the called function’s definition is undefined (7.5). For a member
function call, the postfix expression shall be an implicit (9.3.1, 9.4) or explicit class member access (5.2.5)
whose id-expression is a function member name, or a pointer-to-member expression (5.5) selecting a function
member; the call is as a member of the object pointed to or referred to by the object expression (5.2.5, 5.5).
In the case of an implicit class member access, the implied object is the one pointed to by this. [Note: a
member function call of the form f() is interpreted as (*this).f() (see 9.3.1). — end note] If a function
or member function name is used, the name can be overloaded (Clause 13), in which case the appropriate
function shall be selected according to the rules in 13.3. If the selected function is non-virtual, or if the
id-expression in the class member access expression is a qualified-id, that function is called. Otherwise, its
final overrider (10.3) in the dynamic type of the object expression is called. [Note: the dynamic type is
the type of the object pointed or referred to by the current value of the object expression. 12.7 describes

62) This is true even if the subscript operator is used in the following common idiom: &x[0].
63) A static member function (9.4) is an ordinary function.

§ 5.2.2 93

c© ISO/IEC N3092

the behavior of virtual function calls when the object-expression refers to an object under construction or
destruction. — end note]

2 [Note: if a function or member function name is used, and name lookup (3.4) does not find a declaration of
that name, the program is ill-formed. No function is implicitly declared by such a call. — end note]

3 The type of the function call expression is the return type of the statically chosen function (i.e., ignoring the
virtual keyword), even if the type of the function actually called is different. This type shall be a complete
object type, a reference type or the type void.

4 When a function is called, each parameter (8.3.5) shall be initialized (8.5, 12.8, 12.1) with its corresponding
argument. If the function is a non-static member function, the this parameter of the function (9.3.2) shall
be initialized with a pointer to the object of the call, converted as if by an explicit type conversion (5.4).
[Note: There is no access or ambiguity checking on this conversion; the access checking and disambiguation
are done as part of the (possibly implicit) class member access operator. See 10.2, 11.2, and 5.2.5. —
end note] When a function is called, the parameters that have object type shall have completely-defined
object type. [Note: this still allows a parameter to be a pointer or reference to an incomplete class type.
However, it prevents a passed-by-value parameter to have an incomplete class type. — end note] During
the initialization of a parameter, an implementation may avoid the construction of extra temporaries by
combining the conversions on the associated argument and/or the construction of temporaries with the
initialization of the parameter (see 12.2). The lifetime of a parameter ends when the function in which it
is defined returns. The initialization and destruction of each parameter occurs within the context of the
calling function. [Example: the access of the constructor, conversion functions or destructor is checked at
the point of call in the calling function. If a constructor or destructor for a function parameter throws an
exception, the search for a handler starts in the scope of the calling function; in particular, if the function
called has a function-try-block (Clause 15) with a handler that could handle the exception, this handler is
not considered. — end example] The value of a function call is the value returned by the called function
except in a virtual function call if the return type of the final overrider is different from the return type of
the statically chosen function, the value returned from the final overrider is converted to the return type of
the statically chosen function.

5 [Note: a function can change the values of its non-const parameters, but these changes cannot affect the
values of the arguments except where a parameter is of a reference type (8.3.2); if the reference is to a
const-qualified type, const_cast is required to be used to cast away the constness in order to modify
the argument’s value. Where a parameter is of const reference type a temporary object is introduced if
needed (7.1.6, 2.14, 2.14.5, 8.3.4, 12.2). In addition, it is possible to modify the values of nonconstant objects
through pointer parameters. — end note]

6 A function can be declared to accept fewer arguments (by declaring default arguments (8.3.6)) or more
arguments (by using the ellipsis, ..., or a function parameter pack (8.3.5)) than the number of parameters
in the function definition (8.4). [Note: this implies that, except where the ellipsis (...) or a function
parameter pack is used, a parameter is available for each argument. — end note]

7 When there is no parameter for a given argument, the argument is passed in such a way that the receiving
function can obtain the value of the argument by invoking va_arg (18.10). [Note: This paragraph does not
apply to arguments passed to a function parameter pack. Function parameter packs are expanded during
template instantiation (14.5.3), thus each such argument has a corresponding parameter when a function
template specialization is actually called. — end note] The lvalue-to-rvalue (4.1), array-to-pointer (4.2), and
function-to-pointer (4.3) standard conversions are performed on the argument expression. An argument that
has (possibly cv-qualified) type std::nullptr_t is converted to type void* (4.10). After these conversions,
if the argument does not have arithmetic, enumeration, pointer, pointer to member, or class type, the
program is ill-formed. Passing a potentially-evaluated argument of class type (Clause 9) with a non-trivial
copy constructor or a non-trivial destructor with no corresponding parameter is conditionally-supported,
with implementation-defined semantics. If the argument has integral or enumeration type that is subject to

§ 5.2.2 94

c© ISO/IEC N3092

the integral promotions (4.5), or a floating point type that is subject to the floating point promotion (4.6),
the value of the argument is converted to the promoted type before the call. These promotions are referred
to as the default argument promotions.

8 [Note: The evaluations of the postfix expression and of the argument expressions are all unsequenced
relative to one another. All side effects of argument expression evaluations are sequenced before the function
is entered (see 1.9). — end note]

9 Recursive calls are permitted, except to the function named main (3.6.1).

10 A function call is an lvalue if the result type is an lvalue reference type or an rvalue reference to function
type, an xvalue if the result type is an rvalue reference to object type, and a prvalue otherwise.

5.2.3 Explicit type conversion (functional notation) [expr.type.conv]

1 A simple-type-specifier (7.1.6.2) or typename-specifier (14.6) followed by a parenthesized expression-list con-
structs a value of the specified type given the expression list. If the expression list is a single expression, the
type conversion expression is equivalent (in definedness, and if defined in meaning) to the corresponding cast
expression (5.4). If the type specified is a class type, the class type shall be complete. If the expression list
specifies more than a single value, the type shall be a class with a suitably declared constructor (8.5, 12.1),
and the expression T(x1, x2, ...) is equivalent in effect to the declaration T t(x1, x2, ...); for some
invented temporary variable t, with the result being the value of t as a prvalue.

2 The expression T(), where T is a simple-type-specifier or typename-specifier for a non-array complete ob-
ject type or the (possibly cv-qualified) void type, creates a prvalue of the specified type, which is value-
initialized (8.5; no initialization is done for the void() case). [Note: if T is a non-class type that is
cv-qualified, the cv-qualifiers are ignored when determining the type of the resulting prvalue (3.10). — end
note]

3 Similarly, a simple-type-specifier or typename-specifier followed by a braced-init-list creates a temporary
object of the specified type direct-list-initialized (8.5.4) with the specified braced-init-list, and its value is
that temporary object as a prvalue.

5.2.4 Pseudo destructor call [expr.pseudo]

1 The use of a pseudo-destructor-name after a dot . or arrow -> operator represents the destructor for the
non-class type denoted by type-name or decltype-specifier . The result shall only be used as the operand for
the function call operator (), and the result of such a call has type void. The only effect is the evaluation
of the postfix-expression before the dot or arrow.

2 The left-hand side of the dot operator shall be of scalar type. The left-hand side of the arrow operator shall
be of pointer to scalar type. This scalar type is the object type. The cv-unqualified versions of the object
type and of the type designated by the pseudo-destructor-name shall be the same type. Furthermore, the
two type-names in a pseudo-destructor-name of the form

::opt nested-name-specifieropt type-name ::∼ type-name

shall designate the same scalar type.

5.2.5 Class member access [expr.ref]

1 A postfix expression followed by a dot . or an arrow ->, optionally followed by the keyword template (14.8.1),
and then followed by an id-expression, is a postfix expression. The postfix expression before the dot or arrow

§ 5.2.5 95

c© ISO/IEC N3092

is evaluated;64 the result of that evaluation, together with the id-expression, determines the result of the
entire postfix expression.

2 For the first option (dot) the type of the first expression (the object expression) shall be “class object” (of a
complete type). For the second option (arrow) the type of the first expression (the pointer expression) shall
be “pointer to class object” (of a complete type). In these cases, the id-expression shall name a member
of the class or of one of its base classes. [Note: because the name of a class is inserted in its class scope
(Clause 9), the name of a class is also considered a nested member of that class. — end note] [Note: 3.4.5
describes how names are looked up after the . and -> operators. — end note]

3 If E1 has the type “pointer to class X,” then the expression E1->E2 is converted to the equivalent form
(*(E1)).E2; the remainder of 5.2.5 will address only the first option (dot)65. Abbreviating object-expression.id-
expression as E1.E2, then the type and value category of this expression are determined as follows. In the
remainder of 5.2.5, cq represents either const or the absence of const and vq represents either volatile or
the absence of volatile. cv represents an arbitrary set of cv-qualifiers, as defined in 3.9.3.

4 If E2 is declared to have type “reference to T,” then E1.E2 is an lvalue; the type of E1.E2 is T. Otherwise,
one of the following rules applies.

— If E2 is a static data member and the type of E2 is T, then E1.E2 is an lvalue; the expression designates
the named member of the class. The type of E1.E2 is T.

— If E2 is a non-static data member and the type of E1 is “cq1 vq1 X”, and the type of E2 is “cq2 vq2
T”, the expression designates the named member of the object designated by the first expression. If
E1 is an lvalue, then E1.E2 is an lvalue; if E1 is an xvalue, then E1.E2 is an xvalue; otherwise, it is a
prvalue. Let the notation vq12 stand for the “union” of vq1 and vq2; that is, if vq1 or vq2 is volatile,
then vq12 is volatile. Similarly, let the notation cq12 stand for the “union” of cq1 and cq2; that is,
if cq1 or cq2 is const, then cq12 is const. If E2 is declared to be a mutable member, then the type
of E1.E2 is “vq12 T”. If E2 is not declared to be a mutable member, then the type of E1.E2 is “cq12
vq12 T”.

— If E2 is a (possibly overloaded) member function, function overload resolution (13.3) is used to deter-
mine whether E1.E2 refers to a static or a non-static member function.

— If it refers to a static member function and the type of E2 is “function of parameter-type-list
returning T”, then E1.E2 is an lvalue; the expression designates the static member function. The
type of E1.E2 is the same type as that of E2, namely “function of parameter-type-list returning
T”.

— Otherwise, if E1.E2 refers to a non-static member function and the type of E2 is “function of
parameter-type-list cv ref-qualifieropt returning T”, then E1.E2 is a prvalue. The expression
designates a non-static member function. The expression can be used only as the left-hand
operand of a member function call (9.3). [Note: any redundant set of parentheses surrounding
the expression is ignored (5.1). — end note] The type of E1.E2 is “function of parameter-type-list
cv returning T”.

— If E2 is a nested type, the expression E1.E2 is ill-formed.

— If E2 is a member enumerator and the type of E2 is T, the expression E1.E2 is a prvalue. The type of
E1.E2 is T.

5 If E2 is a non-static data member or a non-static member function, the program is ill-formed if the class of
which E2 is directly a member is an ambiguous base (10.2) of the naming class (11.2) of E2.

64) If the class member access expression is evaluated, the subexpression evaluation happens even if the result is unnecessary
to determine the value of the entire postfix expression, for example if the id-expression denotes a static member.

65) Note that if E1 has the type “pointer to class X,” then (*(E1)) is an lvalue.

§ 5.2.5 96

c© ISO/IEC N3092

5.2.6 Increment and decrement [expr.post.incr]

1 The value of a postfix ++ expression is the value of its operand. [Note: the value obtained is a copy of
the original value — end note] The operand shall be a modifiable lvalue. The type of the operand shall be
an arithmetic type or a pointer to a complete object type. The value of the operand object is modified by
adding 1 to it, unless the object is of type bool, in which case it is set to true. [Note: this use is deprecated,
see Annex D. — end note] The value computation of the ++ expression is sequenced before the modification
of the operand object. With respect to an indeterminately-sequenced function call, the operation of postfix
++ is a single evaluation. [Note: Therefore, a function call shall not intervene between the lvalue-to-rvalue
conversion and the side effect associated with any single postfix ++ operator. — end note] The result is a
prvalue. The type of the result is the cv-unqualified version of the type of the operand. See also 5.7 and 5.17.

2 The operand of postfix -- is decremented analogously to the postfix ++ operator, except that the operand
shall not be of type bool. [Note: For prefix increment and decrement, see 5.3.2. — end note]

5.2.7 Dynamic cast [expr.dynamic.cast]

1 The result of the expression dynamic_cast<T>(v) is the result of converting the expression v to type T. T
shall be a pointer or reference to a complete class type, or “pointer to cv void.” The dynamic_cast operator
shall not cast away constness (5.2.11).

2 If T is a pointer type, v shall be a prvalue of a pointer to complete class type, and the result is a prvalue
of type T. If T is an lvalue reference type, v shall be an lvalue of a complete class type, and the result is
an lvalue of the type referred to by T. If T is an rvalue reference type, v shall be an expression having a
complete class type, and the result is an xvalue of the type referred to by T.

3 If the type of v is the same as T, or it is the same as T except that the class object type in T is more
cv-qualified than the class object type in v, the result is v (converted if necessary).

4 If the value of v is a null pointer value in the pointer case, the result is the null pointer value of type T.

5 If T is “pointer to cv1 B” and v has type “pointer to cv2 D” such that B is a base class of D, the result is a
pointer to the unique B subobject of the D object pointed to by v. Similarly, if T is “reference to cv1 B” and
v has type cv2 D such that B is a base class of D, the result is the unique B subobject of the D object referred
to by v. 66 The result is an lvalue if T is an lvalue reference, or an xvalue if T is an rvalue reference. In both
the pointer and reference cases, the program is ill-formed if cv2 has greater cv-qualification than cv1 or if B
is an inaccessible or ambiguous base class of D. [Example:

struct B { };
struct D : B { };
void foo(D* dp) {

B* bp = dynamic_cast<B*>(dp); // equivalent to B* bp = dp;
}

— end example]

6 Otherwise, v shall be a pointer to or an lvalue of a polymorphic type (10.3).

7 If T is “pointer to cv void,” then the result is a pointer to the most derived object pointed to by v. Otherwise,
a run-time check is applied to see if the object pointed or referred to by v can be converted to the type
pointed or referred to by T.

8 If C is the class type to which T points or refers, the run-time check logically executes as follows:

66) The most derived object (1.8) pointed or referred to by v can contain other B objects as base classes, but these are ignored.

§ 5.2.7 97

c© ISO/IEC N3092

— If, in the most derived object pointed (referred) to by v, v points (refers) to a public base class
subobject of a C object, and if only one object of type C is derived from the subobject pointed (referred)
to by v the result points (refers) to that C object.

— Otherwise, if v points (refers) to a public base class subobject of the most derived object, and the
type of the most derived object has a base class, of type C, that is unambiguous and public, the result
points (refers) to the C subobject of the most derived object.

— Otherwise, the run-time check fails.

9 The value of a failed cast to pointer type is the null pointer value of the required result type. A failed cast
to reference type throws std::bad_cast (18.7.2).

[Example:
class A { virtual void f(); };
class B { virtual void g(); };
class D : public virtual A, private B { };
void g() {

D d;
B* bp = (B*)&d; // cast needed to break protection
A* ap = &d; // public derivation, no cast needed
D& dr = dynamic_cast<D&>(*bp); // fails
ap = dynamic_cast<A*>(bp); // fails
bp = dynamic_cast<B*>(ap); // fails
ap = dynamic_cast<A*>(&d); // succeeds
bp = dynamic_cast<B*>(&d); // ill-formed (not a run-time check)

}

class E : public D, public B { };
class F : public E, public D { };
void h() {

F f;
A* ap = &f; // succeeds: finds unique A
D* dp = dynamic_cast<D*>(ap); // fails: yields 0

// f has two D subobjects
E* ep = (E*)ap; // ill-formed: cast from virtual base
E* ep1 = dynamic_cast<E*>(ap); // succeeds

}

— end example] [Note: 12.7 describes the behavior of a dynamic_cast applied to an object under construc-
tion or destruction. — end note]

5.2.8 Type identification [expr.typeid]

1 The result of a typeid expression is an lvalue of static type const std::type_info (18.7.1) and dynamic type
const std::type_info or const name where name is an implementation-defined class publicly derived from
std :: type_info which preserves the behavior described in 18.7.1.67 The lifetime of the object referred to by
the lvalue extends to the end of the program. Whether or not the destructor is called for the std::type_info
object at the end of the program is unspecified.

2 When typeid is applied to a glvalue expression whose type is a polymorphic class type (10.3), the result refers
to a std::type_info object representing the type of the most derived object (1.8) (that is, the dynamic
type) to which the glvalue refers. If the glvalue expression is obtained by applying the unary * operator to a

67) The recommended name for such a class is extended_type_info.

§ 5.2.8 98

c© ISO/IEC N3092

pointer68 and the pointer is a null pointer value (4.10), the typeid expression throws the std::bad_typeid
exception (18.7.3).

3 When typeid is applied to an expression other than a glvalue of a polymorphic class type, the result refers
to a std::type_info object representing the static type of the expression. Lvalue-to-rvalue (4.1), array-to-
pointer (4.2), and function-to-pointer (4.3) conversions are not applied to the expression. If the type of the
expression is a class type, the class shall be completely-defined. The expression is an unevaluated operand
(Clause 5).

4 When typeid is applied to a type-id, the result refers to a std::type_info object representing the type of
the type-id. If the type of the type-id is a reference to a possibly cv-qualified type, the result of the typeid
expression refers to a std::type_info object representing the cv-unqualified referenced type. If the type of
the type-id is a class type or a reference to a class type, the class shall be completely-defined.

5 The top-level cv-qualifiers of the glvalue expression or the type-id that is the operand of typeid are always
ignored. [Example:

class D { ... };
D d1;
const D d2;

typeid(d1) == typeid(d2); // yields true
typeid(D) == typeid(const D); // yields true
typeid(D) == typeid(d2); // yields true
typeid(D) == typeid(const D&); // yields true

— end example]

6 If the header <typeinfo> (18.7.1) is not included prior to a use of typeid, the program is ill-formed.

7 [Note: 12.7 describes the behavior of typeid applied to an object under construction or destruction. — end
note]

5.2.9 Static cast [expr.static.cast]

1 The result of the expression static_cast<T>(v) is the result of converting the expression v to type T. If T
is an lvalue reference type or an rvalue reference to function type, the result is an lvalue; if T is an rvalue
reference to object type, the result is an xvalue; otherwise, the result is a prvalue. The static_cast operator
shall not cast away constness (5.2.11).

2 An lvalue of type “cv1 B,” where B is a class type, can be cast to type “reference to cv2 D,” where D is a class
derived (Clause 10) from B, if a valid standard conversion from “pointer to D” to “pointer to B” exists (4.10),
cv2 is the same cv-qualification as, or greater cv-qualification than, cv1, and B is neither a virtual base class
of D nor a base class of a virtual base class of D. The result has type “cv2 D.” An xvalue of type “cv1 B” may
be cast to type “rvalue reference to cv2 D” with the same constraints as for an lvalue of type “cv1 B.” If the
object of type “cv1 B” is actually a subobject of an object of type D, the result refers to the enclosing object
of type D. Otherwise, the result of the cast is undefined. [Example:

struct B { };
struct D : public B { };
D d;
B &br = d;

static_cast<D&>(br); // produces lvalue to the original d object

68) If p is an expression of pointer type, then *p, (*p), *(p), ((*p)), *((p)), and so on all meet this requirement.

§ 5.2.9 99

c© ISO/IEC N3092

— end example]

3 A glvalue of type “cv1 T1” can be cast to type “rvalue reference to cv2 T2” if “cv2 T2” is reference-compatible
with “cv1 T1” (8.5.3). The result refers to the object or the specified base class subobject thereof. If T2 is
an inaccessible (Clause 11) or ambiguous (10.2) base class of T1, a program that necessitates such a cast is
ill-formed.

4 Otherwise, an expression e can be explicitly converted to a type T using a static_cast of the form static_-
cast<T>(e) if the declaration T t(e); is well-formed, for some invented temporary variable t (8.5). The
effect of such an explicit conversion is the same as performing the declaration and initialization and then
using the temporary variable as the result of the conversion. The expression e is used as a glvalue if and
only if the initialization uses it as a glvalue.

5 Otherwise, the static_cast shall perform one of the conversions listed below. No other conversion shall be
performed explicitly using a static_cast.

6 Any expression can be explicitly converted to type cv void. The expression value is discarded. [Note:
however, if the value is in a temporary object (12.2), the destructor for that object is not executed until
the usual time, and the value of the object is preserved for the purpose of executing the destructor. — end
note] The lvalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions
are not applied to the expression.

7 The inverse of any standard conversion sequence (Clause 4), other than the lvalue-to-rvalue (4.1), array-to-
pointer (4.2), function-to-pointer (4.3), and boolean (4.12) conversions, can be performed explicitly using
static_cast. A program is ill-formed if it uses static_cast to perform the inverse of an ill-formed standard
conversion sequence. [Example:

struct B { };
struct D : private B { };
void f() {

static_cast<D*>((B*)0); // Error: B is a private base of D.
static_cast<int B::*>((int D::*)0); // Error: B is a private base of D.

}

— end example]

8 The lvalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) conversions are applied to
the operand. Such a static_cast is subject to the restriction that the explicit conversion does not cast
away constness (5.2.11), and the following additional rules for specific cases:

9 A value of a scoped enumeration type (7.2) can be explicitly converted to an integral type. The value is
unchanged if the original value can be represented by the specified type. Otherwise, the resulting value is
unspecified. A value of a scoped enumeration type can also be explicitly converted to a floating-point type;
the result is the same as that of converting from the original value to the floating-point type.

10 A value of integral or enumeration type can be explicitly converted to an enumeration type. The value is
unchanged if the original value is within the range of the enumeration values (7.2). Otherwise, the resulting
enumeration value is unspecified.

11 A prvalue of type “pointer to cv1 B,” where B is a class type, can be converted to a prvalue of type “pointer
to cv2 D,” where D is a class derived (Clause 10) from B, if a valid standard conversion from “pointer to D” to
“pointer to B” exists (4.10), cv2 is the same cv-qualification as, or greater cv-qualification than, cv1, and B
is neither a virtual base class of D nor a base class of a virtual base class of D. The null pointer value (4.10)
is converted to the null pointer value of the destination type. If the prvalue of type “pointer to cv1 B” points
to a B that is actually a subobject of an object of type D, the resulting pointer points to the enclosing object
of type D. Otherwise, the result of the cast is undefined.

§ 5.2.9 100

c© ISO/IEC N3092

12 A prvalue of type “pointer to member of D of type cv1 T” can be converted to a prvalue of type “pointer to
member of B” of type cv2 T, where B is a base class (Clause 10) of D, if a valid standard conversion from
“pointer to member of B of type T” to “pointer to member of D of type T” exists (4.11), and cv2 is the same
cv-qualification as, or greater cv-qualification than, cv1.69 The null member pointer value (4.11) is converted
to the null member pointer value of the destination type. If class B contains the original member, or is a base
or derived class of the class containing the original member, the resulting pointer to member points to the
original member. Otherwise, the result of the cast is undefined. [Note: although class B need not contain
the original member, the dynamic type of the object on which the pointer to member is dereferenced must
contain the original member; see 5.5. — end note]

13 A prvalue of type “pointer to cv1 void” can be converted to a prvalue of type “pointer to cv2 T,” where
T is an object type and cv2 is the same cv-qualification as, or greater cv-qualification than, cv1. The null
pointer value is converted to the null pointer value of the destination type. A value of type pointer to object
converted to “pointer to cv void” and back, possibly with different cv-qualification, shall have its original
value. [Example:

T* p1 = new T;
const T* p2 = static_cast<const T*>(static_cast<void*>(p1));
bool b = p1 == p2; // b will have the value true.

— end example]

5.2.10 Reinterpret cast [expr.reinterpret.cast]

1 The result of the expression reinterpret_cast<T>(v) is the result of converting the expression v to type
T. If T is an lvalue reference type or an rvalue reference to function type, the result is an lvalue; if T is an
rvalue reference to object type, the result is an xvalue; otherwise, the result is a prvalue and the lvalue-to-
rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are performed on the
expression v. Conversions that can be performed explicitly using reinterpret_cast are listed below. No
other conversion can be performed explicitly using reinterpret_cast.

2 The reinterpret_cast operator shall not cast away constness (5.2.11). An expression of integral, enumer-
ation, pointer, or pointer-to-member type can be explicitly converted to its own type; such a cast yields the
value of its operand.

3 [Note: The mapping performed by reinterpret_cast might, or might not, produce a representation dif-
ferent from the original value. — end note]

4 A pointer can be explicitly converted to any integral type large enough to hold it. The mapping function is
implementation-defined. [Note: it is intended to be unsurprising to those who know the addressing structure
of the underlying machine. — end note] A value of type std::nullptr_t can be converted to an integral
type; the conversion has the same meaning and validity as a conversion of (void*)0 to the integral type.
[Note: a reinterpret_cast cannot be used to convert a value of any type to the type std::nullptr_t.
— end note]

5 A value of integral type or enumeration type can be explicitly converted to a pointer. A pointer converted
to an integer of sufficient size (if any such exists on the implementation) and back to the same pointer type
will have its original value; mappings between pointers and integers are otherwise implementation-defined.
[Note: Except as described in 3.7.4.3, the result of such a conversion will not be a safely-derived pointer
value. — end note]

6 A pointer to a function can be explicitly converted to a pointer to a function of a different type. The effect
of calling a function through a pointer to a function type (8.3.5) that is not the same as the type used in

69) Function types (including those used in pointer to member function types) are never cv-qualified; see 8.3.5.

§ 5.2.10 101

c© ISO/IEC N3092

the definition of the function is undefined. Except that converting a prvalue of type “pointer to T1” to the
type “pointer to T2” (where T1 and T2 are function types) and back to its original type yields the original
pointer value, the result of such a pointer conversion is unspecified. [Note: see also 4.10 for more details of
pointer conversions. — end note]

7 A pointer to an object can be explicitly converted to a pointer to a different object type.70 When a
prvalue v of type “pointer to T1” is converted to the type “pointer to cvT2”, the result is static_-
cast<cvT2*>(static_cast<cvvoid*>(v)) if both T1 and T2 are standard-layout types (3.9) and the align-
ment requirements of T2 are no stricter than those of T1. Converting a prvalue of type “pointer to T1” to
the type “pointer to T2” (where T1 and T2 are object types and where the alignment requirements of T2 are
no stricter than those of T1) and back to its original type yields the original pointer value. The result of
any other such pointer conversion is unspecified.

8 Converting a pointer to a function into a pointer to an object type or vice versa is conditionally-supported.
The meaning of such a conversion is implementation-defined, except that if an implementation supports
conversions in both directions, converting a prvalue of one type to the other type and back, possibly with
different cv-qualification, shall yield the original pointer value.

9 The null pointer value (4.10) is converted to the null pointer value of the destination type. [Note: A null
pointer constant of type std::nullptr_t cannot be converted to a pointer type, and a null pointer constant
of integral type is not necessarily converted to a null pointer value. — end note]

10 A prvalue of type “pointer to member of X of type T1” can be explicitly converted to a prvalue of a different
type “pointer to member of Y of type T2” if T1 and T2 are both function types or both object types.71 The
null member pointer value (4.11) is converted to the null member pointer value of the destination type. The
result of this conversion is unspecified, except in the following cases:

— converting a prvalue of type “pointer to member function” to a different pointer to member function
type and back to its original type yields the original pointer to member value.

— converting a prvalue of type “pointer to data member of X of type T1” to the type “pointer to data
member of Y of type T2” (where the alignment requirements of T2 are no stricter than those of T1)
and back to its original type yields the original pointer to member value.

11 An lvalue expression of type T1 can be cast to the type “reference to T2” if an expression of type “pointer to
T1” can be explicitly converted to the type “pointer to T2” using a reinterpret_cast. That is, a reference
cast reinterpret_cast<T&>(x) has the same effect as the conversion *reinterpret_cast<T*>(&x) with
the built-in & and * operators (and similarly for reinterpret_cast<T&&>(x)). The result refers to the same
object as the source lvalue, but with a different type. The result is an lvalue for an lvalue reference type or
an rvalue reference to function type and an xvalue for an rvalue reference to object type. No temporary is
created, no copy is made, and constructors (12.1) or conversion functions (12.3) are not called.72

5.2.11 Const cast [expr.const.cast]

1 The result of the expression const_cast<T>(v) is of type T. If T is an lvalue reference type or an rvalue
reference to function type, the result is an lvalue; if T is an rvalue reference to object type, the result
is an xvalue; otherwise, the result is a prvalue and the lvalue-to-rvalue (4.1), array-to-pointer (4.2), and
function-to-pointer (4.3) standard conversions are performed on the expression v. Conversions that can be

70) The types may have different cv-qualifiers, subject to the overall restriction that a reinterpret_cast cannot cast away
constness.

71) T1 and T2 may have different cv-qualifiers, subject to the overall restriction that a reinterpret_cast cannot cast away
constness.

72) This is sometimes referred to as a type pun.

§ 5.2.11 102

c© ISO/IEC N3092

performed explicitly using const_cast are listed below. No other conversion shall be performed explicitly
using const_cast.

2 [Note: Subject to the restrictions in this section, an expression may be cast to its own type using a const_-
cast operator. — end note]

3 For two pointer types T1 and T2 where

T1 is cv1,0 pointer to cv1,1 pointer to · · · cv1,n−1 pointer to cv1,n T

and

T2 is cv2,0 pointer to cv2,1 pointer to · · · cv2,n−1 pointer to cv2,n T

where T is any object type or the void type and where cv1,k and cv2,k may be different cv-qualifications, a
prvalue of type T1 may be explicitly converted to the type T2 using a const_cast. The result of a pointer
const_cast refers to the original object.

4 For two object types T1 and T2, if a pointer to T1 can be explicitly converted to the type “pointer to T2”
using a const_cast, then the following conversions can also be made:

— an lvalue of type T1 can be explicitly converted to an lvalue of type T2 using the cast const_cast<T2&>;

— a glvalue of type T1 can be explicitly converted to an xvalue of type T2 using the cast const_-
cast<T2&&>; and

— if T1 is a class type, a prvalue of type T1 can be explicitly converted to an xvalue of type T2 using the
cast const_cast<T2&&>.

The result of a reference const_cast refers to the original object.

5 For a const_cast involving pointers to data members, multi-level pointers to data members and multi-level
mixed pointers and pointers to data members (4.4), the rules for const_cast are the same as those used for
pointers; the “member” aspect of a pointer to member is ignored when determining where the cv-qualifiers
are added or removed by the const_cast. The result of a pointer to data member const_cast refers to the
same member as the original (uncast) pointer to data member.

6 A null pointer value (4.10) is converted to the null pointer value of the destination type. The null member
pointer value (4.11) is converted to the null member pointer value of the destination type.

7 [Note: Depending on the type of the object, a write operation through the pointer, lvalue or pointer
to data member resulting from a const_cast that casts away a const-qualifier73 may produce undefined
behavior (7.1.6.1). — end note]

8 The following rules define the process known as casting away constness. In these rules Tn and Xn represent
types. For two pointer types:

X1 is T1cv1,1 * · · · cv1,N * where T1 is not a pointer type

X2 is T2cv2,1 * · · · cv2,M * where T2 is not a pointer type

K is min(N,M)

casting from X1 to X2 casts away constness if, for a non-pointer type T there does not exist an implicit
conversion (Clause 4) from:

Tcv1,(N−K+1) * cv1,(N−K+2) * · · · cv1,N *

to

73) const_cast is not limited to conversions that cast away a const-qualifier.

§ 5.2.11 103

c© ISO/IEC N3092

Tcv2,(M−K+1) * cv2,(M−K+2) * · · · cv2,M *

9 Casting from an lvalue of type T1 to an lvalue of type T2 using an lvalue reference cast or casting from an
expression of type T1 to an xvalue of type T2 using an rvalue reference cast casts away constness if a cast
from a prvalue of type “pointer to T1” to the type “pointer to T2” casts away constness.

10 Casting from a prvalue of type “pointer to data member of X of type T1” to the type “pointer to data member
of Y of type T2” casts away constness if a cast from a prvalue of type “pointer to T1” to the type “pointer
to T2” casts away constness.

11 For multi-level pointer to members and multi-level mixed pointers and pointer to members (4.4), the “mem-
ber” aspect of a pointer to member level is ignored when determining if a const cv-qualifier has been cast
away.

12 [Note: some conversions which involve only changes in cv-qualification cannot be done using const_cast.
For instance, conversions between pointers to functions are not covered because such conversions lead to
values whose use causes undefined behavior. For the same reasons, conversions between pointers to member
functions, and in particular, the conversion from a pointer to a const member function to a pointer to a
non-const member function, are not covered. — end note]

5.3 Unary expressions [expr.unary]

1 Expressions with unary operators group right-to-left.
unary-expression:

postfix-expression
++ cast-expression
-- cast-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-id)
sizeof ... (identifier)
alignof (type-id)
noexcept-expression
new-expression
delete-expression

unary-operator: one of
* & + - ! ∼

5.3.1 Unary operators [expr.unary.op]

1 The unary * operator performs indirection: the expression to which it is applied shall be a pointer to an
object type, or a pointer to a function type and the result is an lvalue referring to the object or function
to which the expression points. If the type of the expression is “pointer to T,” the type of the result is “T.”
[Note: a pointer to an incomplete type (other than cv void) can be dereferenced. The lvalue thus obtained
can be used in limited ways (to initialize a reference, for example); this lvalue must not be converted to a
prvalue, see 4.1. — end note]

2 The result of each of the following unary operators is a prvalue.

3 The result of the unary & operator is a pointer to its operand. The operand shall be an lvalue or a qualified-id.
If the operand is a qualified-id naming a non-static member m of some class C with type T, the result has type
“pointer to member of class C of type T” and is a prvalue designating C::m; the program is ill formed if C is
an ambiguous base (10.2) of the class designated by the nested-name-specifier of the qualified-id. Otherwise,
if the type of the expression is T, the result has type “pointer to T” and is a prvalue that is the address of

§ 5.3.1 104

c© ISO/IEC N3092

the designated object (1.7) or a pointer to the designated function. [Note: In particular, the address of an
object of type “cv T” is “pointer to cv T”, with the same cv-qualification. — end note] [Example:

struct A { int i; };
struct B : A { };
... &B::i ... // has type int A::*

— end example] [Note: a pointer to member formed from a mutable non-static data member (7.1.1) does
not reflect the mutable specifier associated with the non-static data member. — end note]

4 A pointer to member is only formed when an explicit & is used and its operand is a qualified-id not enclosed
in parentheses. [Note: that is, the expression &(qualified-id), where the qualified-id is enclosed in
parentheses, does not form an expression of type “pointer to member.” Neither does qualified-id, because
there is no implicit conversion from a qualified-id for a non-static member function to the type “pointer to
member function” as there is from an lvalue of function type to the type “pointer to function” (4.3). Nor is
&unqualified-id a pointer to member, even within the scope of the unqualified-id’s class. — end note]

5 The address of an object of incomplete type can be taken, but if the complete type of that object is a class
type that declares operator&() as a member function, then the behavior is undefined (and no diagnostic is
required). The operand of & shall not be a bit-field.

6 The address of an overloaded function (Clause 13) can be taken only in a context that uniquely determines
which version of the overloaded function is referred to (see 13.4). [Note: since the context might determine
whether the operand is a static or non-static member function, the context can also affect whether the
expression has type “pointer to function” or “pointer to member function.” — end note]

7 The operand of the unary + operator shall have arithmetic, unscoped enumeration, or pointer type and the
result is the value of the argument. Integral promotion is performed on integral or enumeration operands.
The type of the result is the type of the promoted operand.

8 The operand of the unary - operator shall have arithmetic or unscoped enumeration type and the result
is the negation of its operand. Integral promotion is performed on integral or enumeration operands. The
negative of an unsigned quantity is computed by subtracting its value from 2n, where n is the number of
bits in the promoted operand. The type of the result is the type of the promoted operand.

9 The operand of the logical negation operator ! is contextually converted to bool (Clause 4); its value is
true if the converted operand is false and false otherwise. The type of the result is bool.

10 The operand of ˜ shall have integral or unscoped enumeration type; the result is the one’s complement of
its operand. Integral promotions are performed. The type of the result is the type of the promoted operand.
There is an ambiguity in the unary-expression ˜X(), where X is a class-name or decltype-specifier . The
ambiguity is resolved in favor of treating ˜ as a unary complement rather than treating ˜X as referring to a
destructor.

5.3.2 Increment and decrement [expr.pre.incr]

1 The operand of prefix ++ is modified by adding 1, or set to true if it is bool (this use is deprecated). The
operand shall be a modifiable lvalue. The type of the operand shall be an arithmetic type or a pointer to
a completely-defined object type. The result is the updated operand; it is an lvalue, and it is a bit-field if
the operand is a bit-field. If x is not of type bool, the expression ++x is equivalent to x+=1 [Note: see the
discussions of addition (5.7) and assignment operators (5.17) for information on conversions. — end note]

2 The operand of prefix -- is modified by subtracting 1. The operand shall not be of type bool. The
requirements on the operand of prefix -- and the properties of its result are otherwise the same as those of

§ 5.3.2 105

c© ISO/IEC N3092

prefix ++. [Note: For postfix increment and decrement, see 5.2.6. — end note]

5.3.3 Sizeof [expr.sizeof]

1 The sizeof operator yields the number of bytes in the object representation of its operand. The operand is
either an expression, which is an unevaluated operand (Clause 5), or a parenthesized type-id. The sizeof
operator shall not be applied to an expression that has function or incomplete type, to an enumeration
type whose underlying type is not fixed before all its enumerators have been declared, to the parenthesized
name of such types, or to an lvalue that designates a bit-field. sizeof(char), sizeof(signed char) and
sizeof(unsigned char) are 1. The result of sizeof applied to any other fundamental type (3.9.1) is
implementation-defined. [Note: in particular, sizeof(bool), sizeof(char16_t), sizeof(char32_t), and
sizeof(wchar_t) are implementation-defined.74 — end note] [Note: See 1.7 for the definition of byte
and 3.9 for the definition of object representation. — end note]

2 When applied to a reference or a reference type, the result is the size of the referenced type. When applied
to a class, the result is the number of bytes in an object of that class including any padding required for
placing objects of that type in an array. The size of a most derived class shall be greater than zero (1.8).
The result of applying sizeof to a base class subobject is the size of the base class type.75 When applied
to an array, the result is the total number of bytes in the array. This implies that the size of an array of n
elements is n times the size of an element.

3 The sizeof operator can be applied to a pointer to a function, but shall not be applied directly to a function.

4 The lvalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are not
applied to the operand of sizeof.

5 The identifier in a sizeof... expression shall name a parameter pack. The sizeof... operator yields the
number of arguments provided for the parameter pack identifier . The parameter pack is expanded (14.5.3)
by the sizeof... operator. [Example:

template<class... Types>
struct count {

static const std::size_t value = sizeof...(Types);
};

— end example]

6 The result of sizeof and sizeof... is a constant of type std::size_t. [Note: std::size_t is defined in
the standard header <cstddef> (18.2). — end note]

5.3.4 New [expr.new]

1 The new-expression attempts to create an object of the type-id (8.1) or new-type-id to which it is applied.
The type of that object is the allocated type. This type shall be a complete object type, but not an
abstract class type or array thereof (1.8, 3.9, 10.4). It is implementation-defined whether over-aligned types
are supported (3.11). [Note: because references are not objects, references cannot be created by new-
expressions. — end note] [Note: the type-id may be a cv-qualified type, in which case the object created
by the new-expression has a cv-qualified type. — end note]

74) sizeof(bool) is not required to be 1.
75) The actual size of a base class subobject may be less than the result of applying sizeof to the subobject, due to virtual

base classes and less strict padding requirements on base class subobjects.

§ 5.3.4 106

c© ISO/IEC N3092

new-expression:
::opt new new-placementopt new-type-id new-initializeropt

::opt new new-placementopt (type-id) new-initializeropt

new-placement:
(expression-list)

new-type-id:
type-specifier-seq new-declaratoropt

new-declarator:
ptr-operator new-declaratoropt

noptr-new-declarator
noptr-new-declarator:

[expression] attribute-specifieropt

noptr-new-declarator [constant-expression] attribute-specifieropt

new-initializer:
(expression-listopt)
braced-init-list

Entities created by a new-expression have dynamic storage duration (3.7.4). [Note: the lifetime of such an
entity is not necessarily restricted to the scope in which it is created. — end note] If the entity is a non-
array object, the new-expression returns a pointer to the object created. If it is an array, the new-expression
returns a pointer to the initial element of the array.

2 If the auto type-specifier appears in the type-specifier-seq of a new-type-id or type-id of a new-expression, the
new-expression shall contain a new-initializer of the form

(assignment-expression)

The allocated type is deduced from the new-initializer as follows: Let e be the assignment-expression in the
new-initializer and T be the new-type-id or type-id of the new-expression, then the allocated type is the type
deduced for the variable x in the invented declaration (7.1.6.4):

T x(e);

[Example:
new auto(1); // allocated type is int
auto x = new auto(’a’); // allocated type is char, x is of type char*

— end example]

3 The new-type-id in a new-expression is the longest possible sequence of new-declarators. [Note: this prevents
ambiguities between the declarator operators &, &&, *, and [] and their expression counterparts. — end
note] [Example:

new int * i; // syntax error: parsed as (new int*) i, not as (new int)*i

The * is the pointer declarator and not the multiplication operator. — end example]

4 [Note: parentheses in a new-type-id of a new-expression can have surprising effects. [Example:
new int(*[10])(); // error

is ill-formed because the binding is
(new int) (*[10])(); // error

Instead, the explicitly parenthesized version of the new operator can be used to create objects of compound
types (3.9.2):

§ 5.3.4 107

c© ISO/IEC N3092

new (int (*[10])());

allocates an array of 10 pointers to functions (taking no argument and returning int. — end example]
— end note]

5 When the allocated object is an array (that is, the noptr-new-declarator syntax is used or the new-type-id or
type-id denotes an array type), the new-expression yields a pointer to the initial element (if any) of the array.
[Note: both new int and new int[10] have type int* and the type of new int[i][10] is int (*)[10]
— end note] The attribute-specifier in a noptr-new-declarator appertains to the associated array type.

6 Every constant-expression in a noptr-new-declarator shall be an integral constant expression (5.19) and
evaluate to a strictly positive value. The expression in a noptr-new-declarator shall be of integral type,
unscoped enumeration type, or a class type for which a single non-explicit conversion function to integral or
unscoped enumeration type exists (12.3). If the expression is of class type, the expression is converted by
calling that conversion function, and the result of the conversion is used in place of the original expression.
If the value of the expression is negative, the behavior is undefined. [Example: given the definition int
n = 42, new float[n][5] is well-formed (because n is the expression of a noptr-new-declarator), but new
float[5][n] is ill-formed (because n is not a constant expression). If n is negative, the effect of new
float[n][5] is undefined. — end example]

7 When the value of the expression in a noptr-new-declarator is zero, the allocation function is called to
allocate an array with no elements. If the value of that expression is such that the size of the allocated object
would exceed the implementation-defined limit, no storage is obtained and the new-expression terminates
by throwing an exception of a type that would match a handler (15.3) of type std::bad_array_new_-
length (18.6.2.2).

8 A new-expression obtains storage for the object by calling an allocation function (3.7.4.1). If the new-
expression terminates by throwing an exception, it may release storage by calling a deallocation func-
tion (3.7.4.2). If the allocated type is a non-array type, the allocation function’s name is operator new and
the deallocation function’s name is operator delete. If the allocated type is an array type, the allocation
function’s name is operator new[] and the deallocation function’s name is operator delete[]. [Note: an
implementation shall provide default definitions for the global allocation functions (3.7.4, 18.6.1.1, 18.6.1.2).
A C++ program can provide alternative definitions of these functions (17.6.3.6) and/or class-specific ver-
sions (12.5). — end note]

9 If the new-expression begins with a unary :: operator, the allocation function’s name is looked up in the
global scope. Otherwise, if the allocated type is a class type T or array thereof, the allocation function’s
name is looked up in the scope of T. If this lookup fails to find the name, or if the allocated type is not a
class type, the allocation function’s name is looked up in the global scope.

10 A new-expression passes the amount of space requested to the allocation function as the first argument of
type std::size_t. That argument shall be no less than the size of the object being created; it may be
greater than the size of the object being created only if the object is an array. For arrays of char and
unsigned char, the difference between the result of the new-expression and the address returned by the
allocation function shall be an integral multiple of the strictest fundamental alignment requirement (3.11) of
any object type whose size is no greater than the size of the array being created. [Note: Because allocation
functions are assumed to return pointers to storage that is appropriately aligned for objects of any type with
fundamental alignment, this constraint on array allocation overhead permits the common idiom of allocating
character arrays into which objects of other types will later be placed. — end note]

11 The new-placement syntax is used to supply additional arguments to an allocation function. If used, overload
resolution is performed on a function call created by assembling an argument list consisting of the amount of
space requested (the first argument) and the expressions in the new-placement part of the new-expression (the

§ 5.3.4 108

c© ISO/IEC N3092

second and succeeding arguments). The first of these arguments has type std::size_t and the remaining
arguments have the corresponding types of the expressions in the new-placement.

12 [Example:

— new T results in a call of operator new(sizeof(T)),

— new(2,f) T results in a call of operator new(sizeof(T),2,f),

— new T[5] results in a call of operator new[](sizeof(T)*5+x), and

— new(2,f) T[5] results in a call of operator new[](sizeof(T)*5+y,2,f).

Here, x and y are non-negative unspecified values representing array allocation overhead; the result of the
new-expression will be offset by this amount from the value returned by operator new[]. This overhead
may be applied in all array new-expressions, including those referencing the library function operator
new[](std::size_t, void*) and other placement allocation functions. The amount of overhead may vary
from one invocation of new to another. — end example]

13 [Note: unless an allocation function is declared with a non-throwing exception-specification (15.4), it indi-
cates failure to allocate storage by throwing a std::bad_alloc exception (Clause 15, 18.6.2.1); it returns a
non-null pointer otherwise. If the allocation function is declared with a non-throwing exception-specification,
it returns null to indicate failure to allocate storage and a non-null pointer otherwise. — end note] If the
allocation function returns null, initialization shall not be done, the deallocation function shall not be called,
and the value of the new-expression shall be null.

14 [Note: when the allocation function returns a value other than null, it must be a pointer to a block of storage
in which space for the object has been reserved. The block of storage is assumed to be appropriately aligned
and of the requested size. The address of the created object will not necessarily be the same as that of the
block if the object is an array. — end note]

15 A new-expression that creates an object of type T initializes that object as follows:

— If the new-initializer is omitted, the object is default-initialized (8.5); if no initialization is performed,
the object has indeterminate value.

— Otherwise, the new-initializer is interpreted according to the initialization rules of 8.5 for direct-
initialization.

16 The invocation of the allocation function is indeterminately sequenced with respect to the evaluations of
expressions in the new-initializer . Initialization of the allocated object is sequenced before the value com-
putation of the new-expression. It is unspecified whether expressions in the new-initializer are evaluated if
the allocation function returns the null pointer or exits using an exception.

17 If the new-expression creates an object or an array of objects of class type, access and ambiguity control
are done for the allocation function, the deallocation function (12.5), and the constructor (12.1). If the
new expression creates an array of objects of class type, access and ambiguity control are done for the
destructor (12.4).

18 If any part of the object initialization described above76 terminates by throwing an exception and a suitable
deallocation function can be found, the deallocation function is called to free the memory in which the object
was being constructed, after which the exception continues to propagate in the context of the new-expression.
If no unambiguous matching deallocation function can be found, propagating the exception does not cause
the object’s memory to be freed. [Note: This is appropriate when the called allocation function does not
allocate memory; otherwise, it is likely to result in a memory leak. — end note]

76) This may include evaluating a new-initializer and/or calling a constructor.

§ 5.3.4 109

c© ISO/IEC N3092

19 If the new-expression begins with a unary :: operator, the deallocation function’s name is looked up in the
global scope. Otherwise, if the allocated type is a class type T or an array thereof, the deallocation function’s
name is looked up in the scope of T. If this lookup fails to find the name, or if the allocated type is not a
class type or array thereof, the deallocation function’s name is looked up in the global scope.

20 A declaration of a placement deallocation function matches the declaration of a placement allocation function
if it has the same number of parameters and, after parameter transformations (8.3.5), all parameter types
except the first are identical. Any non-placement deallocation function matches a non-placement allocation
function. If the lookup finds a single matching deallocation function, that function will be called; otherwise,
no deallocation function will be called. If the lookup finds the two-parameter form of a usual deallocation
function (3.7.4.2) and that function, considered as a placement deallocation function, would have been
selected as a match for the allocation function, the program is ill-formed. [Example:

struct S {
// Placement allocation function:
static void* operator new(std::size_t, std::size_t);

// Usual (non-placement) deallocation function:
static void operator delete(void*, std::size_t);

};

S* p = new (0) S; // ill-formed: non-placement deallocation function matches
// placement allocation function

— end example]

21 If a new-expression calls a deallocation function, it passes the value returned from the allocation function
call as the first argument of type void*. If a placement deallocation function is called, it is passed the same
additional arguments as were passed to the placement allocation function, that is, the same arguments as
those specified with the new-placement syntax. If the implementation is allowed to make a copy of any
argument as part of the call to the allocation function, it is allowed to make a copy (of the same original
value) as part of the call to the deallocation function or to reuse the copy made as part of the call to the
allocation function. If the copy is elided in one place, it need not be elided in the other.

5.3.5 Delete [expr.delete]

1 The delete-expression operator destroys a most derived object (1.8) or array created by a new-expression.
delete-expression:

::opt delete cast-expression
::opt delete [] cast-expression

The first alternative is for non-array objects, and the second is for arrays. Whenever the delete key-
word is immediately followed by empty square brackets, it shall be interpreted as the second alternative.77

The operand shall have a pointer to object type, or a class type having a single non-explicit conversion
function (12.3.2) to a pointer to object type. The result has type void.78

2 If the operand has a class type, the operand is converted to a pointer type by calling the above-mentioned
conversion function, and the converted operand is used in place of the original operand for the remainder of
this section. In either alternative, the value of the operand of delete may be a null pointer value. If it is
not a null pointer value, in the first alternative (delete object), the value of the operand of delete shall be
a pointer to a non-array object or a pointer to a subobject (1.8) representing a base class of such an object

77) A lambda expression with a lambda-introducer that consists of empty square brackets can follow the delete keyword if
the lambda expression is enclosed in parentheses.

78) This implies that an object cannot be deleted using a pointer of type void* because void is not an object type.

§ 5.3.5 110

c© ISO/IEC N3092

(Clause 10). If not, the behavior is undefined. In the second alternative (delete array), the value of the
operand of delete shall be the pointer value which resulted from a previous array new-expression.79 If not,
the behavior is undefined. [Note: this means that the syntax of the delete-expression must match the type
of the object allocated by new, not the syntax of the new-expression. — end note] [Note: a pointer to a
const type can be the operand of a delete-expression; it is not necessary to cast away the constness (5.2.11)
of the pointer expression before it is used as the operand of the delete-expression. — end note]

3 In the first alternative (delete object), if the static type of the object to be deleted is different from its
dynamic type, the static type shall be a base class of the dynamic type of the object to be deleted and the
static type shall have a virtual destructor or the behavior is undefined. In the second alternative (delete
array) if the dynamic type of the object to be deleted differs from its static type, the behavior is undefined.

4 The cast-expression in a delete-expression shall be evaluated exactly once.

5 If the object being deleted has incomplete class type at the point of deletion and the complete class has a
non-trivial destructor or a deallocation function, the behavior is undefined.

6 If the value of the operand of the delete-expression is not a null pointer value, the delete-expression will
invoke the destructor (if any) for the object or the elements of the array being deleted. In the case of an
array, the elements will be destroyed in order of decreasing address (that is, in reverse order of the completion
of their constructor; see 12.6.2).

7 If the value of the operand of the delete-expression is not a null pointer value, the delete-expression will
call a deallocation function (3.7.4.2). Otherwise, it is unspecified whether the deallocation function will be
called. [Note: The deallocation function is called regardless of whether the destructor for the object or some
element of the array throws an exception. — end note]

8 [Note: An implementation provides default definitions of the global deallocation functions operator delete()
for non-arrays (18.6.1.1) and operator delete[]() for arrays (18.6.1.2). A C++ program can provide al-
ternative definitions of these functions (17.6.3.6), and/or class-specific versions (12.5). — end note]

9 When the keyword delete in a delete-expression is preceded by the unary :: operator, the global dealloca-
tion function is used to deallocate the storage.

10 Access and ambiguity control are done for both the deallocation function and the destructor (12.4, 12.5).

5.3.6 Alignof [expr.alignof]

1 An alignof expression yields the alignment requirement of its operand type. The operand shall be a type-id
representing a complete object type or an array thereof or a reference to a complete object type.

2 The result is an integral constant of type std::size_t.

3 When alignof is applied to a reference type, the result shall be the alignment of the referenced type. When
alignof is applied to an array type, the result shall be the alignment of the element type.

5.3.7 noexcept operator [expr.unary.noexcept]

1 The noexcept operator determines whether the evaluation of its operand, which is an unevaluated operand
(Clause 5), can throw an exception (15.1).

noexcept-expression:
noexcept (expression)

2 The result of the noexcept operator is a constant of type bool and is an rvalue.

79) For non-zero-length arrays, this is the same as a pointer to the first element of the array created by that new-expression.
Zero-length arrays do not have a first element.

§ 5.3.7 111

c© ISO/IEC N3092

3 The result of the noexcept operator is false if in a potentially-evaluated context the expression would
contain

— a potentially evaluated call80 to a function, member function, function pointer, or member function
pointer that does not have a non-throwing exception-specification (15.4),

— a potentially evaluated throw-expression (15.1),

— a potentially evaluated dynamic_cast expression dynamic_cast<T>(v), where T is a reference type,
that requires a run-time check (5.2.7), or

— a potentially evaluated typeid expression (5.2.8) applied to a glvalue expression whose type is a
polymorphic class type (10.3).

Otherwise, the result is true.

5.4 Explicit type conversion (cast notation) [expr.cast]

1 The result of the expression (T) cast-expression is of type T. The result is an lvalue if T is an lvalue reference
type or an rvalue reference to function type and an xvalue if T is an rvalue reference to object type; otherwise
the result is a prvalue. [Note: if T is a non-class type that is cv-qualified, the cv-qualifiers are ignored when
determining the type of the resulting prvalue; see 3.10. — end note]

2 An explicit type conversion can be expressed using functional notation (5.2.3), a type conversion operator
(dynamic_cast, static_cast, reinterpret_cast, const_cast), or the cast notation.

cast-expression:
unary-expression
(type-id) cast-expression

3 Any type conversion not mentioned below and not explicitly defined by the user (12.3) is ill-formed.

4 The conversions performed by

— a const_cast (5.2.11),

— a static_cast (5.2.9),

— a static_cast followed by a const_cast,

— a reinterpret_cast (5.2.10), or

— a reinterpret_cast followed by a const_cast,

can be performed using the cast notation of explicit type conversion. The same semantic restrictions and be-
haviors apply, with the exception that in performing a static_cast in the following situations the conversion
is valid even if the base class is inaccessible:

— a pointer to an object of derived class type or an lvalue or rvalue of derived class type may be explicitly
converted to a pointer or reference to an unambiguous base class type, respectively;

— a pointer to member of derived class type may be explicitly converted to a pointer to member of an
unambiguous non-virtual base class type;

— a pointer to an object of an unambiguous non-virtual base class type, a glvalue of an unambiguous
non-virtual base class type, or a pointer to member of an unambiguous non-virtual base class type
may be explicitly converted to a pointer, a reference, or a pointer to member of a derived class type,
respectively.

80) This includes implicit calls such as the call to an allocation function in a new-expression.

§ 5.4 112

c© ISO/IEC N3092

If a conversion can be interpreted in more than one of the ways listed above, the interpretation that appears
first in the list is used, even if a cast resulting from that interpretation is ill-formed. If a conversion can be
interpreted in more than one way as a static_cast followed by a const_cast, the conversion is ill-formed.
[Example:

struct A { };
struct I1 : A { };
struct I2 : A { };
struct D : I1, I2 { };
A *foo(D *p) {

return (A*)(p); // ill-formed static_cast interpretation
}

— end example]

5 The operand of a cast using the cast notation can be a prvalue of type “pointer to incomplete class type”.
The destination type of a cast using the cast notation can be “pointer to incomplete class type”. If both the
operand and destination types are class types and one or both are incomplete, it is unspecified whether the
static_cast or the reinterpret_cast interpretation is used, even if there is an inheritance relationship
between the two classes. [Note: For example, if the classes were defined later in the translation unit, a
multi-pass compiler would be permitted to interpret a cast between pointers to the classes as if the class
types were complete at the point of the cast. — end note]

5.5 Pointer-to-member operators [expr.mptr.oper]

1 The pointer-to-member operators ->* and .* group left-to-right.
pm-expression:

cast-expression
pm-expression .* cast-expression
pm-expression ->* cast-expression

2 The binary operator .* binds its second operand, which shall be of type “pointer to member of T” (where
T is a completely-defined class type) to its first operand, which shall be of class T or of a class of which T is
an unambiguous and accessible base class. The result is an object or a function of the type specified by the
second operand.

3 The binary operator ->* binds its second operand, which shall be of type “pointer to member of T” (where
T is a completely-defined class type) to its first operand, which shall be of type “pointer to T” or “pointer to
a class of which T is an unambiguous and accessible base class.” The result is an object or a function of the
type specified by the second operand.

4 The first operand is called the object expression. If the dynamic type of the object expression does not
contain the member to which the pointer refers, the behavior is undefined.

5 The restrictions on cv-qualification, and the manner in which the cv-qualifiers of the operands are combined
to produce the cv-qualifiers of the result, are the same as the rules for E1.E2 given in 5.2.5. [Note: it is not
possible to use a pointer to member that refers to a mutable member to modify a const class object. For
example,

struct S {
S() : i(0) { }
mutable int i;

};
void f()
{

§ 5.5 113

c© ISO/IEC N3092

const S cs;
int S::* pm = &S::i; // pm refers to mutable member S::i
cs.*pm = 88; // ill-formed: cs is a const object
}

— end note]

6 If the result of .* or ->* is a function, then that result can be used only as the operand for the function call
operator (). [Example:

(ptr_to_obj->*ptr_to_mfct)(10);

calls the member function denoted by ptr_to_mfct for the object pointed to by ptr_to_obj. — end
example] In a .* expression whose object expression is an rvalue, the program is ill-formed if the second
operand is a pointer to member function with ref-qualifier &. In a ->* expression or in a .* expression
whose object expression is an lvalue, the program is ill-formed if the second operand is a pointer to member
function with ref-qualifier &&. The result of a .* expression whose second operand is a pointer to a data
member is of the same value category (3.10) as its first operand. The result of a .* expression whose second
operand is a pointer to a member function is a prvalue. The result of an ->* expression is an lvalue if its
second operand is a pointer to data member and a prvalue otherwise. If the second operand is the null
pointer to member value (4.11), the behavior is undefined.

5.6 Multiplicative operators [expr.mul]

1 The multiplicative operators *, /, and % group left-to-right.
multiplicative-expression:

pm-expression
multiplicative-expression * pm-expression
multiplicative-expression / pm-expression
multiplicative-expression % pm-expression

2 The operands of * and / shall have arithmetic or unscoped enumeration type; the operands of % shall have
integral or unscoped enumeration type. The usual arithmetic conversions are performed on the operands
and determine the type of the result.

3 The binary * operator indicates multiplication.

4 The binary / operator yields the quotient, and the binary % operator yields the remainder from the division
of the first expression by the second. If the second operand of / or % is zero the behavior is undefined. For
integral operands the / operator yields the algebraic quotient with any fractional part discarded;81 if the
quotient a/b is representable in the type of the result, (a/b)*b + a%b is equal to a.

5.7 Additive operators [expr.add]

1 The additive operators + and - group left-to-right. The usual arithmetic conversions are performed for
operands of arithmetic or enumeration type.

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

For addition, either both operands shall have arithmetic or unscoped enumeration type, or one operand shall
be a pointer to a completely-defined object type and the other shall have integral or unscoped enumeration
type.

81) This is often called truncation towards zero.

§ 5.7 114

c© ISO/IEC N3092

2 For subtraction, one of the following shall hold:

— both operands have arithmetic or unscoped enumeration type; or

— both operands are pointers to cv-qualified or cv-unqualified versions of the same completely-defined
object type; or

— the left operand is a pointer to a completely-defined object type and the right operand has integral or
unscoped enumeration type.

3 The result of the binary + operator is the sum of the operands. The result of the binary - operator is the
difference resulting from the subtraction of the second operand from the first.

4 For the purposes of these operators, a pointer to a nonarray object behaves the same as a pointer to the
first element of an array of length one with the type of the object as its element type.

5 When an expression that has integral type is added to or subtracted from a pointer, the result has the type
of the pointer operand. If the pointer operand points to an element of an array object, and the array is
large enough, the result points to an element offset from the original element such that the difference of
the subscripts of the resulting and original array elements equals the integral expression. In other words, if
the expression P points to the i-th element of an array object, the expressions (P)+N (equivalently, N+(P))
and (P)-N (where N has the value n) point to, respectively, the i + n-th and i− n-th elements of the array
object, provided they exist. Moreover, if the expression P points to the last element of an array object,
the expression (P)+1 points one past the last element of the array object, and if the expression Q points
one past the last element of an array object, the expression (Q)-1 points to the last element of the array
object. If both the pointer operand and the result point to elements of the same array object, or one past
the last element of the array object, the evaluation shall not produce an overflow; otherwise, the behavior is
undefined.

6 When two pointers to elements of the same array object are subtracted, the result is the difference of the
subscripts of the two array elements. The type of the result is an implementation-defined signed integral
type; this type shall be the same type that is defined as std::ptrdiff_t in the <cstddef> header (18.2). As
with any other arithmetic overflow, if the result does not fit in the space provided, the behavior is undefined.
In other words, if the expressions P and Q point to, respectively, the i-th and j-th elements of an array object,
the expression (P)-(Q) has the value i − j provided the value fits in an object of type std::ptrdiff_t.
Moreover, if the expression P points either to an element of an array object or one past the last element of
an array object, and the expression Q points to the last element of the same array object, the expression
((Q)+1)-(P) has the same value as ((Q)-(P))+1 and as -((P)-((Q)+1)), and has the value zero if the
expression P points one past the last element of the array object, even though the expression (Q)+1 does not
point to an element of the array object. Unless both pointers point to elements of the same array object, or
one past the last element of the array object, the behavior is undefined.82

7 If the value 0 is added to or subtracted from a pointer value, the result compares equal to the original pointer
value. If two pointers point to the same object or both point one past the end of the same array or both
are null, and the two pointers are subtracted, the result compares equal to the value 0 converted to the type
std::ptrdiff_t.

82) Another way to approach pointer arithmetic is first to convert the pointer(s) to character pointer(s): In this scheme the
integral value of the expression added to or subtracted from the converted pointer is first multiplied by the size of the object
originally pointed to, and the resulting pointer is converted back to the original type. For pointer subtraction, the result of the
difference between the character pointers is similarly divided by the size of the object originally pointed to.

When viewed in this way, an implementation need only provide one extra byte (which might overlap another object in the
program) just after the end of the object in order to satisfy the “one past the last element” requirements.

§ 5.7 115

c© ISO/IEC N3092

5.8 Shift operators [expr.shift]

1 The shift operators << and >> group left-to-right.
shift-expression:

additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

The operands shall be of integral or unscoped enumeration type and integral promotions are performed.
The type of the result is that of the promoted left operand. The behavior is undefined if the right operand
is negative, or greater than or equal to the length in bits of the promoted left operand.

2 The value of E1 << E2 is E1 left-shifted E2 bit positions; vacated bits are zero-filled. If E1 has an unsigned
type, the value of the result is E1× 2E2, reduced modulo one more than the maximum value representable
in the result type. Otherwise, if E1 has a signed type and non-negative value, and E1× 2E2 is representable
in the result type, then that is the resulting value; otherwise, the behavior is undefined.

3 The value of E1 >> E2 is E1 right-shifted E2 bit positions. If E1 has an unsigned type or if E1 has a signed
type and a non-negative value, the value of the result is the integral part of the quotient of E1/2E2. If E1
has a signed type and a negative value, the resulting value is implementation-defined.

5.9 Relational operators [expr.rel]

1 The relational operators group left-to-right. [Example: a<b<c means (a<b)<c and not (a<b)&&(b<c).
— end example]

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

The operands shall have arithmetic, enumeration, or pointer type, or type std::nullptr_t. The operators
< (less than), > (greater than), <= (less than or equal to), and >= (greater than or equal to) all yield false
or true. The type of the result is bool.

2 The usual arithmetic conversions are performed on operands of arithmetic or enumeration type. Pointer
conversions (4.10) and qualification conversions (4.4) are performed on pointer operands (or on a pointer
operand and a null pointer constant, or on two null pointer constants, at least one of which is non-integral)
to bring them to their composite pointer type. If one operand is a null pointer constant, the composite
pointer type is std::nullptr_t if the other operand is also a null pointer constant or, if the other operand
is a pointer, the type of the other operand. Otherwise, if one of the operands has type “pointer to cv1 void,”
then the other has type “pointer to cv2 T” and the composite pointer type is “pointer to cv12 void,” where
cv12 is the union of cv1 and cv2. Otherwise, the composite pointer type is a pointer type similar (4.4) to the
type of one of the operands, with a cv-qualification signature (4.4) that is the union of the cv-qualification
signatures of the operand types. [Note: this implies that any pointer can be compared to a null pointer
constant and that any object pointer can be compared to a pointer to (possibly cv-qualified) void. — end
note] [Example:

void *p;
const int *q;
int **pi;
const int *const *pci;
void ct() {

p <= q; // Both converted to const void* before comparison

§ 5.9 116

c© ISO/IEC N3092

pi <= pci; // Both converted to const int *const * before comparison
}

— end example] Pointers to objects or functions of the same type (after pointer conversions) can be com-
pared, with a result defined as follows:

— If two pointers p and q of the same type point to the same object or function, or both point one past
the end of the same array, or are both null, then p<=q and p>=q both yield true and p<q and p>q
both yield false.

— If two pointers p and q of the same type point to different objects that are not members of the same
object or elements of the same array or to different functions, or if only one of them is null, the results
of p<q, p>q, p<=q, and p>=q are unspecified.

— If two pointers point to non-static data members of the same object, or to subobjects or array elements
of such members, recursively, the pointer to the later declared member compares greater provided the
two members have the same access control (Clause 11) and provided their class is not a union.

— If two pointers point to non-static data members of the same object with different access control
(Clause 11) the result is unspecified.

— If two pointers point to non-static data members of the same union object, they compare equal (after
conversion to void*, if necessary). If two pointers point to elements of the same array or one beyond
the end of the array, the pointer to the object with the higher subscript compares higher.

— Other pointer comparisons are unspecified.

3 Pointers to void (after pointer conversions) can be compared, with a result defined as follows: If both
pointers represent the same address or are both the null pointer value, the result is true if the operator is
<= or >= and false otherwise; otherwise the result is unspecified.

4 If two operands of type std::nullptr_t are compared, the result is true if the operator is <= or >=, and
false otherwise.

5 If both operands (after conversions) are of arithmetic or enumeration type, each of the operators shall yield
true if the specified relationship is true and false if it is false.

5.10 Equality operators [expr.eq]

equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression

1 The == (equal to) and the != (not equal to) operators have the same semantic restrictions, conversions, and
result type as the relational operators except for their lower precedence and truth-value result. [Note: a<b
== c<d is true whenever a<b and c<d have the same truth-value. — end note] Pointers of the same type
(after pointer conversions) can be compared for equality. Two pointers of the same type compare equal if
and only if they are both null, both point to the same function, or both represent the same address (3.9.2).

2 In addition, pointers to members can be compared, or a pointer to member and a null pointer constant.
Pointer to member conversions (4.11) and qualification conversions (4.4) are performed to bring them to a
common type. If one operand is a null pointer constant, the common type is the type of the other operand.
Otherwise, the common type is a pointer to member type similar (4.4) to the type of one of the operands,
with a cv-qualification signature (4.4) that is the union of the cv-qualification signatures of the operand
types. [Note: this implies that any pointer to member can be compared to a null pointer constant. — end
note] If both operands are null, they compare equal. Otherwise if only one is null, they compare unequal.

§ 5.10 117

c© ISO/IEC N3092

Otherwise if either is a pointer to a virtual member function, the result is unspecified. Otherwise they
compare equal if and only if they would refer to the same member of the same most derived object (1.8)
or the same subobject if they were dereferenced with a hypothetical object of the associated class type.
[Example:

struct B {
int f();

};
struct L : B { };
struct R : B { };
struct D : L, R { };

int (B::*pb)() = &B::f;
int (L::*pl)() = pb;
int (R::*pr)() = pb;
int (D::*pdl)() = pl;
int (D::*pdr)() = pr;
bool x = (pdl == pdr); // false

— end example]

3 If two operands of type std::nullptr_t are compared, the result is true if the operator is ==, and false
otherwise.

4 Each of the operators shall yield true if the specified relationship is true and false if it is false.

5.11 Bitwise AND operator [expr.bit.and]

and-expression:
equality-expression
and-expression & equality-expression

1 The usual arithmetic conversions are performed; the result is the bitwise AND function of the operands. The
operator applies only to integral or unscoped enumeration operands.

5.12 Bitwise exclusive OR operator [expr.xor]

exclusive-or-expression:
and-expression
exclusive-or-expression ˆ and-expression

1 The usual arithmetic conversions are performed; the result is the bitwise exclusive OR function of the
operands. The operator applies only to integral or unscoped enumeration operands.

5.13 Bitwise inclusive OR operator [expr.or]

inclusive-or-expression:
exclusive-or-expression
inclusive-or-expression | exclusive-or-expression

1 The usual arithmetic conversions are performed; the result is the bitwise inclusive OR function of its operands.
The operator applies only to integral or unscoped enumeration operands.

5.14 Logical AND operator [expr.log.and]

logical-and-expression:
inclusive-or-expression
logical-and-expression && inclusive-or-expression

§ 5.14 118

c© ISO/IEC N3092

1 The && operator groups left-to-right. The operands are both contextually converted to type bool (Clause 4).
The result is true if both operands are true and false otherwise. Unlike &, && guarantees left-to-right
evaluation: the second operand is not evaluated if the first operand is false.

2 The result is a bool. If the second expression is evaluated, every value computation and side effect associated
with the first expression is sequenced before every value computation and side effect associated with the
second expression.

5.15 Logical OR operator [expr.log.or]

logical-or-expression:
logical-and-expression
logical-or-expression || logical-and-expression

1 The || operator groups left-to-right. The operands are both contextually converted to bool (Clause 4). It
returns true if either of its operands is true, and false otherwise. Unlike |, || guarantees left-to-right
evaluation; moreover, the second operand is not evaluated if the first operand evaluates to true.

2 The result is a bool. If the second expression is evaluated, every value computation and side effect associated
with the first expression is sequenced before every value computation and side effect associated with the
second expression.

5.16 Conditional operator [expr.cond]

conditional-expression:
logical-or-expression
logical-or-expression ? expression : assignment-expression

1 Conditional expressions group right-to-left. The first expression is contextually converted to bool (Clause 4).
It is evaluated and if it is true, the result of the conditional expression is the value of the second expression,
otherwise that of the third expression. Only one of the second and third expressions is evaluated. Every value
computation and side effect associated with the first expression is sequenced before every value computation
and side effect associated with the second or third expression.

2 If either the second or the third operand has type (possibly cv-qualified) void, then the lvalue-to-rvalue (4.1),
array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are performed on the second and
third operands, and one of the following shall hold:

— The second or the third operand (but not both) is a throw-expression (15.1); the result is of the type
of the other and is a prvalue.

— Both the second and the third operands have type void; the result is of type void and is a prvalue.
[Note: this includes the case where both operands are throw-expressions. — end note]

3 Otherwise, if the second and third operand have different types and either has (possibly cv-qualified) class
type, or if both are glvalues of the same value category and the same type except for cv-qualification, an
attempt is made to convert each of those operands to the type of the other. The process for determining
whether an operand expression E1 of type T1 can be converted to match an operand expression E2 of type
T2 is defined as follows:

— If E2 is an lvalue: E1 can be converted to match E2 if E1 can be implicitly converted (Clause 4) to the
type “lvalue reference to T2”, subject to the constraint that in the conversion the reference must bind
directly (8.5.3) to an lvalue.

— If E2 is an xvalue: E1 can be converted to match E2 if E1 can be implicitly converted to the type
“rvalue reference to T2”, subject to the constraint that the reference must bind directly.

§ 5.16 119

c© ISO/IEC N3092

— If E2 is an rvalue or if neither of the conversions above can be done and at least one of the operands
has (possibly cv-qualified) class type:

— if E1 and E2 have class type, and the underlying class types are the same or one is a base class
of the other: E1 can be converted to match E2 if the class of T2 is the same type as, or a base
class of, the class of T1, and the cv-qualification of T2 is the same cv-qualification as, or a greater
cv-qualification than, the cv-qualification of T1. If the conversion is applied, E1 is changed to a
prvalue of type T2 by copy-initializing a temporary of type T2 from E1 and using that temporary
as the converted operand.

— Otherwise (i.e., if E1 or E2 has a nonclass type, or if they both have class types but the underlying
classes are not either the same or one a base class of the other): E1 can be converted to match E2
if E1 can be implicitly converted to the type that expression E2 would have if E2 were converted
to a prvalue (or the type it has, if E2 is a prvalue).

Using this process, it is determined whether the second operand can be converted to match the third
operand, and whether the third operand can be converted to match the second operand. If both can
be converted, or one can be converted but the conversion is ambiguous, the program is ill-formed.
If neither can be converted, the operands are left unchanged and further checking is performed as
described below. If exactly one conversion is possible, that conversion is applied to the chosen operand
and the converted operand is used in place of the original operand for the remainder of this section.

4 If the second and third operands are glvalues of the same value category and have the same type, the result
is of that type and value category and it is a bit-field if the second or the third operand is a bit-field, or if
both are bit-fields.

5 Otherwise, the result is a prvalue. If the second and third operands do not have the same type, and either
has (possibly cv-qualified) class type, overload resolution is used to determine the conversions (if any) to be
applied to the operands (13.3.1.2, 13.6). If the overload resolution fails, the program is ill-formed. Otherwise,
the conversions thus determined are applied, and the converted operands are used in place of the original
operands for the remainder of this section.

6 Lvalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are per-
formed on the second and third operands. After those conversions, one of the following shall hold:

— The second and third operands have the same type; the result is of that type. If the operands have
class type, the result is a prvalue temporary of the result type, which is copy-initialized from either
the second operand or the third operand depending on the value of the first operand.

— The second and third operands have arithmetic or enumeration type; the usual arithmetic conversions
are performed to bring them to a common type, and the result is of that type.

— The second and third operands have pointer type, or one has pointer type and the other is a null
pointer constant, or both are null pointer constants, at least one of which is non-integral; pointer
conversions (4.10) and qualification conversions (4.4) are performed to bring them to their composite
pointer type (5.9). The result is of the composite pointer type.

— The second and third operands have pointer to member type, or one has pointer to member type and the
other is a null pointer constant; pointer to member conversions (4.11) and qualification conversions (4.4)
are performed to bring them to a common type, whose cv-qualification shall match the cv-qualification
of either the second or the third operand. The result is of the common type.

5.17 Assignment and compound assignment operators [expr.ass]

1 The assignment operator (=) and the compound assignment operators all group right-to-left. All require a

§ 5.17 120

c© ISO/IEC N3092

modifiable lvalue as their left operand and return an lvalue referring to the left operand. The result in all
cases is a bit-field if the left operand is a bit-field. In all cases, the assignment is sequenced after the value
computation of the right and left operands, and before the value computation of the assignment expression.
With respect to an indeterminately-sequenced function call, the operation of a compound assignment is
a single evaluation. [Note: Therefore, a function call shall not intervene between the lvalue-to-rvalue
conversion and the side effect associated with any single compound assignment operator. — end note]

assignment-expression:
conditional-expression
logical-or-expression assignment-operator initializer-clause
throw-expression

assignment-operator: one of
= *= /= %= += -= >>= <<= &= ˆ= |=

2 In simple assignment (=), the value of the expression replaces that of the object referred to by the left
operand.

3 If the left operand is not of class type, the expression is implicitly converted (Clause 4) to the cv-unqualified
type of the left operand.

4 If the left operand is of class type, the class shall be complete. Assignment to objects of a class is defined
by the copy/move assignment operator (12.8, 13.5.3).

5 [Note: For class objects, assignment is not in general the same as initialization (8.5, 12.1, 12.6, 12.8). — end
note]

6 When the left operand of an assignment operator denotes a reference to T, the operation assigns to the
object of type T denoted by the reference.

7 The behavior of an expression of the form E1 op = E2 is equivalent to E1 = E1 op E2 except that E1 is
evaluated only once. In += and -=, E1 shall either have arithmetic type or be a pointer to a possibly
cv-qualified completely-defined object type. In all other cases, E1 shall have arithmetic type.

8 If the value being stored in an object is accessed from another object that overlaps in any way the storage of
the first object, then the overlap shall be exact and the two objects shall have the same type, otherwise the
behavior is undefined. [Note: This restriction applies to the relationship between the left and right sides of
the assignment operation; it is not a statement about how the target of the assignment may be aliased in
general. See 3.10. — end note]

9 A braced-init-list may appear on the right-hand side of

— an assignment to a scalar, in which case the initializer list shall have at most a single element. The
meaning of x={v}, where T is the scalar type of the expression x, is that of x=T(v) except that no
narrowing conversion (8.5.4) is allowed. The meaning of x={} is x=T().

— an assignment defined by a user-defined assignment operator, in which case the initializer list is passed
as the argument to the operator function.

[Example:
complex<double> z;
z = { 1,2 }; // meaning z.operator=({1,2})
z += { 1, 2 }; // meaning z.operator+=({1,2})
int a, b;
a = b = { 1 }; // meaning a=b=1;
a = { 1 } = b; // syntax error

— end example]

§ 5.17 121

c© ISO/IEC N3092

5.18 Comma operator [expr.comma]

1 The comma operator groups left-to-right.
expression:

assignment-expression
expression , assignment-expression

A pair of expressions separated by a comma is evaluated left-to-right and the value of the left expression
is discarded.83 The lvalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard
conversions are not applied to the left expression. Every value computation and side effect associated with
the left expression is sequenced before every value computation and side effect associated with the right
expression. The type and value of the result are the type and value of the right operand; the result is of the
same value category as its right operand, and is a bit-field if its right operand is a glvalue and a bit-field.

2 In contexts where comma is given a special meaning, [Example: in lists of arguments to functions (5.2.2)
and lists of initializers (8.5) — end example] the comma operator as described in Clause 5 can appear only
in parentheses. [Example:

f(a, (t=3, t+2), c);

has three arguments, the second of which has the value 5. — end example]

5.19 Constant expressions [expr.const]

1 Certain contexts require expressions that satisfy additional requirements as detailed in this sub-clause. Such
expressions are called constant expressions. [Note: Those expressions can be evaluated during translation. —
end note]

constant-expression:
conditional-expression

2 A conditional-expression is a constant expression unless it involves one of the following as a potentially evalu-
ated subexpression (3.2), but subexpressions of logical AND (5.14), logical OR (5.15), and conditional (5.16)
operations that are not evaluated are not considered [Note: an overloaded operator invokes a function. — end
note]:

— this (5.1) unless it appears as the postfix-expression in a class member access expression, including
the result of the implicit transformation in the body of a non-static member function (9.3.1);

— an invocation of a function other than a constexpr function or a constexpr constructor [Note: overload
resolution (13.3) is applied as usual — end note];

— an invocation of an undefined constexpr function or an undefined constexpr constructor outside the
definition of a constexpr function or a constexpr constructor;

— an invocation of a constexpr function with arguments that, when implicitly converted to the corre-
sponding parameter types and substituted for the corresponding parameters in the potential constant
expression of the constexpr function, and the resulting expression implicitly converted to the return
type, do not produce a constant expression; [Example:

constexpr const int* addr(const int& ir) { return &ir; } // OK
static const int x = 5;
constexpr const int* xp = addr(x); // OK: (const int*)&(const int&)x is an

// address contant expression
constexpr const int* tp = addr(5); // error, initializer for constexpr variable not a constant

83) However, an invocation of an overloaded comma operator is an ordinary function call; hence, the evaluations of its argument
expressions are unsequenced relative to one another (see 1.9).

§ 5.19 122

c© ISO/IEC N3092

// expression; (const int*)&(const int&)5 is not a constant
// expression because it takes the address of a temporary

— end example]

— a result that is not mathematically defined or not in the range of representable values for its type;

— a lambda-expression (5.1.2);

— an lvalue-to-rvalue conversion (4.1) unless it is applied to

— a glvalue of integral or enumeration type that refers to a non-volatile const object with a preceding
initialization, initialized with a constant expression, or

— a glvalue of literal type that refers to a non-volatile object defined with constexpr, or that refers
to a sub-object of such an object, or

— a glvalue of literal type that refers to a non-volatile temporary object initialized with a constant
expression;84

— an array-to-pointer conversion (4.2) that is applied to a glvalue that does not designate an object with
static storage duration;

— a unary operator & (5.3.1) that is applied to an lvalue that does not designate an object with static
storage duration;

— an id-expression that refers to a variable or data member of reference type;85

— a dynamic cast (5.2.7);

— a type conversion from a pointer or pointer-to-member type to a literal type [Note: a user-defined
conversion invokes a function — end note];

— a pseudo-destructor call (5.2.4);

— increment or decrement operations (5.2.6, 5.3.2);

— a typeid expression (5.2.8) whose operand is of a polymorphic class type;

— a new-expression (5.3.4);

— a delete-expression (5.3.5);

— a subtraction (5.7) where both operands are pointers;

— a relational (5.9) or equality (5.10) operator where at least one of the operands is a pointer;

— an assignment or a compound assignment (5.17); or

— a throw-expression (15.1).

3 A constant expression is an integral constant expression if it is of integral or enumeration type. [Note: such
expressions may be used as array bounds (8.3.4, 5.3.4), as case expressions (6.4.2), as bit-field lengths (9.6),
as enumerator initializers (7.2), and as integral or enumeration non-type template arguments (14.3). — end
note]

4 [Note: Although in some contexts constant expressions must be evaluated during program translation, others
may be evaluated during program execution. Since this International Standard imposes no restrictions on the

84) The temporary must be part of the constant expression, as any longer-lived temporary would have to be bound to a
reference, and reference variables cannot appear in a constant expression.

85) Use of a reference parameter of a constexpr function does not prevent the body from being a potential constant expression
because the parameters are replaced by constant expressions during that determination, and later by arguments to a call.

§ 5.19 123

c© ISO/IEC N3092

accuracy of floating-point operations, it is unspecified whether the evaluation of a floating-point expression
during translation yields the same result as the evaluation of the same expression (or the same operations
on the same values) during program execution.86 [Example:

bool f() {
char array[1 + int(1 + 0.2 - 0.1 - 0.1)]; // Must be evaluated during translation
int size = 1 + int(1 + 0.2 - 0.1 - 0.1); // May be evaluated at runtime
return sizeof(array) == size;

}

It is unspecified whether the value of f() will be true or false. — end example] — end note]

5 If an expression of literal class type is used in a context where an integral constant expression is required,
then that class type shall have a single non-explicit conversion function to an integral or enumeration type
and that conversion function shall be constexpr. [Example:

struct A {
constexpr A(int i) : val(i) { }
constexpr operator int() { return val; }
constexpr operator long() { return 43; }

private:
int val;

};
template<int> struct X { };
constexpr A a = 42;
X<a> x; // OK: unique conversion to int
int ary[a]; // error: ambiguous conversion

— end example]

6 An expression is a potential constant expression if it is a constant expression when all occurrences of function
parameters are replaced as follows:

— for non-reference parameters, by arbitrary prvalue constant expressions of the appropriate types;

— for lvalue reference parameters, by arbitrary variables of the referred-to types with static storage
duration initialized with constant expressions; or

— for rvalue reference parameters, by arbitrary prvalue constant expressions of the referred-to types
implicitly converted to the types of the parameters.

86) Nonetheless, implementations are encouraged to provide consistent results, irrespective of whether the evaluation was
actually performed during translation or during program execution.

§ 5.19 124

c© ISO/IEC N3092

6 Statements [stmt.stmt]
1 Except as indicated, statements are executed in sequence.

statement:
labeled-statement
attribute-specifieropt expression-statement
attribute-specifieropt compound-statement
attribute-specifieropt selection-statement
attribute-specifieropt iteration-statement
attribute-specifieropt jump-statement
declaration-statement
attribute-specifieropt try-block

The optional attribute-specifier appertains to the respective statement.

6.1 Labeled statement [stmt.label]

1 A statement can be labeled.
labeled-statement:

attribute-specifieropt identifier : statement
attribute-specifieropt case constant-expression : statement
attribute-specifieropt default : statement

The optional attribute-specifier appertains to the label. An identifier label declares the identifier. The only
use of an identifier label is as the target of a goto. The scope of a label is the function in which it appears.
Labels shall not be redeclared within a function. A label can be used in a goto statement before its definition.
Labels have their own name space and do not interfere with other identifiers.

2 Case labels and default labels shall occur only in switch statements.

6.2 Expression statement [stmt.expr]

1 Expression statements have the form
expression-statement:

expressionopt ;

The expression is evaluated and its value is discarded. The lvalue-to-rvalue (4.1), array-to-pointer (4.2), and
function-to-pointer (4.3) standard conversions are not applied to the expression. All side effects from an
expression statement are completed before the next statement is executed. An expression statement with the
expression missing is called a null statement. [Note: Most statements are expression statements — usually
assignments or function calls. A null statement is useful to carry a label just before the } of a compound
statement and to supply a null body to an iteration statement such as a while statement (6.5.1). — end
note]

6.3 Compound statement or block [stmt.block]

1 So that several statements can be used where one is expected, the compound statement (also, and equiva-
lently, called “block”) is provided.

compound-statement:
{ statement-seqopt }

§ 6.3 125

c© ISO/IEC N3092

statement-seq:
statement
statement-seq statement

A compound statement defines a block scope (3.3). [Note: a declaration is a statement (6.7). — end note]

6.4 Selection statements [stmt.select]

1 Selection statements choose one of several flows of control.
selection-statement:

if (condition) statement
if (condition) statement else statement
switch (condition) statement

condition:
expression
attribute-specifieropt type-specifier-seq declarator = initializer-clause
attribute-specifieropt type-specifier-seq declarator braced-init-list

See 8.3 for the optional attribute-specifier in a condition. In Clause 6, the term substatement refers to the
contained statement or statements that appear in the syntax notation. The substatement in a selection-
statement (each substatement, in the else form of the if statement) implicitly defines a block scope (3.3).
If the substatement in a selection-statement is a single statement and not a compound-statement, it is as if
it was rewritten to be a compound-statement containing the original substatement. [Example:

if (x)
int i;

can be equivalently rewritten as
if (x) {

int i;
}

Thus after the if statement, i is no longer in scope. — end example]

2 The rules for conditions apply both to selection-statements and to the for and while statements (6.5). The
declarator shall not specify a function or an array. If the auto type-specifier appears in the type-specifier-seq,
the type of the identifier being declared is deduced from the initializer as described in 7.1.6.4.

3 A name introduced by a declaration in a condition (either introduced by the type-specifier-seq or the declara-
tor of the condition) is in scope from its point of declaration until the end of the substatements controlled
by the condition. If the name is re-declared in the outermost block of a substatement controlled by the
condition, the declaration that re-declares the name is ill-formed. [Example:

if (int x = f()) {
int x; // ill-formed, redeclaration of x

}
else {

int x; // ill-formed, redeclaration of x
}

— end example]

4 The value of a condition that is an initialized declaration in a statement other than a switch statement is the
value of the declared variable contextually converted to bool (Clause 4). If that conversion is ill-formed, the
program is ill-formed. The value of a condition that is an initialized declaration in a switch statement is the
value of the declared variable if it has integral or enumeration type, or of that variable implicitly converted

§ 6.4 126

c© ISO/IEC N3092

to integral or enumeration type otherwise. The value of a condition that is an expression is the value of the
expression, contextually converted to bool for statements other than switch; if that conversion is ill-formed,
the program is ill-formed. The value of the condition will be referred to as simply “the condition” where the
usage is unambiguous.

5 If a condition can be syntactically resolved as either an expression or the declaration of a block-scope name,
it is interpreted as a declaration.

6.4.1 The if statement [stmt.if]

1 If the condition (6.4) yields true the first substatement is executed. If the else part of the selection
statement is present and the condition yields false, the second substatement is executed. In the second
form of if statement (the one including else), if the first substatement is also an if statement then that
inner if statement shall contain an else part.87

6.4.2 The switch statement [stmt.switch]

1 The switch statement causes control to be transferred to one of several statements depending on the value
of a condition.

2 The condition shall be of integral type, enumeration type, or of a class type for which a single non-explicit
conversion function to integral or enumeration type exists (12.3). If the condition is of class type, the
condition is converted by calling that conversion function, and the result of the conversion is used in place of
the original condition for the remainder of this section. Integral promotions are performed. Any statement
within the switch statement can be labeled with one or more case labels as follows:

case constant-expression :

where the constant-expression shall be an integral constant expression (5.19). The integral constant expres-
sion is implicitly converted to the promoted type of the switch condition. No two of the case constants in
the same switch shall have the same value after conversion to the promoted type of the switch condition.

3 There shall be at most one label of the form
default :

within a switch statement.

4 Switch statements can be nested; a case or default label is associated with the smallest switch enclosing
it.

5 When the switch statement is executed, its condition is evaluated and compared with each case constant. If
one of the case constants is equal to the value of the condition, control is passed to the statement following
the matched case label. If no case constant matches the condition, and if there is a default label, control
passes to the statement labeled by the default label. If no case matches and if there is no default then
none of the statements in the switch is executed.

6 case and default labels in themselves do not alter the flow of control, which continues unimpeded across
such labels. To exit from a switch, see break, 6.6.1. [Note: usually, the substatement that is the subject
of a switch is compound and case and default labels appear on the top-level statements contained within

87) In other words, the else is associated with the nearest un-elsed if.

§ 6.4.2 127

c© ISO/IEC N3092

the (compound) substatement, but this is not required. Declarations can appear in the substatement of a
switch-statement. — end note]

6.5 Iteration statements [stmt.iter]

1 Iteration statements specify looping.
iteration-statement:

while (condition) statement
do statement while (expression) ;
for (for-init-statement conditionopt ; expressionopt) statement
for (for-range-declaration : expression) statement

for-init-statement:
expression-statement
simple-declaration

for-range-declaration:
attribute-specifieropt type-specifier-seq declarator

See 8.3 for the optional attribute-specifier in a for-range-declaration. [Note: a for-init-statement ends with
a semicolon. — end note]

2 The substatement in an iteration-statement implicitly defines a block scope (3.3) which is entered and exited
each time through the loop.

If the substatement in an iteration-statement is a single statement and not a compound-statement, it is as if
it was rewritten to be a compound-statement containing the original statement. [Example:

while (--x >= 0)
int i;

can be equivalently rewritten as
while (--x >= 0) {

int i;
}

3 Thus after the while statement, i is no longer in scope. — end example]

4 [Note: The requirements on conditions in iteration statements are described in 6.4. — end note]

5 A loop that, outside of the for-init-statement in the case of a for statement,

— makes no calls to library I/O functions, and

— does not access or modify volatile objects, and

— performs no synchronization operations (1.10) or atomic operations (Clause 29)

may be assumed by the implementation to terminate. [Note: This is intended to allow compiler transfor-
mations, such as removal of empty loops, even when termination cannot be proven. — end note]

6.5.1 The while statement [stmt.while]

1 In the while statement the substatement is executed repeatedly until the value of the condition (6.4) becomes
false. The test takes place before each execution of the substatement.

2 When the condition of a while statement is a declaration, the scope of the variable that is declared extends
from its point of declaration (3.3.2) to the end of the while statement. A while statement of the form

§ 6.5.1 128

c© ISO/IEC N3092

while (T t = x) statement

is equivalent to
label:
{ // start of condition scope

T t = x;
if (t) {

statement
goto label;

}
} // end of condition scope

The variable created in a condition is destroyed and created with each iteration of the loop. [Example:
struct A {

int val;
A(int i) : val(i) { }
~A() { }
operator bool() { return val != 0; }

};
int i = 1;
while (A a = i) {

// ...
i = 0;

}

In the while-loop, the constructor and destructor are each called twice, once for the condition that succeeds
and once for the condition that fails. — end example]

6.5.2 The do statement [stmt.do]

1 The expression is contextually converted to bool (Clause 4); if that conversion is ill-formed, the program is
ill-formed.

2 In the do statement the substatement is executed repeatedly until the value of the expression becomes false.
The test takes place after each execution of the statement.

6.5.3 The for statement [stmt.for]

1 The for statement

for (for-init-statement conditionopt ; expressionopt) statement

is equivalent to
{

for-init-statement
while (condition) {

statement
expression ;

}
}

except that names declared in the for-init-statement are in the same declarative-region as those declared in
the condition, and except that a continue in statement (not enclosed in another iteration statement) will
execute expression before re-evaluating condition. [Note: Thus the first statement specifies initialization for
the loop; the condition (6.4) specifies a test, made before each iteration, such that the loop is exited when

§ 6.5.3 129

c© ISO/IEC N3092

the condition becomes false; the expression often specifies incrementing that is done after each iteration.
— end note]

2 Either or both of the condition and the expression can be omitted. A missing condition makes the implied
while Clause equivalent to while(true).

3 If the for-init-statement is a declaration, the scope of the name(s) declared extends to the end of the for-
statement. [Example:

int i = 42;
int a[10];

for (int i = 0; i < 10; i++)
a[i] = i;

int j = i; // j = 42

— end example]

6.5.4 The range-based for statement [stmt.ranged]

1 The range-based for statement

for (for-range-declaration : expression) statement

is equivalent to
{

auto && __range = (expression);
for (auto __begin = begin-expr,

__end = end-expr;
__begin != __end;
++__begin) {

for-range-declaration = *__begin;
statement

}
}

where __range, __begin, and __end are variables defined for exposition only, and _RangeT is the type of
the expression, and begin-expr and end-expr are determined as follows:.

— if _RangeT is an array type, begin-expr and end-expr are __range and __range + __bound, respec-
tively, where __bound is the array bound. If _RangeT is an array of unknown size or an array of
incomplete type, the program is ill-formed.

— otherwise, begin-expr and end-expr are begin(__range) and end(__range), respectively, where begin
and end are looked up with argument-dependent lookup (3.4.2). For the purposes of this name lookup,
namespace std is an associated namespace.

[Example:
int array[5] = { 1, 2, 3, 4, 5 };
for (int& x : array)

x *= 2;

— end example]

§ 6.5.4 130

c© ISO/IEC N3092

6.6 Jump statements [stmt.jump]

1 Jump statements unconditionally transfer control.
jump-statement:

break ;
continue ;
return expressionopt ;
return braced-init-list ;
goto identifier ;

2 On exit from a scope (however accomplished), objects with automatic storage duration (3.7.3) that have been
constructed in that scope are destroyed in the reverse order of their construction. [Note: For temporaries,
see 12.2. — end note] Transfer out of a loop, out of a block, or back past an initialized variable with
automatic storage duration involves the destruction of objects with automatic storage duration that are in
scope at the point transferred from but not at the point transferred to. (See 6.7 for transfers into blocks).
[Note: However, the program can be terminated (by calling std::exit() or std::abort() (18.5), for
example) without destroying class objects with automatic storage duration. — end note]

6.6.1 The break statement [stmt.break]

1 The break statement shall occur only in an iteration-statement or a switch statement and causes termination
of the smallest enclosing iteration-statement or switch statement; control passes to the statement following
the terminated statement, if any.

6.6.2 The continue statement [stmt.cont]

1 The continue statement shall occur only in an iteration-statement and causes control to pass to the loop-
continuation portion of the smallest enclosing iteration-statement, that is, to the end of the loop. More
precisely, in each of the statements

while (foo) {
{

// ...
}

contin: ;
}

do {
{

// ...
}

contin: ;
} while (foo);

for (;;) {
{

// ...
}

contin: ;
}

a continue not contained in an enclosed iteration statement is equivalent to goto contin.

6.6.3 The return statement [stmt.return]

1 A function returns to its caller by the return statement.

2 A return statement without an expression can be used only in functions that do not return a value, that is,
a function with the return type void, a constructor (12.1), or a destructor (12.4). A return statement with
an expression of non-void type can be used only in functions returning a value; the value of the expression
is returned to the caller of the function. The value of the expression is implicitly converted to the return
type of the function in which it appears. A return statement can involve the construction and copy or move
of a temporary object (12.2). [Note: A copy or move operation associated with a return statement may
be elided or considered as an rvalue for the purpose of overload resolution in selecting a constructor (12.8).
— end note] A return statement with a braced-init-list initializes the object or reference to be returned from
the function by copy-list-initialization (8.5.4) from the specified initializer list. [Example:

std::pair<std::string,int> f(const char* p, int x) {
return {p,x};

§ 6.6.3 131

c© ISO/IEC N3092

}

— end example]

Flowing off the end of a function is equivalent to a return with no value; this results in undefined behavior
in a value-returning function.

3 A return statement with an expression of type “cv void” can be used only in functions with a return type
of cv void; the expression is evaluated just before the function returns to its caller.

6.6.4 The goto statement [stmt.goto]

1 The goto statement unconditionally transfers control to the statement labeled by the identifier. The identifier
shall be a label (6.1) located in the current function.

6.7 Declaration statement [stmt.dcl]

1 A declaration statement introduces one or more new identifiers into a block; it has the form
declaration-statement:

block-declaration
If an identifier introduced by a declaration was previously declared in an outer block, the outer declaration
is hidden for the remainder of the block, after which it resumes its force.

2 Variables with automatic storage duration (3.7.3) are initialized each time their declaration-statement is
executed. Variables with automatic storage duration declared in the block are destroyed on exit from the
block (6.6).

3 It is possible to transfer into a block, but not in a way that bypasses declarations with initialization. A
program that jumps88 from a point where a variable with automatic storage duration is not in scope to a
point where it is in scope is ill-formed unless the variable has scalar type, class type with a trivial default
constructor and a trivial destructor, a cv-qualified version of one of these types, or an array of one of the
preceding types and is declared without an initializer (8.5). [Example:

void f() {
// ...
goto lx; // ill-formed: jump into scope of a
// ...

ly:
X a = 1;
// ...

lx:
goto ly; // OK, jump implies destructor

// call for a followed by construction
// again immediately following label ly

}

— end example]

4 The zero-initialization (8.5) of all block-scope variables with static storage duration (3.7.1) or thread storage
duration (3.7.2) is performed before any other initialization takes place. Constant initialization (3.6.2) of a
block-scope entity with static storage duration, if applicable, is performed before its block is first entered.
An implementation is permitted to perform early initialization of other block-scope variables with static or
thread storage duration under the same conditions that an implementation is permitted to statically initialize
a variable with static or thread storage duration in namespace scope (3.6.2). Otherwise such a variable is

88) The transfer from the condition of a switch statement to a case label is considered a jump in this respect.

§ 6.7 132

c© ISO/IEC N3092

initialized the first time control passes through its declaration; such a variable is considered initialized upon
the completion of its initialization. If the initialization exits by throwing an exception, the initialization
is not complete, so it will be tried again the next time control enters the declaration. If control enters
the declaration concurrently while the variable is being initialized, the concurrent execution shall wait for
completion of the initialization.89 If control re-enters the declaration recursively while the variable is being
initialized, the behavior is undefined. [Example:

int foo(int i) {
static int s = foo(2*i); // recursive call - undefined
return i+1;

}

— end example]

5 The destructor for a block-scope object with static or thread storage duration will be executed if and only
if it was constructed. [Note: 3.6.3 describes the order in which block-scope objects with static and thread
storage duration are destroyed. — end note]

6.8 Ambiguity resolution [stmt.ambig]

1 There is an ambiguity in the grammar involving expression-statements and declarations: An expression-
statement with a function-style explicit type conversion (5.2.3) as its leftmost subexpression can be indis-
tinguishable from a declaration where the first declarator starts with a (. In those cases the statement is a
declaration. [Note: To disambiguate, the whole statement might have to be examined to determine if it is
an expression-statement or a declaration. This disambiguates many examples. [Example: assuming T is a
simple-type-specifier (7.1.6),

T(a)->m = 7; // expression-statement
T(a)++; // expression-statement
T(a,5)<<c; // expression-statement

T(*d)(int); // declaration
T(e)[5]; // declaration
T(f) = { 1, 2 }; // declaration
T(*g)(double(3)); // declaration

In the last example above, g, which is a pointer to T, is initialized to double(3). This is of course ill-formed
for semantic reasons, but that does not affect the syntactic analysis. — end example]

2 The remaining cases are declarations. [Example:
class T {

// ...
public:

T();
T(int);
T(int, int);

};
T(a); // declaration
T(*b)(); // declaration
T(c)=7; // declaration
T(d),e,f=3; // declaration
extern int h;
T(g)(h,2); // declaration

89) The implementation must not introduce any deadlock around execution of the initializer.

§ 6.8 133

c© ISO/IEC N3092

— end example] — end note]

3 The disambiguation is purely syntactic; that is, the meaning of the names occurring in such a statement,
beyond whether they are type-names or not, is not generally used in or changed by the disambiguation. Class
templates are instantiated as necessary to determine if a qualified name is a type-name. Disambiguation
precedes parsing, and a statement disambiguated as a declaration may be an ill-formed declaration. If,
during parsing, a name in a template parameter is bound differently than it would be bound during a trial
parse, the program is ill-formed. No diagnostic is required. [Note: This can occur only when the name is
declared earlier in the declaration. — end note] [Example:

struct T1 {
T1 operator()(int x) { return T1(x); }
int operator=(int x) { return x; }
T1(int) { }

};
struct T2 { T2(int){ } };
int a, (*(*b)(T2))(int), c, d;

void f() {
// disambiguation requires this to be parsed as a declaration:
T1(a) = 3,
T2(4), // T2 will be declared as
(*(*b)(T2(c)))(int(d)); // a variable of type T1

// but this will not allow
// the last part of the
// declaration to parse
// properly since it depends
// on T2 being a type-name

}

— end example]

§ 6.8 134

c© ISO/IEC N3092

7 Declarations [dcl.dcl]
1 Declarations generally specify how names are to be interpreted. Declarations have the form

declaration-seq:
declaration
declaration-seq declaration

declaration:
block-declaration
function-definition
template-declaration
explicit-instantiation
explicit-specialization
linkage-specification
namespace-definition
empty-declaration
attribute-declaration

block-declaration:
simple-declaration
asm-definition
namespace-alias-definition
using-declaration
using-directive
static_assert-declaration
alias-declaration
opaque-enum-declaration

alias-declaration:
using identifier = type-id ;

simple-declaration:
attribute-specifieropt decl-specifier-seqopt init-declarator-listopt ;

static_assert-declaration:
static_assert (constant-expression , string-literal) ;

empty-declaration:
;

attribute-declaration:
attribute-specifier ;

[Note: asm-definitions are described in 7.4, and linkage-specifications are described in 7.5. Function-
definitions are described in 8.4 and template-declarations are described in Clause 14. Namespace-definitions
are described in 7.3.1, using-declarations are described in 7.3.3 and using-directives are described in 7.3.4.
— end note]

The simple-declaration

attribute-specifieropt decl-specifier-seqopt init-declarator-listopt ;

is divided into three parts. Atrributes are described in 7.6. decl-specifiers, the principal components of a
decl-specifier-seq, are described in 7.1. declarators, the components of an init-declarator-list, are described in
Clause 8. The optional attribute-specifier in a simple-declaration appertains to each of the entities declared
by the declarators; it shall not appear if the optional init-declarator-list is omitted. [Note: In the declaration

135

c© ISO/IEC N3092

for an entity, attributes appertaining to that entity may appear at the start of the declaration and after the
declarator-id for that declaration. — end note] [Example:

[[noreturn, nothrow]] void f [[noreturn]] (); // OK

— end example]

Except where otherwise specified, the meaning of an attribute-declaration is implementation-defined.

2 A declaration occurs in a scope (3.3); the scope rules are summarized in 3.4. A declaration that declares a
function or defines a class, namespace, template, or function also has one or more scopes nested within it.
These nested scopes, in turn, can have declarations nested within them. Unless otherwise stated, utterances
in Clause 7 about components in, of, or contained by a declaration or subcomponent thereof refer only to
those components of the declaration that are not nested within scopes nested within the declaration.

3 In a simple-declaration, the optional init-declarator-list can be omitted only when declaring a class (Clause 9)
or enumeration (7.2), that is, when the decl-specifier-seq contains either a class-specifier , an elaborated-
type-specifier with a class-key (9.1), or an enum-specifier . In these cases and whenever a class-specifier or
enum-specifier is present in the decl-specifier-seq, the identifiers in these specifiers are among the names being
declared by the declaration (as class-names, enum-names, or enumerators, depending on the syntax). In such
cases, and except for the declaration of an unnamed bit-field (9.6), the decl-specifier-seq shall introduce one
or more names into the program, or shall redeclare a name introduced by a previous declaration. [Example:

enum { }; // ill-formed
typedef class { }; // ill-formed

— end example]

4 In a static_assert-declaration the constant-expression shall be a constant expression (5.19) that can be
contextually converted to bool (Clause 4). If the value of the expression when so converted is true, the
declaration has no effect. Otherwise, the program is ill-formed, and the resulting diagnostic message (1.4)
shall include the text of the string-literal, except that characters not in the basic source character set (2.3)
are not required to appear in the diagnostic message. [Example:

static_assert(sizeof(long) >= 8, "64-bit code generation required for this library.");

— end example]

5 An empty-declaration has no effect.

6 Each init-declarator in the init-declarator-list contains exactly one declarator-id, which is the name declared
by that init-declarator and hence one of the names declared by the declaration. The type-specifiers (7.1.6)
in the decl-specifier-seq and the recursive declarator structure of the init-declarator describe a type (8.3),
which is then associated with the name being declared by the init-declarator .

7 If the decl-specifier-seq contains the typedef specifier, the declaration is called a typedef declaration and the
name of each init-declarator is declared to be a typedef-name, synonymous with its associated type (7.1.3).
If the decl-specifier-seq contains no typedef specifier, the declaration is called a function declaration if the
type associated with the name is a function type (8.3.5) and an object declaration otherwise.

8 Syntactic components beyond those found in the general form of declaration are added to a function decla-
ration to make a function-definition. An object declaration, however, is also a definition unless it contains
the extern specifier and has no initializer (3.1). A definition causes the appropriate amount of storage to
be reserved and any appropriate initialization (8.5) to be done.

136

c© ISO/IEC N3092

9 Only in function declarations for constructors, destructors, and type conversions can the decl-specifier-seq
be omitted.90

7.1 Specifiers [dcl.spec]

1 The specifiers that can be used in a declaration are
decl-specifier:

storage-class-specifier
type-specifier
function-specifier
friend
typedef
constexpr

decl-specifier-seq:
decl-specifier attribute-specifieropt

decl-specifier decl-specifier-seq

The optional attribute-specifier in a decl-specifier-seq appertains to the type determined by the decl-specifier-
seq (8.3). The attribute-specifier affects the type only for the declaration it appears in, not other declarations
involving the same type.

2 If a type-name is encountered while parsing a decl-specifier-seq, it is interpreted as part of the decl-specifier-
seq if and only if there is no previous type-specifier other than a cv-qualifier in the decl-specifier-seq. The
sequence shall be self-consistent as described below. [Example:

typedef char* Pc;
static Pc; // error: name missing

Here, the declaration static Pc is ill-formed because no name was specified for the static variable of type Pc.
To get a variable called Pc, a type-specifier (other than const or volatile) has to be present to indicate that
the typedef-name Pc is the name being (re)declared, rather than being part of the decl-specifier sequence.
For another example,

void f(const Pc); // void f(char* const) (not const char*)
void g(const int Pc); // void g(const int)

— end example]

3 [Note: since signed, unsigned, long, and short by default imply int, a type-name appearing after one of
those specifiers is treated as the name being (re)declared. [Example:

void h(unsigned Pc); // void h(unsigned int)
void k(unsigned int Pc); // void k(unsigned int)

— end example] — end note]

7.1.1 Storage class specifiers [dcl.stc]

1 The storage class specifiers are
storage-class-specifier:

register
static
thread_local
extern
mutable

90) The “implicit int” rule of C is no longer supported.

§ 7.1.1 137

c© ISO/IEC N3092

At most one storage-class-specifier shall appear in a given decl-specifier-seq, except that thread_local
may appear with static or extern. If thread_local appears in any declaration of a variable it shall be
present in all declarations of that entity. If a storage-class-specifier appears in a decl-specifier-seq, there
can be no typedef specifier in the same decl-specifier-seq and the init-declarator-list of the declaration shall
not be empty (except for an anonymous uniondeclared in a named namespace or in the global namespace,
which shall be declared static (9.5)). The storage-class-specifier applies to the name declared by each
init-declarator in the list and not to any names declared by other specifiers. A storage-class-specifier shall
not be specified in an explicit specialization (14.7.3) or an explicit instantiation (14.7.2) directive.

2 The register specifier shall be applied only to names of variables declared in a block (6.3) or to function
parameters (8.4). It specifies that the named variable has automatic storage duration (3.7.3). A variable
declared without a storage-class-specifier at block scope or declared as a function parameter has automatic
storage duration by default.

3 A register specifier is a hint to the implementation that the variable so declared will be heavily used.
[Note: the hint can be ignored and in most implementations it will be ignored if the address of the variable
is taken. This use is deprecated (see D.4). — end note]

4 The thread_local specifier indicates that the named entity has thread storage duration (3.7.2). It shall be
applied only to the names of variables of namespace or block scope and to the names of static data members.
When thread_local is applied to a variable of block scope the storage-class-specifier static is implied if
it does not appear explicitly.

5 The static specifier can be applied only to names of variables and functions and to anonymous unions (9.5).
There can be no static function declarations within a block, nor any static function parameters. A static
specifier used in the declaration of a variable declares the variable to have static storage duration (3.7.1),
unless accompanied by the thread_local specifier, which declares the variable to have thread storage
duration (3.7.2). A static specifier can be used in declarations of class members; 9.4 describes its effect.
For the linkage of a name declared with a static specifier, see 3.5.

6 The extern specifier can be applied only to the names of variables and functions. The extern specifier cannot
be used in the declaration of class members or function parameters. For the linkage of a name declared with
an extern specifier, see 3.5. [Note: The extern keyword can also be used in explicit-instantiations and
linkage-specifications, but it is not a storage-class-specifier in such contexts. — end note]

7 A name declared in a namespace scope without a storage-class-specifier has external linkage unless it has
internal linkage because of a previous declaration and provided it is not declared const. Objects declared
const and not explicitly declared extern have internal linkage.

8 The linkages implied by successive declarations for a given entity shall agree. That is, within a given scope,
each declaration declaring the same variable name or the same overloading of a function name shall imply
the same linkage. Each function in a given set of overloaded functions can have a different linkage, however.
[Example:

static char* f(); // f() has internal linkage
char* f() // f() still has internal linkage

{ /∗ ... ∗/ }

char* g(); // g() has external linkage
static char* g() // error: inconsistent linkage

{ /∗ ... ∗/ }

void h();
inline void h(); // external linkage

inline void l();

§ 7.1.1 138

c© ISO/IEC N3092

void l(); // external linkage

inline void m();
extern void m(); // external linkage

static void n();
inline void n(); // internal linkage

static int a; // a has internal linkage
int a; // error: two definitions

static int b; // b has internal linkage
extern int b; // b still has internal linkage

int c; // c has external linkage
static int c; // error: inconsistent linkage

extern int d; // d has external linkage
static int d; // error: inconsistent linkage

— end example]

9 The name of a declared but undefined class can be used in an extern declaration. Such a declaration can
only be used in ways that do not require a complete class type. [Example:

struct S;
extern S a;
extern S f();
extern void g(S);

void h() {
g(a); // error: S is incomplete
f(); // error: S is incomplete

}

— end example]

10 The mutable specifier can be applied only to names of class data members (9.2) and cannot be applied to
names declared const or static, and cannot be applied to reference members. [Example:

class X {
mutable const int* p; // OK
mutable int* const q; // ill-formed

};

— end example]

11 The mutable specifier on a class data member nullifies a const specifier applied to the containing class object
and permits modification of the mutable class member even though the rest of the object is const (7.1.6.1).

7.1.2 Function specifiers [dcl.fct.spec]

1 Function-specifiers can be used only in function declarations.
function-specifier:

inline
virtual
explicit

§ 7.1.2 139

c© ISO/IEC N3092

2 A function declaration (8.3.5, 9.3, 11.4) with an inline specifier declares an inline function. The inline
specifier indicates to the implementation that inline substitution of the function body at the point of call
is to be preferred to the usual function call mechanism. An implementation is not required to perform this
inline substitution at the point of call; however, even if this inline substitution is omitted, the other rules
for inline functions defined by 7.1.2 shall still be respected.

3 A function defined within a class definition is an inline function. The inline specifier shall not appear on
a block scope function declaration.91 If the inline specifier is used in a friend declaration, that declaration
shall be a definition or the function shall have previously been declared inline.

4 An inline function shall be defined in every translation unit in which it is used and shall have exactly
the same definition in every case (3.2). [Note: a call to the inline function may be encountered before its
definition appears in the translation unit. — end note] If the definition of a function appears in a translation
unit before its first declaration as inline, the program is ill-formed. If a function with external linkage is
declared inline in one translation unit, it shall be declared inline in all translation units in which it appears;
no diagnostic is required. An inline function with external linkage shall have the same address in all
translation units. A static local variable in an extern inline function always refers to the same object.
A string literal in the body of an extern inline function is the same object in different translation units.
[Note: A string literal appearing in a default argument expression is not in the body of an inline function
merely because the expression is used in a function call from that inline function. — end note] A type
defined within the body of an extern inline function is the same type in every translation unit.

5 The virtual specifier shall be used only in the initial declaration of a non-static class member function;
see 10.3.

6 The explicit specifier shall be used only in the declaration of a constructor or conversion function within
its class definition; see 12.3.1 and 12.3.2.

7.1.3 The typedef specifier [dcl.typedef]

1 Declarations containing the decl-specifier typedef declare identifiers that can be used later for naming
fundamental (3.9.1) or compound (3.9.2) types. The typedef specifier shall not be combined in a decl-
specifier-seq with any other kind of specifier except a type-specifier, and it shall not be used in the decl-
specifier-seq of a parameter-declaration (8.3.5) nor in the decl-specifier-seq of a function-definition (8.4).

typedef-name:
identifier

A name declared with the typedef specifier becomes a typedef-name. Within the scope of its declaration, a
typedef-name is syntactically equivalent to a keyword and names the type associated with the identifier in
the way described in Clause 8. A typedef-name is thus a synonym for another type. A typedef-name does
not introduce a new type the way a class declaration (9.1) or enum declaration does. [Example: after

typedef int MILES, *KLICKSP;

the constructions
MILES distance;
extern KLICKSP metricp;

are all correct declarations; the type of distance is int and that of metricp is “pointer to int.” — end
example]

2 A typedef-name can also be introduced by an alias-declaration. The identifier following the using keyword
becomes a typedef-name. It has the same semantics as if it were introduced by the typedef specifier. In
particular, it does not define a new type and it shall not appear in the type-id. [Example:

91) The inline keyword has no effect on the linkage of a function.

§ 7.1.3 140

c© ISO/IEC N3092

using handler_t = void (*)(int);
extern handler_t ignore;
extern void (*ignore)(int); // redeclare ignore
using cell = pair<void*, cell*>; // ill-formed

— end example]

3 In a given non-class scope, a typedef specifier can be used to redefine the name of any type declared in that
scope to refer to the type to which it already refers. [Example:

typedef struct s { /∗ ... ∗/ } s;
typedef int I;
typedef int I;
typedef I I;

— end example]

4 In a given class scope, a typedef specifier can be used to redefine any class-name declared in that scope
that is not also a typedef-name to refer to the type to which it already refers. [Example:

struct S {
typedef struct A { } A; // OK
typedef struct B B; // OK
typedef A A; // error

};

— end example]

5 In a given scope, a typedef specifier shall not be used to redefine the name of any type declared in that
scope to refer to a different type. [Example:

class complex { /∗ ... ∗/ };
typedef int complex; // error: redefinition

— end example]

6 Similarly, in a given scope, a class or enumeration shall not be declared with the same name as a typedef-name
that is declared in that scope and refers to a type other than the class or enumeration itself. [Example:

typedef int complex;
class complex { /* ... */ }; // error: redefinition

— end example]

7 [Note: A typedef-name that names a class type, or a cv-qualified version thereof, is also a class-name (9.1).
If a typedef-name is used to identify the subject of an elaborated-type-specifier (7.1.6.3), a class definition
(Clause 9), a constructor declaration (12.1), or a destructor declaration (12.4), the program is ill-formed.
— end note] [Example:

struct S {
S();
~S();

};

typedef struct S T;

S a = T(); // OK
struct T * p; // error

§ 7.1.3 141

c© ISO/IEC N3092

— end example]

8 If the typedef declaration defines an unnamed class (or enum), the first typedef-name declared by the dec-
laration to be that class type (or enum type) is used to denote the class type (or enum type) for linkage
purposes only (3.5). [Example:

typedef struct { } *ps, S; // S is the class name for linkage purposes

— end example]

7.1.4 The friend specifier [dcl.friend]

The friend specifier is used to specify access to class members; see 11.4.

7.1.5 The constexpr specifier [dcl.constexpr]

1 The constexpr specifier shall be applied only to the definition of an object, the declaration of a function or
function template, or the declaration of a static data member of a literal type (3.9). If any declaration of a
function or function template has constexpr specifier, then all its declarations shall contain the constexpr
specifier. [Note: an explicit specialization can differ from the template declaration with respect to the
constexpr specifier. — end note] [Note: function parameters cannot be declared constexpr. — end note]
[Example:

constexpr int square(int x); // OK: declaration
constexpr int bufsz = 1024; // OK: definition
constexpr struct pixel { // error: pixel is a type

int x;
int y;
constexpr pixel(int); // OK: declaration

};
constexpr pixel::pixel(int a)

: x(square(a)), y(square(a)) // OK: definition
{ }

constexpr pixel small(2); // error: square not defined, so small(2)
// not constant (5.19) so constexpr not satisfied

constexpr int square(int x) { // OK: definition
return x * x;

}
constexpr pixel large(4); // OK: square defined
int next(constexpr int x) { // error: not for parameters

return x + 1;
}
extern constexpr int memsz; // error: not a definition

— end example]

2 A constexpr specifier used in the declaration of a function that is not a constructor declares that function
to be a constexpr function. Similarly, a constexpr specifier used in a constructor declaration declares that
constructor to be a constexpr constructor . Constexpr functions and constexpr constructors are implicitly
inline (7.1.2).

3 The definition of a constexpr function shall satisfy the following constraints:

— it shall not be virtual (10.3)

— its return type shall be a literal type or a reference to literal type

§ 7.1.5 142

c© ISO/IEC N3092

— each of its parameter types shall be a literal type or a reference to literal type

— its function-body shall be a compound-statement of the form
{ return expression ; }

where expression is a potential constant expression (5.19)

— every implicit conversion used in converting expression to the function return type (8.5) shall be one
of those allowed in a constant expression (5.19).

[Example:
constexpr int square(int x)

{ return x * x; } // OK
constexpr long long_max()

{ return 2147483647; } // OK
constexpr int abs(int x)

{ return x < 0 ? -x : x; } // OK
constexpr void f(int x) // error: return type is void

{ /∗ ... ∗/ }
constexpr int prev(int x)

{ return --x; } // error: use of decrement
constexpr int g(int x, int n) { // error: body not just “return expr”

int r = 1;
while (--n > 0) r *= x;
return r;

}

— end example]

4 The definition of a constexpr constructor shall satisfy the following constraints:

— each of its parameter types shall be a literal type or a reference to literal type

— its function-body shall not be a function-try-block

— the compound-statement of its function-body shall be empty

— every non-static data member and base class sub-object shall be initialized (12.6.2)

— every constructor involved in initializing non-static data members and base class sub-objects invoked
by a mem-initializer shall be a constexpr constructor.

— every constructor argument and full-expression in a mem-initializer shall be a potential constant
expression

— every implicit conversion used in converting a constructor argument to the corresponding parameter
type and converting a full-expression to the corresponding member type shall be one of those allowed
in a constant expression.

A trivial copy/move constructor is also a constexpr constructor.

[Example:
struct Length {

explicit constexpr Length(int i = 0) : val(i) { }
private:

int val;
};

§ 7.1.5 143

c© ISO/IEC N3092

— end example]

5 If the instantiated template specialization of a constexpr function template would fail to satisfy the require-
ments for a constexpr function or constexpr constructor, the constexpr specifier is ignored.

6 A call to a constexpr function produces the same result as a call to an equivalent non-constexpr function in
all respects except that a call to a constexpr function can appear in a constant expression.

7 A constexpr specifier for a non-static member function that is not a constructor declares that member
function to be const (9.3.1). [Note: the constexpr specifier has no other effect on the function type. — end
note] The class of which that function is a member shall be a literal type (3.9). [Example:

class debug_flag {
public:

explicit debug_flag(bool);
constexpr bool is_on(); // error: debug_flag not

// literal type
private:

bool flag;
};
constexpr int bar(int x, int y) // OK

{ return x + y + x*y; }
// ...
int bar(int x, int y) // error: redefinition of bar

{ return x * 2 + 3 * y; }

— end example]

8 A constexpr specifier used in an object declaration declares the object as const. Such an object shall be
initialized. If it is initialized by a constructor call, the constructor shall be a constexpr constructor and every
argument to the constructor shall be a constant expression. Otherwise, every full-expression that appears
in its initializer shall be a constant expression. Each implicit conversion used in converting the initializer
expressions and each constructor call used for the initialization shall be one of those allowed in a constant
expression (5.19). [Example:

struct pixel {
int x, y;

};
constexpr pixel ur = { 1294, 1024 };// OK
constexpr pixel origin; // error: initializer missing

— end example]

7.1.6 Type specifiers [dcl.type]

1 The type-specifiers are
type-specifier:

trailing-type-specifier
class-specifier
enum-specifier

trailing-type-specifier:
simple-type-specifier
elaborated-type-specifier
typename-specifier
cv-qualifier

§ 7.1.6 144

c© ISO/IEC N3092

type-specifier-seq:
type-specifier attribute-specifieropt

type-specifier type-specifier-seq
trailing-type-specifier-seq:

trailing-type-specifier attribute-specifieropt

trailing-type-specifier trailing-type-specifier-seq

The optional attribute-specifier in a type-specifier-seq or a trailing-type-specifier-seq appertains to the type
denoted by the preceding type-specifiers (8.3). The attribute-specifier affects the type only for the declaration
it appears in, not other declarations involving the same type.

2 As a general rule, at most one type-specifier is allowed in the complete decl-specifier-seq of a declaration or
in a type-specifier-seq or trailing-type-specifier-seq. The only exceptions to this rule are the following:

— const can be combined with any type specifier except itself.

— volatile can be combined with any type specifier except itself.

— signed or unsigned can be combined with char, long, short, or int.

— short or long can be combined with int.

— long can be combined with double.

— long can be combined with long.

3 At least one type-specifier that is not a cv-qualifier is required in a declaration unless it declares a constructor,
destructor or conversion function.92 A type-specifier-seq shall not define a class or enumeration unless it
appears in the type-id of an alias-declaration (7.1.3).

4 [Note: class-specifiers and enum-specifiers are discussed in Clause 9 and 7.2, respectively. The remaining
type-specifiers are discussed in the rest of this section. — end note]

7.1.6.1 The cv-qualifiers [dcl.type.cv]

1 There are two cv-qualifiers, const and volatile. If a cv-qualifier appears in a decl-specifier-seq, the init-
declarator-list of the declaration shall not be empty. [Note: 3.9.3 and 8.3.5 describe how cv-qualifiers affect
object and function types. — end note] Redundant cv-qualifications are ignored. [Note: for example, these
could be introduced by typedefs. — end note]

2 [Note: Declaring a variable const can affect its linkage (7.1.1) and its usability in constant expressions (5.19).
As described in 8.5, the definition of an object or subobject of const-qualified type must specify an initializer
or be subject to default-initialization. — end note]

3 A pointer or reference to a cv-qualified type need not actually point or refer to a cv-qualified object, but it
is treated as if it does; a const-qualified access path cannot be used to modify an object even if the object
referenced is a non-const object and can be modified through some other access path. [Note: cv-qualifiers
are supported by the type system so that they cannot be subverted without casting (5.2.11). — end note]

4 Except that any class member declared mutable (7.1.1) can be modified, any attempt to modify a const
object during its lifetime (3.8) results in undefined behavior. [Example:

const int ci = 3; // cv-qualified (initialized as required)
ci = 4; // ill-formed: attempt to modify const

int i = 2; // not cv-qualified

92) There is no special provision for a decl-specifier-seq that lacks a type-specifier or that has a type-specifier that only specifies
cv-qualifiers. The “implicit int” rule of C is no longer supported.

§ 7.1.6.1 145

c© ISO/IEC N3092

const int* cip; // pointer to const int
cip = &i; // OK: cv-qualified access path to unqualified
*cip = 4; // ill-formed: attempt to modify through ptr to const

int* ip;
ip = const_cast<int*>(cip); // cast needed to convert const int* to int*
*ip = 4; // defined: *ip points to i, a non-const object

const int* ciq = new const int (3); // initialized as required
int* iq = const_cast<int*>(ciq); // cast required
*iq = 4; // undefined: modifies a const object

5 For another example
struct X {

mutable int i;
int j;

};
struct Y {

X x;
Y();

};

const Y y;
y.x.i++; // well-formed: mutable member can be modified
y.x.j++; // ill-formed: const-qualified member modified
Y* p = const_cast<Y*>(&y); // cast away const-ness of y
p->x.i = 99; // well-formed: mutable member can be modified
p->x.j = 99; // undefined: modifies a const member

— end example]

6 If an attempt is made to refer to an object defined with a volatile-qualified type through the use of a glvalue
with a non-volatile-qualified type, the program behavior is undefined.

7 [Note: volatile is a hint to the implementation to avoid aggressive optimization involving the object
because the value of the object might be changed by means undetectable by an implementation. See 1.9 for
detailed semantics. In general, the semantics of volatile are intended to be the same in C++ as they are
in C. — end note]

7.1.6.2 Simple type specifiers [dcl.type.simple]

1 The simple type specifiers are

§ 7.1.6.2 146

c© ISO/IEC N3092

simple-type-specifier:
::opt nested-name-specifieropt type-name
::opt nested-name-specifier template simple-template-id
char
char16_t
char32_t
wchar_t
bool
short
int
long
signed
unsigned
float
double
void
auto
decltype-specifier

type-name:
class-name
enum-name
typedef-name

decltype-specifier:
decltype (expression)

2 The auto specifier is a placeholder for a type to be deduced (7.1.6.4). The other simple-type-specifiers specify
either a previously-declared user-defined type or one of the fundamental types (3.9.1). Table 9 summarizes
the valid combinations of simple-type-specifiers and the types they specify.

Table 9 — simple-type-specifiers and the types they specify

Specifier(s) Type
type-name the type named
simple-template-id the type as defined in 14.2
char “char”
unsigned char “unsigned char”
signed char “signed char”
char16_t “char16_t”
char32_t “char32_t”
bool “bool”
unsigned “unsigned int”
unsigned int “unsigned int”
signed “int”
signed int “int”
int “int”
unsigned short int “unsigned short int”
unsigned short “unsigned short int”
unsigned long int “unsigned long int”
unsigned long “unsigned long int”
unsigned long long int “unsigned long long int”
unsigned long long “unsigned long long int”
signed long int “long int”
signed long “long int”

§ 7.1.6.2 147

c© ISO/IEC N3092

Table 9 — simple-type-specifiers and the types they specify (con-
tinued)

Specifier(s) Type
signed long long int “long long int”
signed long long “long long int”
long long int “long long int”
long long “long long int”
long int “long int”
long “long int”
signed short int “short int”
signed short “short int”
short int “short int”
short “short int”
wchar_t “wchar_t”
float “float”
double “double”
long double “long double”
void “void”
auto placeholder for a type to be deduced
decltype(expression) the type as defined below

3 When multiple simple-type-specifiers are allowed, they can be freely intermixed with other decl-specifiers in
any order. [Note: It is implementation-defined whether objects of char type and certain bit-fields (9.6) are
represented as signed or unsigned quantities. The signed specifier forces char objects and bit-fields to be
signed; it is redundant in other contexts. — end note]

4 The type denoted by decltype(e) is defined as follows:

— if e is an unparenthesized id-expression or a class member access (5.2.5), decltype(e) is the type
of the entity named by e. If there is no such entity, or if e names a set of overloaded functions, the
program is ill-formed;

— otherwise, if e is a function call (5.2.2) or an invocation of an overloaded operator (parentheses around
e are ignored), decltype(e) is the return type of the statically chosen function;

— otherwise, if e is an lvalue, decltype(e) is T&, where T is the type of e;

— otherwise, decltype(e) is the type of e.

The operand of the decltype specifier is an unevaluated operand (Clause 5).

[Example:
const int&& foo();
int i;
struct A { double x; };
const A* a = new A();
decltype(foo()) x1 = i; // type is const int&&
decltype(i) x2; // type is int
decltype(a->x) x3; // type is double
decltype((a->x)) x4 = x3; // type is const double&

— end example]

§ 7.1.6.2 148

c© ISO/IEC N3092

7.1.6.3 Elaborated type specifiers [dcl.type.elab]

elaborated-type-specifier:
class-key attribute-specifieropt ::opt nested-name-specifieropt identifier
class-key ::opt nested-name-specifieropt templateopt simple-template-id
enum ::opt nested-name-specifieropt identifier

1 An attribute-specifier shall not apear in an elaborated-type-specifier unless the latter is the sole constituent
of a declaration. If an elaborated-type-specifier is the sole constituent of a declaration, the declaration is
ill-formed unless it is an explicit specialization (14.7.3), an explicit instantiation (14.7.2) or it has one of the
following forms:

class-key attribute-specifieropt identifier ;
friend class-key ::opt identifier ;
friend class-key ::opt simple-template-id ;
friend class-key ::opt nested-name-specifier identifier ;
friend class-key ::opt nested-name-specifier templateopt simple-template-id ;

In the first case, the attribute-specifier , if any, appertains to the class being declared; the attributes in the
attribute-specifier are thereafter considered attributes of the class whenever it is named.

2 3.4.4 describes how name lookup proceeds for the identifier in an elaborated-type-specifier . If the identifier
resolves to a class-name or enum-name, the elaborated-type-specifier introduces it into the declaration the
same way a simple-type-specifier introduces its type-name. If the identifier resolves to a typedef-name, the
elaborated-type-specifier is ill-formed. [Note: this implies that, within a class template with a template
type-parameter T, the declaration

friend class T;

is ill-formed. However, the similar declaration friend T; is allowed (11.4). — end note]

3 The class-key or enum keyword present in the elaborated-type-specifier shall agree in kind with the dec-
laration to which the name in the elaborated-type-specifier refers. This rule also applies to the form of
elaborated-type-specifier that declares a class-name or friend class since it can be construed as referring to
the definition of the class. Thus, in any elaborated-type-specifier , the enum keyword shall be used to refer to
an enumeration (7.2), the union class-key shall be used to refer to a union (Clause 9), and either the class
or struct class-key shall be used to refer to a class (Clause 9) declared using the class or struct class-key.
[Example:

enum class E { a, b };
enum E x = E::a; // OK

— end example]

7.1.6.4 auto specifier [dcl.spec.auto]

1 The auto type-specifier signifies that the type of a variable being declared shall be deduced from its initializer
or that a function declarator shall include a trailing-return-type.

2 The auto type-specifier may appear with a function declarator with a trailing-return-type (8.3.5) in any
context where such a declarator is valid.

3 Otherwise, the type of the variable is deduced from its initializer. The name of the variable being declared
shall not appear in the initializer expression. This use of auto is allowed when declaring variables in a
block (6.3), in namespace scope (3.3.6), and in a for-init-statement (6.5.3). auto shall appear as one of
the decl-specifiers in the decl-specifier-seq and the decl-specifier-seq shall be followed by one or more init-
declarators, each of which shall have a non-empty initializer .

[Example:

§ 7.1.6.4 149

c© ISO/IEC N3092

auto x = 5; // OK: x has type int
const auto *v = &x, u = 6; // OK: v has type const int*, u has type const int
static auto y = 0.0; // OK: y has type double
auto int r; // error: auto is not a storage-class-specifier

— end example]

4 The auto type-specifier can also be used in declaring a variable in the condition of a selection statement (6.4) or
an iteration statement (6.5), in the type-specifier-seq in the new-type-id or type-id of a new-expression (5.3.4), in
a for-range-declaration, and in declaring a static data member with a brace-or-equal-initializer that appears
within the member-specification of a class definition (9.4.2).

5 A program that uses auto in a context not explicitly allowed in this section is ill-formed.

6 Once the type of a declarator-id has been determined according to 8.3, the type of the declared variable
using the declarator-id is determined from the type of its initializer using the rules for template argument
deduction. Let T be the type that has been determined for a variable identifier d. Obtain P from T by
replacing the occurrences of auto with either a new invented type template parameter U or, if the initializer
is a braced-init-list (8.5.4), with std::initializer_list<U>. The type deduced for the variable d is then
the deduced A determined using the rules of template argument deduction from a function call (14.8.2.1),
where P is a function template parameter type and the initializer for d is the corresponding argument. If
the deduction fails, the declaration is ill-formed. [Example:

auto x1 = { 1, 2 }; // decltype(x1) is std::initializer_list<int>
auto x2 = { 1, 2.0 }; // error: cannot deduce element type

— end example]

7 If the list of declarators contains more than one declarator, the type of each declared variable is determined
as described above. If the type deduced for the template parameter U is not the same in each deduction, the
program is ill-formed.

[Example:
const auto &i = expr;

The type of i is the deduced type of the parameter u in the call f(expr) of the following invented function
template:

template <class U> void f(const U& u);

— end example]

7.2 Enumeration declarations [dcl.enum]

1 An enumeration is a distinct type (3.9.1) with named constants. Its name becomes an enum-name, within
its scope.

enum-name:
identifier

enum-specifier:
enum-head { enumerator-listopt }
enum-head { enumerator-list , }

enum-head:
enum-key attribute-specifieropt identifieropt enum-baseopt

enum-key attribute-specifieropt nested-name-specifier identifier
enum-baseopt

§ 7.2 150

c© ISO/IEC N3092

opaque-enum-declaration:
enum-key attribute-specifieropt identifier enum-baseopt ;

enum-key:
enum
enum class
enum struct

enum-base:
: type-specifier-seq

enumerator-list:
enumerator-definition
enumerator-list , enumerator-definition

enumerator-definition:
enumerator
enumerator = constant-expression

enumerator:
identifier

The optional attribute-specifier in the enum-head and the opaque-enum-declaration appertains to the enu-
meration; the attributes in that attribute-specifier are thereafter considered attributes of the enumeration
whenever it is named.

2 The enumeration type declared with an enum-key of only enum is an unscoped enumeration, and its enumer-
ators are unscoped enumerators. The enum-keys enum class and enum struct are semantically equivalent;
an enumeration type declared with one of these is a scoped enumeration, and its enumerators are scoped
enumerators. The optional identifier shall not be omitted in the declaration of a scoped enumeration. The
type-specifier-seq of an enum-base shall name an integral type; any cv-qualification is ignored. An opaque-
enum-declaration declaring an unscoped enumeration shall not omit the enum-base. The identifiers in an
enumerator-list are declared as constants, and can appear wherever constants are required. An enumerator-
definition with = gives the associated enumerator the value indicated by the constant-expression. The
constant-expression shall be an integral constant expression (5.19). If the first enumerator has no initializer ,
the value of the corresponding constant is zero. An enumerator-definition without an initializer gives the
enumerator the value obtained by increasing the value of the previous enumerator by one.

[Example:
enum { a, b, c=0 };
enum { d, e, f=e+2 };

defines a, c, and d to be zero, b and e to be 1, and f to be 3. — end example]

3 An opaque-enum-declaration is either a redeclaration of an enumeration in the current scope or a declaration
of a new enumeration. [Note: an enumeration declared by an opaque-enum-declaration has fixed underlying
type and is a complete type. The list of enumerators can be provided in a later redeclaration with an enum-
specifier . — end note] A scoped enumeration shall not be later redeclared as unscoped or with a different
underlying type. An unscoped enumeration shall not be later redeclared as scoped and each redeclaration
shall include an enum-base specifying the same underlying type as in the original declaration.

4 If the enum-key is followed by a nested-name-specifier , the enum-specifier shall refer to an enumeration that
was previously declared directly in the class or namespace to which the nested-name-specifier refers (i.e.,
neither inherited nor introduced by a using-declaration), and the enum-specifier shall appear in a namespace
enclosing the previous declaration.

5 Each enumeration defines a type that is different from all other types. Each enumeration also has an
underlying type. The underlying type can be explicitly specified using enum-base; if not explicitly specified,
the underlying type of a scoped enumeration type is int. In these cases, the underlying type is said to be

§ 7.2 151

c© ISO/IEC N3092

fixed. Following the closing brace of an enum-specifier , each enumerator has the type of its enumeration.
If the underlying type is fixed, the type of each enumerator prior to the closing brace is the underlying
type; if the initializing value of an enumerator cannot be represented by the underlying type, the program
is ill-formed. If the underlying type is not fixed, the type of each enumerator is the type of its initializing
value:

— If an initializer is specified for an enumerator, the initializing value has the same type as the expression.

— If no initializer is specified for the first enumerator, the initializing value has an unspecified integral
type.

— Otherwise the type of the initializing value is the same as the type of the initializing value of the
preceding enumerator unless the incremented value is not representable in that type, in which case the
type is an unspecified integral type sufficient to contain the incremented value. If no such type exists,
the program is ill-formed.

6 For an enumeration whose underlying type is not fixed, the underlying type is an integral type that can
represent all the enumerator values defined in the enumeration. If no integral type can represent all the
enumerator values, the enumeration is ill-formed. It is implementation-defined which integral type is used
as the underlying type except that the underlying type shall not be larger than int unless the value of an
enumerator cannot fit in an int or unsigned int. If the enumerator-list is empty, the underlying type is
as if the enumeration had a single enumerator with value 0.

7 For an enumeration whose underlying type is fixed, the values of the enumeration are the values of the
underlying type. Otherwise, for an enumeration where emin is the smallest enumerator and emax is the
largest, the values of the enumeration are the values in the range bmin to bmax, defined as follows: Let K
be 1 for a two’s complement representation and 0 for a one’s complement or sign-magnitude representation.
bmax is the smallest value greater than or equal to max(|emin| − K, |emax|) and equal to 2M − 1, where
M is a non-negative integer. bmin is zero if emin is non-negative and −(bmax + K) otherwise. The size of
the smallest bit-field large enough to hold all the values of the enumeration type is max(M, 1) if bmin is
zero and M + 1 otherwise. It is possible to define an enumeration that has values not defined by any of its
enumerators. If the enumerator-list is empty, the values of the enumeration are as if the enumeration had a
single enumerator with value 0.

8 Two enumeration types are layout-compatible if they have the same underlying type.

9 The value of an enumerator or an object of an unscoped enumeration type is converted to an integer by
integral promotion (4.5). [Example:

enum color { red, yellow, green=20, blue };
color col = red;
color* cp = &col;
if (*cp == blue) // ...

makes color a type describing various colors, and then declares col as an object of that type, and cp as a
pointer to an object of that type. The possible values of an object of type color are red, yellow, green,
blue; these values can be converted to the integral values 0, 1, 20, and 21. Since enumerations are distinct
types, objects of type color can be assigned only values of type color.

color c = 1; // error: type mismatch,
// no conversion from int to color

int i = yellow; // OK: yellow converted to integral value 1
// integral promotion

Note that this implicit enum to int conversion is not provided for a scoped enumeration:

§ 7.2 152

c© ISO/IEC N3092

enum class Col { red, yellow, green };
int x = Col::red; // error: no Col to int conversion
Col y = Col::red;
if (y) { } // error: no Col to bool conversion

— end example]

10 An expression of arithmetic or enumeration type can be converted to an enumeration type explicitly. The
value is unchanged if it is in the range of enumeration values of the enumeration type; otherwise the resulting
enumeration value is unspecified.

11 Each enum-name and each unscoped enumerator is declared in the scope that immediately contains the
enum-specifier . Each scoped enumerator is declared in the scope of the enumeration. These names obey the
scope rules defined for all names in (3.3) and (3.4).[Example:

enum direction { left=’l’, right=’r’ };

void g() {
direction d; // OK
d = left; // OK
d = direction::right; // OK

}

enum class altitude { high=’h’, low=’l’ };

void h() {
altitude a; // OK
a = high; // error: high not in scope
a = altitude::low; // OK

}

— end example] An enumerator declared in class scope can be referred to using the class member access
operators (::, . (dot) and -> (arrow)), see 5.2.5. [Example:

struct X {
enum direction { left=’l’, right=’r’ };
int f(int i) { return i==left ? 0 : i==right ? 1 : 2; }

};

void g(X* p) {
direction d; // error: direction not in scope
int i;
i = p->f(left); // error: left not in scope
i = p->f(X::right); // OK
i = p->f(p->left); // OK
// ...

}

— end example]

7.3 Namespaces [basic.namespace]

1 A namespace is an optionally-named declarative region. The name of a namespace can be used to access
entities declared in that namespace; that is, the members of the namespace. Unlike other declarative regions,
the definition of a namespace can be split over several parts of one or more translation units.

§ 7.3 153

c© ISO/IEC N3092

2 The outermost declarative region of a translation unit is a namespace; see 3.3.6.

7.3.1 Namespace definition [namespace.def]

1 The grammar for a namespace-definition is
namespace-name:

original-namespace-name
namespace-alias

original-namespace-name:
identifier

namespace-definition:
named-namespace-definition
unnamed-namespace-definition

named-namespace-definition:
original-namespace-definition
extension-namespace-definition

original-namespace-definition:
inlineopt namespace identifier { namespace-body }

extension-namespace-definition:
inlineopt namespace original-namespace-name { namespace-body }

unnamed-namespace-definition:
inlineopt namespace { namespace-body }

namespace-body:
declaration-seqopt

2 The identifier in an original-namespace-definition shall not have been previously defined in the declarative
region in which the original-namespace-definition appears. The identifier in an original-namespace-definition
is the name of the namespace. Subsequently in that declarative region, it is treated as an original-namespace-
name.

3 The original-namespace-name in an extension-namespace-definition shall have previously been defined in an
original-namespace-definition in the same declarative region.

4 Every namespace-definition shall appear in the global scope or in a namespace scope (3.3.6).

5 Because a namespace-definition contains declarations in its namespace-body and a namespace-definition is
itself a declaration, it follows that namespace-definitions can be nested. [Example:

namespace Outer {
int i;
namespace Inner {

void f() { i++; } // Outer::i
int i;
void g() { i++; } // Inner::i

}
}

— end example]

6 The enclosing namespaces of a declaration are those namespaces in which the declaration lexically appears,
except for a redeclaration of a namespace member outside its original namespace (e.g., a definition as
specified in 7.3.1.2). Such a redeclaration has the same enclosing namespaces as the original declaration.
[Example:

§ 7.3.1 154

c© ISO/IEC N3092

namespace Q {
namespace V {

void f(); // enclosing namespaces are the global namespace, Q, and Q::V
class C { void m(); };

}
void V::f() { // enclosing namespaces are the global namespace, Q, and Q::V

extern void h(); // ... so this declares Q::V::h
}
void V::C::m() { // enclosing namespaces are the global namespace, Q, and Q::V
}

}

— end example]

7 If the optional initial inline keyword appears in a namespace-definition for a particular namespace, that
namespace is declared to be an inline namespace. The inline keyword may be used on an extension-
namespace-definition only if it was previously used on the original-namespace-definition for that namespace.

8 Members of an inline namespace can be used in most respects as though they were members of the enclosing
namespace. Specifically, the inline namespace and its enclosing namespace are both added to the set of
associated namespaces used in argument-dependent lookup (3.4.2) whenever one of them is, and a using-
directive (7.3.4) that names the inline namespace is implicitly inserted into the enclosing namespace as for
an unnamed namespace (7.3.1.1). Furthermore, each member of the inline namespace can subsequently be
explicitly instantiated (14.7.2) or explicitly specialized (14.7.3) as though it were a member of the enclosing
namespace. Finally, looking up a name in the enclosing namespace via explicit qualification (3.4.3.2) will
include members of the inline namespace brought in by the using-directive even if there are declarations of
that name in the enclosing namespace.

9 These properties are transitive: if a namespace N contains an inline namespace M, which in turn contains an
inline namespace O, then the members of O can be used as though they were members of M or N. The inline
namespace set of N is the transitive closure of all inline namespaces in N. The enclosing namespace set of O
is the set of namespaces consisting of the innermost non-inline namespace enclosing an inline namespace O,
together with any intervening inline namespaces.

7.3.1.1 Unnamed namespaces [namespace.unnamed]

1 An unnamed-namespace-definition behaves as if it were replaced by
inlineopt namespace unique { /* empty body */ }
using namespace unique ;
namespace unique { namespace-body }

where inline appears if and only if it appears in the unnamed-namespace-definition, all occurrences of
unique in a translation unit are replaced by the same identifier, and this identifier differs from all other
identifiers in the entire program.93 [Example:

namespace { int i; } // unique ::i
void f() { i++; } // unique ::i++

namespace A {
namespace {

int i; // A:: unique ::i
int j; // A:: unique ::j

}

93) Although entities in an unnamed namespace might have external linkage, they are effectively qualified by a name unique
to their translation unit and therefore can never be seen from any other translation unit.

§ 7.3.1.1 155

c© ISO/IEC N3092

void g() { i++; } // A:: unique ::i++
}

using namespace A;
void h() {

i++; // error: unique ::i or A:: unique ::i
A::i++; // A:: unique ::i
j++; // A:: unique ::j

}

— end example]

2 The use of the static keyword is deprecated when declaring variables in a namespace scope (see annex D);
the unnamed-namespace provides a superior alternative.

7.3.1.2 Namespace member definitions [namespace.memdef]

1 Members (including explicit specializations of templates (14.7.3)) of a namespace can be defined within that
namespace. [Example:

namespace X {
void f() { /∗ ... ∗/ }

}

— end example]

2 Members of a named namespace can also be defined outside that namespace by explicit qualification (3.4.3.2)
of the name being defined, provided that the entity being defined was already declared in the namespace
and the definition appears after the point of declaration in a namespace that encloses the declaration’s
namespace. [Example:

namespace Q {
namespace V {

void f();
}
void V::f() { /∗ ... ∗/ } // OK
void V::g() { /∗ ... ∗/ } // error: g() is not yet a member of V
namespace V {

void g();
}

}

namespace R {
void Q::V::g() { /∗ ... ∗/ } // error: R doesn’t enclose Q

}

— end example]

3 Every name first declared in a namespace is a member of that namespace. If a friend declaration in a non-
local class first declares a class or function94 the friend class or function is a member of the innermost enclosing
namespace. The name of the friend is not found by unqualified lookup (3.4.1) or by qualified lookup (3.4.3)
until a matching declaration is provided in that namespace scope (either before or after the class definition
granting friendship). If a friend function is called, its name may be found by the name lookup that considers
functions from namespaces and classes associated with the types of the function arguments (3.4.2). If the

94) this implies that the name of the class or function is unqualified.

§ 7.3.1.2 156

c© ISO/IEC N3092

name in a friend declaration is neither qualified nor a template-id and the declaration is a function or
an elaborated-type-specifier , the lookup to determine whether the entity has been previously declared shall
not consider any scopes outside the innermost enclosing namespace. [Note: the other forms of friend
declarations cannot declare a new member of the innermost enclosing namespace and thus follow the usual
lookup rules. — end note] [Example:

// Assume f and g have not yet been defined.
void h(int);
template <class T> void f2(T);
namespace A {

class X {
friend void f(X); // A::f(X) is a friend
class Y {

friend void g(); // A::g is a friend
friend void h(int); // A::h is a friend

// ::h not considered
friend void f2<>(int); // ::f2<>(int) is a friend

};
};

// A::f, A::g and A::h are not visible here
X x;
void g() { f(x); } // definition of A::g
void f(X) { /* ... */} // definition of A::f
void h(int) { /* ... */ } // definition of A::h
// A::f, A::g and A::h are visible here and known to be friends

}

using A::x;

void h() {
A::f(x);
A::X::f(x); // error: f is not a member of A::X
A::X::Y::g(); // error: g is not a member of A::X::Y

}

— end example]

7.3.2 Namespace alias [namespace.alias]

1 A namespace-alias-definition declares an alternate name for a namespace according to the following grammar:
namespace-alias:

identifier
namespace-alias-definition:

namespace identifier = qualified-namespace-specifier ;

qualified-namespace-specifier:
::opt nested-name-specifieropt namespace-name

2 The identifier in a namespace-alias-definition is a synonym for the name of the namespace denoted by the
qualified-namespace-specifier and becomes a namespace-alias. [Note: when looking up a namespace-name
in a namespace-alias-definition, only namespace names are considered, see 3.4.6. — end note]

3 In a declarative region, a namespace-alias-definition can be used to redefine a namespace-alias declared in
that declarative region to refer only to the namespace to which it already refers. [Example: the following
declarations are well-formed:

§ 7.3.2 157

c© ISO/IEC N3092

namespace Company_with_very_long_name { /∗ ... ∗/ }
namespace CWVLN = Company_with_very_long_name;
namespace CWVLN = Company_with_very_long_name; // OK: duplicate
namespace CWVLN = CWVLN;

— end example]

4 A namespace-name or namespace-alias shall not be declared as the name of any other entity in the same
declarative region. A namespace-name defined at global scope shall not be declared as the name of any
other entity in any global scope of the program. No diagnostic is required for a violation of this rule by
declarations in different translation units.

7.3.3 The using declaration [namespace.udecl]

1 A using-declaration introduces a name into the declarative region in which the using-declaration appears.
using-declaration:

using typenameopt ::opt nested-name-specifier unqualified-id ;
using :: unqualified-id ;

The member name specified in a using-declaration is declared in the declarative region in which the using-
declaration appears. [Note: only the specified name is so declared; specifying an enumeration name in a
using-declaration does not declare its enumerators in the using-declaration’s declarative region. — end note]
If a using-declaration names a constructor (3.4.3.1), it implicitly declares a set of constructors in the class in
which the using-declaration appears (12.9); otherwise the name specified in a using-declaration is a synonym
for the name of some entity declared elsewhere.

2 Every using-declaration is a declaration and a member-declaration and so can be used in a class definition.
[Example:

struct B {
void f(char);
void g(char);
enum E { e };
union { int x; };

};

struct D : B {
using B::f;
void f(int) { f(’c’); } // calls B::f(char)
void g(int) { g(’c’); } // recursively calls D::g(int)

};

— end example]

3 In a using-declaration used as a member-declaration, the nested-name-specifier shall name a base class of the
class being defined. If such a using-declaration names a constructor, the nested-name-specifier shall name a
direct base class of the class being defined; otherwise it introduces the set of declarations found by member
name lookup (10.2, 3.4.3.1). [Example:

class C {
int g();

};

class D2 : public B {
using B::f; // OK: B is a base of D2
using B::e; // OK: e is an enumerator of base B

§ 7.3.3 158

c© ISO/IEC N3092

using B::x; // OK: x is a union member of base B
using C::g; // error: C isn’t a base of D2

};

— end example]

4 [Note: Since destructors do not have names, a using-declaration cannot refer to a destructor for a base
class. Since specializations of member templates for conversion functions are not found by name lookup,
they are not considered when a using-declaration specifies a conversion function (14.5.2). — end note] If an
assignment operator brought from a base class into a derived class scope has the signature of a copy/move
assignment operator for the derived class (12.8), the using-declaration does not by itself suppress the implicit
declaration of the derived class assignment operator; the copy/move assignment operator from the base class
is hidden or overridden by the implicitly-declared copy/move assignment operator of the derived class, as
described below.

5 A using-declaration shall not name a template-id. [Example:
struct A {

template <class T> void f(T);
template <class T> struct X { };

};
struct B : A {

using A::f<double>; // ill-formed
using A::X<int>; // ill-formed

};

— end example]

6 A using-declaration shall not name a namespace.

7 A using-declaration shall not name a scoped enumerator.

8 A using-declaration for a class member shall be a member-declaration. [Example:
struct X {

int i;
static int s;

};

void f() {
using X::i; // error: X::i is a class member

// and this is not a member declaration.
using X::s; // error: X::s is a class member

// and this is not a member declaration.
}

— end example]

9 Members declared by a using-declaration can be referred to by explicit qualification just like other member
names (3.4.3.2). In a using-declaration, a prefix :: refers to the global namespace. [Example:

void f();

namespace A {
void g();

}

namespace X {

§ 7.3.3 159

c© ISO/IEC N3092

using ::f; // global f
using A::g; // A’s g

}

void h()
{

X::f(); // calls ::f
X::g(); // calls A::g

}

— end example]

10 A using-declaration is a declaration and can therefore be used repeatedly where (and only where) multiple
declarations are allowed. [Example:

namespace A {
int i;

}

namespace A1 {
using A::i;
using A::i; // OK: double declaration

}

void f() {
using A::i;
using A::i; // error: double declaration

}

struct B {
int i;

};

struct X : B {
using B::i;
using B::i; // error: double member declaration

};

— end example]

11 The entity declared by a using-declaration shall be known in the context using it according to its definition
at the point of the using-declaration. Definitions added to the namespace after the using-declaration are not
considered when a use of the name is made. [Example:

namespace A {
void f(int);

}

using A::f; // f is a synonym for A::f;
// that is, for A::f(int).

namespace A {
void f(char);

}

void foo() {
f(’a’); // calls f(int),

§ 7.3.3 160

c© ISO/IEC N3092

} // even though f(char) exists.

void bar() {
using A::f; // f is a synonym for A::f;

// that is, for A::f(int) and A::f(char).
f(’a’); // calls f(char)

}

— end example]

12 [Note: partial specializations of class templates are found by looking up the primary class template and then
considering all partial specializations of that template. If a using-declaration names a class template, partial
specializations introduced after the using-declaration are effectively visible because the primary template is
visible (14.5.5). — end note]

13 Since a using-declaration is a declaration, the restrictions on declarations of the same name in the same
declarative region (3.3) also apply to using-declarations. [Example:

namespace A {
int x;

}

namespace B {
int i;
struct g { };
struct x { };
void f(int);
void f(double);
void g(char); // OK: hides struct g

}

void func() {
int i;
using B::i; // error: i declared twice
void f(char);
using B::f; // OK: each f is a function
f(3.5); // calls B::f(double)
using B::g;
g(’a’); // calls B::g(char)
struct g g1; // g1 has class type B::g
using B::x;
using A::x; // OK: hides struct B::x
x = 99; // assigns to A::x
struct x x1; // x1 has class type B::x

}

— end example]

14 If a function declaration in namespace scope or block scope has the same name and the same parameter
types as a function introduced by a using-declaration, and the declarations do not declare the same function,
the program is ill-formed. [Note: two using-declarations may introduce functions with the same name and
the same parameter types. If, for a call to an unqualified function name, function overload resolution selects
the functions introduced by such using-declarations, the function call is ill-formed. [Example:

namespace B {
void f(int);

§ 7.3.3 161

c© ISO/IEC N3092

void f(double);
}
namespace C {

void f(int);
void f(double);
void f(char);

}

void h() {
using B::f; // B::f(int) and B::f(double)
using C::f; // C::f(int), C::f(double), and C::f(char)
f(’h’); // calls C::f(char)
f(1); // error: ambiguous: B::f(int) or C::f(int)?
void f(int); // error: f(int) conflicts with C::f(int) and B::f(int)

}

— end example] — end note]

15 When a using-declaration brings names from a base class into a derived class scope, member functions and
member function templates in the derived class override and/or hide member functions and member function
templates with the same name, parameter-type-list (8.3.5), cv-qualification, and ref-qualifier (if any) in a
base class (rather than conflicting). [Note: For using-declarations that name a constructor, see 12.9. — end
note] [Example:

struct B {
virtual void f(int);
virtual void f(char);
void g(int);
void h(int);

};

struct D : B {
using B::f;
void f(int); // OK: D::f(int) overrides B::f(int);

using B::g;
void g(char); // OK

using B::h;
void h(int); // OK: D::h(int) hides B::h(int)

};

void k(D* p)
{

p->f(1); // calls D::f(int)
p->f(’a’); // calls B::f(char)
p->g(1); // calls B::g(int)
p->g(’a’); // calls D::g(char)

}

— end example]

16 For the purpose of overload resolution, the functions which are introduced by a using-declaration into a
derived class will be treated as though they were members of the derived class. In particular, the implicit
this parameter shall be treated as if it were a pointer to the derived class rather than to the base class.

§ 7.3.3 162

c© ISO/IEC N3092

This has no effect on the type of the function, and in all other respects the function remains a member of
the base class.

17 The access rules for inheriting constructors are specified in 12.9; otherwise all instances of the name mentioned
in a using-declaration shall be accessible. In particular, if a derived class uses a using-declaration to access
a member of a base class, the member name shall be accessible. If the name is that of an overloaded
member function, then all functions named shall be accessible. The base class members mentioned by a
using-declaration shall be visible in the scope of at least one of the direct base classes of the class where the
using-declaration is specified. [Note: because a using-declaration designates a base class member (and not
a member subobject or a member function of a base class subobject), a using-declaration cannot be used to
resolve inherited member ambiguities. For example,

struct A { int x(); };
struct B : A { };
struct C : A {

using A::x;
int x(int);

};

struct D : B, C {
using C::x;
int x(double);

};
int f(D* d) {

return d->x(); // ambiguous: B::x or C::x
}

— end note]

18 The alias created by the using-declaration has the usual accessibility for a member-declaration. [Note: A
using-declaration that names a constructor does not create aliases; see 12.9 for the pertinent accessibility
rules. — end note] [Example:

class A {
private:

void f(char);
public:

void f(int);
protected:

void g();
};

class B : public A {
using A::f; // error: A::f(char) is inaccessible

public:
using A::g; // B::g is a public synonym for A::g

};

— end example]

19 [Note: use of access-declarations (11.3) is deprecated; member using-declarations provide a better alterna-
tive. — end note]

§ 7.3.3 163

c© ISO/IEC N3092

20 If a using-declaration uses the keyword typename and specifies a dependent name (14.6.2), the name intro-
duced by the using-declaration is treated as a typedef-name (7.1.3).

7.3.4 Using directive [namespace.udir]

using-directive:
attribute-specifieropt using namespace ::opt nested-name-specifieropt namespace-name ;

1 A using-directive shall not appear in class scope, but may appear in namespace scope or in block scope.
[Note: when looking up a namespace-name in a using-directive, only namespace names are considered,
see 3.4.6. — end note] The optional attribute-specifier appertains to the using-directive.

2 A using-directive specifies that the names in the nominated namespace can be used in the scope in which the
using-directive appears after the using-directive. During unqualified name lookup (3.4.1), the names appear
as if they were declared in the nearest enclosing namespace which contains both the using-directive and the
nominated namespace. [Note: in this context, “contains” means “contains directly or indirectly”. — end
note]

3 A using-directive does not add any members to the declarative region in which it appears. [Example:
namespace A {

int i;
namespace B {

namespace C {
int i;

}
using namespace A::B::C;
void f1() {

i = 5; // OK, C::i visible in B and hides A::i
}

}
namespace D {

using namespace B;
using namespace C;
void f2() {

i = 5; // ambiguous, B::C::i or A::i?
}

}
void f3() {

i = 5; // uses A::i
}

}
void f4() {

i = 5; // ill-formed; neither i is visible
}

— end example]

4 For unqualified lookup (3.4.1), the using-directive is transitive: if a scope contains a using-directive that
nominates a second namespace that itself contains using-directives, the effect is as if the using-directives
from the second namespace also appeared in the first. [Note: For qualified lookup, see 3.4.3.2. — end note]
[Example:

namespace M {
int i;

}

§ 7.3.4 164

c© ISO/IEC N3092

namespace N {
int i;
using namespace M;

}

void f() {
using namespace N;
i = 7; // error: both M::i and N::i are visible

}

For another example,
namespace A {

int i;
}
namespace B {

int i;
int j;
namespace C {

namespace D {
using namespace A;
int j;
int k;
int a = i; // B::i hides A::i

}
using namespace D;
int k = 89; // no problem yet
int l = k; // ambiguous: C::k or D::k
int m = i; // B::i hides A::i
int n = j; // D::j hides B::j

}
}

— end example]

5 If a namespace is extended by an extension-namespace-definition after a using-directive for that namespace
is given, the additional members of the extended namespace and the members of namespaces nominated by
using-directives in the extension-namespace-definition can be used after the extension-namespace-definition.

6 If name lookup finds a declaration for a name in two different namespaces, and the declarations do not
declare the same entity and do not declare functions, the use of the name is ill-formed. [Note: in particular,
the name of a variable, function or enumerator does not hide the name of a class or enumeration declared
in a different namespace. For example,

namespace A {
class X { };
extern "C" int g();
extern "C++" int h();

}
namespace B {

void X(int);
extern "C" int g();
extern "C++" int h(int);

}
using namespace A;
using namespace B;

§ 7.3.4 165

c© ISO/IEC N3092

void f() {
X(1); // error: name X found in two namespaces
g(); // okay: name g refers to the same entity
h(); // okay: overload resolution selects A::h

}

— end note]

7 During overload resolution, all functions from the transitive search are considered for argument matching.
The set of declarations found by the transitive search is unordered. [Note: in particular, the order in which
namespaces were considered and the relationships among the namespaces implied by the using-directives do
not cause preference to be given to any of the declarations found by the search. — end note] An ambiguity
exists if the best match finds two functions with the same signature, even if one is in a namespace reachable
through using-directives in the namespace of the other.95 [Example:

namespace D {
int d1;
void f(char);

}
using namespace D;

int d1; // OK: no conflict with D::d1

namespace E {
int e;
void f(int);

}

namespace D { // namespace extension
int d2;
using namespace E;
void f(int);

}

void f() {
d1++; // error: ambiguous ::d1 or D::d1?
::d1++; // OK
D::d1++; // OK
d2++; // OK: D::d2
e++; // OK: E::e
f(1); // error: ambiguous: D::f(int) or E::f(int)?
f(’a’); // OK: D::f(char)

}

— end example]

7.4 The asm declaration [dcl.asm]

1 An asm declaration has the form
asm-definition:

asm (string-literal) ;

95) During name lookup in a class hierarchy, some ambiguities may be resolved by considering whether one member hides
the other along some paths (10.2). There is no such disambiguation when considering the set of names found as a result of
following using-directives.

§ 7.4 166

c© ISO/IEC N3092

The asm declaration is conditionally-supported; its meaning is implementation-defined. [Note: Typically it
is used to pass information through the implementation to an assembler. — end note]

7.5 Linkage specifications [dcl.link]

1 All function types, function names with external linkage, and variable names with external linkage have a
language linkage. [Note: Some of the properties associated with an entity with language linkage are specific
to each implementation and are not described here. For example, a particular language linkage may be
associated with a particular form of representing names of objects and functions with external linkage, or
with a particular calling convention, etc. — end note] The default language linkage of all function types,
function names, and variable names is C++ language linkage. Two function types with different language
linkages are distinct types even if they are otherwise identical.

2 Linkage (3.5) between C++ and non-C++ code fragments can be achieved using a linkage-specification:
linkage-specification:

extern string-literal { declaration-seqopt }
extern string-literal declaration

The string-literal indicates the required language linkage. This International Standard specifies the semantics
for the string-literals "C" and "C++". Use of a string-literal other than "C" or "C++" is conditionally-
supported, with implementation-defined semantics. [Note: Therefore, a linkage-specification with a string-
literal that is unknown to the implementation requires a diagnostic. — end note] [Note: It is recommended
that the spelling of the string-literal be taken from the document defining that language. For example, Ada
(not ADA) and Fortran or FORTRAN, depending on the vintage. — end note]

3 Every implementation shall provide for linkage to functions written in the C programming language, "C",
and linkage to C++ functions, "C++". [Example:

complex sqrt(complex); // C++ linkage by default
extern "C" {

double sqrt(double); // C linkage
}

— end example]

4 Linkage specifications nest. When linkage specifications nest, the innermost one determines the language
linkage. A linkage specification does not establish a scope. A linkage-specification shall occur only in
namespace scope (3.3). In a linkage-specification, the specified language linkage applies to the function
types of all function declarators, function names with external linkage, and variable names with external
linkage declared within the linkage-specification. [Example:

extern "C" void f1(void(*pf)(int));
// the name f1 and its function type have C language
// linkage; pf is a pointer to a C function

extern "C" typedef void FUNC();
FUNC f2; // the name f2 has C++ language linkage and the

// function’s type has C language linkage
extern "C" FUNC f3; // the name of function f3 and the function’s type

// have C language linkage
void (*pf2)(FUNC*); // the name of the variable pf2 has C++ linkage and

// the type of pf2 is pointer to C++ function that
// takes one parameter of type pointer to C function

extern "C" {
static void f4(); // the name of the function f4 has

// internal linkage (not C language
// linkage) and the function’s type

§ 7.5 167

c© ISO/IEC N3092

// has C language linkage.
}

extern "C" void f5() {
extern void f4(); // OK: Name linkage (internal)

// and function type linkage (C
// language linkage) gotten from
// previous declaration.

}

extern void f4(); // OK: Name linkage (internal)
// and function type linkage (C
// language linkage) gotten from
// previous declaration.

}

void f6() {
extern void f4(); // OK: Name linkage (internal)

// and function type linkage (C
// language linkage) gotten from
// previous declaration.

}

— end example] A C language linkage is ignored for the names of class members and the member function
type of class member functions. [Example:

extern "C" typedef void FUNC_c();
class C {

void mf1(FUNC_c*); // the name of the function mf1 and the member
// function’s type have C++ language linkage; the
// parameter has type pointer to C function

FUNC_c mf2; // the name of the function mf2 and the member
// function’s type have C++ language linkage

static FUNC_c* q; // the name of the data member q has C++ language
// linkage and the data member’s type is pointer to
// C function

};

extern "C" {
class X {
void mf(); // the name of the function mf and the member

// function’s type have C++ language linkage
void mf2(void(*)()); // the name of the function mf2 has C++ language

// linkage; the parameter has type pointer to
// C function

};
}

— end example]

5 If two declarations declare functions with the same name and parameter-type-list (8.3.5) to be members of
the same namespace or declare objects with the same name to be members of the same namespace and the
declarations give the names different language linkages, the program is ill-formed; no diagnostic is required
if the declarations appear in different translation units. Except for functions with C++ linkage, a function
declaration without a linkage specification shall not precede the first linkage specification for that function.

§ 7.5 168

c© ISO/IEC N3092

A function can be declared without a linkage specification after an explicit linkage specification has been
seen; the linkage explicitly specified in the earlier declaration is not affected by such a function declaration.

6 At most one function with a particular name can have C language linkage. Two declarations for a function
with C language linkage with the same function name (ignoring the namespace names that qualify it)
that appear in different namespace scopes refer to the same function. Two declarations for an object with
C language linkage with the same name (ignoring the namespace names that qualify it) that appear in
different namespace scopes refer to the same object. [Note: because of the one definition rule (3.2), only
one definition for a function or object with C linkage may appear in the program; that is, such a function
or object must not be defined in more than one namespace scope. For example,

namespace A {
extern "C" int f();
extern "C" int g() { return 1; }
extern "C" int h();

}

namespace B {
extern "C" int f(); // A::f and B::f refer

// to the same function
extern "C" int g() { return 1; } // ill-formed, the function g

// with C language linkage
// has two definitions

}

int A::f() { return 98; } //definition for the function f
// with C language linkage

extern "C" int h() { return 97; }
// definition for the function h
// with C language linkage
// A::h and ::h refer to the same function

— end note]

7 A declaration directly contained in a linkage-specification is treated as if it contains the extern speci-
fier (7.1.1) for the purpose of determining the linkage of the declared name and whether it is a definition.
Such a declaration shall not specify a storage class. [Example:

extern "C" double f();
static double f(); // error
extern "C" int i; // declaration
extern "C" {

int i; // definition
}
extern "C" static void g(); // error

— end example]

8 [Note: because the language linkage is part of a function type, when a pointer to C function (for example)
is dereferenced, the function to which it refers is considered a C function. — end note]

9 Linkage from C++ to objects defined in other languages and to objects defined in C++ from other languages
is implementation-defined and language-dependent. Only where the object layout strategies of two language

§ 7.5 169

c© ISO/IEC N3092

implementations are similar enough can such linkage be achieved.

7.6 Attributes [dcl.attr]

7.6.1 Attribute syntax and semantics [dcl.attr.grammar]

1 Attributes specify additional information for various source constructs such as types, variables, names,
blocks, or translation units.

attribute-specifier:
[[attribute-list]]

attribute-list:
attributeopt

attribute-list , attributeopt

attribute ...
attribute-list , attribute ...

attribute:
attribute-token attribute-argument-clauseopt

attribute-token:
identifier
attribute-scoped-token

attribute-scoped-token:
attribute-namespace :: identifier

attribute-namespace:
identifier

attribute-argument-clause:
(balanced-token-seq)

balanced-token-seq:
balanced-token
balanced-token-seq balanced-token

balanced-token:
(balanced-token-seq)
[balanced-token-seq]
{ balanced-token-seq }
any token other than a parenthesis, a bracket, or a brace

2 [Note: For each individual attribute, the form of the balanced-token-seq will be specified. — end note]

3 In an attribute-list, an ellipsis may appear only if that attribute’s specification permits it. An attribute
followed by an ellipsis is a pack expansion (14.5.3). An attribute-specifier that contains no attributes has no
effect. The order in which the attribute-tokens appear in an attribute-list is not significant. If a keyword (2.12)
or an alternative token (2.6) that satisfies the syntactic requirements of an identifier (2.11) is contained
in an attribute-token, it is considered an identifier. No name lookup (3.4) is performed on any of the
identifiers contained in an attribute-token. The attribute-token determines additional requirements on the
attribute-argument-clause (if any). The use of an attribute-scoped-token is conditionally-supported, with
implementation-defined behavior. [Note: Each implementation should choose a distinctive name for the
attribute-namespace in an attribute-scoped-token. — end note]

4 Each attribute-specifier is said to appertain to some entity or statement, identified by the syntactic context
where it appears (clause 7, clause 8). If an attribute-specifier that appertains to some entity or statement
contains an attribute that is not allowed to apply to that entity or statement, the program is ill-formed.
If an attribute-specifier appertains to a friend declaration (11.4), that declaration shall be a definition. No
attribute-specifier shall appertain to an explicit instantiation (14.7.2).

§ 7.6.1 170

c© ISO/IEC N3092

5 For an attribute-token not specified in this International Standard, the behavior is implementation-defined.

6 Two consecutive left square bracket tokens shall appear only when introducing an attribute-specifier . [Note:
If two consecutive left square brackets appear where an attribute-specifier is not allowed, the program is ill
formed even if the brackets match an alternative grammar production. — end note] [Example:

int p[10];
void f() {

int x = 42, y[5];
int(p[[x] { return x; }()]); // error: malformed attribute on a nested

// declarator-id and not a function-style cast of
// an element of p.

y[[] { return 2; }()] = 2; // error even though attributes are not allowed
// in this context.

}

— end example]

7.6.2 Alignment attribute [dcl.align]

1 The attribute-token align specifies alignment (3.11). The attribute shall have one of the following forms:

align (type-id)
align (assignment-expression)

The attribute may be followed by an ellipsis. The attribute may be applied to a variable that is neither a
function parameter nor declared with the register storage class specifier and to a class data member that is
not a bit-field. The attribute may also be applied to the declaration of a class or enumeration type.

2 When the alignment attribute is of the form align(assignment-expression):

— the assignment-expression shall be an integral constant expression

— if the constant expression evaluates to a fundamental alignment, the alignment requirement of the
declared entity shall be the specified fundamental alignment

— if the constant expression evaluates to an extended alignment and the implementation supports that
alignment in the context of the declaration, the alignment of the declared entity shall be that alignment

— if the constant expression evaluates to an extended alignment and the implementation does not support
that alignment in the context of the declaration, the program is ill-formed

— if the constant expression evaluates to zero, the alignment specifier shall have no effect

— otherwise, the program is ill-formed.

3 When the alignment attribute is of the form align(type-id), it shall have the same effect as align(alignof(type-
id)) (5.3.6).

4 When multiple alignment attributes are specified for an entity, the alignment requirement shall be set to the
strictest specified alignment.

5 The combined effect of all alignment attributes in a declaration shall not specify an alignment that is less
strict than the alignment that would otherwise be required for the entity being declared.

6 If the defining declaration of an entity has an alignment attribute, any non-defining declaration of that entity
shall either specify equivalent alignment or have no alignment attribute. Conversely, if any declaration of
an entity has an alignment attribute, every defining declaration of that entity shall specify an equivalent
alignment. No diagnostic is required if declarations of an entity have different alignment attributes in
different translation units.

§ 7.6.2 171

c© ISO/IEC N3092

[Example:
// Translation unit #1:
struct S { int x; } s, p = &s;

// Translation unit #2:
struct [[align(16)]] S; // error: definition of S lacks alignment; no
extern S* p; // diagnostic required

— end example]

7 [Example: An aligned buffer with an alignment requirement of A and holding N elements of type T other
than char, signed char, or unsigned char can be declared as:

T buffer [[align(T), align(A)]] [N];

Specifying align(T) in the attribute-list ensures that the final requested alignment will not be weaker than
alignof(T), and therefore the program will not be ill-formed. — end example]

8 [Example:
void f [[align(double)]] (); // error: alignment applied to function
unsigned char c

[[align(double)]] [sizeof(double)]; // array of characters, suitably aligned for a double
extern unsigned char c[sizeof(double)]; // no align necessary
extern unsigned char c

[[align(float)]] [sizeof(double)]; // error: different alignment in declaration

— end example]

7.6.3 Noreturn attribute [dcl.attr.noreturn]

1 The attribute-token noreturn specifies that a function does not return. It shall appear at most once in
each attribute-list and no attribute-argument-clause shall be present. The attribute may be applied to
the declarator-id in a function declaration. The first declaration of a function shall specify the noreturn
attribute if any declaration of that function specifies the noreturn attribute. If a function is declared with
the noreturn attribute in one translation unit and the same function is declared without the noreturn
attribute in another translation unit, the program is ill-formed; no diagnostic required.

2 If a function f is called where f was previously declared with the noreturn attribute and f eventually
returns, the behavior is undefined. [Note: The function may terminate by throwing an exception. — end
note] [Note: Implementations are encouraged to issue a warning if a function marked [[noreturn]] might
return. — end note]

3 [Example:
void f [[noreturn]] () {

throw "error"; // OK
}

void q [[noreturn]] (int i) { // behavior is undefined if called with an argument <= 0
if (i > 0)

throw "positive";
}

§ 7.6.3 172

c© ISO/IEC N3092

— end example]

7.6.4 Final attribute [dcl.attr.final]

1 The attribute-token final specifies derivation semantics for a class and overriding semantics for a virtual
function. It shall appear at most once in each attribute-list and no attribute-argument-clause shall be present.
The attribute may be applied to class definitions and to virtual member functions being declared in a class
definition.

2 If a class B is marked final and a class D is derived from B the program is ill formed.

3 If a virtual member function f in some class B is marked final and in a class D derived from B a function
D::f overrides B::f, the program is ill-formed.

4 [Example:
struct B1 {

virtual void f [[final]] ();
};

struct D1 : B1 {
void f(); // ill formed

};

struct [[final]] B2 {
};

struct D2 : B2 { // ill formed
};

— end example]

7.6.5 Class member name checking attributes [dcl.attr.override]

1 The attribute-token override asserts that a virtual member function overrides a function in a base class.
It shall appear at most once in each attribute-list and no attribute-argument-clause shall be present. The
attribute may be applied to virtual member functions being declared in a class definition.

2 If a virtual member function f is marked override and does not override (10.3) a member function of a
base class the program is ill-formed.

3 The attribute-token hiding asserts that a class member name hides a name in a base class. It shall appear
at most once in each attribute-list and no attribute-argument-clause shall be present. The attribute may be
applied to class members being declared in a class definition.

4 If a class member is marked hiding and its name does not hide (3.3.10, 10.2) a class member name in a
base class the program is ill-formed.

5 The attribute-token base_check specifies that overriding and hiding of base members is strictly checked
within a class. It shall appear at most once in each attribute-list and no attribute-argument-clause shall be
present. The attribute may be applied to a class definition.

6 In a class definition marked base_check, if a virtual member function that is neither implicitly-declared
nor a destructor overrides (10.3) a member function of a base class and it is not marked override, the
program is ill-formed. Similarly, in such a class definition, if a class member name other than that of an
implicitly-declared special member function hides (3.3.10, 10.2) a class member name in a base class and it
is not marked hiding, the program is ill-formed. [Note: a using-declaration makes the potentially hidden
name visible, avoiding the need for the hiding attribute. — end note]

§ 7.6.5 173

c© ISO/IEC N3092

[Example:
class B {

virtual void some_func();

virtual void f(int);
virtual void h(int);
void j(int);
void k();
typedef B self;

};

class D [[base_check]] : public B {
void sone_func [[override]] (); // error: misspelled name

void f [[override]] (int); // OK: f implicitly virtual, overrides B::f
virtual void f [[override]] (long); // error: non-matching argument type
virtual void f [[override]] (int) const; // error: non-matching cv-qualification
virtual int f [[override]] (int); // error: non-matching return type

virtual void g(long); // OK: new virtual function introduced

void h(int); // error: h implicitly virtual, but overriding without marker
virtual void h(double); // error: hides B::h without marker
virtual void h [[hiding]] (char *); // OK

using B::j;
int j(double); // OK: not hiding due to “using”
void j(int); // OK, despite ‘obscuring’ B::j(int)
virtual int j [[hiding]] (void); // error: not hiding due to “using”

int k; // error: hides B::k without marker

int m [[hiding]] (int); // error: no hiding despite marker
typedef D self; // error: hides B::self without marker

};

— end example]

7.6.6 Carries dependency attribute [dcl.attr.depend]

1 The attribute-token carries_dependency specifies dependency propagation into and out of functions. It
shall appear at most once in each attribute-list and no attribute-argument-clause shall be present. The
attribute may be applied to the declarator-id of a parameter-declaration in a function declaration or lambda,
in which case it specifies that the initialization of the parameter carries a dependency to (1.10) each lvalue-
to-rvalue conversion (4.1) of that object. The attribute may also be applied to the declarator-id of a function
declaration, in which case it specifies that the return value, if any, carries a dependency to the evaluation of
the function call expression.

2 The first declaration of a function shall specify the carries_dependency attribute for its declarator-id if any
declaration of the function specifies the carries_dependency attribute. Furthermore, the first declaration of
a function shall specify the carries_dependency attribute for a parameter if any declaration of that function
specifies the carries_dependency attribute for that parameter. If a function or one of its parameters is
declared with the carries_dependency attribute in its first declaration in one translation unit and the

§ 7.6.6 174

c© ISO/IEC N3092

same function or one of its parameters is declared without the carries_dependency attribute in its first
declaration in another translation unit, the program is ill-formed; no diagnostic required.

3 [Note: the carries_dependency attribute does not change the meaning of the program, but may result in
generation of more efficient code. — end note]

4 [Example:
/∗ Translation unit A. ∗/

struct foo { int* a; int* b; };
std::atomic<struct foo *> foo_head[10];
int foo_array[10][10];

struct foo* f [[carries_dependency]] (int i) {
return foo_head[i].load(memory_order_consume);

}

int g(int* x, int* y [[carries_dependency]]) {
return kill_dependency(foo_array[*x][*y]);

}

/∗ Translation unit B. ∗/

struct foo* f [[carries_dependency]] (int i);
int* g(int* x, int* y [[carries_dependency]]);

int c = 3;

void h(int i) {
struct foo* p;

p = f(i);
do_something_with(g(&c, p->a));
do_something_with(g(p->a, &c));

}

5 The carries_dependency attribute on function f means that the return value carries a dependency out of
f, so that the implementation need not constrain ordering upon return from f. Implementations of f and
its caller may choose to preserve dependencies instead of emitting hardware memory ordering instructions
(a.k.a. fences).

6 Function g’s second argument has a carries_dependency attribute, but its first argument does not. There-
fore, function h’s first call to g carries a dependency into g, but its second call does not. The implementation
might need to insert a fence prior to the second call to g.

— end example]

§ 7.6.6 175

c© ISO/IEC N3092

8 Declarators [dcl.decl]
1 A declarator declares a single variable, function, or type, within a declaration. The init-declarator-list

appearing in a declaration is a comma-separated sequence of declarators, each of which can have an initializer.
init-declarator-list:

init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator initializeropt

2 The three components of a simple-declaration are the attributes (7.6), the specifiers (decl-specifier-seq; 7.1)
and the declarators (init-declarator-list). The specifiers indicate the type, storage class or other properties
of the entities being declared. The declarators specify the names of these entities and (optionally) modify
the type of the specifiers with operators such as * (pointer to) and () (function returning). Initial values
can also be specified in a declarator; initializers are discussed in 8.5 and 12.6.

3 Each init-declarator in a declaration is analyzed separately as if it was in a declaration by itself.96

4 Declarators have the syntax
declarator:

ptr-declarator
noptr-declarator parameters-and-qualifiers trailing-return-type

ptr-declarator:
noptr-declarator
ptr-operator ptr-declarator

noptr-declarator:
declarator-id attribute-specifieropt

noptr-declarator parameters-and-qualifiers
noptr-declarator [constant-expressionopt] attribute-specifieropt

(ptr-declarator)

parameters-and-qualifiers:
(parameter-declaration-clause) attribute-specifieropt cv-qualifier-seqopt

ref-qualifieropt exception-specificationopt

trailing-return-type:
-> trailing-type-specifier-seq abstract-declaratoropt

96) A declaration with several declarators is usually equivalent to the corresponding sequence of declarations each with a
single declarator. That is

T D1, D2, ... Dn;
is usually equvalent to

T D1; T D2; ... T Dn;
where T is a decl-specifier-seq and each Di is an init-declarator . The exception occurs when a name introduced by one of
the declarators hides a type name used by the decl-specifiers, so that when the same decl-specifiers are used in a subsequent
declaration, they do not have the same meaning, as in

struct S ... ;
S S, T; // declare two instances of struct S

which is not equivalent to
struct S ... ;
S S;
S T; // error

176

c© ISO/IEC N3092

ptr-operator:
* attribute-specifieropt cv-qualifier-seqopt

& attribute-specifieropt

&& attribute-specifieropt

::opt nested-name-specifier * attribute-specifieropt cv-qualifier-seqopt

cv-qualifier-seq:
cv-qualifier cv-qualifier-seqopt

cv-qualifier:
const
volatile

ref-qualifier:
&
&&

declarator-id:
...opt id-expression
::opt nested-name-specifieropt class-name

A class-name has special meaning in a declaration of the class of that name and when qualified by that
name using the scope resolution operator :: (5.1, 12.1, 12.4).

5 The optional attribute-specifier in a trailing-return-type appertains to the indicated return type. The type-id
in a trailing-return-type includes the longest possible sequence of abstract-declarators. [Note: This resolves
the ambiguous binding of array and function declarators. [Example:

auto f()->int(*)[4]; // function returning a pointer to array[4] of int
// not function returning array[4] of pointer to int

— end example] — end note]

8.1 Type names [dcl.name]

1 To specify type conversions explicitly, and as an argument of sizeof, alignof, new, or typeid, the name of
a type shall be specified. This can be done with a type-id, which is syntactically a declaration for a variable
or function of that type that omits the name of the entity.

type-id:
type-specifier-seq abstract-declaratoropt

abstract-declarator:
ptr-abstract-declarator
noptr-abstract-declaratoropt parameters-and-qualifiers trailing-return-type
...

ptr-abstract-declarator:
noptr-abstract-declarator
ptr-operator ptr-abstract-declaratoropt

noptr-abstract-declarator:
noptr-abstract-declaratoropt parameters-and-qualifiers
noptr-abstract-declaratoropt [constant-expression] attribute-specifieropt

(ptr-abstract-declarator)

It is possible to identify uniquely the location in the abstract-declarator where the identifier would appear
if the construction were a declarator in a declaration. The named type is then the same as the type of the
hypothetical identifier. [Example:

int // int i
int * // int *pi
int *[3] // int *p[3]

§ 8.1 177

c© ISO/IEC N3092

int (*)[3] // int (*p3i)[3]
int *() // int *f()
int (*)(double) // int (*pf)(double)

name respectively the types “int,” “pointer to int,” “array of 3 pointers to int,” “pointer to array of 3 int,”
“function of (no parameters) returning pointer to int,” and “pointer to a function of (double) returning
int.” — end example]

2 A type can also be named (often more easily) by using a typedef (7.1.3).

8.2 Ambiguity resolution [dcl.ambig.res]

1 The ambiguity arising from the similarity between a function-style cast and a declaration mentioned in 6.8
can also occur in the context of a declaration. In that context, the choice is between a function declaration
with a redundant set of parentheses around a parameter name and an object declaration with a function-style
cast as the initializer. Just as for the ambiguities mentioned in 6.8, the resolution is to consider any construct
that could possibly be a declaration a declaration. [Note: a declaration can be explicitly disambiguated by
a nonfunction-style cast, by an = to indicate initialization or by removing the redundant parentheses around
the parameter name. — end note] [Example:

struct S {
S(int);

};

void foo(double a) {
S w(int(a)); // function declaration
S x(int()); // function declaration
S y((int)a); // object declaration
S z = int(a); // object declaration

}

— end example]

2 The ambiguity arising from the similarity between a function-style cast and a type-id can occur in different
contexts. The ambiguity appears as a choice between a function-style cast expression and a declaration of a
type. The resolution is that any construct that could possibly be a type-id in its syntactic context shall be
considered a type-id.

3 [Example:
#include <cstddef>
char *p;
void *operator new(std::size_t, int);
void foo() {

const int x = 63;
new (int(*p)) int; // new-placement expression
new (int(*[x])); // new type-id

}

4 For another example,
template <class T>
struct S {

T *p;
};
S<int()> x; // type-id
S<int(1)> y; // expression (ill-formed)

§ 8.2 178

c© ISO/IEC N3092

5 For another example,
void foo() {

sizeof(int(1)); // expression
sizeof(int()); // type-id (ill-formed)

}

6 For another example,
void foo() {

(int(1)); // expression
(int())1; // type-id (ill-formed)

}

— end example]

7 Another ambiguity arises in a parameter-declaration-clause of a function declaration, or in a type-id that
is the operand of a sizeof or typeid operator, when a type-name is nested in parentheses. In this case,
the choice is between the declaration of a parameter of type pointer to function and the declaration of a
parameter with redundant parentheses around the declarator-id. The resolution is to consider the type-name
as a simple-type-specifier rather than a declarator-id. [Example:

class C { };
void f(int(C)) { } // void f(int(*fp)(C c)) { }

// not: void f(int C);

int g(C);

void foo() {
f(1); // error: cannot convert 1 to function pointer
f(g); // OK

}

For another example,
class C { };
void h(int *(C[10])); // void h(int *(*_fp)(C _parm[10]));

// not: void h(int *C[10]);

— end example]

8.3 Meaning of declarators [dcl.meaning]

1 A list of declarators appears after an optional (Clause 7) decl-specifier-seq (7.1). Each declarator contains
exactly one declarator-id; it names the identifier that is declared. An unqualified-id occurring in a declarator-
id shall be a simple identifier except for the declaration of some special functions (12.3, 12.4, 13.5) and for
the declaration of template specializations or partial specializations (14.7). A declarator-id shall not be
qualified except for the definition of a member function (9.3) or static data member (9.4) outside of its
class, the definition or explicit instantiation of a function or variable member of a namespace outside of its
namespace, or the definition of an explicit specialization outside of its namespace, or the declaration of a
friend function that is a member of another class or namespace (11.4). When the declarator-id is qualified,
the declaration shall refer to a previously declared member of the class or namespace to which the qualifier
refers (or, in the case of a namespace, of an element of the inline namespace set of that namespace (7.3.1))
or to a specialization thereof; the member shall not merely have been introduced by a using-declaration
in the scope of the class or namespace nominated by the nested-name-specifier of the declarator-id. The
nested-name-specifier of a qualified declarator-id shall not begin with a decltype-specifier . [Note: if the

§ 8.3 179

c© ISO/IEC N3092

qualifier is the global :: scope resolution operator, the declarator-id refers to a name declared in the global
namespace scope. — end note] The optional attribute-specifier following a declarator-id appertains to the
entity that is declared.

2 A static, thread_local, extern, register, mutable, friend, inline, virtual, or typedef specifier ap-
plies directly to each declarator-id in an init-declarator-list; the type specified for each declarator-id depends
on both the decl-specifier-seq and its declarator .

3 Thus, a declaration of a particular identifier has the form
T D

where T is of the form attribute-specifieropt decl-specifier-seq and D is a declarator. Following is a recursive
procedure for determining the type specified for the contained declarator-id by such a declaration.

4 First, the decl-specifier-seq determines a type. In a declaration
T D

the decl-specifier-seq T determines the type T. [Example: in the declaration
int unsigned i;

the type specifiers int unsigned determine the type “unsigned int” (7.1.6.2). — end example]

5 In a declaration attribute-specifieropt T D where D is an unadorned identifier the type of this identifier is “T”.

6 In a declaration T D where D has the form

(D1)

the type of the contained declarator-id is the same as that of the contained declarator-id in the declaration
T D1

Parentheses do not alter the type of the embedded declarator-id, but they can alter the binding of complex
declarators.

8.3.1 Pointers [dcl.ptr]

1 In a declaration T D where D has the form

* attribute-specifieropt cv-qualifier-seqopt D1

and the type of the identifier in the declaration T D1 is “derived-declarator-type-list T,” then the type of the
identifier of D is “derived-declarator-type-list cv-qualifier-seq pointer to T.” The cv-qualifiers apply to the pointer
and not to the object pointed to. Similarly, the optional attribute-specifier (7.6.1) appertains to the pointer
and not to the object pointed to.

2 [Example: the declarations
const int ci = 10, *pc = &ci, *const cpc = pc, **ppc;
int i, *p, *const cp = &i;

declare ci, a constant integer; pc, a pointer to a constant integer; cpc, a constant pointer to a constant
integer; ppc, a pointer to a pointer to a constant integer; i, an integer; p, a pointer to integer; and cp, a
constant pointer to integer. The value of ci, cpc, and cp cannot be changed after initialization. The value
of pc can be changed, and so can the object pointed to by cp. Examples of some correct operations are

§ 8.3.1 180

c© ISO/IEC N3092

i = ci;
*cp = ci;
pc++;
pc = cpc;
pc = p;
ppc = &pc;

Examples of ill-formed operations are
ci = 1; // error
ci++; // error
*pc = 2; // error
cp = &ci; // error
cpc++; // error
p = pc; // error
ppc = &p; // error

Each is unacceptable because it would either change the value of an object declared const or allow it to be
changed through a cv-unqualified pointer later, for example:

*ppc = &ci; // OK, but would make p point to ci ...
// ... because of previous error

*p = 5; // clobber ci

— end example]

3 See also 5.17 and 8.5.

4 [Note: there are no pointers to references; see 8.3.2. Since the address of a bit-field (9.6) cannot be taken,
a pointer can never point to a bit-field. — end note]

8.3.2 References [dcl.ref]

1 In a declaration T D where D has either of the forms
& attribute-specifieropt D1
&& attribute-specifieropt D1

and the type of the identifier in the declaration T D1 is “derived-declarator-type-list T,” then the type of the
identifier of D is “derived-declarator-type-list reference to T.” The optional attribute-specifier appertains to the
reference type. Cv-qualified references are ill-formed except when the cv-qualifiers are introduced through
the use of a typedef (7.1.3) or of a template type argument (14.3), in which case the cv-qualifiers are ignored.
[Example:

typedef int& A;
const A aref = 3; // ill-formed; lvalue reference to non-const initialized with rvalue

The type of aref is “lvalue reference to int”, not “lvalue reference to const int”. — end example] [Note:
a reference can be thought of as a name of an object. — end note] A declarator that specifies the type
“reference to cv void” is ill-formed.

2 A reference type that is declared using & is called an lvalue reference, and a reference type that is declared
using && is called an rvalue reference. Lvalue references and rvalue references are distinct types. Except
where explicitly noted, they are semantically equivalent and commonly referred to as references.

3 [Example:

§ 8.3.2 181

c© ISO/IEC N3092

void f(double& a) { a += 3.14; }
// ...
double d = 0;
f(d);

declares a to be a reference parameter of f so the call f(d) will add 3.14 to d.
int v[20];
// ...
int& g(int i) { return v[i]; }
// ...
g(3) = 7;

declares the function g() to return a reference to an integer so g(3)=7 will assign 7 to the fourth element
of the array v. For another example,

struct link {
link* next;

};

link* first;

void h(link*& p) { // p is a reference to pointer
p->next = first;
first = p;
p = 0;

}

void k() {
link* q = new link;
h(q);

}

declares p to be a reference to a pointer to link so h(q) will leave q with the value zero. See also 8.5.3.
— end example]

4 It is unspecified whether or not a reference requires storage (3.7).

5 There shall be no references to references, no arrays of references, and no pointers to references. The
declaration of a reference shall contain an initializer (8.5.3) except when the declaration contains an explicit
extern specifier (7.1.1), is a class member (9.2) declaration within a class definition, or is the declaration
of a parameter or a return type (8.3.5); see 3.1. A reference shall be initialized to refer to a valid object
or function. [Note: in particular, a null reference cannot exist in a well-defined program, because the only
way to create such a reference would be to bind it to the “object” obtained by dereferencing a null pointer,
which causes undefined behavior. As described in 9.6, a reference cannot be bound directly to a bit-field.
— end note]

6 If a typedef (7.1.3), a type template-parameter (14.3.1), or a decltype-specifier (7.1.6.2) denotes a type TR
that is a reference to a type T, an attempt to create the type “lvalue reference to cv TR” creates the type
“lvalue reference to T”, while an attempt to create the type “rvalue reference to cv TR” creates the type TR.
[Example:

int i;
typedef int& LRI;
typedef int&& RRI;

§ 8.3.2 182

c© ISO/IEC N3092

LRI& r1 = i; // r1 has the type int&
const LRI& r2 = i; // r2 has the type int&
const LRI&& r3 = i; // r3 has the type int&

RRI& r4 = i; // r4 has the type int&
RRI&& r5 = i; // r5 has the type int&&

decltype(r2)& r6 = i; // r6 has the type int&
decltype(r2)&& r7 = i; // r7 has the type int&

— end example]

8.3.3 Pointers to members [dcl.mptr]

1 In a declaration T D where D has the form

::opt nested-name-specifier * attribute-specifieropt cv-qualifier-seqopt D1

and the nested-name-specifier denotes a class, and the type of the identifier in the declaration T D1 is “derived-
declarator-type-list T”, then the type of the identifier of D is “derived-declarator-type-list cv-qualifier-seq pointer
to member of class nested-name-specifier of type T”. The optional attribute-specifier (7.6.1) appertains to the
pointer-to-member.

2 [Example:
struct X {

void f(int);
int a;

};
struct Y;

int X::* pmi = &X::a;
void (X::* pmf)(int) = &X::f;
double X::* pmd;
char Y::* pmc;

declares pmi, pmf, pmd and pmc to be a pointer to a member of X of type int, a pointer to a member of
X of type void(int), a pointer to a member of X of type double and a pointer to a member of Y of type
char respectively. The declaration of pmd is well-formed even though X has no members of type double.
Similarly, the declaration of pmc is well-formed even though Y is an incomplete type. pmi and pmf can be
used like this:

X obj;
// ...
obj.*pmi = 7; // assign 7 to an integer

// member of obj
(obj.*pmf)(7); // call a function member of obj

// with the argument 7

— end example]

3 A pointer to member shall not point to a static member of a class (9.4), a member with reference type, or
“cv void.”

§ 8.3.3 183

c© ISO/IEC N3092

[Note: see also 5.3 and 5.5. The type “pointer to member” is distinct from the type “pointer”, that is, a
pointer to member is declared only by the pointer to member declarator syntax, and never by the pointer
declarator syntax. There is no “reference-to-member” type in C++. — end note]

8.3.4 Arrays [dcl.array]

1 In a declaration T D where D has the form

D1 [constant-expressionopt] attribute-specifieropt

and the type of the identifier in the declaration T D1 is “derived-declarator-type-list T”, then the type of the
identifier of D is an array type; if the type of the identifier of D contains the auto type-specifier, the program
is ill-formed. T is called the array element type; this type shall not be a reference type, the (possibly cv-
qualified) type void, a function type or an abstract class type. If the constant-expression (5.19) is present,
it shall be an integral constant expression and its value shall be greater than zero. The constant expression
specifies the bound of (number of elements in) the array. If the value of the constant expression is N, the
array has N elements numbered 0 to N-1, and the type of the identifier of D is “derived-declarator-type-list
array of N T”. An object of array type contains a contiguously allocated non-empty set of N subobjects of
type T. If the constant expression is omitted, the type of the identifier of D is “derived-declarator-type-list array
of unknown bound of T”, an incomplete object type. The type “derived-declarator-type-list array of N T” is a
different type from the type “derived-declarator-type-list array of unknown bound of T”, see 3.9. Any type of
the form “cv-qualifier-seq array of N T” is adjusted to “array of N cv-qualifier-seq T”, and similarly for “array
of unknown bound of T”. The optional attribute-specifier appertains to the array. [Example:

typedef int A[5], AA[2][3];
typedef const A CA; // type is “array of 5 const int”
typedef const AA CAA; // type is “array of 2 array of 3 const int”

— end example] [Note: an “array of N cv-qualifier-seq T” has cv-qualified type; see 3.9.3. — end note]

2 An array can be constructed from one of the fundamental types (except void), from a pointer, from a pointer
to member, from a class, from an enumeration type, or from another array.

3 When several “array of” specifications are adjacent, a multidimensional array is created; the constant ex-
pressions that specify the bounds of the arrays can be omitted only for the first member of the sequence.
[Note: this elision is useful for function parameters of array types, and when the array is external and the
definition, which allocates storage, is given elsewhere. — end note] The first constant-expression can also
be omitted when the declarator is followed by an initializer (8.5). In this case the bound is calculated from
the number of initial elements (say, N) supplied (8.5.1), and the type of the identifier of D is “array of N T.”

4 [Example:
float fa[17], *afp[17];

declares an array of float numbers and an array of pointers to float numbers. For another example,
static int x3d[3][5][7];

declares a static three-dimensional array of integers, with rank 3× 5× 7. In complete detail, x3d is an array
of three items; each item is an array of five arrays; each of the latter arrays is an array of seven integers. Any
of the expressions x3d, x3d[i], x3d[i][j], x3d[i][j][k] can reasonably appear in an expression. — end
example]

5 [Note: conversions affecting expressions of array type are described in 4.2. Objects of array types cannot
be modified, see 3.10. — end note]

§ 8.3.4 184

c© ISO/IEC N3092

6 [Note: Except where it has been declared for a class (13.5.5), the subscript operator [] is interpreted in such
a way that E1[E2] is identical to *((E1)+(E2)). Because of the conversion rules that apply to +, if E1 is an
array and E2 an integer, then E1[E2] refers to the E2-th member of E1. Therefore, despite its asymmetric
appearance, subscripting is a commutative operation.

7 A consistent rule is followed for multidimensional arrays. If E is an n-dimensional array of rank i×j× . . .×k,
then E appearing in an expression that is subject to the array-to-pointer conversion (4.2) is converted to a
pointer to an (n−1)-dimensional array with rank j× . . .×k. If the * operator, either explicitly or implicitly
as a result of subscripting, is applied to this pointer, the result is the pointed-to (n− 1)-dimensional array,
which itself is immediately converted into a pointer.

8 [Example: consider
int x[3][5];

Here x is a 3 × 5 array of integers. When x appears in an expression, it is converted to a pointer to (the
first of three) five-membered arrays of integers. In the expression x[i] which is equivalent to *(x+i), x is
first converted to a pointer as described; then x+i is converted to the type of x, which involves multiplying
i by the length of the object to which the pointer points, namely five integer objects. The results are added
and indirection applied to yield an array (of five integers), which in turn is converted to a pointer to the
first of the integers. If there is another subscript the same argument applies again; this time the result is an
integer. — end example] — end note]

9 [Note: it follows from all this that arrays in C++ are stored row-wise (last subscript varies fastest) and that
the first subscript in the declaration helps determine the amount of storage consumed by an array but plays
no other part in subscript calculations. — end note]

8.3.5 Functions [dcl.fct]

1 In a declaration T D where D has the form
D1 (parameter-declaration-clause) cv-qualifier-seqopt

ref-qualifieropt exception-specificationopt attribute-specifieropt

and the type of the contained declarator-id in the declaration T D1 is “derived-declarator-type-list T”, the
type of the declarator-id in D is “derived-declarator-type-list function of (parameter-declaration-clause) cv-qualifier-
seqopt ref-qualifieropt returning T”. The optional attribute-specifier appertains to the function type.

2 In a declaration T D where D has the form
D1 (parameter-declaration-clause) cv-qualifier-seqopt

ref-qualifieropt exception-specificationopt attribute-specifieropt trailing-return-type

and the type of the contained declarator-id in the declaration T D1 is “derived-declarator-type-list T”, T shall
be the single type-specifier auto. The type of the declarator-id in D is “function of (parameter-declaration-
clause) cv-qualifier-seqopt ref-qualifieropt returning type-id”. The optional attribute-specifier appertains to
the function type.

3 A type of either form is a function type.97

parameter-declaration-clause:
parameter-declaration-listopt ...opt
parameter-declaration-list , ...

parameter-declaration-list:
parameter-declaration
parameter-declaration-list , parameter-declaration

97) As indicated by syntax, cv-qualifiers are a signficant component in function return types.

§ 8.3.5 185

c© ISO/IEC N3092

parameter-declaration:
attribute-specifieropt decl-specifier-seq declarator
attribute-specifieropt decl-specifier-seq declarator = assignment-expression
attribute-specifieropt decl-specifier-seq abstract-declaratoropt

attribute-specifieropt decl-specifier-seq abstract-declaratoropt = assignment-expression

The optional attribute-specifier in a parameter-declaration appertains to the parameter.

4 The parameter-declaration-clause determines the arguments that can be specified, and their processing, when
the function is called. [Note: the parameter-declaration-clause is used to convert the arguments specified
on the function call; see 5.2.2. — end note] If the parameter-declaration-clause is empty, the function
takes no arguments. The parameter list (void) is equivalent to the empty parameter list. Except for this
special case, void shall not be a parameter type (though types derived from void, such as void*, can).
If the parameter-declaration-clause terminates with an ellipsis or a function parameter pack (14.5.3), the
number of arguments shall be equal to or greater than the number of parameters that do not have a default
argument and are not function parameter packs. Where syntactically correct and where “...” is not part of
an abstract-declarator , “, ...” is synonymous with “...”. [Example: the declaration

int printf(const char*, ...);

declares a function that can be called with varying numbers and types of arguments.
printf("hello world");
printf("a=%d b=%d", a, b);

However, the first argument must be of a type that can be converted to a const char* — end example]
[Note: the standard header <cstdarg> contains a mechanism for accessing arguments passed using the
ellipsis (see 5.2.2 and 18.10). — end note]

5 A single name can be used for several different functions in a single scope; this is function overloading
(Clause 13). All declarations for a function shall agree exactly in both the return type and the parameter-
type-list. The type of a function is determined using the following rules. The type of each parameter
(including function parameter packs) is determined from its own decl-specifier-seq and declarator . After
determining the type of each parameter, any parameter of type “array of T” or “function returning T” is
adjusted to be “pointer to T” or “pointer to function returning T,” respectively. After producing the list
of parameter types, several transformations take place upon these types to determine the function type.
Any cv-qualifier modifying a parameter type is deleted. [Example: the type void(*)(const int) becomes
void(*)(int) — end example] Such cv-qualifiers affect only the definition of the parameter within the body
of the function; they do not affect the function type. If a storage-class-specifier modifies a parameter type,
the specifier is deleted. [Example: register char* becomes char* — end example] Such storage-class-
specifiers affect only the definition of the parameter within the body of the function; they do not affect the
function type. The resulting list of transformed parameter types and the presence or absence of the ellipsis
or a function parameter pack is the function’s parameter-type-list.

6 A cv-qualifier-seq shall only be part of the function type for a non-static member function, the function type
to which a pointer to member refers, or the top-level function type of a function typedef declaration. [Note:
a function type that has a cv-qualifier-seq is not a cv-qualified type; there are no cv-qualified function types.
— end note] The effect of a cv-qualifier-seq in a function declarator is not the same as adding cv-qualification
on top of the function type. In the latter case, the cv-qualifiers are ignored. [Example:

typedef void F();
struct S {

const F f; // OK: equivalent to: void f();
};

§ 8.3.5 186

c© ISO/IEC N3092

— end example] A ref-qualifier shall only be part of the function type for a non-static member function,
the function type to which a pointer to member refers, or the top-level function type of a function typedef
declaration. The return type, the parameter-type-list, the ref-qualifier , and the cv-qualifier-seq, but not the
default arguments (8.3.6) or the exception specification (15.4), are part of the function type. [Note: function
types are checked during the assignments and initializations of pointer-to-functions, reference-to-functions,
and pointer-to-member-functions. — end note]

7 [Example: the declaration
int fseek(FILE*, long, int);

declares a function taking three arguments of the specified types, and returning int (7.1.6). — end example]

8 If the type of a parameter includes a type of the form “pointer to array of unknown bound of T” or “reference
to array of unknown bound of T,” the program is ill-formed.98 Functions shall not have a return type of
type array or function, although they may have a return type of type pointer or reference to such things.
There shall be no arrays of functions, although there can be arrays of pointers to functions.

Types shall not be defined in return or parameter types. The type of a parameter or the return type for a
function definition shall not be an incomplete class type (possibly cv-qualified) unless the function definition
is nested within the member-specification for that class (including definitions in nested classes defined within
the class).

9 A typedef of function type may be used to declare a function but shall not be used to define a function (8.4).
[Example:

typedef void F();
F fv; // OK: equivalent to void fv();
F fv { } // ill-formed
void fv() { } // OK: definition of fv

— end example] A typedef of a function type whose declarator includes a cv-qualifier-seq shall be used
only to declare the function type for a non-static member function, to declare the function type to which a
pointer to member refers, or to declare the top-level function type of another function typedef declaration.
[Example:

typedef int FIC(int) const;
FIC f; // ill-formed: does not declare a member function
struct S {

FIC f; // OK
};
FIC S::*pm = &S::f; // OK

— end example]

10 An identifier can optionally be provided as a parameter name; if present in a function definition (8.4), it
names a parameter (sometimes called “formal argument”). [Note: in particular, parameter names are also
optional in function definitions and names used for a parameter in different declarations and the definition
of a function need not be the same. If a parameter name is present in a function declaration that is not
a definition, it cannot be used outside of its function declarator because that is the extent of its potential
scope (3.3.4). — end note]

11 [Example: the declaration

98) This excludes parameters of type “ptr-arr-seq T2” where T2 is “pointer to array of unknown bound of T” and where ptr-
arr-seq means any sequence of “pointer to” and “array of” derived declarator types. This exclusion applies to the parameters
of the function, and if a parameter is a pointer to function or pointer to member function then to its parameters also, etc.

§ 8.3.5 187

c© ISO/IEC N3092

int i,
*pi,
f(),
*fpi(int),
(*pif)(const char*, const char*),
(*fpif(int))(int);

declares an integer i, a pointer pi to an integer, a function f taking no arguments and returning an integer,
a function fpi taking an integer argument and returning a pointer to an integer, a pointer pif to a function
which takes two pointers to constant characters and returns an integer, a function fpif taking an integer
argument and returning a pointer to a function that takes an integer argument and returns an integer. It
is especially useful to compare fpi and pif. The binding of *fpi(int) is *(fpi(int)), so the declaration
suggests, and the same construction in an expression requires, the calling of a function fpi, and then using
indirection through the (pointer) result to yield an integer. In the declarator (*pif)(const char*, const
char*), the extra parentheses are necessary to indicate that indirection through a pointer to a function yields
a function, which is then called. — end example] [Note: typedefs and trailing-return-types are sometimes
convenient when the return type of a function is complex. For example, the function fpif above could have
been declared

typedef int IFUNC(int);
IFUNC* fpif(int);

or
auto fpif(int)->int(*)(int)

A trailing-return-type is most useful for a type that would be more complicated to specify before the
declarator-id:

template <class T, class U> auto add(T t, U u) -> decltype(t + u);

rather than
template <class T, class U> decltype((*(T*)0) + (*(U*)0)) add(T t, U u);

— end note]

12 A declarator-id or abstract-declarator containing an ellipsis shall only be used in a parameter-declaration.
Such a parameter-declaration is a parameter pack (14.5.3). When it is part of a parameter-declaration-clause,
the parameter pack is a function parameter pack (14.5.3). [Note: Otherwise, the parameter-declaration is
part of a template-parameter-list and the parameter pack is a template parameter pack; see 14.1. — end
note] The type T of the declarator-id of the function parameter pack shall contain a template parameter
pack; each template parameter pack in T is expanded by the function parameter pack. [Example:

template<typename... T> void f(T (* ...t)(int, int));

int add(int, int);
float subtract(int, int);

void g() {
f(add, subtract);

}

— end example]

§ 8.3.5 188

c© ISO/IEC N3092

13 There is a syntactic ambiguity when an ellipsis occurs at the end of a parameter-declaration-clause without
a preceding comma. In this case, the ellipsis is parsed as part of the abstract-declarator if the type of the
parameter names a template parameter pack that has not been expanded; otherwise, it is parsed as part of
the parameter-declaration-clause.99

8.3.6 Default arguments [dcl.fct.default]

1 If an expression is specified in a parameter declaration this expression is used as a default argument. Default
arguments will be used in calls where trailing arguments are missing.

2 [Example: the declaration
void point(int = 3, int = 4);

declares a function that can be called with zero, one, or two arguments of type int. It can be called in any
of these ways:

point(1,2); point(1); point();

The last two calls are equivalent to point(1,4) and point(3,4), respectively. — end example]

3 A default argument expression shall be specified only in the parameter-declaration-clause of a function
declaration or in a template-parameter (14.1). It shall not be specified for a parameter pack. If it is
specified in a parameter-declaration-clause, it shall not occur within a declarator or abstract-declarator of a
parameter-declaration.100

4 For non-template functions, default arguments can be added in later declarations of a function in the
same scope. Declarations in different scopes have completely distinct sets of default arguments. That is,
declarations in inner scopes do not acquire default arguments from declarations in outer scopes, and vice
versa. In a given function declaration, each parameter subsequent to a parameter with a default argument
shall have a default argument supplied in this or a previous declaration or shall be a function parameter pack.
A default argument shall not be redefined by a later declaration (not even to the same value). [Example:

void g(int = 0, ...); // OK, ellipsis is not a parameter so it can follow
// a parameter with a default argument

void f(int, int);
void f(int, int = 7);
void h() {

f(3); // OK, calls f(3, 7)
void f(int = 1, int); // error: does not use default

// from surrounding scope
}
void m() {

void f(int, int); // has no defaults
f(4); // error: wrong number of arguments
void f(int, int = 5); // OK
f(4); // OK, calls f(4, 5);
void f(int, int = 5); // error: cannot redefine, even to

// same value
}
void n() {

99) One can explicitly disambiguate the parse either by introducing a comma (so the ellipsis will be parsed as part of the
parameter-declaration-clause) or by introducing a name for the parameter (so the ellipsis will be parsed as part of the declarator-
id).
100) This means that default arguments cannot appear, for example, in declarations of pointers to functions, references to
functions, or typedef declarations.

§ 8.3.6 189

c© ISO/IEC N3092

f(6); // OK, calls f(6, 7)
}

— end example] For a given inline function defined in different translation units, the accumulated sets of
default arguments at the end of the translation units shall be the same; see 3.2. If a friend declaration specifies
a default argument expression, that declaration shall be a definition and shall be the only declaration of the
function or function template in the translation unit.

5 A default argument expression is implicitly converted (Clause 4) to the parameter type. The default argu-
ment expression has the same semantic constraints as the initializer expression in a declaration of a variable
of the parameter type, using the copy-initialization semantics (8.5). The names in the expression are bound,
and the semantic constraints are checked, at the point where the default argument expression appears.
Name lookup and checking of semantic constraints for default arguments in function templates and in mem-
ber functions of class templates are performed as described in 14.7.1. [Example: in the following code, g
will be called with the value f(2):

int a = 1;
int f(int);
int g(int x = f(a)); // default argument: f(::a)

void h() {
a = 2;
{
int a = 3;
g(); // g(f(::a))
}

}

— end example] [Note: in member function declarations, names in default argument expressions are looked
up as described in 3.4.1. Access checking applies to names in default argument expressions as described in
Clause 11. — end note]

6 Except for member functions of class templates, the default arguments in a member function definition that
appears outside of the class definition are added to the set of default arguments provided by the member
function declaration in the class definition. Default arguments for a member function of a class template
shall be specified on the initial declaration of the member function within the class template. [Example:

class C {
void f(int i = 3);
void g(int i, int j = 99);

};

void C::f(int i = 3) { // error: default argument already
} // specified in class scope
void C::g(int i = 88, int j) { // in this translation unit,
} // C::g can be called with no argument

— end example]

7 Local variables shall not be used in default argument expressions. [Example:
void f() {

int i;
extern void g(int x = i); //error
// ...

}

§ 8.3.6 190

c© ISO/IEC N3092

— end example]

8 The keyword this shall not be used in a default argument of a member function. [Example:
class A {

void f(A* p = this) { } // error
};

— end example]

9 Default arguments are evaluated each time the function is called. The order of evaluation of function
arguments is unspecified. Consequently, parameters of a function shall not be used in default argument
expressions, even if they are not evaluated. Parameters of a function declared before a default argument
expression are in scope and can hide namespace and class member names. [Example:

int a;
int f(int a, int b = a); // error: parameter a

// used as default argument
typedef int I;
int g(float I, int b = I(2)); // error: parameter I found
int h(int a, int b = sizeof(a)); // error, parameter a used

// in default argument

— end example] Similarly, a non-static member shall not be used in a default argument expression, even if it
is not evaluated, unless it appears as the id-expression of a class member access expression (5.2.5) or unless
it is used to form a pointer to member (5.3.1). [Example: the declaration of X::mem1() in the following
example is ill-formed because no object is supplied for the non-static member X::a used as an initializer.

int b;
class X {

int a;
int mem1(int i = a); // error: non-static member a

// used as default argument
int mem2(int i = b); // OK; use X::b
static int b;

};

The declaration of X::mem2() is meaningful, however, since no object is needed to access the static member
X::b. Classes, objects, and members are described in Clause 9. — end example] A default argument is not
part of the type of a function. [Example:

int f(int = 0);

void h() {
int j = f(1);
int k = f(); // OK, means f(0)

}

int (*p1)(int) = &f;
int (*p2)() = &f; // error: type mismatch

— end example] When a declaration of a function is introduced by way of a using-declaration (7.3.3), any
default argument information associated with the declaration is made known as well. If the function is
redeclared thereafter in the namespace with additional default arguments, the additional arguments are also
known at any point following the redeclaration where the using-declaration is in scope.

§ 8.3.6 191

c© ISO/IEC N3092

10 A virtual function call (10.3) uses the default arguments in the declaration of the virtual function determined
by the static type of the pointer or reference denoting the object. An overriding function in a derived class
does not acquire default arguments from the function it overrides. [Example:

struct A {
virtual void f(int a = 7);

};
struct B : public A {

void f(int a);
};
void m() {

B* pb = new B;
A* pa = pb;
pa->f(); // OK, calls pa->B::f(7)
pb->f(); // error: wrong number of arguments for B::f()

}

— end example]

8.4 Function definitions [dcl.fct.def]

8.4.1 In general [dcl.fct.def.general]

1 Function definitions have the form
function-definition:

attribute-specifieropt decl-specifier-seqopt declarator function-body
attribute-specifieropt decl-specifier-seqopt declarator = default ;
attribute-specifieropt decl-specifier-seqopt declarator = delete ;

function-body:
ctor-initializeropt compound-statement
function-try-block

Any informal reference to the body of a function should be interpreted as a reference to the non-terminal
function-body. The optional attribute-specifier in a function-definition appertains to the function.

2 The declarator in a function-definition shall have the form
D1 (parameter-declaration-clause) cv-qualifier-seqopt

ref-qualifieropt exception-specificationopt attribute-specifieropt trailing-return-typeopt

as described in 8.3.5. A function shall be defined only in namespace or class scope.

3 [Example: a simple example of a complete function definition is
int max(int a, int b, int c) {

int m = (a > b) ? a : b;
return (m > c) ? m : c;

}

Here int is the decl-specifier-seq; max(int a, int b, int c) is the declarator ; { /* ... */ } is the
function-body. — end example]

4 A ctor-initializer is used only in a constructor; see 12.1 and 12.6.

5 A cv-qualifier-seq or a ref-qualifier (or both) can be part of a non-static member function declaration,
non-static member function definition, or pointer to member function only (8.3.5); see 9.3.2.

6 [Note: unused parameters need not be named. For example,

§ 8.4.1 192

c© ISO/IEC N3092

void print(int a, int) {
std::printf("a = %d\n",a);

}

— end note]

7 In the function-body, a function-local predefined variable denotes a block-scope object of static storage du-
ration that is implicitly defined (see 3.3.3).

8 The function-local predefined variable __func__ is defined as if a definition of the form
static const char __func__[] = "function-name ";

had been provided, where function-name is an implementation-defined string. It is unspecified whether such
a variable has an address distinct from that of any other object in the program.101

[Example:
struct S {

S() : s(__func__) { } // OK
const char *s;

};
void f(const char * s = __func__); // error: __func__ is undeclared

— end example]

8.4.2 Explicitly-defaulted functions [dcl.fct.def.default]

1 A function definition of the form:

attribute-specifieropt decl-specifier-seqopt declarator = default ;

is called an explicitly-defaulted definition. A function that is explicitly defaulted shall

— be a special member function,

— have the same declared function type (except for possibly differing ref-qualifiers and except that in
the case of a copy constructor or copy assignment operator, the parameter type may be “reference to
non-const T”, where T is the name of the member function’s class) as if it had been implicitly declared,

— not have default arguments, and

— not have an exception-specification.

2 [Note: This implies that parameter types, return type, and cv-qualifiers must match the hypothetical implicit
declaration. — end note] An explicitly-defaulted function may be declared constexpr only if it would have
been implicitly declared as constexpr. If it is explicitly defaulted on its first declaration,

— it shall be public,

— it shall not be explicit,

— it shall not be virtual,

— it is implicitly considered to have the same exception-specification as if it had been implicitly de-
clared (15.4), and

101) Implementations are permitted to provide additional predefined variables with names that are reserved to the implemen-
tation (17.6.3.3.2). If a predefined variable is not used (3.2), its string value need not be present in the program image.

§ 8.4.2 193

c© ISO/IEC N3092

— in the case of a copy constructor, move constructor, copy assignment operator, or move assignment
operator, it shall have the same parameter type as if it had been implicitly declared.

3 [Note: Such a special member function may be trivial, and thus its accessibility and explicitness should
match the hypothetical implicit definition; see below. — end note] [Example:

struct S {
S(int a = 0) = default; // ill-formed: default argument
void operator=(const S&) = default; // ill-formed: non-matching return type
~S() throw() = default; // ill-formed: exception specification

private:
S(S&); // OK: private copy constructor

};
S::S(S&) = default; // OK: defines copy constructor

— end example]

4 Explicitly-defaulted functions and implicitly-declared functions are collectively called defaulted functions,
and the implementation shall provide implicit definitions for them (12.1 12.4, 12.8), which might mean
defining them as deleted. A special member function is user-provided if it is user-declared and not explicitly
defaulted on its first declaration. A user-provided explicitly-defaulted function is defined at the point where
it is explicitly defaulted; if such a function is implicitly defined as deleted, the program is ill-formed. [Note:
while an implicitly-declared special member function is inline (Clause 12), an explicitly-defaulted definition
may be non-inline. Non-inline definitions are user-provided, and hence non-trivial (12.1, 12.4, 12.8). This
rule enables efficient execution and concise definition while enabling a stable binary interface to an evolving
code base. — end note]

5 [Example:
struct trivial {

trivial() = default;
trivial(const trivial&) = default;
trivial(trivial&&) = default;
trivial& operator=(const trivial&) = default;
trivial& operator=(trivial&&) = default;
~trivial() = default;

};

struct nontrivial1 {
nontrivial1();

};
nontrivial1::nontrivial1() = default; // not inline

struct nontrivial2 {
nontrivial2();

};
inline nontrivial2::nontrivial2() = default; // not first declaration

struct nontrivial3 {
virtual ~nontrivial3() = 0; // virtual

};
inline nontrivial3::~nontrivial3() = default; // not first declaration

— end example]

§ 8.4.2 194

c© ISO/IEC N3092

8.4.3 Deleted definitions [dcl.fct.def.delete]

1 A function definition of the form:

attribute-specifieropt decl-specifier-seqopt declarator = delete ;

is called a deleted definition. A function with a deleted definition is also called a deleted function.

2 A program that refers to a deleted function implicitly or explicitly, other than to declare it, is ill-formed.
[Note: This includes calling the function implicitly or explicitly and forming a pointer or pointer-to-member
to the function. It applies even for references in expressions that are not potentially-evaluated. If a function
is overloaded, it is referenced only if the function is selected by overload resolution. — end note]

3 [Example: One can enforce non-default initialization and non-integral initialization with
struct sometype {

sometype() = delete; // OK, but redundant
some_type(std::intmax_t) = delete;
some_type(double);

};

— end example]

[Example: One can prevent use of a class in certain new expressions by using deleted definitions of a user-
declared operator new for that class.

struct sometype {
void *operator new(std::size_t) = delete;
void *operator new[](std::size_t) = delete;

};
sometype *p = new sometype; // error, deleted class operator new
sometype *q = new sometype[3]; // error, deleted class operator new[]

— end example]

[Example: One can make a class uncopyable, i.e. move-only, by using deleted definitions of the copy
constructor and copy assignment operator, and then providing defaulted definitions of the move constuctor
and move assignment operator.

struct moveonly {
moveonly() = default;
moveonly(const moveonly&) = delete;
moveonly(moveonly&&) = default;
moveonly& operator=(const moveonly&) = delete;
moveonly& operator=(moveonly&&) = default;
~moveonly() = default;

};
moveonly *p;
moveonly q(*p); // error, deleted copy constructor

— end example]

4 A deleted function is implicitly inline. [Note: The one-definition rule (3.2) applies to deleted definitions.
— end note] A deleted definition of a function shall be the first declaration of the function or, for an explicit
specialization of a function template, the first declaration of that specialization. [Example:

struct sometype {
sometype();

};

§ 8.4.3 195

c© ISO/IEC N3092

sometype::sometype() = delete; // ill-formed; not first declaration

— end example]

8.5 Initializers [dcl.init]

1 A declarator can specify an initial value for the identifier being declared. The identifier designates a variable
being initialized. The process of initialization described in the remainder of 8.5 applies also to initializa-
tions specified by other syntactic contexts, such as the initialization of function parameters with argument
expressions (5.2.2) or the initialization of return values (6.6.3).

initializer:
brace-or-equal-initializer
(expression-list)

brace-or-equal-initializer:
= initializer-clause
braced-init-list

initializer-clause:
assignment-expression
braced-init-list

initializer-list:
initializer-clause ...opt

initializer-list , initializer-clause ...opt

braced-init-list:
{ initializer-list ,opt }
{ }

2 Automatic, register, thread_local, static, and namespace-scoped external variables can be initialized by
arbitrary expressions involving literals and previously declared variables and functions. [Example:

int f(int);
int a = 2;
int b = f(a);
int c(b);

— end example]

3 [Note: default argument expressions are more restricted; see 8.3.6.

4 The order of initialization of variables with static storage duration is described in 3.6 and 6.7. — end note]

5 To zero-initialize an object or reference of type T means:

— if T is a scalar type (3.9), the object is set to the value 0 (zero), taken as an integral constant expression,
converted to T;102

— if T is a (possibly cv-qualified) non-union class type, each non-static data member and each base-class
subobject is zero-initialized;

— if T is a (possibly cv-qualified) union type, the object’s first non-static named data member is zero-
initialized;

— if T is an array type, each element is zero-initialized;

— if T is a reference type, no initialization is performed.

102) As specified in 4.10, converting an integral constant expression whose value is 0 to a pointer type results in a null pointer
value.

§ 8.5 196

c© ISO/IEC N3092

6 To default-initialize an object of type T means:

— if T is a (possibly cv-qualified) class type (Clause 9), the default constructor for T is called (and the
initialization is ill-formed if T has no accessible default constructor);

— if T is an array type, each element is default-initialized;

— otherwise, no initialization is performed.

If a program calls for the default initialization of an object of a const-qualified type T, T shall be a class type
with a user-provided default constructor.

7 To value-initialize an object of type T means:

— if T is a (possibly cv-qualified) class type (Clause 9) with a user-provided constructor (12.1), then the
default constructor for T is called (and the initialization is ill-formed if T has no accessible default
constructor);

— if T is a (possibly cv-qualified) non-union class type without a user-provided constructor, then the object
is zero-initialized and, if T’s implicitly-declared default constructor is non-trivial, that constructor is
called.

— if T is an array type, then each element is value-initialized;

— otherwise, the object is zero-initialized.

8 A program that calls for default-initialization or value-initialization of an entity of reference type is ill-formed.

9 [Note: Every object of static storage duration is zero-initialized at program startup before any other initial-
ization takes place. In some cases, additional initialization is done later. — end note]

10 An object whose initializer is an empty set of parentheses, i.e., (), shall be value-initialized.

[Note: since () is not permitted by the syntax for initializer ,
X a();

is not the declaration of an object of class X, but the declaration of a function taking no argument and
returning an X. The form () is permitted in certain other initialization contexts (5.3.4, 5.2.3, 12.6.2). — end
note]

11 If no initializer is specified for an object, the object is default-initialized; if no initialization is performed, an
object with automatic or dynamic storage duration has indeterminate value. [Note: objects with static or
thread storage duration are zero-initialized, see 3.6.2. — end note]

12 An initializer for a static member is in the scope of the member’s class. [Example:
int a;

struct X {
static int a;
static int b;

};

int X::a = 1;
int X::b = a; // X::b = X::a

— end example]

§ 8.5 197

c© ISO/IEC N3092

13 The form of initialization (using parentheses or =) is generally insignificant, but does matter when the
initializer or the entity being initialized has a class type; see below. A parenthesized initializer can be a list
of expressions only when the entity being initialized has a class type.

14 The initialization that occurs in the form
T x = a;

as well as in argument passing, function return, throwing an exception (15.1), handling an exception (15.3),
and aggregate member initialization (8.5.1) is called copy-initialization. [Note: Copy-initialization may
invoke a move (12.8). — end note]

15 The initialization that occurs in the forms
T x(a);
T x{a};

as well as in new expressions (5.3.4), static_cast expressions (5.2.9), functional notation type conversions
(5.2.3), and base and member initializers (12.6.2) is called direct-initialization.

16 The semantics of initializers are as follows. The destination type is the type of the object or reference being
initialized and the source type is the type of the initializer expression. The source type is not defined when
the initializer is a braced-init-list or when it is a parenthesized list of expressions.

— If the initializer is a braced-init-list, the object is list-initialized (8.5.4).

— If the destination type is a reference type, see 8.5.3.

— If the destination type is an array of characters, an array of char16_t, an array of char32_t, or an
array of wchar_t, and the initializer is a string literal, see 8.5.2.

— If the initializer is (), the object is value-initialized.

— Otherwise, if the destination type is an array, the program is ill-formed.

— If the destination type is a (possibly cv-qualified) class type:

— If the initialization is direct-initialization, or if it is copy-initialization where the cv-unqualified
version of the source type is the same class as, or a derived class of, the class of the destination,
constructors are considered. The applicable constructors are enumerated (13.3.1.3), and the best
one is chosen through overload resolution (13.3). The constructor so selected is called to initialize
the object, with the initializer expression(s) as its argument(s). If no constructor applies, or the
overload resolution is ambiguous, the initialization is ill-formed.

— Otherwise (i.e., for the remaining copy-initialization cases), user-defined conversion sequences
that can convert from the source type to the destination type or (when a conversion function
is used) to a derived class thereof are enumerated as described in 13.3.1.4, and the best one is
chosen through overload resolution (13.3). If the conversion cannot be done or is ambiguous, the
initialization is ill-formed. The function selected is called with the initializer expression as its
argument; if the function is a constructor, the call initializes a temporary of the cv-unqualified
version of the destination type. The temporary is a prvalue. The result of the call (which is the
temporary for the constructor case) is then used to direct-initialize, according to the rules above,
the object that is the destination of the copy-initialization. In certain cases, an implementation
is permitted to eliminate the copying inherent in this direct-initialization by constructing the
intermediate result directly into the object being initialized; see 12.2, 12.8.

— Otherwise, if the source type is a (possibly cv-qualified) class type, conversion functions are considered.
The applicable conversion functions are enumerated (13.3.1.5), and the best one is chosen through

§ 8.5 198

c© ISO/IEC N3092

overload resolution (13.3). The user-defined conversion so selected is called to convert the initializer
expression into the object being initialized. If the conversion cannot be done or is ambiguous, the
initialization is ill-formed.

— Otherwise, the initial value of the object being initialized is the (possibly converted) value of the ini-
tializer expression. Standard conversions (Clause 4) will be used, if necessary, to convert the initializer
expression to the cv-unqualified version of the destination type; no user-defined conversions are con-
sidered. If the conversion cannot be done, the initialization is ill-formed. [Note: an expression of type
“cv1 T” can initialize an object of type “cv2 T” independently of the cv-qualifiers cv1 and cv2.

int a;
const int b = a;
int c = b;

— end note]

17 An initializer-clause followed by an ellipsis is a pack expansion (14.5.3).

8.5.1 Aggregates [dcl.init.aggr]

1 An aggregate is an array or a class (Clause 9) with no user-provided constructors (12.1), no brace-or-equal-
initializers for non-static data members (9.2), no private or protected non-static data members (Clause 11),
no base classes (Clause 10), and no virtual functions (10.3).

2 When an aggregate is initialized by an initializer list, as specified in 8.5.4, the elements of the initializer list
are taken as initializers for the members of the aggregate, in increasing subscript or member order. Each
member is copy-initialized from the corresponding initializer-clause. If the initializer-clause is an expression
and a narrowing conversion (8.5.4) is required to convert the expression, the program is ill-formed. [Note:
If an initializer-clause is itself an initializer list, the member is list-initialized, which will result in a recursive
application of the rules in this section if the member is an aggregate. — end note] [Example:

struct A {
int x;
struct B {

int i;
int j;

} b;
} a = { 1, { 2, 3 } };

initializes a.x with 1, a.b.i with 2, a.b.j with 3. — end example]

3 An aggregate that is a class can also be initialized with a single expression not enclosed in braces, as described
in 8.5.

4 An array of unknown size initialized with a brace-enclosed initializer-list containing n initializer-clauses,
where n shall be greater than zero, is defined as having n elements (8.3.4). [Example:

int x[] = { 1, 3, 5 };

declares and initializes x as a one-dimensional array that has three elements since no size was specified and
there are three initializers. — end example] An empty initializer list {} shall not be used as the initializer-
clause for an array of unknown bound.103

5 Static data members and anonymous bit fields are not considered members of the class for purposes of
aggregate initialization. [Example:

103) The syntax provides for empty initializer-lists, but nonetheless C++ does not have zero length arrays.

§ 8.5.1 199

c© ISO/IEC N3092

struct A {
int i;
static int s;
int j;
int :17;
int k;

} a = { 1, 2, 3 };

Here, the second initializer 2 initializes a.j and not the static data member A::s, and the third initializer
3 initializes a.k and not the anonymous bit field before it. — end example]

6 An initializer-list is ill-formed if the number of initializer-clauses exceeds the number of members or elements
to initialize. [Example:

char cv[4] = { ’a’, ’s’, ’d’, ’f’, 0 }; // error

is ill-formed. — end example]

7 If there are fewer initializer-clauses in the list than there are members in the aggregate, then each member
not explicitly initialized shall be value-initialized (8.5). [Example:

struct S { int a; char* b; int c; };
S ss = { 1, "asdf" };

initializes ss.a with 1, ss.b with "asdf", and ss.c with the value of an expression of the form int(), that
is, 0. — end example]

8 If an aggregate class C contains a subaggregate member m that has no members for purposes of aggregate
initialization, the initializer-clause for m shall not be omitted from an initializer-list for an object of type C
unless the initializer-clauses for all members of C following m are also omitted. [Example:

struct S { } s;
struct A {

S s1;
int i1;
S s2;
int i2;
S s3;
int i3;

} a = {
{ }, // Required initialization
0,
s, // Required initialization
0

}; // Initialization not required for A::s3 because A::i3 is also not initialized

— end example]

9 If an incomplete or empty initializer-list leaves a member of reference type uninitialized, the program is
ill-formed.

10 When initializing a multi-dimensional array, the initializer-clauses initialize the elements with the last (right-
most) index of the array varying the fastest (8.3.4). [Example:

int x[2][2] = { 3, 1, 4, 2 };

initializes x[0][0] to 3, x[0][1] to 1, x[1][0] to 4, and x[1][1] to 2. On the other hand,

§ 8.5.1 200

c© ISO/IEC N3092

float y[4][3] = {
{ 1 }, { 2 }, { 3 }, { 4 }

};

initializes the first column of y (regarded as a two-dimensional array) and leaves the rest zero. — end
example]

11 In a declaration of the form
T x = { a };

braces can be elided in an initializer-list as follows.104 If the initializer-list begins with a left brace, then
the succeeding comma-separated list of initializer-clauses initializes the members of a subaggregate; it is
erroneous for there to be more initializer-clauses than members. If, however, the initializer-list for a sub-
aggregate does not begin with a left brace, then only enough initializer-clauses from the list are taken to
initialize the members of the subaggregate; any remaining initializer-clauses are left to initialize the next
member of the aggregate of which the current subaggregate is a member. [Example:

float y[4][3] = {
{ 1, 3, 5 },
{ 2, 4, 6 },
{ 3, 5, 7 },

};

is a completely-braced initialization: 1, 3, and 5 initialize the first row of the array y[0], namely y[0][0],
y[0][1], and y[0][2]. Likewise the next two lines initialize y[1] and y[2]. The initializer ends early and
therefore y[3]s elements are initialized as if explicitly initialized with an expression of the form float(),
that is, are initialized with 0.0. In the following example, braces in the initializer-list are elided; however
the initializer-list has the same effect as the completely-braced initializer-list of the above example,

float y[4][3] = {
1, 3, 5, 2, 4, 6, 3, 5, 7

};

The initializer for y begins with a left brace, but the one for y[0] does not, therefore three elements from
the list are used. Likewise the next three are taken successively for y[1] and y[2]. — end example]

12 All implicit type conversions (Clause 4) are considered when initializing the aggregate member with an
assignment-expression. If the assignment-expression can initialize a member, the member is initialized.
Otherwise, if the member is itself a subaggregate, brace elision is assumed and the assignment-expression
is considered for the initialization of the first member of the subaggregate. [Note: As specified above,
brace elision cannot apply to subaggregates with no members for purposes of aggregate initialization; an
initializer-clause for the entire subobject is required. — end note]

[Example:
struct A {

int i;
operator int();

};
struct B {

A a1, a2;
int z;

};

104) Braces cannot be elided in other uses of list-initialization.

§ 8.5.1 201

c© ISO/IEC N3092

A a;
B b = { 4, a, a };

Braces are elided around the initializer-clause for b.a1.i. b.a1.i is initialized with 4, b.a2 is initialized
with a, b.z is initialized with whatever a.operator int() returns. — end example]

13 [Note: An aggregate array or an aggregate class may contain members of a class type with a user-provided
constructor (12.1). Initialization of these aggregate objects is described in 12.6.1. — end note]

14 [Note: Whether the initialization of aggregates with static storage duration is static or dynamic is specified
in 3.6.2 and 6.7. — end note]

15 When a union is initialized with a brace-enclosed initializer, the braces shall only contain an initializer-clause
for the first non-static data member of the union. [Example:

union u { int a; char* b; };
u a = { 1 };
u b = a;
u c = 1; // error
u d = { 0, "asdf" }; // error
u e = { "asdf" }; // error

— end example]

16 [Note: As described above, the braces around the initializer-clause for a union member can be omitted if
the union is a member of another aggregate. — end note]

17 The full-expressions in an initializer-clause are evaluated in the order in which they appear.

8.5.2 Character arrays [dcl.init.string]

1 A char array (whether plain char, signed char, or unsigned char), char16_t array, char32_t array, or
wchar_t array can be initialized by a narrow character literal, char16_t string literal, char32_t string
literal, or wide string literal, respectively, or by an appropriately-typed string literal enclosed in braces.
Successive characters of the value of the string literal initialize the elements of the array. [Example:

char msg[] = "Syntax error on line %s\n";

shows a character array whose members are initialized with a string-literal. Note that because ’\n’ is a
single character and because a trailing ’\0’ is appended, sizeof(msg) is 25. — end example]

2 There shall not be more initializers than there are array elements. [Example:
char cv[4] = "asdf"; // error

is ill-formed since there is no space for the implied trailing ’\0’. — end example]

3 If there are fewer initializers than there are array elements, each element not explicitly initialized shall be
zero-initialized (8.5).

8.5.3 References [dcl.init.ref]

1 A variable declared to be a T& or T&&, that is, “reference to type T” (8.3.2), shall be initialized by an object,
or function, of type T or by an object that can be converted into a T. [Example:

int g(int);
void f() {

int i;

§ 8.5.3 202

c© ISO/IEC N3092

int& r = i; // r refers to i
r = 1; // the value of i becomes 1
int* p = &r; // p points to i
int& rr = r; // rr refers to what r refers to, that is, to i
int (&rg)(int) = g; // rg refers to the function g
rg(i); // calls function g
int a[3];
int (&ra)[3] = a; // ra refers to the array a
ra[1] = i; // modifies a[1]

}

— end example]

2 A reference cannot be changed to refer to another object after initialization. Note that initialization of a
reference is treated very differently from assignment to it. Argument passing (5.2.2) and function value
return (6.6.3) are initializations.

3 The initializer can be omitted for a reference only in a parameter declaration (8.3.5), in the declaration of
a function return type, in the declaration of a class member within its class definition (9.2), and where the
extern specifier is explicitly used. [Example:

int& r1; // error: initializer missing
extern int& r2; // OK

— end example]

4 Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is reference-related to “cv2 T2” if T1 is the same type as T2, or
T1 is a base class of T2. “cv1 T1” is reference-compatible with “cv2 T2” if T1 is reference-related to T2 and cv1
is the same cv-qualification as, or greater cv-qualification than, cv2. For purposes of overload resolution,
cases for which cv1 is greater cv-qualification than cv2 are identified as reference-compatible with added
qualification (see 13.3.3.2). In all cases where the reference-related or reference-compatible relationship of
two types is used to establish the validity of a reference binding, and T1 is a base class of T2, a program
that necessitates such a binding is ill-formed if T1 is an inaccessible (Clause 11) or ambiguous (10.2) base
class of T2.

5 A reference to type “cv1 T1” is initialized by an expression of type “cv2 T2” as follows:

— If the reference is an lvalue reference and the initializer expression

— is an lvalue (but is not a bit-field), and “cv1 T1” is reference-compatible with “cv2 T2,” or

— has a class type (i.e., T2 is a class type), where T1 is not reference-related to T2, and can be
implicitly converted to an lvalue of type “cv3 T3,” where “cv1 T1” is reference-compatible with “cv3
T3”105 (this conversion is selected by enumerating the applicable conversion functions (13.3.1.6)
and choosing the best one through overload resolution (13.3)),

then the reference is bound to the initializer expression lvalue in the first case and to the lvalue result
of the conversion in the second case (or, in either case, to the appropriate base class subobject of the
object). [Note: the usual lvalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3)
standard conversions are not needed, and therefore are suppressed, when such direct bindings to lvalues
are done. — end note]

[Example:

105) This requires a conversion function (12.3.2) returning a reference type.

§ 8.5.3 203

c© ISO/IEC N3092

double d = 2.0;
double& rd = d; // rd refers to d
const double& rcd = d; // rcd refers to d

struct A { };
struct B : A { } b;
A& ra = b; // ra refers to A subobject in b
const A& rca = b; // rca refers to A subobject in b

— end example]

— Otherwise, the reference shall be an lvalue reference to a non-volatile const type (i.e., cv1 shall be
const), or the reference shall be an rvalue reference and the initializer expression shall be an rvalue or
have a function type. [Example:

double& rd2 = 2.0; // error: not an lvalue and reference not const
int i = 2;
double& rd3 = i; // error: type mismatch and reference not const
double&& rd4 = i; // error: rvalue reference cannot bind to lvalue

— end example]

— If T1 is a function type, then

— if T2 is the same type as T1, the reference is bound to the initializer expression lvalue;

— if T2 is a class type and the initializer expression can be implicitly converted to an lvalue of
type T1 (this conversion is selected by enumerating the applicable conversion functions (13.3.1.6)
and choosing the best one through overload resolution (13.3)), the reference is bound to the
function lvalue that is the result of the conversion;

— otherwise, the program is ill-formed.

— Otherwise, if T2 is a class type and

— the initializer expression is an rvalue and “cv1 T1” is reference-compatible with “cv2 T2”, or

— T1 is not reference-related to T2 and the initializer expression can be implicitly converted to an
rvalue of type “cv3 T3” (this conversion is selected by enumerating the applicable conversion
functions (13.3.1.6) and choosing the best one through overload resolution (13.3)),

then the reference is bound to the initializer expression rvalue in the first case and to the object
that is the result of the conversion in the second case (or, in either case, to the appropriate base
class subobject of the object).

[Example:
struct A { };
struct B : A { } b;
extern B f();
const A& rca = f(); // bound to the A subobject of the B rvalue.
A&& rcb = f(); // same as above
struct X {

operator B();
} x;
const A& r = x; // bound to the A subobject of the result of the conversion

— end example]

§ 8.5.3 204

c© ISO/IEC N3092

— If the initializer expression is an rvalue, with T2 an array type, and “cv1 T1” is reference-compatible
with “cv2 T2,” the reference is bound to the object represented by the rvalue (see 3.10).

— Otherwise, a temporary of type “cv1 T1” is created and initialized from the initializer expression
using the rules for a non-reference copy-initialization (8.5). The reference is then bound to the
temporary. If T1 is reference-related to T2, cv1 must be the same cv-qualification as, or greater
cv-qualification than, cv2; otherwise, the program is ill-formed. [Example:

const double& rcd2 = 2; // rcd2 refers to temporary with value 2.0
double&& rcd3 = 2; // rcd3 refers to temporary with value 2.0
const volatile int cvi = 1;
const int& r = cvi; // error: type qualifiers dropped

— end example]

In all cases except the last (i.e., creating and initializing a temporary from the initializer expression), the
reference is said to bind directly to the initializer expression.

6 [Note: 12.2 describes the lifetime of temporaries bound to references. — end note]

8.5.4 List-initialization [dcl.init.list]

1 List-initialization is initialization of an object or reference from a braced-init-list. Such an initializer is
called an initializer list, and the comma-separated initializer-clauses of the list are called the elements of the
initializer list. An initializer list may be empty. List-initialization can occur in direct-initialization or copy-
initialization contexts; list-initialization in a direct-initialization context is called direct-list-initialization and
list-initialization in a copy-initialization context is called copy-list-initialization. [Note: List-initialization
can be used

— as the initializer in a variable definition (8.5)

— as the initializer in a new expression (5.3.4)

— in a return statement (6.6.3)

— as a function argument (5.2.2)

— as a subscript (5.2.1)

— as an argument to a constructor invocation (8.5, 5.2.3)

— as an initializer for a non-static data member (9.2)

— as a base-or-member initializer (12.6.2)

— on the right-hand side of an assignment (5.17)

[Example:
int a = {1};
std::complex<double> z{1,2};
new std::vector<std::string>{"once", "upon", "a", "time"}; // 4 string elements
f({"Nicholas","Annemarie"}); // pass list of two elements
return { "Norah" }; // return list of one element
int* e {}; // initialization to zero / null pointer
x = double{1}; // explicitly construct a double
std::map<std::string,int> anim = { {"bear",4}, {"cassowary",2}, {"tiger",7} };

§ 8.5.4 205

c© ISO/IEC N3092

— end example] — end note]

2 A constructor is an initializer-list constructor if its first parameter is of type std::initializer_list<E>
or reference to possibly cv-qualified std::initializer_list<E> for some type E, and either there are
no other parameters or else all other parameters have default arguments (8.3.6). [Note: Initializer-list
constructors are favored over other constructors in list-initialization (13.3.1.7). — end note] The template
std::initializer_list is not predefined; if the header <initializer_list> is not included prior to a use
of std::initializer_list — even an implicit use in which the type is not named (7.1.6.4) — the program
is ill-formed.

3 List-initialization of an object or reference of type T is defined as follows:

— If the initializer list has no elements and T is a class type with a default constructor, the object is
value-initialized.

— Otherwise, if the initializer list has no elements and T is an aggregate, each of the members of T is
initialized from an empty initializer list. [Example:

struct A {
A(std::initializer_list<int>); // #1

};
struct B {

A a;
};
B b { }; // OK, uses #1
B b{ 1 }; // error

— end example]

— Otherwise, if T is an aggregate, aggregate initialization is performed (8.5.1).

[Example:
double ad[] = { 1, 2.0 }; // OK
int ai[] = { 1, 2.0 }; // error: narrowing

struct S2 {
int m1;
double m2, m3;

};
S2 s21 = { 1, 2, 3.0 }; // OK
S2 s22 { 1.0, 2, 3 }; // error: narrowing
S2 s23 { }; // OK: default to 0,0,0

— end example]

— Otherwise, if T is a specialization of std::initializer_list<E>, an initializer_list object is
constructed as described below and used to initialize the object according to the rules for initialization
of an object from a class of the same type (8.5).

— Otherwise, if T is a class type, constructors are considered. If T has an initializer-list constructor, the
argument list consists of the initializer list as a single argument; otherwise, the argument list consists
of the elements of the initializer list. The applicable constructors are enumerated (13.3.1.7) and the
best one is chosen through overload resolution (13.3). If a narrowing conversion (see below) is required
to convert any of the arguments, the program is ill-formed.

[Example:

§ 8.5.4 206

c© ISO/IEC N3092

struct S {
S(std::initializer_list<double>); // #1
S(std::initializer_list<int>); // #2
S(); // #3
// ...

};
S s1 = { 1.0, 2.0, 3.0 }; // invoke #1
S s2 = { 1, 2, 3 }; // invoke #2
S s3 = { }; // invoke #3

— end example]

[Example:
struct Map {

Map(std::initializer_list<std::pair<std::string,int>>);
};
Map ship = {{"Sophie",14}, {"Surprise",28}};

— end example]

[Example:
struct S {

// no initializer-list constructors
S(int, double, double); // #1
S(); // #2
// ...

};
S s1 = { 1, 2, 3.0 }; // OK: invoke #1
S s2 { 1.0, 2, 3 }; // error: narrowing
S s3 { }; // OK: invoke #2

— end example]

— Otherwise, if T is a reference to class type or if T is any reference type and the initializer list has no
elements, a prvalue temporary of the type referenced by T is list-initialized, and the reference is bound
to that temporary. [Note: As usual, the binding will fail and the program is ill-formed if the reference
type is an lvalue reference to a non-const type. — end note]

[Example:
struct S {

S(std::initializer_list<double>); // #1
S(const std::string&); // #2
// ...

};
const S& r1 = { 1, 2, 3.0 }; // OK: invoke #1
const S& r2 { "Spinach" }; // OK: invoke #2
S& r3 = { 1, 2, 3 }; // error: initializer is not an lvalue

— end example]

— Otherwise, if the initializer list has a single element, the object is initialized from that element; if a
narrowing conversion (see below) is required to convert the element to T, the program is ill-formed.

[Example:

§ 8.5.4 207

c© ISO/IEC N3092

int x1 {2}; // OK
int x2 {2.0}; // error: narrowing

— end example]

— Otherwise, if the initializer list has no elements, the object is value-initialized.

[Example:
int** pp {}; // initialized to null pointer

— end example]

— Otherwise, the program is ill-formed.

[Example:
struct A { int i; int j; };
A a1 { 1, 2 }; // aggregate initialization
A a2 { 1.2 }; // error: narrowing
struct B {

B(std::initializer_list<int>);
};
B b1 { 1, 2 }; // creates initializer_list<int> and calls constructor
B b2 { 1, 2.0 }; // error: narrowing
struct C {

C(int i, double j);
};
C c1 = { 1, 2.2 }; // calls constructor with arguments (1, 2.2)
C c2 = { 1.1, 2 }; // error: narrowing

int j { 1 }; // initialize to 1
int k { }; // initialize to 0

— end example]

4 An object of type std::initializer_list<E> is constructed from an initializer list as if the implementation
allocated an array of N elements of type E, where N is the number of elements in the initializer list.
Each element of that array is copy-initialized with the corresponding element of the initializer list, and
the std::initializer_list<E> object is constructed to refer to that array. If a narrowing conversion is
required to initialize any of the elements, the program is ill-formed.[Example:

struct X {
X(std::initializer_list<double> v);

};
X x{ 1,2,3 };

The initialization will be implemented in a way roughly equivalent to this:
double __a[3] = {double{1}, double{2}, double{3}};
X x(std::initializer_list<double>(__a, __a+3));

assuming that the implementation can construct an initializer_list object with a pair of pointers. — end
example]

5 The lifetime of the array is the same as that of the initializer_list object. [Example:

§ 8.5.4 208

c© ISO/IEC N3092

typedef std::complex<double> cmplx;
std::vector<cmplx> v1 = { 1, 2, 3 };

void f() {
std::vector<cmplx> v2{ 1, 2, 3 };
std::initializer_list<int> i3 = { 1, 2, 3 };

}

For v1 and v2, the initializer_list object and array created for { 1, 2, 3 } have full-expression lifetime.
For i3, the initializer_list object and array have automatic lifetime. — end example] [Note: The
implementation is free to allocate the array in read-only memory if an explicit array with the same initializer
could be so allocated. — end note]

6 A narrowing conversion is an implicit conversion

— from a floating-point type to an integer type, or

— from long double to double or float, or from double to float, except where the source is a constant
expression and the actual value after conversion is within the range of values that can be represented
(even if it cannot be represented exactly), or

— from an integer type or unscoped enumeration type to a floating-point type, except where the source
is a constant expression and the actual value after conversion will fit into the target type and will
produce the original value when converted back to the original type, or

— from an integer type or unscoped enumeration type to an integer type that cannot represent all the
values of the original type, except where the source is a constant expression and the actual value after
conversion will fit into the target type and will produce the original value when converted back to the
original type.

[Note: As indicated above, such conversions are not allowed at the top level in list-initializations. — end
note] [Example:

int x = 999; // x is not a constant expression
const int y = 999;
const int z = 99;
char c1 = x; // OK, though it might narrow (in this case, it does narrow)
char c2{x}; // error: might narrow
char c3{y}; // error: narrows (assuming char is 8 bits)
char c4{z}; // OK: no narrowing needed
unsigned char uc1 = {5}; // OK: no narrowing needed
unsigned char uc2 = {-1}; // error: narrows
unsigned int ui1 = {-1}; // error: narrows
signed int si1 =

{ (unsigned int)-1 }; // error: narrows
int ii = {2.0}; // error: narrows
float f1 { x }; // error: might narrow
float f2 { 7 }; // OK: 7 can be exactly represented as a float
int f(int);
int a[] =

{ 2, f(2), f(2.0) }; // OK: the double-to-int conversion is not at the top level

— end example]

§ 8.5.4 209

c© ISO/IEC N3092

9 Classes [class]
1 A class is a type. Its name becomes a class-name (9.1) within its scope.

class-name:
identifier
simple-template-id

Class-specifiers and elaborated-type-specifiers (7.1.6.3) are used to make class-names. An object of a class
consists of a (possibly empty) sequence of members and base class objects.

class-specifier:
class-head { member-specificationopt }

class-head:
class-key attribute-specifieropt identifieropt base-clauseopt

class-key attribute-specifieropt nested-name-specifier identifier base-clauseopt

class-key attribute-specifieropt nested-name-specifieropt simple-template-id base-clauseopt

class-key:
class
struct
union

A class-specifier where the class-head omits the optional identifier defines an unnamed class.

2 A class-name is inserted into the scope in which it is declared immediately after the class-name is seen.
The class-name is also inserted into the scope of the class itself; this is known as the injected-class-name.
For purposes of access checking, the injected-class-name is treated as if it were a public member name. A
class-specifier is commonly referred to as a class definition. A class is considered defined after the closing
brace of its class-specifier has been seen even though its member functions are in general not yet defined.
The optional attribute-specifier appertains to the class; the attributes in the attribute-specifier are thereafter
considered attributes of the class whenever it is named.

3 Complete objects and member subobjects of class type shall have nonzero size.106 [Note: Class objects can
be assigned, passed as arguments to functions, and returned by functions (except objects of classes for which
copying or moving has been restricted; see 12.8). Other plausible operators, such as equality comparison,
can be defined by the user; see 13.5. — end note]

4 A union is a class defined with the class-key union; it holds only one data member at a time (9.5). [Note:
aggregates of class type are described in 8.5.1. — end note]

5 A trivially copyable class is a class that:

— has no non-trivial copy constructors (12.8),

— has no non-trivial move constructors (12.8),

— has no non-trivial copy assignment operators (13.5.3, 12.8),

— has no non-trivial move assignment operators (13.5.3, 12.8), and

— has a trivial destructor (12.4).

106) Base class subobjects are not so constrained.

210

c© ISO/IEC N3092

A trivial class is a class that has a trivial default constructor (12.1) and is trivially copyable.

[Note: in particular, a trivially copyable or trivial class does not have virtual functions or virtual base
classes. — end note]

6 A standard-layout class is a class that:

— has no non-static data members of type non-standard-layout class (or array of such types) or reference,

— has no virtual functions (10.3) and no virtual base classes (10.1),

— has the same access control (Clause 11) for all non-static data members,

— has no non-standard-layout base classes,

— either has no non-static data members in the most-derived class and at most one base class with
non-static data members, or has no base classes with non-static data members, and

— has no base classes of the same type as the first non-static data member.107

7 A standard-layout struct is a standard-layout class defined with the class-key struct or the class-key class.
A standard-layout union is a standard-layout class defined with the class-key union.

8 [Note: standard-layout classes are useful for communicating with code written in other programming lan-
guages. Their layout is specified in 9.2. — end note]

9 A POD struct is a class that is both a trivial class and a standard-layout class, and has no non-static data
members of type non-POD struct, non-POD union (or array of such types). Similarly, a POD union is a
union that is both a trivial class and a standard layout class, and has no non-static data members of type
non-POD struct, non-POD union (or array of such types). A POD class is a class that is either a POD
struct or a POD union.

[Example:
struct N { // neither trivial nor standard-layout

int i;
int j;
virtual ~N();

};

struct T { // trivial but not standard-layout
int i;

private:
int j;

};

struct SL { // standard-layout but not trivial
int i;
int j;
~SL();

};

struct POD { // both trivial and standard-layout
int i;
int j;

};

107) This ensures that two subobjects that have the same class type and that belong to the same most-derived object are not
allocated at the same address (5.10).

211

c© ISO/IEC N3092

— end example]

10 If a class-head contains a nested-name-specifier , the class-specifier shall refer to a class that was previously
declared directly in the class or namespace to which the nested-name-specifier refers, or in an element of
the inline namespace set (7.3.1) of that namespace (i.e., not merely inherited or introduced by a using-
declaration), and the class-specifier shall appear in a namespace enclosing the previous declaration. In such
cases, the nested-name-specifier of the class-head of the definition shall not begin with a decltype-specifier .

9.1 Class names [class.name]

1 A class definition introduces a new type. [Example:
struct X { int a; };
struct Y { int a; };
X a1;
Y a2;
int a3;

declares three variables of three different types. This implies that
a1 = a2; // error: Y assigned to X
a1 = a3; // error: int assigned to X

are type mismatches, and that
int f(X);
int f(Y);

declare an overloaded (Clause 13) function f() and not simply a single function f() twice. For the same
reason,

struct S { int a; };
struct S { int a; }; // error, double definition

is ill-formed because it defines S twice. — end example]

2 A class declaration introduces the class name into the scope where it is declared and hides any class, variable,
function, or other declaration of that name in an enclosing scope (3.3). If a class name is declared in a scope
where a variable, function, or enumerator of the same name is also declared, then when both declarations
are in scope, the class can be referred to only using an elaborated-type-specifier (3.4.4). [Example:

struct stat {
// ...

};

stat gstat; // use plain stat to
// define variable

int stat(struct stat*); // redeclare stat as function

void f() {
struct stat* ps; // struct prefix needed

// to name struct stat
stat(ps); // call stat()

}

§ 9.1 212

c© ISO/IEC N3092

— end example] A declaration consisting solely of class-key identifier; is either a redeclaration of the name
in the current scope or a forward declaration of the identifier as a class name. It introduces the class name
into the current scope. [Example:

struct s { int a; };

void g() {
struct s; // hide global struct s

// with a block-scope declaration
s* p; // refer to local struct s
struct s { char* p; }; // define local struct s
struct s; // redeclaration, has no effect

}

— end example] [Note: Such declarations allow definition of classes that refer to each other. [Example:
class Vector;

class Matrix {
// ...
friend Vector operator*(const Matrix&, const Vector&);

};

class Vector {
// ...
friend Vector operator*(const Matrix&, const Vector&);

};

Declaration of friends is described in 11.4, operator functions in 13.5. — end example] — end note]

3 [Note: An elaborated-type-specifier (7.1.6.3) can also be used as a type-specifier as part of a declaration. It
differs from a class declaration in that if a class of the elaborated name is in scope the elaborated name will
refer to it. — end note] [Example:

struct s { int a; };

void g(int s) {
struct s* p = new struct s; // global s
p->a = s; // parameter s

}

— end example]

4 [Note: The declaration of a class name takes effect immediately after the identifier is seen in the class
definition or elaborated-type-specifier . For example,

class A * A;

first specifies A to be the name of a class and then redefines it as the name of a pointer to an object of that
class. This means that the elaborated form class A must be used to refer to the class. Such artistry with
names can be confusing and is best avoided. — end note]

5 A typedef-name (7.1.3) that names a class type, or a cv-qualified version thereof, is also a class-name. If a
typedef-name that names a cv-qualified class type is used where a class-name is required, the cv-qualifiers

§ 9.1 213

c© ISO/IEC N3092

are ignored. A typedef-name shall not be used as the identifier in a class-head.

9.2 Class members [class.mem]

member-specification:
member-declaration member-specificationopt

access-specifier : member-specificationopt

member-declaration:
attribute-specifieropt decl-specifier-seqopt

member-declarator-listopt ;
function-definition ;opt

::opt nested-name-specifier templateopt unqualified-id ;
using-declaration
static_assert-declaration
template-declaration

member-declarator-list:
member-declarator
member-declarator-list , member-declarator

member-declarator:
declarator pure-specifieropt

declarator brace-or-equal-initializeropt

identifieropt attribute-specifieropt : constant-expression
pure-specifier:

= 0

1 The member-specification in a class definition declares the full set of members of the class; no member
can be added elsewhere. Members of a class are data members, member functions (9.3), nested types,
and enumerators. Data members and member functions are static or non-static; see 9.4. Nested types are
classes (9.1, 9.7) and enumerations (7.2) defined in the class, and arbitrary types declared as members by use
of a typedef declaration (7.1.3). The enumerators of an unscoped enumeration (7.2) defined in the class are
members of the class. Except when used to declare friends (11.4) or to introduce the name of a member of a
base class into a derived class (7.3.3, 11.3), member-declarations declare members of the class, and each such
member-declaration shall declare at least one member name of the class. A member shall not be declared
twice in the member-specification, except that a nested class or member class template can be declared and
then later defined, and except that an enumeration can be introduced with an opaque-enum-declearation
and later redeclared with an enum-specifier .

A class is considered a completely-defined object type (3.9) (or complete type) at the closing } of the
class-specifier . Within the class member-specification, the class is regarded as complete within function
bodies, default arguments, exception-specifications, and brace-or-equal-initializers for non-static data mem-
bers (including such things in nested classes). Otherwise it is regarded as incomplete within its own class
member-specification.

2 [Note: a single name can denote several function members provided their types are sufficiently different
(Clause 13). — end note]

3 A member can be initialized using a constructor; see 12.1. [Note: see Clause 12 for a description of
constructors and other special member functions. — end note]

4 A member can be initialized using a brace-or-equal-initializer . (For static data members, see 9.4.2; for
non-static data members, see 12.6.2).

5 A member shall not be declared with the extern or register storage-class-specifier. Within a class definition,
a member shall not be declared with the thread_local storage-class-specifier unless also declared static.

§ 9.2 214

c© ISO/IEC N3092

6 The decl-specifier-seq is omitted in constructor, destructor, and conversion function declarations only. The
member-declarator-list can be omitted only after a class-specifier or an enum-specifier or in a friend dec-
laration (11.4). A pure-specifier shall be used only in the declaration of a virtual function (10.3).

7 The optional attribute-specifier in a member-declaration appertains to each of the entities declared by the
member-declarators; it shall not appear if the optional member-declarator-list is omitted.

8 Non-static (9.4) data members shall not have incomplete types. In particular, a class C shall not contain
a non-static member of class C, but it can contain a pointer or reference to an object of class C.

9 [Note: See 5.1 for restrictions on the use of non-static data members and non-static member functions.
— end note]

10 [Note: the type of a non-static member function is an ordinary function type, and the type of a non-static
data member is an ordinary object type. There are no special member function types or data member types.
— end note]

11 [Example: A simple example of a class definition is
struct tnode {

char tword[20];
int count;
tnode *left;
tnode *right;

};

which contains an array of twenty characters, an integer, and two pointers to objects of the same type. Once
this definition has been given, the declaration

tnode s, *sp;

declares s to be a tnode and sp to be a pointer to a tnode. With these declarations, sp->count refers to
the count member of the object to which sp points; s.left refers to the left subtree pointer of the object
s; and s.right->tword[0] refers to the initial character of the tword member of the right subtree of s.
— end example]

12 Nonstatic data members of a (non-union) class with the same access control (Clause 11) are allocated so
that later members have higher addresses within a class object. The order of allocation of non-static data
members with different access control is unspecified (11). Implementation alignment requirements might
cause two adjacent members not to be allocated immediately after each other; so might requirements for
space for managing virtual functions (10.3) and virtual base classes (10.1).

13 If T is the name of a class, then each of the following shall have a name different from T:

— every static data member of class T;

— every member function of class T [Note: this restriction does not apply to constructors, which do not
have names (12.1) — end note];

— every member of class T that is itself a type;

— every enumerator of every member of class T that is an enumerated type; and

— every member of every anonymous union that is a member of class T.

14 In addition, if class T has a user-declared constructor (12.1), every non-static data member of class T shall
have a name different from T.

§ 9.2 215

c© ISO/IEC N3092

15 Two standard-layout struct (Clause 9) types are layout-compatible if they have the same number of non-static
data members and corresponding non-static data members (in declaration order) have layout-compatible
types (3.9).

16 Two standard-layout union (Clause 9) types are layout-compatible if they have the same number of non-
static data members and corresponding non-static data members (in any order) have layout-compatible
types (3.9).

17 If a standard-layout union contains two or more standard-layout structs that share a common initial sequence,
and if the standard-layout union object currently contains one of these standard-layout structs, it is permitted
to inspect the common initial part of any of them. Two standard-layout structs share a common initial
sequence if corresponding members have layout-compatible types and either neither member is a bit-field or
both are bit-fields with the same width for a sequence of one or more initial members.

18 A pointer to a standard-layout struct object, suitably converted using a reinterpret_cast, points to its
initial member (or if that member is a bit-field, then to the unit in which it resides) and vice versa. [Note:
There might therefore be unnamed padding within a standard-layout struct object, but not at its beginning,
as necessary to achieve appropriate alignment. — end note]

9.3 Member functions [class.mfct]

1 Functions declared in the definition of a class, excluding those declared with a friend specifier (11.4), are
called member functions of that class. A member function may be declared static in which case it is a static
member function of its class (9.4); otherwise it is a non-static member function of its class (9.3.1, 9.3.2).

2 A member function may be defined (8.4) in its class definition, in which case it is an inline member func-
tion (7.1.2), or it may be defined outside of its class definition if it has already been declared but not defined
in its class definition. A member function definition that appears outside of the class definition shall appear
in a namespace scope enclosing the class definition. Except for member function definitions that appear
outside of a class definition, and except for explicit specializations of member functions of class templates
and member function templates (14.7) appearing outside of the class definition, a member function shall not
be redeclared.

3 An inline member function (whether static or non-static) may also be defined outside of its class definition
provided either its declaration in the class definition or its definition outside of the class definition declares
the function as inline. [Note: member functions of a class in namespace scope have external linkage.
Member functions of a local class (9.8) have no linkage. See 3.5. — end note]

4 There shall be at most one definition of a non-inline member function in a program; no diagnostic is required.
There may be more than one inline member function definition in a program. See 3.2 and 7.1.2.

5 If the definition of a member function is lexically outside its class definition, the member function name
shall be qualified by its class name using the :: operator. [Note: a name used in a member function
definition (that is, in the parameter-declaration-clause including the default arguments (8.3.6) or in the
member function body) is looked up as described in 3.4. — end note] [Example:

struct X {
typedef int T;
static T count;
void f(T);

};
void X::f(T t = count) { }

The member function f of class X is defined in global scope; the notation X::f specifies that the function f
is a member of class X and in the scope of class X. In the function definition, the parameter type T refers to

§ 9.3 216

c© ISO/IEC N3092

the typedef member T declared in class X and the default argument count refers to the static data member
count declared in class X. — end example]

6 A static local variable in a member function always refers to the same object, whether or not the member
function is inline.

7 Member functions may be mentioned in friend declarations after their class has been defined.

8 Member functions of a local class shall be defined inline in their class definition, if they are defined at all.

9 [Note: a member function can be declared (but not defined) using a typedef for a function type. The
resulting member function has exactly the same type as it would have if the function declarator were
provided explicitly, see 8.3.5. For example,

typedef void fv(void);
typedef void fvc(void) const;
struct S {

fv memfunc1; // equivalent to: void memfunc1(void);
void memfunc2();
fvc memfunc3; // equivalent to: void memfunc3(void) const;

};
fv S::* pmfv1 = &S::memfunc1;
fv S::* pmfv2 = &S::memfunc2;
fvc S::* pmfv3 = &S::memfunc3;

Also see 14.3. — end note]

9.3.1 Nonstatic member functions [class.mfct.non-static]

1 A non-static member function may be called for an object of its class type, or for an object of a class derived
(Clause 10) from its class type, using the class member access syntax (5.2.5, 13.3.1.1). A non-static member
function may also be called directly using the function call syntax (5.2.2, 13.3.1.1) from within the body of
a member function of its class or of a class derived from its class.

2 If a non-static member function of a class X is called for an object that is not of type X, or of a type derived
from X, the behavior is undefined.

3 When an id-expression (5.1) that is not part of a class member access syntax (5.2.5) and not used to form a
pointer to member (5.3.1) is used in the body of a non-static member function of class X, if name lookup (3.4)
resolves the name in the id-expression to a non-static non-type member of some class C, the id-expression is
transformed into a class member access expression (5.2.5) using (*this) (9.3.2) as the postfix-expression to
the left of the . operator. [Note: if C is not X or a base class of X, the class member access expression is
ill-formed. — end note] Similarly during name lookup, when an unqualified-id (5.1) used in the definition of
a member function for class X resolves to a static member, an enumerator or a nested type of class X or of a
base class of X, the unqualified-id is transformed into a qualified-id (5.1) in which the nested-name-specifier
names the class of the member function. [Example:

struct tnode {
char tword[20];
int count;
tnode *left;
tnode *right;
void set(char*, tnode* l, tnode* r);

};

void tnode::set(char* w, tnode* l, tnode* r) {
count = strlen(w)+1;

§ 9.3.1 217

c© ISO/IEC N3092

if (sizeof(tword)<=count)
perror("tnode string too long");

strcpy(tword,w);
left = l;
right = r;

}

void f(tnode n1, tnode n2) {
n1.set("abc",&n2,0);
n2.set("def",0,0);

}

In the body of the member function tnode::set, the member names tword, count, left, and right refer to
members of the object for which the function is called. Thus, in the call n1.set("abc",&n2,0), tword refers
to n1.tword, and in the call n2.set("def",0,0), it refers to n2.tword. The functions strlen, perror,
and strcpy are not members of the class tnode and should be declared elsewhere.108 — end example]

4 A non-static member function may be declared const, volatile, or const volatile. These cv-qualifiers
affect the type of the this pointer (9.3.2). They also affect the function type (8.3.5) of the member function;
a member function declared const is a const member function, a member function declared volatile is
a volatile member function and a member function declared const volatile is a const volatile member
function. [Example:

struct X {
void g() const;
void h() const volatile;

};

X::g is a const member function and X::h is a const volatile member function. — end example]

5 A non-static member function may be declared with a ref-qualifier (8.3.5); see 13.3.1.

6 A non-static member function may be declared virtual (10.3) or pure virtual (10.4).

9.3.2 The this pointer [class.this]

1 In the body of a non-static (9.3) member function, the keyword this is a prvalue expression whose value
is the address of the object for which the function is called. The type of this in a member function of
a class X is X*. If the member function is declared const, the type of this is const X*, if the member
function is declared volatile, the type of this is volatile X*, and if the member function is declared
const volatile, the type of this is const volatile X*.

2 In a const member function, the object for which the function is called is accessed through a const access
path; therefore, a const member function shall not modify the object and its non-static data members.
[Example:

struct s {
int a;
int f() const;
int g() { return a++; }
int h() const { return a++; } // error

};

int s::f() const { return a; }

108) See, for example, <cstring> (21.7).

§ 9.3.2 218

c© ISO/IEC N3092

The a++ in the body of s::h is ill-formed because it tries to modify (a part of) the object for which s::h()
is called. This is not allowed in a const member function because this is a pointer to const; that is, *this
has const type. — end example]

3 Similarly, volatile semantics (7.1.6.1) apply in volatile member functions when accessing the object and
its non-static data members.

4 A cv-qualified member function can be called on an object-expression (5.2.5) only if the object-expression is
as cv-qualified or less-cv-qualified than the member function. [Example:

void k(s& x, const s& y) {
x.f();
x.g();
y.f();
y.g(); // error

}

The call y.g() is ill-formed because y is const and s::g() is a non-const member function, that is, s::g()
is less-qualified than the object-expression y. — end example]

5 Constructors (12.1) and destructors (12.4) shall not be declared const, volatile or const volatile. [Note:
However, these functions can be invoked to create and destroy objects with cv-qualified types, see (12.1)
and (12.4). — end note]

9.4 Static members [class.static]

1 A data or function member of a class may be declared static in a class definition, in which case it is a
static member of the class.

2 A static member s of class X may be referred to using the qualified-id expression X::s; it is not necessary to
use the class member access syntax (5.2.5) to refer to a static member. A static member may be referred
to using the class member access syntax, in which case the object-expression is evaluated. [Example:

struct process {
static void reschedule();

};
process& g();

void f() {
process::reschedule(); // OK: no object necessary
g().reschedule(); // g() is called

}

— end example]

3 A static member may be referred to directly in the scope of its class or in the scope of a class derived
(Clause 10) from its class; in this case, the static member is referred to as if a qualified-id expression was
used, with the nested-name-specifier of the qualified-id naming the class scope from which the static member
is referenced. [Example:

int g();
struct X {

static int g();
};
struct Y : X {

static int i;
};
int Y::i = g(); // equivalent to Y::g();

§ 9.4 219

c© ISO/IEC N3092

— end example]

4 If an unqualified-id (5.1) is used in the definition of a static member following the member’s declarator-id,
and name lookup (3.4.1) finds that the unqualified-id refers to a static member, enumerator, or nested
type of the member’s class (or of a base class of the member’s class), the unqualified-id is transformed into
a qualified-id expression in which the nested-name-specifier names the class scope from which the member
is referenced. [Note: See 5.1 for restrictions on the use of non-static data members and non-static member
functions. — end note]

5 Static members obey the usual class member access rules (Clause 11). When used in the declaration of
a class member, the static specifier shall only be used in the member declarations that appear within
the member-specification of the class definition. [Note: it cannot be specified in member declarations that
appear in namespace scope. — end note]

9.4.1 Static member functions [class.static.mfct]

1 [Note: the rules described in 9.3 apply to static member functions. — end note]

2 [Note: a static member function does not have a this pointer (9.3.2). — end note] A static member
function shall not be virtual. There shall not be a static and a non-static member function with the
same name and the same parameter types (13.1). A static member function shall not be declared const,
volatile, or const volatile.

9.4.2 Static data members [class.static.data]

1 A static data member is not part of the subobjects of a class. If a static data member is declared
thread_local there is one copy of the member per thread. If a static data member is not declared
thread_local there is one copy of the data member that is shared by all the objects of the class.

2 The declaration of a static data member in its class definition is not a definition and may be of an incomplete
type other than cv-qualified void. The definition for a static data member shall appear in a namespace
scope enclosing the member’s class definition. In the definition at namespace scope, the name of the static
data member shall be qualified by its class name using the :: operator. The initializer expression in the
definition of a static data member is in the scope of its class (3.3.7). [Example:

class process {
static process* run_chain;
static process* running;

};

process* process::running = get_main();
process* process::run_chain = running;

The static data member run_chain of class process is defined in global scope; the notation process::run_-
chain specifies that the member run_chain is a member of class process and in the scope of class process.
In the static data member definition, the initializer expression refers to the static data member running
of class process. — end example]

[Note: once the static data member has been defined, it exists even if no objects of its class have been
created. [Example: in the example above, run_chain and running exist even if no objects of class process
are created by the program. — end example] — end note]

3 If a static data member is of const literal type, its declaration in the class definition can specify a brace-or-
equal-initializer in which every initializer-clause that is an assignment-expression is a constant expression.
A static data member of literal type can be declared in the class definition with the constexpr specifier;
if so, its declaration shall specify a brace-or-equal-initializer in which every initializer-clause that is an

§ 9.4.2 220

c© ISO/IEC N3092

assignment-expression is a constant expression. [Note: In both these cases, the member may appear in
constant expressions. — end note] The member shall still be defined in a namespace scope if it is used in
the program and the namespace scope definition shall not contain an initializer .

4 There shall be exactly one definition of a static data member that is used in a program; no diagnostic is
required; see 3.2. Unnamed classes and classes contained directly or indirectly within unnamed classes shall
not contain static data members.

5 Static data members of a class in namespace scope have external linkage (3.5). A local class shall not have
static data members.

6 Static data members are initialized and destroyed exactly like non-local variables (3.6.2, 3.6.3).

7 A static data member shall not be mutable (7.1.1).

9.5 Unions [class.union]

1 In a union, at most one of the non-static data members can be active at any time, that is, the value of at
most one of the non-static data members can be stored in a union at any time. [Note: one special guarantee
is made in order to simplify the use of unions: If a standard-layout union contains several standard-layout
structs that share a common initial sequence (9.2), and if an object of this standard-layout union type
contains one of the standard-layout structs, it is permitted to inspect the common initial sequence of any of
standard-layout struct members; see 9.2. — end note] The size of a union is sufficient to contain the largest
of its non-static data members. Each non-static data member is allocated as if it were the sole member of a
struct.

2 A union can have member functions (including constructors and destructors), but not virtual (10.3) functions.
A union shall not have base classes. A union shall not be used as a base class. If a union contains a non-static
data member of reference type the program is ill-formed. At most one non-static data member of a union may
have a brace-or-equal-initializer . [Note: if any non-static data member of a union has a non-trivial default
constructor (12.1), copy constructor (12.8), move constructor (12.8), copy assignment operator (12.8), move
assignment operator (12.8), or destructor (12.4), the corresponding member function of the union must be
user-provided or it will be implicitly deleted (8.4.3) for the union. — end note]

3 [Example: Consider the following union:
union U {

int i;
float f;
std::string s;

};

Since std::string (21.3) declares non-trivial versions of all of the special member functions, U will have
an implicitly deleted default constructor, copy/move constructor, copy/move assignment operator, and de-
structor. To use U, some or all of these member functions must be user-provided. — end example]

4 [Note: In general, one must use explicit destructor calls and placement new operators to change the active
member of a union. — end note] [Example: Consider an object u of a union type U having non-static data
members m of type M and n of type N. If M has a non-trivial destructor and N has a non-trivial constructor
(for instance, if they declare or inherit virtual functions), the active member of u can be safely switched
from m to n using the destructor and placement new operator as follows:

u.m.~M();
new (&u.n) N;

— end example]

§ 9.5 221

c© ISO/IEC N3092

5 A union of the form

union { member-specification } ;

is called an anonymous union; it defines an unnamed object of unnamed type. The member-specification of
an anonymous union shall only define non-static data members. [Note: nested types and functions cannot
be declared within an anonymous union. — end note] The names of the members of an anonymous union
shall be distinct from the names of any other entity in the scope in which the anonymous union is declared.
For the purpose of name lookup, after the anonymous union definition, the members of the anonymous union
are considered to have been defined in the scope in which the anonymous union is declared. [Example:

void f() {
union { int a; char* p; };
a = 1;
p = "Jennifer";

}

Here a and p are used like ordinary (nonmember) variables, but since they are union members they have
the same address. — end example]

6 Anonymous unions declared in a named namespace or in the global namespace shall be declared static.
Anonymous unions declared at block scope shall be declared with any storage class allowed for a block-scope
variable, or with no storage class. A storage class is not allowed in a declaration of an anonymous union
in a class scope. An anonymous union shall not have private or protected members (Clause 11). An
anonymous union shall not have function members.

7 A union for which objects or pointers are declared is not an anonymous union. [Example:
union { int aa; char* p; } obj, *ptr = &obj;
aa = 1; // error
ptr->aa = 1; // OK

The assignment to plain aa is ill-formed since the member name is not visible outside the union, and even
if it were visible, it is not associated with any particular object. — end example] [Note: Initialization of
unions with no user-declared constructors is described in (8.5.1). — end note]

8 A union-like class is a union or a class that has an anonymous union as a direct member. A union-like
class X has a set of variant members. If X is a union its variant members are the non-static data members;
otherwise, its variant members are the non-static data members of all anonymous unions that are members
of X.

9.6 Bit-fields [class.bit]

1 A member-declarator of the form

identifieropt attribute-specifieropt : constant-expression

specifies a bit-field; its length is set off from the bit-field name by a colon. The optional attribute-specifier
appertains to the entity being declared. The bit-field attribute is not part of the type of the class member.
The constant-expression shall be an integral constant expression with a value greater than or equal to
zero. The value of the integral constant expression may be larger than the number of bits in the object
representation (3.9) of the bit-field’s type; in such cases the extra bits are used as padding bits and do not
participate in the value representation (3.9) of the bit-field. Allocation of bit-fields within a class object is
implementation-defined. Alignment of bit-fields is implementation-defined. Bit-fields are packed into some
addressable allocation unit. [Note: bit-fields straddle allocation units on some machines and not on others.
Bit-fields are assigned right-to-left on some machines, left-to-right on others. — end note]

§ 9.6 222

c© ISO/IEC N3092

2 A declaration for a bit-field that omits the identifier declares an unnamed bit-field. Unnamed bit-fields
are not members and cannot be initialized. [Note: an unnamed bit-field is useful for padding to conform
to externally-imposed layouts. — end note] As a special case, an unnamed bit-field with a width of zero
specifies alignment of the next bit-field at an allocation unit boundary. Only when declaring an unnamed
bit-field may the value of the constant-expression be equal to zero.

3 A bit-field shall not be a static member. A bit-field shall have integral or enumeration type (3.9.1). It is
implementation-defined whether a plain (neither explicitly signed nor unsigned) char, short, int or long
bit-field is signed or unsigned. A bool value can successfully be stored in a bit-field of any nonzero size. The
address-of operator & shall not be applied to a bit-field, so there are no pointers to bit-fields. A non-const
reference shall not be bound to a bit-field (8.5.3). [Note: if the initializer for a reference of type const T& is
an lvalue that refers to a bit-field, the reference is bound to a temporary initialized to hold the value of the
bit-field; the reference is not bound to the bit-field directly. See 8.5.3. — end note]

4 If the value true or false is stored into a bit-field of type bool of any size (including a one bit bit-field),
the original bool value and the value of the bit-field shall compare equal. If the value of an enumerator is
stored into a bit-field of the same enumeration type and the number of bits in the bit-field is large enough
to hold all the values of that enumeration type (7.2), the original enumerator value and the value of the
bit-field shall compare equal. [Example:

enum BOOL { FALSE=0, TRUE=1 };
struct A {

BOOL b:1;
};
A a;
void f() {

a.b = TRUE;
if (a.b == TRUE) // yields true

{ /∗ ... ∗/ }
}

— end example]

9.7 Nested class declarations [class.nest]

1 A class can be declared within another class. A class declared within another is called a nested class. The
name of a nested class is local to its enclosing class. The nested class is in the scope of its enclosing class.
[Note: see 5.1 for restrictions on the use of non-static data members and non-static member functions.
— end note]

[Example:
int x;
int y;

struct enclose {
int x;
static int s;

struct inner {
void f(int i) {

int a = sizeof(x); // OK: operand of sizeof is an unevaluated operand
x = i; // error: assign to enclose::x
s = i; // OK: assign to enclose::s
::x = i; // OK: assign to global x
y = i; // OK: assign to global y

§ 9.7 223

c© ISO/IEC N3092

}
void g(enclose* p, int i) {

p->x = i; // OK: assign to enclose::x
}

};
};

inner* p = 0; // error: inner not in scope

— end example]

2 Member functions and static data members of a nested class can be defined in a namespace scope enclosing
the definition of their class. [Example:

struct enclose {
struct inner {

static int x;
void f(int i);

};
};

int enclose::inner::x = 1;

void enclose::inner::f(int i) { /∗ ... ∗/ }

— end example]

3 If class X is defined in a namespace scope, a nested class Y may be declared in class X and later defined in the
definition of class X or be later defined in a namespace scope enclosing the definition of class X. [Example:

class E {
class I1; // forward declaration of nested class
class I2;
class I1 { }; // definition of nested class

};
class E::I2 { }; // definition of nested class

— end example]

4 Like a member function, a friend function (11.4) defined within a nested class is in the lexical scope of that
class; it obeys the same rules for name binding as a static member function of that class (9.4), but it has no
special access rights to members of an enclosing class.

9.8 Local class declarations [class.local]

1 A class can be declared within a function definition; such a class is called a local class. The name of a
local class is local to its enclosing scope. The local class is in the scope of the enclosing scope, and has the
same access to names outside the function as does the enclosing function. Declarations in a local class can
use only type names, static variables, extern variables and functions, and enumerators from the enclosing
scope. [Example:

int x;
void f() {

static int s ;
int x;
extern int g();

§ 9.8 224

c© ISO/IEC N3092

struct local {
int g() { return x; } // error: x has automatic storage duration
int h() { return s; } // OK
int k() { return ::x; } // OK
int l() { return g(); } // OK

};
}

local* p = 0; // error: local not in scope

— end example]

2 An enclosing function has no special access to members of the local class; it obeys the usual access rules
(Clause 11). Member functions of a local class shall be defined within their class definition, if they are
defined at all.

3 If class X is a local class a nested class Y may be declared in class X and later defined in the definition of
class X or be later defined in the same scope as the definition of class X. A class nested within a local class
is a local class.

4 A local class shall not have static data members.

9.9 Nested type names [class.nested.type]

1 Type names obey exactly the same scope rules as other names. In particular, type names defined within a
class definition cannot be used outside their class without qualification. [Example:

struct X {
typedef int I;
class Y { /∗ ... ∗/ };
I a;

};

I b; // error
Y c; // error
X::Y d; // OK
X::I e; // OK

— end example]

§ 9.9 225

c© ISO/IEC N3092

10 Derived classes [class.derived]
1 A list of base classes can be specified in a class definition using the notation:

base-clause:
: base-specifier-list

base-specifier-list:
base-specifier ...opt

base-specifier-list , base-specifier ...opt

base-specifier:
attribute-specifieropt base-type-specifier
attribute-specifieropt virtual access-specifieropt base-type-specifier
attribute-specifieropt access-specifier virtualopt base-type-specifier

class-or-decltype:
::opt nested-name-specifieropt class-name
decltype-specifier

base-type-specifier:
class-or-decltype

access-specifier:
private
protected
public

The optional attribute-specifier appertains to the base-specifier .

2 The type denoted by a base-type-specifier shall be a class type that is not an incompletely defined class
(Clause 9); this class is called a direct base class for the class being defined. During the lookup for a base
class name, non-type names are ignored (3.3.10). If the name found is not a class-name, the program is
ill-formed. A class B is a base class of a class D if it is a direct base class of D or a direct base class of one of
D’s base classes. A class is an indirect base class of another if it is a base class but not a direct base class.
A class is said to be (directly or indirectly) derived from its (direct or indirect) base classes. [Note: see
Clause 11 for the meaning of access-specifier . — end note] Unless redeclared in the derived class, members
of a base class are also considered to be members of the derived class. The base class members are said to
be inherited by the derived class. Inherited members can be referred to in expressions in the same manner
as other members of the derived class, unless their names are hidden or ambiguous (10.2). [Note: the scope
resolution operator :: (5.1) can be used to refer to a direct or indirect base member explicitly. This allows
access to a name that has been redeclared in the derived class. A derived class can itself serve as a base class
subject to access control; see 11.2. A pointer to a derived class can be implicitly converted to a pointer to
an accessible unambiguous base class (4.10). An lvalue of a derived class type can be bound to a reference
to an accessible unambiguous base class (8.5.3). — end note]

3 The base-specifier-list specifies the type of the base class subobjects contained in an object of the derived
class type. [Example:

struct Base {
int a, b, c;

};

struct Derived : Base {
int b;

226

c© ISO/IEC N3092

};

struct Derived2 : Derived {
int c;

};

Here, an object of class Derived2 will have a subobject of class Derived which in turn will have a subobject
of class Base. — end example]

4 A base-specifier followed by an ellipsis is a pack expansion (14.5.3).

5 The order in which the base class subobjects are allocated in the most derived object (1.8) is unspecified.
[Note: a derived class and its base class subobjects can be represented by a directed acyclic graph (DAG)
where an arrow means “directly derived from.” A DAG of subobjects is often referred to as a “subobject
lattice.”

Derived2

Derived1

Base

6

6

Figure 2 — Directed acyclic graph

6 The arrows need not have a physical representation in memory. — end note]

7 [Note: initialization of objects representing base classes can be specified in constructors; see 12.6.2. — end
note]

8 [Note: A base class subobject might have a layout (3.7) different from the layout of a most derived object
of the same type. A base class subobject might have a polymorphic behavior (12.7) different from the
polymorphic behavior of a most derived object of the same type. A base class subobject may be of zero
size (Clause 9); however, two subobjects that have the same class type and that belong to the same most
derived object must not be allocated at the same address (5.10). — end note]

10.1 Multiple base classes [class.mi]

1 A class can be derived from any number of base classes. [Note: the use of more than one direct base class
is often called multiple inheritance. — end note] [Example:

class A { /∗ ... ∗/ };
class B { /∗ ... ∗/ };
class C { /∗ ... ∗/ };
class D : public A, public B, public C { /∗ ... ∗/ };

— end example]

2 [Note: the order of derivation is not significant except as specified by the semantics of initialization by
constructor (12.6.2), cleanup (12.4), and storage layout (9.2, 11.1). — end note]

3 A class shall not be specified as a direct base class of a derived class more than once. [Note: a class can
be an indirect base class more than once and can be a direct and an indirect base class. There are limited

§ 10.1 227

c© ISO/IEC N3092

things that can be done with such a class. The non-static data members and member functions of the direct
base class cannot be referred to in the scope of the derived class. However, the static members, enumerations
and types can be unambiguously referred to. — end note] [Example:

class X { /∗ ... ∗/ };
class Y : public X, public X { /∗ ... ∗/ }; // ill-formed

class L { public: int next; /∗ ... ∗/ };
class A : public L { /∗ ... ∗/ };
class B : public L { /∗ ... ∗/ };
class C : public A, public B { void f(); /∗ ... ∗/ }; // well-formed
class D : public A, public L { void f(); /∗ ... ∗/ }; // well-formed

— end example]

4 A base class specifier that does not contain the keyword virtual, specifies a non-virtual base class. A base
class specifier that contains the keyword virtual, specifies a virtual base class. For each distinct occurrence
of a non-virtual base class in the class lattice of the most derived class, the most derived object (1.8) shall
contain a corresponding distinct base class subobject of that type. For each distinct base class that is
specified virtual, the most derived object shall contain a single base class subobject of that type. [Example:
for an object of class type C, each distinct occurrence of a (non-virtual) base class L in the class lattice of
C corresponds one-to-one with a distinct L subobject within the object of type C. Given the class C defined
above, an object of class C will have two subobjects of class L as shown below.

C

A

L

B

L

Q
Q

QQk

�
�

��3

6 6

Figure 3 — Non-virtual base

5 In such lattices, explicit qualification can be used to specify which subobject is meant. The body of function
C::f could refer to the member next of each L subobject:

void C::f() { A::next = B::next; } // well-formed

Without the A:: or B:: qualifiers, the definition of C::f above would be ill-formed because of ambigu-
ity (10.2).

6 For another example,
class V { /∗ ... ∗/ };
class A : virtual public V { /∗ ... ∗/ };
class B : virtual public V { /∗ ... ∗/ };
class C : public A, public B { /∗ ... ∗/ };

for an object c of class type C, a single subobject of type V is shared by every base subobject of c that has
a virtual base class of type V. Given the class C defined above, an object of class C will have one subobject
of class V, as shown below.

7 A class can have both virtual and non-virtual base classes of a given type.

§ 10.1 228

c© ISO/IEC N3092

C

A B

V

Q
Q

QQk

�
�

��3

�
�

��3

Q
Q

QQk

Figure 4 — Virtual base

class B { /∗ ... ∗/ };
class X : virtual public B { /∗ ... ∗/ };
class Y : virtual public B { /∗ ... ∗/ };
class Z : public B { /∗ ... ∗/ };
class AA : public X, public Y, public Z { /∗ ... ∗/ };

For an object of class AA, all virtual occurrences of base class B in the class lattice of AA correspond to a
single B subobject within the object of type AA, and every other occurrence of a (non-virtual) base class B
in the class lattice of AA corresponds one-to-one with a distinct B subobject within the object of type AA.
Given the class AA defined above, class AA has two subobjects of class B: Z’s B and the virtual B shared by X
and Y, as shown below.

AA

X Y

B

Z

B

Q
Q

QQk

�
�

��3

�
�

��3

Q
Q

QQk

��������1

6

Figure 5 — Virtual and non-virtual base

— end example]

10.2 Member name lookup [class.member.lookup]

1 Member name lookup determines the meaning of a name (id-expression) in a class scope (3.3.7). Name
lookup can result in an ambiguity, in which case the program is ill-formed. For an id-expression, name
lookup begins in the class scope of this; for a qualified-id, name lookup begins in the scope of the nested-
name-specifier . Name lookup takes place before access control (3.4, Clause 11).

2 The following steps define the result of name lookup for a member name f in a class scope C.

3 The lookup set for f in C, called S(f, C), consists of two component sets: the declaration set, a set of members
named f; and the subobject set, a set of subobjects where declarations of these members (possibly including
using-declarations) were found. In the declaration set, using-declarations are replaced by the members they
designate, and type declarations (including injected-class-names) are replaced by the types they designate.
S(f, C) is calculated as follows:

4 If C contains a declaration of the name f, the declaration set contains every declaration of f declared in
C that satisfies the requirements of the language construct in which the lookup occurs. [Note: Looking

§ 10.2 229

c© ISO/IEC N3092

up a name in an elaborated-type-specifier (3.4.4) or base-specifier (Clause 10), for instance, ignores all non-
type declarations, while looking up a name in a nested-name-specifier (3.4.3) ignores function, variable, and
enumerator declarations. As another example, looking up a name in a using-declaration (7.3.3) includes the
declaration of a class or enumeration that would ordinarily be hidden by another declaration of that name
in the same scope. — end note] If the resulting declaration set is not empty, the subobject set contains C
itself, and calculation is complete.

5 Otherwise (i.e., C does not contain a declaration of f or the resulting declaration set is empty), S(f, C) is
initially empty. If C has base classes, calculate the lookup set for f in each direct base class subobject Bi,
and merge each such lookup set S(f,Bi) in turn into S(f, C).

6 The following steps define the result of merging lookup set S(f,Bi) into the intermediate S(f, C):

— If each of the subobject members of S(f,Bi) is a base class subobject of at least one of the subobject
members of S(f, C), or if S(f,Bi) is empty, S(f, C) is unchanged and the merge is complete. Con-
versely, if each of the subobject members of S(f, C) is a base class subobject of at least one of the
subobject members of S(f,Bi), or if S(f, C) is empty, the new S(f, C) is a copy of S(f,Bi).

— Otherwise, if the declaration sets of S(f,Bi) and S(f, C) differ, the merge is ambiguous: the new
S(f, C) is a lookup set with an invalid declaration set and the union of the subobject sets. In subsequent
merges, an invalid declaration set is considered different from any other.

— Otherwise, the new S(f, C) is a lookup set with the shared set of declarations and the union of the
subobject sets.

7 The result of name lookup for f in C is the declaration set of S(f, C). If it is an invalid set, the program is
ill-formed. [Example:

struct A { int x; }; // S(x,A) = { { A::x }, { A } }
struct B { float x; }; // S(x,B) = { { B::x }, { B } }
struct C: public A, public B { }; // S(x,C) = { invalid, { A in C, B in C } }
struct D: public virtual C { }; // S(x,D) = S(x,C)
struct E: public virtual C { char x; }; // S(x,E) = { { E::x }, { E } }
struct F: public D, public E { }; // S(x,F) = S(x,E)
int main() {

F f;
f.x = 0; // OK, lookup finds E::x

}

S(x, F) is unambiguous because the A and B base subobjects of D are also base subobjects of E, so S(x, D)
is discarded in the first merge step. — end example]

8 If the name of an overloaded function is unambiguously found, overloading resolution (13.3) also takes
place before access control. Ambiguities can often be resolved by qualifying a name with its class name.
[Example:

struct A {
int f();

};

struct B {
int f();

};

struct C : A, B {
int f() { return A::f() + B::f(); }

};

§ 10.2 230

c© ISO/IEC N3092

— end example]

9 [Note: A static member, a nested type or an enumerator defined in a base class T can unambiguously be
found even if an object has more than one base class subobject of type T. Two base class subobjects share
the non-static member subobjects of their common virtual base classes. — end note] [Example:

struct V {
int v;

};
struct A {

int a;
static int s;
enum { e };

};
struct B : A, virtual V { };
struct C : A, virtual V { };
struct D : B, C { };

void f(D* pd) {
pd->v++; // OK: only one v (virtual)
pd->s++; // OK: only one s (static)
int i = pd->e; // OK: only one e (enumerator)
pd->a++; // error, ambiguous: two as in D

}

— end example]

10 [Note: When virtual base classes are used, a hidden declaration can be reached along a path through the
subobject lattice that does not pass through the hiding declaration. This is not an ambiguity. The identical
use with non-virtual base classes is an ambiguity; in that case there is no unique instance of the name that
hides all the others. — end note] [Example:

struct V { int f(); int x; };
struct W { int g(); int y; };
struct B : virtual V, W {

int f(); int x;
int g(); int y;

};
struct C : virtual V, W { };

struct D : B, C { void glorp(); };

D

B C

V WW

Q
Q

QQk

�
�

��3

�
�

��3

Q
Q

QQk

�
�

��3

Q
Q

QQk

Figure 6 — Name lookup

— end example]

11 [Note: The names declared in V and the left-hand instance of W are hidden by those in B, but the names
declared in the right-hand instance of W are not hidden at all. — end note]

§ 10.2 231

c© ISO/IEC N3092

void D::glorp() {
x++; // OK: B::x hides V::x
f(); // OK: B::f() hides V::f()
y++; // error: B::y and C’s W::y
g(); // error: B::g() and C’s W::g()

}

— end example]

12 An explicit or implicit conversion from a pointer to or an expression designating an object of a derived class
to a pointer or reference to one of its base classes shall unambiguously refer to a unique object representing
the base class. [Example:

struct V { };
struct A { };
struct B : A, virtual V { };
struct C : A, virtual V { };
struct D : B, C { };

void g() {
D d;
B* pb = &d;
A* pa = &d; // error, ambiguous: C’s A or B’s A?
V* pv = &d; // OK: only one V subobject

}

— end example]

13 [Note: Even if the result of name lookup is unambiguous, use of a name found in multiple subobjects might
still be ambiguous (4.11, 5.2.5, 5.3.1, 11.2). — end note] [Example:

struct B1 {
void f();
static void f(int);
int i;

};
struct B2 {

void f(double);
};
struct I1: B1 { };
struct I2: B1 { };

struct D: I1, I2, B2 {
using B1::f;
using B2::f;
void g() {

f(); // Ambiguous conversion of this
f(0); // Unambiguous (static)
f(0.0); // Unambiguous (only one B2)
int B1::* mpB1 = &D::i; // Unambiguous
int D::* mpD = &D::i; // Ambiguous conversion

}
};

— end example]

§ 10.2 232

c© ISO/IEC N3092

10.3 Virtual functions [class.virtual]

1 Virtual functions support dynamic binding and object-oriented programming. A class that declares or
inherits a virtual function is called a polymorphic class.

2 If a virtual member function vf is declared in a class Base and in a class Derived, derived directly or indirectly
from Base, a member function vf with the same name, parameter-type-list (8.3.5), cv-qualification, and ref-
qualifier (or absence of same) as Base::vf is declared, then Derived::vf is also virtual (whether or not it is
so declared) and it overrides109 Base::vf. For convenience we say that any virtual function overrides itself.
A virtual member function C::vf of a class object S is a final overrider unless the most derived class (1.8)
of which S is a base class subobject (if any) declares or inherits another member function that overrides vf.
In a derived class, if a virtual member function of a base class subobject has more than one final overrider
the program is ill-formed. [Example:

struct A {
virtual void f();

};
struct B : virtual A {

virtual void f();
};
struct C : B , virtual A {

using A::f;
};

void foo() {
C c;
c.f(); // calls B::f, the final overrider
c.C::f(); // calls A::f because of the using-declaration

}

— end example]

[Example:
struct A { virtual void f(); };
struct B : A { };
struct C : A { void f(); };
struct D : B, C { }; // OK: A::f and C::f are the final overriders

// for the B and C subobjects, respectively

— end example]

3 [Note: a virtual member function does not have to be visible to be overridden, for example,
struct B {

virtual void f();
};
struct D : B {

void f(int);
};
struct D2 : D {

void f();
};

109) A function with the same name but a different parameter list (Clause 13) as a virtual function is not necessarily virtual
and does not override. The use of the virtual specifier in the declaration of an overriding function is legal but redundant (has
empty semantics). Access control (Clause 11) is not considered in determining overriding.

§ 10.3 233

c© ISO/IEC N3092

the function f(int) in class D hides the virtual function f() in its base class B; D::f(int) is not a virtual
function. However, f() declared in class D2 has the same name and the same parameter list as B::f(), and
therefore is a virtual function that overrides the function B::f() even though B::f() is not visible in class
D2. — end note]

4 Even though destructors are not inherited, a destructor in a derived class overrides a base class destructor
declared virtual; see 12.4 and 12.5.

5 The return type of an overriding function shall be either identical to the return type of the overridden
function or covariant with the classes of the functions. If a function D::f overrides a function B::f, the
return types of the functions are covariant if they satisfy the following criteria:

— both are pointers to classes, both are lvalue references to classes, or both are rvalue references to
classes110

— the class in the return type of B::f is the same class as the class in the return type of D::f, or is an
unambiguous and accessible direct or indirect base class of the class in the return type of D::f

— both pointers or references have the same cv-qualification and the class type in the return type of D::f
has the same cv-qualification as or less cv-qualification than the class type in the return type of B::f.

6 If the return type of D::f differs from the return type of B::f, the class type in the return type of D::f shall
be complete at the point of declaration of D::f or shall be the class type D. When the overriding function
is called as the final overrider of the overridden function, its result is converted to the type returned by the
(statically chosen) overridden function (5.2.2). [Example:

class B { };
class D : private B { friend class Derived; };
struct Base {

virtual void vf1();
virtual void vf2();
virtual void vf3();
virtual B* vf4();
virtual B* vf5();
void f();

};

struct No_good : public Base {
D* vf4(); // error: B (base class of D) inaccessible

};

class A;
struct Derived : public Base {

void vf1(); // virtual and overrides Base::vf1()
void vf2(int); // not virtual, hides Base::vf2()
char vf3(); // error: invalid difference in return type only
D* vf4(); // OK: returns pointer to derived class
A* vf5(); // error: returns pointer to incomplete class
void f();

};

void g() {
Derived d;
Base* bp = &d; // standard conversion:

// Derived* to Base*

110) Multi-level pointers to classes or references to multi-level pointers to classes are not allowed.

§ 10.3 234

c© ISO/IEC N3092

bp->vf1(); // calls Derived::vf1()
bp->vf2(); // calls Base::vf2()
bp->f(); // calls Base::f() (not virtual)
B* p = bp->vf4(); // calls Derived::pf() and converts the

// result to B*
Derived* dp = &d;
D* q = dp->vf4(); // calls Derived::pf() and does not

// convert the result to B*
dp->vf2(); // ill-formed: argument mismatch

}

— end example]

7 [Note: the interpretation of the call of a virtual function depends on the type of the object for which it is
called (the dynamic type), whereas the interpretation of a call of a non-virtual member function depends
only on the type of the pointer or reference denoting that object (the static type) (5.2.2). — end note]

8 [Note: the virtual specifier implies membership, so a virtual function cannot be a nonmember (7.1.2)
function. Nor can a virtual function be a static member, since a virtual function call relies on a specific
object for determining which function to invoke. A virtual function declared in one class can be declared a
friend in another class. — end note]

9 A virtual function declared in a class shall be defined, or declared pure (10.4) in that class, or both; but no
diagnostic is required (3.2).

10 [Example: here are some uses of virtual functions with multiple base classes:
struct A {

virtual void f();
};

struct B1 : A { // note non-virtual derivation
void f();

};

struct B2 : A {
void f();

};

struct D : B1, B2 { // D has two separate A subobjects
};

void foo() {
D d;

// A* ap = &d; // would be ill-formed: ambiguous
B1* b1p = &d;
A* ap = b1p;
D* dp = &d;
ap->f(); // calls D::B1::f
dp->f(); // ill-formed: ambiguous

}

In class D above there are two occurrences of class A and hence two occurrences of the virtual member
function A::f. The final overrider of B1::A::f is B1::f and the final overrider of B2::A::f is B2::f.

11 The following example shows a function that does not have a unique final overrider:

§ 10.3 235

c© ISO/IEC N3092

struct A {
virtual void f();

};

struct VB1 : virtual A { // note virtual derivation
void f();

};

struct VB2 : virtual A {
void f();

};

struct Error : VB1, VB2 { // ill-formed
};

struct Okay : VB1, VB2 {
void f();

};

Both VB1::f and VB2::f override A::f but there is no overrider of both of them in class Error. This
example is therefore ill-formed. Class Okay is well formed, however, because Okay::f is a final overrider.

12 The following example uses the well-formed classes from above.
struct VB1a : virtual A { // does not declare f
};

struct Da : VB1a, VB2 {
};

void foe() {
VB1a* vb1ap = new Da;
vb1ap->f(); // calls VB2::f

}

— end example]

13 Explicit qualification with the scope operator (5.1) suppresses the virtual call mechanism. [Example:
class B { public: virtual void f(); };
class D : public B { public: void f(); };

void D::f() { /∗ ... ∗/ B::f(); }

Here, the function call in D::f really does call B::f and not D::f. — end example]

14 A function with a deleted definition (8.4) shall not override a function that does not have a deleted definition.
Likewise, a function that does not have a deleted definition shall not override a function with a deleted
definition.

10.4 Abstract classes [class.abstract]

1 The abstract class mechanism supports the notion of a general concept, such as a shape, of which only more
concrete variants, such as circle and square, can actually be used. An abstract class can also be used to
define an interface for which derived classes provide a variety of implementations.

§ 10.4 236

c© ISO/IEC N3092

2 An abstract class is a class that can be used only as a base class of some other class; no objects of an abstract
class can be created except as subobjects of a class derived from it. A class is abstract if it has at least
one pure virtual function. [Note: such a function might be inherited: see below. — end note] A virtual
function is specified pure by using a pure-specifier (9.2) in the function declaration in the class definition. A
pure virtual function need be defined only if called with, or as if with (12.4), the qualified-id syntax (5.1).
[Example:

class point { /∗ ... ∗/ };
class shape { // abstract class

point center;
public:

point where() { return center; }
void move(point p) { center=p; draw(); }
virtual void rotate(int) = 0; // pure virtual
virtual void draw() = 0; // pure virtual

};

— end example] [Note: a function declaration cannot provide both a pure-specifier and a definition — end
note] [Example:

struct C {
virtual void f() = 0 { }; // ill-formed

};

— end example]

3 An abstract class shall not be used as a parameter type, as a function return type, or as the type of an
explicit conversion. Pointers and references to an abstract class can be declared. [Example:

shape x; // error: object of abstract class
shape* p; // OK
shape f(); // error
void g(shape); // error
shape& h(shape&); // OK

— end example]

4 A class is abstract if it contains or inherits at least one pure virtual function for which the final overrider is
pure virtual. [Example:

class ab_circle : public shape {
int radius;

public:
void rotate(int) { }
// ab_circle::draw() is a pure virtual

};

Since shape::draw() is a pure virtual function ab_circle::draw() is a pure virtual by default. The
alternative declaration,

class circle : public shape {
int radius;

public:
void rotate(int) { }
void draw(); // a definition is required somewhere

};

§ 10.4 237

c© ISO/IEC N3092

would make class circle nonabstract and a definition of circle::draw() must be provided. — end exam-
ple]

5 [Note: an abstract class can be derived from a class that is not abstract, and a pure virtual function may
override a virtual function which is not pure. — end note]

6 Member functions can be called from a constructor (or destructor) of an abstract class; the effect of making a
virtual call (10.3) to a pure virtual function directly or indirectly for the object being created (or destroyed)
from such a constructor (or destructor) is undefined.

§ 10.4 238

c© ISO/IEC N3092

11 Member access control [class.access]
1 A member of a class can be

— private; that is, its name can be used only by members and friends of the class in which it is declared.

— protected; that is, its name can be used only by members and friends of the class in which it is
declared, by classes derived from that class, and by their friends (see 11.5).

— public; that is, its name can be used anywhere without access restriction.

2 A member of a class can also access all the names to which the class has access. A local class of a member
function may access the same names that the member function itself may access.111

3 Members of a class defined with the keyword class are private by default. Members of a class defined
with the keywords struct or union are public by default. [Example:

class X {
int a; // X::a is private by default

};

struct S {
int a; // S::a is public by default

};

— end example]

4 Access control is applied uniformly to all names, whether the names are referred to from declarations or
expressions. [Note: access control applies to names nominated by friend declarations (11.4) and using-
declarations (7.3.3). — end note] In the case of overloaded function names, access control is applied to the
function selected by overload resolution. [Note: because access control applies to names, if access control is
applied to a typedef name, only the accessibility of the typedef name itself is considered. The accessibility
of the entity referred to by the typedef is not considered. For example,

class A {
class B { };

public:
typedef B BB;

};

void f() {
A::BB x; // OK, typedef name A::BB is public
A::B y; // access error, A::B is private

}

— end note]

5 It should be noted that it is access to members and base classes that is controlled, not their visibility. Names
of members are still visible, and implicit conversions to base classes are still considered, when those members
and base classes are inaccessible. The interpretation of a given construct is established without regard to

111) Access permissions are thus transitive and cumulative to nested and local classes.

239

c© ISO/IEC N3092

access control. If the interpretation established makes use of inaccessible member names or base classes, the
construct is ill-formed.

6 All access controls in Clause 11 affect the ability to access a class member name from a particular scope.
For purposes of access control, the base-specifiers of a class and the definitions of class members that appear
outside of the class definition are considered to be within the scope of that class. In particular, access
controls apply as usual to member names accessed as part of a function return type, even though it is not
possible to determine the access privileges of that use without first parsing the rest of the function declarator.
Similarly, access control for implicit calls to the constructors, the conversion functions, or the destructor
called to create and destroy a static data member is performed as if these calls appeared in the scope of the
member’s class. [Example:

class A {
typedef int I; // private member
I f();
friend I g(I);
static I x;

protected:
struct B { };

};

A::I A::f() { return 0; }
A::I g(A::I p = A::x);
A::I g(A::I p) { return 0; }
A::I A::x = 0;

struct D: A::B, A { };

7 Here, all the uses of A::I are well-formed because A::f and A::x are members of class A and g is a friend
of class A. This implies, for example, that access checking on the first use of A::I must be deferred until it
is determined that this use of A::I is as the return type of a member of class A. Similarly, the use of A::B
as a base-specifier is well-formed because D is derived from A, so checking of base-specifiers must be deferred
until the entire base-specifier-list has been seen. — end example]

8 The names in a default argument expression (8.3.6) are bound at the point of declaration, and access is
checked at that point rather than at any points of use of the default argument expression. Access checking
for default arguments in function templates and in member functions of class templates is performed as
described in 14.7.1.

9 The names in a default template-argument (14.1) have their access checked in the context in which they
appear rather than at any points of use of the default template-argument. [Example:

class B { };
template <class T> class C {
protected:

typedef T TT;
};

template <class U, class V = typename U::TT>
class D : public U { };

D <C >* d; // access error, C::TT is protected

— end example]

240

c© ISO/IEC N3092

11.1 Access specifiers [class.access.spec]

1 Member declarations can be labeled by an access-specifier (Clause 10):

access-specifier : member-specificationopt

An access-specifier specifies the access rules for members following it until the end of the class or until
another access-specifier is encountered. [Example:

class X {
int a; // X::a is private by default: class used

public:
int b; // X::b is public
int c; // X::c is public

};

— end example]

2 Any number of access specifiers is allowed and no particular order is required. [Example:
struct S {

int a; // S::a is public by default: struct used
protected:

int b; // S::b is protected
private:

int c; // S::c is private
public:

int d; // S::d is public
};

— end example]

3 [Note: the effect of access control on the order of allocation of data members is described in 9.2. — end note]

4 When a member is redeclared within its class definition, the access specified at its redeclaration shall be the
same as at its initial declaration. [Example:

struct S {
class A;
enum E : int;

private:
class A { }; // error: cannot change access
enum E: int { e0 }; // error: cannot change access

};

— end example]

5 [Note: In a derived class, the lookup of a base class name will find the injected-class-name instead of the
name of the base class in the scope in which it was declared. The injected-class-name might be less accessible
than the name of the base class in the scope in which it was declared. — end note]

[Example:
class A { };
class B : private A { };
class C : public B {

A *p; // error: injected-class-name A is inaccessible
::A *q; // OK

};

§ 11.1 241

c© ISO/IEC N3092

— end example]

11.2 Accessibility of base classes and base class members [class.access.base]

1 If a class is declared to be a base class (Clause 10) for another class using the public access specifier, the
public members of the base class are accessible as public members of the derived class and protected
members of the base class are accessible as protected members of the derived class. If a class is declared to
be a base class for another class using the protected access specifier, the public and protected members
of the base class are accessible as protected members of the derived class. If a class is declared to be a base
class for another class using the private access specifier, the public and protected members of the base
class are accessible as private members of the derived class112.

2 In the absence of an access-specifier for a base class, public is assumed when the derived class is defined with
the class-key struct and private is assumed when the class is defined with the class-key class. [Example:

class B { /∗ ... ∗/ };
class D1 : private B { /∗ ... ∗/ };
class D2 : public B { /∗ ... ∗/ };
class D3 : B { /∗ ... ∗/ }; // B private by default
struct D4 : public B { /∗ ... ∗/ };
struct D5 : private B { /∗ ... ∗/ };
struct D6 : B { /∗ ... ∗/ }; // B public by default
class D7 : protected B { /∗ ... ∗/ };
struct D8 : protected B { /∗ ... ∗/ };

Here B is a public base of D2, D4, and D6, a private base of D1, D3, and D5, and a protected base of D7 and
D8. — end example]

3 [Note: A member of a private base class might be inaccessible as an inherited member name, but accessible
directly. Because of the rules on pointer conversions (4.10) and explicit casts (5.4), a conversion from
a pointer to a derived class to a pointer to an inaccessible base class might be ill-formed if an implicit
conversion is used, but well-formed if an explicit cast is used. For example,

class B {
public:

int mi; // non-static member
static int si; // static member

};
class D : private B {
};
class DD : public D {

void f();
};

void DD::f() {
mi = 3; // error: mi is private in D
si = 3; // error: si is private in D
::B b;
b.mi = 3; // OK (b.mi is different from this->mi)
b.si = 3; // OK (b.si is different from this->si)
::B::si = 3; // OK
::B* bp1 = this; // error: B is a private base class
::B* bp2 = (::B*)this; // OK with cast

112) As specified previously in Clause 11, private members of a base class remain inaccessible even to derived classes unless
friend declarations within the base class definition are used to grant access explicitly.

§ 11.2 242

c© ISO/IEC N3092

bp2->mi = 3; // OK: access through a pointer to B.
}

— end note]

4 A base class B of N is accessible at R, if

— an invented public member of B would be a public member of N, or

— R occurs in a member or friend of class N, and an invented public member of B would be a private or
protected member of N, or

— R occurs in a member or friend of a class P derived from N, and an invented public member of B would
be a private or protected member of P, or

— there exists a class S such that B is a base class of S accessible at R and S is a base class of N accessible
at R.

[Example:
class B {
public:

int m;
};

class S: private B {
friend class N;

};

class N: private S {
void f() {

B* p = this; // OK because class S satisfies the fourth condition
// above: B is a base class of N accessible in f() because
// B is an accessible base class of S and S is an accessible
// base class of N.

}
};

— end example]

5 If a base class is accessible, one can implicitly convert a pointer to a derived class to a pointer to that base
class (4.10, 4.11). [Note: it follows that members and friends of a class X can implicitly convert an X* to a
pointer to a private or protected immediate base class of X. — end note] The access to a member is affected
by the class in which the member is named. This naming class is the class in which the member name was
looked up and found. [Note: this class can be explicit, e.g., when a qualified-id is used, or implicit, e.g.,
when a class member access operator (5.2.5) is used (including cases where an implicit “this->” is added).
If both a class member access operator and a qualified-id are used to name the member (as in p->T::m), the
class naming the member is the class denoted by the nested-name-specifier of the qualified-id (that is, T).
— end note] A member m is accessible at the point R when named in class N if

— m as a member of N is public, or

— m as a member of N is private, and R occurs in a member or friend of class N, or

— m as a member of N is protected, and R occurs in a member or friend of class N, or in a member or
friend of a class P derived from N, where m as a member of P is public, private, or protected, or

§ 11.2 243

c© ISO/IEC N3092

— there exists a base class B of N that is accessible at R, and m is accessible at R when named in class B.
[Example:

class B;
class A {
private:

int i;
friend void f(B*);

};
class B : public A { };
void f(B* p) {

p->i = 1; // OK: B* can be implicitly converted to A*,
// and f has access to i in A

}

— end example]

6 If a class member access operator, including an implicit “this->,” is used to access a non-static data member
or non-static member function, the reference is ill-formed if the left operand (considered as a pointer in the
“.” operator case) cannot be implicitly converted to a pointer to the naming class of the right operand.
[Note: this requirement is in addition to the requirement that the member be accessible as named. — end
note]

11.3 Access declarations [class.access.dcl]

1 The access of a member of a base class can be changed in the derived class by mentioning its qualified-id in
the derived class definition. Such mention is called an access declaration. The effect of an access declaration
qualified-id ; is defined to be equivalent to the declaration using qualified-id ;.113

[Example:
class A {
public:

int z;
int z1;

};

class B : public A {
int a;

public:
int b, c;
int bf();

protected:
int x;
int y;

};

class D : private B {
int d;

public:
B::c; // adjust access to B::c

113) Access declarations are deprecated; member using-declarations (7.3.3) provide a better means of doing the same things.
In earlier versions of the C++ language, access declarations were more limited; they were generalized and made equivalent to
using-declarations in the interest of simplicity. Programmers are encouraged to use using-declarations, rather than the new
capabilities of access declarations, in new code.

§ 11.3 244

c© ISO/IEC N3092

B::z; // adjust access to A::z
A::z1; // adjust access to A::z1
int e;
int df();

protected:
B::x; // adjust access to B::x
int g;

};

class X : public D {
int xf();

};

int ef(D&);
int ff(X&);

The external function ef can use only the names c, z, z1, e, and df. Being a member of D, the function df
can use the names b, c, z, z1, bf, x, y, d, e, df, and g, but not a. Being a member of B, the function bf
can use the members a, b, c, z, z1, bf, x, and y. The function xf can use the public and protected names
from D, that is, c, z, z1, e, and df (public), and x, and g (protected). Thus the external function ff has
access only to c, z, z1, e, and df. If D were a protected or private base class of X, xf would have the same
privileges as before, but ff would have no access at all. — end example]

11.4 Friends [class.friend]

1 A friend of a class is a function or class that is given permission to use the private and protected member
names from the class. A class specifies its friends, if any, by way of friend declarations. Such declarations give
special access rights to the friends, but they do not make the nominated friends members of the befriending
class. [Example: the following example illustrates the differences between members and friends:

class X {
int a;
friend void friend_set(X*, int);

public:
void member_set(int);

};

void friend_set(X* p, int i) { p->a = i; }
void X::member_set(int i) { a = i; }

void f() {
X obj;
friend_set(&obj,10);
obj.member_set(10);

}

— end example]

2 Declaring a class to be a friend implies that the names of private and protected members from the class
granting friendship can be accessed in the base-specifiers and member declarations of the befriended class.
[Example:

class A {
class B { };
friend class X;

};

§ 11.4 245

c© ISO/IEC N3092

struct X : A::B { // OK: A::B accessible to friend
A::B mx; // OK: A::B accessible to member of friend
class Y {

A::B my; // OK: A::B accessible to nested member of friend
};

};

— end example] A class shall not be defined in a friend declaration. [Example:
class X {

enum { a=100 };
friend class Y;

};

class Y {
int v[X::a]; // OK, Y is a friend of X

};

class Z {
int v[X::a]; // error: X::a is private

};

— end example]

3 A friend declaration that does not declare a function shall have one of the following forms:
friend elaborated-type-specifier ;
friend simple-type-specifier ;
friend typename-specifier ;

[Note: a friend declaration may be the declaration in a template-declaration (Clause 14, 14.5.4). — end
note] If the type specifier in a friend declaration designates a (possibly cv-qualified) class type, that class
is declared as a friend; otherwise, the friend declaration is ignored. [Example:

class C;
typedef C Ct;

class X1 {
friend C; // OK: class C is a friend

};

class X2 {
friend Ct; // OK: class C is a friend
friend D; // error: no type-name D in scope
friend class D; // OK: elaborated-type-specifier declares new class

};

template <typename T> class R {
friend T;

};

R<C> rc; // class C is a friend of R<C>
R<int> Ri; // OK: "friend int;" is ignored

— end example]

§ 11.4 246

c© ISO/IEC N3092

4 A function first declared in a friend declaration has external linkage (3.5). Otherwise, the function retains
its previous linkage (7.1.1).

5 When a friend declaration refers to an overloaded name or operator, only the function specified by the
parameter types becomes a friend. A member function of a class X can be a friend of a class Y. [Example:

class Y {
friend char* X::foo(int);
friend X::X(char); // constructors can be friends
friend X::~X(); // destructors can be friends

};

— end example]

6 A function can be defined in a friend declaration of a class if and only if the class is a non-local class (9.8),
the function name is unqualified, and the function has namespace scope. [Example:

class M {
friend void f() { } // definition of global f, a friend of M,

// not the definition of a member function
};

— end example]

7 Such a function is implicitly inline. A friend function defined in a class is in the (lexical) scope of the
class in which it is defined. A friend function defined outside the class is not (3.4.1).

8 No storage-class-specifier shall appear in the decl-specifier-seq of a friend declaration.

9 A name nominated by a friend declaration shall be accessible in the scope of the class containing the friend
declaration. The meaning of the friend declaration is the same whether the friend declaration appears in
the private, protected or public (9.2) portion of the class member-specification.

10 Friendship is neither inherited nor transitive. [Example:
class A {

friend class B;
int a;

};

class B {
friend class C;

};

class C {
void f(A* p) {

p->a++; // error: C is not a friend of A
// despite being a friend of a friend

}
};

class D : public B {
void f(A* p) {

p->a++; // error: D is not a friend of A
// despite being derived from a friend

}
};

§ 11.4 247

c© ISO/IEC N3092

— end example]

11 If a friend declaration appears in a local class (9.8) and the name specified is an unqualified name, a prior
declaration is looked up without considering scopes that are outside the innermost enclosing non-class scope.
For a friend function declaration, if there is no prior declaration, the program is ill-formed. For a friend class
declaration, if there is no prior declaration, the class that is specified belongs to the innermost enclosing
non-class scope, but if it is subsequently referenced, its name is not found by name lookup until a matching
declaration is provided in the innermost enclosing nonclass scope. [Example:

class X;
void a();
void f() {

class Y;
extern void b();
class A {
friend class X; // OK, but X is a local class, not ::X
friend class Y; // OK
friend class Z; // OK, introduces local class Z
friend void a(); // error, ::a is not considered
friend void b(); // OK
friend void c(); // error
};
X *px; // OK, but ::X is found
Z *pz; // error, no Z is found

}

— end example]

11.5 Protected member access [class.protected]

1 An additional access check beyond those described earlier in Clause 11 is applied when a non-static data
member or non-static member function is a protected member of its naming class (11.2)114 As described
earlier, access to a protected member is granted because the reference occurs in a friend or member of some
class C. If the access is to form a pointer to member (5.3.1), the nested-name-specifier shall denote C or a
class derived from C. All other accesses involve a (possibly implicit) object expression (5.2.5). In this case,
the class of the object expression shall be C or a class derived from C. [Example:

class B {
protected:

int i;
static int j;

};

class D1 : public B {
};

class D2 : public B {
friend void fr(B*,D1*,D2*);
void mem(B*,D1*);

};

void fr(B* pb, D1* p1, D2* p2) {
pb->i = 1; // ill-formed
p1->i = 2; // ill-formed

114) This additional check does not apply to other members, e.g., static data members or enumerator member constants.

§ 11.5 248

c© ISO/IEC N3092

p2->i = 3; // OK (access through a D2)
p2->B::i = 4; // OK (access through a D2, even though

// naming class is B)
int B::* pmi_B = &B::i; // ill-formed
int B::* pmi_B2 = &D2::i; // OK (type of &D2::i is int B::*)
B::j = 5; // OK (because refers to static member)
D2::j =6; // OK (because refers to static member)

}

void D2::mem(B* pb, D1* p1) {
pb->i = 1; // ill-formed
p1->i = 2; // ill-formed
i = 3; // OK (access through this)
B::i = 4; // OK (access through this, qualification ignored)
int B::* pmi_B = &B::i; // ill-formed
int B::* pmi_B2 = &D2::i; // OK
j = 5; // OK (because j refers to static member)
B::j = 6; // OK (because B::j refers to static member)

}

void g(B* pb, D1* p1, D2* p2) {
pb->i = 1; // ill-formed
p1->i = 2; // ill-formed
p2->i = 3; // ill-formed

}

— end example]

11.6 Access to virtual functions [class.access.virt]

1 The access rules (Clause 11) for a virtual function are determined by its declaration and are not affected by
the rules for a function that later overrides it. [Example:

class B {
public:

virtual int f();
};

class D : public B {
private:

int f();
};

void f() {
D d;
B* pb = &d;
D* pd = &d;

pb->f(); // OK: B::f() is public,
// D::f() is invoked

pd->f(); // error: D::f() is private
}

— end example]

§ 11.6 249

c© ISO/IEC N3092

2 Access is checked at the call point using the type of the expression used to denote the object for which the
member function is called (B* in the example above). The access of the member function in the class in
which it was defined (D in the example above) is in general not known.

11.7 Multiple access [class.paths]

1 If a name can be reached by several paths through a multiple inheritance graph, the access is that of the
path that gives most access. [Example:

class W { public: void f(); };
class A : private virtual W { };
class B : public virtual W { };
class C : public A, public B {

void f() { W::f(); } // OK
};

2 Since W::f() is available to C::f() along the public path through B, access is allowed. — end example]

11.8 Nested classes [class.access.nest]

1 A nested class is a member and as such has the same access rights as any other member. The members of
an enclosing class have no special access to members of a nested class; the usual access rules (Clause 11)
shall be obeyed. [Example:

class E {
int x;
class B { };

class I {
B b; // OK: E::I can access E::B
int y;
void f(E* p, int i) {

p->x = i; // OK: E::I can access E::x
}

};

int g(I* p) {
return p->y; // error: I::y is private

}
};

— end example]

§ 11.8 250

c© ISO/IEC N3092

12 Special member functions [special]
1 The default constructor (12.1), copy constructor and copy assignment operator (12.8), move constructor

and move assignment operator (12.8), and destructor (12.4) are special member functions. [Note: The
implementation will implicitly declare these member functions for some class types when the program does
not explicitly declare them. The implementation will implicitly define them if they are used. See 12.1, 12.4
and 12.8. — end note] Programs shall not define implicitly-declared special member functions.

2 Programs may explicitly refer to implicitly-declared special member functions. [Example: a program may
explicitly call, take the address of or form a pointer to member to an implicitly-declared special member
function.

struct A { }; // implicitly-declared A::operator=
struct B : A {

B& operator=(const B &);
};
B& B::operator=(const B& s) {

this->A::operator=(s); // well-formed
return *this;

}

— end example]

3 [Note: The special member functions affect the way objects of class type are created, copied, moved, and
destroyed, and how values can be converted to values of other types. Often such special member functions
are called implicitly. — end note]

4 Special member functions obey the usual access rules (Clause 11). [Example: declaring a constructor
protected ensures that only derived classes and friends can create objects using it. — end example]

12.1 Constructors [class.ctor]

1 Constructors do not have names. A special declarator syntax using an optional sequence of function-
specifiers (7.1.2) followed by the constructor’s class name followed by a parameter list is used to declare or
define the constructor. In such a declaration, optional parentheses around the constructor class name are
ignored. [Example:

struct S {
S(); // declares the constructor

};

S::S() { } // defines the constructor

— end example]

2 A constructor is used to initialize objects of its class type. Because constructors do not have names, they are
never found during name lookup; however an explicit type conversion using the functional notation (5.2.3)
will cause a constructor to be called to initialize an object. [Note: for initialization of objects of class type
see 12.6. — end note]

3 A typedef-name shall not be used as the class-name in the declarator-id for a constructor declaration.

§ 12.1 251

c© ISO/IEC N3092

4 A constructor shall not be virtual (10.3) or static (9.4). A constructor can be invoked for a const,
volatile or const volatile object. A constructor shall not be declared const, volatile, or const
volatile (9.3.2). const and volatile semantics (7.1.6.1) are not applied on an object under construction.
They come into effect when the constructor for the most derived object (1.8) ends. A constructor shall not
be declared with a ref-qualifier .

5 A default constructor for a class X is a constructor of class X that can be called without an argument. If
there is no user-declared constructor for class X, a constructor having no parameters is implicitly declared
as defaulted (8.4). An implicitly-declared default constructor is an inline public member of its class. A
defaulted default constructor for class X is defined as deleted if:

— X is a union-like class that has a variant member with a non-trivial default constructor,

— any non-static data member with no brace-or-equal-initializer is of reference type,

— any non-variant non-static data member of const-qualified type (or array thereof) with no brace-or-
equal-initializer does not have a user-provided default constructor,

— X is a union and all of its variant members are of const-qualified type (or array thereof),

— X is a non-union class and all members of any anonymous union member are of const-qualified type
(or array thereof), or

— any direct or virtual base class, or non-static data member with no brace-or-equal-initializer , has class
type M (or array thereof) and either M has no default constructor or overload resolution (13.3) as applied
to M’s default constructor results in an ambiguity or in a function that is deleted or inaccessible from
the defaulted default constructor.

A default constructor is trivial if it is neither user-provided nor deleted and if:

— its class has no virtual functions (10.3) and no virtual base classes (10.1), and

— no non-static data member of its class has a brace-or-equal-initializer , and

— all the direct base classes of its class have trivial default constructors, and

— for all the non-static data members of its class that are of class type (or array thereof), each such class
has a trivial default constructor.

Otherwise, the default constructor is non-trivial.

6 A default constructor that is defaulted and not defined as deleted is implicitly defined when it is used (3.2)
to create an object of its class type (1.8) or when it is explicitly defaulted after its first declaration. The
implicitly-defined default constructor performs the set of initializations of the class that would be per-
formed by a user-written default constructor for that class with no ctor-initializer (12.6.2) and an empty
compound-statement. If that user-written default constructor would be ill-formed, the program is ill-formed.
If that user-written default constructor would satisfy the requirements of a constexpr constructor (7.1.5), the
implicitly-defined default constructor is constexpr. Before the defaulted default constructor for a class is im-
plicitly defined, all the non-user-provided default constructors for its base classes and its non-static data mem-
bers shall have been implicitly defined. [Note: an implicitly-declared default constructor has an exception-
specification (15.4). An explicitly-defaulted definition might have an implicit exception-specification, see 8.4.
— end note]

7 Default constructors are called implicitly to create class objects of static, thread, or automatic storage
duration (3.7.1, 3.7.2, 3.7.3) defined without an initializer (8.5), are called to create class objects of dynamic
storage duration (3.7.4) created by a new-expression in which the new-initializer is omitted (5.3.4), or
are called when the explicit type conversion syntax (5.2.3) is used. A program is ill-formed if the default
constructor for an object is implicitly used and the constructor is not accessible (Clause 11).

§ 12.1 252

c© ISO/IEC N3092

8 [Note: 12.6.2 describes the order in which constructors for base classes and non-static data members are
called and describes how arguments can be specified for the calls to these constructors. — end note]

9 A copy constructor (12.8) is used to copy objects of class type. A move constructor (12.8) is used to move
the contents of objects of class type.

10 No return type (not even void) shall be specified for a constructor. A return statement in the body of a
constructor shall not specify a return value. The address of a constructor shall not be taken.

11 A functional notation type conversion (5.2.3) can be used to create new objects of its type. [Note: The
syntax looks like an explicit call of the constructor. — end note] [Example:

complex zz = complex(1,2.3);
cprint(complex(7.8,1.2));

— end example]

12 An object created in this way is unnamed. [Note: 12.2 describes the lifetime of temporary objects. — end
note] [Note: explicit constructor calls do not yield lvalues, see 3.10. — end note]

13 [Note: some language constructs have special semantics when used during construction; see 12.6.2 and 12.7.
— end note]

14 During the construction of a const object, if the value of the object or any of its subobjects is accessed
through a glvalue that is not obtained, directly or indirectly, from the constructor’s this pointer, the value
of the object or subobject thus obtained is unspecified. [Example:

struct C;
void no_opt(C*);

struct C {
int c;
C() : c(0) { no_opt(this); }

};

const C cobj;

void no_opt(C* cptr) {
int i = cobj.c * 100; // value of cobj.c is unspecified
cptr->c = 1;
cout << cobj.c * 100 // value of cobj.c is unspecified

<< ’\n’;
}

— end example]

12.2 Temporary objects [class.temporary]

1 Temporaries of class type are created in various contexts: binding a reference to a prvalue (8.5.3), returning
a prvalue (6.6.3), a conversion that creates a prvalue (4.1, 5.2.9, 5.2.11, 5.4), throwing an exception (15.1),
entering a handler (15.3), and in some initializations (8.5). [Note: the lifetime of exception objects is
described in 15.1. — end note] Even when the creation of the temporary object is avoided (12.8), all the
semantic restrictions shall be respected as if the temporary object had been created. [Note: Even if the
copy/move constructor is not called, all the semantic restrictions, such as accessibility (Clause 11), shall be
satisfied. — end note]

2 [Example: Consider the following code:

§ 12.2 253

c© ISO/IEC N3092

class X {
public:

X(int);
X(const X&);
~X();

};

class Y {
public:

Y(int);
Y(Y&&);
~Y();

};

X f(X);
Y g(Y);

void h() {
X a(1);
X b = f(X(2));
Y c = g(Y(3));
a = f(a);

}

An implementation might use a temporary in which to construct X(2) before passing it to f() using X’s copy
constructor; alternatively, X(2) might be constructed in the space used to hold the argument. Likewise, an
implementation might use a temporary in which to construct Y(3) before passing it to g() using Y’s move
constructor; alternatively, Y(3) might be constructed in the space used to hold the argument. Also, a
temporary might be used to hold the result of f(X(2)) before copying it to b using X’s copy constructor;
alternatively, f()’s result might be constructed in b. Likewise, a temporary might be used to hold the result
of g(Y(3)) before moving it to c using Y’s move constructor; alternatively, g()’s result might be constructed
in c. On the other hand, the expression a=f(a) requires a temporary for the result of f(a), which is then
assigned to a. — end example]

3 When an implementation introduces a temporary object of a class that has a non-trivial constructor (12.1,
12.8), it shall ensure that a constructor is called for the temporary object. Similarly, the destructor shall be
called for a temporary with a non-trivial destructor (12.4). Temporary objects are destroyed as the last step
in evaluating the full-expression (1.9) that (lexically) contains the point where they were created. This is true
even if that evaluation ends in throwing an exception. The value computations and side effects of destroying
a temporary object are associated only with the full-expression, not with any specific subexpression.

4 There are two contexts in which temporaries are destroyed at a different point than the end of the full-
expression. The first context is when a default constructor is called to initialize an element of an array. If
the constructor has one or more default arguments, the destruction of every temporary created in a default
argument expression is sequenced before the construction of the next array element, if any.

5 The second context is when a reference is bound to a temporary. The temporary to which the reference is
bound or the temporary that is the complete object of a subobject to which the reference is bound persists
for the lifetime of the reference except:

— A temporary bound to a reference member in a constructor’s ctor-initializer (12.6.2) persists until the
constructor exits.

— A temporary bound to a reference parameter in a function call (5.2.2) persists until the completion of
the full-expression containing the call.

§ 12.2 254

c© ISO/IEC N3092

— The lifetime of a temporary bound to the returned value in a function return statement (6.6.3) is not
extended; the temporary is destroyed at the end of the full-expression in the return statement.

— A temporary bound to a reference in a new-initializer (5.3.4) persists until the completion of the
full-expression containing the new-initializer . [Example:

struct S { int mi; const std::pair<int,int>& mp; };
S a { 1, {2,3} };
S* p = new S{ 1, {2,3} }; // Creates dangling reference

— end example] [Note: This may introduce a dangling reference, and implementations are encouraged
to issue a warning in such a case. — end note]

The destruction of a temporary whose lifetime is not extended by being bound to a reference is sequenced
before the destruction of every temporary which is constructed earlier in the same full-expression. If the
lifetime of two or more temporaries to which references are bound ends at the same point, these temporaries
are destroyed at that point in the reverse order of the completion of their construction. In addition, the
destruction of temporaries bound to references shall take into account the ordering of destruction of objects
with static, thread, or automatic storage duration (3.7.1, 3.7.2, 3.7.3); that is, if obj1 is an object with the
same storage duration as the temporary and created before the temporary is created the temporary shall be
destroyed before obj1 is destroyed; if obj2 is an object with the same storage duration as the temporary and
created after the temporary is created the temporary shall be destroyed after obj2 is destroyed. [Example:

struct S {
S();
S(int);
friend S operator+(const S&, const S&);
~S();

};
S obj1;
const S& cr = S(16)+S(23);
S obj2;

the expression S(16) + S(23) creates three temporaries: a first temporary T1 to hold the result of the
expression S(16), a second temporary T2 to hold the result of the expression S(23), and a third temporary
T3 to hold the result of the addition of these two expressions. The temporary T3 is then bound to the reference
cr. It is unspecified whether T1 or T2 is created first. On an implementation where T1 is created before
T2, it is guaranteed that T2 is destroyed before T1. The temporaries T1 and T2 are bound to the reference
parameters of operator+; these temporaries are destroyed at the end of the full-expression containing the
call to operator+. The temporary T3 bound to the reference cr is destroyed at the end of cr’s lifetime,
that is, at the end of the program. In addition, the order in which T3 is destroyed takes into account the
destruction order of other objects with static storage duration. That is, because obj1 is constructed before
T3, and T3 is constructed before obj2, it is guaranteed that obj2 is destroyed before T3, and that T3 is
destroyed before obj1. — end example]

12.3 Conversions [class.conv]

1 Type conversions of class objects can be specified by constructors and by conversion functions. These
conversions are called user-defined conversions and are used for implicit type conversions (Clause 4), for
initialization (8.5), and for explicit type conversions (5.4, 5.2.9).

2 User-defined conversions are applied only where they are unambiguous (10.2, 12.3.2). Conversions obey the
access control rules (Clause 11). Access control is applied after ambiguity resolution (3.4).

§ 12.3 255

c© ISO/IEC N3092

3 [Note: See 13.3 for a discussion of the use of conversions in function calls as well as examples below. — end
note]

4 At most one user-defined conversion (constructor or conversion function) is implicitly applied to a single
value.

[Example:
struct X {

operator int();
};

struct Y {
operator X();

};

Y a;
int b = a; // error

// a.operator X().operator int() not tried
int c = X(a); // OK: a.operator X().operator int()

— end example]

5 User-defined conversions are used implicitly only if they are unambiguous. A conversion function in a
derived class does not hide a conversion function in a base class unless the two functions convert to the same
type. Function overload resolution (13.3.3) selects the best conversion function to perform the conversion.
[Example:

struct X {
operator int();

};

struct Y : X {
operator char();

};

void f(Y& a) {
if (a) { // ill-formed:

// X::operator int() or Y::operator char()
}

}

— end example]

12.3.1 Conversion by constructor [class.conv.ctor]

1 A constructor declared without the function-specifier explicit specifies a conversion from the types of its
parameters to the type of its class. Such a constructor is called a converting constructor . [Example:

struct X {
X(int);
X(const char*, int =0);

};

void f(X arg) {
X a = 1; // a = X(1)
X b = "Jessie"; // b = X("Jessie",0)

§ 12.3.1 256

c© ISO/IEC N3092

a = 2; // a = X(2)
f(3); // f(X(3))

}

— end example]

2 An explicit constructor constructs objects just like non-explicit constructors, but does so only where the
direct-initialization syntax (8.5) or where casts (5.2.9, 5.4) are explicitly used. A default constructor
may be an explicit constructor; such a constructor will be used to perform default-initialization or value-
initialization (8.5). [Example:

struct Z {
explicit Z();
explicit Z(int);

};

Z a; // OK: default-initialization performed
Z a1 = 1; // error: no implicit conversion
Z a3 = Z(1); // OK: direct initialization syntax used
Z a2(1); // OK: direct initialization syntax used
Z* p = new Z(1); // OK: direct initialization syntax used
Z a4 = (Z)1; // OK: explicit cast used
Z a5 = static_cast<Z>(1); // OK: explicit cast used

— end example]

3 A non-explicit copy/move constructor (12.8) is a converting constructor. An implicitly-declared copy/move
constructor is not an explicit constructor; it may be called for implicit type conversions.

12.3.2 Conversion functions [class.conv.fct]

1 A member function of a class X having no parameters with a name of the form
conversion-function-id:

operator conversion-type-id
conversion-type-id:

type-specifier-seq conversion-declaratoropt

conversion-declarator:
ptr-operator conversion-declaratoropt

specifies a conversion from X to the type specified by the conversion-type-id. Such functions are called
conversion functions. No return type can be specified. If a conversion function is a member function, the
type of the conversion function (8.3.5) is “function taking no parameter returning conversion-type-id”. A
conversion function is never used to convert a (possibly cv-qualified) object to the (possibly cv-qualified)
same object type (or a reference to it), to a (possibly cv-qualified) base class of that type (or a reference to
it), or to (possibly cv-qualified) void.115

[Example:
struct X {

operator int();
};

115) These conversions are considered as standard conversions for the purposes of overload resolution (13.3.3.1, 13.3.3.1.4) and
therefore initialization (8.5) and explicit casts (5.2.9). A conversion to void does not invoke any conversion function (5.2.9).
Even though never directly called to perform a conversion, such conversion functions can be declared and can potentially be
reached through a call to a virtual conversion function in a base class.

§ 12.3.2 257

c© ISO/IEC N3092

void f(X a) {
int i = int(a);
i = (int)a;
i = a;

}

In all three cases the value assigned will be converted by X::operator int(). — end example]

2 A conversion function may be explicit (7.1.2), in which case it is only considered as a user-defined conversion
for direct-initialization (8.5). Otherwise, user-defined conversions are not restricted to use in assignments
and initializations. [Example:

class Y { };
struct Z {

explicit operator Y() const;
};

void h(Z z) {
Y y1(z); // OK: direct-initialization
Y y2 = z; // ill-formed: copy-initialization
Y y3 = (Y)z; // OK: cast notation

}

void g(X a, X b) {
int i = (a) ? 1+a : 0;
int j = (a&&b) ? a+b : i;
if (a) {
}

}

— end example]

3 The conversion-type-id shall not represent a function type nor an array type. The conversion-type-id in
a conversion-function-id is the longest possible sequence of conversion-declarators. [Note: this prevents
ambiguities between the declarator operator * and its expression counterparts. [Example:

&ac.operator int*i; // syntax error:
// parsed as: &(ac.operator int *)i
// not as: &(ac.operator int)*i

The * is the pointer declarator and not the multiplication operator. — end example] — end note]

4 Conversion functions are inherited.

5 Conversion functions can be virtual.

6 Conversion functions cannot be declared static.

12.4 Destructors [class.dtor]

1 A special declarator syntax using an optional function-specifier (7.1.2) followed by ˜ followed by the destruc-
tor’s class name followed by an empty parameter list is used to declare the destructor in a class definition.
In such a declaration, the ˜ followed by the destructor’s class name can be enclosed in optional parentheses;
such parentheses are ignored. A typedef-name shall not be used as the class-name following the ∼ in the
declarator for a destructor declaration.

§ 12.4 258

c© ISO/IEC N3092

2 A destructor is used to destroy objects of its class type. A destructor takes no parameters, and no return type
can be specified for it (not even void). The address of a destructor shall not be taken. A destructor shall
not be static. A destructor can be invoked for a const, volatile or const volatile object. A destructor
shall not be declared const, volatile or const volatile (9.3.2). const and volatile semantics (7.1.6.1)
are not applied on an object under destruction. They stop being in effect when the destructor for the most
derived object (1.8) starts. A destructor shall not be declared with a ref-qualifier .

3 If a class has no user-declared destructor, a destructor is implicitly declared as defaulted (8.4). An implicitly-
declared destructor is an inline public member of its class.

A defaulted destructor for a class X is defined as deleted if:

— X is a union-like class that has a variant member with a non-trivial destructor,

— any of the non-static data members has class type M (or array thereof) and M has a deleted destructor
or a destructor that is inaccessible from the defaulted destructor, or

— any direct or virtual base class has a deleted destructor or a destructor that is inaccessible from the
defaulted destructor.

A destructor is trivial if it is neither user-provided nor deleted and if:

— the destructor is not virtual,

— all of the direct base classes of its class have trivial destructors, and

— for all of the non-static data members of its class that are of class type (or array thereof), each such
class has a trivial destructor.

Otherwise, the destructor is non-trivial.

4 A destructor that is defaulted and not defined as deleted is implicitly defined when it is used to destroy an
object of its class type (3.7) or when it is explicitly defaulted after its first declaration.

Before the defaulted destructor for a class is implicitly defined, all the non-user-provided destructors for
its base classes and its non-static data members shall have been implicitly defined. [Note: an implicitly-
declared destructor has an exception-specification (15.4). An explictly defaulted definition has no implicit
exception-specification. — end note]

5 After executing the body of the destructor and destroying any automatic objects allocated within the body,
a destructor for class X calls the destructors for X’s direct non-variant members, the destructors for X’s direct
base classes and, if X is the type of the most derived class (12.6.2), its destructor calls the destructors for
X’s virtual base classes. All destructors are called as if they were referenced with a qualified name, that is,
ignoring any possible virtual overriding destructors in more derived classes. Bases and members are destroyed
in the reverse order of the completion of their constructor (see 12.6.2). A return statement (6.6.3) in a
destructor might not directly return to the caller; before transferring control to the caller, the destructors
for the members and bases are called. Destructors for elements of an array are called in reverse order of
their construction (see 12.6).

6 A destructor can be declared virtual (10.3) or pure virtual (10.4); if any objects of that class or any
derived class are created in the program, the destructor shall be defined. If a class has a base class with a
virtual destructor, its destructor (whether user- or implicitly- declared) is virtual.

7 [Note: some language constructs have special semantics when used during destruction; see 12.7. — end
note]

8 Destructors are invoked implicitly

— for constructed objects with static storage duration (3.7.1) at program termination (3.6.3),

§ 12.4 259

c© ISO/IEC N3092

— for constructed objects with thread storage duration (3.7.2) at thread exit,

— for constructed objects with automatic storage duration (3.7.3) when the block in which an object is
created exits (6.7),

— for constructed temporary objects when the lifetime of a temporary object ends (12.2),

— for constructed objects allocated by a new-expression (5.3.4), through use of a delete-expression (5.3.5),

— in several situations due to the handling of exceptions (15.3).

A program is ill-formed if an object of class type or array thereof is declared and the destructor for the class
is not accessible at the point of the declaration. Destructors can also be invoked explicitly.

9 At the point of definition of a virtual destructor (including an implicit definition (12.8)), the non-array
deallocation function is looked up in the scope of the destructor’s class (10.2), and, if no declaration is
found, the function is looked up in the global scope. If the result of this lookup is ambiguous or inaccessible,
or if the lookup selects a placement deallocation function or a function with a deleted definition (8.4), the
program is ill-formed. [Note: this assures that a deallocation function corresponding to the dynamic type
of an object is available for the delete-expression (12.5). — end note]

10 In an explicit destructor call, the destructor name appears as a ˜ followed by a type-name or decltype-
specifier that denotes the destructor’s class type. The invocation of a destructor is subject to the usual
rules for member functions (9.3), that is, if the object is not of the destructor’s class type and not of a class
derived from the destructor’s class type, the program has undefined behavior (except that invoking delete
on a null pointer has no effect). [Example:

struct B {
virtual ~B() { }

};
struct D : B {

~D() { }
};

D D_object;
typedef B B_alias;
B* B_ptr = &D_object;

void f() {
D_object.B::~B(); // calls B’s destructor
B_ptr->~B(); // calls D’s destructor
B_ptr->~B_alias(); // calls D’s destructor
B_ptr->B_alias::~B(); // calls B’s destructor
B_ptr->B_alias::~B_alias(); // calls B’s destructor

}

— end example] [Note: an explicit destructor call must always be written using a member access opera-
tor (5.2.5) or a qualified-id (5.1); in particular, the unary-expression ˜X() in a member function is not an
explicit destructor call (5.3.1). — end note]

11 [Note: explicit calls of destructors are rarely needed. One use of such calls is for objects placed at specific
addresses using a new-expression with the placement option. Such use of explicit placement and destruction
of objects can be necessary to cope with dedicated hardware resources and for writing memory management
facilities. For example,

void* operator new(std::size_t, void* p) { return p; }
struct X {

§ 12.4 260

c© ISO/IEC N3092

X(int);
~X();

};
void f(X* p);

void g() { // rare, specialized use:
char* buf = new char[sizeof(X)];
X* p = new(buf) X(222); // use buf[] and initialize
f(p);
p->X::~X(); // cleanup

}

— end note]

12 Once a destructor is invoked for an object, the object no longer exists; the behavior is undefined if the
destructor is invoked for an object whose lifetime has ended (3.8). [Example: if the destructor for an
automatic object is explicitly invoked, and the block is subsequently left in a manner that would ordinarily
invoke implicit destruction of the object, the behavior is undefined. — end example]

13 [Note: the notation for explicit call of a destructor can be used for any scalar type name (5.2.4). Allowing
this makes it possible to write code without having to know if a destructor exists for a given type. For
example,

typedef int I;
I* p;
p->I::~I();

— end note]

12.5 Free store [class.free]

1 Any allocation function for a class T is a static member (even if not explicitly declared static).

2 [Example:
class Arena;
struct B {

void* operator new(std::size_t, Arena*);
};
struct D1 : B {
};

Arena* ap;
void foo(int i) {

new (ap) D1; // calls B::operator new(std::size_t, Arena*)
new D1[i]; // calls ::operator new[](std::size_t)
new D1; // ill-formed: ::operator new(std::size_t) hidden

}

— end example]

3 When an object is deleted with a delete-expression (5.3.5), a deallocation function (operator delete() for
non-array objects or operator delete[]() for arrays) is (implicitly) called to reclaim the storage occupied
by the object (3.7.4.2).

4 If a delete-expression begins with a unary :: operator, the deallocation function’s name is looked up in
global scope. Otherwise, if the delete-expression is used to deallocate a class object whose static type has

§ 12.5 261

c© ISO/IEC N3092

a virtual destructor, the deallocation function is the one selected at the point of definition of the dynamic
type’s virtual destructor (12.4).116 Otherwise, if the delete-expression is used to deallocate an object of
class T or array thereof, the static and dynamic types of the object shall be identical and the deallocation
function’s name is looked up in the scope of T. If this lookup fails to find the name, the name is looked up in
the global scope. If the result of the lookup is ambiguous or inaccessible, or if the lookup selects a placement
deallocation function, the program is ill-formed.

5 When a delete-expression is executed, the selected deallocation function shall be called with the address of
the block of storage to be reclaimed as its first argument and (if the two-parameter style is used) the size of
the block as its second argument.117

6 Any deallocation function for a class X is a static member (even if not explicitly declared static). [Example:
class X {

void operator delete(void*);
void operator delete[](void*, std::size_t);

};

class Y {
void operator delete(void*, std::size_t);
void operator delete[](void*);

};

— end example]

7 Since member allocation and deallocation functions are static they cannot be virtual. [Note: however,
when the cast-expression of a delete-expression refers to an object of class type, because the deallocation
function actually called is looked up in the scope of the class that is the dynamic type of the object, if the
destructor is virtual, the effect is the same. For example,

struct B {
virtual ~B();
void operator delete(void*, std::size_t);

};

struct D : B {
void operator delete(void*);

};

void f() {
B* bp = new D;
delete bp; // uses D::operator delete(void*)

}

Here, storage for the non-array object of class D is deallocated by D::operator delete(), due to the virtual
destructor. — end note] [Note: virtual destructors have no effect on the deallocation function actually called
when the cast-expression of a delete-expression refers to an array of objects of class type. For example,

struct B {
virtual ~B();
void operator delete[](void*, std::size_t);

};

116) A similar provision is not needed for the array version of operator delete because 5.3.5 requires that in this situation,
the static type of the object to be deleted be the same as its dynamic type.
117) If the static type of the object to be deleted is different from the dynamic type and the destructor is not virtual the size
might be incorrect, but that case is already undefined; see 5.3.5.

§ 12.5 262

c© ISO/IEC N3092

struct D : B {
void operator delete[](void*, std::size_t);

};

void f(int i) {
D* dp = new D[i];
delete [] dp; // uses D::operator delete[](void*, std::size_t)
B* bp = new D[i];
delete[] bp; // undefined behavior

}

— end note]

8 Access to the deallocation function is checked statically. Hence, even though a different one might actually
be executed, the statically visible deallocation function is required to be accessible. [Example: for the call
on line //1 above, if B::operator delete() had been private, the delete expression would have been
ill-formed. — end example]

12.6 Initialization [class.init]

1 When no initializer is specified for an object of (possibly cv-qualified) class type (or array thereof), or the
initializer has the form (), the object is initialized as specified in 8.5.

2 An object of class type (or array thereof) can be explicitly initialized; see 12.6.1 and 12.6.2.

3 When an array of class objects is initialized (either explicitly or implicitly) and the elements are initialized
by constructor, the constructor shall be called for each element of the array, following the subscript order;
see 8.3.4. [Note: destructors for the array elements are called in reverse order of their construction. — end
note]

12.6.1 Explicit initialization [class.expl.init]

1 An object of class type can be initialized with a parenthesized expression-list, where the expression-list
is construed as an argument list for a constructor that is called to initialize the object. Alternatively, a
single assignment-expression can be specified as an initializer using the = form of initialization. Either
direct-initialization semantics or copy-initialization semantics apply; see 8.5. [Example:

struct complex {
complex();
complex(double);
complex(double,double);

};

complex sqrt(complex,complex);

complex a(1); // initialize by a call of
// complex(double)

complex b = a; // initialize by a copy of a
complex c = complex(1,2); // construct complex(1,2)

// using complex(double,double)
// copy/move it into c

complex d = sqrt(b,c); // call sqrt(complex,complex)
// and copy/move the result into d

complex e; // initialize by a call of
// complex()

§ 12.6.1 263

c© ISO/IEC N3092

complex f = 3; // construct complex(3) using
// complex(double)
// copy/move it into f

complex g = { 1, 2 }; // construct complex(1, 2)
// using complex(double, double)
// and copy/move it into g

— end example] [Note: overloading of the assignment operator (13.5.3) has no effect on initialization. — end
note]

2 An object of class type can also be initialized by a braced-init-list. List-initialization semantics apply; see 8.5
and 8.5.4. [Example:

complex v[6] = { 1, complex(1,2), complex(), 2 };

Here, complex::complex(double) is called for the initialization of v[0] and v[3], complex::complex(double,
double) is called for the initialization of v[1], complex::complex() is called for the initialization v[2],
v[4], and v[5]. For another example,

struct X {
int i;
float f;
complex c;

} x = { 99, 88.8, 77.7 };

Here, x.i is initialized with 99, x.f is initialized with 88.8, and complex::complex(double) is called for the
initialization of x.c. — end example] [Note: braces can be elided in the initializer-list for any aggregate,
even if the aggregate has members of a class type with user-defined type conversions; see 8.5.1. — end note]

3 [Note: if T is a class type with no default constructor, any declaration of an object of type T (or array
thereof) is ill-formed if no initializer is explicitly specified (see 12.6 and 8.5). — end note]

4 [Note: the order in which objects with static or thread storage duration are initialized is described in 3.6.2
and 6.7. — end note]

12.6.2 Initializing bases and members [class.base.init]

1 In the definition of a constructor for a class, initializers for direct and virtual base subobjects and non-static
data members can be specified by a ctor-initializer , which has the form

ctor-initializer:
: mem-initializer-list

mem-initializer-list:
mem-initializer ...opt

mem-initializer , mem-initializer-list ...opt

mem-initializer:
mem-initializer-id (expression-listopt)
mem-initializer-id braced-init-list

mem-initializer-id:
class-or-decltype
identifier

2 In a mem-initializer-id an initial unqualified identifier is looked up in the scope of the constructor’s class
and, if not found in that scope, it is looked up in the scope containing the constructor’s definition. [Note:
if the constructor’s class contains a member with the same name as a direct or virtual base class of the
class, a mem-initializer-id naming the member or base class and composed of a single identifier refers to

§ 12.6.2 264

c© ISO/IEC N3092

the class member. A mem-initializer-id for the hidden base class may be specified using a qualified name.
— end note] Unless the mem-initializer-id names the constructor’s class, a non-static data member of the
constructor’s class, or a direct or virtual base of that class, the mem-initializer is ill-formed.

3 A mem-initializer-list can initialize a base class using any class-or-decltype that denotes that base class type.
[Example:

struct A { A(); };
typedef A global_A;
struct B { };
struct C: public A, public B { C(); };
C::C(): global_A() { } // mem-initializer for base A

— end example]

4 If a mem-initializer-id is ambiguous because it designates both a direct non-virtual base class and an inherited
virtual base class, the mem-initializer is ill-formed. [Example:

struct A { A(); };
struct B: public virtual A { };
struct C: public A, public B { C(); };
C::C(): A() { } // ill-formed: which A?

— end example]

5 A ctor-initializer may initialize the member of an anonymous union that is a member of the constructor’s
class. If a ctor-initializer specifies more than one mem-initializer for the same member or for the same base
class, the ctor-initializer is ill-formed.

6 A mem-initializer-list can delegate to another constructor of the constructor’s class using any class-or-
decltype that denotes the constructor’s class itself. If a mem-initializer-id designates the constructor’s class,
it shall be the only mem-initializer; the constructor is a delegating constructor , and the constructor selected
by the mem-initializer is the target constructor . The principal constructor is the first constructor invoked
in the construction of an object (that is, not a target constructor for that object’s construction). The
target constructor is selected by overload resolution. Once the target constructor returns, the body of the
delegating constructor is executed. If a constructor delegates to itself directly or indirectly, the program is
ill-formed; no diagnostic is required. [Example:

struct C {
C(int) { } // #1: non-delegating constructor
C(): C(42) { } // #2: delegates to #1
C(char c) : C(42.0) { } // #3: ill-formed due to recursion with #4
C(double d) : C(’a’) { } // #4: ill-formed due to recursion with #3

};

— end example]

7 The expression-list or braced-init-list in a mem-initializer is used to initialize the base class or non-static
data member subobject denoted by the mem-initializer-id according to the initialization rules of 8.5 for
direct-initialization.

[Example:
struct B1 { B1(int); /∗ ... ∗/ };
struct B2 { B2(int); /∗ ... ∗/ };
struct D : B1, B2 {

D(int);

§ 12.6.2 265

c© ISO/IEC N3092

B1 b;
const int c;

};

D::D(int a) : B2(a+1), B1(a+2), c(a+3), b(a+4)
{ /∗ ... ∗/ }

D d(10);

— end example] The initialization of each base and member constitutes a full-expression. Any expression in
a mem-initializer is evaluated as part of the full-expression that performs the initialization. A mem-initializer
where the mem-initializer-id denotes a virtual base class is ignored during execution of a constructor of any
class that is not the most derived class.

8 If a given non-static data member or base class is not designated by a mem-initializer-id (including the case
where there is no mem-initializer-list because the constructor has no ctor-initializer) and the entity is not
a virtual base class of an abstract class (10.4), then

— if the entity is a non-static data member that has a brace-or-equal-initializer , the entity is initialized
as specified in 8.5;

— otherwise, if the entity is a variant member (9.5), no initialization is performed;

— otherwise, the entity is default-initialized (8.5).

[Note: an abstract class (10.4) is never a most derived class, thus its constructors never initialize virtual
base classes, therefore the corresponding mem-initializers may be omitted. — end note] An attempt to
initialize more than one non-static data member of a union renders the program ill-formed. After the call
to a constructor for class X has completed, if a member of X is neither initialized nor given a value during
execution of the compound-statement of the body of the constructor, the member has indeterminate value.
[Example:

struct A {
A();

};

struct B {
B(int);

};

struct C {
C() { } // initializes members as follows:
A a; // OK: calls A::A()
const B b; // error: B has no default constructor
int i; // OK: i has indeterminate value
int j = 5; // OK: j has the value 5

};

— end example]

9 If a given non-static data member has both a brace-or-equal-initializer and a mem-initializer , the initializa-
tion specified by the mem-initializer is performed, and the non-static data member’s brace-or-equal-initializer
is ignored. [Example: Given

struct A {
int i = /∗ some integer expression with side effects ∗/ ;
A(int arg) : i(arg) { }
// ...

§ 12.6.2 266

c© ISO/IEC N3092

};

the A(int) constructor will simply initialize i to the value of arg, and the side effects in i’s brace-or-equal-
initializer will not take place. — end example]

10 Initialization proceeds in the following order:

— First, and only for the constructor of the most derived class (1.8), virtual base classes are initialized in
the order they appear on a depth-first left-to-right traversal of the directed acyclic graph of base classes,
where “left-to-right” is the order of appearance of the base classes in the derived class base-specifier-list.

— Then, direct base classes are initialized in declaration order as they appear in the base-specifier-list
(regardless of the order of the mem-initializers).

— Then, non-static data members are initialized in the order they were declared in the class definition
(again regardless of the order of the mem-initializers).

— Finally, the compound-statement of the constructor body is executed.

[Note: the declaration order is mandated to ensure that base and member subobjects are destroyed in the
reverse order of initialization. — end note]

11 [Example:
struct V {

V();
V(int);

};

struct A : virtual V {
A();
A(int);

};

struct B : virtual V {
B();
B(int);

};

struct C : A, B, virtual V {
C();
C(int);

};

A::A(int i) : V(i) { /∗ ... ∗/ }
B::B(int i) { /∗ ... ∗/ }
C::C(int i) { /∗ ... ∗/ }

V v(1); // use V(int)
A a(2); // use V(int)
B b(3); // use V()
C c(4); // use V()

— end example]

12 Names in the expression-list of a mem-initializer are evaluated in the scope of the constructor for which the
mem-initializer is specified. [Example:

§ 12.6.2 267

c© ISO/IEC N3092

class X {
int a;
int b;
int i;
int j;

public:
const int& r;
X(int i): r(a), b(i), i(i), j(this->i) { }

};

initializes X::r to refer to X::a, initializes X::b with the value of the constructor parameter i, initializes X::i
with the value of the constructor parameter i, and initializes X::j with the value of X::i; this takes place
each time an object of class X is created. — end example] [Note: because the mem-initializer are evaluated
in the scope of the constructor, the this pointer can be used in the expression-list of a mem-initializer to
refer to the object being initialized. — end note]

13 Member functions (including virtual member functions, 10.3) can be called for an object under construction.
Similarly, an object under construction can be the operand of the typeid operator (5.2.8) or of a dynamic_-
cast (5.2.7). However, if these operations are performed in a ctor-initializer (or in a function called directly
or indirectly from a ctor-initializer) before all the mem-initializers for base classes have completed, the result
of the operation is undefined. [Example:

class A {
public:

A(int);
};

class B : public A {
int j;

public:
int f();
B() : A(f()), // undefined: calls member function

// but base A not yet initialized
j(f()) { } // well-defined: bases are all initialized

};

class C {
public:

C(int);
};

class D : public B, C {
int i;

public:
D() : C(f()), // undefined: calls member function

// but base C not yet initialized
i(f()) { } // well-defined: bases are all initialized

};

— end example]

14 [Note: 12.7 describes the result of virtual function calls, typeid and dynamic_casts during construction for
the well-defined cases; that is, describes the polymorphic behavior of an object under construction. — end
note]

§ 12.6.2 268

c© ISO/IEC N3092

15 A mem-initializer followed by an ellipsis is a pack expansion (14.5.3) that initializes the base classes specified
by a pack expansion in the base-specifier-list for the class. [Example:

template<class... Mixins>
class X : public Mixins... {
public:

X(const Mixins&... mixins) : Mixins(mixins)... { }
};

— end example]

12.7 Construction and destruction [class.cdtor]

1 For an object with a non-trivial constructor, referring to any non-static member or base class of the object
before the constructor begins execution results in undefined behavior. For an object with a non-trivial
destructor, referring to any non-static member or base class of the object after the destructor finishes
execution results in undefined behavior. [Example:

struct X { int i; };
struct Y : X { Y(); }; // non-trivial
struct A { int a; };
struct B : public A { int j; Y y; }; // non-trivial

extern B bobj;
B* pb = &bobj; // OK
int* p1 = &bobj.a; // undefined, refers to base class member
int* p2 = &bobj.y.i; // undefined, refers to member’s member

A* pa = &bobj; // undefined, upcast to a base class type
B bobj; // definition of bobj

extern X xobj;
int* p3 = &xobj.i; //OK, X is a trivial class
X xobj;

2 For another example,
struct W { int j; };
struct X : public virtual W { };
struct Y {

int *p;
X x;
Y() : p(&x.j) { // undefined, x is not yet constructed

}
};

— end example]

3 To explicitly or implicitly convert a pointer (a glvalue) referring to an object of class X to a pointer (reference)
to a direct or indirect base class B of X, the construction of X and the construction of all of its direct or
indirect bases that directly or indirectly derive from B shall have started and the destruction of these classes
shall not have completed, otherwise the conversion results in undefined behavior. To form a pointer to (or
access the value of) a direct non-static member of an object obj, the construction of obj shall have started
and its destruction shall not have completed, otherwise the computation of the pointer value (or accessing
the member value) results in undefined behavior. [Example:

§ 12.7 269

c© ISO/IEC N3092

struct A { };
struct B : virtual A { };
struct C : B { };
struct D : virtual A { D(A*); };
struct X { X(A*); };

struct E : C, D, X {
E() : D(this), // undefined: upcast from E* to A*

// might use path E* → D* → A*
// but D is not constructed
// D((C*)this), // defined:
// E* → C* defined because E() has started
// and C* → A* defined because
// C fully constructed

X(this) { // defined: upon construction of X,
// C/B/D/A sublattice is fully constructed

}
};

— end example]

4 Member functions, including virtual functions (10.3), can be called during construction or destruction (12.6.2).
When a virtual function is called directly or indirectly from a constructor (including the mem-initializer or
brace-or-equal-initializer for a non-static data member) or from a destructor, and the object to which the
call applies is the object under construction or destruction, the function called is the one defined in the
constructor or destructor’s own class or in one of its bases, but not a function overriding it in a class derived
from the constructor or destructor’s class, or overriding it in one of the other base classes of the most derived
object (1.8). If the virtual function call uses an explicit class member access (5.2.5) and the object-expression
refers to the object under construction or destruction but its type is neither the constructor or destructor’s
own class or one of its bases, the result of the call is undefined. [Example:

struct V {
virtual void f();
virtual void g();

};

struct A : virtual V {
virtual void f();

};

struct B : virtual V {
virtual void g();
B(V*, A*);

};

struct D : A, B {
virtual void f();
virtual void g();
D() : B((A*)this, this) { }

};

B::B(V* v, A* a) {
f(); // calls V::f, not A::f
g(); // calls B::g, not D::g
v->g(); // v is base of B, the call is well-defined, calls B::g

§ 12.7 270

c© ISO/IEC N3092

a->f(); // undefined behavior, a’s type not a base of B
}

— end example]

5 The typeid operator (5.2.8) can be used during construction or destruction (12.6.2). When typeid is used
in a constructor (including the mem-initializer or brace-or-equal-initializer for a non-static data member) or
in a destructor, or used in a function called (directly or indirectly) from a constructor or destructor, if the
operand of typeid refers to the object under construction or destruction, typeid yields the std::type_info
object representing the constructor or destructor’s class. If the operand of typeid refers to the object under
construction or destruction and the static type of the operand is neither the constructor or destructor’s class
nor one of its bases, the result of typeid is undefined.

6 Dynamic_casts (5.2.7) can be used during construction or destruction (12.6.2). When a dynamic_cast
is used in a constructor (including the mem-initializer or brace-or-equal-initializer for a non-static data
member) or in a destructor, or used in a function called (directly or indirectly) from a constructor or
destructor, if the operand of the dynamic_cast refers to the object under construction or destruction, this
object is considered to be a most derived object that has the type of the constructor or destructor’s class. If
the operand of the dynamic_cast refers to the object under construction or destruction and the static type
of the operand is not a pointer to or object of the constructor or destructor’s own class or one of its bases,
the dynamic_cast results in undefined behavior.

[Example:
struct V {

virtual void f();
};

struct A : virtual V { };

struct B : virtual V {
B(V*, A*);

};

struct D : A, B {
D() : B((A*)this, this) { }

};

B::B(V* v, A* a) {
typeid(*this); // type_info for B
typeid(*v); // well-defined: *v has type V, a base of B

// yields type_info for B
typeid(*a); // undefined behavior: type A not a base of B
dynamic_cast<B*>(v); // well-defined: v of type V*, V base of B

// results in B*
dynamic_cast<B*>(a); // undefined behavior,

// a has type A*, A not a base of B
}

— end example]

12.8 Copying and moving class objects [class.copy]

1 A class object can be copied or moved in two ways: by initialization (12.1, 8.5), including for function argu-
ment passing (5.2.2) and for function value return (6.6.3); and by assignment (5.17). Conceptually, these two
operations are implemented by a copy/move constructor (12.1) and copy/move assignment operator (13.5.3).

§ 12.8 271

c© ISO/IEC N3092

2 A non-template constructor for class X is a copy constructor if its first parameter is of type X&, const X&,
volatile X& or const volatile X&, and either there are no other parameters or else all other parameters
have default arguments (8.3.6). [Example: X::X(const X&) and X::X(X&,int=1) are copy constructors.

struct X {
X(int);
X(const X&, int = 1);

};
X a(1); // calls X(int);
X b(a, 0); // calls X(const X&, int);
X c = b; // calls X(const X&, int);

— end example]

3 A non-template constructor for class X is a move constructor if its first parameter is of type X&&, const
X&&, volatile X&&, or const volatile X&&, and either there are no other parameters or else all other
parameters have default arguments (8.3.6). [Example: Y::Y(Y&&) is a move constructor.

struct Y {
Y(const Y&);
Y(Y&&);

};
extern Y f(int);
Y d(f(1)); // calls Y(Y&&)
Y e = d; // calls Y(const Y&)

— end example]

4 [Note: All forms of copy/move constructor may be declared for a class. [Example:
struct X {

X(const X&);
X(X&); // OK
X(X&&);
X(const X&&); // OK, but possibly not sensible

};

— end example] — end note]

5 [Note: if a class X only has a copy constructor with a parameter of type X&, an initializer of type const X
or volatile X cannot initialize an object of type (possibly cv-qualified) X. [Example:

struct X {
X(); // default constructor
X(X&); // copy constructor with a nonconst parameter

};
const X cx;
X x = cx; // error: X::X(X&) cannot copy cx into x

— end example] — end note]

6 A declaration of a constructor for a class X is ill-formed if its first parameter is of type (optionally cv-qualified)
X and either there are no other parameters or else all other parameters have default arguments.

7 A member function template is never instantiated to perform the copy of a class object to an object of its
class type. [Example:

§ 12.8 272

c© ISO/IEC N3092

struct S {
template<typename T> S(T);
template<typename T> S(T&&);
S();

};

S f();
const S g;

void h() {
S a(f()); // does not instantiate member template;

// uses the implicitly generated move constructor
S a(g); // does not instantiate the member template;

// uses the implicitly generated copy constructor
}

— end example]

8 If the class definition does not explicitly declare a copy constructor and there is no user-declared move
constructor, a copy constructor is implicitly declared as defaulted (8.4). Thus, for the class definition

struct X {
X(const X&, int);

};

a copy constructor is implicitly-declared. If the user-declared constructor is later defined as
X::X(const X& x, int i =0) { /∗ ... ∗/ }

then any use of X’s copy constructor is ill-formed because of the ambiguity; no diagnostic is required.

9 The implicitly-declared copy constructor for a class X will have the form
X::X(const X&)

if

— each direct or virtual base class B of X has a copy constructor whose first parameter is of type const
B& or const volatile B&, and

— for all the non-static data members of X that are of a class type M (or array thereof), each such class
type has a copy constructor whose first parameter is of type const M& or const volatile M&.118

Otherwise, the implicitly-declared copy constructor will have the form
X::X(X&)

10 If the class definition does not explicitly declare a move constructor, one will be implicitly declared as
defaulted if and only if

— X does not have a user-declared copy constructor and

— the move constructor would not be implicitly defined as deleted.

118) This implies that the reference parameter of the implicitly-declared copy constructor cannot bind to a volatile lvalue;
see C.1.8.

§ 12.8 273

c© ISO/IEC N3092

[Note: When the move constructor is not implicitly declared or explicitly supplied, expressions that otherwise
would have invoked the move constructor may instead invoke a copy constructor. — end note]

11 The implicitly-declared move constructor for class X will have the form
X::X(X&&)

12 An implicitly-declared copy/move constructor is an inline public member of its class. A defaulted copy-
/move constructor for a class X is defined as deleted (8.4.3) if X has:

— a variant member with a non-trivial corresponding constructor and X is a union-like class,

— a non-static data member of class type M (or array thereof) that cannot be copied/moved because
overload resolution (13.3), as applied to M’s corresponding constructor, results in an ambiguity or a
function that is deleted or inaccessible from the defaulted constructor, or

— a direct or virtual base class B that cannot be copied/moved because overload resolution (13.3), as
applied to B’s corresponding constructor, results in an ambiguity or a function that is deleted or
inaccessible from the defaulted constructor, or

— for the move constructor, a non-static data member or direct or virtual base class with a type that
does not have a move constructor and is not trivially copyable.

13 A copy/move constructor for class X is trivial if it is neither user-provided nor deleted and if

— class X has no virtual functions (10.3) and no virtual base classes (10.1), and

— the constructor selected to copy/move each direct base class subobject is trivial, and

— for each non-static data member of X that is of class type (or array thereof), the constructor selected
to copy/move that member is trivial;

otherwise the copy/move constructor is non-trivial.

14 A copy/move constructor that is defaulted and not defined as deleted is implicitly defined if it is used to
initialize an object of its class type from a copy of an object of its class type or of a class type derived from its
class type119 or when it is explicitly defaulted after its first declaration. [Note: the copy/move constructor
is implicitly defined even if the implementation elided its use (12.2). — end note]

15 Before the defaulted copy/move constructor for a class is implicitly defined, all non-user-provided copy/move
constructors for its direct and virtual base classes and its non-static data members shall have been implicitly
defined. [Note: an implicitly-declared copy/move constructor has an exception-specification (15.4). An
explicitly-defaulted definition (8.4.2) has no implicit exception-specification. — end note]

16 The implicitly-defined copy constructor for a non-union class X performs a memberwise copy of its subobjects.
[Note: brace-or-equal-initializers of non-static data members are ignored. See also the example in 12.6.2.
— end note] The order of copying is the same as the order of initialization of bases and members in a
user-defined constructor (see 12.6.2). Each subobject is copied in the manner appropriate to its type:

— if the subobject is of class type, the copy constructor for the class is used;

— if the subobject is an array, each element is copied, in the manner appropriate to the element type;

— if the subobject is of scalar type, the built-in assignment operator is used.

Virtual base class subobjects shall be copied only once by the implicitly-defined copy constructor (see 12.6.2).

17 The implicitly-defined move constructor for a non-union class X performs a memberwise move of its sub-
objects. [Note: brace-or-equal-initializers of non-static data members are ignored. See also the example

119) See 8.5 for more details on direct and copy initialization.

§ 12.8 274

c© ISO/IEC N3092

in 12.6.2. — end note] The order of moving is the same as the order of initialization of bases and members
in a user-defined constructor (see 12.6.2). Given a parameter named x, each base or non-static data member
is moved in the manner appropriate to its type:

— a named member m of reference or class type T is direct-initialized with the expression static_-
cast<T&&>(x.m);

— a base class B is direct-initialized with the expression static_cast<B&&>(x);

— an array is initialized by moving each element in the manner appropriate to the element type;

— a scalar type is initialized with the built-in assignment operator.

Virtual base class subobjects shall be moved only once by the implicitly-defined move constructor (see 12.6.2).

18 The implicitly-defined copy constructor for a union X copies the object representation (3.9) of X.

19 A user-declared copy assignment operator X::operator= is a non-static non-template member function of
class X with exactly one parameter of type X, X&, const X&, volatile X& or const volatile X&.120 [Note:
an overloaded assignment operator must be declared to have only one parameter; see 13.5.3. — end note]
[Note: more than one form of copy assignment operator may be declared for a class. — end note] [Note:
if a class X only has a copy assignment operator with a parameter of type X&, an expression of type const X
cannot be assigned to an object of type X. [Example:

struct X {
X();
X& operator=(X&);

};
const X cx;
X x;
void f() {

x = cx; // error: X::operator=(X&) cannot assign cx into x
}

— end example] — end note]

20 If the class definition does not explicitly declare a copy assignment operator and there is no user-declared
move assignment operator, a copy assignment operator is implicitly declared as defaulted (8.4). The
implicitly-declared copy assignment operator for a class X will have the form

X& X::operator=(const X&)

if

— each direct base class B of X has a copy assignment operator whose parameter is of type const B&,
const volatile B& or B, and

— for all the non-static data members of X that are of a class type M (or array thereof), each such class
type has a copy assignment operator whose parameter is of type const M&, const volatile M& or M.121

Otherwise, the implicitly-declared copy assignment operator will have the form
X& X::operator=(X&)

120) Because a template assignment operator or an assignment operator taking an rvalue reference parameter is never a
copy assignment operator, the presence of such an assignment operator does not suppress the implicit declaration of a copy
assignment operator. Such assignment operators participate in overload resolution with other assignment operators, including
copy assignment operators, and, if selected, will be used to assign an object.
121) This implies that the reference parameter of the implicitly-declared copy assignment operator cannot bind to a volatile
lvalue; see C.1.8.

§ 12.8 275

c© ISO/IEC N3092

21 A user-declared move assignment operator X::operator= is a non-static non-template member function of
class X with exactly one parameter of type X&&, const X&&, volatile X&&, or const volatile X&&. [Note:
An overloaded assignment operator must be declared to have only one parameter; see 13.5.3. — end note]
[Note: More than one form of move assignment operator may be declared for a class. — end note]

22 If the class definition does not explicitly declare a move assignment operator, one will be implicitly declared
as defaulted if and only if

— the copy assignment operator is not user-declared and

— the move assignment operator would not be implicitly defined as deleted.

[Example: The class definition
struct S {

int a;
S& operator=(const S&) = default;

};

will not have a default move assignment operator implicitly declared because the copy assignment operator
has been user-declared. The move assignment operator may be explicitly defaulted.

struct S {
int a;
S& operator=(const S&) = default;
S& operator=(S&&) = default;

};

— end example]

23 The implicitly-declared move assignment operator for a class X will have the form
& X::operator=(X&&);

24 The implicitly-declared copy/move assignment operator for class X has the return type X&; it returns the
object for which the assignment operator is invoked, that is, the object assigned to. An implicitly-declared
copy/move assignment operator is an inline public member of its class.

25 A defaulted copy/move assignment operator for class X is defined as deleted if X has:

— a variant member with a non-trivial corresponding assignment operator and X is a union-like class, or

— a non-static data member of const non-class type (or array thereof), or

— a non-static data member of reference type, or

— a non-static data member of class type M (or array thereof) that cannot be copied/moved because
overload resolution (13.3), as applied to M’s corresponding assignment operator, results in an ambiguity
or a function that is deleted or inaccessible from the defaulted assignment operator, or

— a direct or virtual base class B that cannot be copied/moved because overload resolution (13.3), as
applied to B’s corresponding assignment operator, results in an ambiguity or a function that is deleted
or inaccessible from the defaulted assignment operator, or

— for the move assignment operator, a non-static data member or direct base class with a type that does
not have a move assignment operator and is not trivially copyable, or any direct or indirect virtual
base class.

§ 12.8 276

c© ISO/IEC N3092

26 Because a copy/move assignment operator is implicitly declared for a class if not declared by the user, a
base class copy/move assignment operator is always hidden by the corresponding assignment operator of a
derived class (13.5.3). A using-declaration (7.3.3) that brings in from a base class an assignment operator
with a parameter type that could be that of a copy/move assignment operator for the derived class is not
considered an explicit declaration of such an operator and does not suppress the implicit declaration of the
derived class operator; the operator introduced by the using-declaration is hidden by the implicitly-declared
operator in the derived class.

27 A copy/move assignment operator for class X is trivial if it is neither user-provided nor deleted and if

— class X has no virtual functions (10.3) and no virtual base classes (10.1), and

— the assignment operator selected to copy/move each direct base class subobject is trivial, and

— for each non-static data member of X that is of class type (or array thereof), the assignment operator
selected to copy/move that member is trivial;

otherwise the copy/move assignment operator is non-trivial.

28 A copy/move assignment operator that is defaulted and not defined as deleted is implicitly defined when an
object of its class type is assigned a value of its class type or a value of a class type derived from its class
type or when it is explicitly defaulted after its first declaration.

29 Before the defaulted copy/move assignment operator for a class is implicitly defined, all non-user-provided
copy/move assignment operators for its direct base classes and its non-static data members shall have
been implicitly defined. [Note: An implicitly-declared copy/move assignment operator has an exception-
specification (15.4). An explicitly-defaulted definition has no implicit exception-specification. — end note]

30 The implicitly-defined copy assignment operator for a non-union class X performs memberwise copy assign-
ment of its subobjects. The direct base classes of X are assigned first, in the order of their declaration in the
base-specifier-list, and then the immediate non-static data members of X are assigned, in the order in which
they were declared in the class definition. Each subobject is assigned in the manner appropriate to its type:

— if the subobject is of class type, the copy assignment operator for the class is used (as if by explicit
qualification; that is, ignoring any possible virtual overriding functions in more derived classes);

— if the subobject is an array, each element is assigned, in the manner appropriate to the element type;

— if the subobject is of scalar type, the built-in assignment operator is used.

It is unspecified whether subobjects representing virtual base classes are assigned more than once by the
implicitly-defined copy assignment operator. [Example:

struct V { };
struct A : virtual V { };
struct B : virtual V { };
struct C : B, A { };

It is unspecified whether the virtual base class subobject V is assigned twice by the implicitly-defined copy
assignment operator for C. — end example]

31 The implicitly-defined move assignment operator for a non-union class X performs memberwise assignment
of its subobjects. The direct base classes of X are assigned first, in the order of their declaration in the
base-specifier-list, and then the immediate non-static data members of X are assigned, in the order in which
they were declared in the class definition. Given a parameter named x, each subobject is assigned in the
manner appropriate to its type:

— if the subobject is a named member c of class type C, as if by the expression
this->c = static_cast<C&&>(x.c);

§ 12.8 277

c© ISO/IEC N3092

— if the subobject is a direct base class B, as if by the expression this->B::operator=(static_-
cast<B&&>(x));

— if the subobject is an array, each element is moved, in the manner appropriate to the element type;

— if the subobject is of scalar type, the built-in assignment operator is used.

32 The implicitly-defined copy assignment operator for a union X copies the object representation (3.9) of X.

33 A program is ill-formed if the copy/move constructor or the copy/move assignment operator for an object
is implicitly used and the special member function is not accessible (Clause 11). [Note: Copying/moving
one object into another using the copy/move constructor or the copy/move assignment operator does not
change the layout or size of either object. — end note]

34 When certain criteria are met, an implementation is allowed to omit the copy/move construction of a class
object, even if the copy/move constructor and/or destructor for the object have side effects. In such cases,
the implementation treats the source and target of the omitted copy/move operation as simply two different
ways of referring to the same object, and the destruction of that object occurs at the later of the times
when the two objects would have been destroyed without the optimization.122 This elision of copy/move
operations, called copy elision, is permitted in the following circumstances (which may be combined to
eliminate multiple copies):

— in a return statement in a function with a class return type, when the expression is the name of
a non-volatile automatic object with the same cv-unqualified type as the function return type, the
copy/move operation can be omitted by constructing the automatic object directly into the function’s
return value

— in a throw-expression, when the operand is the name of a non-volatile automatic object whose scope
does not extend beyond the end of the innermost enclosing try-block (if there is one), the copy/move
operation from the operand to the exception object (15.1) can be omitted by constructing the automatic
object directly into the exception object

— when a temporary class object that has not been bound to a reference (12.2) would be copied/moved
to a class object with the same cv-unqualified type, the copy/move operation can be omitted by
constructing the temporary object directly into the target of the omitted copy/move

— when the exception-declaration of an exception handler (Clause 15) declares an object of the same type
(except for cv-qualification) as the exception object (15.1), the copy/move operation can be omitted
by treating the exception-declaration as an alias for the exception object if the meaning of the program
will be unchanged except for the execution of constructors and destructors for the object declared by
the exception-declaration.

[Example:
class Thing {
public:

Thing();
~Thing();
Thing(const Thing&);

};

Thing f() {
Thing t;
return t;

}

122) Because only one object is destroyed instead of two, and one copy/move constructor is not executed, there is still one
object destroyed for each one constructed.

§ 12.8 278

c© ISO/IEC N3092

Thing t2 = f();

Here the criteria for elision can be combined to eliminate two calls to the copy constructor of class Thing:
the copying of the local automatic object t into the temporary object for the return value of function f()
and the copying of that temporary object into object t2. Effectively, the construction of the local object
t can be viewed as directly initializing the global object t2, and that object’s destruction will occur at
program exit. Adding a move constructor to Thing has the same effect, but it is the move construction from
the temporary object to t2 that is elided. — end example]

35 When the criteria for elision of a copy operation are met and the object to be copied is designated by an
lvalue, overload resolution to select the constructor for the copy is first performed as if the object were
designated by an rvalue. If overload resolution fails, or if the type of the first parameter of the selected
constructor is not an rvalue reference to the object’s type (possibly cv-qualified), overload resolution is
performed again, considering the object as an lvalue. [Note: This two-stage overload resolution must be
performed regardless of whether copy elision will occur. It determines the constructor to be called if elision
is not performed, and the selected constructor must be accessible even if the call is elided. — end note]

[Example:
class Thing {
public:

Thing();
~Thing();
Thing(Thing&&);

private:
Thing(const Thing&);

};

Thing f(bool b) {
Thing t;
if (b)

throw t; // OK: Thing(Thing&&) used (or elided) to throw t
return t; // OK: Thing(Thing&&) used (or elided) to return t

}

Thing t2 = f(false); // OK: Thing(Thing&&) used (or elided) to construct t2

— end example]

12.9 Inheriting Constructors [class.inhctor]

1 A using-declaration (7.3.3) that names a constructor implicitly declares a set of inheriting constructors. The
candidate set of inherited constructors from the class X named in the using-declaration consists of actual
constructors and notional constructors that result from the transformation of defaulted parameters as follows:

— all non-template constructors of X, and

— for each non-template constructor of X that has at least one parameter with a default argument, the set
of constructors that results from omitting any ellipsis parameter specification and successively omitting
parameters with a default argument from the end of the parameter-type-list, and

— all constructor templates of X, and

§ 12.9 279

c© ISO/IEC N3092

— for each constructor template of X that has at least one parameter with a default argument, the set of
constructor templates that results from omitting any ellipsis parameter specification and successively
omitting parameters with a default argument from the end of the parameter-type-list.

2 The constructor characteristics of a constructor or constructor template are

— the template parameter list (14.1), if any,

— the parameter-type-list (8.3.5),

— the exception-specification (15.4),

— absence or presence of explicit (12.3.1), and

— absence or presence of constexpr (7.1.5).

3 For each non-template constructor in the candidate set of inherited constructors other than a constructor
having no parameters or a copy/move constructor having a single parameter, a constructor is implicitly
declared with the same constructor characteristics unless there is a user-declared constructor with the same
signature in the class where the using-declaration appears. Similarly, for each constructor template in
the candidate set of inherited constructors, a constructor template is implicitly declared with the same
constructor characteristics unless there is an equivalent user-declared constructor template (14.5.6.1) in the
class where the using-declaration appears. [Note: Default arguments are not inherited. — end note]

4 A constructor so declared has the same access as the corresponding constructor in X. It is deleted if the
corresponding constructor in X is deleted (8.4).

5 [Note: Default and copy/move constructors may be implicitly declared as specified in 12.1 and 12.8. — end
note]

6 [Example:
struct B1 {

B1(int);
};

struct B2 {
B2(int = 13, int = 42);

};

struct D1 : B1 {
using B1::B1;

};

struct D2 : B2 {
using B2::B2;

};

The candidate set of inherited constructors in D1 for B1 is

— B1(const B1&)

— B1(B1&&)

— B1(int)

The set of constructors present in D1 is

— D1(), implicitly-declared default constructor, ill-formed if used

§ 12.9 280

c© ISO/IEC N3092

— D1(const D1&), implicitly-declared copy constructor, not inherited

— D1(D1&&), implicitly-declared move constructor, not inherited

— D1(int), implicitly-declared inheriting constructor

The candidate set of inherited constructors in D2 for B2 is

— B2(const B2&)

— B2(B2&&)

— B2(int = 13, int = 42)

— B2(int = 13)

— B2()

The set of constructors present in D2 is

— D2(), implicitly-declared default constructor, not inherited

— D2(const D2&), implicitly-declared copy constructor, not inherited

— D2(D2&&), implicitly-declared move constructor, not inherited

— D2(int, int), implicitly-declared inheriting constructor

— D2(int), implicitly-declared inheriting constructor

— end example]

7 [Note: If two using-declarations declare inheriting constructors with the same signatures, the program is
ill-formed (9.2, 13.1), because an implicitly-declared constructor introduced by the first using-declaration is
not a user-declared constructor and thus does not preclude another declaration of a constructor with the
same signature by a subsequent using-declaration. [Example:

struct B1 {
B1(int);

};

struct B2 {
B2(int);

};

struct D1 : B1, B2 {
using B1::B1;
using B2::B2;

}; // ill-formed: attempts to declare D1(int) twice

struct D2 : B1, B2 {
using B1::B1;
using B2::B2;
D2(int); // OK: user declaration supersedes both implicit declarations

};

— end example] — end note]

8 An inheriting constructor for a class is implicitly defined when it is used (3.2) to create an object of its class
type (1.8). An implicitly-defined inheriting constructor performs the set of initializations of the class that
would be performed by a user-written inline constructor for that class with a mem-initializer-list whose

§ 12.9 281

c© ISO/IEC N3092

only mem-initializer has a mem-initializer-id that names the base class denoted in the nested-name-specifier
of the using-declaration and an expression-list as specified below, and where the compound-statement in
its function body is empty (12.6.2). If that user-written constructor would be ill-formed, the program is
ill-formed. Each expression in the expression-list is of the form static_cast<T&&>(p), where p is the name
of the corresponding constructor parameter and T is the declared type of p.

9 [Example:
struct B1 {

B1(int) { }
};

struct B2 {
B2(double) { }

};

struct D1 : B1 {
using B1::B1; // implicitly declares D1(int)
int x;

};

void test() {
D1 d(6); // OK: d.x is not initialized
D1 e; // error: D1 has no default constructor

}

struct D2 : B2 {
using B2::B2; // OK: implicitly declares D2(double)
B1 b;

};

D2 f(1.0); // error: B1 has no default constructor

template< class T >
struct D : T {

using T::T; // declares all constructors from class T
~D() { std::clog << "Destroying wrapper" << std::endl; }

};

Class template D wraps any class and forwards all of its contructors, while writing a message to the standard
log whenever an object of class D is destroyed. — end example]

§ 12.9 282

c© ISO/IEC N3092

13 Overloading [over]
1 When two or more different declarations are specified for a single name in the same scope, that name is said

to be overloaded. By extension, two declarations in the same scope that declare the same name but with
different types are called overloaded declarations. Only function declarations can be overloaded; object and
type declarations cannot be overloaded.

2 When an overloaded function name is used in a call, which overloaded function declaration is being referenced
is determined by comparing the types of the arguments at the point of use with the types of the parameters
in the overloaded declarations that are visible at the point of use. This function selection process is called
overload resolution and is defined in 13.3. [Example:

double abs(double);
int abs(int);

abs(1); // calls abs(int);
abs(1.0); // calls abs(double);

— end example]

13.1 Overloadable declarations [over.load]

1 Not all function declarations can be overloaded. Those that cannot be overloaded are specified here. A
program is ill-formed if it contains two such non-overloadable declarations in the same scope. [Note: this
restriction applies to explicit declarations in a scope, and between such declarations and declarations made
through a using-declaration (7.3.3). It does not apply to sets of functions fabricated as a result of name
lookup (e.g., because of using-directives) or overload resolution (e.g., for operator functions). — end note]

2 Certain function declarations cannot be overloaded:

— Function declarations that differ only in the return type cannot be overloaded.

— Member function declarations with the same name and the same parameter-type-list cannot be over-
loaded if any of them is a static member function declaration (9.4). Likewise, member function
template declarations with the same name, the same parameter-type-list, and the same template pa-
rameter lists cannot be overloaded if any of them is a static member function template declaration.
The types of the implicit object parameters constructed for the member functions for the purpose of
overload resolution (13.3.1) are not considered when comparing parameter-type-lists for enforcement of
this rule. In contrast, if there is no static member function declaration among a set of member func-
tion declarations with the same name and the same parameter-type-list, then these member function
declarations can be overloaded if they differ in the type of their implicit object parameter. [Example:
the following illustrates this distinction:

class X {
static void f();
void f(); // ill-formed
void f() const; // ill-formed
void f() const volatile; // ill-formed
void g();
void g() const; // OK: no static g
void g() const volatile; // OK: no static g

};

§ 13.1 283

c© ISO/IEC N3092

— end example]

— Member function declarations with the same name and the same parameter-type-list as well as mem-
ber function template declarations with the same name, the same parameter-type-list, and the same
template parameter lists cannot be overloaded if any of them, but not all, have a ref-qualifier (8.3.5).
[Example:

class Y {
void h() &;
void h() const &; // OK
void h() &&; // OK, all declarations have a ref-qualifier
void i() &;
void i() const; // ill-formed, prior declaration of i

// has a ref-qualifier
};

— end example]

3 [Note: as specified in 8.3.5, function declarations that have equivalent parameter declarations declare the
same function and therefore cannot be overloaded:

— Parameter declarations that differ only in the use of equivalent typedef “types” are equivalent. A
typedef is not a separate type, but only a synonym for another type (7.1.3). [Example:

typedef int Int;

void f(int i);
void f(Int i); // OK: redeclaration of f(int)
void f(int i) { /* ... */ }
void f(Int i) { /* ... */ } // error: redefinition of f(int)

— end example]

Enumerations, on the other hand, are distinct types and can be used to distinguish overloaded function
declarations. [Example:

enum E { a };

void f(int i) { /∗ ... ∗/ }
void f(E i) { /∗ ... ∗/ }

— end example]

— Parameter declarations that differ only in a pointer * versus an array [] are equivalent. That is, the
array declaration is adjusted to become a pointer declaration (8.3.5). Only the second and subsequent
array dimensions are significant in parameter types (8.3.4). [Example:

int f(char*);
int f(char[]); // same as f(char*);
int f(char[7]); // same as f(char*);
int f(char[9]); // same as f(char*);

int g(char(*)[10]);
int g(char[5][10]); // same as g(char(*)[10]);
int g(char[7][10]); // same as g(char(*)[10]);
int g(char(*)[20]); // different from g(char(*)[10]);

— end example]

§ 13.1 284

c© ISO/IEC N3092

— Parameter declarations that differ only in that one is a function type and the other is a pointer to
the same function type are equivalent. That is, the function type is adjusted to become a pointer to
function type (8.3.5). [Example:

void h(int());
void h(int (*)()); // redeclaration of h(int())
void h(int x()) { } // definition of h(int())
void h(int (*x)()) { } // ill-formed: redefinition of h(int())

— end example]

— Parameter declarations that differ only in the presence or absence of const and/or volatile are
equivalent. That is, the const and volatile type-specifiers for each parameter type are ignored when
determining which function is being declared, defined, or called. [Example:

typedef const int cInt;

int f (int);
int f (const int); // redeclaration of f(int)
int f (int) { ... } // definition of f(int)
int f (cInt) { ... } // error: redefinition of f(int)

— end example]

Only the const and volatile type-specifiers at the outermost level of the parameter type specifica-
tion are ignored in this fashion; const and volatile type-specifiers buried within a parameter type
specification are significant and can be used to distinguish overloaded function declarations.123 In
particular, for any type T, “pointer to T,” “pointer to const T,” and “pointer to volatile T” are
considered distinct parameter types, as are “reference to T,” “reference to const T,” and “reference to
volatile T.”

— Two parameter declarations that differ only in their default arguments are equivalent. [Example:
consider the following:

void f (int i, int j);
void f (int i, int j = 99); // OK: redeclaration of f(int, int)
void f (int i = 88, int j); // OK: redeclaration of f(int, int)
void f (); // OK: overloaded declaration of f

void prog () {
f (1, 2); // OK: call f(int, int)
f (1); // OK: call f(int, int)
f (); // Error: f(int, int) or f()?

}

— end example] — end note]

13.2 Declaration matching [over.dcl]

1 Two function declarations of the same name refer to the same function if they are in the same scope and
have equivalent parameter declarations (13.1). A function member of a derived class is not in the same scope
as a function member of the same name in a base class. [Example:

123) When a parameter type includes a function type, such as in the case of a parameter type that is a pointer to function,
the const and volatile type-specifiers at the outermost level of the parameter type specifications for the inner function type
are also ignored.

§ 13.2 285

c© ISO/IEC N3092

struct B {
int f(int);

};

struct D : B {
int f(char*);

};

Here D::f(char*) hides B::f(int) rather than overloading it.
void h(D* pd) {

pd->f(1); // error:
// D::f(char*) hides B::f(int)

pd->B::f(1); // OK
pd->f("Ben"); // OK, calls D::f

}

— end example]

2 A locally declared function is not in the same scope as a function in a containing scope. [Example:
void f(char*);
void g() {

extern void f(int);
f("asdf"); // error: f(int) hides f(char*)

// so there is no f(char*) in this scope
}

void caller () {
extern void callee(int, int);
{

extern void callee(int); // hides callee(int, int)
callee(88, 99); // error: only callee(int) in scope

}
}

— end example]

3 Different versions of an overloaded member function can be given different access rules. [Example:
class buffer {
private:

char* p;
int size;

protected:
buffer(int s, char* store) { size = s; p = store; }

public:
buffer(int s) { p = new char[size = s]; }

};

— end example]

13.3 Overload resolution [over.match]

1 Overload resolution is a mechanism for selecting the best function to call given a list of expressions that are
to be the arguments of the call and a set of candidate functions that can be called based on the context of
the call. The selection criteria for the best function are the number of arguments, how well the arguments

§ 13.3 286

c© ISO/IEC N3092

match the parameter-type-list of the candidate function, how well (for non-static member functions) the
object matches the implicit object parameter, and certain other properties of the candidate function. [Note:
the function selected by overload resolution is not guaranteed to be appropriate for the context. Other
restrictions, such as the accessibility of the function, can make its use in the calling context ill-formed.
— end note]

2 Overload resolution selects the function to call in seven distinct contexts within the language:

— invocation of a function named in the function call syntax (13.3.1.1.1);

— invocation of a function call operator, a pointer-to-function conversion function, a reference-to-pointer-
to-function conversion function, or a reference-to-function conversion function on a class object named
in the function call syntax (13.3.1.1.2);

— invocation of the operator referenced in an expression (13.3.1.2);

— invocation of a constructor for direct-initialization (8.5) of a class object (13.3.1.3);

— invocation of a user-defined conversion for copy-initialization (8.5) of a class object (13.3.1.4);

— invocation of a conversion function for initialization of an object of a nonclass type from an expression
of class type (13.3.1.5); and

— invocation of a conversion function for conversion to a glvalue or class prvalue to which a refer-
ence (8.5.3) will be directly bound (13.3.1.6).

Each of these contexts defines the set of candidate functions and the list of arguments in its own unique way.
But, once the candidate functions and argument lists have been identified, the selection of the best function
is the same in all cases:

— First, a subset of the candidate functions (those that have the proper number of arguments and meet
certain other conditions) is selected to form a set of viable functions (13.3.2).

— Then the best viable function is selected based on the implicit conversion sequences (13.3.3.1) needed
to match each argument to the corresponding parameter of each viable function.

3 If a best viable function exists and is unique, overload resolution succeeds and produces it as the result.
Otherwise overload resolution fails and the invocation is ill-formed. When overload resolution succeeds, and
the best viable function is not accessible (Clause 11) in the context in which it is used, the program is
ill-formed.

13.3.1 Candidate functions and argument lists [over.match.funcs]

1 The subclauses of 13.3.1 describe the set of candidate functions and the argument list submitted to overload
resolution in each of the seven contexts in which overload resolution is used. The source transformations
and constructions defined in these subclauses are only for the purpose of describing the overload resolution
process. An implementation is not required to use such transformations and constructions.

2 The set of candidate functions can contain both member and non-member functions to be resolved against
the same argument list. So that argument and parameter lists are comparable within this heterogeneous
set, a member function is considered to have an extra parameter, called the implicit object parameter , which
represents the object for which the member function has been called. For the purposes of overload resolution,
both static and non-static member functions have an implicit object parameter, but constructors do not.

3 Similarly, when appropriate, the context can construct an argument list that contains an implied object
argument to denote the object to be operated on. Since arguments and parameters are associated by

§ 13.3.1 287

c© ISO/IEC N3092

position within their respective lists, the convention is that the implicit object parameter, if present, is
always the first parameter and the implied object argument, if present, is always the first argument.

4 For non-static member functions, the type of the implicit object parameter is

— “lvalue reference to cv X” for functions declared without a ref-qualifier or with the & ref-qualifier

— “rvalue reference to cv X” for functions declared with the && ref-qualifier

where X is the class of which the function is a member and cv is the cv-qualification on the member function
declaration. [Example: for a const member function of class X, the extra parameter is assumed to have
type “reference to const X”. — end example] For conversion functions, the function is considered to be
a member of the class of the implied object argument for the purpose of defining the type of the implicit
object parameter. For non-conversion functions introduced by a using-declaration into a derived class, the
function is considered to be a member of the derived class for the purpose of defining the type of the implicit
object parameter. For static member functions, the implicit object parameter is considered to match any
object (since if the function is selected, the object is discarded). [Note: no actual type is established for
the implicit object parameter of a static member function, and no attempt will be made to determine a
conversion sequence for that parameter (13.3.3). — end note]

5 During overload resolution, the implied object argument is indistinguishable from other arguments. The
implicit object parameter, however, retains its identity since conversions on the corresponding argument
shall obey these additional rules:

— no temporary object can be introduced to hold the argument for the implicit object parameter; and

— no user-defined conversions can be applied to achieve a type match with it.

For non-static member functions declared without a ref-qualifier , an additional rule applies:

— even if the implicit object parameter is not const-qualified, an rvalue can be bound to the parameter as
long as in all other respects the argument can be converted to the type of the implicit object parameter.
[Note: The fact that such an argument is an rvalue does not affect the ranking of implicit conversion
sequences (13.3.3.2). — end note]

6 Because other than in list-initialization only one user-defined conversion is allowed in an implicit conversion
sequence, special rules apply when selecting the best user-defined conversion (13.3.3, 13.3.3.1). [Example:

class T {
public:

T();
};

class C : T {
public:

C(int);
};
T a = 1; // ill-formed: T(C(1)) not tried

— end example]

7 In each case where a candidate is a function template, candidate function template specializations are gen-
erated using template argument deduction (14.8.3, 14.8.2). Those candidates are then handled as candidate
functions in the usual way.124 A given name can refer to one or more function templates and also to a set

124) The process of argument deduction fully determines the parameter types of the function template specializations, i.e.,
the parameters of function template specializations contain no template parameter types. Therefore the function template
specializations can be treated as normal (non-template) functions for the remainder of overload resolution.

§ 13.3.1 288

c© ISO/IEC N3092

of overloaded non-template functions. In such a case, the candidate functions generated from each function
template are combined with the set of non-template candidate functions.

13.3.1.1 Function call syntax [over.match.call]

1 In a function call (5.2.2)

postfix-expression (expression-listopt)

if the postfix-expression denotes a set of overloaded functions and/or function templates, overload resolution
is applied as specified in 13.3.1.1.1. If the postfix-expression denotes an object of class type, overload
resolution is applied as specified in 13.3.1.1.2.

If the postfix-expression denotes the address of a set of overloaded functions and/or function templates,
overload resolution is applied using that set as described above. If the function selected by overload resolution
is a non-static member function, the program is ill-formed. [Note: the resolution of the address of an overload
set in other contexts is described in 13.4. — end note]

13.3.1.1.1 Call to named function [over.call.func]

1 Of interest in 13.3.1.1.1 are only those function calls in which the postfix-expression ultimately contains a
name that denotes one or more functions that might be called. Such a postfix-expression, perhaps nested
arbitrarily deep in parentheses, has one of the following forms:

postfix-expression:
postfix-expression . id-expression
postfix-expression -> id-expression
primary-expression

These represent two syntactic subcategories of function calls: qualified function calls and unqualified function
calls.

2 In qualified function calls, the name to be resolved is an id-expression and is preceded by an -> or . operator.
Since the construct A->B is generally equivalent to (*A).B, the rest of Clause 13 assumes, without loss of
generality, that all member function calls have been normalized to the form that uses an object and the
. operator. Furthermore, Clause 13 assumes that the postfix-expression that is the left operand of the .
operator has type “cv T” where T denotes a class125. Under this assumption, the id-expression in the call
is looked up as a member function of T following the rules for looking up names in classes (10.2). The
function declarations found by that lookup constitute the set of candidate functions. The argument list
is the expression-list in the call augmented by the addition of the left operand of the . operator in the
normalized member function call as the implied object argument (13.3.1).

3 In unqualified function calls, the name is not qualified by an -> or . operator and has the more general form
of a primary-expression. The name is looked up in the context of the function call following the normal rules
for name lookup in function calls (3.4). The function declarations found by that lookup constitute the set of
candidate functions. Because of the rules for name lookup, the set of candidate functions consists (1) entirely
of non-member functions or (2) entirely of member functions of some class T. In case (1), the argument list
is the same as the expression-list in the call. In case (2), the argument list is the expression-list in the call
augmented by the addition of an implied object argument as in a qualified function call. If the keyword
this (9.3.2) is in scope and refers to class T, or a derived class of T, then the implied object argument is
(*this). If the keyword this is not in scope or refers to another class, then a contrived object of type

125) Note that cv-qualifiers on the type of objects are significant in overload resolution for both glvalue and class prvalue
objects.

§ 13.3.1.1.1 289

c© ISO/IEC N3092

T becomes the implied object argument126. If the argument list is augmented by a contrived object and
overload resolution selects one of the non-static member functions of T, the call is ill-formed.

13.3.1.1.2 Call to object of class type [over.call.object]

1 If the primary-expression E in the function call syntax evaluates to a class object of type “cv T”, then the
set of candidate functions includes at least the function call operators of T. The function call operators of T
are obtained by ordinary lookup of the name operator() in the context of (E).operator().

2 In addition, for each non-explicit conversion function declared in T of the form

operator conversion-type-id () attribute-specifieropt cv-qualifier ;

where cv-qualifier is the same cv-qualification as, or a greater cv-qualification than, cv, and where conversion-
type-id denotes the type “pointer to function of (P1,...,Pn) returning R”, or the type “reference to pointer to
function of (P1,...,Pn) returning R”, or the type “reference to function of (P1,...,Pn) returning R”, a surrogate
call function with the unique name call-function and having the form

R call-function (conversion-type-id F, P1 a1, ... ,Pn an) { return F (a1,... ,an); }

is also considered as a candidate function. Similarly, surrogate call functions are added to the set of candidate
functions for each non-explicit conversion function declared in a base class of T provided the function is not
hidden within T by another intervening declaration127.

3 If such a surrogate call function is selected by overload resolution, the corresponding conversion function will
be called to convert E to the appropriate function pointer or reference, and the function will then be invoked
with the arguments of the call. If the conversion function cannot be called (e.g., because of an ambiguity),
the program is ill-formed.

4 The argument list submitted to overload resolution consists of the argument expressions present in the
function call syntax preceded by the implied object argument (E). [Note: when comparing the call against
the function call operators, the implied object argument is compared against the implicit object parameter
of the function call operator. When comparing the call against a surrogate call function, the implied object
argument is compared against the first parameter of the surrogate call function. The conversion function
from which the surrogate call function was derived will be used in the conversion sequence for that parameter
since it converts the implied object argument to the appropriate function pointer or reference required by
that first parameter. — end note] [Example:

int f1(int);
int f2(float);
typedef int (*fp1)(int);
typedef int (*fp2)(float);
struct A {

operator fp1() { return f1; }
operator fp2() { return f2; }

} a;
int i = a(1); // calls f1 via pointer returned from

// conversion function

126) An implied object argument must be contrived to correspond to the implicit object parameter attributed to member
functions during overload resolution. It is not used in the call to the selected function. Since the member functions all have
the same implicit object parameter, the contrived object will not be the cause to select or reject a function.
127) Note that this construction can yield candidate call functions that cannot be differentiated one from the other by overload
resolution because they have identical declarations or differ only in their return type. The call will be ambiguous if overload
resolution cannot select a match to the call that is uniquely better than such undifferentiable functions.

§ 13.3.1.1.2 290

c© ISO/IEC N3092

— end example]

13.3.1.2 Operators in expressions [over.match.oper]

1 If no operand of an operator in an expression has a type that is a class or an enumeration, the operator
is assumed to be a built-in operator and interpreted according to Clause 5. [Note: because ., .*, and ::
cannot be overloaded, these operators are always built-in operators interpreted according to Clause 5. ?:
cannot be overloaded, but the rules in this subclause are used to determine the conversions to be applied to
the second and third operands when they have class or enumeration type (5.16). — end note] [Example:

struct String {
String (const String&);
String (char*);
operator char* ();

};
String operator + (const String&, const String&);

void f(void) {
char* p= "one" + "two"; // ill-formed because neither

// operand has user-defined type
int I = 1 + 1; // Always evaluates to 2 even if

// user-defined types exist which
// would perform the operation.

}

— end example]

2 If either operand has a type that is a class or an enumeration, a user-defined operator function might be
declared that implements this operator or a user-defined conversion can be necessary to convert the operand
to a type that is appropriate for a built-in operator. In this case, overload resolution is used to determine
which operator function or built-in operator is to be invoked to implement the operator. Therefore, the
operator notation is first transformed to the equivalent function-call notation as summarized in Table 10
(where @ denotes one of the operators covered in the specified subclause).

Table 10 — Relationship between operator and function call notation

Subclause Expression As member function As non-member function
13.5.1 @a (a).operator@ () operator@ (a)
13.5.2 a@b (a).operator@ (b) operator@ (a, b)
13.5.3 a=b (a).operator= (b)
13.5.5 a[b] (a).operator[](b)
13.5.6 a-> (a).operator-> ()
13.5.7 a@ (a).operator@ (0) operator@ (a, 0)

3 For a unary operator @ with an operand of a type whose cv-unqualified version is T1, and for a binary
operator @ with a left operand of a type whose cv-unqualified version is T1 and a right operand of a type
whose cv-unqualified version is T2, three sets of candidate functions, designated member candidates, non-
member candidates and built-in candidates, are constructed as follows:

— If T1 is a complete class type, the set of member candidates is the result of the qualified lookup of
T1::operator@ (13.3.1.1.1); otherwise, the set of member candidates is empty.

— The set of non-member candidates is the result of the unqualified lookup of operator@ in the context
of the expression according to the usual rules for name lookup in unqualified function calls (3.4.2)
except that all member functions are ignored. However, if no operand has a class type, only those

§ 13.3.1.2 291

c© ISO/IEC N3092

non-member functions in the lookup set that have a first parameter of type T1 or “reference to (possibly
cv-qualified) T1”, when T1 is an enumeration type, or (if there is a right operand) a second parameter
of type T2 or “reference to (possibly cv-qualified) T2”, when T2 is an enumeration type, are candidate
functions.

— For the operator ,, the unary operator &, or the operator ->, the built-in candidates set is empty.
For all other operators, the built-in candidates include all of the candidate operator functions defined
in 13.6 that, compared to the given operator,

— have the same operator name, and

— accept the same number of operands, and

— accept operand types to which the given operand or operands can be converted according to 13.3.3.1,
and

— do not have the same parameter-type-list as any non-template non-member candidate.

4 For the built-in assignment operators, conversions of the left operand are restricted as follows:

— no temporaries are introduced to hold the left operand, and

— no user-defined conversions are applied to the left operand to achieve a type match with the left-most
parameter of a built-in candidate.

5 For all other operators, no such restrictions apply.

6 The set of candidate functions for overload resolution is the union of the member candidates, the non-member
candidates, and the built-in candidates. The argument list contains all of the operands of the operator. The
best function from the set of candidate functions is selected according to 13.3.2 and 13.3.3.128 [Example:

struct A {
operator int();

};
A operator+(const A&, const A&);
void m() {

A a, b;
a + b; // operator+(a,b) chosen over int(a) + int(b)

}

— end example]

7 If a built-in candidate is selected by overload resolution, the operands are converted to the types of the cor-
responding parameters of the selected operation function. Then the operator is treated as the corresponding
built-in operator and interpreted according to Clause 5.

8 The second operand of operator -> is ignored in selecting an operator-> function, and is not an argument
when the operator-> function is called. When operator-> returns, the operator -> is applied to the value
returned, with the original second operand.129

9 If the operator is the operator ,, the unary operator &, or the operator ->, and there are no viable functions,
then the operator is assumed to be the built-in operator and interpreted according to Clause 5.

10 [Note: the lookup rules for operators in expressions are different than the lookup rules for operator function
names in a function call, as shown in the following example:

128) If the set of candidate functions is empty, overload resolution is unsuccessful.
129) If the value returned by the operator-> function has class type, this may result in selecting and calling another operator->
function. The process repeats until an operator-> function returns a value of non-class type.

§ 13.3.1.2 292

c© ISO/IEC N3092

struct A { };
void operator + (A, A);

struct B {
void operator + (B);
void f ();

};

A a;

void B::f() {
operator+ (a,a); // error: global operator hidden by member
a + a; // OK: calls global operator+

}

— end note]

13.3.1.3 Initialization by constructor [over.match.ctor]

1 When objects of class type are direct-initialized (8.5), or copy-initialized from an expression of the same or
a derived class type (8.5), overload resolution selects the constructor. For direct-initialization, the candidate
functions are all the constructors of the class of the object being initialized. For copy-initialization, the
candidate functions are all the converting constructors (12.3.1) of that class. The argument list is the
expression-list or assignment-expression of the initializer .

13.3.1.4 Copy-initialization of class by user-defined conversion [over.match.copy]

1 Under the conditions specified in 8.5, as part of a copy-initialization of an object of class type, a user-defined
conversion can be invoked to convert an initializer expression to the type of the object being initialized.
Overload resolution is used to select the user-defined conversion to be invoked. Assuming that “cv1 T” is
the type of the object being initialized, with T a class type, the candidate functions are selected as follows:

— The converting constructors (12.3.1) of T are candidate functions.

— When the type of the initializer expression is a class type “cv S”, the non-explicit conversion functions of
S and its base classes are considered. When initializing a temporary to be bound to the first parameter
of a copy constructor (12.8) called with a single argument in the context of direct-initialization, explicit
conversion functions are also considered. Those that are not hidden within S and yield a type whose
cv-unqualified version is the same type as T or is a derived class thereof are candidate functions.
Conversion functions that return “reference to X” return lvalues or xvalues, depending on the type
of reference, of type X and are therefore considered to yield X for this process of selecting candidate
functions.

2 In both cases, the argument list has one argument, which is the initializer expression. [Note: this argument
will be compared against the first parameter of the constructors and against the implicit object parameter
of the conversion functions. — end note]

13.3.1.5 Initialization by conversion function [over.match.conv]

1 Under the conditions specified in 8.5, as part of an initialization of an object of nonclass type, a conversion
function can be invoked to convert an initializer expression of class type to the type of the object being
initialized. Overload resolution is used to select the conversion function to be invoked. Assuming that “cv1
T” is the type of the object being initialized, and “cv S” is the type of the initializer expression, with S a
class type, the candidate functions are selected as follows:

§ 13.3.1.5 293

c© ISO/IEC N3092

— The conversion functions of S and its base classes are considered. Those non-explicit conversion
functions that are not hidden within S and yield type T or a type that can be converted to type T
via a standard conversion sequence (13.3.3.1.1) are candidate functions. For direct-initialization, those
explicit conversion functions that are not hidden within S and yield type T or a type that can be
converted to type T with a qualification conversion (4.4) are also candidate functions. Conversion
functions that return a cv-qualified type are considered to yield the cv-unqualified version of that type
for this process of selecting candidate functions. Conversion functions that return “reference to cv2
X” return lvalues or xvalues, depending on the type of reference, of type “cv2 X” and are therefore
considered to yield X for this process of selecting candidate functions.

2 The argument list has one argument, which is the initializer expression. [Note: this argument will be
compared against the implicit object parameter of the conversion functions. — end note]

13.3.1.6 Initialization by conversion function for direct reference binding [over.match.ref]

1 Under the conditions specified in 8.5.3, a reference can be bound directly to a glvalue or class prvalue that is
the result of applying a conversion function to an initializer expression. Overload resolution is used to select
the conversion function to be invoked. Assuming that “cv1 T” is the underlying type of the reference being
initialized, and “cv S” is the type of the initializer expression, with S a class type, the candidate functions
are selected as follows:

— The conversion functions of S and its base classes are considered, except that for copy-initialization,
only the non-explicit conversion functions are considered. Those that are not hidden within S and yield
type “lvalue reference to cv2 T2” (when 8.5.3 requires an lvalue result) or “cv2 T2” or “rvalue reference
to cv2 T2” (when 8.5.3 requires an rvalue result), where “cv1 T” is reference-compatible (8.5.3) with
“cv2 T2”, are candidate functions.

2 The argument list has one argument, which is the initializer expression. [Note: this argument will be
compared against the implicit object parameter of the conversion functions. — end note]

13.3.1.7 Initialization by list-initialization [over.match.list]

1 When objects of non-aggregate class type are list-initialized (8.5.4), overload resolution selects the constructor
as follows, where T is the cv-unqualified class type of the object being initialized:

— If T has an initializer-list constructor (8.5.4), the argument list consists of the initializer list as a single
argument; otherwise, the argument list consists of the elements of the initializer list.

— For direct-list-initialization, the candidate functions are all the constructors of the class T.

— For copy-list-initialization, the candidate functions are all the constructors of T. However, if an
explicit constructor is chosen, the initialization is ill-formed. [Note: This restriction only applies if
this initialization is part of the final result of overload resolution — end note]

13.3.2 Viable functions [over.match.viable]

1 From the set of candidate functions constructed for a given context (13.3.1), a set of viable functions is
chosen, from which the best function will be selected by comparing argument conversion sequences for the
best fit (13.3.3). The selection of viable functions considers relationships between arguments and function
parameters other than the ranking of conversion sequences.

2 First, to be a viable function, a candidate function shall have enough parameters to agree in number with
the arguments in the list.

— If there are m arguments in the list, all candidate functions having exactly m parameters are viable.

§ 13.3.2 294

c© ISO/IEC N3092

— A candidate function having fewer than m parameters is viable only if it has an ellipsis in its parameter
list (8.3.5). For the purposes of overload resolution, any argument for which there is no corresponding
parameter is considered to “match the ellipsis” (13.3.3.1.3) .

— A candidate function having more than m parameters is viable only if the (m+1)-st parameter has a
default argument (8.3.6).130 For the purposes of overload resolution, the parameter list is truncated
on the right, so that there are exactly m parameters.

3 Second, for F to be a viable function, there shall exist for each argument an implicit conversion se-
quence (13.3.3.1) that converts that argument to the corresponding parameter of F. If the parameter has
reference type, the implicit conversion sequence includes the operation of binding the reference, and the fact
that an lvalue reference to non-const cannot be bound to an rvalue and that an rvalue reference cannot be
bound to an lvalue can affect the viability of the function (see 13.3.3.1.4).

13.3.3 Best viable function [over.match.best]

1 Define ICSi(F) as follows:

— if F is a static member function, ICS1(F) is defined such that ICS1(F) is neither better nor worse than
ICS1(G) for any function G, and, symmetrically, ICS1(G) is neither better nor worse than ICS1(F)131;
otherwise,

— let ICSi(F) denote the implicit conversion sequence that converts the i-th argument in the list to the
type of the i-th parameter of viable function F. 13.3.3.1 defines the implicit conversion sequences and
13.3.3.2 defines what it means for one implicit conversion sequence to be a better conversion sequence
or worse conversion sequence than another.

Given these definitions, a viable function F1 is defined to be a better function than another viable function
F2 if for all arguments i, ICSi(F1) is not a worse conversion sequence than ICSi(F2), and then

— for some argument j, ICSj(F1) is a better conversion sequence than ICSj(F2), or, if not that,

— the context is an initialization by user-defined conversion (see 8.5, 13.3.1.5, and 13.3.1.6) and the
standard conversion sequence from the return type of F1 to the destination type (i.e., the type of the
entity being initialized) is a better conversion sequence than the standard conversion sequence from
the return type of F2 to the destination type. [Example:

struct A {
A();
operator int();
operator double();

} a;
int i = a; // a.operator int() followed by no conversion

// is better than a.operator double() followed by
// a conversion to int

float x = a; // ambiguous: both possibilities require conversions,
// and neither is better than the other

— end example] or, if not that,

— F1 is a non-template function and F2 is a function template specialization, or, if not that,

130) According to 8.3.6, parameters following the (m+1)-st parameter must also have default arguments.
131) If a function is a static member function, this definition means that the first argument, the implied object argument, has
no effect in the determination of whether the function is better or worse than any other function.

§ 13.3.3 295

c© ISO/IEC N3092

— F1 and F2 are function template specializations, and the function template for F1 is more specialized
than the template for F2 according to the partial ordering rules described in 14.5.6.2.

2 If there is exactly one viable function that is a better function than all other viable functions, then it is the
one selected by overload resolution; otherwise the call is ill-formed132.

[Example:
void Fcn(const int*, short);
void Fcn(int*, int);

int i;
short s = 0;

void f() {
Fcn(&i, s); // is ambiguous because

// &i → int* is better than &i → const int*
// but s → short is also better than s → int

Fcn(&i, 1L); // calls Fcn(int*, int), because
// &i → int* is better than &i → const int*
// and 1L → short and 1L → int are indistinguishable

Fcn(&i,’c’); // calls Fcn(int*, int), because
// &i → int* is better than &i → const int*
// and c → int is better than c → short

}

— end example]

3 If the best viable function resolves to a function for which multiple declarations were found, and if at least
two of these declarations — or the declarations they refer to in the case of using-declarations — specify a
default argument that made the function viable, the program is ill-formed. [Example:

namespace A {
extern "C" void f(int = 5);

}
namespace B {

extern "C" void f(int = 5);
}

using A::f;
using B::f;

void use() {
f(3); // OK, default argument was not used for viability
f(); // Error: found default argument twice

}

— end example]

132) The algorithm for selecting the best viable function is linear in the number of viable functions. Run a simple tournament
to find a function W that is not worse than any opponent it faced. Although another function F that W did not face might be
at least as good as W, F cannot be the best function because at some point in the tournament F encountered another function
G such that F was not better than G. Hence, W is either the best function or there is no best function. So, make a second pass
over the viable functions to verify that W is better than all other functions.

§ 13.3.3 296

c© ISO/IEC N3092

13.3.3.1 Implicit conversion sequences [over.best.ics]

1 An implicit conversion sequence is a sequence of conversions used to convert an argument in a function call
to the type of the corresponding parameter of the function being called. The sequence of conversions is an
implicit conversion as defined in Clause 4, which means it is governed by the rules for initialization of an
object or reference by a single expression (8.5, 8.5.3).

2 Implicit conversion sequences are concerned only with the type, cv-qualification, and value category of the
argument and how these are converted to match the corresponding properties of the parameter. Other
properties, such as the lifetime, storage class, alignment, or accessibility of the argument and whether or not
the argument is a bit-field are ignored. So, although an implicit conversion sequence can be defined for a
given argument-parameter pair, the conversion from the argument to the parameter might still be ill-formed
in the final analysis.

3 A well-formed implicit conversion sequence is one of the following forms:

— a standard conversion sequence (13.3.3.1.1),

— a user-defined conversion sequence (13.3.3.1.2), or

— an ellipsis conversion sequence (13.3.3.1.3).

4 However, when considering the argument of a constructor or user-defined conversion function that is a
candidate by 13.3.1.3 when invoked for the copying/moving of the temporary in the second step of a class
copy-initialization, by 13.3.1.7 when passing the initializer list as a single argument or when the initializer
list has exactly one element and a conversion to some class X or reference to (possibly cv-qualified) X is
considered for the first parameter of a constructor of X, or by 13.3.1.4, 13.3.1.5, or 13.3.1.6 in all cases, only
standard conversion sequences and ellipsis conversion sequences are considered.

5 For the case where the parameter type is a reference, see 13.3.3.1.4.

6 When the parameter type is not a reference, the implicit conversion sequence models a copy-initialization of
the parameter from the argument expression. The implicit conversion sequence is the one required to convert
the argument expression to a prvalue of the type of the parameter. [Note: when the parameter has a class
type, this is a conceptual conversion defined for the purposes of Clause 13; the actual initialization is defined
in terms of constructors and is not a conversion. — end note] Any difference in top-level cv-qualification is
subsumed by the initialization itself and does not constitute a conversion. [Example: a parameter of type A
can be initialized from an argument of type const A. The implicit conversion sequence for that case is the
identity sequence; it contains no “conversion” from const A to A. — end example] When the parameter has
a class type and the argument expression has the same type, the implicit conversion sequence is an identity
conversion. When the parameter has a class type and the argument expression has a derived class type,
the implicit conversion sequence is a derived-to-base Conversion from the derived class to the base class.
[Note: there is no such standard conversion; this derived-to-base Conversion exists only in the description of
implicit conversion sequences. — end note] A derived-to-base Conversion has Conversion rank (13.3.3.1.1).

7 In all contexts, when converting to the implicit object parameter or when converting to the left operand of
an assignment operation only standard conversion sequences that create no temporary object for the result
are allowed.

8 If no conversions are required to match an argument to a parameter type, the implicit conversion sequence
is the standard conversion sequence consisting of the identity conversion (13.3.3.1.1).

9 If no sequence of conversions can be found to convert an argument to a parameter type or the conversion is
otherwise ill-formed, an implicit conversion sequence cannot be formed.

10 If several different sequences of conversions exist that each convert the argument to the parameter type, the
implicit conversion sequence associated with the parameter is defined to be the unique conversion sequence

§ 13.3.3.1 297

c© ISO/IEC N3092

designated the ambiguous conversion sequence. For the purpose of ranking implicit conversion sequences
as described in 13.3.3.2, the ambiguous conversion sequence is treated as a user-defined sequence that is
indistinguishable from any other user-defined conversion sequence133. If a function that uses the ambiguous
conversion sequence is selected as the best viable function, the call will be ill-formed because the conversion
of one of the arguments in the call is ambiguous.

11 The three forms of implicit conversion sequences mentioned above are defined in the following subclauses.

13.3.3.1.1 Standard conversion sequences [over.ics.scs]

1 Table 11 summarizes the conversions defined in Clause 4 and partitions them into four disjoint categories:
Lvalue Transformation, Qualification Adjustment, Promotion, and Conversion. [Note: these categories are
orthogonal with respect to value category, cv-qualification, and data representation: the Lvalue Transforma-
tions do not change the cv-qualification or data representation of the type; the Qualification Adjustments
do not change the value category or data representation of the type; and the Promotions and Conversions
do not change the value category or cv-qualification of the type. — end note]

2 [Note: As described in Clause 4, a standard conversion sequence is either the Identity conversion by itself
(that is, no conversion) or consists of one to three conversions from the other four categories. At most one
conversion from each category is allowed in a single standard conversion sequence. If there are two or more
conversions in the sequence, the conversions are applied in the canonical order: Lvalue Transformation,
Promotion or Conversion, Qualification Adjustment. — end note]

3 Each conversion in Table 11 also has an associated rank (Exact Match, Promotion, or Conversion). These are
used to rank standard conversion sequences (13.3.3.2). The rank of a conversion sequence is determined by
considering the rank of each conversion in the sequence and the rank of any reference binding (13.3.3.1.4). If
any of those has Conversion rank, the sequence has Conversion rank; otherwise, if any of those has Promotion
rank, the sequence has Promotion rank; otherwise, the sequence has Exact Match rank.

13.3.3.1.2 User-defined conversion sequences [over.ics.user]

1 A user-defined conversion sequence consists of an initial standard conversion sequence followed by a user-
defined conversion (12.3) followed by a second standard conversion sequence. If the user-defined conversion
is specified by a constructor (12.3.1), the initial standard conversion sequence converts the source type to the
type required by the argument of the constructor. If the user-defined conversion is specified by a conversion

133) The ambiguous conversion sequence is ranked with user-defined conversion sequences because multiple conversion se-
quences for an argument can exist only if they involve different user-defined conversions. The ambiguous conversion sequence is
indistinguishable from any other user-defined conversion sequence because it represents at least two user-defined conversion se-
quences, each with a different user-defined conversion, and any other user-defined conversion sequence must be indistinguishable
from at least one of them.

This rule prevents a function from becoming non-viable because of an ambiguous conversion sequence for one of its parameters.
Consider this example,

class B;
class A { A (B&);};
class B { operator A (); };
class C { C (B&); };
void f(A) { }
void f(C) { }
B b;
f(b); // ambiguous because b → C via constructor and

// b → A via constructor or conversion function.
If it were not for this rule, f(A) would be eliminated as a viable function for the call f(b) causing overload resolution to

select f(C) as the function to call even though it is not clearly the best choice. On the other hand, if an f(B) were to be
declared then f(b) would resolve to that f(B) because the exact match with f(B) is better than any of the sequences required
to match f(A).

§ 13.3.3.1.2 298

c© ISO/IEC N3092

Table 11 — Conversions
Conversion Category Rank Subclause
No conversions required Identity
Lvalue-to-rvalue conversion 4.1
Array-to-pointer conversion Lvalue Transformation Exact Match 4.2
Function-to-pointer conversion 4.3
Qualification conversions Qualification Adjustment 4.4
Integral promotions 4.5
Floating point promotion Promotion Promotion 4.6
Integral conversions 4.7
Floating point conversions 4.8
Floating-integral conversions 4.9
Pointer conversions Conversion Conversion 4.10
Pointer to member conversions 4.11
Boolean conversions 4.12

function (12.3.2), the initial standard conversion sequence converts the source type to the implicit object
parameter of the conversion function.

2 The second standard conversion sequence converts the result of the user-defined conversion to the target type
for the sequence. Since an implicit conversion sequence is an initialization, the special rules for initialization
by user-defined conversion apply when selecting the best user-defined conversion for a user-defined conversion
sequence (see 13.3.3 and 13.3.3.1).

3 If the user-defined conversion is specified by a specialization of a conversion function template, the second
standard conversion sequence shall have exact match rank.

4 A conversion of an expression of class type to the same class type is given Exact Match rank, and a conversion
of an expression of class type to a base class of that type is given Conversion rank, in spite of the fact that
a copy/move constructor (i.e., a user-defined conversion function) is called for those cases.

13.3.3.1.3 Ellipsis conversion sequences [over.ics.ellipsis]

1 An ellipsis conversion sequence occurs when an argument in a function call is matched with the ellipsis
parameter specification of the function called (see 5.2.2).

13.3.3.1.4 Reference binding [over.ics.ref]

1 When a parameter of reference type binds directly (8.5.3) to an argument expression, the implicit conversion
sequence is the identity conversion, unless the argument expression has a type that is a derived class of the
parameter type, in which case the implicit conversion sequence is a derived-to-base Conversion (13.3.3.1).
[Example:

struct A {};
struct B : public A {} b;
int f(A&);
int f(B&);
int i = f(b); // calls f(B&), an exact match, rather than

// f(A&), a conversion

— end example] If the parameter binds directly to the result of applying a conversion function to the
argument expression, the implicit conversion sequence is a user-defined conversion sequence (13.3.3.1.2),

§ 13.3.3.1.4 299

c© ISO/IEC N3092

with the second standard conversion sequence either an identity conversion or, if the conversion function
returns an entity of a type that is a derived class of the parameter type, a derived-to-base Conversion.

2 When a parameter of reference type is not bound directly to an argument expression, the conversion sequence
is the one required to convert the argument expression to the underlying type of the reference according
to 13.3.3.1. Conceptually, this conversion sequence corresponds to copy-initializing a temporary of the
underlying type with the argument expression. Any difference in top-level cv-qualification is subsumed by
the initialization itself and does not constitute a conversion.

3 Except for an implicit object parameter, for which see 13.3.1, a standard conversion sequence cannot be
formed if it requires binding an lvalue reference to non-const to an rvalue or binding an rvalue reference to
an lvalue. [Note: this means, for example, that a candidate function cannot be a viable function if it has
a non-const lvalue reference parameter (other than the implicit object parameter) and the corresponding
argument is a temporary or would require one to be created to initialize the lvalue reference (see 8.5.3).
— end note]

4 Other restrictions on binding a reference to a particular argument that are not based on the types of
the reference and the argument do not affect the formation of a standard conversion sequence, however.
[Example: a function with an “lvalue reference to int” parameter can be a viable candidate even if the
corresponding argument is an int bit-field. The formation of implicit conversion sequences treats the int
bit-field as an int lvalue and finds an exact match with the parameter. If the function is selected by overload
resolution, the call will nonetheless be ill-formed because of the prohibition on binding a non-const lvalue
reference to a bit-field (8.5.3). — end example]

5 The binding of a reference to an expression that is reference-compatible with added qualification influences
the rank of a standard conversion; see 13.3.3.2 and 8.5.3.

13.3.3.1.5 List-initialization sequence [over.ics.list]

1 When an argument is an initializer list (8.5.4), it is not an expression and special rules apply for converting
it to a parameter type.

2 If the parameter type is std::initializer_list<X> and all the elements of the initializer list can be
implicitly converted to X, the implicit conversion sequence is the worst conversion necessary to convert an
element of the list to X. This conversion can be a user-defined conversion even in the context of a call to an
initializer-list constructor. [Example:

void f(std::initializer_list<int>);
f({1,2,3}); // OK: f(initializer_list<int>) identity conversion
f({’a’,’b’}); // OK: f(initializer_list<int>) integral promotion
f({1.0}); // error: narrowing

struct A {
A(std::initializer_list<double>); // #1
A(std::initializer_list<complex<double>>); // #2
A(std::initializer_list<std::string>); // #3

};
A a{ 1.0,2.0 }; // OK, uses #1

void g(A);
g({ "foo", "bar" }); // OK, uses #3

— end example]

3 Otherwise, if the parameter is a non-aggregate class X and overload resolution per 13.3.1.7 chooses a single
best constructor of X to perform the initialization of an object of type X from the argument initializer list, the

§ 13.3.3.1.5 300

c© ISO/IEC N3092

implicit conversion sequence is a user-defined conversion sequence. If multiple constructors are viable but
none is better than the others, the implicit conversion sequence is the ambiguous conversion sequence. User-
defined conversions are allowed for conversion of the initializer list elements to the constructor parameter
types except as noted in 13.3.3.1. [Example:

struct A {
A(std::initializer_list<int>);

};
void f(A);
f({’a’, ’b’}); // OK: f(A(std::initializer_list<int>)) user-defined conversion

struct B {
B(int, double);

};
void g(B);
g({’a’, ’b’}); // OK: g(B(int,double)) user-defined conversion
g({1.0, 1,0}); // error: narrowing

void f(B);
f({’a’, ’b’}); // error: ambiguous f(A) or f(B)

struct C {
C(std::string);

};
void h(C);
h({"foo"}); // OK: h(C(std::string("foo")))

struct D {
C(A, C);

};
void i(D);
i({ {1,2}, {"bar"} }); // OK: i(D(A(std::initializer_list<int>{1,2}),C(std::string("bar"))))

— end example]

4 Otherwise, if the parameter has an aggregate type which can be initialized from the initializer list according
to the rules for aggregate initialization (8.5.1), the implicit conversion sequence is a user-defined conversion
sequence. [Example:

struct A {
int m1;
double m2;

};

void f(A);
f({’a’, ’b’}); // OK: f(A(int,double)) user-defined conversion
f({1.0}); // error: narrowing

— end example]

5 Otherwise, if the parameter is a reference, see 13.3.3.1.4. [Note: The rules in this section will apply for
initializing the underlying temporary for the reference. — end note] [Example:

struct A {
int m1;
double m2;

};

§ 13.3.3.1.5 301

c© ISO/IEC N3092

void f(const A&);
f({’a’, ’b’}); // OK: f(A(int,double)) user-defined conversion
f({1.0}); // error: narrowing

void g(const double &);
g({1}); // same conversion as int to double

— end example]

6 Otherwise, if the parameter type is not a class:

— if the initializer list has one element, the implicit conversion sequence is the one required to convert
the element to the parameter type; [Example:

void f(int);
f({’a’}); // OK: same conversion as char to int
f({1.0}); // error: narrowing

— end example]

— if the initializer list has no elements, the implicit conversion sequence is the identity conversion.
[Example:

void f(int);
f({ }); // OK: identity conversion

— end example]

7 In all cases other than those enumerated above, no conversion is possible.

13.3.3.2 Ranking implicit conversion sequences [over.ics.rank]

1 13.3.3.2 defines a partial ordering of implicit conversion sequences based on the relationships better conversion
sequence and better conversion. If an implicit conversion sequence S1 is defined by these rules to be a better
conversion sequence than S2, then it is also the case that S2 is a worse conversion sequence than S1. If
conversion sequence S1 is neither better than nor worse than conversion sequence S2, S1 and S2 are said to
be indistinguishable conversion sequences.

2 When comparing the basic forms of implicit conversion sequences (as defined in 13.3.3.1)

— a standard conversion sequence (13.3.3.1.1) is a better conversion sequence than a user-defined con-
version sequence or an ellipsis conversion sequence, and

— a user-defined conversion sequence (13.3.3.1.2) is a better conversion sequence than an ellipsis conver-
sion sequence (13.3.3.1.3).

3 Two implicit conversion sequences of the same form are indistinguishable conversion sequences unless one of
the following rules applies:

— Standard conversion sequence S1 is a better conversion sequence than standard conversion sequence
S2 if

— S1 is a proper subsequence of S2 (comparing the conversion sequences in the canonical form
defined by 13.3.3.1.1, excluding any Lvalue Transformation; the identity conversion sequence is
considered to be a subsequence of any non-identity conversion sequence) or, if not that,

§ 13.3.3.2 302

c© ISO/IEC N3092

— the rank of S1 is better than the rank of S2, or S1 and S2 have the same rank and are distin-
guishable by the rules in the paragraph below, or, if not that,

— S1 and S2 differ only in their qualification conversion and yield similar types T1 and T2 (4.4),
respectively, and the cv-qualification signature of type T1 is a proper subset of the cv-qualification
signature of type T2. [Example:

int f(const int *);
int f(int *);
int i;
int j = f(&i); // calls f(int*)

— end example] or, if not that,

— S1 and S2 are reference bindings (8.5.3) and neither refers to an implicit object parameter of a
non-static member function declared without a ref-qualifier , and S1 binds an rvalue reference to
an rvalue and S2 binds an lvalue reference.

[Example:
int i;
int f1();
int&& f2();
int g(const int&);
int g(const int&&);
int j = g(i); // calls g(const int&)
int k = g(f1()); // calls g(const int&&)
int l = g(f2()); // calls g(const int&&)

struct A {
A& operator<<(int);
void p() &;
void p() &&;

};
A& operator<<(A&&, char);
A() << 1; // calls A::operator<<(int)
A() << ’c’; // calls operator<<(A&&, char)
A a;
a << 1; // calls A::operator<<(int)
a << ’c’; // calls A::operator<<(int)
A().p(); // calls A::p()&&
a.p(); // calls A::p()&

— end example] or, if not that,

— S1 and S2 are reference bindings (8.5.3), and the types to which the references refer are the same
type except for top-level cv-qualifiers, and the type to which the reference initialized by S2 refers
is more cv-qualified than the type to which the reference initialized by S1 refers. [Example:

int f(const int &);
int f(int &);
int g(const int &);
int g(int);

int i;
int j = f(i); // calls f(int &)
int k = g(i); // ambiguous

§ 13.3.3.2 303

c© ISO/IEC N3092

struct X {
void f() const;
void f();

};
void g(const X& a, X b) {

a.f(); // calls X::f() const
b.f(); // calls X::f()

}

— end example]

— User-defined conversion sequence U1 is a better conversion sequence than another user-defined conver-
sion sequence U2 if they contain the same user-defined conversion function or constructor and if the
second standard conversion sequence of U1 is better than the second standard conversion sequence of
U2. [Example:

struct A {
operator short();

} a;
int f(int);
int f(float);
int i = f(a); // calls f(int), because short → int is

// better than short → float.

— end example]

— List-initialization sequence L1 is a better conversion sequence than list-initialization sequence L2 if L1
converts to std::initializer_list<X> for some X and L2 does not.

4 Standard conversion sequences are ordered by their ranks: an Exact Match is a better conversion than a
Promotion, which is a better conversion than a Conversion. Two conversion sequences with the same rank
are indistinguishable unless one of the following rules applies:

— A conversion that does not convert a pointer, a pointer to member, or std::nullptr_t to bool is
better than one that does.

— If class B is derived directly or indirectly from class A, conversion of B* to A* is better than conversion
of B* to void*, and conversion of A* to void* is better than conversion of B* to void*.

— If class B is derived directly or indirectly from class A and class C is derived directly or indirectly from
B,

— conversion of C* to B* is better than conversion of C* to A*, [Example:
struct A {};
struct B : public A {};
struct C : public B {};
C *pc;
int f(A *);
int f(B *);
int i = f(pc); // calls f(B*)

— end example]

— binding of an expression of type C to a reference of type B& is better than binding an expression
of type C to a reference of type A&,

§ 13.3.3.2 304

c© ISO/IEC N3092

— conversion of A::* to B::* is better than conversion of A::* to C::*,

— conversion of C to B is better than conversion of C to A,

— conversion of B* to A* is better than conversion of C* to A*,

— binding of an expression of type B to a reference of type A& is better than binding an expression
of type C to a reference of type A&,

— conversion of B::* to C::* is better than conversion of A::* to C::*, and

— conversion of B to A is better than conversion of C to A.

[Note: compared conversion sequences will have different source types only in the context of comparing
the second standard conversion sequence of an initialization by user-defined conversion (see 13.3.3);
in all other contexts, the source types will be the same and the target types will be different. — end
note]

13.4 Address of overloaded function [over.over]

1 A use of an overloaded function name without arguments is resolved in certain contexts to a function, a
pointer to function or a pointer to member function for a specific function from the overload set. A function
template name is considered to name a set of overloaded functions in such contexts. The function selected
is the one whose type matches the target type required in the context. The target can be

— an object or reference being initialized (8.5, 8.5.3),

— the left side of an assignment (5.17),

— a parameter of a function (5.2.2),

— a parameter of a user-defined operator (13.5),

— the return value of a function, operator function, or conversion (6.6.3),

— an explicit type conversion (5.2.3, 5.2.9, 5.4), or

— a non-type template-parameter (14.3.2).

The overloaded function name can be preceded by the & operator. An overloaded function name shall not
be used without arguments in contexts other than those listed. [Note: any redundant set of parentheses
surrounding the overloaded function name is ignored (5.1). — end note]

2 If the name is a function template, template argument deduction is done (14.8.2.2), and if the argument
deduction succeeds, the resulting template argument list is used to generate a single function template
specialization, which is added to the set of overloaded functions considered. [Note: As described in 14.8.1,
if deduction fails and the function template name is followed by an explicit template argument list, the
template-id is then examined to see whether it identifies a single function template specialization. If it does,
the template-id is considered to be an lvalue for that function template specialization. The target type is
not used in that determination. — end note]

3 Non-member functions and static member functions match targets of type “pointer-to-function” or “reference-
to-function.” Nonstatic member functions match targets of type “pointer-to-member-function;” the function
type of the pointer to member is used to select the member function from the set of overloaded member
functions. If a non-static member function is selected, the reference to the overloaded function name is
required to have the form of a pointer to member as described in 5.3.1.

4 If more than one function is selected, any function template specializations in the set are eliminated if the
set also contains a non-template function, and any given function template specialization F1 is eliminated if

§ 13.4 305

c© ISO/IEC N3092

the set contains a second function template specialization whose function template is more specialized than
the function template of F1 according to the partial ordering rules of 14.5.6.2. After such eliminations, if
any, there shall remain exactly one selected function.

5 [Example:
int f(double);
int f(int);
int (*pfd)(double) = &f; // selects f(double)
int (*pfi)(int) = &f; // selects f(int)
int (*pfe)(...) = &f; // error: type mismatch
int (&rfi)(int) = f; // selects f(int)
int (&rfd)(double) = f; // selects f(double)
void g() {

(int (*)(int))&f; // cast expression as selector
}

The initialization of pfe is ill-formed because no f() with type int(...) has been declared, and not because
of any ambiguity. For another example,

struct X {
int f(int);
static int f(long);

};

int (X::*p1)(int) = &X::f; // OK
int (*p2)(int) = &X::f; // error: mismatch
int (*p3)(long) = &X::f; // OK
int (X::*p4)(long) = &X::f; // error: mismatch
int (X::*p5)(int) = &(X::f); // error: wrong syntax for

// pointer to member
int (*p6)(long) = &(X::f); // OK

— end example]

6 [Note: if f() and g() are both overloaded functions, the cross product of possibilities must be considered
to resolve f(&g), or the equivalent expression f(g). — end note]

7 [Note: there are no standard conversions (Clause 4) of one pointer-to-function type into another. In partic-
ular, even if B is a public base of D, we have

D* f();
B* (*p1)() = &f; // error

void g(D*);
void (*p2)(B*) = &g; // error

— end note]

13.5 Overloaded operators [over.oper]

1 A function declaration having one of the following operator-function-ids as its name declares an operator
function. A function template declaration having one of the following operator-function-ids as its name
declares an operator function template. A specialization of an operator function template is also an operator
function. An operator function is said to implement the operator named in its operator-function-id.

§ 13.5 306

c© ISO/IEC N3092

operator-function-id:
operator operator

operator: one of
new delete new[] delete[]
+ - * / % ˆ & | ∼
! = < > += -= *= /= %=
ˆ= &= |= << >> >>= <<= == !=
<= >= && || ++ -- , ->* ->
() []

[Note: the last two operators are function call (5.2.2) and subscripting (5.2.1). The operators new[],
delete[], (), and [] are formed from more than one token. — end note]

2 Both the unary and binary forms of
+ - * &

can be overloaded.

3 The following operators cannot be overloaded:
. .* :: ?:

nor can the preprocessing symbols # and ## (Clause 16).

4 Operator functions are usually not called directly; instead they are invoked to evaluate the operators they
implement (13.5.1 – 13.5.7). They can be explicitly called, however, using the operator-function-id as the
name of the function in the function call syntax (5.2.2). [Example:

complex z = a.operator+(b); // complex z = a+b;
void* p = operator new(sizeof(int)*n);

— end example]

5 The allocation and deallocation functions, operator new, operator new[], operator delete and operator
delete[], are described completely in 3.7.4. The attributes and restrictions found in the rest of this
subclause do not apply to them unless explicitly stated in 3.7.4.

6 An operator function shall either be a non-static member function or be a non-member function and have
at least one parameter whose type is a class, a reference to a class, an enumeration, or a reference to an
enumeration. It is not possible to change the precedence, grouping, or number of operands of operators.
The meaning of the operators =, (unary) &, and , (comma), predefined for each type, can be changed for
specific class and enumeration types by defining operator functions that implement these operators. Operator
functions are inherited in the same manner as other base class functions.

7 The identities among certain predefined operators applied to basic types (for example, ++a ≡ a+=1) need
not hold for operator functions. Some predefined operators, such as +=, require an operand to be an lvalue
when applied to basic types; this is not required by operator functions.

8 An operator function cannot have default arguments (8.3.6), except where explicitly stated below. Operator
functions cannot have more or fewer parameters than the number required for the corresponding operator,
as described in the rest of this subclause.

§ 13.5 307

c© ISO/IEC N3092

9 Operators not mentioned explicitly in subclauses 13.5.3 through 13.5.7 act as ordinary unary and binary
operators obeying the rules of 13.5.1 or 13.5.2.

13.5.1 Unary operators [over.unary]

1 A prefix unary operator shall be implemented by a non-static member function (9.3) with no parameters or
a non-member function with one parameter. Thus, for any prefix unary operator @, @x can be interpreted
as either x.operator@() or operator@(x). If both forms of the operator function have been declared, the
rules in 13.3.1.2 determine which, if any, interpretation is used. See 13.5.7 for an explanation of the postfix
unary operators ++ and --.

2 The unary and binary forms of the same operator are considered to have the same name. [Note: consequently,
a unary operator can hide a binary operator from an enclosing scope, and vice versa. — end note]

13.5.2 Binary operators [over.binary]

1 A binary operator shall be implemented either by a non-static member function (9.3) with one parameter
or by a non-member function with two parameters. Thus, for any binary operator @, x@y can be interpreted
as either x.operator@(y) or operator@(x,y). If both forms of the operator function have been declared,
the rules in 13.3.1.2 determine which, if any, interpretation is used.

13.5.3 Assignment [over.ass]

1 An assignment operator shall be implemented by a non-static member function with exactly one parameter.
Because a copy assignment operator operator= is implicitly declared for a class if not declared by the
user (12.8), a base class assignment operator is always hidden by the copy assignment operator of the
derived class.

2 Any assignment operator, even the copy and move assignment operators, can be virtual. [Note: for a derived
class D with a base class B for which a virtual copy/move assignment has been declared, the copy/move
assignment operator in D does not override B’s virtual copy/move assignment operator. [Example:

struct B {
virtual int operator= (int);
virtual B& operator= (const B&);

};
struct D : B {

virtual int operator= (int);
virtual D& operator= (const B&);

};

D dobj1;
D dobj2;
B* bptr = &dobj1;
void f() {

bptr->operator=(99); // calls D::operator=(int)
*bptr = 99; // ditto
bptr->operator=(dobj2); // calls D::operator=(const B&)
*bptr = dobj2; // ditto
dobj1 = dobj2; // calls implicitly-declared

// D::operator=(const D&)
}

§ 13.5.3 308

c© ISO/IEC N3092

— end example] — end note]

13.5.4 Function call [over.call]

1 operator() shall be a non-static member function with an arbitrary number of parameters. It can have
default arguments. It implements the function call syntax

postfix-expression (expression-listopt)

where the postfix-expression evaluates to a class object and the possibly empty expression-list matches the
parameter list of an operator() member function of the class. Thus, a call x(arg1,...) is interpreted as
x.operator()(arg1, ...) for a class object x of type T if T::operator()(T1, T2, T3) exists and if the
operator is selected as the best match function by the overload resolution mechanism (13.3.3).

13.5.5 Subscripting [over.sub]

1 operator[] shall be a non-static member function with exactly one parameter. It implements the subscript-
ing syntax

postfix-expression [expression]

Thus, a subscripting expression x[y] is interpreted as x.operator[](y) for a class object x of type T
if T::operator[](T1) exists and if the operator is selected as the best match function by the overload
resolution mechanism (13.3.3).

13.5.6 Class member access [over.ref]

1 operator-> shall be a non-static member function taking no parameters. It implements the class member
access syntax that uses ->.

postfix-expression -> templateopt id-expression
postfix-expression -> pseudo-destructor-name

An expression x->m is interpreted as (x.operator->())->m for a class object x of type T if T::operator->()
exists and if the operator is selected as the best match function by the overload resolution mechanism (13.3).

13.5.7 Increment and decrement [over.inc]

1 The user-defined function called operator++ implements the prefix and postfix ++ operator. If this function is
a member function with no parameters, or a non-member function with one parameter of class or enumeration
type, it defines the prefix increment operator ++ for objects of that type. If the function is a member function
with one parameter (which shall be of type int) or a non-member function with two parameters (the second
of which shall be of type int), it defines the postfix increment operator ++ for objects of that type. When
the postfix increment is called as a result of using the ++ operator, the int argument will have value zero.134

[Example:
struct X {

X& operator++(); // prefix ++a
X operator++(int); // postfix a++

};

struct Y { };
Y& operator++(Y&); // prefix ++b
Y operator++(Y&, int); // postfix b++

134) Calling operator++ explicitly, as in expressions like a.operator++(2), has no special properties: The argument to oper-
ator++ is 2.

§ 13.5.7 309

c© ISO/IEC N3092

void f(X a, Y b) {
++a; // a.operator++();
a++; // a.operator++(0);
++b; // operator++(b);
b++; // operator++(b, 0);

a.operator++(); // explicit call: like ++a;
a.operator++(0); // explicit call: like a++;
operator++(b); // explicit call: like ++b;
operator++(b, 0); // explicit call: like b++;

}

— end example]

2 The prefix and postfix decrement operators -- are handled analogously.

13.5.8 User-defined literals [over.literal]

literal-operator-id:
operator "" identifier

1 The identifier in a literal-operator-id is called a literal suffix identifier .

2 A declaration whose declarator-id is a literal-operator-id shall be a declaration of a namespace-scope function
or function template (it could be a friend function (11.4)), an explicit instantiation or specialization of a
function template, or a using-declaration (7.3.3). A function declared with a literal-operator-id is a literal
operator . A function template declared with a literal-operator-id is a literal operator template.

3 The declaration of a literal operator shall have a parameter-declaration-clause equivalent to one of the
following:

const char*
unsigned long long int
long double
char
wchar_t
char16_t
char32_t
const char*, std::size_t
const wchar_t*, std::size_t
const char16_t*, std::size_t
const char32_t*, std::size_t

4 A raw literal operator is a literal operator with a single parameter whose type is const char*.

5 The declaration of a literal operator template shall have an empty parameter-declaration-clause and its
template-parameter-list shall have a single template-parameter that is a non-type template parameter pack (14.5.3)
with element type char.

6 Literal operators and literal operator templates shall not have C language linkage.

7 [Note: literal operators and literal operator templates are usually invoked implicitly through user-defined
literals (2.14.8). However, except for the constraints described above, they are ordinary namespace-scope
functions and function templates. In particular, they are looked up like ordinary functions and function tem-
plates and they follow the same overload resolution rules. Also, they can be declared inline or constexpr,
they may have internal or external linkage, they can be called explicitly, their addresses can be taken, etc.
— end note]

§ 13.5.8 310

c© ISO/IEC N3092

8 [Example:
void operator "" _km(long double); // OK
string operator "" _i18n(const char*, std::size_t); // OK
template <char...> int operator "" \u03C0(); // OK: UCN for lowercase pi
float operator ""E(const char*); // error: ""E (with no intervening space)

// is a single token
float operator " " B(const char*); // error: non-adjacent quotes
string operator "" 5X(const char*, std::size_t); // error: invalid lteral suffix identifier
double operator "" _miles(double); // error: invalid parameter-declaration-clause
template <char...> int operator "" j(const char*); // error: invalid parameter-declaration-clause

— end example]

13.6 Built-in operators [over.built]

1 The candidate operator functions that represent the built-in operators defined in Clause 5 are specified in
this subclause. These candidate functions participate in the operator overload resolution process as described
in 13.3.1.2 and are used for no other purpose. [Note: because built-in operators take only operands with
non-class type, and operator overload resolution occurs only when an operand expression originally has class
or enumeration type, operator overload resolution can resolve to a built-in operator only when an operand
has a class type that has a user-defined conversion to a non-class type appropriate for the operator, or when
an operand has an enumeration type that can be converted to a type appropriate for the operator. Also note
that some of the candidate operator functions given in this subclause are more permissive than the built-in
operators themselves. As described in 13.3.1.2, after a built-in operator is selected by overload resolution
the expression is subject to the requirements for the built-in operator given in Clause 5, and therefore to
any additional semantic constraints given there. If there is a user-written candidate with the same name
and parameter types as a built-in candidate operator function, the built-in operator function is hidden and
is not included in the set of candidate functions. — end note]

2 In this subclause, the term promoted integral type is used to refer to those integral types which are preserved
by integral promotion (including e.g. int and long but excluding e.g. char). Similarly, the term promoted
arithmetic type refers to floating types plus promoted integral types. [Note: in all cases where a promoted
integral type or promoted arithmetic type is required, an operand of enumeration type will be acceptable
by way of the integral promotions. — end note]

3 For every pair (T, VQ), where T is an arithmetic type, and VQ is either volatile or empty, there exist
candidate operator functions of the form

VQ T & operator++(VQ T &);
T operator++(VQ T &, int);

4 For every pair (T, VQ), where T is an arithmetic type other than bool, and VQ is either volatile or empty,
there exist candidate operator functions of the form

VQ T & operator--(VQ T &);
T operator--(VQ T &, int);

5 For every pair (T, VQ), where T is a cv-qualified or cv-unqualified object type, and VQ is either volatile
or empty, there exist candidate operator functions of the form

T *VQ& operator++(T *VQ&);
T *VQ& operator--(T *VQ&);
T * operator++(T *VQ&, int);
T * operator--(T *VQ&, int);

§ 13.6 311

c© ISO/IEC N3092

6 For every cv-qualified or cv-unqualified object type T, there exist candidate operator functions of the form
T & operator*(T *);

7 For every function type T that does not have cv-qualifiers or a ref-qualifier , there exist candidate operator
functions of the form

T & operator*(T *);

8 For every type T there exist candidate operator functions of the form
T * operator+(T *);

9 For every promoted arithmetic type T, there exist candidate operator functions of the form
T operator+(T);
T operator-(T);

10 For every promoted integral type T, there exist candidate operator functions of the form
T operator∼(T);

11 For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type, C1 is the same type as C2 or is a
derived class of C2, T is an object type or a function type, and CV1 and CV2 are cv-qualifier-seqs, there
exist candidate operator functions of the form

CV12 T & operator->*(CV1 C1*, CV2 T C2::*);

where CV12 is the union of CV1 and CV2.

12 For every pair of promoted arithmetic types L and R, there exist candidate operator functions of the form
LR operator*(L, R);
LR operator/(L, R);
LR operator+(L, R);
LR operator-(L, R);
bool operator<(L, R);
bool operator>(L, R);
bool operator<=(L, R);
bool operator>=(L, R);
bool operator==(L, R);
bool operator!=(L, R);

where LR is the result of the usual arithmetic conversions between types L and R.

13 For every cv-qualified or cv-unqualified object type T there exist candidate operator functions of the form
T * operator+(T *, std::ptrdiff_t);
T & operator[](T *, std::ptrdiff_t);
T * operator-(T *, std::ptrdiff_t);
T * operator+(std::ptrdiff_t, T *);
T & operator[](std::ptrdiff_t, T *);

14 For every T, where T is a pointer to object type, there exist candidate operator functions of the form
std::ptrdiff_t operator-(T , T);

15 For every T , where T is an enumeration type, a pointer type, or std::nullptr_t, there exist candidate
operator functions of the form

§ 13.6 312

c© ISO/IEC N3092

bool operator<(T , T);
bool operator>(T , T);
bool operator<=(T , T);
bool operator>=(T , T);
bool operator==(T , T);
bool operator!=(T , T);

16 For every pointer to member type T there exist candidate operator functions of the form
bool operator==(T , T);
bool operator!=(T , T);

17 For every pair of promoted integral types L and R, there exist candidate operator functions of the form
LR operator%(L , R);
LR operator&(L , R);
LR operator^(L , R);
LR operator|(L , R);
L operator<<(L , R);
L operator>>(L , R);

where LR is the result of the usual arithmetic conversions between types L and R.

18 For every triple (L, VQ, R), where L is an arithmetic type, VQ is either volatile or empty, and R is a
promoted arithmetic type, there exist candidate operator functions of the form

VQ L & operator=(VQ L &, R);
VQ L & operator*=(VQ L &, R);
VQ L & operator/=(VQ L &, R);
VQ L & operator+=(VQ L &, R);
VQ L & operator-=(VQ L &, R);

19 For every pair (T , VQ), where T is any type and VQ is either volatile or empty, there exist candidate
operator functions of the form

T *VQ & operator=(T *VQ &, T *);

20 For every pair (T , VQ), where T is an enumeration or pointer to member type and VQ is either volatile
or empty, there exist candidate operator functions of the form

VQ T & operator=(VQ T &, T);

21 For every pair (T , VQ), where T is a cv-qualified or cv-unqualified object type and VQ is either volatile
or empty, there exist candidate operator functions of the form

T *VQ & operator+=(T *VQ &, std::ptrdiff_t);
T *VQ & operator-=(T *VQ &, std::ptrdiff_t);

22 For every triple (L, VQ, R), where L is an integral type, VQ is either volatile or empty, and R is a
promoted integral type, there exist candidate operator functions of the form

VQ L & operator%=(VQ L &, R);
VQ L & operator<<=(VQ L &, R);
VQ L & operator>>=(VQ L &, R);
VQ L & operator&=(VQ L &, R);
VQ L & operator^=(VQ L &, R);
VQ L & operator|=(VQ L &, R);

§ 13.6 313

c© ISO/IEC N3092

23 There also exist candidate operator functions of the form
bool operator!(bool);
bool operator&&(bool, bool);
bool operator||(bool, bool);

24 For every pair of promoted arithmetic types L and R, there exist candidate operator functions of the form
LR operator?(bool, L , R);

where LR is the result of the usual arithmetic conversions between types L and R. [Note: as with all these
descriptions of candidate functions, this declaration serves only to describe the built-in operator for purposes
of overload resolution. The operator “?” cannot be overloaded. — end note]

25 For every type T , where T is a pointer, pointer-to-member, or scoped enumeration type, there exist candidate
operator functions of the form

T operator?(bool, T , T);

§ 13.6 314

c© ISO/IEC N3092

14 Templates [temp]
1 A template defines a family of classes or functions or an alias for a family of types.

template-declaration:
template < template-parameter-list > declaration

template-parameter-list:
template-parameter
template-parameter-list , template-parameter

[Note: The > token following the template-parameter-list of a template-declaration may be the product of
replacing a >> token by two consecutive > tokens (14.2). — end note]

The declaration in a template-declaration shall

— declare or define a function or a class, or

— define a member function, a member class or a static data member of a class template or of a class
nested within a class template, or

— define a member template of a class or class template, or

— be an alias-declaration.

A template-declaration is a declaration. A template-declaration is also a definition if its declaration defines
a function, a class, or a static data member.

2 A template-declaration can appear only as a namespace scope or class scope declaration. In a function
template declaration, the last component of the declarator-id shall be a template-name or operator-function-
id (i.e., not a template-id). [Note: in a class template declaration, if the class name is a simple-template-id,
the declaration declares a class template partial specialization (14.5.5). — end note]

3 In a template-declaration, explicit specialization, or explicit instantiation the init-declarator-list in the dec-
laration shall contain at most one declarator. When such a declaration is used to declare a class template,
no declarator is permitted.

4 A template name has linkage (3.5). A non-member function template can have internal linkage; any other
template name shall have external linkage. Entities generated from a template with internal linkage are
distinct from all entities generated in other translation units. A template, a template explicit specializa-
tion (14.7.3), and a class template partial specialization shall not have C linkage. Use of a linkage specification
other than C or C++ with any of these constructs is conditionally-supported, with implementation-defined
semantics. Template definitions shall obey the one definition rule (3.2). [Note: default arguments for func-
tion templates and for member functions of class templates are considered definitions for the purpose of
template instantiation (14.5) and must also obey the one definition rule. — end note]

5 A class template shall not have the same name as any other template, class, function, variable, enumeration,
enumerator, namespace, or type in the same scope (3.3), except as specified in (14.5.5). Except that a
function template can be overloaded either by (non-template) functions with the same name or by other
function templates with the same name (14.8.3), a template name declared in namespace scope or in class
scope shall be unique in that scope.

315

c© ISO/IEC N3092

14.1 Template parameters [temp.param]

1 The syntax for template-parameters is:
template-parameter:

type-parameter
parameter-declaration

type-parameter:
class ...opt identifieropt

class identifieropt = type-id
typename ...opt identifieropt

typename identifieropt = type-id
template < template-parameter-list > class ...opt identifieropt

template < template-parameter-list > class identifieropt = id-expression

[Note: The > token following the template-parameter-list of a type-parameter may be the product of replacing
a >> token by two consecutive > tokens (14.2). — end note]

2 There is no semantic difference between class and typename in a template-parameter . typename followed
by an unqualified-id names a template type parameter. typename followed by a qualified-id denotes the
type in a non-type 135 parameter-declaration. A storage class shall not be specified in a template-parameter
declaration. [Note: a template parameter may be a class template. For example,

template<class T> class myarray { /∗ ... ∗/ };

template<class K, class V, template<class T> class C = myarray>
class Map {

C<K> key;
C<V> value;

};

— end note]

3 A type-parameter whose identifier does not follow an ellipsis defines its identifier to be a typedef-name (if
declared with class or typename) or template-name (if declared with template) in the scope of the template
declaration. [Note: because of the name lookup rules, a template-parameter that could be interpreted as
either a non-type template-parameter or a type-parameter (because its identifier is the name of an already
existing class) is taken as a type-parameter . For example,

class T { /∗ ... ∗/ };
int i;

template<class T, T i> void f(T t) {
T t1 = i; // template-parameters T and i
::T t2 = ::i; // global namespace members T and i

}

Here, the template f has a type-parameter called T, rather than an unnamed non-type template-parameter
of class T. — end note]

4 A non-type template-parameter shall have one of the following (optionally cv-qualified) types:

— integral or enumeration type,

— pointer to object or pointer to function,

135) Since template template-parameters and template template-arguments are treated as types for descriptive purposes, the
terms non-type parameter and non-type argument are used to refer to non-type, non-template parameters and arguments.

§ 14.1 316

c© ISO/IEC N3092

— lvalue reference to object or lvalue reference to function,

— pointer to member.

5 [Note: other types are disallowed either explicitly below or implicitly by the rules governing the form of
template-arguments (14.3). — end note] The top-level cv-qualifiers on the template-parameter are ignored
when determining its type.

6 A non-type non-reference template-parameter is a prvalue. It shall not be assigned to or in any other way
have its value changed. A non-type non-reference template-parameter cannot have its address taken. When
a non-type non-reference template-parameter is used as an initializer for a reference, a temporary is always
used. [Example:

template<const X& x, int i> void f() {
i++; // error: change of template-parameter value

&x; // OK
&i; // error: address of non-reference template-parameter

int& ri = i; // error: non-const reference bound to temporary
const int& cri = i; // OK: const reference bound to temporary

}

— end example]

7 A non-type template-parameter shall not be declared to have floating point, class, or void type. [Example:
template<double d> class X; // error
template<double* pd> class Y; // OK
template<double& rd> class Z; // OK

— end example]

8 A non-type template-parameter of type “array of T” or “function returning T” is adjusted to be of type
“pointer to T” or “pointer to function returning T”, respectively. [Example:

template<int *a> struct R { /∗ ... ∗/ };
template<int b[5]> struct S { /∗ ... ∗/ };
int p;
R<&p> w; // OK
S<&p> x; // OK due to parameter adjustment
int v[5];
R<v> y; // OK due to implicit argument conversion
S<v> z; // OK due to both adjustment and conversion

— end example]

9 A default template-argument is a template-argument (14.3) specified after = in a template-parameter . A de-
fault template-argument may be specified for any kind of template-parameter (type, non-type, template) that
is not a template parameter pack (14.5.3). A default template-argument may be specified in a template dec-
laration. A default template-argument shall not be specified in the template-parameter-lists of the definition
of a member of a class template that appears outside of the member’s class. A default template-argument
shall not be specified in a friend class template declaration. If a friend function template declaration specifies
a default template-argument, that declaration shall be a definition and shall be the only declaration of the
function template in the translation unit.

§ 14.1 317

c© ISO/IEC N3092

10 The set of default template-arguments available for use with a template declaration or definition is obtained
by merging the default arguments from the definition (if in scope) and all declarations in scope in the same
way default function arguments are (8.3.6). [Example:

template<class T1, class T2 = int> class A;
template<class T1 = int, class T2> class A;

is equivalent to
template<class T1 = int, class T2 = int> class A;

— end example]

11 If a template-parameter of a class template has a default template-argument, each subsequent template-
parameter shall either have a default template-argument supplied or be a template parameter pack. If
a template-parameter of a class template is a template parameter pack, it shall be the last template-
parameter . [Note: These are not requirements for function templates because template arguments might be
deduced (14.8.2). [Example:

template<class T1 = int, class T2> class B; // error

— end example] — end note]

12 A template-parameter shall not be given default arguments by two different declarations in the same scope.
[Example:

template<class T = int> class X;
template<class T = int> class X { /∗... ∗/ }; // error

— end example]

13 When parsing a default template-argument for a non-type template-parameter , the first non-nested > is taken
as the end of the template-parameter-list rather than a greater-than operator. [Example:

template<int i = 3 > 4 > // syntax error
class X { /∗ ... ∗/ };

template<int i = (3 > 4) > // OK
class Y { /∗ ... ∗/ };

— end example]

14 A template-parameter of a template template-parameter is permitted to have a default template-argument.
When such default arguments are specified, they apply to the template template-parameter in the scope of
the template template-parameter . [Example:

template <class T = float> struct B {};
template <template <class TT = float> class T> struct A {

inline void f();
inline void g();

};
template <template <class TT> class T> void A<T>::f() {

T<> t; // error - TT has no default template argument
}
template <template <class TT = char> class T> void A<T>::g() {

T<> t; // OK - T<char>
}

§ 14.1 318

c© ISO/IEC N3092

— end example]

15 If a template-parameter is a type-parameter with an ellipsis prior to its optional identifier or is a parameter-
declaration that declares a parameter pack (8.3.5), then the template-parameter is a template parameter
pack (14.5.3). [Example:

template <class... Types> class Tuple; // Types is a template type parameter pack
template <class T, int... Dims> struct multi_array; // Dims is a non-type template parameter pack

— end example]

14.2 Names of template specializations [temp.names]

1 A template specialization (14.7) can be referred to by a template-id:
simple-template-id:

template-name < template-argument-listopt >

template-id:
simple-template-id
operator-function-id < template-argument-listopt >
literal-operator-id < template-argument-listopt >

template-name:
identifier

template-argument-list:
template-argument ...opt

template-argument-list , template-argument ...opt

template-argument:
constant-expression
type-id
id-expression

[Note: the name lookup rules (3.4) are used to associate the use of a name with a template declaration; that
is, to identify a name as a template-name. — end note]

2 For a template-name to be explicitly qualified by the template arguments, the name must be known to refer
to a template.

3 After name lookup (3.4) finds that a name is a template-name or that an operator-function-id or a literal-
operator-id refers to a set of overloaded functions any member of which is a function template if this is
followed by a <, the < is always taken as the delimiter of a template-argument-list and never as the less-than
operator. When parsing a template-argument-list, the first non-nested >136 is taken as the ending delimiter
rather than a greater-than operator. Similarly, the first non-nested >> is treated as two consecutive but
distinct > tokens, the first of which is taken as the end of the template-argument-list and completes the
template-id. [Note: The second > token produced by this replacement rule may terminate an enclosing
template-id construct or it may be part of a different construct (e.g. a cast). — end note] [Example:

template<int i> class X { /∗ ... ∗/ };

X< 1>2 > x1; // syntax error
X<(1>2)> x2; // OK

template<class T> class Y { /∗ ... ∗/ };

136) A > that encloses the type-id of a dynamic_cast, static_cast, reinterpret_cast or const_cast, or which encloses the
template-arguments of a subsequent template-id, is considered nested for the purpose of this description.

§ 14.2 319

c© ISO/IEC N3092

Y<X<1>> x3; // OK, same as Y<X<1> > x3;
Y<X<6>>1>> x4; // syntax error
Y<X<(6>>1)>> x5; // OK

— end example]

4 When the name of a member template specialization appears after . or -> in a postfix-expression, or after
a nested-name-specifier in a qualified-id, and the postfix-expression or qualified-id explicitly depends on a
template-parameter (14.6.2) but does not refer to a member of the current instantiation (14.6.2.1), the
member template name must be prefixed by the keyword template. Otherwise the name is assumed to
name a non-template. [Example:

struct X {
template<std::size_t> X* alloc();
template<std::size_t> static X* adjust();

};
template<class T> void f(T* p) {

T* p1 = p->alloc<200>(); // ill-formed: < means less than
T* p2 = p->template alloc<200>(); // OK: < starts template argument list
T::adjust<100>(); // ill-formed: < means less than
T::template adjust<100>(); // OK: < starts template argument list

}

— end example]

5 If a name prefixed by the keyword template is not the name of a template, the program is ill-formed.
[Note: the keyword template may not be applied to non-template members of class templates. — end
note] [Note: as is the case with the typename prefix, the template prefix is allowed in cases where it is not
strictly necessary; i.e., when the nested-name-specifier or the expression on the left of the -> or . is not
dependent on a template-parameter , or the use does not appear in the scope of a template. — end note]

6 A simple-template-id that names a class template specialization is a class-name (Clause 9).

7 A template-id that names a template alias specialization is a type-name.

14.3 Template arguments [temp.arg]

1 There are three forms of template-argument, corresponding to the three forms of template-parameter : type,
non-type and template. The type and form of each template-argument specified in a template-id shall
match the type and form specified for the corresponding parameter declared by the template in its template-
parameter-list. When the parameter declared by the template is a template parameter pack (14.5.3), it will
correspond to zero or more template-arguments. [Example:

template<class T> class Array {
T* v;
int sz;

public:
explicit Array(int);
T& operator[](int);
T& elem(int i) { return v[i]; }

};

Array<int> v1(20);
typedef std::complex<double> dcomplex; // std::complex is a standard

// library template
Array<dcomplex> v2(30);

§ 14.3 320

c© ISO/IEC N3092

Array<dcomplex> v3(40);

void bar() {
v1[3] = 7;
v2[3] = v3.elem(4) = dcomplex(7,8);

}

— end example]

2 In a template-argument, an ambiguity between a type-id and an expression is resolved to a type-id, regardless
of the form of the corresponding template-parameter .137 [Example:

template<class T> void f();
template<int I> void f();

void g() {
f<int()>(); // int() is a type-id: call the first f()

}

— end example]

3 The name of a template-argument shall be accessible at the point where it is used as a template-argument.
[Note: if the name of the template-argument is accessible at the point where it is used as a template-
argument, there is no further access restriction in the resulting instantiation where the corresponding
template-parameter name is used. — end note] [Example:

template<class T> class X {
static T t;

};

class Y {
private:

struct S { /∗ ... ∗/ };
X<S> x; // OK: S is accessible

// X<Y::S> has a static member of type Y::S
// OK: even though Y::S is private

};

X<Y::S> y; // error: S not accessible

— end example] For a template-argument that is a class type or a class template, the template definition
has no special access rights to the members of the template-argument. [Example:

template <template <class TT> class T> class A {
typename T<int>::S s;

};

template <class U> class B {
private:

struct S { /∗ ... ∗/ };
};

A b; // ill-formed: A has no access to B::S

137) There is no such ambiguity in a default template-argument because the form of the template-parameter determines the
allowable forms of the template-argument.

§ 14.3 321

c© ISO/IEC N3092

— end example]

4 When template argument packs or default template-arguments are used, a template-argument list can be
empty. In that case the empty <> brackets shall still be used as the template-argument-list. [Example:

template<class T = char> class String;
String<>* p; // OK: String<char>
String* q; // syntax error
template<class ... Elements> class Tuple;
Tuple<>* t; // OK: Elements is empty
Tuple* u; // syntax error

— end example]

5 An explicit destructor call (12.4) for an object that has a type that is a class template specialization may
explicitly specify the template-arguments. [Example:

template<class T> struct A {
~A();

};
void f(A<int>* p, A<int>* q) {

p->A<int>::~A(); // OK: destructor call
q->A<int>::~A<int>(); // OK: destructor call

}

— end example]

6 If the use of a template-argument gives rise to an ill-formed construct in the instantiation of a template
specialization, the program is ill-formed.

7 When the template in a template-id is an overloaded function template, both non-template functions in the
overload set and function templates in the overload set for which the template-arguments do not match the
template-parameters are ignored. If none of the function templates have matching template-parameters, the
program is ill-formed.

8 A template-argument followed by an ellipsis is a pack expansion (14.5.3).

14.3.1 Template type arguments [temp.arg.type]

1 A template-argument for a template-parameter which is a type shall be a type-id.

2 [Example:
template <class T> class X { };
template <class T> void f(T t) { }
struct { } unnamed_obj;

void f() {
struct A { };
enum { e1 };
typedef struct { } B;
B b;
X<A> x1; // OK
X<A*> x2; // OK
X x3; // OK
f(e1); // OK
f(unnamed_obj); // OK
f(b); // OK

}

§ 14.3.1 322

c© ISO/IEC N3092

— end example] [Note: a template type argument may be an incomplete type (3.9). — end note]

3 If a declaration acquires a function type through a type dependent on a template-parameter and this causes a
declaration that does not use the syntactic form of a function declarator to have function type, the program
is ill-formed. [Example:

template<class T> struct A {
static T t;

};
typedef int function();
A<function> a; // ill-formed: would declare A<function>::t

// as a static member function

— end example]

14.3.2 Template non-type arguments [temp.arg.nontype]

1 A template-argument for a non-type, non-template template-parameter shall be one of:

— an integral constant expression (including a constant expression of literal class type that can be used
as an integral constant expression as described in 5.19); or

— the name of a non-type template-parameter ; or

— the address of an object or function with external linkage, including function templates and function
template-ids but excluding non-static class members, expressed as & id-expression where the & is
optional if the name refers to a function or array, or if the corresponding template-parameter is a
reference; or

— a constant expression that evaluates to a null pointer value (4.10); or

— a constant expression that evaluates to a null member pointer value (4.11); or

— a pointer to member expressed as described in 5.3.1.

2 [Note: A string literal (2.14.5) does not satisfy the requirements of any of these categories and thus is not
an acceptable template-argument. [Example:

template<class T, char* p> class X {
X();
X(const char* q) { /∗ ... ∗/ }

};

X<int, "Studebaker"> x1; // error: string literal as template-argument

char p[] = "Vivisectionist";
X<int,p> x2; // OK

— end example] — end note]

3 [Note: Addresses of array elements and names or addresses of non-static class members are not acceptable
template-arguments. [Example:

template<int* p> class X { };

int a[10];
struct S { int m; static int s; } s;

X<&a[2]> x3; // error: address of array element

§ 14.3.2 323

c© ISO/IEC N3092

X<&s.m> x4; // error: address of non-static member
X<&s.s> x5; // error: &S::s must be used
X<&S::s> x6; // OK: address of static member

— end example] — end note]

4 [Note: Temporaries, unnamed lvalues, and named lvalues that do not have external linkage are not accept-
able template-arguments when the corresponding template-parameter has reference type. [Example:

template<const int& CRI> struct B { /∗ ... ∗/ };

B<1> b2; // error: temporary would be required for template argument

int c = 1;
B<c> b1; // OK

— end example] — end note]

5 The following conversions are performed on each expression used as a non-type template-argument. If a
non-type template-argument cannot be converted to the type of the corresponding template-parameter then
the program is ill-formed.

— for a non-type template-parameter of integral or enumeration type, integral promotions (4.5) and
integral conversions (4.7) are applied.

— for a non-type template-parameter of type pointer to object, qualification conversions (4.4) and the
array-to-pointer conversion (4.2) are applied; if the template-argument is of type std::nullptr_t, the
null pointer conversion (4.10) is applied. [Note: In particular, neither the null pointer conversion for
a zero-valued integral constant expression (4.10) nor the derived-to-base conversion (4.10) are applied.
Although 0 is a valid template-argument for a non-type template-parameter of integral type, it is not
a valid template-argument for a non-type template-parameter of pointer type. However, both (int*)0
and nullptr are valid template-arguments for a non-type template-parameter of type “pointer to int.”
— end note]

— For a non-type template-parameter of type reference to object, no conversions apply. The type referred
to by the reference may be more cv-qualified than the (otherwise identical) type of the template-
argument. The template-parameter is bound directly to the template-argument, which shall be an
lvalue.

— For a non-type template-parameter of type pointer to function, the function-to-pointer conversion (4.3)
is applied; if the template-argument is of type std::nullptr_t, the null pointer conversion (4.10) is
applied. If the template-argument represents a set of overloaded functions (or a pointer to such), the
matching function is selected from the set (13.4).

— For a non-type template-parameter of type reference to function, no conversions apply. If the template-
argument represents a set of overloaded functions, the matching function is selected from the set (13.4).

— For a non-type template-parameter of type pointer to member function, if the template-argument is of
type std::nullptr_t, the null member pointer conversion (4.11) is applied; otherwise, no conversions
apply. If the template-argument represents a set of overloaded member functions, the matching member
function is selected from the set (13.4).

— For a non-type template-parameter of type pointer to data member, qualification conversions (4.4) are
applied; if the template-argument is of type std::nullptr_t, the null member pointer conversion (4.11)
is applied.

[Example:

§ 14.3.2 324

c© ISO/IEC N3092

template<const int* pci> struct X { /∗ ... ∗/ };
int ai[10];
X<ai> xi; // array to pointer and qualification conversions

struct Y { /∗ ... ∗/ };
template<const Y& b> struct Z { /∗ ... ∗/ };
Y y;
Z<y> z; // no conversion, but note extra cv-qualification

template<int (&pa)[5]> struct W { /∗ ... ∗/ };
int b[5];
W w; // no conversion

void f(char);
void f(int);

template<void (*pf)(int)> struct A { /∗ ... ∗/ };

A<&f> a; // selects f(int)

— end example]

14.3.3 Template template arguments [temp.arg.template]

1 A template-argument for a template template-parameter shall be the name of a class template or a template
alias, expressed as id-expression. When the template-argument names a class template, only primary class
templates are considered when matching the template template argument with the corresponding parameter;
partial specializations are not considered even if their parameter lists match that of the template template
parameter.

2 Any partial specializations (14.5.5) associated with the primary class template are considered when a spe-
cialization based on the template template-parameter is instantiated. If a specialization is not visible at the
point of instantiation, and it would have been selected had it been visible, the program is ill-formed; no
diagnostic is required. [Example:

template<class T> class A { // primary template
int x;

};
template<class T> class A<T*> { // partial specialization

long x;
};
template<template<class U> class V> class C {

V<int> y;
V<int*> z;

};
C<A> c; // V<int> within C<A> uses the primary template,

// so c.y.x has type int
// V<int*> within C<A> uses the partial specialization,
// so c.z.x has type long

— end example]

[Example:
template<class T> class A { /∗ ... ∗/ };

§ 14.3.3 325

c© ISO/IEC N3092

template<class T, class U = T> class B { /∗ ... ∗/ };
template <class ... Types> class C { /∗ ... ∗/ };

template<template<class> class P> class X { /∗ ... ∗/ };
template<template<class ...> class Q> class Y { /∗ ... ∗/ };

X<A> xa; // OK
X xb; // ill-formed: default arguments for the parameters of a template argument are ignored
X<C> xc; // ill-formed: a template parameter pack does not match a template parameter

Y<A> ya; // OK
Y yb; // OK
Y<C> yc; // OK

— end example]

3 A template-argument matches a template template-parameter (call it P) when each of the template parameters
in the template-parameter-list of the template-argument’s corresponding class template or template alias (call
it A) matches the corresponding template parameter in the template-parameter-list of P. When P’s template-
parameter-list contains a template parameter pack (14.5.3), the template parameter pack will match zero
or more template parameters or template parameter packs in the template-parameter-list of A with the
same type and form as the template parameter pack in P (ignoring whether those template parameters are
template parameter packs) [Example:

template <class T> struct eval;

template <template <class, class...> class TT, class T1, class... Rest>
struct eval<TT<T1, Rest...>> { };

template <class T1> struct A;
template <class T1, class T2> struct B;
template <int N> struct C;
template <class T1, int N> struct D;
template <class T1, class T2, int N = 17> struct E;

eval<A<int>> eA; // OK: matches partial specialization of eval
eval<B<int, float>> eB; // OK: matches partial specialization of eval
eval<C<17>> eC; // error: C does not match TT in partial specialization
eval<D<int, 17>> eD; // error: D does not match TT in partial specialization
eval<E<int, float>> eE; // error: E does not match TT in partial specialization

— end example]

14.4 Type equivalence [temp.type]

1 Two template-ids refer to the same class or function if

— their template-names, operator-function-ids, or literal-operator-ids refer to the same template and

— their corresponding type template-arguments are the same type and

— their corresponding non-type template arguments of integral or enumeration type have identical values
and

— their corresponding non-type template-arguments of pointer type refer to the same external object or
function or are both the null pointer value and

§ 14.4 326

c© ISO/IEC N3092

— their corresponding non-type template-arguments of pointer-to-member type refer to the same class
member or are both the null member pointer value and

— their corresponding non-type template-arguments of reference type refer to the same external object
or function and

— their corresponding template template-arguments refer to the same template.

[Example:
template<class E, int size> class buffer { /∗ ... ∗/ };
buffer<char,2*512> x;
buffer<char,1024> y;

declares x and y to be of the same type, and
template<class T, void(*err_fct)()> class list { /∗ ... ∗/ };
list<int,&error_handler1> x1;
list<int,&error_handler2> x2;
list<int,&error_handler2> x3;
list<char,&error_handler2> x4;

declares x2 and x3 to be of the same type. Their type differs from the types of x1 and x4.
template<template<class> class TT> struct X { };
template<class> struct Y { };
template<class T> using Z = Y<T>;
X<Y> y;
X<Z> z;

declares y and z to be of the same type. — end example]

14.5 Template declarations [temp.decls]

1 A template-id, that is, the template-name followed by a template-argument-list shall not be specified in the
declaration of a primary template declaration. [Example:

template<class T1, class T2, int I> class A<T1, T2, I> { }; // error
template<class T1, int I> void sort<T1, I>(T1 data[I]); // error

— end example] [Note: however, this syntax is allowed in class template partial specializations (14.5.5).
— end note]

2 For purposes of name lookup and instantiation, default arguments of function templates and default argu-
ments of member functions of class templates are considered definitions; each default argument is a separate
definition which is unrelated to the function template definition or to any other default arguments.

3 Because an alias-declaration cannot declare a template-id, it is not possible to partially or explicitly specialize
a template alias.

14.5.1 Class templates [temp.class]

1 A class template defines the layout and operations for an unbounded set of related types. [Example: a single
class template List might provide a common definition for list of int, list of float, and list of pointers to
Shapes. — end example]

[Example: An array class template might be declared like this:

§ 14.5.1 327

c© ISO/IEC N3092

template<class T> class Array {
T* v;
int sz;

public:
explicit Array(int);
T& operator[](int);
T& elem(int i) { return v[i]; }

};

2 The prefix template <class T> specifies that a template is being declared and that a type-name T will be
used in the declaration. In other words, Array is a parameterized type with T as its parameter. — end
example]

3 When a member function, a member class, a static data member or a member template of a class template
is defined outside of the class template definition, the member definition is defined as a template definition
in which the template-parameters are those of the class template. The names of the template parameters
used in the definition of the member may be different from the template parameter names used in the class
template definition. The template argument list following the class template name in the member definition
shall name the parameters in the same order as the one used in the template parameter list of the member.
Each template parameter pack shall be expanded with an ellipsis in the template argument list. [Example:

template<class T1, class T2> struct A {
void f1();
void f2();

};

template<class T2, class T1> void A<T2,T1>::f1() { } // OK
template<class T2, class T1> void A<T1,T2>::f2() { } // error

template<class ... Types> struct B {
void f3();
void f4();

};

template<class ... Types> void B<Types ...>::f3() { } // OK
template<class ... Types> void B<Types>::f4() { } // error

— end example]

4 In a redeclaration, partial specialization, explicit specialization or explicit instantiation of a class template,
the class-key shall agree in kind with the original class template declaration (7.1.6.3).

14.5.1.1 Member functions of class templates [temp.mem.func]

1 A member function of a class template may be defined outside of the class template definition in which it is
declared. [Example:

template<class T> class Array {
T* v;
int sz;

public:
explicit Array(int);
T& operator[](int);
T& elem(int i) { return v[i]; }

};

§ 14.5.1.1 328

c© ISO/IEC N3092

declares three function templates. The subscript function might be defined like this:
template<class T> T& Array<T>::operator[](int i) {

if (i<0 || sz<=i) error("Array: range error");
return v[i];

}

— end example]

2 The template-arguments for a member function of a class template are determined by the template-arguments
of the type of the object for which the member function is called. [Example: the template-argument for
Array<T> :: operator [] () will be determined by the Array to which the subscripting operation is applied.

Array<int> v1(20);
Array<dcomplex> v2(30);

v1[3] = 7; // Array<int>::operator[]()
v2[3] = dcomplex(7,8); // Array<dcomplex>::operator[]()

— end example]

14.5.1.2 Member classes of class templates [temp.mem.class]

1 A class member of a class template may be defined outside the class template definition in which it is declared.
[Note: the class member must be defined before its first use that requires an instantiation (14.7.1). For
example,

template<class T> struct A {
class B;

};
A<int>::B* b1; // OK: requires A to be defined but not A::B
template<class T> class A<T>::B { };
A<int>::B b2; // OK: requires A::B to be defined

— end note]

14.5.1.3 Static data members of class templates [temp.static]

1 A definition for a static data member may be provided in a namespace scope enclosing the definition of the
static member’s class template. [Example:

template<class T> class X {
static T s;

};
template<class T> T X<T>::s = 0;

— end example]

2 An explicit specialization of a static data member declared as an array of unknown bound can have a different
bound from its definition, if any. [Example:

template <class T> struct A {
static int i[];

};
template <class T> int A<T>::i[4]; // 4 elements
template <> int A<int>::i[] = { 1 }; // OK: 1 element

§ 14.5.1.3 329

c© ISO/IEC N3092

— end example]

14.5.2 Member templates [temp.mem]

1 A template can be declared within a class or class template; such a template is called a member template. A
member template can be defined within or outside its class definition or class template definition. A member
template of a class template that is defined outside of its class template definition shall be specified with
the template-parameters of the class template followed by the template-parameters of the member template.
[Example:

template<class T> struct string {
template<class T2> int compare(const T2&);
template<class T2> string(const string<T2>& s) { /∗ ... ∗/ }

};

template<class T> template<class T2> int string<T>::compare(const T2& s) {
}

— end example]

2 A local class shall not have member templates. Access control rules (Clause 11) apply to member template
names. A destructor shall not be a member template. A normal (non-template) member function with a
given name and type and a member function template of the same name, which could be used to generate
a specialization of the same type, can both be declared in a class. When both exist, a use of that name and
type refers to the non-template member unless an explicit template argument list is supplied. [Example:

template <class T> struct A {
void f(int);
template <class T2> void f(T2);

};

template <> void A<int>::f(int) { } // non-template member
template <> template <> void A<int>::f<>(int) { } // template member

int main() {
A<char> ac;
ac.f(1); // non-template
ac.f(’c’); // template
ac.f<>(1); // template

}

— end example]

3 A member function template shall not be virtual. [Example:
template <class T> struct AA {

template <class C> virtual void g(C); // error
virtual void f(); // OK

};

— end example]

4 A specialization of a member function template does not override a virtual function from a base class.
[Example:

class B {
virtual void f(int);

§ 14.5.2 330

c© ISO/IEC N3092

};

class D : public B {
template <class T> void f(T); // does not override B::f(int)
void f(int i) { f<>(i); } // overriding function that calls

// the template instantiation
};

— end example]

5 A specialization of a conversion function template is referenced in the same way as a non-template conversion
function that converts to the same type. [Example:

struct A {
template <class T> operator T*();

};
template <class T> A::operator T*(){ return 0; }
template <> A::operator char*(){ return 0; } // specialization
template A::operator void*(); // explicit instantiation

int main() {
A a;
int *ip;
ip = a.operator int*(); // explicit call to template operator

// A::operator int*()
}

— end example] [Note: because the explicit template argument list follows the function template name,
and because conversion member function templates and constructor member function templates are called
without using a function name, there is no way to provide an explicit template argument list for these
function templates. — end note]

6 A specialization of a conversion function template is not found by name lookup. Instead, any conversion
function templates visible in the context of the use are considered. For each such operator, if argument
deduction succeeds (14.8.2.3), the resulting specialization is used as if found by name lookup.

7 A using-declaration in a derived class cannot refer to a specialization of a conversion function template in a
base class.

8 Overload resolution (13.3.3.2) and partial ordering (14.5.6.2) are used to select the best conversion function
among multiple specializations of conversion function templates and/or non-template conversion functions.

14.5.3 Variadic templates [temp.variadic]

1 A template parameter pack is a template parameter that accepts zero or more template arguments. [Example:
template<class ... Types> struct Tuple { };

Tuple<> t0; // Types contains no arguments
Tuple<int> t1; // Types contains one argument: int
Tuple<int, float> t2; // Types contains two arguments: int and float
Tuple<0> eror; // error: 0 is not a type

— end example]

2 A function parameter pack is a function parameter that accepts zero or more function arguments. [Example:

§ 14.5.3 331

c© ISO/IEC N3092

template<class ... Types> void f(Types ... args);

f(); // OK: args contains no arguments
f(1); // OK: args contains one argument: int
f(2, 1.0); // OK: args contains two arguments: int and double

— end example]

3 A parameter pack is either a template parameter pack or a function parameter pack.

4 A pack expansion is a sequence of tokens that names one or more parameter packs, followed by an ellipsis.
The sequence of tokens is called the pattern of the expansion; its syntax depends on the context in which
the expansion occurs. Pack expansions can occur in the following contexts:

— In an initializer-list (8.5); the pattern is an initializer-clause.

— In a base-specifier-list (10); the pattern is a base-specifier .

— In a mem-initializer-list (12.6.2); the pattern is a mem-initializer .

— In a template-argument-list (14.3); the pattern is a template-argument.

— In a dynamic-exception-specification (15.4); the pattern is a type-id.

— In an attribute-list (7.6.1); the pattern is an attribute.

— In a capture-list (5.1.2); the pattern is a capture.

[Example:
template<class ... Types> void f(Types ... rest);
template<class ... Types> void g(Types ... rest) {

f(&rest ...); // “&rest ...” is a pack expansion; “&rest” is its pattern
}

— end example]

5 A parameter pack whose name appears within the pattern of a pack expansion is expanded by that pack
expansion. An appearance of the name of a parameter pack is only expanded by the innermost enclosing
pack expansion. The pattern of a pack expansion shall name one or more parameter packs that are not
expanded by a nested pack expansion. All of the parameter packs expanded by a pack expansion shall have
the same number of arguments specified. An appearance of a name of a parameter pack that is not expanded
is ill-formed. [Example:

template<typename...> struct Tuple {};
template<typename T1, typename T2> struct Pair {};

template<class ... Args1> struct zip {
template<class ... Args2> struct with {

typedef Tuple<Pair<Args1, Args2> ... > type;
};

};

typedef zip<short, int>::with<unsigned short, unsigned>::type T1;
// T1 is Tuple<Pair<short, unsigned short>, Pair<int, unsigned>>

typedef zip<short>::with<unsigned short, unsigned>::type T2;
// error: different number of arguments specified for Args1 and Args2

template<class ... Args> void g(Args ... args) {

§ 14.5.3 332

c© ISO/IEC N3092

f(const_cast<const Args*>(&args)...); // OK: “Args” and “args” are expanded
f(5 ...); // error: pattern does not contain any parameter packs
f(args); // error: parameter pack “args” is not expanded
f(h(args ...) + args ...); // OK: first “args” expanded within h, second “args” expanded

within f
}

— end example]

6 The instantiation of an expansion produces a list E1⊕E2⊕ ...⊕EN , where N is the number of elements in the
pack expansion parameters and ⊕ is the syntactically-appropriate separator for the list. Each Ei is generated
by instantiating the pattern and replacing each pack expansion parameter with its ith element. All of the
Ei become elements in the enclosing list. [Note: The variety of list varies with the context: expression-list,
base-specifier-list, template-argument-list, etc. — end note]

14.5.4 Friends [temp.friend]

1 A friend of a class or class template can be a function template or class template, a specialization of a
function template or class template, or an ordinary (non-template) function or class. For a friend function
declaration that is not a template declaration:

— if the name of the friend is a qualified or unqualified template-id, the friend declaration refers to a
specialization of a function template, otherwise

— if the name of the friend is a qualified-id and a matching non-template function is found in the specified
class or namespace, the friend declaration refers to that function, otherwise,

— if the name of the friend is a qualified-id and a matching specialization of a function template is found in
the specified class or namespace, the friend declaration refers to that function template specialization,
otherwise,

— the name shall be an unqualified-id that declares (or redeclares) an ordinary (non-template) function.

[Example:
template<class T> class task;
template<class T> task<T>* preempt(task<T>*);

template<class T> class task {
friend void next_time();
friend void process(task<T>*);
friend task<T>* preempt<T>(task<T>*);
template<class C> friend int func(C);

friend class task<int>;
template<class P> friend class frd;

};

Here, each specialization of the task class template has the function next_time as a friend; because process
does not have explicit template-arguments, each specialization of the task class template has an appropriately
typed function process as a friend, and this friend is not a function template specialization; because the
friend preempt has an explicit template-argument <T>, each specialization of the task class template has
the appropriate specialization of the function template preempt as a friend; and each specialization of
the task class template has all specializations of the function template func as friends. Similarly, each
specialization of the task class template has the class template specialization task<int> as a friend, and
has all specializations of the class template frd as friends. — end example]

§ 14.5.4 333

c© ISO/IEC N3092

2 A friend template may be declared within a class or class template. A friend function template may be
defined within a class or class template, but a friend class template may not be defined in a class or class
template. In these cases, all specializations of the friend class or friend function template are friends of the
class or class template granting friendship. [Example:

class A {
template<class T> friend class B; // OK
template<class T> friend void f(T){ /* ... */ } // OK

};

— end example]

3 A template friend declaration specifies that all specializations of that template, whether they are implicitly
instantiated (14.7.1), partially specialized (14.5.5) or explicitly specialized (14.7.3), are friends of the class
containing the template friend declaration. [Example:

class X {
template<class T> friend struct A;
class Y { };

};

template<class T> struct A { X::Y ab; }; // OK
template<class T> struct A<T*> { X::Y ab; }; // OK

— end example]

4 When a function is defined in a friend function declaration in a class template, the function is instantiated
when the function is used. The same restrictions on multiple declarations and definitions that apply to
non-template function declarations and definitions also apply to these implicit definitions.

5 A member of a class template may be declared to be a friend of a non-template class. In this case, the
corresponding member of every specialization of the class template is a friend of the class granting friendship.
For explicit specializations the corresponding member is the member (if any) that has the same name, kind
(type, function, class template, or function template), template parameters, and signature as the member
of the class template instantiation that would otherwise have been generated. [Example:

template<class T> struct A {
struct B { };
void f();
struct D {

void g();
};

};
template<> struct A<int> {

struct B { };
int f();
struct D {

void g();
};

};

class C {
template<class T> friend struct A<T>::B; // grants friendship to A<int>::B even though

// it is not a specialization of A<T>::B
template<class T> friend void A<T>::f(); // does not grant friendship to A<int>::f()

// because its return type does not match

§ 14.5.4 334

c© ISO/IEC N3092

template<class T> friend void A<T>::D::g(); // does not grant friendship to A<int>::D::g()
// because A<int>::D is not a specialization of A<T>::D

};

— end example]

6 [Note: a friend declaration may first declare a member of an enclosing namespace scope (14.6.5). — end
note]

7 A friend template shall not be declared in a local class.

8 Friend declarations shall not declare partial specializations. [Example:
template<class T> class A { };
class X {

template<class T> friend class A<T*>; // error
};

— end example]

9 When a friend declaration refers to a specialization of a function template, the function parameter declara-
tions shall not include default arguments, nor shall the inline specifier be used in such a declaration.

14.5.5 Class template partial specializations [temp.class.spec]

1 A primary class template declaration is one in which the class template name is an identifier. A template
declaration in which the class template name is a simple-template-id is a partial specialization of the class
template named in the simple-template-id. A partial specialization of a class template provides an alternative
definition of the template that is used instead of the primary definition when the arguments in a specialization
match those given in the partial specialization (14.5.5.1). The primary template shall be declared before
any specializations of that template. A partial specialization shall be declared before the first use of a class
template specialization that would make use of the partial specialization as the result of an implicit or
explicit instantiation in every translation unit in which such a use occurs; no diagnostic is required.

2 Each class template partial specialization is a distinct template and definitions shall be provided for the
members of a template partial specialization (14.5.5.3).

3 [Example:
template<class T1, class T2, int I> class A { }; // #1
template<class T, int I> class A<T, T*, I> { }; // #2
template<class T1, class T2, int I> class A<T1*, T2, I> { }; // #3
template<class T> class A<int, T*, 5> { }; // #4
template<class T1, class T2, int I> class A<T1, T2*, I> { }; // #5

The first declaration declares the primary (unspecialized) class template. The second and subsequent dec-
larations declare partial specializations of the primary template. — end example]

4 The template parameters are specified in the angle bracket enclosed list that immediately follows the keyword
template. For partial specializations, the template argument list is explicitly written immediately following
the class template name. For primary templates, this list is implicitly described by the template parameter
list. Specifically, the order of the template arguments is the sequence in which they appear in the template
parameter list. [Example: the template argument list for the primary template in the example above is <T1,
T2, I>. — end example] [Note: the template argument list shall not be specified in the primary template
declaration. For example,

template<class T1, class T2, int I> class A<T1, T2, I> { }; // error

§ 14.5.5 335

c© ISO/IEC N3092

— end note]

5 A class template partial specialization may be declared or redeclared in any namespace scope in which its
definition may be defined (14.5.1 and 14.5.2). [Example:

template<class T> struct A {
struct C {

template<class T2> struct B { };
};

};

// partial specialization of A<T>::C::B<T2>
template<class T> template<class T2>

struct A<T>::C::B<T2*> { };

A<short>::C::B<int*> absip; // uses partial specialization

— end example]

6 Partial specialization declarations themselves are not found by name lookup. Rather, when the primary
template name is used, any previously-declared partial specializations of the primary template are also
considered. One consequence is that a using-declaration which refers to a class template does not restrict
the set of partial specializations which may be found through the using-declaration. [Example:

namespace N {
template<class T1, class T2> class A { }; // primary template

}

using N::A; // refers to the primary template

namespace N {
template<class T> class A<T, T*> { }; // partial specialization

}

A<int,int*> a; // uses the partial specialization, which is found through
// the using declaration which refers to the primary template

— end example]

7 A non-type argument is non-specialized if it is the name of a non-type parameter. All other non-type
arguments are specialized.

8 Within the argument list of a class template partial specialization, the following restrictions apply:

— A partially specialized non-type argument expression shall not involve a template parameter of the
partial specialization except when the argument expression is a simple identifier . [Example:

template <int I, int J> struct A {};
template <int I> struct A<I+5, I*2> {}; // error

template <int I, int J> struct B {};
template <int I> struct B<I, I> {}; // OK

— end example]

— The type of a template parameter corresponding to a specialized non-type argument shall not be
dependent on a parameter of the specialization. [Example:

§ 14.5.5 336

c© ISO/IEC N3092

template <class T, T t> struct C {};
template <class T> struct C<T, 1>; // error

template< int X, int (*array_ptr)[X] > class A {};
int array[5];
template< int X > class A<X,&array> { }; // error

— end example]

— The argument list of the specialization shall not be identical to the implicit argument list of the primary
template.

— The template parameter list of a specialization shall not contain default template argument values.138

— An argument shall not contain an unexpanded parameter pack. If an argument is a pack expan-
sion (14.5.3), it shall be the last argument in the template argument list.

14.5.5.1 Matching of class template partial specializations [temp.class.spec.match]

1 When a class template is used in a context that requires an instantiation of the class, it is necessary to
determine whether the instantiation is to be generated using the primary template or one of the partial
specializations. This is done by matching the template arguments of the class template specialization with
the template argument lists of the partial specializations.

— If exactly one matching specialization is found, the instantiation is generated from that specialization.

— If more than one matching specialization is found, the partial order rules (14.5.5.2) are used to deter-
mine whether one of the specializations is more specialized than the others. If none of the specializations
is more specialized than all of the other matching specializations, then the use of the class template is
ambiguous and the program is ill-formed.

— If no matches are found, the instantiation is generated from the primary template.

2 A partial specialization matches a given actual template argument list if the template arguments of the
partial specialization can be deduced from the actual template argument list (14.8.2). [Example:

A<int, int, 1> a1; // uses #1
A<int, int*, 1> a2; // uses #2, T is int, I is 1
A<int, char*, 5> a3; // uses #4, T is char
A<int, char*, 1> a4; // uses #5, T1 is int, T2 is char, I is 1
A<int*, int*, 2> a5; // ambiguous: matches #3 and #5

— end example]

3 A non-type template argument can also be deduced from the value of an actual template argument of a
non-type parameter of the primary template. [Example: the declaration of a2 above. — end example]

4 In a type name that refers to a class template specialization, (e.g., A<int, int, 1>) the argument list shall
match the template parameter list of the primary template. The template arguments of a specialization are
deduced from the arguments of the primary template.

138) There is no way in which they could be used.

§ 14.5.5.1 337

c© ISO/IEC N3092

14.5.5.2 Partial ordering of class template specializations [temp.class.order]

1 For two class template partial specializations, the first is at least as specialized as the second if, given the
following rewrite to two function templates, the first function template is at least as specialized as the second
according to the ordering rules for function templates (14.5.6.2):

— the first function template has the same template parameters as the first partial specialization and has
a single function parameter whose type is a class template specialization with the template arguments
of the first partial specialization, and

— the second function template has the same template parameters as the second partial specialization
and has a single function parameter whose type is a class template specialization with the template
arguments of the second partial specialization.

2 [Example:
template<int I, int J, class T> class X { };
template<int I, int J> class X<I, J, int> { }; // #1
template<int I> class X<I, I, int> { }; // #2

template<int I, int J> void f(X<I, J, int>); // A
template<int I> void f(X<I, I, int>); // B

The partial specialization #2 is more specialized than the partial specialization #1 because the function
template B is more specialized than the function template A according to the ordering rules for function
templates. — end example]

14.5.5.3 Members of class template specializations [temp.class.spec.mfunc]

1 The template parameter list of a member of a class template partial specialization shall match the template
parameter list of the class template partial specialization. The template argument list of a member of a class
template partial specialization shall match the template argument list of the class template partial special-
ization. A class template specialization is a distinct template. The members of the class template partial
specialization are unrelated to the members of the primary template. Class template partial specialization
members that are used in a way that requires a definition shall be defined; the definitions of members of the
primary template are never used as definitions for members of a class template partial specialization. An
explicit specialization of a member of a class template partial specialization is declared in the same way as
an explicit specialization of the primary template. [Example:

// primary template
template<class T, int I> struct A {

void f();
};

template<class T, int I> void A<T,I>::f() { }

// class template partial specialization
template<class T> struct A<T,2> {

void f();
void g();
void h();

};

// member of class template partial specialization
template<class T> void A<T,2>::g() { }

§ 14.5.5.3 338

c© ISO/IEC N3092

// explicit specialization
template<> void A<char,2>::h() { }

int main() {
A<char,0> a0;
A<char,2> a2;
a0.f(); // OK, uses definition of primary template’s member
a2.g(); // OK, uses definition of

// partial specialization’s member
a2.h(); // OK, uses definition of

// explicit specialization’s member
a2.f(); // ill-formed, no definition of f for A<T,2>

// the primary template is not used here
}

— end example]

2 If a member template of a class template is partially specialized, the member template partial specializations
are member templates of the enclosing class template; if the enclosing class template is instantiated (14.7.1,
14.7.2), a declaration for every member template partial specialization is also instantiated as part of creating
the members of the class template specialization. If the primary member template is explicitly specialized
for a given (implicit) specialization of the enclosing class template, the partial specializations of the member
template are ignored for this specialization of the enclosing class template. If a partial specialization of the
member template is explicitly specialized for a given (implicit) specialization of the enclosing class template,
the primary member template and its other partial specializations are still considered for this specialization
of the enclosing class template. [Example:

template<class T> struct A {
template<class T2> struct B {}; // #1
template<class T2> struct B<T2*> {}; // #2

};

template<> template<class T2> struct A<short>::B {}; // #3

A<char>::B<int*> abcip; // uses #2
A<short>::B<int*> absip; // uses #3
A<char>::B<int> abci; // uses #1

— end example]

14.5.6 Function templates [temp.fct]

1 A function template defines an unbounded set of related functions. [Example: a family of sort functions
might be declared like this:

template<class T> class Array { };
template<class T> void sort(Array<T>&);

— end example]

2 A function template can be overloaded with other function templates and with normal (non-template)
functions. A normal function is not related to a function template (i.e., it is never considered to be a special-

§ 14.5.6 339

c© ISO/IEC N3092

ization), even if it has the same name and type as a potentially generated function template specialization.139

14.5.6.1 Function template overloading [temp.over.link]

1 It is possible to overload function templates so that two different function template specializations have the
same type. [Example:

// file1.c
template<class T>

void f(T*);
void g(int* p) {

f(p); // calls f<int>(int*)
}

// file2.c
template<class T>

void f(T);
void h(int* p) {

f(p); // calls f<int*>(int*)
}

— end example]

2 Such specializations are distinct functions and do not violate the one definition rule (3.2).

3 The signature of a function template is defined in 1.3. The names of the template parameters are significant
only for establishing the relationship between the template parameters and the rest of the signature. [Note:
two distinct function templates may have identical function return types and function parameter lists, even
if overload resolution alone cannot distinguish them.

template<class T> void f();
template<int I> void f(); // OK: overloads the first template

// distinguishable with an explicit template argument list

— end note]

4 When an expression that references a template parameter is used in the function parameter list or the return
type in the declaration of a function template, the expression that references the template parameter is part
of the signature of the function template. This is necessary to permit a declaration of a function template
in one translation unit to be linked with another declaration of the function template in another translation
unit and, conversely, to ensure that function templates that are intended to be distinct are not linked with
one another. [Example:

template <int I, int J> A<I+J> f(A<I>, A<J>); // #1
template <int K, int L> A<K+L> f(A<K>, A<L>); // same as #1
template <int I, int J> A<I-J> f(A<I>, A<J>); // different from #1

— end example] [Note: Most expressions that use template parameters use non-type template parameters,
but it is possible for an expression to reference a type parameter. For example, a template type parameter
can be used in the sizeof operator. — end note]

5 Two expressions involving template parameters are considered equivalent if two function definitions con-
taining the expressions would satisfy the one definition rule (3.2), except that the tokens used to name the
template parameters may differ as long as a token used to name a template parameter in one expression is
replaced by another token that names the same template parameter in the other expression. [Example:

template <int I, int J> void f(A<I+J>); // #1
template <int K, int L> void f(A<K+L>); // same as #1

139) That is, declarations of non-template functions do not merely guide overload resolution of function template specializations
with the same name. If such a non-template function is used in a program, it must be defined; it will not be implicitly instantiated
using the function template definition.

§ 14.5.6.1 340

c© ISO/IEC N3092

— end example] Two expressions involving template parameters that are not equivalent are functionally
equivalent if, for any given set of template arguments, the evaluation of the expression results in the same
value.

6 Two function templates are equivalent if they are declared in the same scope, have the same name, have
identical template parameter lists, and have return types and parameter lists that are equivalent using the
rules described above to compare expressions involving template parameters. Two function templates are
functionally equivalent if they are equivalent except that one or more expressions that involve template
parameters in the return types and parameter lists are functionally equivalent using the rules described
above to compare expressions involving template parameters. If a program contains declarations of function
templates that are functionally equivalent but not equivalent, the program is ill-formed; no diagnostic is
required.

7 [Note: This rule guarantees that equivalent declarations will be linked with one another, while not requiring
implementations to use heroic efforts to guarantee that functionally equivalent declarations will be treated
as distinct. For example, the last two declarations are functionally equivalent and would cause a program
to be ill-formed:

// Guaranteed to be the same
template <int I> void f(A<I>, A<I+10>);
template <int I> void f(A<I>, A<I+10>);

// Guaranteed to be different
template <int I> void f(A<I>, A<I+10>);
template <int I> void f(A<I>, A<I+11>);

// Ill-formed, no diagnostic required
template <int I> void f(A<I>, A<I+10>);
template <int I> void f(A<I>, A<I+1+2+3+4>);

— end note]

14.5.6.2 Partial ordering of function templates [temp.func.order]

1 If a function template is overloaded, the use of a function template specialization might be ambiguous
because template argument deduction (14.8.2) may associate the function template specialization with more
than one function template declaration. Partial ordering of overloaded function template declarations is
used in the following contexts to select the function template to which a function template specialization
refers:

— during overload resolution for a call to a function template specialization (13.3.3);

— when the address of a function template specialization is taken;

— when a placement operator delete that is a function template specialization is selected to match a
placement operator new (3.7.4.2, 5.3.4);

— when a friend function declaration (14.5.4), an explicit instantiation (14.7.2) or an explicit specializa-
tion (14.7.3) refers to a function template specialization.

2 Partial ordering selects which of two function templates is more specialized than the other by transforming
each template in turn (see next paragraph) and performing template argument deduction using the function
parameter types, or in the case of a conversion function the return type. The deduction process determines
whether one of the templates is more specialized than the other. If so, the more specialized template is the
one chosen by the partial ordering process.

§ 14.5.6.2 341

c© ISO/IEC N3092

3 To produce the transformed template, for each type, non-type, or template template parameter (including
template parameter packs (14.5.3) thereof) synthesize a unique type, value, or class template respectively
and substitute it for each occurrence of that parameter in the function type of the template.

4 Using the transformed function template’s function parameter list, or in the case of a conversion function
its transformed return type, perform type deduction against the function parameter list (or return type) of
the other function. The mechanism for performing these deductions is given in 14.8.2.4.

[Example:
template<class T> struct A { A(); };

template<class T> void f(T);
template<class T> void f(T*);
template<class T> void f(const T*);

template<class T> void g(T);
template<class T> void g(T&);

template<class T> void h(const T&);
template<class T> void h(A<T>&);

void m() {
const int *p;
f(p); // f(const T*) is more specialized than f(T) or f(T*)
float x;
g(x); // Ambiguous: g(T) or g(T&)
A<int> z;
h(z); // overload resolution selects h(A<T>&)
const A<int> z2;
h(z2); // h(const T&) is called because h(A<T>&) is not callable

}

— end example]

5 The presence of unused ellipsis and default arguments has no effect on the partial ordering of function
templates. [Example:

template<class T> void f(T); // #1
template<class T> void f(T*, int=1); // #2
template<class T> void g(T); // #3
template<class T> void g(T*, ...); // #4

int main() {
int* ip;
f(ip); // calls #2
g(ip); // calls #4

}

— end example]

14.5.7 Template aliases [temp.alias]

1 A template-declaration in which the declaration is an alias-declaration (clause 7) declares the identifier to
be a template alias. A template alias is a name for a family of types. The name of the template alias is a
template-name.

§ 14.5.7 342

c© ISO/IEC N3092

2 When a template-id refers to the specialization of a template alias, it is equivalent to the associated type
obtained by substitution of its template-arguments for the template-parameters in the type-id of the template
alias. [Note: A template alias name is never deduced. — end note] [Example:

template<class T> struct Alloc { /∗ ... ∗/ };
template<class T> using Vec = vector<T, Alloc<T>>;
Vec<int> v; // same as vector<int, Alloc<int>> v;

template<class T>
void process(Vec<T>& v)
{ /∗ ... ∗/ }

template<class T>
void process(vector<T, Alloc<T>>& w)
{ /∗ ... ∗/ } // error: redefinition

template<template<class> class TT>
void f(TT<int>);

f(v); // error: Vec not deduced

template<template<class,class> class TT>
void g(TT<int, Alloc<int>>);

g(v); // OK: TT = vector

— end example]

14.6 Name resolution [temp.res]

1 Three kinds of names can be used within a template definition:

— The name of the template itself, and names declared within the template itself.

— Names dependent on a template-parameter (14.6.2).

— Names from scopes which are visible within the template definition.

2 A name used in a template declaration or definition and that is dependent on a template-parameter is
assumed not to name a type unless the applicable name lookup finds a type name or the name is qualified
by the keyword typename. [Example:

// no B declared here

class X;

template<class T> class Y {
class Z; // forward declaration of member class

void f() {
X* a1; // declare pointer to X
T* a2; // declare pointer to T
Y* a3; // declare pointer to Y<T>
Z* a4; // declare pointer to Z
typedef typename T::A TA;
TA* a5; // declare pointer to T’s A
typename T::A* a6; // declare pointer to T’s A
T::A* a7; // T::A is not a type name:

§ 14.6 343

c© ISO/IEC N3092

// multiply T::A by a7; ill-formed,
// no visible declaration of a7

B* a8; // B is not a type name:
// multiply B by a8; ill-formed,
// no visible declarations of B and a8

}
};

— end example]

3 When a qualified-id is intended to refer to a type that is not a member of the current instantiation (14.6.2.1)
and its nested-name-specifier depends on a template-parameter (14.6.2), it shall be prefixed by the keyword
typename, forming a typename-specifier. If the qualified-id in a typename-specifier does not denote a type,
the program is ill-formed.

typename-specifier:
typename ::opt nested-name-specifier identifier
typename ::opt nested-name-specifier templateopt simple-template-id

4 If a specialization of a template is instantiated for a set of template-arguments such that the qualified-id
prefixed by typename does not denote a type, the specialization is ill-formed. The usual qualified name
lookup (3.4.3) is used to find the qualified-id even in the presence of typename. [Example:

struct A {
struct X { };
int X;

};
struct B {

struct X { };
};
template<class T> void f(T t) {

typename T::X x;
}
void foo() {

A a;
B b;
f(b); // OK: T::X refers to B::X
f(a); // error: T::X refers to the data member A::X not the struct A::X

}

— end example]

5 A qualified name used as the name in a mem-initializer-id, a base-specifier , or an elaborated-type-specifier is
implicitly assumed to name a type, without the use of the typename keyword. [Note: the typename keyword
is not permitted by the syntax of these constructs. — end note]

6 If, for a given set of template arguments, a specialization of a template is instantiated that refers to a
qualified-id that denotes a type, and the nested-name-specifier of the qualified-id depends on a template
parameter, the qualified-id shall either be prefixed by typename or shall be used in a context in which it
implicitly names a type as described above. [Example:

template <class T> void f(int i) {
T::x * i; // T::x must not be a type

}

struct Foo {
typedef int x;

§ 14.6 344

c© ISO/IEC N3092

};

struct Bar {
static int const x = 5;

};

int main() {
f<Bar>(1); // OK
f<Foo>(1); // error: Foo::x is a type

}

— end example]

7 Within the definition of a class template or within the definition of a member of a class template, the keyword
typename is not required when referring to the unqualified name of a previously declared member of the
class template that declares a type. [Example:

template<class T> struct A {
typedef int B;
B b; // OK, no typename required

};

— end example]

8 Knowing which names are type names allows the syntax of every template definition to be checked. No
diagnostic shall be issued for a template definition for which a valid specialization can be generated. If
no valid specialization can be generated for a template definition, and that template is not instantiated,
the template definition is ill-formed, no diagnostic required. If a type used in a non-dependent name is
incomplete at the point at which a template is defined but is complete at the point at which an instantiation
is done, and if the completeness of that type affects whether or not the program is well-formed or affects
the semantics of the program, the program is ill-formed; no diagnostic is required. [Note: if a template
is instantiated, errors will be diagnosed according to the other rules in this Standard. Exactly when these
errors are diagnosed is a quality of implementation issue. — end note] [Example:

int j;
template<class T> class X {

void f(T t, int i, char* p) {
t = i; // diagnosed if X::f is instantiated

// and the assignment to t is an error
p = i; // may be diagnosed even if X::f is

// not instantiated
p = j; // may be diagnosed even if X::f is

// not instantiated
}
void g(T t) {

+; // may be diagnosed even if X::g is
// not instantiated

}
};

— end example]

9 When looking for the declaration of a name used in a template definition, the usual lookup rules (3.4.1,
3.4.2) are used for non-dependent names. The lookup of names dependent on the template parameters is
postponed until the actual template argument is known (14.6.2). [Example:

§ 14.6 345

c© ISO/IEC N3092

#include <iostream>
using namespace std;

template<class T> class Set {
T* p;
int cnt;

public:
Set();
Set<T>(const Set<T>&);
void printall() {

for (int i = 0; i<cnt; i++)
cout << p[i] << ’\n’;

}
};

in the example, i is the local variable i declared in printall, cnt is the member cnt declared in Set, and
cout is the standard output stream declared in iostream. However, not every declaration can be found this
way; the resolution of some names must be postponed until the actual template-arguments are known. For
example, even though the name operator<< is known within the definition of printall() and a declaration
of it can be found in <iostream>, the actual declaration of operator<< needed to print p[i] cannot be
known until it is known what type T is (14.6.2). — end example]

10 If a name does not depend on a template-parameter (as defined in 14.6.2), a declaration (or set of declarations)
for that name shall be in scope at the point where the name appears in the template definition; the name is
bound to the declaration (or declarations) found at that point and this binding is not affected by declarations
that are visible at the point of instantiation. [Example:

void f(char);

template<class T> void g(T t) {
f(1); // f(char)
f(T(1)); // dependent
f(t); // dependent
dd++; // not dependent

// error: declaration for dd not found
}

enum E { e };
void f(E);

double dd;
void h() {

g(e); // will cause one call of f(char) followed
// by two calls of f(E)

g(’a’); // will cause three calls of f(char)
}

— end example]

11 [Note: for purposes of name lookup, default arguments of function templates and default arguments of
member functions of class templates are considered definitions (14.5). — end note]

14.6.1 Locally declared names [temp.local]

1 Like normal (non-template) classes, class templates have an injected-class-name (Clause 9). The injected-

§ 14.6.1 346

c© ISO/IEC N3092

class-name can be used with or without a template-argument-list. When it is used without a template-
argument-list, it is equivalent to the injected-class-name followed by the template-parameters of the class
template enclosed in <>. When it is used with a template-argument-list, it refers to the specified class
template specialization, which could be the current specialization or another specialization.

2 Within the scope of a class template specialization or partial specialization, when the injected-class-name
is not followed by a <, it is equivalent to the injected-class-name followed by the template-arguments of the
class template specialization or partial specialization enclosed in <>. [Example:

template<class T> class Y;
template<> class Y<int> {

Y* p; // meaning Y<int>
Y<char>* q; // meaning Y<char>

};

— end example]

3 The injected-class-name of a class template or class template specialization can be used either with or without
a template-argument-list wherever it is in scope. [Example:

template <class T> struct Base {
Base* p;

};

template <class T> struct Derived: public Base<T> {
typename Derived::Base* p; // meaning Derived::Base<T>

};

— end example]

4 A lookup that finds an injected-class-name (10.2) can result in an ambiguity in certain cases (for example, if it
is found in more than one base class). If all of the injected-class-names that are found refer to specializations
of the same class template, and if the name is followed by a template-argument-list, the reference refers to
the class template itself and not a specialization thereof, and is not ambiguous. [Example:

template <class T> struct Base { };
template <class T> struct Derived: Base<int>, Base<char> {

typename Derived::Base b; // error: ambiguous
typename Derived::Base<double> d; // OK

};

— end example]

5 When the normal name of the template (i.e., the name from the enclosing scope, not the injected-class-name)
is used without a template-argument-list, it refers to the class template itself and not a specialization of the
template. [Example:

template <class T> class X {
X* p; // meaning X<T>
X<T>* p2;
X<int>* p3;
::X* p4; // error: missing template argument list

// ::X does not refer to the injected-class-name
};

— end example]

§ 14.6.1 347

c© ISO/IEC N3092

6 A template-parameter shall not be redeclared within its scope (including nested scopes). A template-
parameter shall not have the same name as the template name. [Example:

template<class T, int i> class Y {
int T; // error: template-parameter redeclared
void f() {

char T; // error: template-parameter redeclared
}

};

template<class X> class X; // error: template-parameter redeclared

— end example]

7 In the definition of a member of a class template that appears outside of the class template definition, the
name of a member of this template hides the name of a template-parameter . [Example:

template<class T> struct A {
struct B { /∗ ... ∗/ };
void f();

};

template<class B> void A::f() {
B b; // A’s B, not the template parameter

}

— end example]

8 In the definition of a member of a class template that appears outside of the namespace containing the
class template definition, the name of a template-parameter hides the name of a member of this namespace.
[Example:

namespace N {
class C { };
template<class T> class B {

void f(T);
};

}
template<class C> void N::B<C>::f(C) {

C b; // C is the template parameter, not N::C
}

— end example]

9 In the definition of a class template or in the definition of a member of such a template that appears outside
of the template definition, for each base class which does not depend on a template-parameter (14.6.2), if
the name of the base class or the name of a member of the base class is the same as the name of a template-
parameter , the base class name or member name hides the template-parameter name (3.3.10). [Example:

struct A {
struct B { /∗ ... ∗/ };
int a;
int Y;

};

template<class B, class a> struct X : A {
B b; // A’s B

§ 14.6.1 348

c© ISO/IEC N3092

a b; // error: A’s a isn’t a type name
};

— end example]

14.6.2 Dependent names [temp.dep]

1 Inside a template, some constructs have semantics which may differ from one instantiation to another. Such a
construct depends on the template parameters. In particular, types and expressions may depend on the type
and/or value of template parameters (as determined by the template arguments) and this determines the
context for name lookup for certain names. Expressions may be type-dependent (on the type of a template
parameter) or value-dependent (on the value of a non-type template parameter). In an expression of the
form:

postfix-expression (expression-listopt)

where the postfix-expression is an unqualified-id, the unqualified-id denotes a dependent name if and only
if any of the expressions in the expression-list is a type-dependent expression (14.6.2.2). If an operand of
an operator is a type-dependent expression, the operator also denotes a dependent name. Such names are
unbound and are looked up at the point of the template instantiation (14.6.4.1) in both the context of the
template definition and the context of the point of instantiation.

2 [Example:
template<class T> struct X : B<T> {

typename T::A* pa;
void f(B<T>* pb) {

static int i = B<T>::i;
pb->j++;

}
};

the base class name B<T>, the type name T::A, the names B<T>::i and pb->j explicitly depend on the
template-parameter . — end example]

3 In the definition of a class or class template, if a base class depends on a template-parameter , the base class
scope is not examined during unqualified name lookup either at the point of definition of the class template
or member or during an instantiation of the class template or member. [Example:

typedef double A;
template<class T> class B {

typedef int A;
};
template<class T> struct X : B<T> {

A a; // a has type double
};

The type name A in the definition of X<T> binds to the typedef name defined in the global namespace scope,
not to the typedef name defined in the base class B<T>. — end example] [Example:

struct A {
struct B { /∗ ... ∗/ };
int a;
int Y;

};

int a;

§ 14.6.2 349

c© ISO/IEC N3092

template<class T> struct Y : T {
struct B { /∗ ... ∗/ };
B b; // The B defined in Y
void f(int i) { a = i; } // ::a
Y* p; // Y<T>

};

Y<A> ya;

The members A::B, A::a, and A::Y of the template argument A do not affect the binding of names in Y<A>.
— end example]

14.6.2.1 Dependent types [temp.dep.type]

1 In the definition of a class template, a nested class of a class template, a member of a class template, or a
member of a nested class of a class template, a name refers to the current instantiation if it is

— the injected-class-name (9) of the class template or nested class,

— in the definition of a primary class template, the name of the class template followed by the template
argument list of the primary template (as described below) enclosed in <>,

— in the definition of a nested class of a class template, the name of the nested class referenced as a
member of the current instantiation, or

— in the definition of a partial specialization, the name of the class template followed by the template
argument list of the partial specialization enclosed in <>. If the nth template parameter is a parameter
pack, the nth template argument is a pack expansion (14.5.3) whose pattern is the name of the
parameter pack.

2 The template argument list of a primary template is a template argument list in which the nth template
argument has the value of the nth template parameter of the class template. If the nth template parameter
is a template parameter pack (14.5.3), the nth template argument is a pack expansion (14.5.3) whose pattern
is the name of the template parameter pack.

3 A template argument that is equivalent to a template parameter (i.e., has the same constant value or the
same type as the template parameter) can be used in place of that template parameter in a reference to
the current instantiation. In the case of a non-type template argument, the argument must have been given
the value of the template parameter and not an expression in which the template parameter appears as a
subexpression. [Example:

template <class T> class A {
A* p1; // A is the current instantiation
A<T>* p2; // A<T> is the current instantiation
A<T*> p3; // A<T*> is not the current instantiation
::A<T>* p4; // ::A<T> is the current instantiation
class B {

B* p1; // B is the current instantiation
A<T>::B* p2; // A<T>::B is the current instantiation
typename A<T*>::B* p3; // A<T*>::B is not the

// current instantiation
};

};

template <class T> class A<T*> {
A<T*>* p1; // A<T*> is the current instantiation

§ 14.6.2.1 350

c© ISO/IEC N3092

A<T>* p2; // A<T> is not the current instantiation
};

template <class T1, class T2, int I> struct B {
B<T1, T2, I>* b1; // refers to the current instantiation
B<T2, T1, I>* b2; // not the current instantiation
typedef T1 my_T1;
static const int my_I = I;
static const int my_I2 = I+0;
static const int my_I3 = my_I;
B<my_T1, T2, my_I>* b3; // refers to the current instantiation
B<my_T1, T2, my_I2>* b4; // not the current instantiation
B<my_T1, T2, my_I3>* b5; // refers to the current instantiation

};

— end example]

4 A name is a member of the current instantiation if it is

— An unqualified name that, when looked up, refers to a member of a class template. [Note: this can
only occur when looking up a name in a scope enclosed by the definition of a class template. — end
note]

— A qualified-id in which the nested-name-specifier refers to the current instantiation.

[Example:
template <class T> class A {

static const int i = 5;
int n1[i]; // i refers to a member of the current instantiation
int n2[A::i]; // A::i refers to a member of the current instantiation
int n3[A<T>::i]; // A<T>::i refers to a member of the current instantiation
int f();

};

template <class T> int A<T>::f() {
return i; // i refers to a member of the current instantiation

}

— end example]

5 A name is a member of an unknown specialization if the name is a qualified-id in which the nested-name-
specifier names a dependent type that is not the current instantiation.

6 A type is dependent if it is

— a template parameter,

— a member of an unknown specialization,

— a nested class that is a member of the current instantiation,

— a cv-qualified type where the cv-unqualified type is dependent,

— a compound type constructed from any dependent type,

— an array type constructed from any dependent type or whose size is specified by a constant expression
that is value-dependent,

§ 14.6.2.1 351

c© ISO/IEC N3092

— a simple-template-id in which either the template name is a template parameter or any of the template
arguments is a dependent type or an expression that is type-dependent or value-dependent, or

— denoted by decltype(expression), where expression is type-dependent (14.6.2.2).

7 [Note: because typedefs do not introduce new types, but instead simply refer to other types, a name that
refers to a typedef that is a member of the current instantiation is dependent only if the type referred to is
dependent. — end note]

14.6.2.2 Type-dependent expressions [temp.dep.expr]

1 Except as described below, an expression is type-dependent if any subexpression is type-dependent.

2 this is type-dependent if the class type of the enclosing member function is dependent (14.6.2.1).

3 An id-expression is type-dependent if it contains

— an identifier associated by name lookup with one or more declarations declared with a dependent type,

— a template-id that is dependent,

— a conversion-function-id that specifies a dependent type, or

— a nested-name-specifier or a qualified-id that names a member of an unknown specialization;

or if it names a static data member of the current instantiation that has type “array of unknown bound of
T” for some T (14.5.1.3). Expressions of the following forms are type-dependent only if the type specified by
the type-id, simple-type-specifier or new-type-id is dependent, even if any subexpression is type-dependent:

simple-type-specifier (expression-listopt)
::opt new new-placementopt new-type-id new-initializeropt

::opt new new-placementopt (type-id) new-initializeropt

dynamic_cast < type-id > (expression)
static_cast < type-id > (expression)
const_cast < type-id > (expression)
reinterpret_cast < type-id > (expression)
(type-id) cast-expression

4 Expressions of the following forms are never type-dependent (because the type of the expression cannot be
dependent):

literal
postfix-expression . pseudo-destructor-name
postfix-expression -> pseudo-destructor-name
sizeof unary-expression
sizeof (type-id)
sizeof ... (identifier)
alignof (type-id)
typeid (expression)
typeid (type-id)
::opt delete cast-expression
::opt delete [] cast-expression
throw assignment-expressionopt

noexcept (expression)

[Note: For the standard library macro offsetof, see 18.2. — end note]

5 A class member access expression (5.2.5) is type-dependent if the type of the referenced member is dependent.
[Note: in an expression of the form x.y or xp->y the type of the expression is usually the type of the member

§ 14.6.2.2 352

c© ISO/IEC N3092

y of the class of x (or the class pointed to by xp). However, if x or xp refers to a dependent type that is not
the current instantiation, the type of y is always dependent. If x or xp refers to a non-dependent type or
refers to the current instantiation, the type of y is the type of the class member access expression. — end
note]

14.6.2.3 Value-dependent expressions [temp.dep.constexpr]

1 Except as described below, a constant expression is value-dependent if any subexpression is value-dependent.

2 An identifier is value-dependent if it is:

— a name declared with a dependent type,

— the name of a non-type template parameter,

— a constant with literal type and is initialized with an expression that is value-dependent.

Expressions of the following form are value-dependent if the unary-expression or expression is type-dependent
or the type-id is dependent:

sizeof unary-expression
sizeof (type-id)
alignof (type-id)
noexcept (expression)

[Note: For the standard library macro offsetof, see 18.2. — end note]

3 Expressions of the following form are value-dependent if either the type-id or simple-type-specifier is depen-
dent or the expression or cast-expression is value-dependent:

simple-type-specifier (expression-listopt)
static_cast < type-id > (expression)
const_cast < type-id > (expression)
reinterpret_cast < type-id > (expression)
(type-id) cast-expression
noexcept (expression)

4 Expressions of the following form are value-dependent:

sizeof ... (identifier)

14.6.2.4 Dependent template arguments [temp.dep.temp]

1 A type template-argument is dependent if the type it specifies is dependent.

2 An integral non-type template-argument is dependent if the constant expression it specifies is value-dependent.

3 A non-integral non-type template-argument is dependent if its type is dependent or it has either of the
following forms

qualified-id
& qualified-id

and contains a nested-name-specifier which specifies a class-name that names a dependent type.

§ 14.6.2.4 353

c© ISO/IEC N3092

4 A template template-argument is dependent if it names a template-parameter or is a qualified-id with a
nested-name-specifier which contains a class-name or a decltype-specifier that denotes a dependent type.

14.6.3 Non-dependent names [temp.nondep]

1 Non-dependent names used in a template definition are found using the usual name lookup and bound at
the point they are used. [Example:

void g(double);
void h();

template<class T> class Z {
public:

void f() {
g(1); // calls g(double)
h++; // ill-formed: cannot increment function;

// this could be diagnosed either here or
// at the point of instantiation

}
};

void g(int); // not in scope at the point of the template
// definition, not considered for the call g(1)

— end example]

14.6.4 Dependent name resolution [temp.dep.res]

1 In resolving dependent names, names from the following sources are considered:

— Declarations that are visible at the point of definition of the template.

— Declarations from namespaces associated with the types of the function arguments both from the
instantiation context (14.6.4.1) and from the definition context.

14.6.4.1 Point of instantiation [temp.point]

1 For a function template specialization, a member function template specialization, or a specialization for a
member function or static data member of a class template, if the specialization is implicitly instantiated
because it is referenced from within another template specialization and the context from which it is ref-
erenced depends on a template parameter, the point of instantiation of the specialization is the point of
instantiation of the enclosing specialization. Otherwise, the point of instantiation for such a specialization
immediately follows the namespace scope declaration or definition that refers to the specialization.

2 If a function template or member function of a class template is called in a way which uses the definition of
a default argument of that function template or member function, the point of instantiation of the default
argument is the point of instantiation of the function template or member function specialization.

3 For a class template specialization, a class member template specialization, or a specialization for a class
member of a class template, if the specialization is implicitly instantiated because it is referenced from
within another template specialization, if the context from which the specialization is referenced depends
on a template parameter, and if the specialization is not instantiated previous to the instantiation of the
enclosing template, the point of instantiation is immediately before the point of instantiation of the enclosing
template. Otherwise, the point of instantiation for such a specialization immediately precedes the namespace
scope declaration or definition that refers to the specialization.

§ 14.6.4.1 354

c© ISO/IEC N3092

4 If a virtual function is implicitly instantiated, its point of instantiation is immediately following the point of
instantiation of its enclosing class template specialization.

5 An explicit instantiation definition is an instantiation point for the specialization or specializations specified
by the explicit instantiation.

6 The instantiation context of an expression that depends on the template arguments is the set of declarations
with external linkage declared prior to the point of instantiation of the template specialization in the same
translation unit.

7 A specialization for a function template, a member function template, or of a member function or static
data member of a class template may have multiple points of instantiations within a translation unit.
A specialization for a class template has at most one point of instantiation within a translation unit. A
specialization for any template may have points of instantiation in multiple translation units. If two different
points of instantiation give a template specialization different meanings according to the one definition
rule (3.2), the program is ill-formed, no diagnostic required.

14.6.4.2 Candidate functions [temp.dep.candidate]

1 For a function call that depends on a template parameter, if the function name is an unqualified-id or if
the function is called using operator notation, the candidate functions are found using the usual lookup
rules (3.4.1, 3.4.2) except that:

— For the part of the lookup using unqualified name lookup (3.4.1), only function declarations from the
template definition context are found.

— For the part of the lookup using associated namespaces (3.4.2), only function declarations found in
either the template definition context or the template instantiation context are found.

If the call would be ill-formed or would find a better match had the lookup within the associated namespaces
considered all the function declarations with external linkage introduced in those namespaces in all transla-
tion units, not just considering those declarations found in the template definition and template instantiation
contexts, then the program has undefined behavior.

14.6.5 Friend names declared within a class template [temp.inject]

1 Friend classes or functions can be declared within a class template. When a template is instantiated, the
names of its friends are treated as if the specialization had been explicitly declared at its point of instantiation.

2 As with non-template classes, the names of namespace-scope friend functions of a class template specializa-
tion are not visible during an ordinary lookup unless explicitly declared at namespace scope (11.4). Such
names may be found under the rules for associated classes (3.4.2).140 [Example:

template<typename T> struct number {
number(int);
friend number gcd(number x, number y) { return 0; };

};

void g() {
number<double> a(3), b(4);
a = gcd(a,b); // finds gcd because number<double> is an

// associated class, making gcd visible
// in its namespace (global scope)

b = gcd(3,4); // ill-formed; gcd is not visible

140) Friend declarations do not introduce new names into any scope, either when the template is declared or when it is
instantiated.

§ 14.6.5 355

c© ISO/IEC N3092

}

— end example]

14.7 Template instantiation and specialization [temp.spec]

1 The act of instantiating a function, a class, a member of a class template or a member template is referred
to as template instantiation.

2 A function instantiated from a function template is called an instantiated function. A class instantiated from
a class template is called an instantiated class. A member function, a member class, or a static data member
of a class template instantiated from the member definition of the class template is called, respectively, an
instantiated member function, member class or static data member. A member function instantiated from
a member function template is called an instantiated member function. A member class instantiated from
a member class template is called an instantiated member class.

3 An explicit specialization may be declared for a function template, a class template, a member of a class
template or a member template. An explicit specialization declaration is introduced by template<>. In
an explicit specialization declaration for a class template, a member of a class template or a class member
template, the name of the class that is explicitly specialized shall be a simple-template-id. In the explicit
specialization declaration for a function template or a member function template, the name of the function
or member function explicitly specialized may be a template-id. [Example:

template<class T = int> struct A {
static int x;

};
template<class U> void g(U) { }

template<> struct A<double> { }; // specialize for T == double
template<> struct A<> { }; // specialize for T == int
template<> void g(char) { } // specialize for U == char

// U is deduced from the parameter type
template<> void g<int>(int) { } // specialize for U == int
template<> int A<char>::x = 0; // specialize for T == char

template<class T = int> struct B {
static int x;

};
template<> int B<>::x = 1; // specialize for T == int

— end example]

4 An instantiated template specialization can be either implicitly instantiated (14.7.1) for a given argument
list or be explicitly instantiated (14.7.2). A specialization is a class, function, or class member that is either
instantiated or explicitly specialized (14.7.3).

5 For a given template and a given set of template-arguments,

— an explicit instantiation definition shall appear at most once in a program,

— an explicit specialization shall be defined at most once in a program (according to 3.2), and

— both an explicit instantiation and a declaration of an explicit specialization shall not appear in a
program unless the explicit instantiation follows a declaration of the explicit specialization.

An implementation is not required to diagnose a violation of this rule.

§ 14.7 356

c© ISO/IEC N3092

6 Each class template specialization instantiated from a template has its own copy of any static members.
[Example:

template<class T> class X {
static T s;

};
template<class T> T X<T>::s = 0;
X<int> aa;
X<char*> bb;

X<int> has a static member s of type int and X<char*> has a static member s of type char*. — end
example]

14.7.1 Implicit instantiation [temp.inst]

1 Unless a class template specialization has been explicitly instantiated (14.7.2) or explicitly specialized (14.7.3),
the class template specialization is implicitly instantiated when the specialization is referenced in a context
that requires a completely-defined object type or when the completeness of the class type affects the se-
mantics of the program. The implicit instantiation of a class template specialization causes the implicit
instantiation of the declarations, but not of the definitions or default arguments, of the class member func-
tions, member classes, static data members and member templates; and it causes the implicit instantiation
of the definitions of member anonymous unions. Unless a member of a class template or a member template
has been explicitly instantiated or explicitly specialized, the specialization of the member is implicitly in-
stantiated when the specialization is referenced in a context that requires the member definition to exist; in
particular, the initialization (and any associated side-effects) of a static data member does not occur unless
the static data member is itself used in a way that requires the definition of the static data member to exist.

2 Unless a function template specialization has been explicitly instantiated or explicitly specialized, the func-
tion template specialization is implicitly instantiated when the specialization is referenced in a context that
requires a function definition to exist. Unless a call is to a function template explicit specialization or to a
member function of an explicitly specialized class template, a default argument for a function template or a
member function of a class template is implicitly instantiated when the function is called in a context that
requires the value of the default argument.

3 [Example:
template<class T> struct Z {

void f();
void g();

};

void h() {
Z<int> a; // instantiation of class Z<int> required
Z<char>* p; // instantiation of class Z<char> not required
Z<double>* q; // instantiation of class Z<double> not required

a.f(); // instantiation of Z<int>::f() required
p->g(); // instantiation of class Z<char> required, and

// instantiation of Z<char>::g() required
}

Nothing in this example requires class Z<double>, Z<int>::g(), or Z<char>::f() to be implicitly instan-
tiated. — end example]

§ 14.7.1 357

c© ISO/IEC N3092

4 A class template specialization is implicitly instantiated if the class type is used in a context that requires
a completely-defined object type or if the completeness of the class type might affect the semantics of the
program. [Note: in particular, if the semantics of an expression depend on the member or base class lists
of a class template specialization, the class template specialization is implicitly generated. For instance,
deleting a pointer to class type depends on whether or not the class declares a destructor, and conversion
between pointer to class types depends on the inheritance relationship between the two classes involved.
— end note] [Example:

template<class T> class B { /∗ ... ∗/ };
template<class T> class D : public B<T> { /∗ ... ∗/ };

void f(void*);
void f(B<int>*);

void g(D<int>* p, D<char>* pp, D<double>* ppp) {
f(p); // instantiation of D<int> required: call f(B<int>*)
B<char>* q = pp; // instantiation of D<char> required:

// convert D<char>* to B<char>*
delete ppp; // instantiation of D<double> required

}

— end example]

5 If the overload resolution process can determine the correct function to call without instantiating a class
template definition, it is unspecified whether that instantiation actually takes place. [Example:

template <class T> struct S {
operator int();

};

void f(int);
void f(S<int>&);
void f(S<float>);

void g(S<int>& sr) {
f(sr); // instantiation of S<int> allowed but not required

// instantiation of S<float> allowed but not required
};

— end example]

6 If an implicit instantiation of a class template specialization is required and the template is declared but not
defined, the program is ill-formed. [Example:

template<class T> class X;

X<char> ch; // error: definition of X required

— end example]

7 The implicit instantiation of a class template does not cause any static data members of that class to be
implicitly instantiated.

8 If a function template or a member function template specialization is used in a way that involves overload
resolution, a declaration of the specialization is implicitly instantiated (14.8.3).

§ 14.7.1 358

c© ISO/IEC N3092

9 An implementation shall not implicitly instantiate a function template, a member template, a non-virtual
member function, a member class, or a static data member of a class template that does not require instan-
tiation. It is unspecified whether or not an implementation implicitly instantiates a virtual member function
of a class template if the virtual member function would not otherwise be instantiated. The use of a template
specialization in a default argument shall not cause the template to be implicitly instantiated except that
a class template may be instantiated where its complete type is needed to determine the correctness of the
default argument. The use of a default argument in a function call causes specializations in the default
argument to be implicitly instantiated.

10 Implicitly instantiated class and function template specializations are placed in the namespace where the
template is defined. Implicitly instantiated specializations for members of a class template are placed in
the namespace where the enclosing class template is defined. Implicitly instantiated member templates are
placed in the namespace where the enclosing class or class template is defined. [Example:

namespace N {
template<class T> class List {
public:

T* get();
};

}

template<class K, class V> class Map {
public:

N::List<V> lt;
V get(K);

};

void g(Map<char*,int>& m) {
int i = m.get("Nicholas");

}

a call of lt.get() from Map<char*,int>::get() would place List<int>::get() in the namespace N rather
than in the global namespace. — end example]

11 If a function template f is called in a way that requires a default argument expression to be used, the
dependent names are looked up, the semantics constraints are checked, and the instantiation of any template
used in the default argument expression is done as if the default argument expression had been an expression
used in a function template specialization with the same scope, the same template parameters and the same
access as that of the function template f used at that point. This analysis is called default argument
instantiation. The instantiated default argument is then used as the argument of f.

12 Each default argument is instantiated independently. [Example:
template<class T> void f(T x, T y = ydef(T()), T z = zdef(T()));

class A { };

A zdef(A);

void g(A a, A b, A c) {
f(a, b, c); // no default argument instantiation
f(a, b); // default argument z = zdef(T()) instantiated
f(a); // ill-formed; ydef is not declared

}

— end example]

§ 14.7.1 359

c© ISO/IEC N3092

13 [Note: 14.6.4.1 defines the point of instantiation of a template specialization. — end note]

14 There is an implementation-defined quantity that specifies the limit on the total depth of recursive instan-
tiations, which could involve more than one template. The result of an infinite recursion in instantiation is
undefined. [Example:

template<class T> class X {
X<T>* p; // OK
X<T*> a; // implicit generation of X<T> requires

// the implicit instantiation of X<T*> which requires
// the implicit instantiation of X<T**> which ...

};

— end example]

14.7.2 Explicit instantiation [temp.explicit]

1 A class, a function or member template specialization can be explicitly instantiated from its template. A
member function, member class or static data member of a class template can be explicitly instantiated from
the member definition associated with its class template. An explicit instantiation of a function template or
member function of a class template shall not use the inline or constexpr specifiers.

2 The syntax for explicit instantiation is:
explicit-instantiation:

externopt template declaration

There are two forms of explicit instantiation: an explicit instantiation definition and an explicit instantiation
declaration. An explicit instantiation declaration begins with the extern keyword.

If the explicit instantiation is for a class or member class, the elaborated-type-specifier in the declaration shall
include a simple-template-id. If the explicit instantiation is for a function or member function, the unqualified-
id in the declaration shall be either a template-id or, where all template arguments can be deduced, a
template-name or operator-function-id. [Note: the declaration may declare a qualified-id, in which case the
unqualified-id of the qualified-id must be a template-id. — end note] If the explicit instantiation is for a
member function, a member class or a static data member of a class template specialization, the name of
the class template specialization in the qualified-id for the member name shall be a simple-template-id. An
explicit instantiation shall appear in an enclosing namespace of its template. If the name declared in the
explicit instantiation is an unqualified name, the explicit instantiation shall appear in the namespace where
its template is declared or, if that namespace is inline (7.3.1), any namespace from its enclosing namespace
set. [Note: regarding qualified names in declarators, see 8.3. — end note] [Example:

template<class T> class Array { void mf(); };
template class Array<char>;
template void Array<int>::mf();

template<class T> void sort(Array<T>& v) { /∗ ... ∗/ }
template void sort(Array<char>&); // argument is deduced here

namespace N {
template<class T> void f(T&) { }

}
template void N::f<int>(int&);

— end example]

3 A declaration of a function template shall be in scope at the point of the explicit instantiation of the function
template. A definition of the class or class template containing a member function template shall be in scope

§ 14.7.2 360

c© ISO/IEC N3092

at the point of the explicit instantiation of the member function template. A definition of a class template
or class member template shall be in scope at the point of the explicit instantiation of the class template
or class member template. A definition of a class template shall be in scope at the point of an explicit
instantiation of a member function or a static data member of the class template. A definition of a member
class of a class template shall be in scope at the point of an explicit instantiation of the member class. If the
declaration of the explicit instantiation names an implicitly-declared special member function (Clause 12),
the program is ill-formed.

4 For a given set of template parameters, if an explicit instantiation of a template appears after a declaration
of an explicit specialization for that template, the explicit instantiation has no effect. Otherwise, for an
explicit instantiation definition the definition of a function template, a member function template, or a
member function or static data member of a class template shall be present in every translation unit in
which it is explicitly instantiated.

5 An explicit instantiation of a class or function template specialization is placed in the namespace in which
the template is defined. An explicit instantiation for a member of a class template is placed in the namespace
where the enclosing class template is defined. An explicit instantiation for a member template is placed in
the namespace where the enclosing class or class template is defined. [Example:

namespace N {
template<class T> class Y { void mf() { } };

}

template class Y<int>; // error: class template Y not visible
// in the global namespace

using N::Y;
template class Y<int>; // error: explicit instantiation outside of the

// namespace of the template

template class N::Y<char*>; // OK: explicit instantiation in namespace N
template void N::Y<double>::mf(); // OK: explicit instantiation

// in namespace N

— end example]

6 A trailing template-argument can be left unspecified in an explicit instantiation of a function template
specialization or of a member function template specialization provided it can be deduced from the type of
a function parameter (14.8.2). [Example:

template<class T> class Array { /∗ ... ∗/ };
template<class T> void sort(Array<T>& v);

// instantiate sort(Array<int>&) - template-argument deduced
template void sort<>(Array<int>&);

— end example]

7 An explicit instantiation that names a class template specialization is also an explicit instantiation of the
same kind (declaration or definition) of each of its members (not including members inherited from base
classes) that has not been previously explicitly specialized in the translation unit containing the explicit
instantiation, except as described below. [Note: In addition, it will typically be an explicit instantiation of
certain implementation-dependent data about the class. — end note]

§ 14.7.2 361

c© ISO/IEC N3092

8 An explicit instantiation definition that names a class template specialization explicitly instantiates the class
template specialization and is an explicit instantiation definition of only those members whose definition is
visible at the point of instantiation.

9 Except for inline functions and class template specializations, explicit instantiation declarations have the
effect of suppressing the implicit instantiation of the entity to which they refer. [Note: The intent is that an
inline function that is the subject of an explicit instantiation declaration will still be implicitly instantiated
when used so that the body can be considered for inlining, but that no out-of-line copy of the inline function
would be generated in the translation unit. — end note]

10 If an entity is the subject of both an explicit instantiation declaration and an explicit instantiation definition
in the same translation unit, the definition shall follow the declaration. An entity that is the subject of
an explicit instantiation declaration and that is also used in the translation unit shall be the subject of an
explicit instantiation definition somewhere in the program; otherwise the program is ill-formed, no diagnostic
required. [Note: This rule does apply to inline functions even though an explicit instantiation declaration
of such an entity has no other normative effect. This is needed to ensure that if the address of an inline
function is taken in a translation unit in which the implementation chose to suppress the out-of-line body,
another translation unit will supply the body. — end note] An explicit instantiation declaration shall not
name a specialization of a template with internal linkage.

11 The usual access checking rules do not apply to names used to specify explicit instantiations. [Note: In
particular, the template arguments and names used in the function declarator (including parameter types,
return types and exception specifications) may be private types or objects which would normally not be
accessible and the template may be a member template or member function which would not normally be
accessible. — end note]

12 An explicit instantiation does not constitute a use of a default argument, so default argument instantiation
is not done. [Example:

char* p = 0;
template<class T> T g(T = &p);
template int g<int>(int); // OK even though &p isn’t an int.

— end example]

14.7.3 Explicit specialization [temp.expl.spec]

1 An explicit specialization of any of the following:

— non-deleted function template

— class template

— non-deleted member function of a class template

— static data member of a class template

— member class of a class template

— member class template of a class or class template

— non-deleted member function template of a class or class template

can be declared by a declaration introduced by template<>; that is:
explicit-specialization:

template < > declaration

[Example:

§ 14.7.3 362

c© ISO/IEC N3092

template<class T> class stream;

template<> class stream<char> { /∗ ... ∗/ };

template<class T> class Array { /∗ ... ∗/ };
template<class T> void sort(Array<T>& v) { /∗ ... ∗/ }

template<> void sort<char*>(Array<char*>&) ;

Given these declarations, stream<char> will be used as the definition of streams of chars; other streams will
be handled by class template specializations instantiated from the class template. Similarly, sort<char*>
will be used as the sort function for arguments of type Array<char*>; other Array types will be sorted by
functions generated from the template. — end example]

2 An explicit specialization shall be declared in a namespace enclosing the specialized template. An explicit
specialization whose declarator-id is not qualified shall be declared in the nearest enclosing namespace of
the template, or, if the namespace is inline (7.3.1), any namespace from its enclosing namespace set. Such a
declaration may also be a definition. If the declaration is not a definition, the specialization may be defined
later (7.3.1.2).

3 A declaration of a function template or class template being explicitly specialized shall precede the declaration
of the explicit specialization. [Note: a declaration, but not a definition of the template is required. — end
note] The definition of a class or class template shall precede the declaration of an explicit specialization for
a member template of the class or class template. [Example:

template<> class X<int> { /∗ ... ∗/ }; // error: X not a template

template<class T> class X;

template<> class X<char*> { /∗ ... ∗/ }; // OK: X is a template

— end example]

4 A member function, a member class or a static data member of a class template may be explicitly specialized
for a class specialization that is implicitly instantiated; in this case, the definition of the class template shall
precede the explicit specialization for the member of the class template. If such an explicit specialization
for the member of a class template names an implicitly-declared special member function (Clause 12), the
program is ill-formed.

5 A member of an explicitly specialized class is not implicitly instantiated from the member declaration of
the class template; instead, the member of the class template specialization shall itself be explicitly defined.
In this case, the definition of the class template explicit specialization shall be in scope at the point of
declaration of the explicit specialization of the member. The definition of an explicitly specialized class is
unrelated to the definition of a generated specialization. That is, its members need not have the same names,
types, etc. as the members of a generated specialization. Definitions of members of an explicitly specialized
class are defined in the same manner as members of normal classes, and not using the syntax for explicit
specialization. [Example:

template<class T> struct A {
void f(T) { /∗ ... ∗/ }

};

template<> struct A<int> {
void f(int);

};

§ 14.7.3 363

c© ISO/IEC N3092

void h() {
A<int> a;
a.f(16); // A<int>::f must be defined somewhere

}

// explicit specialization syntax not used for a member of
// explicitly specialized class template specialization
void A<int>::f(int) { /∗ ... ∗/ }

— end example]

6 If a template, a member template or the member of a class template is explicitly specialized then that
specialization shall be declared before the first use of that specialization that would cause an implicit instan-
tiation to take place, in every translation unit in which such a use occurs; no diagnostic is required. If the
program does not provide a definition for an explicit specialization and either the specialization is used in a
way that would cause an implicit instantiation to take place or the member is a virtual member function,
the program is ill-formed, no diagnostic required. An implicit instantiation is never generated for an explicit
specialization that is declared but not defined. [Example:

template<class T> class Array { /∗ ... ∗/ };
template<class T> void sort(Array<T>& v) { /∗ ... ∗/ }

void f(Array<String>& v) {
sort(v); // use primary template

// sort(Array<T>&), T is String
}

template<> void sort<String>(Array<String>& v); // error: specialization
// after use of primary template

template<> void sort<>(Array<char*>& v); // OK: sort<char*> not yet used

— end example]

7 The placement of explicit specialization declarations for function templates, class templates, member func-
tions of class templates, static data members of class templates, member classes of class templates, member
class templates of class templates, member function templates of class templates, member functions of mem-
ber templates of class templates, member functions of member templates of non-template classes, member
function templates of member classes of class templates, etc., and the placement of partial specialization
declarations of class templates, member class templates of non-template classes, member class templates of
class templates, etc., can affect whether a program is well-formed according to the relative positioning of
the explicit specialization declarations and their points of instantiation in the translation unit as specified
above and below. When writing a specialization, be careful about its location; or to make it compile will be
such a trial as to kindle its self-immolation.

8 A template explicit specialization is in the scope of the namespace in which the template was defined.
[Example:

namespace N {
template<class T> class X { /∗ ... ∗/ };
template<class T> class Y { /∗ ... ∗/ };

template<> class X<int> { /∗ ... ∗/ }; // OK: specialization
// in same namespace

template<> class Y<double>; // forward declare intent to
// specialize for double

§ 14.7.3 364

c© ISO/IEC N3092

}

template<> class N::Y<double> { /∗ ... ∗/ }; // OK: specialization
// in same namespace

— end example]

9 A simple-template-id that names a class template explicit specialization that has been declared but not
defined can be used exactly like the names of other incompletely-defined classes (3.9). [Example:

template<class T> class X; // X is a class template
template<> class X<int>;

X<int>* p; // OK: pointer to declared class X<int>
X<int> x; // error: object of incomplete class X<int>

— end example]

10 A trailing template-argument can be left unspecified in the template-id naming an explicit function template
specialization provided it can be deduced from the function argument type. [Example:

template<class T> class Array { /∗ ... ∗/ };
template<class T> void sort(Array<T>& v);

// explicit specialization for sort(Array<int>&)
// with deduced template-argument of type int
template<> void sort(Array<int>&);

— end example]

11 A function with the same name as a template and a type that exactly matches that of a template special-
ization is not an explicit specialization (14.5.6).

12 An explicit specialization of a function template is inline only if it is declared with the inline specifier or
defined as deleted, and independently of whether its function template is inline. [Example:

template<class T> void f(T) { /∗ ... ∗/ }
template<class T> inline T g(T) { /∗ ... ∗/ }

template<> inline void f<>(int) { /∗ ... ∗/ } // OK: inline
template<> int g<>(int) { /∗ ... ∗/ } // OK: not inline

— end example]

13 An explicit specialization of a static data member of a template is a definition if the declaration includes an
initializer; otherwise, it is a declaration. [Note: the definition of a static data member of a template that
requires default initialization must use a braced-init-list:

template<> X Q<int>::x; // declaration
template<> X Q<int>::x (); // error: declares a function
template<> X Q<int>::x { }; // definition

— end note]

14 A member or a member template of a class template may be explicitly specialized for a given implicit
instantiation of the class template, even if the member or member template is defined in the class template
definition. An explicit specialization of a member or member template is specified using the syntax for
explicit specialization. [Example:

§ 14.7.3 365

c© ISO/IEC N3092

template<class T> struct A {
void f(T);
template<class X1> void g1(T, X1);
template<class X2> void g2(T, X2);
void h(T) { }

};

// specialization
template<> void A<int>::f(int);

// out of class member template definition
template<class T> template<class X1> void A<T>::g1(T, X1) { }

// member template specialization
template<> template<class X1> void A<int>::g1(int, X1);

//member template specialization
template<> template<>

void A<int>::g1(int, char); // X1 deduced as char
template<> template<>

void A<int>::g2<char>(int, char); // X2 specified as char

// member specialization even if defined in class definition
template<> void A<int>::h(int) { }

— end example]

15 A member or a member template may be nested within many enclosing class templates. In an explicit
specialization for such a member, the member declaration shall be preceded by a template<> for each
enclosing class template that is explicitly specialized. [Example:

template<class T1> class A {
template<class T2> class B {

void mf();
};

};
template<> template<> class A<int>::B<double>;
template<> template<> void A<char>::B<char>::mf();

— end example]

16 In an explicit specialization declaration for a member of a class template or a member template that ap-
pears in namespace scope, the member template and some of its enclosing class templates may remain
unspecialized, except that the declaration shall not explicitly specialize a class member template if its en-
closing class templates are not explicitly specialized as well. In such explicit specialization declaration, the
keyword template followed by a template-parameter-list shall be provided instead of the template<> pre-
ceding the explicit specialization declaration of the member. The types of the template-parameters in the
template-parameter-list shall be the same as those specified in the primary template definition. [Example:

template <class T1> class A {
template<class T2> class B {

template<class T3> void mf1(T3);
void mf2();

};
};
template <> template <class X>

§ 14.7.3 366

c© ISO/IEC N3092

class A<int>::B {
template <class T> void mf1(T);

};
template <> template <> template<class T>

void A<int>::B<double>::mf1(T t) { }
template <class Y> template <>

void A<Y>::B<double>::mf2() { } // ill-formed; B<double> is specialized but
// its enclosing class template A is not

— end example]

17 A specialization of a member function template or member class template of a non-specialized class template
is itself a template.

18 An explicit specialization declaration shall not be a friend declaration.

19 Default function arguments shall not be specified in a declaration or a definition for one of the following
explicit specializations:

— the explicit specialization of a function template;

— the explicit specialization of a member function template;

— the explicit specialization of a member function of a class template where the class template special-
ization to which the member function specialization belongs is implicitly instantiated. [Note: default
function arguments may be specified in the declaration or definition of a member function of a class
template specialization that is explicitly specialized. — end note]

14.8 Function template specializations [temp.fct.spec]

1 A function instantiated from a function template is called a function template specialization; so is an
explicit specialization of a function template. Template arguments can be explicitly specified when naming
the function template specialization, deduced from the context (e.g., deduced from the function arguments
in a call to the function template specialization, see 14.8.2), or obtained from default template arguments.

2 Each function template specialization instantiated from a template has its own copy of any static variable.
[Example:

template<class T> void f(T* p) {
static T s;

};

void g(int a, char* b) {
f(&a); // calls f<int>(int*)
f(&b); // calls f<char*>(char**)

}

Here f<int>(int*) has a static variable s of type int and f<char*>(char**) has a static variable s of
type char*. — end example]

14.8.1 Explicit template argument specification [temp.arg.explicit]

1 Template arguments can be specified when referring to a function template specialization by qualifying the
function template name with the list of template-arguments in the same way as template-arguments are
specified in uses of a class template specialization. [Example:

§ 14.8.1 367

c© ISO/IEC N3092

template<class T> void sort(Array<T>& v);
void f(Array<dcomplex>& cv, Array<int>& ci) {

sort<dcomplex>(cv); // sort(Array<dcomplex>&)
sort<int>(ci); // sort(Array<int>&)

}

and
template<class U, class V> U convert(V v);

void g(double d) {
int i = convert<int,double>(d); // int convert(double)
char c = convert<char,double>(d); // char convert(double)

}

— end example]

2 A template argument list may be specified when referring to a specialization of a function template

— when a function is called,

— when the address of a function is taken, when a function initializes a reference to function, or when a
pointer to member function is formed,

— in an explicit specialization,

— in an explicit instantiation, or

— in a friend declaration.

3 Trailing template arguments that can be deduced (14.8.2) or obtained from default template-arguments may
be omitted from the list of explicit template-arguments. A trailing template parameter pack (14.5.3) not
otherwise deduced will be deduced to an empty sequence of template arguments. If all of the template
arguments can be deduced, they may all be omitted; in this case, the empty template argument list <>
itself may also be omitted. In contexts where deduction is done and fails, or in contexts where deduction
is not done, if a template argument list is specified and it, along with any default template arguments,
identifies a single function template specialization, then the template-id is an lvalue for the function template
specialization. [Example:

template<class X, class Y> X f(Y);
template<class X, class Y, class ... Z> X g(Y);
void h() {

int i = f<int>(5.6); // Y is deduced to be double
int j = f(5.6); // ill-formed: X cannot be deduced
f<void>(f<int, bool>); // Y for outer f deduced to be

// int (*)(bool)
f<void>(f<int>); // ill-formed: f<int> does not denote a

// single function template specialization
int k = g<int>(5.6); // Y is deduced to be double, Z is deduced to an empty sequence
f<void>(g<int, bool>); // Y for outer f is deduced to be

// int (*)(bool), Z is deduced to an empty sequence
}

— end example]

4 [Note: An empty template argument list can be used to indicate that a given use refers to a specialization
of a function template even when a normal (i.e., non-template) function is visible that would otherwise be
used. For example:

§ 14.8.1 368

c© ISO/IEC N3092

template <class T> int f(T); // #1
int f(int); // #2
int k = f(1); // uses #2
int l = f<>(1); // uses #1

— end note]

5 Template arguments that are present shall be specified in the declaration order of their corresponding
template-parameters. The template argument list shall not specify more template-arguments than there
are corresponding template-parameters unless one of the template-parameters is a template parameter pack.
[Example:

template<class X, class Y, class Z> X f(Y,Z);
template<class ... Args> void f2();
void g() {

f<int,char*,double>("aa",3.0);
f<int,char*>("aa",3.0); // Z is deduced to be double
f<int>("aa",3.0); // Y is deduced to be const char*, and

// Z is deduced to be double
f("aa",3.0); // error: X cannot be deduced
f2<char, short, int, long>(); // OK

}

— end example]

6 Implicit conversions (Clause 4) will be performed on a function argument to convert it to the type of the
corresponding function parameter if the parameter type contains no template-parameters that participate
in template argument deduction. [Note: template parameters do not participate in template argument
deduction if they are explicitly specified. For example,

template<class T> void f(T);

class Complex {
Complex(double);

};

void g() {
f<Complex>(1); // OK, means f<Complex>(Complex(1))

}

— end note]

7 [Note: because the explicit template argument list follows the function template name, and because con-
version member function templates and constructor member function templates are called without using a
function name, there is no way to provide an explicit template argument list for these function templates.
— end note]

8 [Note: For simple function names, argument dependent lookup (3.4.2) applies even when the function name
is not visible within the scope of the call. This is because the call still has the syntactic form of a function
call (3.4.1). But when a function template with explicit template arguments is used, the call does not have
the correct syntactic form unless there is a function template with that name visible at the point of the call.
If no such name is visible, the call is not syntactically well-formed and argument-dependent lookup does not
apply. If some such name is visible, argument dependent lookup applies and additional function templates
may be found in other namespaces. [Example:

namespace A {

§ 14.8.1 369

c© ISO/IEC N3092

struct B { };
template<int X> void f(B);

}
namespace C {

template<class T> void f(T t);
}
void g(A::B b) {

f<3>(b); // ill-formed: not a function call
A::f<3>(b); // well-formed
C::f<3>(b); // ill-formed; argument dependent lookup

// applies only to unqualified names
using C::f;
f<3>(b); // well-formed because C::f is visible; then

// A::f is found by argument dependent lookup
}

— end example] — end note]

9 Template argument deduction can extend the sequence of template arguments corresponding to a template
parameter pack, even when the sequence contains explicitly specified template arguments. [Example:

template<class ... Types> void f(Types ... values);

void g() {
f<int*, float*>(0, 0, 0); // Types is deduced to the sequence int*, float*, int

}

— end example]

14.8.2 Template argument deduction [temp.deduct]

1 When a function template specialization is referenced, all of the template arguments shall have values.
The values can be explicitly specified or, in some cases, be deduced from the use or obtained from default
template-arguments. [Example:

void f(Array<dcomplex>& cv, Array<int>& ci) {
sort(cv); // calls sort(Array<dcomplex>&)
sort(ci); // calls sort(Array<int>&)

}

and
void g(double d) {

int i = convert<int>(d); // calls convert<int,double>(double)
int c = convert<char>(d); // calls convert<char,double>(double)

}

— end example]

2 When an explicit template argument list is specified, the template arguments must be compatible with the
template parameter list and must result in a valid function type as described below; otherwise type deduc-
tion fails. Specifically, the following steps are performed when evaluating an explicitly specified template
argument list with respect to a given function template:

— The specified template arguments must match the template parameters in kind (i.e., type, non-type,
template). There must not be more arguments than there are parameters unless at least one parameter

§ 14.8.2 370

c© ISO/IEC N3092

is a template parameter pack, and there shall be an argument for each non-pack parameter. Otherwise,
type deduction fails.

— Non-type arguments must match the types of the corresponding non-type template parameters, or must
be convertible to the types of the corresponding non-type parameters as specified in 14.3.2, otherwise
type deduction fails.

— The specified template argument values are substituted for the corresponding template parameters as
specified below.

3 After this substitution is performed, the function parameter type adjustments described in 8.3.5 are per-
formed. [Example: A parameter type of “void ()(const int, int[5])” becomes “void(*)(int,int*)”.
— end example] [Note: A top-level qualifier in a function parameter declaration does not affect the function
type but still affects the type of the function parameter variable within the function. — end note] [Example:

template <class T> void f(T t);
template <class X> void g(const X x);
template <class Z> void h(Z, Z*);

int main() {
// #1: function type is f(int), t is non const
f<int>(1);

// #2: function type is f(int), t is const
f<const int>(1);

// #3: function type is g(int), x is const
g<int>(1);

// #4: function type is g(int), x is const
g<const int>(1);

// #5: function type is h(int, const int*)
h<const int>(1,0);

}

— end example]

4 [Note: f<int>(1) and f<const int>(1) call distinct functions even though both of the functions called
have the same function type. — end note]

5 The resulting substituted and adjusted function type is used as the type of the function template for template
argument deduction. If a template argument has not been deduced, its default template argument, if any,
is used. [Example:

template <class T, class U = double>
void f(T t = 0, U u = 0);

void g() {
f(1, ’c’); // f<int,char>(1,’c’)
f(1); // f<int,double>(1,0)
f(); // error: T cannot be deduced
f<int>(); // f<int,double>(0,0)
f<int,char>(); // f<int,char>(0,0)

}

— end example]

§ 14.8.2 371

c© ISO/IEC N3092

When all template arguments have been deduced or obtained from default template arguments, all uses
of template parameters in non-deduced contexts are replaced with the corresponding deduced or default
argument values. If the substitution results in an invalid type, as described above, type deduction fails.

6 At certain points in the template argument deduction process it is necessary to take a function type that
makes use of template parameters and replace those template parameters with the corresponding template
arguments. This is done at the beginning of template argument deduction when any explicitly specified tem-
plate arguments are substituted into the function type, and again at the end of template argument deduction
when any template arguments that were deduced or obtained from default arguments are substituted.

7 The substitution occurs in all types and expressions that are used in the function type and in template
parameter declarations. The expressions include not only constant expressions such as those that appear in
array bounds or as nontype template arguments but also general expressions (i.e., non-constant expressions)
inside sizeof, decltype, and other contexts that allow non-constant expressions. [Note: The equivalent
substitution in exception specifications is done only when the function is instantiated, at which point a
program is ill-formed if the substitution results in an invalid type or expression. — end note]

8 If a substitution results in an invalid type or expression, type deduction fails. An invalid type or expression
is one that would be ill-formed if written using the substituted arguments. Access checking is not done as
part of the substitution process. Consequently, when deduction succeeds, an access error could still result
when the function is instantiated. Only invalid types and expressions in the immediate context of the
function type and its template parameter types can result in a deduction failure. [Note: The evaluation of
the substituted types and expressions can result in side effects such as the instantiation of class template
specializations and/or function template specializations, the generation of implicitly-defined functions, etc.
Such side effects are not in the “immediate context” and can result in the program being ill-formed. — end
note]

[Example:
struct X { };
struct Y {

Y(X){}
};

template <class T> auto f(T t1, T t2) -> decltype(t1 + t2); // #1
X f(Y, Y); // #2

X x1, x2;
X x3 = f(x1, x2); // deduction fails on #1 (cannot add X+X), calls #2

— end example]

[Note: Type deduction may fail for the following reasons:

— Attempting to instantiate a pack expansion containing multiple parameter packs of differing lengths.

— Attempting to create an array with an element type that is void, a function type, a reference type, or
an abstract class type, or attempting to create an array with a size that is zero or negative. [Example:

template <class T> int f(T[5]);
int I = f<int>(0);
int j = f<void>(0); // invalid array

— end example]

— Attempting to use a type that is not a class type in a qualified name. [Example:

§ 14.8.2 372

c© ISO/IEC N3092

template <class T> int f(typename T::B*);
int i = f<int>(0);

— end example]

— Attempting to use a type in a nested-name-specifier of a qualified-id when that type does not contain
the specified member, or

— the specified member is not a type where a type is required, or

— the specified member is not a template where a template is required, or

— the specified member is not a non-type where a non-type is required.

[Example:
template <int I> struct X { };
template <template <class T> class> struct Z { };
template <class T> void f(typename T::Y*){}
template <class T> void g(X<T::N>*){}
template <class T> void h(Z<T::template TT>*){}
struct A {};
struct B { int Y; };
struct C {

typedef int N;
};
struct D {

typedef int TT;
};

int main() {
// Deduction fails in each of these cases:
f<A>(0); // A does not contain a member Y
f(0); // The Y member of B is not a type
g<C>(0); // The N member of C is not a non-type
h<D>(0); // The TT member of D is not a template

}

— end example]

— Attempting to create a pointer to reference type.

— Attempting to create a reference to void.

— Attempting to create “pointer to member of T” when T is not a class type. [Example:
template <class T> int f(int T::*);
int i = f<int>(0);

— end example]

— Attempting to give an invalid type to a non-type template parameter. [Example:
template <class T, T> struct S {};
template <class T> int f(S<T, T()>*);
struct X {};
int i0 = f<X>(0);

— end example]

§ 14.8.2 373

c© ISO/IEC N3092

— Attempting to perform an invalid conversion in either a template argument expression, or an expression
used in the function declaration. [Example:

template <class T, T*> int f(int);
int i2 = f<int,1>(0); // can’t conv 1 to int*

— end example]

— Attempting to create a function type in which a parameter has a type of void, or in which the return
type is a function type or array type.

— Attempting to create a function type in which a parameter type or the return type is an abstract class
type (10.4).

— end note]

9 Except as described above, the use of an invalid value shall not cause type deduction to fail. [Example:
In the following example 1000 is converted to signed char and results in an implementation-defined value
as specified in (4.7). In other words, both templates are considered even though 1000, when converted to
signed char, results in an implementation-defined value.

template <int> int f(int);
template <signed char> int f(int);
int i1 = f<1>(0); // ambiguous
int i2 = f<1000>(0); // ambiguous

— end example]

14.8.2.1 Deducing template arguments from a function call [temp.deduct.call]

1 Template argument deduction is done by comparing each function template parameter type (call it P) with
the type of the corresponding argument of the call (call it A) as described below. If removing references
and cv-qualifiers from P gives std::initializer_list<P ′> for some P ′ and the argument is an initializer
list (8.5.4), then deduction is performed instead for each element of the initializer list, taking P ′ as a function
template parameter type and the initializer element as its argument. Otherwise, an initializer list argument
causes the parameter to be considered a non-deduced context (14.8.2.5). [Example:

template<class T> void f(std::initializer_list<T>);
f({1,2,3}); // T deduced to int
f({1,"asdf"}); // error: T deduced to both int and const char*

template<class T> void g(T);
g({1,2,3}); // error: no argument deduced for T

— end example] For a function parameter pack that occurs at the end of the parameter-declaration-list,
the type A of each remaining argument of the call is compared with the type P of the declarator-id of the
function parameter pack. Each comparison deduces template arguments for subsequent positions in the
template parameter packs expanded by the function parameter pack. For a function parameter pack that
does not occur at the end of the parameter-declaration-list, the type of the parameter pack is a non-deduced
context. [Example:

template<class ... Types> void f(Types& ...);
template<class T1, class ... Types> void g(T1, Types ...);

void h(int x, float& y) {
const int z = x;

§ 14.8.2.1 374

c© ISO/IEC N3092

f(x, y, z); // Types is deduced to int, float, const int
g(x, y, z); // T1 is deduced to int; Types is deduced to float, int

}

— end example]

2 If P is not a reference type:

— If A is an array type, the pointer type produced by the array-to-pointer standard conversion (4.2) is
used in place of A for type deduction; otherwise,

— If A is a function type, the pointer type produced by the function-to-pointer standard conversion (4.3)
is used in place of A for type deduction; otherwise,

— If A is a cv-qualified type, the top level cv-qualifiers of A’s type are ignored for type deduction.

3 If P is a cv-qualified type, the top level cv-qualifiers of P’s type are ignored for type deduction. If P is a
reference type, the type referred to by P is used for type deduction. If P is an rvalue reference to a cv-
unqualified template parameter and the argument is an lvalue, the type “lvalue reference to A” is used in
place of A for type deduction. [Example:

template <class T> int f(T&&);
template <class T> int g(const T&&);
int i;
int n1 = f(i); // calls f<int&>(int&)
int n2 = f(0); // calls f<int>(int&&)
int n3 = g(i); // error: would call g<int>(const int&&), which

// would bind an rvalue reference to an lvalue

— end example]

4 In general, the deduction process attempts to find template argument values that will make the deduced A
identical to A (after the type A is transformed as described above). However, there are three cases that allow
a difference:

— If the original P is a reference type, the deduced A (i.e., the type referred to by the reference) can be
more cv-qualified than the transformed A.

— The transformed A can be another pointer or pointer to member type that can be converted to the
deduced A via a qualification conversion (4.4).

— If P is a class and P has the form simple-template-id, then the transformed A can be a derived class of
the deduced A. Likewise, if P is a pointer to a class of the form simple-template-id, the transformed A
can be a pointer to a derived class pointed to by the deduced A.

5 These alternatives are considered only if type deduction would otherwise fail. If they yield more than one
possible deduced A, the type deduction fails. [Note: if a template-parameter is not used in any of the
function parameters of a function template, or is used only in a non-deduced context, its corresponding
template-argument cannot be deduced from a function call and the template-argument must be explicitly
specified. — end note]

6 When P is a function type, pointer to function type, or pointer to member function type:

— If the argument is an overload set containing one or more function templates, the parameter is treated
as a non-deduced context.

— If the argument is an overload set (not containing function templates), trial argument deduction is
attempted using each of the members of the set. If deduction succeeds for only one of the overload

§ 14.8.2.1 375

c© ISO/IEC N3092

set members, that member is used as the argument value for the deduction. If deduction succeeds for
more than one member of the overload set the parameter is treated as a non-deduced context.

7 [Example:
// Only one function of an overload set matches the call so the function
// parameter is a deduced context.
template <class T> int f(T (*p)(T));
int g(int);
int g(char);
int i = f(g); // calls f(int (*)(int))

— end example]

8 [Example:
// Ambiguous deduction causes the second function parameter to be a
// non-deduced context.
template <class T> int f(T, T (*p)(T));
int g(int);
char g(char);
int i = f(1, g); // calls f(int, int (*)(int))

— end example]

9 [Example:
// The overload set contains a template, causing the second function
// parameter to be a non-deduced context.
template <class T> int f(T, T (*p)(T));
char g(char);
template <class T> T g(T);
int i = f(1, g); // calls f(int, int (*)(int))

— end example]

14.8.2.2 Deducing template arguments taking the address of a function template
[temp.deduct.funcaddr]

1 Template arguments can be deduced from the type specified when taking the address of an overloaded
function (13.4). The function template’s function type and the specified type are used as the types of P and
A, and the deduction is done as described in 14.8.2.5.

14.8.2.3 Deducing conversion function template arguments [temp.deduct.conv]

1 Template argument deduction is done by comparing the return type of the conversion function template
(call it P; see 8.5, 13.3.1.5, and 13.3.1.6 for the determination of that type) with the type that is required as
the result of the conversion (call it A) as described in 14.8.2.5.

2 If P is a reference type, the type referred to by P is used in place of P for type deduction and for any further
references to or transformations of P in the remainder of this section.

3 If A is not a reference type:

— If P is an array type, the pointer type produced by the array-to-pointer standard conversion (4.2) is
used in place of P for type deduction; otherwise,

§ 14.8.2.3 376

c© ISO/IEC N3092

— If P is a function type, the pointer type produced by the function-to-pointer standard conversion (4.3)
is used in place of P for type deduction; otherwise,

— If P is a cv-qualified type, the top level cv-qualifiers of P’s type are ignored for type deduction.

4 If A is a cv-qualified type, the top level cv-qualifiers of A’s type are ignored for type deduction. If A is a
reference type, the type referred to by A is used for type deduction.

5 In general, the deduction process attempts to find template argument values that will make the deduced A
identical to A. However, there are two cases that allow a difference:

— If the original A is a reference type, A can be more cv-qualified than the deduced A (i.e., the type
referred to by the reference)

— The deduced A can be another pointer or pointer to member type that can be converted to A via a
qualification conversion.

6 These alternatives are considered only if type deduction would otherwise fail. If they yield more than one
possible deduced A, the type deduction fails.

7 When the deduction process requires a qualification conversion for a pointer or pointer to member type as
described above, the following process is used to determine the deduced template argument values:

If A is a type

cv1,0 “pointer to . . .” cv1,n−1 “pointer to” cv1,nT1

and P is a type

cv2,0 “pointer to . . .” cv2,n−1 “pointer to” cv2,nT2

The cv-unqualified T1 and T2 are used as the types of A and P respectively for type deduction. [Example:
struct A {

template <class T> operator T***();
};
A a;
const int * const * const * p1 = a; // T is deduced as int, not const int

— end example]

14.8.2.4 Deducing template arguments during partial ordering [temp.deduct.partial]

1 Template argument deduction is done by comparing certain types associated with the two function templates
being compared.

2 Two sets of types are used to determine the partial ordering. For each of the templates involved there is
the original function type and the transformed function type. [Note: the creation of the transformed type
is described in 14.5.6.2. — end note] The deduction process uses the transformed type as the argument
template and the original type of the other template as the parameter template. This process is done twice
for each type involved in the partial ordering comparison: once using the transformed template-1 as the
argument template and template-2 as the parameter template and again using the transformed template-2
as the argument template and template-1 as the parameter template.

3 The types used to determine the ordering depend on the context in which the partial ordering is done:

— In the context of a function call, the function parameter types are used.

— In the context of a call to a conversion operator, the return types of the conversion function templates
are used.

§ 14.8.2.4 377

c© ISO/IEC N3092

— In other contexts (14.5.6.2) the function template’s function type is used.

4 Each type from the parameter template and the corresponding type from the argument template are used
as the types of P and A.

5 Before the partial ordering is done, certain transformations are performed on the types used for partial
ordering:

— If P is a reference type, P is replaced by the type referred to.

— If A is a reference type, A is replaced by the type referred to.

6 If both P and A were reference types (before being replaced with the type referred to above), determine
which of the two types (if any) is more cv-qualified than the other; otherwise the types are considered to be
equally cv-qualified for partial ordering purposes. The result of this determination will be used below.

7 Remove any top-level cv-qualifiers:

— If P is a cv-qualified type, P is replaced by the cv-unqualified version of P.

— If A is a cv-qualified type, A is replaced by the cv-unqualified version of A.

8 Using the resulting types P and A the deduction is then done as described in 14.8.2.5. If deduction succeeds
for a given type, the type from the argument template is considered to be at least as specialized as the type
from the parameter template.

9 If, for a given type, deduction succeeds in both directions (i.e., the types are identical after the transfor-
mations above) and if the type from the argument template is more cv-qualified than the type from the
parameter template (as described above) that type is considered to be more specialized than the other. If
neither type is more cv-qualified than the other then neither type is more specialized than the other.

10 If for each type being considered a given template is at least as specialized for all types and more specialized
for some set of types and the other template is not more specialized for any types or is not at least as
specialized for any types, then the given template is more specialized than the other template. Otherwise,
neither template is more specialized than the other.

11 In most cases, all template parameters must have values in order for deduction to succeed, but for partial
ordering purposes a template parameter may remain without a value provided it is not used in the types
being used for partial ordering. [Note: a template parameter used in a non-deduced context is considered
used. — end note] [Example:

template <class T> T f(int); // #1
template <class T, class U> T f(U); // #2
void g() {

f<int>(1); // calls #1
}

— end example]

12 [Note: Partial ordering of function templates containing template parameter packs is independent of the
number of deduced arguments for those template parameter packs. — end note] [Example:

template<class ...> struct Tuple { };
template<class ... Types> void g(Tuple<Types ...>); // #1
template<class T1, class ... Types> void g(Tuple<T1, Types ...>); // #2
template<class T1, class ... Types> void g(Tuple<T1, Types& ...>); // #3

g(Tuple<>()); // calls #1
g(Tuple<int, float>()); // calls #2

§ 14.8.2.4 378

c© ISO/IEC N3092

g(Tuple<int, float&>()); // calls #3
g(Tuple<int>()); // calls #3

— end example]

14.8.2.5 Deducing template arguments from a type [temp.deduct.type]

1 Template arguments can be deduced in several different contexts, but in each case a type that is specified
in terms of template parameters (call it P) is compared with an actual type (call it A), and an attempt is
made to find template argument values (a type for a type parameter, a value for a non-type parameter, or
a template for a template parameter) that will make P, after substitution of the deduced values (call it the
deduced A), compatible with A.

2 In some cases, the deduction is done using a single set of types P and A, in other cases, there will be a set
of corresponding types P and A. Type deduction is done independently for each P/A pair, and the deduced
template argument values are then combined. If type deduction cannot be done for any P/A pair, or if for any
pair the deduction leads to more than one possible set of deduced values, or if different pairs yield different
deduced values, or if any template argument remains neither deduced nor explicitly specified, template
argument deduction fails.

3 A given type P can be composed from a number of other types, templates, and non-type values:

— A function type includes the types of each of the function parameters and the return type.

— A pointer to member type includes the type of the class object pointed to and the type of the member
pointed to.

— A type that is a specialization of a class template (e.g., A<int>) includes the types, templates, and
non-type values referenced by the template argument list of the specialization.

— An array type includes the array element type and the value of the array bound.

4 In most cases, the types, templates, and non-type values that are used to compose P participate in template
argument deduction. That is, they may be used to determine the value of a template argument, and the
value so determined must be consistent with the values determined elsewhere. In certain contexts, however,
the value does not participate in type deduction, but instead uses the values of template arguments that
were either deduced elsewhere or explicitly specified. If a template parameter is used only in non-deduced
contexts and is not explicitly specified, template argument deduction fails.

5 The non-deduced contexts are:

— The nested-name-specifier of a type that was specified using a qualified-id.

— A non-type template argument or an array bound in which a subexpression references a template
parameter.

— A template parameter used in the parameter type of a function parameter that has a default argument
that is being used in the call for which argument deduction is being done.

— A function parameter for which argument deduction cannot be done because the associated function
argument is a function, or a set of overloaded functions (13.4), and one or more of the following apply:

— more than one function matches the function parameter type (resulting in an ambiguous deduc-
tion), or

— no function matches the function parameter type, or

— the set of functions supplied as an argument contains one or more function templates.

§ 14.8.2.5 379

c© ISO/IEC N3092

— A function parameter for which the associated argument is an initializer list (8.5.4) but the parameter
does not have std::initializer_list or reference to possibly cv-qualified std::initializer_list
type. [Example:

template<class T> void g(T);
g({1,2,3}); // error: no argument deduced for T

— end example]

— A function parameter pack that does not occur at the end of the parameter-declaration-clause.

6 When a type name is specified in a way that includes a non-deduced context, all of the types that comprise
that type name are also non-deduced. However, a compound type can include both deduced and non-deduced
types. [Example: If a type is specified as A<T>::B<T2>, both T and T2 are non-deduced. Likewise, if a type is
specified as A<I+J>::X<T>, I, J, and T are non-deduced. If a type is specified as void f(typename A<T>::B,
A<T>), the T in A<T>::B is non-deduced but the T in A<T> is deduced. — end example]

7 [Example: Here is an example in which different parameter/argument pairs produce inconsistent template
argument deductions:

template<class T> void f(T x, T y) { /∗ ... ∗/ }
struct A { /∗ ... ∗/ };
struct B : A { /∗ ... ∗/ };
void g(A a, B b) {

f(a,b); // error: T could be A or B
f(b,a); // error: T could be A or B
f(a,a); // OK: T is A
f(b,b); // OK: T is B

}

Here is an example where two template arguments are deduced from a single function parameter/argument
pair. This can lead to conflicts that cause type deduction to fail:

template <class T, class U> void f(T (*)(T, U, U));

int g1(int, float, float);
char g2(int, float, float);
int g3(int, char, float);

void r() {
f(g1); // OK: T is int and U is float
f(g2); // error: T could be char or int
f(g3); // error: U could be char or float

}

Here is an example where a qualification conversion applies between the argument type on the function call
and the deduced template argument type:

template<class T> void f(const T*) { }
int *p;
void s() {

f(p); // f(const int*)
}

Here is an example where the template argument is used to instantiate a derived class type of the corre-
sponding function parameter type:

§ 14.8.2.5 380

c© ISO/IEC N3092

template <class T> struct B { };
template <class T> struct D : public B<T> {};
struct D2 : public B<int> {};
template <class T> void f(B<T>&){}
void t() {

D<int> d;
D2 d2;
f(d); // calls f(B<int>&)
f(d2); // calls f(B<int>&)

}

— end example]

8 A template type argument T, a template template argument TT or a template non-type argument i can be
deduced if P and A have one of the following forms:

T
cv-list T
T*
T&
T&&
T[integer-constant]
template-name <T> (where template-name refers to a class template)
type (T)
T()
T(T)
T type ::*
type T::*
T T::*
T (type ::*)()
type (T::*)()
type (type ::*)(T)
type (T::*)(T)
T (type ::*)(T)
T (T::*)()
T (T::*)(T)
type [i]
template-name <i> (where template-name refers to a class template)
TT<T>
TT<i>
TT<>

where (T) represents a parameter-type-list where at least one parameter type contains a T, and () represents
a parameter-type-list where no parameter type contains a T. Similarly, <T> represents template argument
lists where at least one argument contains a T, <i> represents template argument lists where at least one
argument contains an i and <> represents template argument lists where no argument contains a T or an i.

9 If P has a form that contains <T> or <i>, then each argument Pi of the respective template argument list
P is compared with the corresponding argument Ai of the corresponding template argument list of A. If
the template argument list of P contains a pack expansion that is not the last template argument, the
entire template argument list is a non-deduced context. If Pi is a pack expansion, then the pattern of Pi

is compared with each remaining argument in the template argument list of A. Each comparison deduces
template arguments for subsequent positions in the template parameter packs expanded by Pi.

10 Similarly, if P has a form that contains (T), then each parameter type Pi of the respective parameter-type-list
of P is compared with the corresponding parameter type Ai of the corresponding parameter-type-list of A. If

§ 14.8.2.5 381

c© ISO/IEC N3092

the parameter-declaration corresponding to Pi is a function parameter pack, then the type of its declarator-id
is compared with each remaining parameter type in the parameter-type-list of A. Each comparison deduces
template arguments for subsequent positions in the template parameter packs expanded by the function
parameter pack. [Note: A function parameter pack can only occur at the end of a parameter-declaration-
list (8.3.5). — end note]

11 These forms can be used in the same way as T is for further composition of types. [Example:
X<int> (*)(char[6])

is of the form
template-name <T> (*)(type [i])

which is a variant of
type (*)(T)

where type is X<int> and T is char[6]. — end example]

12 Template arguments cannot be deduced from function arguments involving constructs other than the ones
specified above.

13 A template type argument cannot be deduced from the type of a non-type template-argument.

14 [Example:
template<class T, T i> void f(double a[10][i]);
int v[10][20];
f(v); // error: argument for template-parameter T cannot be deduced

— end example]

15 [Note: except for reference and pointer types, a major array bound is not part of a function parameter type
and cannot be deduced from an argument:

template<int i> void f1(int a[10][i]);
template<int i> void f2(int a[i][20]);
template<int i> void f3(int (&a)[i][20]);

void g() {
int v[10][20];
f1(v); // OK: i deduced to be 20
f1<20>(v); // OK
f2(v); // error: cannot deduce template-argument i
f2<10>(v); // OK
f3(v); // OK: i deduced to be 10

}

16 If, in the declaration of a function template with a non-type template parameter, the non-type template
parameter is used in a subexpression in the function parameter list, the expression is a non-deduced context
as specified above. [Example:

template <int i> class A { /∗ ... ∗/ };
template <int i> void g(A<i+1>);
template <int i> void f(A<i>, A<i+1>);
void k() {

A<1> a1;

§ 14.8.2.5 382

c© ISO/IEC N3092

A<2> a2;
g(a1); // error: deduction fails for expression i+1
g<0>(a1); // OK
f(a1, a2); // OK

}

— end example] — end note] [Note: template parameters do not participate in template argument deduc-
tion if they are used only in non-deduced contexts. For example,

template<int i, typename T>
T deduce(typename A<T>::X x, // T is not deduced here

T t, // but T is deduced here
typename B<i>::Y y); // i is not deduced here

A<int> a;
B<77> b;

int x = deduce<77>(a.xm, 62, b.ym);
// T is deduced to be int, a.xm must be convertible to
// A<int>::X
// i is explicitly specified to be 77, b.ym must be convertible
// to B<77>::Y

— end note]

17 If, in the declaration of a function template with a non-type template-parameter, the non-type template-
parameter is used in an expression in the function parameter-list and, if the corresponding template-argument
is deduced, the template-argument type shall match the type of the template-parameter exactly, except that
a template-argument deduced from an array bound may be of any integral type.141 [Example:

template<int i> class A { /∗ ... ∗/ };
template<short s> void f(A<s>);
void k1() {

A<1> a;
f(a); // error: deduction fails for conversion from int to short
f<1>(a); // OK

}

template<const short cs> class B { };
template<short s> void g(B<s>);
void k2() {

B<1> b;
g(b); // OK: cv-qualifiers are ignored on template parameter types

}

— end example]

18 A template-argument can be deduced from a function, pointer to function, or pointer to member function
type.

[Example:
template<class T> void f(void(*)(T,int));
template<class T> void foo(T,int);
void g(int,int);

141) Although the template-argument corresponding to a template-parameter of type bool may be deduced from an array
bound, the resulting value will always be true because the array bound will be non-zero.

§ 14.8.2.5 383

c© ISO/IEC N3092

void g(char,int);

void h(int,int,int);
void h(char,int);
int m() {

f(&g); // error: ambiguous
f(&h); // OK: void h(char,int) is a unique match
f(&foo); // error: type deduction fails because foo is a template

}

— end example]

19 A template type-parameter cannot be deduced from the type of a function default argument. [Example:
template <class T> void f(T = 5, T = 7);
void g() {

f(1); // OK: call f<int>(1,7)
f(); // error: cannot deduce T
f<int>(); // OK: call f<int>(5,7)

}

— end example]

20 The template-argument corresponding to a template template-parameter is deduced from the type of the
template-argument of a class template specialization used in the argument list of a function call. [Example:

template <template <class T> class X> struct A { };
template <template <class T> class X> void f(A<X>) { }
template<class T> struct B { };
A ab;
f(ab); // calls f(A)

— end example]

21 [Note: Template argument deduction involving parameter packs (14.5.3) can deduce zero or more arguments
for each parameter pack. — end note] [Example:

template<class> struct X { };
template<class R, class ... ArgTypes> struct X<R(int, ArgTypes ...)> { };
template<class ... Types> struct Y { };
template<class T, class ... Types> struct Y<T, Types& ...> { };

template<class ... Types> int f(void (*)(Types ...));
void g(int, float);

X<int> x1; // uses primary template
X<int(int, float, double)> x2; // uses partial specialization; ArgTypes contains float, double
X<int(float, int)> x3; // uses primary template
Y<> y1; // use primary template; Types is empty
Y<int&, float&, double&> y2; // uses partial specialization; T is int&, Types contains float, double
Y<int, float, double> y3; // uses primary template; Types contains int, float, double
int fv = f(g); // OK; Types contains int, float

— end example]

22 If the original function parameter associated with A is a function parameter pack and the function parameter
associated with P is not a function parameter pack, then template argument deduction fails. [Example:

§ 14.8.2.5 384

c© ISO/IEC N3092

template<class ... Args> void f(Args ... args); // #1
template<class T1, class ... Args> void f(T1 a1, Args ... args); // #2
template<class T1, class T2> void f(T1 a1, T2 a2); // #3

f(); // calls #1
f(1, 2, 3); // calls #2
f(1, 2); // calls #3; non-variadic template #3 is more

// specialized than the variadic templates #1 and #2

— end example]

14.8.3 Overload resolution [temp.over]

1 A function template can be overloaded either by (non-template) functions of its name or by (other) function
templates of the same name. When a call to that name is written (explicitly, or implicitly using the operator
notation), template argument deduction (14.8.2) and checking of any explicit template arguments (14.3) are
performed for each function template to find the template argument values (if any) that can be used with
that function template to instantiate a function template specialization that can be invoked with the call
arguments. For each function template, if the argument deduction and checking succeeds, the template-
arguments (deduced and/or explicit) are used to synthesize the declaration of a single function template
specialization which is added to the candidate functions set to be used in overload resolution. If, for a given
function template, argument deduction fails, no such function is added to the set of candidate functions for
that template. The complete set of candidate functions includes all the synthesized declarations and all of
the non-template overloaded functions of the same name. The synthesized declarations are treated like any
other functions in the remainder of overload resolution, except as explicitly noted in 13.3.3.142

[Example:
template<class T> T max(T a, T b) { return a>b?a:b; }

void f(int a, int b, char c, char d) {
int m1 = max(a,b); // max(int a, int b)
char m2 = max(c,d); // max(char a, char b)
int m3 = max(a,c); // error: cannot generate max(int,char)

}

2 Adding the non-template function
int max(int,int);

to the example above would resolve the third call, by providing a function that could be called for max(a,c)
after using the standard conversion of char to int for c.

3 Here is an example involving conversions on a function argument involved in template-argument deduction:
template<class T> struct B { /∗ ... ∗/ };
template<class T> struct D : public B<T> { /∗ ... ∗/ };
template<class T> void f(B<T>&);

void g(B<int>& bi, D<int>& di) {

142) The parameters of function template specializations contain no template parameter types. The set of conversions allowed
on deduced arguments is limited, because the argument deduction process produces function templates with parameters that
either match the call arguments exactly or differ only in ways that can be bridged by the allowed limited conversions. Non-
deduced arguments allow the full range of conversions. Note also that 13.3.3 specifies that a non-template function will be given
preference over a template specialization if the two functions are otherwise equally good candidates for an overload match.

§ 14.8.3 385

c© ISO/IEC N3092

f(bi); // f(bi)
f(di); // f((B<int>&)di)

}

4 Here is an example involving conversions on a function argument not involved in template-parameter deduc-
tion:

template<class T> void f(T*,int); // #1
template<class T> void f(T,char); // #2

void h(int* pi, int i, char c) {
f(pi,i); // #1: f<int>(pi,i)
f(pi,c); // #2: f<int*>(pi,c)

f(i,c); // #2: f<int>(i,c);
f(i,i); // #2: f<int>(i,char(i))

}

— end example]

5 Only the signature of a function template specialization is needed to enter the specialization in a set of
candidate functions. Therefore only the function template declaration is needed to resolve a call for which
a template specialization is a candidate. [Example:

template<class T> void f(T); // declaration

void g() {
f("Annemarie"); // call of f<const char*>

}

6 The call of f is well-formed even if the template f is only declared and not defined at the point of the call.
The program will be ill-formed unless a specialization for f<const char*>, either implicitly or explicitly
generated, is present in some translation unit. — end example]

§ 14.8.3 386

c© ISO/IEC N3092

15 Exception handling [except]
1 Exception handling provides a way of transferring control and information from a point in the execution of a

program to an exception handler associated with a point previously passed by the execution. A handler will
be invoked only by a throw-expression invoked in code executed in the handler’s try block or in functions
called from the handler’s try block .

try-block:
try compound-statement handler-seq

function-try-block:
try ctor-initializeropt compound-statement handler-seq

handler-seq:
handler handler-seqopt

handler:
catch (exception-declaration) compound-statement

exception-declaration:
attribute-specifieropt type-specifier-seq declarator
attribute-specifieropt type-specifier-seq abstract-declaratoropt

...
throw-expression:

throw assignment-expressionopt

The optional attribute-specifier in an exception-declaration appertains to the formal parameter of the catch
clause (15.3).

2 A try-block is a statement (Clause 6). A throw-expression is of type void. Code that executes a throw-
expression is said to “throw an exception;” code that subsequently gets control is called a “handler.” [Note:
within this Clause “try block” is taken to mean both try-block and function-try-block. — end note]

3 A goto or switch statement shall not be used to transfer control into a try block or into a handler.
[Example:

void f() {
goto l1; // Ill-formed
goto l2; // Ill-formed
try {

goto l1; // OK
goto l2; // Ill-formed
l1: ;

} catch (...) {
l2: ;
goto l1; // Ill-formed
goto l2; // OK

}
}

— end example] A goto, break, return, or continue statement can be used to transfer control out of a
try block or handler. When this happens, each variable declared in the try block will be destroyed in the
context that directly contains its declaration. [Example:

387

c© ISO/IEC N3092

lab: try {
T1 t1;
try {

T2 t2;
if (condition)

goto lab;
} catch(...) { /∗ handler 2 ∗/ }

} catch(...) { /∗ handler 1 ∗/ }

Here, executing goto lab; will destroy first t2, then t1, assuming the condition does not declare a variable.
Any exception raised while destroying t2 will result in executing handler 2; any exception raised while
destroying t1 will result in executing handler 1. — end example]

4 A function-try-block associates a handler-seq with the ctor-initializer , if present, and the compound-statement.
An exception thrown during the execution of the initializer expressions in the ctor-initializer or during the
execution of the compound-statement transfers control to a handler in a function-try-block in the same way
as an exception thrown during the execution of a try-block transfers control to other handlers. [Example:

int f(int);
class C {

int i;
double d;

public:
C(int, double);

};

C::C(int ii, double id)
try : i(f(ii)), d(id) {

// constructor statements
}
catch (...) {

// handles exceptions thrown from the ctor-initializer
// and from the constructor statements

}

— end example]

15.1 Throwing an exception [except.throw]

1 Throwing an exception transfers control to a handler. An object is passed and the type of that object
determines which handlers can catch it. [Example:

throw "Help!";

can be caught by a handler of const char* type:
try {

// ...
}
catch(const char* p) {

// handle character string exceptions here
}

and
class Overflow {
public:

§ 15.1 388

c© ISO/IEC N3092

Overflow(char,double,double);
};

void f(double x) {
throw Overflow(’+’,x,3.45e107);

}

can be caught by a handler for exceptions of type Overflow

try {
f(1.2);

} catch(Overflow& oo) {
// handle exceptions of type Overflow here

}

— end example]

2 When an exception is thrown, control is transferred to the nearest handler with a matching type (15.3);
“nearest” means the handler for which the compound-statement or ctor-initializer following the try keyword
was most recently entered by the thread of control and not yet exited.

3 A throw-expression initializes a temporary object, called the exception object, the type of which is determined
by removing any top-level cv-qualifiers from the static type of the operand of throw and adjusting the type
from “array of T” or “function returning T” to “pointer to T” or “pointer to function returning T”, respectively.
The temporary is an lvalue and is used to initialize the variable named in the matching handler (15.3). If
the type of the exception object would be an incomplete type or a pointer to an incomplete type other
than (possibly cv-qualified) void the program is ill-formed. Except for these restrictions and the restrictions
on type matching mentioned in 15.3, the operand of throw is treated exactly as a function argument in a
call (5.2.2) or the operand of a return statement.

4 The memory for the exception object is allocated in an unspecified way, except as noted in 3.7.4.1. If a
handler exits by rethrowing, control is passed to another handler for the same exception. The exception
object is destroyed after either the last remaining active handler for the exception exits by any means other
than rethrowing, or the last object of type std::exception_ptr (18.8.5) that refers to the exception object is
destroyed, whichever is later. In the former case, the destruction occurs when the handler exits, immediately
after the destruction of the object declared in the exception-declaration in the handler, if any. In the latter
case, the destruction occurs before the destructor of std::exception_ptr returns. The implementation
may then deallocate the memory for the exception object; any such deallocation is done in an unspecified
way.

5 When the thrown object is a class object, the copy/move constructor and the destructor shall be accessible,
even if the copy/move operation is elided (12.8).

6 An exception is considered caught when a handler for that exception becomes active (15.3). [Note: an
exception can have active handlers and still be considered uncaught if it is rethrown. — end note]

7 A throw-expression with no operand rethrows the currently handled exception (15.3). The exception is
reactivated with the existing temporary; no new temporary exception object is created. The exception is
no longer considered to be caught; therefore, the value of std::uncaught_exception() will again be true.
[Example: code that must be executed because of an exception yet cannot completely handle the exception
can be written like this:

try {
// ...

} catch (...) { // catch all exceptions
// respond (partially) to exception

§ 15.1 389

c© ISO/IEC N3092

throw; // pass the exception to some
// other handler

}

— end example]

8 If no exception is presently being handled, executing a throw-expression with no operand calls std::
terminate() (15.5.1).

15.2 Constructors and destructors [except.ctor]

1 As control passes from a throw-expression to a handler, destructors are invoked for all automatic objects
constructed since the try block was entered. The automatic objects are destroyed in the reverse order of the
completion of their construction.

2 An object that is partially constructed or partially destroyed will have destructors executed for all of its
fully constructed base classes and non-variant members, that is, for subobjects for which the principal
constructor (12.6.2) has completed execution and the destructor has not yet begun execution. Similarly,
if the non-delegating constructor for an object has completed execution and a delegating constructor for
that object exits with an exception, the object’s destructor will be invoked. If the object was allocated in a
new-expression, the matching deallocation function (3.7.4.2, 5.3.4, 12.5), if any, is called to free the storage
occupied by the object.

3 The process of calling destructors for automatic objects constructed on the path from a try block to a throw-
expression is called “stack unwinding.” [Note: If a destructor called during stack unwinding exits with an
exception, std::terminate is called (15.5.1). So destructors should generally catch exceptions and not let
them propagate out of the destructor. — end note]

15.3 Handling an exception [except.handle]

1 The exception-declaration in a handler describes the type(s) of exceptions that can cause that handler to
be entered. The exception-declaration shall not denote an incomplete type or an rvalue reference type. The
exception-declaration shall not denote a pointer or reference to an incomplete type, other than void*, const
void*, volatile void*, or const volatile void*.

2 A handler of type “array of T” or “function returning T” is adjusted to be of type “pointer to T” or “pointer
to function returning T”, respectively.

3 A handler is a match for an exception object of type E if

— The handler is of type cv T or cv T& and E and T are the same type (ignoring the top-level cv-qualifiers),
or

— the handler is of type cv T or cv T& and T is an unambiguous public base class of E, or

— the handler is of type cv1 T* cv2 and E is a pointer type that can be converted to the type of the
handler by either or both of

— a standard pointer conversion (4.10) not involving conversions to pointers to private or protected
or ambiguous classes

— a qualification conversion

— the handler is a pointer or pointer to member type and E is std::nullptr_t.

[Note: a throw-expression whose operand is an integral constant expression of integer type that evaluates
to zero does not match a handler of pointer or pointer to member type. — end note]

[Example:

§ 15.3 390

c© ISO/IEC N3092

class Matherr { /∗ ... ∗/ virtual void vf(); };
class Overflow: public Matherr { /∗ ... ∗/ };
class Underflow: public Matherr { /∗ ... ∗/ };
class Zerodivide: public Matherr { /∗ ... ∗/ };

void f() {
try {

g();
} catch (Overflow oo) {

// ...
} catch (Matherr mm) {

// ...
}

}

Here, the Overflow handler will catch exceptions of type Overflow and the Matherr handler will catch
exceptions of type Matherr and of all types publicly derived from Matherr including exceptions of type
Underflow and Zerodivide. — end example]

4 The handlers for a try block are tried in order of appearance. That makes it possible to write handlers that
can never be executed, for example by placing a handler for a derived class after a handler for a corresponding
base class.

5 A ... in a handler’s exception-declaration functions similarly to ... in a function parameter declaration;
it specifies a match for any exception. If present, a ... handler shall be the last handler for its try block.

6 If no match is found among the handlers for a try block, the search for a matching handler continues in a
dynamically surrounding try block.

7 A handler is considered active when initialization is complete for the formal parameter (if any) of the catch
clause. [Note: the stack will have been unwound at that point. — end note] Also, an implicit handler is
considered active when std::terminate() or std::unexpected() is entered due to a throw. A handler
is no longer considered active when the catch Clause exits or when std::unexpected() exits after being
entered due to a throw.

8 The exception with the most recently activated handler that is still active is called the currently handled
exception.

9 If no matching handler is found, the function std::terminate() is called; whether or not the stack is
unwound before this call to std::terminate() is implementation-defined (15.5.1).

10 Referring to any non-static member or base class of an object in the handler for a function-try-block of a
constructor or destructor for that object results in undefined behavior.

11 The fully constructed base classes and members of an object shall be destroyed before entering the handler
of a function-try-block of a constructor for that object. Similarly, if a delegating constructor for an object
exits with an exception after the non-delegating constructor for that object has completed execution, the
object’s destructor shall be executed before entering the handler of a function-try-block of a constructor for
that object. The base classes and non-variant members of an object shall be destroyed before entering the
handler of a function-try-block of a destructor for that object (12.4).

12 The scope and lifetime of the parameters of a function or constructor extend into the handlers of a function-
try-block.

13 Exceptions thrown in destructors of objects with static storage duration or in constructors of namespace-
scope objects with static storage duration are not caught by a function-try-block on main(). Exceptions

§ 15.3 391

c© ISO/IEC N3092

thrown in destructors of objects with thread storage duration or in constructors of namespace-scope objects
with thread storage duration are not caught by a function-try-block on the initial function of the thread.

14 If a return statement appears in a handler of the function-try-block of a constructor, the program is ill-formed.

15 The currently handled exception is rethrown if control reaches the end of a handler of the function-try-block
of a constructor or destructor. Otherwise, a function returns when control reaches the end of a handler for
the function-try-block (6.6.3). Flowing off the end of a function-try-block is equivalent to a return with no
value; this results in undefined behavior in a value-returning function (6.6.3).

16 The object declared in an exception-declaration or, if the exception-declaration does not specify a name, a
temporary (12.2) is copy-initialized (8.5) from the exception object. The object shall not have an abstract
class type. The object is destroyed when the handler exits, after the destruction of any automatic objects
initialized within the handler.

17 When the handler declares a non-constant object, any changes to that object will not affect the temporary
object that was initialized by execution of the throw-expression. When the handler declares a reference to
a non-constant object, any changes to the referenced object are changes to the temporary object initialized
when the throw-expression was executed and will have effect should that object be rethrown.

15.4 Exception specifications [except.spec]

1 A function declaration lists exceptions that its function might directly or indirectly throw by using an
exception-specification as a suffix of its declarator.

exception-specification:
dynamic-exception-specification
noexcept-specification

dynamic-exception-specification:
throw (type-id-listopt)

type-id-list:
type-id ...opt

type-id-list , type-id ...opt

noexcept-specification:
noexcept (constant-expression)
noexcept

In a noexcept-specification, the constant-expression, if supplied, shall be a constant expression (5.19) that is
contextually converted to bool (Clause 4). A noexcept-specification noexcept is equivalent to noexcept(true).

2 An exception-specification shall appear only on a function declarator for a function type, pointer to function
type, reference to function type, or pointer to member function type that is the top-level type of a declaration
or definition, or on such a type appearing as a parameter or return type in a function declarator. An
exception-specification shall not appear in a typedef declaration or alias-declaration. [Example:

void f() throw(int); // OK
void (*fp)() throw (int); // OK
void g(void pfa() throw(int)); // OK
typedef int (*pf)() throw(int); // ill-formed

— end example] A type denoted in an exception-specification shall not denote an incomplete type. A type
denoted in an exception-specification shall not denote a pointer or reference to an incomplete type, other
than void*, const void*, volatile void*, or const volatile void*. A type cv T, “array of T”, or
“function returning T” denoted in an exception-specification is adjusted to type T, “pointer to T”, or “pointer
to function returning T”, respectively.

§ 15.4 392

c© ISO/IEC N3092

3 Two exception-specifications are compatible if:

— both are non-throwing (see below), regardless of their form,

— both have the form noexcept(constant-expression) and the constant-expressions are equivalent,

— one exception-specification is a noexcept-specification allowing all exceptions and the other is of the
form throw(type-id-list), or

— both are dynamic-exception-specifications that have the same set of adjusted types.

4 If any declaration of a function has an exception-specification that is not a noexcept-specification allowing
all exceptions, all declarations, including the definition and any explicit specialization, of that function shall
have a compatible exception-specification. If any declaration of a pointer to function, reference to function,
or pointer to member function has an exception-specification, all occurrences of that declaration shall have
a compatible exception-specification In an explicit instantiation an exception-specification may be specified,
but is not required. If an exception-specification is specified in an explicit instantiation directive, it shall be
compatible with the exception-specifications of other declarations of that function. A diagnostic is required
only if the exception-specifications are not compatible within a single translation unit.

5 If a virtual function has an exception-specification, all declarations, including the definition, of any function
that overrides that virtual function in any derived class shall only allow exceptions that are allowed by the
exception-specification of the base class virtual function. [Example:

struct B {
virtual void f() throw (int, double);
virtual void g();

};

struct D: B {
void f(); // ill-formed
void g() throw (int); // OK

};

The declaration of D::f is ill-formed because it allows all exceptions, whereas B::f allows only int and
double. — end example] A similar restriction applies to assignment to and initialization of pointers to
functions, pointers to member functions, and references to functions: the target entity shall allow at least
the exceptions allowed by the source value in the assignment or initialization. [Example:

class A { /∗ ... ∗/ };
void (*pf1)(); // no exception specification
void (*pf2)() throw(A);

void f() {
pf1 = pf2; // OK: pf1 is less restrictive
pf2 = pf1; // error: pf2 is more restrictive

}

— end example]

6 In such an assignment or initialization, exception-specifications on return types and parameter types shall
be compatible. In other assignments or initializations, exception-specifications shall be compatible.

7 An exception-specification can include the same type more than once and can include classes that are related
by inheritance, even though doing so is redundant. [Note: An exception-specification can also include the
class std::bad_exception (18.8.2.1). — end note]

§ 15.4 393

c© ISO/IEC N3092

8 A function is said to allow an exception of type E if its dynamic-exception-specification contains a type T for
which a handler of type T would be a match (15.3) for an exception of type E.

9 Whenever an exception is thrown and the search for a handler (15.3) encounters the outermost block of a
function with an exception-specification that does not allow the exception, then,

— if the exception-specification is a dynamic-exception-specification, the function std::unexpected() is
called (15.5.2),

— otherwise, the function std::terminate() is called (15.5.1).

[Example:
class X { };
class Y { };
class Z: public X { };
class W { };

void f() throw (X, Y) {
int n = 0;
if (n) throw X(); // OK
if (n) throw Z(); // also OK
throw W(); // will call std::unexpected()

}

— end example]

10 The function std::unexpected() may throw an exception that will satisfy the exception-specification for
which it was invoked, and in this case the search for another handler will continue at the call of the function
with this exception-specification (see 15.5.2), or it may call std::terminate().

11 An implementation shall not reject an expression merely because when executed it throws or might throw
an exception that the containing function does not allow. [Example:

extern void f() throw(X, Y);

void g() throw(X) {
f(); // OK

}

the call to f is well-formed even though when called, f might throw exception Y that g does not allow.
— end example]

12 A function with no exception-specification or with an exception-specification of the form noexcept(constant-
expression) where the constant-expression yields false allows all exceptions. An exception-specification is
non-throwing if it is of the form throw(), noexcept, or noexcept(constant-expression) where the constant-
expression yields true. A function with a non-throwing exception-specification does not allow any exceptions.

13 An exception-specification is not considered part of a function’s type.

14 An implicitly declared special member function (Clause 12) shall have an exception-specification. If f is
an implicitly declared default constructor, copy constructor, move constructor, destructor, copy assignment
operator, or move assignment operator, its implicit exception-specification specifies the type-id T if and only
if T is allowed by the exception-specification of a function directly invoked by f’s implicit definition; f shall
allow all exceptions if any function it directly invokes allows all exceptions, and f shall allow no exceptions
if every function it directly invokes allows no exceptions. [Example:

§ 15.4 394

c© ISO/IEC N3092

struct A {
A();
A(const A&) throw();
A(A&&) throw();
~A() throw(X);

};
struct B {

B() throw();
B(const B&) throw();
B(B&&) throw(Y);
~B() throw(Y);

};
struct D : public A, public B {

// Implicit declaration of D::D();
// Implicit declaration of D::D(const D&) throw();
// Implicit declaration of D::D(D&&) throw(Y);
// Implicit declaration of D::∼D() throw(X, Y);

};

Furthermore, if A::˜A() or B::˜B() were virtual, D::˜D() would not be as restrictive as that of A::˜A, and
the program would be ill-formed since a function that overrides a virtual function from a base class shall
have an exception-specification at least as restrictive as that in the base class. — end example]

15 In a dynamic-exception-specification, a type-id followed by an ellipsis is a pack expansion (14.5.3).

16 [Note: The use of dynamic-exception-specifications is deprecated (see Annex D). — end note]

15.5 Special functions [except.special]

1 The functions std::terminate() (15.5.1) and std::unexpected() (15.5.2) are used by the exception han-
dling mechanism for coping with errors related to the exception handling mechanism itself. The function
std::current_exception() (18.8.5) and the class std::nested_exception (18.8.6) can be used by a pro-
gram to capture the currently handled exception.

15.5.1 The std::terminate() function [except.terminate]

1 In the following situations exception handling must be abandoned for less subtle error handling techniques:

— when the exception handling mechanism, after completing evaluation of the expression to be thrown
but before the exception is caught (15.1), calls a function that exits via an uncaught exception,143

— when the exception handling mechanism cannot find a handler for a thrown exception (15.3), or

— when the search for a handler (15.3) encounters the outermost block of a function with a noexcept-
specification that does not allow the exception (15.4), or

— when the destruction of an object during stack unwinding (15.2) terminates by throwing an exception,
or

— when initialization of a non-local variable with static or thread storage duration (3.6.2, 3.6.3) terminates
by throwing an exception, or

— when destruction of an object with static or thread storage duration exits using an exception (3.6.3),
or

143) For example, if the object being thrown is of a class with a copy constructor, std::terminate() will be called if that copy
constructor exits with an exception during a throw.

§ 15.5.1 395

c© ISO/IEC N3092

— when execution of a function registered with std::atexit exits using an exception (18.5), or

— when a throw-expression with no operand attempts to rethrow an exception and no exception is being
handled (15.1), or

— when std::unexpected throws an exception which is not allowed by the previously violated exception-
specification, and std::bad_exception is not included in that exception-specification (15.5.2), or

— when the implementation’s default unexpected exception handler is called (18.8.2.2).

2 In such cases, std::terminate() is called (18.8.3). In the situation where no matching handler is found, it
is implementation-defined whether or not the stack is unwound before std::terminate() is called. In the
situation where the search for a handler (15.3) encounters the outermost block of a function with a noexcept-
specification that does not allow the exception (15.4), it is implementation-defined whether the stack is
unwound before std::terminate() is called. In all other situations, the stack shall not be unwound before
std::terminate() is called. An implementation is not permitted to finish stack unwinding prematurely
based on a determination that the unwind process will eventually cause a call to std::terminate().

15.5.2 The std::unexpected() function [except.unexpected]

1 If a function with an exception-specification throws an exception that is not listed in the exception-specification,
the function std::unexpected() is called (18.8.2) immediately after completing the stack unwinding for
the former function.

2 [Note: By default, std::unexpected() calls std::terminate(), but a program can install its own handler
function (18.8.2.3). In either case, the constraints in the following paragraph apply. — end note]

3 The std::unexpected() function shall not return, but it can throw (or re-throw) an exception. If it throws a
new exception which is allowed by the exception specification which previously was violated, then the search
for another handler will continue at the call of the function whose exception specification was violated. If it
throws or rethrows an exception that the exception-specification does not allow then the following happens:
If the exception-specification does not include the class std::bad_exception (18.8.2.1) then the function
std::terminate() is called, otherwise the thrown exception is replaced by an implementation-defined object
of the type std::bad_exception and the search for another handler will continue at the call of the function
whose exception-specification was violated.

4 Thus, an exception-specification guarantees that only the listed exceptions will be thrown. If the exception-
specification includes the type std::bad_exception then any exception not on the list may be replaced by
std::bad_exception within the function std::unexpected().

15.5.3 The std::uncaught_exception() function [except.uncaught]

1 The function std::uncaught_exception() returns true after completing evaluation of the object to be
thrown until completing the initialization of the exception-declaration in the matching handler (18.8.4).
This includes stack unwinding. If the exception is rethrown (15.1), std::uncaught_exception() returns
true from the point of rethrow until the rethrown exception is caught again.

§ 15.5.3 396

c© ISO/IEC N3092

16 Preprocessing directives [cpp]
1 A preprocessing directive consists of a sequence of preprocessing tokens that satisfies the following constraints:

The first token in the sequence is a # preprocessing token that (at the start of translation phase 4) is either
the first character in the source file (optionally after white space containing no new-line characters) or that
follows white space containing at least one new-line character. The last token in the sequence is the first new-
line character that follows the first token in the sequence.144 A new-line character ends the preprocessing
directive even if it occurs within what would otherwise be an invocation of a function-like macro.

preprocessing-file:
groupopt

group:
group-part
group group-part

group-part:
if-section
control-line
text-line
non-directive

if-section:
if-group elif-groupsopt else-groupopt endif-line

if-group:
if constant-expression new-line groupopt

ifdef identifier new-line groupopt

ifndef identifier new-line groupopt

elif-groups:
elif-group
elif-groups elif-group

elif-group:
elif constant-expression new-line groupopt

else-group:
else new-line groupopt

endif-line:
endif new-line

144) Thus, preprocessing directives are commonly called “lines.” These “lines” have no other syntactic significance, as all
white space is equivalent except in certain situations during preprocessing (see the # character string literal creation operator
in 16.3.2, for example).

397

c© ISO/IEC N3092

control-line:
include pp-tokens new-line
define identifier replacement-list new-line
define identifier lparen identifier-listopt) replacement-list new-line
define identifier lparen ...) replacement-list new-line
define identifier lparen identifier-list, ...) replacement-list new-line
undef identifier new-line
line pp-tokens new-line
error pp-tokensopt new-line
pragma pp-tokensopt new-line
new-line

text-line:
pp-tokensopt new-line

non-directive:
pp-tokens new-line

lparen:
a (character not immediately preceded by white-space

identifier-list:
identifier
identifier-list , identifier

replacement-list:
pp-tokensopt

pp-tokens:
preprocessing-token
pp-tokens preprocessing-token

new-line:
the new-line character

2 A text line shall not begin with a # preprocessing token. A non-directive shall not begin with any of the
directive names appearing in the syntax.

3 When in a group that is skipped (16.1), the directive syntax is relaxed to allow any sequence of preprocessing
tokens to occur between the directive name and the following new-line character.

4 The only white-space characters that shall appear between preprocessing tokens within a preprocessing
directive (from just after the introducing # preprocessing token through just before the terminating new-line
character) are space and horizontal-tab (including spaces that have replaced comments or possibly other
white-space characters in translation phase 3).

5 The implementation can process and skip sections of source files conditionally, include other source files,
and replace macros. These capabilities are called preprocessing, because conceptually they occur before
translation of the resulting translation unit.

6 The preprocessing tokens within a preprocessing directive are not subject to macro expansion unless other-
wise stated.

[Example: In:
#define EMPTY
EMPTY # include <file.h>

398

c© ISO/IEC N3092

the sequence of preprocessing tokens on the second line is not a preprocessing directive, because it does not
begin with a # at the start of translation phase 4, even though it will do so after the macro EMPTY has been
replaced. — end example]

16.1 Conditional inclusion [cpp.cond]

1 The expression that controls conditional inclusion shall be an integral constant expression except that iden-
tifiers (including those lexically identical to keywords) are interpreted as described below145 and it may
contain unary operator expressions of the form

defined identifier

or

defined (identifier)

which evaluate to 1 if the identifier is currently defined as a macro name (that is, if it is predefined or if it
has been the subject of a #define preprocessing directive without an intervening #undef directive with the
same subject identifier), 0 if it is not.

2 Each preprocessing token that remains (in the list of preprocessing tokens that will become the controlling
expression) after all macro replacements have occurred shall be in the lexical form of a token (2.7).

3 Preprocessing directives of the forms
if constant-expression new-line groupopt

elif constant-expression new-line groupopt

check whether the controlling constant expression evaluates to nonzero.

4 Prior to evaluation, macro invocations in the list of preprocessing tokens that will become the controlling
constant expression are replaced (except for those macro names modified by the defined unary operator),
just as in normal text. If the token defined is generated as a result of this replacement process or use
of the defined unary operator does not match one of the two specified forms prior to macro replacement,
the behavior is undefined. After all replacements due to macro expansion and the defined unary operator
have been performed, all remaining identifiers and keywords146, except for true and false, are replaced
with the pp-number 0, and then each preprocessing token is converted into a token. The resulting tokens
comprise the controlling constant expression which is evaluated according to the rules of 5.19 using arithmetic
that has at least the ranges specified in 18.3. For the purposes of this token conversion and evaluation all
signed and unsigned integer types act as if they have the same representation as, respectively, intmax_t
or uintmax_t (18.4).147 This includes interpreting character literals, which may involve converting escape
sequences into execution character set members. Whether the numeric value for these character literals
matches the value obtained when an identical character literal occurs in an expression (other than within a
#if or #elif directive) is implementation-defined.148 Also, whether a single-character character literal may
have a negative value is implementation-defined. Each subexpression with type bool is subjected to integral
promotion before processing continues.

145) Because the controlling constant expression is evaluated during translation phase 4, all identifiers either are or are not
macro names — there simply are no keywords, enumeration constants, etc.
146) An alternative token (2.6) is not an identifier, even when its spelling consists entirely of letters and underscores. Therefore
it is not subject to this replacement.
147) Thus on an implementation where std::numeric_limits<int>::max() is 0x7FFF and std:: numeric_limits<unsigned
int>::max() is 0xFFFF, the integer literal 0x8000 is signed and positive within a #if expression even though it is unsigned in
translation phase 7 (2.2).
148) Thus, the constant expression in the following #if directive and if statement is not guaranteed to evaluate to the same
value in these two contexts.

#if ’z’ - ’a’ == 25
if (’z’ - ’a’ == 25)

§ 16.1 399

c© ISO/IEC N3092

5 Preprocessing directives of the forms
ifdef identifier new-line groupopt

ifndef identifier new-line groupopt

check whether the identifier is or is not currently defined as a macro name. Their conditions are equivalent
to #if defined identifier and #if !defined identifier respectively.

6 Each directive’s condition is checked in order. If it evaluates to false (zero), the group that it controls is
skipped: directives are processed only through the name that determines the directive in order to keep track
of the level of nested conditionals; the rest of the directives’ preprocessing tokens are ignored, as are the other
preprocessing tokens in the group. Only the first group whose control condition evaluates to true (nonzero)
is processed. If none of the conditions evaluates to true, and there is a #else directive, the group controlled
by the #else is processed; lacking a #else directive, all the groups until the #endif are skipped.149

16.2 Source file inclusion [cpp.include]

1 A #include directive shall identify a header or source file that can be processed by the implementation.

2 A preprocessing directive of the form

include < h-char-sequence> new-line

searches a sequence of implementation-defined places for a header identified uniquely by the specified se-
quence between the < and > delimiters, and causes the replacement of that directive by the entire contents
of the header. How the places are specified or the header identified is implementation-defined.

3 A preprocessing directive of the form

include " q-char-sequence" new-line

causes the replacement of that directive by the entire contents of the source file identified by the specified
sequence between the " delimiters. The named source file is searched for in an implementation-defined
manner. If this search is not supported, or if the search fails, the directive is reprocessed as if it read

include < h-char-sequence> new-line

with the identical contained sequence (including > characters, if any) from the original directive.

4 A preprocessing directive of the form

include pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens after include
in the directive are processed just as in normal text (Each identifier currently defined as a macro name is
replaced by its replacement list of preprocessing tokens.). If the directive resulting after all replacements
does not match one of the two previous forms, the behavior is undefined.150 The method by which a sequence
of preprocessing tokens between a < and a > preprocessing token pair or a pair of " characters is combined
into a single header name preprocessing token is implementation-defined.

5 The implementation shall provide unique mappings for sequences consisting of one or more nondigits or
digits (2.11) followed by a period (.) and a single nondigit. The first character shall not be a digit. The
implementation may ignore distinctions of alphabetical case.

149) As indicated by the syntax, a preprocessing token shall not follow a #else or #endif directive before the terminating
new-line character. However, comments may appear anywhere in a source file, including within a preprocessing directive.
150) Note that adjacent string literals are not concatenated into a single string literal (see the translation phases in 2.2); thus,
an expansion that results in two string literals is an invalid directive.

§ 16.2 400

c© ISO/IEC N3092

6 A #include preprocessing directive may appear in a source file that has been read because of a #include
directive in another file, up to an implementation-defined nesting limit.

7 [Note: Although an implementation may provide a mechanism for making arbitrary source files available to
the < > search, in general programmers should use the < > form for headers provided with the implementa-
tion, and the " " form for sources outside the control of the implementation. For instance:

#include <stdio.h>
#include <unistd.h>
#include "usefullib.h"
#include "myprog.h"

— end note]

8 [Example: This illustrates macro-replaced #include directives:
#if VERSION == 1

#define INCFILE "vers1.h"
#elif VERSION == 2

#define INCFILE "vers2.h" // and so on
#else

#define INCFILE "versN.h"
#endif
#include INCFILE

— end example]

16.3 Macro replacement [cpp.replace]

1 Two replacement lists are identical if and only if the preprocessing tokens in both have the same number,
ordering, spelling, and white-space separation, where all white-space separations are considered identical.

2 An identifier currently defined as an object-like macro may be redefined by another #define preprocessing
directive provided that the second definition is an object-like macro definition and the two replacement lists
are identical, otherwise the program is ill-formed. Likewise, an identifier currently defined as a function-like
macro may be redefined by another #define preprocessing directive provided that the second definition is a
function-like macro definition that has the same number and spelling of parameters, and the two replacement
lists are identical, otherwise the program is ill-formed.

3 There shall be white-space between the identifier and the replacement list in the definition of an object-like
macro.

4 If the identifier-list in the macro definition does not end with an ellipsis, the number of arguments (including
those arguments consisting of no preprocessing tokens) in an invocation of a function-like macro shall equal
the number of parameters in the macro definition. Otherwise, there shall be more arguments in the invocation
than there are parameters in the macro definition (excluding the ...). There shall exist a) preprocessing
token that terminates the invocation.

5 The identifier _ _ VA_ARGS _ _ shall occur only in the replacement-list of a function-like macro that uses the
ellipsis notation in the parameters.

6 A parameter identifier in a function-like macro shall be uniquely declared within its scope.

7 The identifier immediately following the define is called the macro name. There is one name space for macro
names. Any white-space characters preceding or following the replacement list of preprocessing tokens are
not considered part of the replacement list for either form of macro.

§ 16.3 401

c© ISO/IEC N3092

8 If a # preprocessing token, followed by an identifier, occurs lexically at the point at which a preprocessing
directive could begin, the identifier is not subject to macro replacement.

9 A preprocessing directive of the form

define identifier replacement-list new-line

defines an object-like macro that causes each subsequent instance of the macro name151 to be replaced by the
replacement list of preprocessing tokens that constitute the remainder of the directive.152 The replacement
list is then rescanned for more macro names as specified below.

10 A preprocessing directive of the form
define identifier lparen identifier-listopt) replacement-list new-line
define identifier lparen ...) replacement-list new-line
define identifier lparen identifier-list , ...) replacement-list new-line

defines a function-like macro with parameters, whose use is similar syntactically to a function call. The
parameters are specified by the optional list of identifiers, whose scope extends from their declaration in the
identifier list until the new-line character that terminates the #define preprocessing directive. Each subse-
quent instance of the function-like macro name followed by a (as the next preprocessing token introduces
the sequence of preprocessing tokens that is replaced by the replacement list in the definition (an invocation
of the macro). The replaced sequence of preprocessing tokens is terminated by the matching) preprocessing
token, skipping intervening matched pairs of left and right parenthesis preprocessing tokens. Within the
sequence of preprocessing tokens making up an invocation of a function-like macro, new-line is considered a
normal white-space character.

11 The sequence of preprocessing tokens bounded by the outside-most matching parentheses forms the list of
arguments for the function-like macro. The individual arguments within the list are separated by comma
preprocessing tokens, but comma preprocessing tokens between matching inner parentheses do not separate
arguments. If there are sequences of preprocessing tokens within the list of arguments that would otherwise
act as preprocessing directives,153 the behavior is undefined.

12 If there is a ... in the identifier-list in the macro definition, then the trailing arguments, including any
separating comma preprocessing tokens, are merged to form a single item: the variable arguments. The
number of arguments so combined is such that, following merger, the number of arguments is one more than
the number of parameters in the macro definition (excluding the ...).

16.3.1 Argument substitution [cpp.subst]

1 After the arguments for the invocation of a function-like macro have been identified, argument substitution
takes place. A parameter in the replacement list, unless preceded by a # or ## preprocessing token or
followed by a ## preprocessing token (see below), is replaced by the corresponding argument after all macros
contained therein have been expanded. Before being substituted, each argument’s preprocessing tokens are
completely macro replaced as if they formed the rest of the preprocessing file; no other preprocessing tokens
are available.

151) Since, by macro-replacement time, all character literals and string literals are preprocessing tokens, not sequences possibly
containing identifier-like subsequences (see 2.2, translation phases), they are never scanned for macro names or parameters.
152) An alternative token (2.6) is not an identifier, even when its spelling consists entirely of letters and underscores. Therefore
it is not possible to define a macro whose name is the same as that of an alternative token.
153) Despite the name, a non-directive is a preprocessing directive.

§ 16.3.1 402

c© ISO/IEC N3092

2 An identifier _ _ VA_ARGS _ _ that occurs in the replacement list shall be treated as if it were a parameter,
and the variable arguments shall form the preprocessing tokens used to replace it.

16.3.2 The # operator [cpp.stringize]

1 Each # preprocessing token in the replacement list for a function-like macro shall be followed by a parameter
as the next preprocessing token in the replacement list.

2 A character string literal is a string-literal with no prefix. If, in the replacement list, a parameter is
immediately preceded by a # preprocessing token, both are replaced by a single character string literal
preprocessing token that contains the spelling of the preprocessing token sequence for the corresponding
argument. Each occurrence of white space between the argument’s preprocessing tokens becomes a single
space character in the character string literal. White space before the first preprocessing token and after
the last preprocessing token comprising the argument is deleted. Otherwise, the original spelling of each
preprocessing token in the argument is retained in the character string literal, except for special handling
for producing the spelling of string literals and character literals: a \ character is inserted before each " and
\ character of a character literal or string literal (including the delimiting " characters). If the replacement
that results is not a valid character string literal, the behavior is undefined. The character string literal
corresponding to an empty argument is "". The order of evaluation of # and ## operators is unspecified.

16.3.3 The ## operator [cpp.concat]

1 A ## preprocessing token shall not occur at the beginning or at the end of a replacement list for either form
of macro definition.

2 If, in the replacement list of a function-like macro, a parameter is immediately preceded or followed by
a ## preprocessing token, the parameter is replaced by the corresponding argument’s preprocessing token
sequence; however, if an argument consists of no preprocessing tokens, the parameter is replaced by a
placemarker preprocessing token instead.154

3 For both object-like and function-like macro invocations, before the replacement list is reexamined for more
macro names to replace, each instance of a ## preprocessing token in the replacement list (not from an
argument) is deleted and the preceding preprocessing token is concatenated with the following preprocessing
token. Placemarker preprocessing tokens are handled specially: concatenation of two placemarkers results
in a single placemarker preprocessing token, and concatenation of a placemarker with a non-placemarker
preprocessing token results in the non-placemarker preprocessing token. If the result is not a valid prepro-
cessing token, the behavior is undefined. The resulting token is available for further macro replacement.
The order of evaluation of ## operators is unspecified.

[Example: In the following fragment:
#define hash_hash # ## #
#define mkstr(a) # a
#define in_between(a) mkstr(a)
#define join(c, d) in_between(c hash_hash d)
char p[] = join(x, y); // equivalent to

// char p[] = "x ## y";

The expansion produces, at various stages:
join(x, y)
in_between(x hash_hash y)
in_between(x ## y)

154) Placemarker preprocessing tokens do not appear in the syntax because they are temporary entities that exist only within
translation phase 4.

§ 16.3.3 403

c© ISO/IEC N3092

mkstr(x ## y)
"x ## y"

In other words, expanding hash_hash produces a new token, consisting of two adjacent sharp signs, but this
new token is not the ## operator. — end example]

16.3.4 Rescanning and further replacement [cpp.rescan]

1 After all parameters in the replacement list have been substituted and # and ## processing has taken
place, all placemarker preprocessing tokens are removed. Then the resulting preprocessing token sequence
is rescanned, along with all subsequent preprocessing tokens of the source file, for more macro names to
replace.

2 If the name of the macro being replaced is found during this scan of the replacement list (not including the
rest of the source file’s preprocessing tokens), it is not replaced. Furthermore, if any nested replacements
encounter the name of the macro being replaced, it is not replaced. These nonreplaced macro name prepro-
cessing tokens are no longer available for further replacement even if they are later (re)examined in contexts
in which that macro name preprocessing token would otherwise have been replaced.

3 The resulting completely macro-replaced preprocessing token sequence is not processed as a preprocessing
directive even if it resembles one, but all pragma unary operator expressions within it are then processed as
specified in 16.9 below.

16.3.5 Scope of macro definitions [cpp.scope]

1 A macro definition lasts (independent of block structure) until a corresponding #undef directive is encoun-
tered or (if none is encountered) until the end of the translation unit. Macro definitions have no significance
after translation phase 4.

2 A preprocessing directive of the form

undef identifier new-line

causes the specified identifier no longer to be defined as a macro name. It is ignored if the specified identifier
is not currently defined as a macro name.

3 [Note: The simplest use of this facility is to define a “manifest constant,” as in
#define TABSIZE 100
int table[TABSIZE];

— end note]

4 The following defines a function-like macro whose value is the maximum of its arguments. It has the
advantages of working for any compatible types of the arguments and of generating in-line code without
the overhead of function calling. It has the disadvantages of evaluating one or the other of its arguments a
second time (including side effects) and generating more code than a function if invoked several times. It
also cannot have its address taken, as it has none.

#define max(a, b) ((a) > (b) ? (a) : (b))

The parentheses ensure that the arguments and the resulting expression are bound properly.

5 To illustrate the rules for redefinition and reexamination, the sequence
#define x 3
#define f(a) f(x * (a))
#undef x

§ 16.3.5 404

c© ISO/IEC N3092

#define x 2
#define g f
#define z z[0]
#define h g(∼
#define m(a) a(w)
#define w 0,1
#define t(a) a
#define p() int
#define q(x) x
#define r(x,y) x ## y
#define str(x) # x

f(y+1) + f(f(z)) % t(t(g)(0) + t)(1);
g(x+(3,4)-w) | h 5) & m

(f)^m(m);
p() i[q()] = { q(1), r(2,3), r(4,), r(,5), r(,) };
char c[2][6] = { str(hello), str() };

results in
f(2 * (y+1)) + f(2 * (f(2 * (z[0])))) % f(2 * (0)) + t(1);
f(2 * (2+(3,4)-0,1)) | f(2 * (∼5)) & f(2 * (0,1))^m(0,1);
int i[] = { 1, 23, 4, 5, };
char c[2][6] = { "hello", "" };

6 To illustrate the rules for creating character string literals and concatenating tokens, the sequence
#define str(s) # s
#define xstr(s) str(s)
#define debug(s, t) printf("x" # s "= %d, x" # t "= %s", \

x ## s, x ## t)
#define INCFILE(n) vers ## n
#define glue(a, b) a ## b
#define xglue(a, b) glue(a, b)
#define HIGHLOW "hello"
#define LOW LOW ", world"

debug(1, 2);
fputs(str(strncmp("abc\0d", "abc", ’\4’) // this goes away

== 0) str(: @\n), s);
#include xstr(INCFILE(2).h)
glue(HIGH, LOW);
xglue(HIGH, LOW)

results in
printf("x" "1" "= %d, x" "2" "= %s", x1, x2);
fputs("strncmp(\"abc\\0d\", \"abc\", ’\\4’) == 0" ": @\n", s);
#include "vers2.h" (after macro replacement, before file access)
"hello";
"hello" ", world"

or, after concatenation of the character string literals,
printf("x1= %d, x2= %s", x1, x2);
fputs("strncmp(\"abc\\0d\", \"abc\", ’\\4’) == 0: @\n", s);
#include "vers2.h" (after macro replacement, before file access)

§ 16.3.5 405

c© ISO/IEC N3092

"hello";
"hello, world"

Space around the # and ## tokens in the macro definition is optional.

7 To illustrate the rules for placemarker preprocessing tokens, the sequence
#define t(x,y,z) x ## y ## z
int j[] = { t(1,2,3), t(,4,5), t(6,{,}7), t(8,9,),

t(10,,), t(,11,), t(,,12), t(,,) };

results in
int j[] = { 123, 45, 67, 89,

10, 11, 12, };

8 To demonstrate the redefinition rules, the following sequence is valid.
#define OBJ_LIKE (1-1)
#define OBJ_LIKE /∗ white space */ (1-1) /* other */
#define FUNC_LIKE(a) (a)
#define FUNC_LIKE(a)(/∗ note the white space */ \

a /∗ other stuff on this line
∗/)

But the following redefinitions are invalid:
#define OBJ_LIKE (0) // different token sequence
#define OBJ_LIKE (1 - 1) // different white space
#define FUNC_LIKE(b) (a) // different parameter usage
#define FUNC_LIKE(b) (b) // different parameter spelling

9 Finally, to show the variable argument list macro facilities:
#define debug(...) fprintf(stderr, _ _ VA_ARGS _ _)
#define showlist(...) puts(#_ _ VA_ARGS _ _)
#define report(test, ...) ((test) ? puts(#test) : printf(_ _ VA_ARGS _ _))
debug("Flag");
debug("X = %d\n", x);
showlist(The first, second, and third items.);
report(x>y, "x is %d but y is %d", x, y);

results in
fprintf(stderr, "Flag");
fprintf(stderr, "X = %d\n", x);
puts("The first, second, and third items.");
((x>y) ? puts("x>y") : printf("x is %d but y is %d", x, y));

— end note]

16.4 Line control [cpp.line]

1 The string literal of a #line directive, if present, shall be a character string literal.

2 The line number of the current source line is one greater than the number of new-line characters read or
introduced in translation phase 1 (2.2) while processing the source file to the current token.

§ 16.4 406

c© ISO/IEC N3092

3 A preprocessing directive of the form

line digit-sequence new-line

causes the implementation to behave as if the following sequence of source lines begins with a source line
that has a line number as specified by the digit sequence (interpreted as a decimal integer). If the digit
sequence specifies zero or a number greater than 2147483647, the behavior is undefined.

4 A preprocessing directive of the form

line digit-sequence " s-char-sequenceopt " new-line

sets the presumed line number similarly and changes the presumed name of the source file to be the contents
of the character string literal.

5 A preprocessing directive of the form

line pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens after line
on the directive are processed just as in normal text (each identifier currently defined as a macro name is
replaced by its replacement list of preprocessing tokens). If the directive resulting after all replacements
does not match one of the two previous forms, the behavior is undefined; otherwise, the result is processed
as appropriate.

16.5 Error directive [cpp.error]

1 A preprocessing directive of the form

error pp-tokensopt new-line

causes the implementation to produce a diagnostic message that includes the specified sequence of prepro-
cessing tokens, and renders the program ill-formed.

16.6 Pragma directive [cpp.pragma]

1 A preprocessing directive of the form

pragma pp-tokensopt new-line

causes the implementation to behave in an implementation-defined manner. The behavior might cause
translation to fail or cause the translator or the resulting program to behave in a non-conforming manner.
Any pragma that is not recognized by the implementation is ignored.

16.7 Null directive [cpp.null]

1 A preprocessing directive of the form

new-line

has no effect.

16.8 Predefined macro names [cpp.predefined]

1 The following macro names shall be defined by the implementation:

_ _ cplusplus
The name _ _ cplusplus is defined to the value [tbd] when compiling a C++ translation unit.155

155) It is intended that future versions of this standard will replace the value of this macro with a greater value. Non-conforming
compilers should use a value with at most five decimal digits.

§ 16.8 407

c© ISO/IEC N3092

_ _ DATE _ _
The date of translation of the source file: a character string literal of the form "Mmm dd yyyy", where
the names of the months are the same as those generated by the asctime function, and the first
character of dd is a space character if the value is less than 10. If the date of translation is not
available, an implementation-defined valid date shall be supplied.

_ _ FILE _ _
The presumed name of the current source file (a character string literal).156

_ _ LINE _ _
The presumed line number (within the current source file) of the current source line (an integer
constant).156

_ _ STDC_HOSTED _ _
The integer constant 1 if the implementation is a hosted implementation or the integer constant 0 if
it is not.

_ _ TIME _ _
The time of translation of the source file: a character string literal of the form "hh:mm:ss" as in the
time generated by the asctime function. If the time of translation is not available, an implementation-
defined valid time shall be supplied.

2 The following macro names are conditionally defined by the implementation:

_ _ STDC _ _
Whether _ _ STDC _ _ is predefined and if so, what its value is, are implementation-defined.

_ _ STDC_MB_MIGHT_NEQ_WC _ _
The integer constant 1, intended to indicate that, in the encoding for wchar_t, a member of the basic
character set need not have a code value equal to its value when used as the lone character in an
ordinary character literal.

_ _ STDC_VERSION _ _
Whether _ _ STDC_VERSION _ _ is predefined and if so, what its value is, are implementation-defined.

_ _ STDC_ISO_10646 _ _
An integer constant of the form yyyymmL (for example, 199712L). If this symbol is defined, then every
character in the Unicode required set, when stored in an object of type wchar_t, has the same value
as the short identifier of that character. The Unicode required set consists of all the characters that
are defined by ISO/IEC 10646, along with all amendments and technical corrigenda as of the specified
year and month.

3 The values of the predefined macros (except for _ _ FILE _ _ and _ _ LINE _ _) remain constant throughout
the translation unit.

4 If any of the pre-defined macro names in this subclause, or the identifier defined, is the subject of a #define
or a #undef preprocessing directive, the behavior is undefined. Any other predefined macro names shall begin
with a leading underscore followed by an uppercase letter or a second underscore.

16.9 Pragma operator [cpp.pragma.op]

A unary operator expression of the form:

_Pragma (string-literal)

156) The presumed source file name and line number can be changed by the #line directive.

§ 16.9 408

c© ISO/IEC N3092

is processed as follows: The string literal is destringized by deleting the L prefix, if present, deleting the
leading and trailing double-quotes, replacing each escape sequence \" by a double-quote, and replacing
each escape sequence \\ by a single backslash. The resulting sequence of characters is processed through
translation phase 3 to produce preprocessing tokens that are executed as if they were the pp-tokens in a
pragma directive. The original four preprocessing tokens in the unary operator expression are removed.

[Example:
#pragma listing on "..\listing.dir"

can also be expressed as:
_Pragma (listing on "\"..\\listing.dir\"")

The latter form is processed in the same way whether it appears literally as shown, or results from macro
replacement, as in:

#define LISTING(x) PRAGMA(listing on #x)
#define PRAGMA(x) _Pragma(#x)

LISTING(..\listing.dir)

— end example]

§ 16.9 409

c© ISO/IEC N3092

17 Library introduction [library]
17.1 General [library.general]

1 This Clause describes the contents of the C++ standard library, how a well-formed C++ program makes use
of the library, and how a conforming implementation may provide the entities in the library.

2 The following subclauses describe the definitions (17.3), method of description (17.5), and organization (17.6.1)
of the library. Clause 17.6, Clauses 18 through 30, and Annex D specify the contents of the library, as well as
library requirements and constraints on both well-formed C++ programs and conforming implementations.

3 Detailed specifications for each of the components in the library are in Clauses 18–30, as shown in Table 12.

Table 12 — Library categories

Clause Category
18 Language support library
19 Diagnostics library
20 General utilities library
21 Strings library
22 Localization library
23 Containers library
24 Iterators library
25 Algorithms library
26 Numerics library
27 Input/output library
28 Regular expressions library
29 Atomic operations library
30 Thread support library

4 The language support library (Clause 18) provides components that are required by certain parts of the C++

language, such as memory allocation (5.3.4, 5.3.5) and exception processing (Clause 15).

5 The diagnostics library (Clause 19) provides a consistent framework for reporting errors in a C++ program,
including predefined exception classes.

6 The general utilities library (Clause 20) includes components used by other library elements, such as a
predefined storage allocator for dynamic storage management (3.7.4).

7 The strings library (Clause 21) provides support for manipulating text represented as sequences of type
char, sequences of type char16_t, sequences of type char32_t, sequences of type wchar_t, and sequences
of any other character-like type.

8 The localization library (Clause 22) provides extended internationalization support for text processing.

9 The containers (Clause 23), iterators (Clause 24), and algorithms (25) libraries provide a C++ program with
access to a subset of the most widely used algorithms and data structures.

10 The numerics library (Clause 26) provides numeric algorithms and complex number components that extend
support for numeric processing. The valarray component provides support for n-at-a-time processing,

§ 17.1 410

c© ISO/IEC N3092

potentially implemented as parallel operations on platforms that support such processing. The random
number component provides facilities for generating pseudo-random numbers.

11 The input/output library (Clause 27) provides the iostream components that are the primary mechanism
for C++ program input and output. They can be used with other elements of the library, particularly strings,
locales, and iterators.

12 The regular expressions library (Clause 28) provides regular expression matching and searching.

13 The atomic operations library (Clause 29) allows more fine-grained concurrent access to shared data than
is possible with locks.

14 The thread support library (Clause 30) provides components to create and manage threads, including mutual
exclusion and interthread communication.

17.2 The C standard library [library.c]

1 The C++ standard library also makes available the facilities of the C standard library, suitably adjusted to
ensure static type safety.

2 The descriptions of many library functions rely on the C standard library for the signatures and semantics
of those functions. In all such cases, any use of the restrict qualifier shall be omitted.

17.3 Definitions [definitions]

17.3.1 [defns.arbitrary.stream]
arbitrary-positional stream
a stream (described in Clause 27) that can seek to any integral position within the length of the stream.
Every arbitrary-positional stream is also a repositional stream.

17.3.2 [defns.blocked]
blocked thread
a thread that is waiting for some condition (other than the availability of a processor) to be satisfied before
it can continue execution.157 As a verb, to block is to place a thread in the blocked state, and to unblock is
to place a thread in the unblocked state.

17.3.3 [defns.character]
character
in Clauses 21, 22, 27, and 28, means any object which, when treated sequentially, can represent text. The
term does not only mean char, char16_t, char32_t, and wchar_t objects, but any value that can be
represented by a type that provides the definitions specified in these Clauses.

17.3.4 [defns.character.container]
character container type
a class or a type used to represent a character . It is used for one of the template parameters of the string,
iostream, and regular expression class templates. A character container type shall be a POD (3.9) type.

17.3.5 [defns.comparison]

157) This definition is taken from POSIX.

§ 17.3 411

c© ISO/IEC N3092

comparison function
an operator function (13.5) for any of the equality (5.10) or relational (5.9) operators.

17.3.6 [defns.component]
component
a group of library entities directly related as members, parameters, or return types. For example, the class
template basic_string and the non-member function templates that operate on strings are referred to as
the string component.

17.3.7 [defns.deadlock]
deadlock
two or more threads are unable to continue execution because each is blocked waiting for one or more of the
others to satisfy some condition.

17.3.8 [defns.default.behavior]
default behavior
a description of replacement function and handler function semantics. Any specific behavior provided by
the implementation, within the scope of the required behavior .

17.3.9 [defns.handler]
handler function
a non-reserved function whose definition may be provided by a C++ program. A C++ program may designate
a handler function at various points in its execution, by supplying a pointer to the function when calling
any of the library functions that install handler functions (Clause 18).

17.3.10 [defns.iostream.templates]
iostream class templates
templates, defined in Clause 27, that take two template arguments: charT and traits. The argument charT
is a character container class, and the argument traits is a class which defines additional characteristics and
functions of the character type represented by charT necessary to implement the iostream class templates.

17.3.11 [defns.modifier]
modifier function
a class member function (9.3), other than constructors, assignment, or destructor, that alters the state of
an object of the class.

17.3.12 [defns.move.assign]
move assignment
use of a move assignment operator.

17.3.13 [defns.move.assign.op]
move assignment operator
an assignment operator which accepts only an rvalue argument of the type being assigned to and might
modify the argument as a side effect during the assignment.

§ 17.3 412

c© ISO/IEC N3092

17.3.14 [defns.move.ctor]
move constructor
a constructor which accepts only an rvalue argument of the type being constructed and might modify the
argument as a side effect during construction.

17.3.15 [defns.obj.state]
object state
the current value of all non-static class members of an object (9.2). The state of an object can be obtained
by using one or more observer functions.

17.3.16 [defns.ntcts]
NTCTS
a sequence of values that have character type, that precede the terminating null character type value charT().

17.3.17 [defns.observer]
observer function
a class member function (9.3) that accesses the state of an object of the class, but does not alter that state.
Observer functions are specified as const member functions (9.3.2).

17.3.18 [defns.replacement]
replacement function
a non-reserved function whose definition is provided by a C++ program. Only one definition for such a
function is in effect for the duration of the program’s execution, as the result of creating the program (2.2)
and resolving the definitions of all translation units (3.5).

17.3.19 [defns.repositional.stream]
repositional stream
a stream (described in Clause 27) that can seek to a position that was previously encountered.

17.3.20 [defns.required.behavior]
required behavior
a description of replacement function and handler function semantics, applicable to both the behavior pro-
vided by the implementation and the behavior that shall be provided by any function definition in the
program. If a function defined in a C++ program fails to meet the required behavior when it executes, the
behavior is undefined.

17.3.21 [defns.reserved.function]
reserved function
a function, specified as part of the C++ standard library, that must be defined by the implementation. If a
C++ program provides a definition for any reserved function, the results are undefined.

17.3.22 [defns.stable]
stable algorithm
an algorithm that preserves, as appropriate to the particular algorithm, the order of elements.

— For the sort algorithms the relative order of equivalent elements is preserved.

§ 17.3 413

c© ISO/IEC N3092

— For the remove algorithms the relative order of the elements that are not removed is preserved.

— For the merge algorithms, for equivalent elements in the original two ranges, the elements from the
first range precede the elements from the second range.

17.3.23 [defns.traits]
traits class
a class that encapsulates a set of types and functions necessary for class templates and function templates to
manipulate objects of types for which they are instantiated. Traits classes defined in Clauses 21, 22 and 27
are character traits, which provide the character handling support needed by the string and iostream classes.

17.4 Additional definitions [defns.additional]

1 1.3 defines additional terms used elsewhere in this International Standard.

17.5 Method of description (Informative) [description]

1 This subclause describes the conventions used to specify the C++ standard library. 17.5.1 describes the
structure of the normative Clauses 18 through 30 and Annex D. 17.5.2 describes other editorial conventions.

17.5.1 Structure of each clause [structure]

17.5.1.1 Elements [structure.elements]

1 Each library clause contains the following elements, as applicable:158

— Summary

— Requirements

— Detailed specifications

— References to the Standard C library

17.5.1.2 Summary [structure.summary]

1 The Summary provides a synopsis of the category, and introduces the first-level subclauses. Each subclause
also provides a summary, listing the headers specified in the subclause and the library entities provided in
each header.

2 Paragraphs labelled “Note(s):” or “Example(s):” are informative, other paragraphs are normative.

3 The contents of the summary and the detailed specifications include:

— macros

— values

— types

— classes and class templates

— functions and function templates

— objects

158) To save space, items that do not apply to a Clause are omitted. For example, if a Clause does not specify any requirements,
there will be no “Requirements” subclause.

§ 17.5.1.2 414

c© ISO/IEC N3092

17.5.1.3 Requirements [structure.requirements]

1 Requirements describe contraints that shall be met by a C++ program that extends the standard library.
Such extensions are generally one of the following:

— Template arguments

— Derived classes

— Containers, iterators, and algorithms that meet an interface convention

2 The string and iostream components use an explicit representation of operations required of template argu-
ments. They use a class template char_traits to define these constraints.

3 Interface convention requirements are stated as generally as possible. Instead of stating “class X has to
define a member function operator++(),” the interface requires “for any object x of class X, ++x is defined.”
That is, whether the operator is a member is unspecified.

4 Requirements are stated in terms of well-defined expressions that define valid terms of the types that satisfy
the requirements. For every set of well-defined expression requirements there is a table that specifies an initial
set of the valid expressions and their semantics. Any generic algorithm (Clause 25) that uses the well-defined
expression requirements is described in terms of the valid expressions for its formal type parameters.

5 Template argument requirements are sometimes referenced by name. See 17.5.2.1.

6 In some cases the semantic requirements are presented as C++ code. Such code is intended as a specifica-
tion of equivalence of a construct to another construct, not necessarily as the way the construct must be
implemented.159

17.5.1.4 Detailed Specifications [structure.specifications]

1 The detailed specifications each contain the following elements:

— name and brief description

— synopsis (class definition or function prototype, as appropriate)

— restrictions on template arguments, if any

— description of class invariants

— description of function semantics

2 Descriptions of class member functions follow the order (as appropriate):160

— constructor(s) and destructor

— copying, moving & assignment functions

— comparison functions

— modifier functions

— observer functions

— operators and other non-member functions

159) Although in some cases the code given is unambiguously the optimum implementation.
160) To save space, items that do not apply to a class are omitted. For example, if a class does not specify any comparison
functions, there will be no “Comparison functions” subclause.

§ 17.5.1.4 415

c© ISO/IEC N3092

3 Descriptions of function semantics contain the following elements (as appropriate):161

— Requires: the preconditions for calling the function

— Effects: the actions performed by the function

— Synchronization: the synchronization operations (1.10) applicable to the function

— Postconditions: the observable results established by the function

— Returns: a description of the value(s) returned by the function

— Throws: any exceptions thrown by the function, and the conditions that would cause the exception

— Complexity: the time and/or space complexity of the function

— Remarks: additional semantic constraints on the function

— Error conditions: the error conditions for error codes reported by the function.

— Notes: non-normative comments about the function

4 Whenever the Effects: element specifies that the semantics of some function F are Equivalent to some code
sequence, then the various elements are interpreted as follows. If F’s semantics specifies a Requires: element,
then that requirement is logically imposed prior to the equivalent-to semantics. Next, the semantics of the
code sequence are determined by the Requires:, Effects:, Postconditions:, Returns:, Throws:, Complexity:,
Remarks:, Error conditions:, and Notes: specified for the function invocations contained in the code sequence.
The value returned from F is specified by F’s Returns: element, or if F has no Returns: element, a non-void
return from F is specified by the Returns: elements in the code sequence. If F’s semantics contains a Throws:,
Postconditions:, or Complexity: element, then that supersedes any occurrences of that element in the code
sequence.

5 For non-reserved replacement and handler functions, Clause 18 specifies two behaviors for the functions in
question: their required and default behavior. The default behavior describes a function definition provided
by the implementation. The required behavior describes the semantics of a function definition provided by
either the implementation or a C++ program. Where no distinction is explicitly made in the description,
the behavior described is the required behavior.

6 If the formulation of a complexity requirement calls for a negative number of operations, the actual require-
ment is zero operations.162

7 Complexity requirements specified in the library clauses are upper bounds, and implementations that provide
better complexity guarantees satisfy the requirements.

8 Error conditions specify conditions where a function may fail. The conditions are listed, together with
a suitable explanation, as the enum class errc constants (19.5) that could be used as an argument to
function make_error_condition (19.5.3.5).

17.5.1.5 C Library [structure.see.also]

1 Paragraphs labelled “See also:” contain cross-references to the relevant portions of this International
Standard and the ISO C standard, which is incorporated into this International Standard by reference.

17.5.2 Other conventions [conventions]

1 This subclause describes several editorial conventions used to describe the contents of the C++ standard

161) To save space, items that do not apply to a function are omitted. For example, if a function does not specify any further
preconditions, there will be no “Requires” paragraph.
162) This simplifies the presentation of complexity requirements in some cases.

§ 17.5.2 416

c© ISO/IEC N3092

library. These conventions are for describing implementation-defined types (17.5.2.1), and member func-
tions (17.5.2.2).

17.5.2.1 Type descriptions [type.descriptions]

17.5.2.1.1 General [type.descriptions.general]

1 The Requirements subclauses may describe names that are used to specify constraints on template argu-
ments.163 These names are used in library Clauses to describe the types that may be supplied as arguments
by a C++ program when instantiating template components from the library.

2 Certain types defined in Clause 27 are used to describe implementation-defined types. They are based on
other types, but with added constraints.

17.5.2.1.2 Enumerated types [enumerated.types]

1 Several types defined in Clause 27 are enumerated types. Each enumerated type may be implemented as an
enumeration or as a synonym for an enumeration.164

2 The enumerated type enumerated can be written:
enum enumerated { V0 , V1 , V2 , V3 ,};

static const enumerated C0 (V0);
static const enumerated C1 (V1);
static const enumerated C2 (V2);
static const enumerated C3 (V3);

.....

3 Here, the names C0, C1, etc. represent enumerated elements for this particular enumerated type. All such
elements have distinct values.

17.5.2.1.3 Bitmask types [bitmask.types]

1 Several types defined in Clauses 18 through 30 and Annex D are bitmask types. Each bitmask type can be im-
plemented as an enumerated type that overloads certain operators, as an integer type, or as a bitset (20.5).

2 The bitmask type bitmask can be written:
enum bitmask {

V0 = 1 << 0, V1 = 1 << 1, V2 = 1 << 2, V3 = 1 << 3,
};

static const bitmask C0 (V0);
static const bitmask C1 (V1);
static const bitmask C2 (V2);
static const bitmask C3 (V3);

.....

// For exposition only.
// int_type is an integral type capable of
// representing all values of bitmask
bitmask operator& (bitmask X , bitmask Y) {

163) Examples from 20.2 include: EqualityComparable, LessThanComparable, CopyConstructable, etc. Examples from 24.2
include: InputIterator, ForwardIterator, Function, Predicate, etc.
164) Such as an integer type, with constant integer values (3.9.1).

§ 17.5.2.1.3 417

c© ISO/IEC N3092

return static_cast<bitmask >(
static_cast<int_type>(X) &
static_cast<int_type>(Y));

}
bitmask operator| (bitmask X , bitmask Y) {

return static_cast<bitmask >(
static_cast<int_type>(X) |
static_cast<int_type>(Y));

}
bitmask operator^ (bitmask X , bitmask Y){

return static_cast<bitmask >(
static_cast<int_type>(X) ^
static_cast<int_type>(Y));

}
bitmask operator~ (bitmask X){

return static_cast<bitmask >(∼static_cast<int_type>(X));
}
bitmask & operator&=(bitmask & X , bitmask Y){

X = X &Y ; return X ;
}
bitmask & operator|=(bitmask & X , bitmask Y) {

X = X |Y ; return X ;
}
bitmask & operator^=(bitmask & X , bitmask Y) {

X = X ^Y ; return X ;
}

3 Here, the names C0, C1, etc. represent bitmask elements for this particular bitmask type. All such elements
have distinct values such that, for any pair Ci and Cj , Ci & Ci is nonzero and Ci & Cj is zero.

4 The following terms apply to objects and values of bitmask types:

— To set a value Y in an object X is to evaluate the expression X |= Y.

— To clear a value Y in an object X is to evaluate the expression X &= ∼Y.

— The value Y is set in the object X if the expression X & Y is nonzero.

17.5.2.1.4 Character sequences [character.seq]

1 The C standard library makes widespread use of characters and character sequences that follow a few uniform
conventions:

— A letter is any of the 26 lowercase or 26 uppercase letters in the basic execution character set.165

— The decimal-point character is the (single-byte) character used by functions that convert between a
(single-byte) character sequence and a value of one of the floating-point types. It is used in the character
sequence to denote the beginning of a fractional part. It is represented in Clauses 18 through 30 and
Annex D by a period, ’.’, which is also its value in the "C" locale, but may change during program
execution by a call to setlocale(int, const char*),166 or by a change to a locale object, as
described in Clauses 22.3 and 27.

— A character sequence is an array object (8.3.4) A that can be declared as T A[N], where T is any of
the types char, unsigned char, or signed char (3.9.1), optionally qualified by any combination of

165) Note that this definition differs from the definition in ISO C 7.1.1.
166) declared in <clocale> (22.6).

§ 17.5.2.1.4 418

c© ISO/IEC N3092

const or volatile. The initial elements of the array have defined contents up to and including an
element determined by some predicate. A character sequence can be designated by a pointer value S
that points to its first element.

17.5.2.1.4.1 Byte strings [byte.strings]

1 A null-terminated byte string, or ntbs, is a character sequence whose highest-addressed element with defined
content has the value zero (the terminating null character); no other element in the sequence has the value
zero.167

2 The length of an ntbs is the number of elements that precede the terminating null character. An empty
ntbs has a length of zero.

3 The value of an ntbs is the sequence of values of the elements up to and including the terminating null
character.

4 A static ntbs is an ntbs with static storage duration.168

17.5.2.1.4.2 Multibyte strings [multibyte.strings]

1 A null-terminated multibyte string, or ntmbs, is an ntbs that constitutes a sequence of valid multibyte
characters, beginning and ending in the initial shift state.169

2 A static ntmbs is an ntmbs with static storage duration.

17.5.2.1.4.3 char16_t sequences [char16_t.seq]

1 A char16-character sequence is an array object (8.3.4) A that can be declared as T A[N], where T is type
char16_t (3.9.1), optionally qualified by any combination of const or volatile. The initial elements of
the array have defined contents up to and including an element determined by some predicate. A char16-
character sequence can be designated by a pointer value S that designates its first element.

2 A null-terminated char16-character string, or ntc16s, is a char16-character sequence whose highest-addressed
element with defined content has the value zero.170

3 The length of an ntc16s is the number of elements that precede the terminating null char16_t character.
An empty ntc16s has a length of zero.

4 The value of an ntc16s is the sequence of values of the elements up to and including the terminating null
character.

5 A static ntc16s is an ntc16s with static storage duration.171

17.5.2.1.4.4 char32_t sequences [char32_t.seq]

1 A char32-character sequence is an array object (8.3.4) A that can be declared as T A[N], where T is type
char32_t (3.9.1), optionally qualified by any combination of const or volatile. The initial elements of
the array have defined contents up to and including an element determined by some predicate. A char32-
character sequence can be designated by a pointer value S that designates its first element.

167) Many of the objects manipulated by function signatures declared in <cstring> (21.7) are character sequences or ntbss.
The size of some of these character sequences is limited by a length value, maintained separately from the character sequence.
168) A string literal, such as "abc", is a static ntbs
169) An ntbs that contains characters only from the basic execution character set is also an ntmbs. Each multibyte character
then consists of a single byte.
170) Many of the objects manipulated by function signatures declared in <cuchar> are char16-character sequences or ntc16ss.
171) A char16_t string literal, such as u"abc", is a static ntc16s.

§ 17.5.2.1.4 419

c© ISO/IEC N3092

2 A null-terminated char32-character string, or ntc32s, is a char32-character sequence whose highest-addressed
element with defined content has the value zero.172

3 The length of an ntc32s is the number of elements that precede the terminating null char32_t character.
An empty ntc32s has a length of zero.

4 The value of an ntc32s is the sequence of values of the elements up to and including the terminating null
character.

5 A static ntc32s is an ntc32s with static storage duration.173

17.5.2.1.4.5 Wide-character sequences [wide.characters]

1 A wide-character sequence is an array object (8.3.4) A that can be declared as T A[N], where T is type
wchar_t (3.9.1), optionally qualified by any combination of const or volatile. The initial elements of the
array have defined contents up to and including an element determined by some predicate. A wide-character
sequence can be designated by a pointer value S that designates its first element.

2 A null-terminated wide-character string, or ntwcs, is a wide-character sequence whose highest-addressed
element with defined content has the value zero.174

3 The length of an ntwcs is the number of elements that precede the terminating null wide character. An
empty ntwcs has a length of zero.

4 The value of an ntwcs is the sequence of values of the elements up to and including the terminating null
character.

5 A static ntwcs is an ntwcs with static storage duration.175

17.5.2.2 Functions within classes [functions.within.classes]

1 For the sake of exposition, Clauses 18 through 30 and Annex D do not describe copy/move constructors,
assignment operators, or (non-virtual) destructors with the same apparent semantics as those that can be
generated by default (12.1, 12.4, 12.8).

2 It is unspecified whether the implementation provides explicit definitions for such member function signa-
tures, or for virtual destructors that can be generated by default.

17.5.2.3 Private members [objects.within.classes]

1 Clauses 18 through 30 and Annex D do not specify the representation of classes, and intentionally omit
specification of class members (9.2). An implementation may define static or non-static class members, or
both, as needed to implement the semantics of the member functions specified in Clauses 18 through 30 and
Annex D.

2 Objects of certain classes are sometimes required by the external specifications of their classes to store data,
apparently in member objects. For the sake of exposition, some subclauses provide representative declara-
tions, and semantic requirements, for private member objects of classes that meet the external specifications
of the classes. The declarations for such member objects and the definitions of related member types are
followed by a comment that ends with exposition only, as in:

streambuf* sb; // exposition only

172) Many of the objects manipulated by function signatures declared in <cuchar> are char32-character sequences or ntc32ss.
173) A char32_t string literal, such as U"abc", is a static ntc32s.
174) Many of the objects manipulated by function signatures declared in <cwchar> are wide-character sequences or ntwcss.
175) A wide string literal, such as L"abc" is a static ntwcs.

§ 17.5.2.3 420

c© ISO/IEC N3092

3 An implementation may use any technique that provides equivalent external behavior.

17.6 Library-wide requirements [requirements]

1 This subclause specifies requirements that apply to the entire C++ standard library. Clauses 18 through 30
and Annex D specify the requirements of individual entities within the library.

2 Requirements specified in terms of interactions between threads do not apply to programs having only a
single thread of execution.

3 Within this subclause, 17.6.1 describes the library’s contents and organization, 17.6.2 describes how well-
formed C++ programs gain access to library entities, 17.6.3 describes constraints on well-formed C++ pro-
grams, and 17.6.4 describes constraints on conforming implementations.

17.6.1 Library contents and organization [organization]

1 17.6.1.1 describes the entities defined in the C++ standard library. 17.6.1.2 lists the standard library headers
and some constraints on those headers. 17.6.1.3 lists requirements for a freestanding implementation of the
C++ standard library.

17.6.1.1 Library contents [contents]

1 The C++ standard library provides definitions for the following types of entities: macros, values, types,
templates, classes, functions, objects.

2 All library entities except macros, operator new and operator delete are defined within the namespace
std or namespaces nested within namespace std.176 It is unspecified whether names declared in a specific
namespace are declared directly in that namespace or in an inline namespace inside that namespace.177

3 Whenever a name x defined in the standard library is mentioned, the name x is assumed to be fully qualified
as ::std::x, unless explicitly described otherwise. For example, if the Effects section for library function F
is described as calling library function G, the function ::std::G is meant.

17.6.1.2 Headers [headers]

1 Each element of the C++ standard library is declared or defined (as appropriate) in a header .178

2 The C++ standard library provides 52 C++ library headers, as shown in Table 13.

3 The facilities of the C standard Library are provided in 26 additional headers, as shown in Table 14.

4 Except as noted in Clauses 18 through 30 and Annex D, the contents of each header cname shall be the same
as that of the corresponding header name.h, as specified in the C standard library (1.2) or the C Unicode
TR, as appropriate, as if by inclusion. In the C++ standard library, however, the declarations (except for
names which are defined as macros in C) are within namespace scope (3.3.6) of the namespace std. It is
unspecified whether these names are first declared within the global namespace scope and are then injected
into namespace std by explicit using-declarations (7.3.3).

5 Names which are defined as macros in C shall be defined as macros in the C++ standard library, even if
C grants license for implementation as functions. [Note: the names defined as macros in C include the
following: assert, offsetof, setjmp, va_arg, va_end, and va_start. — end note]

176) The C standard library headers (Annex D.6) also define names within the global namespace, while the C++ headers for C
library facilities (17.6.1.2) may also define names within the global namespace.
177) This gives implementors freedom to use inline namespaces to support multiple configurations of the library.
178) A header is not necessarily a source file, nor are the sequences delimited by < and > in header names necessarily valid
source file names (16.2).

§ 17.6.1.2 421

c© ISO/IEC N3092

Table 13 — C++ library headers

<algorithm> <fstream> <list> <regex> <typeindex>
<array> <functional> <locale> <set> <typeinfo>
<atomic> <future> <map> <sstream> <type_traits>
<bitset> <initializer_list> <memory> <stack> <unordered_map>
<chrono> <iomanip> <mutex> <stdexcept> <unordered_set>
<codecvt> <ios> <new> <streambuf> <utility>
<complex> <iosfwd> <numeric> <string> <valarray>
<condition_variable> <iostream> <ostream> <strstream> <vector>
<deque> <istream> <queue> <system_error>
<exception> <iterator> <random> <thread>
<forward_list> <limits> <ratio> <tuple>

Table 14 — C++ headers for C library facilities

<cassert> <cfloat> <cmath> <cstddef> <ctgmath>
<ccomplex> <cinttypes> <csetjmp> <cstdint> <ctime>
<cctype> <ciso646> <csignal> <cstdio> <cuchar>
<cerrno> <climits> <cstdarg> <cstdlib> <cwchar>
<cfenv> <clocale> <cstdbool> <cstring> <cwctype>

6 Names that are defined as functions in C shall be defined as functions in the C++ standard library.179

7 Identifiers that are keywords or operators in C++ shall not be defined as macros in C++ standard library
headers.180

8 D.6, C standard library headers, describes the effects of using the name.h (C header) form in a C++ pro-
gram.181

17.6.1.3 Freestanding implementations [compliance]

1 Two kinds of implementations are defined: hosted and freestanding (1.4). For a hosted implementation, this
International Standard describes the set of available headers.

2 A freestanding implementation has an implementation-defined set of headers. This set shall include at least
the headers shown in Table 15.

3 The supplied version of the header <cstdlib> shall declare at least the functions abort, atexit, at_-
quick_exit, exit, and quick_exit (18.5). The supplied version of the header <thread> shall meet the
same requirements as for a hosted implementation or including it shall have no effect. The other headers
listed in this table shall meet the same requirements as for a hosted implementation.

17.6.2 Using the library [using]

17.6.2.1 Overview [using.overview]

1 This section describes how a C++ program gains access to the facilities of the C++ standard library. 17.6.2.2

179) This disallows the practice, allowed in C, of providing a masking macro in addition to the function prototype. The only
way to achieve equivalent inline behavior in C++ is to provide a definition as an extern inline function.
180) In particular, including the standard header <iso646.h> or <ciso646> has no effect.
181) The ".h" headers dump all their names into the global namespace, whereas the newer forms keep their names in namespace
std. Therefore, the newer forms are the preferred forms for all uses except for C++ programs which are intended to be strictly
compatible with C.

§ 17.6.2.1 422

c© ISO/IEC N3092

Table 15 — C++ headers for freestanding implementations

Subclause Header(s)
18.2 Types <cstddef>
18.3 Implementation properties <limits>
18.5 Start and termination <cstdlib>
18.6 Dynamic memory management <new>
18.7 Type identification <typeinfo>
18.8 Exception handling <exception>
18.9 Initializer lists <initializer_list>
18.10 Other runtime support <cstdarg>
20.7 Type traits <type_traits>
30.3 Threads <thread>

describes effects during translation phase 4, while 17.6.2.3 describes effects during phase 8 (2.2).

17.6.2.2 Headers [using.headers]

1 The entities in the C++ standard library are defined in headers, whose contents are made available to a
translation unit when it contains the appropriate #include preprocessing directive (16.2).

2 A translation unit may include library headers in any order (Clause 2). Each may be included more than
once, with no effect different from being included exactly once, except that the effect of including either
<cassert> or <assert.h> depends each time on the lexically current definition of NDEBUG.182

3 A translation unit shall include a header only outside of any external declaration or definition, and shall
include the header lexically before the first reference in that translation unit to any of the entities declared
in that header.

17.6.2.3 Linkage [using.linkage]

1 Entities in the C++ standard library have external linkage (3.5). Unless otherwise specified, objects and
functions have the default extern "C++" linkage (7.5).

2 Whether a name from the Standard C library declared with external linkage has extern "C" or extern
"C++" linkage is implementation-defined. It is recommended that an implementation use extern "C++"
linkage for this purpose.183

3 Objects and functions defined in the library and required by a C++ program are included in the program
prior to program startup.

See also: replacement functions (17.6.3.6), run-time changes (17.6.3.7).

17.6.3 Constraints on programs [constraints]

17.6.3.1 Overview [constraints.overview]

1 This section describes restrictions on C++ programs that use the facilities of the C++ standard library.
The following subclauses specify constraints on the program’s use of namespaces (17.6.3.2.1), its use of
various reserved names (17.6.3.3), its use of headers (17.6.3.4), its use of standard library classes as base

182) This is the same as the Standard C library.
183) The only reliable way to declare an object or function signature from the Standard C library is by including the header
that declares it, notwithstanding the latitude granted in 7.1.7 of the C Standard.

§ 17.6.3.1 423

c© ISO/IEC N3092

classes (17.6.3.5), its definitions of replacement functions (17.6.3.6), and its installation of handler functions
during execution (17.6.3.7).

17.6.3.2 Namespace use [namespace.constraints]

17.6.3.2.1 Namespace std [namespace.std]

1 The behavior of a C++ program is undefined if it adds declarations or definitions to namespace std or to a
namespace within namespace std unless otherwise specified. A program may add a template specialization
for any standard library template to namespace std only if the declaration depends on a user-defined type
and the specialization meets the standard library requirements for the original template and is not explicitly
prohibited.184

2 The behavior of a C++ program is undefined if it declares

— an explicit specialization of any member function of a standard library class template, or

— an explicit specialization of any member function template of a standard library class or class template,
or

— an explicit or partial specialization of any member class template of a standard library class or class
template.

A program may explicitly instantiate a template defined in the standard library only if the declaration
depends on the name of a user-defined type and the instantiation meets the standard library requirements
for the original template.

3 A translation unit shall not declare namespace std to be an inline namespace (7.3.1).

17.6.3.2.2 Namespace posix [namespace.posix]

1 The behavior of a C++ program is undefined if it adds declarations or definitions to namespace posix or to
a namespace within namespace posix unless otherwise specified. The namespace posix is reserved for use
by ISO/IEC 9945 and other POSIX standards.

17.6.3.3 Reserved names [reserved.names]

1 The C++ standard library reserves the following kinds of names:

— macros

— global names

— names with external linkage

2 If a program declares or defines a name in a context where it is reserved, other than as explicitly allowed by
this Clause, its behavior is undefined.

17.6.3.3.1 Macro names [macro.names]

1 A translation unit that includes a standard library header shall not #define or #undef names declared in
any standard library header.

184) Any library code that instantiates other library templates must be prepared to work adequately with any user-supplied
specialization that meets the minimum requirements of the Standard.

§ 17.6.3.3.1 424

c© ISO/IEC N3092

2 A translation unit shall not #define or #undef names lexically identical to keywords.

17.6.3.3.2 Global names [global.names]

1 Certain sets of names and function signatures are always reserved to the implementation:

— Each name that contains a double underscore _ _ or begins with an underscore followed by an uppercase
letter (2.12) is reserved to the implementation for any use.

— Each name that begins with an underscore is reserved to the implementation for use as a name in the
global namespace.

17.6.3.3.3 External linkage [extern.names]

1 Each name declared as an object with external linkage in a header is reserved to the implementation to
designate that library object with external linkage,185 both in namespace std and in the global namespace.

2 Each global function signature declared with external linkage in a header is reserved to the implementation
to designate that function signature with external linkage.186

3 Each name from the Standard C library declared with external linkage is reserved to the implementation
for use as a name with extern "C" linkage, both in namespace std and in the global namespace.

4 Each function signature from the Standard C library declared with external linkage is reserved to the
implementation for use as a function signature with both extern "C" and extern "C++" linkage,187 or as
a name of namespace scope in the global namespace.

17.6.3.3.4 Types [extern.types]

1 For each type T from the Standard C library,188 the types ::T and std::T are reserved to the implementation
and, when defined, ::T shall be identical to std::T.

17.6.3.3.5 User-defined literal suffixes [usrlit.suffix]

1 Literal suffix identifiers that do not start with an underscore are reserved for future standardization.

17.6.3.4 Headers [alt.headers]

1 If a file with a name equivalent to the derived file name for one of the C++ standard library headers is not
provided as part of the implementation, and a file with that name is placed in any of the standard places
for a source file to be included (16.2), the behavior is undefined.

17.6.3.5 Derived classes [derived.classes]

1 Virtual member function signatures defined for a base class in the C++ standard library may be overridden
in a derived class defined in the program (10.3).

17.6.3.6 Replacement functions [replacement.functions]

1 Clauses 18 through 30 and Annex D describe the behavior of numerous functions defined by the C++ standard
library. Under some circumstances, however, certain of these function descriptions also apply to replacement

185) The list of such reserved names includes errno, declared or defined in <cerrno>.
186) The list of such reserved function signatures with external linkage includes setjmp(jmp_buf), declared or defined in
<csetjmp>, and va_end(va_list), declared or defined in <cstdarg>.
187) The function signatures declared in <cuchar>, <cwchar>, and <cwctype> are always reserved, notwithstanding the restric-
tions imposed in subclause 4.5.1 of Amendment 1 to the C Standard for these headers.
188) These types are clock_t, div_t, FILE, fpos_t, lconv, ldiv_t, mbstate_t, ptrdiff_t, sig_atomic_t, size_t, time_t, tm,
va_list, wctrans_t, wctype_t, and wint_t.

§ 17.6.3.6 425

c© ISO/IEC N3092

functions defined in the program (17.3).

2 A C++ program may provide the definition for any of eight dynamic memory allocation function signatures
declared in header <new> (3.7.4, Clause 18):

— operator new(std::size_t)

— operator new(std::size_t, const std::nothrow_t&)

— operator new[](std::size_t)

— operator new[](std::size_t, const std::nothrow_t&)

— operator delete(void*)

— operator delete(void*, const std::nothrow_t&)

— operator delete[](void*)

— operator delete[](void*, const std::nothrow_t&)

3 The program’s definitions are used instead of the default versions supplied by the implementation (18.6).
Such replacement occurs prior to program startup (3.2, 3.6). The program’s definitions shall not be specified
as inline. No diagnostic is required.

17.6.3.7 Handler functions [handler.functions]

1 The C++ standard library provides default versions of the following handler functions (Clause 18):

— unexpected_handler

— terminate_handler

2 A C++ program may install different handler functions during execution, by supplying a pointer to a function
defined in the program or the library as an argument to (respectively):

— set_new_handler

— set_unexpected

— set_terminate

See also: subclauses 18.6.2, Storage allocation errors, and 18.8, Exception handling.

17.6.3.8 Other functions [res.on.functions]

1 In certain cases (replacement functions, handler functions, operations on types used to instantiate standard
library template components), the C++ standard library depends on components supplied by a C++ pro-
gram. If these components do not meet their requirements, the Standard places no requirements on the
implementation.

2 In particular, the effects are undefined in the following cases:

— for replacement functions (18.6.1), if the installed replacement function does not implement the se-
mantics of the applicable Required behavior: paragraph.

— for handler functions (18.6.2.3, 18.8.3.1, 18.8.2.2), if the installed handler function does not implement
the semantics of the applicable Required behavior: paragraph

§ 17.6.3.8 426

c© ISO/IEC N3092

— for types used as template arguments when instantiating a template component, if the operations on
the type do not implement the semantics of the applicable Requirements subclause (20.2.5, 23.2,
24.2, 26.2). Operations on such types can report a failure by throwing an exception unless otherwise
specified.

— if any replacement function or handler function or destructor operation exits via an exception, unless
specifically allowed in the applicable Required behavior: paragraph.

— if an incomplete type (3.9) is used as a template argument when instantiating a template component,
unless specifically allowed for that component.

17.6.3.9 Function arguments [res.on.arguments]

1 Each of the following statements applies to all arguments to functions defined in the C++ standard library,
unless explicitly stated otherwise.

— If an argument to a function has an invalid value (such as a value outside the domain of the function,
or a pointer invalid for its intended use), the behavior is undefined.

— If a function argument is described as being an array, the pointer actually passed to the function shall
have a value such that all address computations and accesses to objects (that would be valid if the
pointer did point to the first element of such an array) are in fact valid.

— If a function argument binds to an rvalue reference parameter, the implementation may assume that
this parameter is a unique reference to this argument. [Note: If the parameter is a generic parameter of
the form T&& and an lvalue of type A is bound, the argument binds to an lvalue reference (14.8.2.1) and
thus is not covered by the previous sentence. — end note] [Note: If a program casts an lvalue to an
rvalue while passing that lvalue to a library function (e.g. by calling the function with the argument
move(x)), the program is effectively asking that function to treat that lvalue as a temporary. The
implementation is free to optimize away aliasing checks which might be needed if the argument was
an lvalue. — end note]

17.6.3.10 Shared objects and the library [res.on.objects]

1 The behavior of a program is undefined if calls to standard library functions from different threads may
introduce a data race. The conditions under which this may occur are specified in 17.6.4.8. [Note: Modifying
an object of a standard library type that is shared between threads risks undefined behavior unless objects
of that type are explicitly specified as being sharable without data races or the user supplies a locking
mechanism. — end note]

2 [Note: In particular, the program is required to ensure that completion of the contructor of any object of
a class type defined in the standard library happens before any other member function invocation on that
object and, unless otherwise specified, to ensure that completion of any member function invocation other
than destruction on such an object happens before destruction of that object. This applies even to objects
such as mutexes intended for thread synchronization. — end note]

17.6.3.11 Required paragraph [res.on.required]

1 Violation of the preconditions specified in a function’s Required behavior: paragraph results in undefined
behavior unless the function’s Throws: paragraph specifies throwing an exception when the precondition is

§ 17.6.3.11 427

c© ISO/IEC N3092

violated.

17.6.4 Conforming implementations [conforming]

17.6.4.1 Overview [conforming.overview]

1 This section describes the constraints upon, and latitude of, implementations of the C++ standard library.

2 An implementation’s use of headers is discussed in 17.6.4.2, its use of macros in 17.6.4.3, global functions
in 17.6.4.4, member functions in 17.6.4.5, data race avoidance in 17.6.4.8, access specifiers in 17.6.4.9, class
derivation in 17.6.4.10, and exceptions in 17.6.4.11.

17.6.4.2 Headers [res.on.headers]

1 A C++ header may include other C++ headers. A C++ header shall provide the declarations and definitions
that appear in its synopsis. A C++ header shown in its synopsis as including other C++ headers shall provide
the declarations and definitions that appear in the synopses of those other headers.

2 Certain types and macros are defined in more than one header. Every such entity shall be defined such that
any header that defines it may be included after any other header that also defines it (3.2).

3 The C standard headers (D.6) shall include only their corresponding C++ standard header, as described
in 17.6.1.2.

17.6.4.3 Restrictions on macro definitions [res.on.macro.definitions]

1 The names and global function signatures described in 17.6.1.1 are reserved to the implementation.

2 All object-like macros defined by the C standard library and described in this Clause as expanding to
integral constant expressions are also suitable for use in #if preprocessing directives, unless explicitly stated
otherwise.

17.6.4.4 Global and non-member functions [global.functions]

1 It is unspecified whether any global or non-member functions in the C++ standard library are defined as
inline (7.1.2).

2 A call to a global or non-member function signature described in Clauses 18 through 30 and Annex D shall
behave as if the implementation declared no additional global or non-member function signatures.189

3 An implementation shall not declare a global or non-member function signature with additional default
arguments.

4 Unless otherwise specified, global and non-member functions in the standard library shall not use functions
from another namespace which are found through argument-dependent name lookup (3.4.2). [Note: The
phrase “unless otherwise specified” is intended to allow argument-dependent lookup in cases like that of
ostream_iterators: Effects:

*out_stream << value;
if (delim != 0)

*out_stream << delim;
return (*this);

189) A valid C++ program always calls the expected library global or non-member function. An implementation may also
define additional global or non-member functions that would otherwise not be called by a valid C++ program.

§ 17.6.4.4 428

c© ISO/IEC N3092

— end note]

17.6.4.5 Member functions [member.functions]

1 It is unspecified whether any member functions in the C++ standard library are defined as inline (7.1.2).

2 An implementation may declare additional non-virtual member function signatures within a class:

— by adding arguments with default values to a member function signature;190 [Note: An implementation
may not add arguments with default values to virtual, global, or non-member functions. — end note]

— by replacing a member function signature with default values by two or more member function signa-
tures with equivalent behavior; and

— by adding a member function signature for a member function name.

3 A call to a member function signature described in the C++ standard library behaves as if the implementation
declares no additional member function signatures.191

17.6.4.6 constexpr functions and constructors [constexpr.functions]

1 Within any header that provides any non-defining declarations of constexpr functions or constructors an
implementation shall provide corresponding definitions.

17.6.4.7 Reentrancy [reentrancy]

1 Except where explicitly specified in this standard, it is implementation-defined which functions in the Stan-
dard C++ library may be recursively reentered.

17.6.4.8 Data race avoidance [res.on.data.races]

1 This section specifies requirements that implementations shall meet to prevent data races (1.10). Every
standard library function shall meet each requirement unless otherwise specified. Implementations may
prevent data races in cases other than those specified below.

2 A C++ standard library function shall not directly or indirectly access objects (1.10) accessible by threads
other than the current thread unless the objects are accessed directly or indirectly via the function’s argu-
ments, including this.

3 A C++ standard library function shall not directly or indirectly modify objects (1.10) accessible by threads
other than the current thread unless the objects are accessed directly or indirectly via the function’s non-
const arguments, including this.

4 [Note: This means, for example, that implementations can’t use a static object for internal purposes without
synchronization because it could cause a data race even in programs that do not explicitly share objects
between threads. — end note]

5 A C++ standard library function shall not access objects indirectly accessible via its arguments or via
elements of its container arguments except by invoking functions required by its specification on those
container elements.

6 Operations on iterators obtained by calling a standard library container or string member function may
access the underlying container, but shall not modify it. [Note: In particular, container operations that
invalidate iterators conflict with operations on iterators associated with that container. — end note]

190) Hence, the address of a member function of a class in the C++ standard library has an unspecified type.
191) A valid C++ program always calls the expected library member function, or one with equivalent behavior. An implemen-
tation may also define additional member functions that would otherwise not be called by a valid C++ program.

§ 17.6.4.8 429

c© ISO/IEC N3092

7 Implementations may share their own internal objects between threads if the objects are not visible to users
and are protected against data races.

8 Unless otherwise specified, C++ standard library functions shall perform all operations solely within the
current thread if those operations have effects that are visible (1.10) to users.

9 [Note: This allows implementations to parallelize operations if there are no visible side effects. — end note]

17.6.4.9 Protection within classes [protection.within.classes]

1 It is unspecified whether any function signature or class described in Clauses 18 through 30 and Annex D is
a friend of another class in the C++ standard library.

17.6.4.10 Derived classes [derivation]

1 An implementation may derive any class in the C++ standard library from a class with a name reserved to
the implementation.

2 Certain classes defined in the C++ standard library are required to be derived from other classes in the C++

standard library. An implementation may derive such a class directly from the required base or indirectly
through a hierarchy of base classes with names reserved to the implementation.

3 In any case:

— Every base class described as virtual shall be virtual;

— Every base class described as non-virtual shall not be virtual;

— Unless explicitly stated otherwise, types with distinct names shall be distinct types.192

17.6.4.11 Restrictions on exception handling [res.on.exception.handling]

1 Any of the functions defined in the C++ standard library can report a failure by throwing an exception of
a type described in its Throws: paragraph or its exception-specification (15.4). An implementation may
strengthen the exception-specification for a non-virtual function by removing listed exceptions.193

2 A function may throw an object of a type not listed in its Throws clause if its type is derived from a type
named in the Throws clause and would be caught by an exception handler for the base type.

3 Functions from the C standard library shall not throw exceptions194 except when such a function calls a
program-supplied function that throws an exception.195

4 Destructor operations defined in the C++ standard library shall not throw exceptions. Any other functions
defined in the C++ standard library that do not have an exception-specification may throw implementation-

192) There is an implicit exception to this rule for types that are described as synonyms for basic integral types, such as
size_t (18.2) and streamoff (27.5.1).
193) That is, an implementation of the function will have an explicit exception-specification that lists fewer exceptions than those
specified in this International Standard. It may not, however, change the types of exceptions listed in the exception-specification
from those specified, nor add others.
194) That is, the C library functions can all be treated as if they have a throw() exception-specification. This allows imple-
mentations to make performance optimizations based on the absence of exceptions at runtime.
195) The functions qsort() and bsearch() (25.5) meet this condition.

§ 17.6.4.11 430

c© ISO/IEC N3092

defined exceptions unless otherwise specified.196 An implementation may strengthen this implicit exception-
specification by adding an explicit one.197

17.6.4.12 Restrictions on storage of pointers [res.on.pointer.storage]

1 Objects constructed by the standard library that may hold a user-supplied pointer value or an integer of
type std::intptr_t shall store such values in a traceable pointer location (3.7.4.3). [Note: Other libraries
are strongly encouraged to do the same, since not doing so may result in accidental use of pointers that are
not safely derived. Libraries that store pointers outside the user’s address space should make it appear that
they are stored and retrieved from a traceable pointer location. — end note]

17.6.4.13 Value of error codes [value.error.codes]

1 Certain functions in the C++ standard library report errors via a std::error_code (19.5.2.1) object. That
object’s category() member shall return std::system_category() for errors originating from the oper-
ating system, or a reference to an implementation-defined error_category object for errors originating
elsewhere. The implementation shall define the possible values of value() for each of these error categories.
[Example: For operating systems that are based on POSIX, implementations are encouraged to define the
std::system_category() values as identical to the POSIX errno values, with additional values as de-
fined by the operating system’s documentation. Implementations for operating systems that are not based
on POSIX are encouraged to define values identical to the operating system’s values. For errors that do
not originate from the operating system, the implementation may provide enums for the associated values.
— end example]

196) In particular, they can report a failure to allocate storage by throwing an exception of type bad_alloc, or a class derived
from bad_alloc (18.6.2.1). Library implementations should report errors by throwing exceptions of or derived from the standard
exception classes (18.6.2.1, 18.8, 19.2).
197) That is, an implementation may provide an explicit exception-specification that defines the subset of “any” exceptions
thrown by that function. This implies that the implementation may list implementation-defined types in such an exception-
specification.

§ 17.6.4.13 431

c© ISO/IEC N3092

18 Language support library
[language.support]
18.1 General [support.general]

1 This Clause describes the function signatures that are called implicitly, and the types of objects generated
implicitly, during the execution of some C++ programs. It also describes the headers that declare these
function signatures and define any related types.

2 The following subclauses describe common type definitions used throughout the library, characteristics of
the predefined types, functions supporting start and termination of a C++ program, support for dynamic
memory management, support for dynamic type identification, support for exception processing, support
for initializer lists, and other runtime support, as summarized in Table 16.

Table 16 — Language support library summary

Subclause Header(s)
18.2 Types <cstddef>

<limits>
18.3 Implementation properties <climits>

<cfloat>
18.4 Integer types <cstdint>
18.5 Start and termination <cstdlib>
18.6 Dynamic memory management <new>
18.7 Type identification <typeinfo>
18.8 Exception handling <exception>
18.9 Initializer lists <initializer_list>

<cstdarg>
<csetjmp>

18.10 Other runtime support <ctime>
<csignal>
<cstdlib>
<cstdbool>

18.2 Types [support.types]

1 Table 17 describes the header <cstddef>.

Table 17 — Header <cstddef> synopsis

Type Name(s)
Macros: NULL offsetof
Types: ptrdiff_t size_t

max_align_t nullptr_t

2 The contents are the same as the Standard C library header <stddef.h>, with the following changes:

§ 18.2 432

c© ISO/IEC N3092

3 The macro NULL is an implementation-defined C++ null pointer constant in this International Standard (4.10).198

4 The macro offsetof(type, member-designator) accepts a restricted set of type arguments in this International
Standard. If type is not a standard-layout class (Clause 9), the results are undefined.199 The expression
offsetof(type, member-designator) is never type-dependent (14.6.2.2) and it is value-dependent (14.6.2.3)
if and only if type is dependent. The result of applying the offsetof macro to a field that is a static data
member or a function member is undefined.

5 The type max_align_t is a POD type whose alignment requirement is at least as great as that of every
scalar type, and whose alignment requirement is supported in every context.

6 nullptr_t is defined as follows:
namespace std {

typedef decltype(nullptr) nullptr_t;
}

The type for which nullptr_t is a synonym has the characteristics described in 3.9.1 and 4.10. [Note:
Although nullptr’s address cannot be taken, the address of another nullptr_t object that is an lvalue can
be taken. — end note]

See also: Alignment (3.11), Sizeof (5.3.3), Additive operators (5.7), Free store (12.5), and ISO C 7.1.6.

18.3 Implementation properties [support.limits]

1 The headers <limits>, <climits>, <cfloat>, and <cinttypes> supply characteristics of implementation-
dependent arithmetic types (3.9.1).

18.3.1 Numeric limits [limits]

1 The numeric_limits component provides a C++ program with information about various properties of the
implementation’s representation of the arithmetic types.

2 Specializations shall be provided for each arithmetic type, both floating point and integer, including bool.
The member is_specialized shall be true for all such specializations of numeric_limits.

3 For all members declared static constexpr in the numeric_limits template, specializations shall define
these values in such a way that they are usable as constant expressions.

4 Non-arithmetic standard types, such as complex<T> (26.4.2), shall not have specializations.

Header <limits> synopsis
namespace std {

template<class T> class numeric_limits;
enum float_round_style;
enum float_denorm_style;

template<> class numeric_limits<bool>;

template<> class numeric_limits<char>;
template<> class numeric_limits<signed char>;
template<> class numeric_limits<unsigned char>;
template<> class numeric_limits<char16_t>;
template<> class numeric_limits<char32_t>;

198) Possible definitions include 0 and 0L, but not (void*)0.
199) Note that offsetof is required to work as specified even if unary operator& is overloaded for any of the types involved.

§ 18.3.1 433

c© ISO/IEC N3092

template<> class numeric_limits<wchar_t>;

template<> class numeric_limits<short>;
template<> class numeric_limits<int>;
template<> class numeric_limits<long>;
template<> class numeric_limits<long long>;
template<> class numeric_limits<unsigned short>;
template<> class numeric_limits<unsigned int>;
template<> class numeric_limits<unsigned long>;
template<> class numeric_limits<unsigned long long>;

template<> class numeric_limits<float>;
template<> class numeric_limits<double>;
template<> class numeric_limits<long double>;

}

18.3.1.1 Class template numeric_limits [numeric.limits]

namespace std {
template<class T> class numeric_limits {
public:

static constexpr bool is_specialized = false;
static constexpr T min() throw() { return T(); }
static constexpr T max() throw() { return T(); }
static constexpr T lowest() throw() { return T(); }

static constexpr int digits = 0;
static constexpr int digits10 = 0;
static constexpr int max_digits10 = 0;
static constexpr bool is_signed = false;
static constexpr bool is_integer = false;
static constexpr bool is_exact = false;
static constexpr int radix = 0;
static constexpr T epsilon() throw() { return T(); }
static constexpr T round_error() throw() { return T(); }

static constexpr int min_exponent = 0;
static constexpr int min_exponent10 = 0;
static constexpr int max_exponent = 0;
static constexpr int max_exponent10 = 0;

static constexpr bool has_infinity = false;
static constexpr bool has_quiet_NaN = false;
static constexpr bool has_signaling_NaN = false;
static constexpr float_denorm_style has_denorm = denorm_absent;
static constexpr bool has_denorm_loss = false;
static constexpr T infinity() throw() { return T(); }
static constexpr T quiet_NaN() throw() { return T(); }
static constexpr T signaling_NaN() throw() { return T(); }
static constexpr T denorm_min() throw() { return T(); }

static constexpr bool is_iec559 = false;
static constexpr bool is_bounded = false;
static constexpr bool is_modulo = false;

§ 18.3.1.1 434

c© ISO/IEC N3092

static constexpr bool traps = false;
static constexpr bool tinyness_before = false;
static constexpr float_round_style round_style = round_toward_zero;

};

template<class T> class numeric_limits<const T>;
template<class T> class numeric_limits<volatile T>;
template<class T> class numeric_limits<const volatile T>;

}

1 The default numeric_limits<T> template shall have all members, but with 0 or false values.

2 The value of each member of a specialization of numeric_limits on a cv-qualified type cv T shall be equal
to the value of the corresponding member of the specialization on the unqualified type T.

18.3.1.2 numeric_limits members [numeric.limits.members]

static constexpr T min() throw();

1 Minimum finite value.200

2 For floating types with denormalization, returns the minimum positive normalized value.

3 Meaningful for all specializations in which is_bounded != false, or is_bounded == false && is_-
signed == false.

static constexpr T max() throw();

4 Maximum finite value.201

5 Meaningful for all specializations in which is_bounded != false.

static constexpr T lowest() throw();

6 A finite value x such that there is no other finite value y where y < x.202

7 Meaningful for all specializations in which is_bounded != false.

static constexpr int digits;

8 Number of radix digits that can be represented without change.

9 For integer types, the number of non-sign bits in the representation.

10 For floating point types, the number of radix digits in the mantissa.203

static constexpr int digits10;

11 Number of base 10 digits that can be represented without change.204

12 Meaningful for all specializations in which is_bounded != false.

static constexpr int max_digits10;

200) Equivalent to CHAR_MIN, SHRT_MIN, FLT_MIN, DBL_MIN, etc.
201) Equivalent to CHAR_MAX, SHRT_MAX, FLT_MAX, DBL_MAX, etc.
202) lowest() is necessary because not all floating-point representations have a smallest (most negative) value that is the
negative of the largest (most positive) finite value.
203) Equivalent to FLT_MANT_DIG, DBL_MANT_DIG, LDBL_MANT_DIG.
204) Equivalent to FLT_DIG, DBL_DIG, LDBL_DIG.

§ 18.3.1.2 435

c© ISO/IEC N3092

13 Number of base 10 digits required to ensure that values which differ are always differentiated.

14 Meaningful for all floating point types.

static constexpr bool is_signed;

15 True if the type is signed.

16 Meaningful for all specializations.

static constexpr bool is_integer;

17 True if the type is integer.

18 Meaningful for all specializations.

static constexpr bool is_exact;

19 True if the type uses an exact representation. All integer types are exact, but not all exact types are
integer. For example, rational and fixed-exponent representations are exact but not integer.

20 Meaningful for all specializations.

static constexpr int radix;

21 For floating types, specifies the base or radix of the exponent representation (often 2).205

22 For integer types, specifies the base of the representation.206

23 Meaningful for all specializations.

static constexpr T epsilon() throw();

24 Machine epsilon: the difference between 1 and the least value greater than 1 that is representable.207

25 Meaningful for all floating point types.

static constexpr T round_error() throw();

26 Measure of the maximum rounding error.208

static constexpr int min_exponent;

27 Minimum negative integer such that radix raised to the power of one less than that integer is a
normalized floating point number.209

28 Meaningful for all floating point types.

static constexpr int min_exponent10;

29 Minimum negative integer such that 10 raised to that power is in the range of normalized floating
point numbers.210

30 Meaningful for all floating point types.

static constexpr int max_exponent;

205) Equivalent to FLT_RADIX.
206) Distinguishes types with bases other than 2 (e.g. BCD).
207) Equivalent to FLT_EPSILON, DBL_EPSILON, LDBL_EPSILON.
208) Rounding error is described in ISO/IEC 10967-1 Language independent arithmetic - Part 1 Section 5.2.8 and Annex A
Rationale Section A.5.2.8 - Rounding constants.
209) Equivalent to FLT_MIN_EXP, DBL_MIN_EXP, LDBL_MIN_EXP.
210) Equivalent to FLT_MIN_10_EXP, DBL_MIN_10_EXP, LDBL_MIN_10_EXP.

§ 18.3.1.2 436

c© ISO/IEC N3092

31 Maximum positive integer such that radix raised to the power one less than that integer is a repre-
sentable finite floating point number.211

32 Meaningful for all floating point types.

static constexpr int max_exponent10;

33 Maximum positive integer such that 10 raised to that power is in the range of representable finite
floating point numbers.212

34 Meaningful for all floating point types.

static constexpr bool has_infinity;

35 True if the type has a representation for positive infinity.

36 Meaningful for all floating point types.

37 Shall be true for all specializations in which is_iec559 != false.

static constexpr bool has_quiet_NaN;

38 True if the type has a representation for a quiet (non-signaling) “Not a Number.”213

39 Meaningful for all floating point types.

40 Shall be true for all specializations in which is_iec559 != false.

static constexpr bool has_signaling_NaN;

41 True if the type has a representation for a signaling “Not a Number.”214

42 Meaningful for all floating point types.

43 Shall be true for all specializations in which is_iec559 != false.

static constexpr float_denorm_style has_denorm;

44 denorm_present if the type allows denormalized values (variable number of exponent bits)215, denorm_-
absent if the type does not allow denormalized values, and denorm_indeterminate if it is indetermi-
nate at compile time whether the type allows denormalized values.

45 Meaningful for all floating point types.

static constexpr bool has_denorm_loss;

46 True if loss of accuracy is detected as a denormalization loss, rather than as an inexact result.216

static constexpr T infinity() throw();

47 Representation of positive infinity, if available.217

48 Meaningful for all specializations for which has_infinity != false. Required in specializations for
which is_iec559 != false.

static constexpr T quiet_NaN() throw();

211) Equivalent to FLT_MAX_EXP, DBL_MAX_EXP, LDBL_MAX_EXP.
212) Equivalent to FLT_MAX_10_EXP, DBL_MAX_10_EXP, LDBL_MAX_10_EXP.
213) Required by LIA-1.
214) Required by LIA-1.
215) Required by LIA-1.
216) See IEC 559.
217) Required by LIA-1.

§ 18.3.1.2 437

c© ISO/IEC N3092

49 Representation of a quiet “Not a Number,” if available.218

50 Meaningful for all specializations for which has_quiet_NaN != false. Required in specializations for
which is_iec559 != false.

static constexpr T signaling_NaN() throw();

51 Representation of a signaling “Not a Number,” if available.219

52 Meaningful for all specializations for which has_signaling_NaN != false. Required in specializations
for which is_iec559 != false.

static constexpr T denorm_min() throw();

53 Minimum positive denormalized value.220

54 Meaningful for all floating point types.

55 In specializations for which has_denorm == false, returns the minimum positive normalized value.

static constexpr bool is_iec559;

56 True if and only if the type adheres to IEC 559 standard.221

57 Meaningful for all floating point types.

static constexpr bool is_bounded;

58 True if the set of values representable by the type is finite.222 [Note: All built-in types are bounded.
This member would be false for arbitrary precision types. — end note]

59 Meaningful for all specializations.

static constexpr bool is_modulo;

60 True if the type is modulo.223 A type is modulo if, for any operation involving +, -, or * on values
of that type whose result would fall outside the range [min(),max()], the value returned differs from
the true value by an integer multiple of max() - min() + 1.

61 On most machines, this is false for floating types, true for unsigned integers, and true for signed
integers.

62 Meaningful for all specializations.

static constexpr bool traps;

63 true if, at program startup, there exists a value of the type that would cause an arithmetic operation
using that value to trap.224

64 Meaningful for all specializations.

static constexpr bool tinyness_before;

218) Required by LIA-1.
219) Required by LIA-1.
220) Required by LIA-1.
221) International Electrotechnical Commission standard 559 is the same as IEEE 754.
222) Required by LIA-1.
223) Required by LIA-1.
224) Required by LIA-1.

§ 18.3.1.2 438

c© ISO/IEC N3092

65 true if tinyness is detected before rounding.225

66 Meaningful for all floating point types.

static constexpr float_round_style round_style;

67 The rounding style for the type.226

68 Meaningful for all floating point types. Specializations for integer types shall return round_toward_-
zero.

18.3.1.3 Type float_round_style [round.style]

namespace std {
enum float_round_style {

round_indeterminate = -1,
round_toward_zero = 0,
round_to_nearest = 1,
round_toward_infinity = 2,
round_toward_neg_infinity = 3

};
}

1 The rounding mode for floating point arithmetic is characterized by the values:

— round_indeterminate if the rounding style is indeterminable

— round_toward_zero if the rounding style is toward zero

— round_to_nearest if the rounding style is to the nearest representable value

— round_toward_infinity if the rounding style is toward infinity

— round_toward_neg_infinity if the rounding style is toward negative infinity

18.3.1.4 Type float_denorm_style [denorm.style]

namespace std {
enum float_denorm_style {

denorm_indeterminate = -1,
denorm_absent = 0,
denorm_present = 1

};
}

1 The presence or absence of denormalization (variable number of exponent bits) is characterized by the values:

— denorm_indeterminate if it cannot be determined whether or not the type allows denormalized values

— denorm_absent if the type does not allow denormalized values

— denorm_present if the type does allow denormalized values

225) Refer to IEC 559. Required by LIA-1.
226) Equivalent to FLT_ROUNDS. Required by LIA-1.

§ 18.3.1.4 439

c© ISO/IEC N3092

18.3.1.5 numeric_limits specializations [numeric.special]

1 All members shall be provided for all specializations. However, many values are only required to be mean-
ingful under certain conditions (for example, epsilon() is only meaningful if is_integer is false). Any
value that is not “meaningful” shall be set to 0 or false.

2 [Example:
namespace std {

template<> class numeric_limits<float> {
public:

static constexpr bool is_specialized = true;

inline static constexpr float min() throw() { return 1.17549435E-38F; }
inline static constexpr float max() throw() { return 3.40282347E+38F; }
inline static constexpr float lowest() throw() { return -3.40282347E+38F; }

static constexpr int digits = 24;
static constexpr int digits10 = 6;
static constexpr int max_digits10 = 9;

static constexpr bool is_signed = true;
static constexpr bool is_integer = false;
static constexpr bool is_exact = false;

static constexpr int radix = 2;
inline static constexpr float epsilon() throw() { return 1.19209290E-07F; }
inline static constexpr float round_error() throw() { return 0.5F; }

static constexpr int min_exponent = -125;
static constexpr int min_exponent10 = - 37;
static constexpr int max_exponent = +128;
static constexpr int max_exponent10 = + 38;

static constexpr bool has_infinity = true;
static constexpr bool has_quiet_NaN = true;
static constexpr bool has_signaling_NaN = true;
static constexpr float_denorm_style has_denorm = denorm_absent;
static constexpr bool has_denorm_loss = false;

inline static constexpr float infinity() throw() { return ...; }
inline static constexpr float quiet_NaN() throw() { return ...; }
inline static constexpr float signaling_NaN() throw() { return ...; }
inline static constexpr float denorm_min() throw() { return min(); }

static constexpr bool is_iec559 = true;
static constexpr bool is_bounded = true;
static constexpr bool is_modulo = false;
static constexpr bool traps = true;
static constexpr bool tinyness_before = true;

static constexpr float_round_style round_style = round_to_nearest;
};

}

— end example]

§ 18.3.1.5 440

c© ISO/IEC N3092

3 The specialization for bool shall be provided as follows:
namespace std {

template<> class numeric_limits<bool> {
public:

static constexpr bool is_specialized = true;
static constexpr bool min() throw() { return false; }
static constexpr bool max() throw() { return true; }
static constexpr bool lowest() throw() { return false; }

static constexpr int digits = 1;
static constexpr int digits10 = 0;
static constexpr int max_digits10 = 0;

static constexpr bool is_signed = false;
static constexpr bool is_integer = true;
static constexpr bool is_exact = true;
static constexpr int radix = 2;
static constexpr bool epsilon() throw() { return 0; }
static constexpr bool round_error() throw() { return 0; }

static constexpr int min_exponent = 0;
static constexpr int min_exponent10 = 0;
static constexpr int max_exponent = 0;
static constexpr int max_exponent10 = 0;

static constexpr bool has_infinity = false;
static constexpr bool has_quiet_NaN = false;
static constexpr bool has_signaling_NaN = false;
static constexpr float_denorm_style has_denorm = denorm_absent;
static constexpr bool has_denorm_loss = false;
static constexpr bool infinity() throw() { return 0; }
static constexpr bool quiet_NaN() throw() { return 0; }
static constexpr bool signaling_NaN() throw() { return 0; }
static constexpr bool denorm_min() throw() { return 0; }

static constexpr bool is_iec559 = false;
static constexpr bool is_bounded = true;
static constexpr bool is_modulo = false;

static constexpr bool traps = false;
static constexpr bool tinyness_before = false;
static constexpr float_round_style round_style = round_toward_zero;

};
}

18.3.2 C Library [c.limits]

1 Table 18 describes the header <climits>.

2 The contents are the same as the Standard C library header <limits.h>. [Note: The types of the constants
defined by macros in <climits> are not required to match the types to which the macros refer. — end note]

3 Table 19 describes the header <cfloat>.

4 The contents are the same as the Standard C library header <float.h>.

§ 18.3.2 441

c© ISO/IEC N3092

Table 18 — Header <climits> synopsis

Type Name(s)
Values:
CHAR_BIT INT_MAX LONG_MAX SCHAR_MIN SHRT_MIN ULLONG_MAX
CHAR_MAX LLONG_MAX LONG_MIN SCHAR_MAX UCHAR_MAX ULONG_MAX
CHAR_MIN LLONG_MIN MB_LEN_MAX SHRT_MAX UINT_MAX USHRT_MAX
INT_MIN

Table 19 — Header <cfloat> synopsis

Type Name(s)
Values:
DBL_DIG DBL_MIN_EXP FLT_MAX_EXP LDBL_MANT_DIG
DBL_EPSILON DECIMAL_DIG FLT_MIN LDBL_MAX_10_EXP
DBL_MANT_DIG FLT_DIG FLT_MIN_10_EXP LDBL_MAX_EXP
DBL_MAX FLT_EPSILON FLT_MIN_EXP LDBL_MAX
DBL_MAX_10_EXP FLT_EVAL_METHOD FLT_RADIX LDBL_MIN
DBL_MAX_EXP FLT_MANT_DIG FLT_ROUNDS LDBL_MIN_10_EXP
DBL_MIN FLT_MAX LDBL_DIG LDBL_MIN_EXP
DBL_MIN_10_EXP FLT_MAX_10_EXP LDBL_EPSILON

See also: ISO C 7.1.5, 5.2.4.2.2, 5.2.4.2.1.

18.4 Integer types [cstdint]

18.4.1 Header <cstdint> synopsis [cstdint.syn]

namespace std {
typedef signed integer type int8_t; // optional
typedef signed integer type int16_t; // optional
typedef signed integer type int32_t; // optional
typedef signed integer type int64_t; // optional

typedef signed integer type int_fast8_t;
typedef signed integer type int_fast16_t;
typedef signed integer type int_fast32_t;
typedef signed integer type int_fast64_t;

typedef signed integer type int_least8_t;
typedef signed integer type int_least16_t;
typedef signed integer type int_least32_t;
typedef signed integer type int_least64_t;

typedef signed integer type intmax_t;
typedef signed integer type intptr_t; // optional

typedef unsigned integer type uint8_t; // optional
typedef unsigned integer type uint16_t; // optional
typedef unsigned integer type uint32_t; // optional
typedef unsigned integer type uint64_t; // optional

typedef unsigned integer type uint_fast8_t;

§ 18.4.1 442

c© ISO/IEC N3092

typedef unsigned integer type uint_fast16_t;
typedef unsigned integer type uint_fast32_t;
typedef unsigned integer type uint_fast64_t;

typedef unsigned integer type uint_least8_t;
typedef unsigned integer type uint_least16_t;
typedef unsigned integer type uint_least32_t;
typedef unsigned integer type uint_least64_t;

typedef unsigned integer type uintmax_t;
typedef unsigned integer type uintptr_t; // optional

} // namespace std

1 The header also defines numerous macros of the form:
INT_[FAST LEAST]{8 16 32 64}_MIN
[U]INT_[FAST LEAST]{8 16 32 64}_MAX
INT{MAX PTR}_MIN
[U]INT{MAX PTR}_MAX
{PTRDIFF SIG_ATOMIC WCHAR WINT}{_MAX _MIN}
SIZE_MAX

plus function macros of the form:
[U]INT{8 16 32 64 MAX}_C

2 The header defines all functions, types, and macros the same as 7.18 in the C standard. [Note: The macros
defined by <cstdint> are provided unconditionally. In particular, the symbols __STDC_LIMIT_MACROS and
__STDC_CONSTANT_MACROS (mentioned in footnotes 219, 220, and 222 in the C standard) play no role in
C++. — end note]

18.5 Start and termination [support.start.term]

1 Table 20 describes some of the contents of the header <cstdlib>.

Table 20 — Header <cstdlib> synopsis

Type Name(s)
Macros: EXIT_FAILURE EXIT_SUCCESS
Functions: _Exit abort atexit

at_quick_exit exit quick_exit

2 The contents are the same as the Standard C library header <stdlib.h>, with the following changes:

void _Exit [[noreturn]] (int status)

3 The function _Exit(int status) has additional behavior in this International Standard:

— The program is terminated without executing destructors for objects of automatic, thread, or
static storage duration and without calling functions passed to atexit() (3.6.3).

void abort [[noreturn]] (void)

4 The function abort() has additional behavior in this International Standard:

— The program is terminated without executing destructors for objects of automatic, thread, or
static storage duration and without calling the functions passed to atexit() (3.6.3).

§ 18.5 443

c© ISO/IEC N3092

extern "C" int atexit(void (*f)(void))
extern "C++" int atexit(void (*f)(void))

5 Effects: The atexit() functions register the function pointed to by f to be called without arguments
at normal program termination. It is unspecified whether a call to atexit() that does not happen
before (1.10) a call to exit() will succeed. [Note: the atexit() functions shall not introduce a data
race (17.6.4.8). — end note]

6 Implementation limits: The implementation shall support the registration of at least 32 functions.

7 Returns: The atexit() function returns zero if the registration succeeds, nozero if it fails.

void exit [[noreturn]] (int status)

8 The function exit() has additional behavior in this International Standard:

— First, objects with thread storage duration and associated with the current thread are destroyed.
Next, objects with static storage duration are destroyed and functions registered by calling atexit
are called.227 See 3.6.3 for the order of destructions and calls. (Automatic objects are not
destroyed as a result of calling exit().)228

If control leaves a registered function called by exit because the function does not provide a
handler for a thrown exception, terminate() shall be called.

— Next, all open C streams (as mediated by the function signatures declared in <cstdio>) with
unwritten buffered data are flushed, all open C streams are closed, and all files created by calling
tmpfile() are removed.

— Finally, control is returned to the host environment. If status is zero or EXIT_SUCCESS, an
implementation-defined form of the status successful termination is returned. If status is EXIT_-
FAILURE, an implementation-defined form of the status unsuccessful termination is returned.
Otherwise the status returned is implementation-defined.229

9 The function exit() never returns to its caller.

extern "C" int at_quick_exit(void (*f)(void));
extern "C++" int at_quick_exit(void (*f)(void));

10 Effects: The at_quick_exit() functions register the function pointed to by f to be called without
arguments when quick_exit is called. It is unspecified whether a call to at_quick_exit() that
does not happen before (1.10) all calls to quick_exit will succeed. [Note: the at_quick_exit()
functions do not introduce a data race (17.6.4.8). — end note] [Note: The order of registration may
be indeterminate if at_quick_exit was called from more than one thread. — end note] [Note: The
at_quick_exit registrations are distinct from the atexit registrations, and applications may need to
call both registration functions with the same argument. — end note]

11 Implementation limits: The implementation shall support the registration of at least 32 functions.

12 Returns: zero if the registration succeeds, non-zero if it fails.

void quick_exit [[noreturn]] (int status)

227) A function is called for every time it is registered.
228) Objects with automatic storage duration are all destroyed in a program whose function main() contains no automatic
objects and executes the call to exit(). Control can be transferred directly to such a main() by throwing an exception that is
caught in main().
229) The macros EXIT_FAILURE and EXIT_SUCCESS are defined in <cstdlib>.

§ 18.5 444

c© ISO/IEC N3092

13 Effects: Functions registered by calls to at_quick_exit are called in the reverse order of their reg-
istration, except that a function shall be called after any previously registered functions that had
already been called at the time it was registered. Objects shall not be destroyed as a result of calling
quick_exit. If control leaves a registered function called by quick_exit because the function does
not provide a handler for a thrown exception, terminate() shall be called. [Note: at_quick_exit
may call a registered function from a different thread than the one that registered it, so registered
functions should not rely on the identity of objects with thread storage duration. — end note] After
calling registered functions, quick_exit shall call _Exit(status). [Note: The standard file buffers
are not flushed. See: ISO C 7.20.4.4. — end note]

14 The function quick_exit() never returns to its caller.

See also: 3.6, 3.6.3, ISO C 7.10.4.

18.6 Dynamic memory management [support.dynamic]

1 The header <new> defines several functions that manage the allocation of dynamic storage in a program. It
also defines components for reporting storage management errors.

Header <new> synopsis
namespace std {

class bad_alloc;
class bad_array_new_length;
struct nothrow_t {};
extern const nothrow_t nothrow;
typedef void (*new_handler)();
new_handler set_new_handler(new_handler new_p) throw();

}

void* operator new(std::size_t size) throw(std::bad_alloc);
void* operator new(std::size_t size, const std::nothrow_t&) throw();
void operator delete(void* ptr) throw();
void operator delete(void* ptr, const std::nothrow_t&) throw();
void* operator new[](std::size_t size) throw(std::bad_alloc);
void* operator new[](std::size_t size, const std::nothrow_t&) throw();
void operator delete[](void* ptr) throw();
void operator delete[](void* ptr, const std::nothrow_t&) throw();

void* operator new (std::size_t size, void* ptr) throw();
void* operator new[](std::size_t size, void* ptr) throw();
void operator delete (void* ptr, void*) throw();
void operator delete[](void* ptr, void*) throw();

See also: 1.7, 3.7.4, 5.3.4, 5.3.5, 12.5, 20.9.

18.6.1 Storage allocation and deallocation [new.delete]

1 Except where otherwise specified, the provisions of (3.7.4) apply to the library versions of operator new
and operator delete.

18.6.1.1 Single-object forms [new.delete.single]

void* operator new(std::size_t size) throw(std::bad_alloc);

§ 18.6.1.1 445

c© ISO/IEC N3092

1 Effects: The allocation function (3.7.4.1) called by a new-expression (5.3.4) to allocate size bytes of
storage suitably aligned to represent any object of that size.

2 Replaceable: a C++ program may define a function with this function signature that displaces the
default version defined by the C++ standard library.

3 Required behavior: Return a non-null pointer to suitably aligned storage (3.7.4), or else throw a bad_-
alloc exception. This requirement is binding on a replacement version of this function.

4 Default behavior:

— Executes a loop: Within the loop, the function first attempts to allocate the requested storage.
Whether the attempt involves a call to the Standard C library function malloc is unspecified.

— Returns a pointer to the allocated storage if the attempt is successful. Otherwise, if the argument
in the most recent call to set_new_handler() (18.6.2.4) was a null pointer, throws bad_alloc.

— Otherwise, the function calls the current new_handler function (18.6.2.3). If the called function
returns, the loop repeats.

— The loop terminates when an attempt to allocate the requested storage is successful or when a
called new_handler function does not return.

void* operator new(std::size_t size, const std::nothrow_t&) throw();

5 Effects: Same as above, except that it is called by a placement version of a new-expression when a
C++ program prefers a null pointer result as an error indication, instead of a bad_alloc exception.

6 Replaceable: a C++ program may define a function with this function signature that displaces the
default version defined by the C++ standard library.

7 Required behavior: Return a non-null pointer to suitably aligned storage (3.7.4), or else return a null
pointer. This nothrow version of operator new returns a pointer obtained as if acquired from the
(possibly replaced) ordinary version. This requirement is binding on a replacement version of this
function.

8 Default behavior: Calls operator new(size). If the call returns normally, returns the result of that
call. Otherwise, returns a null pointer.

9 [Example:
T* p1 = new T; // throws bad_alloc if it fails
T* p2 = new(nothrow) T; // returns 0 if it fails

— end example]

void operator delete(void* ptr) throw();

10 Effects: The deallocation function (3.7.4.2) called by a delete-expression to render the value of ptr
invalid.

11 Replaceable: a C++ program may define a function with this function signature that displaces the
default version defined by the C++ standard library.

12 Requires: ptr shall be a null pointer or its value shall be a value returned by an earlier call to the (possi-
bly replaced) operator new(std::size_t) or operator new(std::size_t,const std::nothrow_-
t&) which has not been invalidated by an intervening call to operator delete(void*).

13 Requires: If an implementation has strict pointer safety (3.7.4.3) then ptr shall be a safely-derived
pointer.

§ 18.6.1.1 446

c© ISO/IEC N3092

14 Default behavior: If ptr is null, does nothing. Otherwise, reclaims the storage allocated by the earlier
call to operator new.

15 Remarks: It is unspecified under what conditions part or all of such reclaimed storage will be allocated
by subsequent calls to operator new or any of calloc, malloc, or realloc, declared in <cstdlib>.

void operator delete(void* ptr, const std::nothrow_t&) throw();

16 Effects: The deallocation function (3.7.4.2) called by the implementation to render the value of ptr
invalid when the constructor invoked from a nothrow placement version of the new-expression throws
an exception.

17 Replaceable: a C++ program may define a function with this function signature that displaces the
default version defined by the C++ standard library.

18 Requires: If an implementation has strict pointer safety (3.7.4.3) then ptr shall be a safely-derived
pointer.

19 Default behavior: calls operator delete(ptr).

18.6.1.2 Array forms [new.delete.array]

void* operator new[](std::size_t size) throw(std::bad_alloc);

1 Effects: The allocation function (3.7.4.1) called by the array form of a new-expression (5.3.4) to allocate
size bytes of storage suitably aligned to represent any array object of that size or smaller.230

2 Replaceable: a C++ program can define a function with this function signature that displaces the
default version defined by the C++ standard library.

3 Required behavior: Same as for operator new(std::size_t). This requirement is binding on a re-
placement version of this function.

4 Default behavior: Returns operator new(size).

void* operator new[](std::size_t size, const std::nothrow_t&) throw();

5 Effects: Same as above, except that it is called by a placement version of a new-expression when a
C++ program prefers a null pointer result as an error indication, instead of a bad_alloc exception.

6 Replaceable: a C++ program can define a function with this function signature that displaces the
default version defined by the C++ standard library.

7 Required behavior: Return a non-null pointer to suitably aligned storage (3.7.4), or return a null
pointer. This requirement is binding on a replacement version of this function.

8 Default behavior: Calls operator new[](size). If the call returns normally, returns the result of that
call. Otherwise, returns a null pointer.

void operator delete[](void* ptr) throw();

9 Effects: The deallocation function (3.7.4.2) called by the array form of a delete-expression to render
the value of ptr invalid.

230) It is not the direct responsibility of operator new[](std::size_t) or operator delete[](void*) to note the repetition
count or element size of the array. Those operations are performed elsewhere in the array new and delete expressions. The
array new expression, may, however, increase the size argument to operator new[](std::size_t) to obtain space to store
supplemental information.

§ 18.6.1.2 447

c© ISO/IEC N3092

10 Replaceable: a C++ program can define a function with this function signature that displaces the
default version defined by the C++ standard library.

11 Requires: ptr shall be a null pointer or its value shall be the value returned by an earlier call to
operator new[](std::size_t) or operator new[](std::size_t,const std::nothrow_t&) which
has not been invalidated by an intervening call to operator delete[](void*).

12 Requires: If an implementation has strict pointer safety (3.7.4.3) then ptr shall be a safely-derived
pointer.

13 Default behavior: Calls operator delete(ptr).

void operator delete[](void* ptr, const std::nothrow_t&) throw();

14 Effects: The deallocation function (3.7.4.2) called by the implementation to render the value of ptr
invalid when the constructor invoked from a nothrow placement version of the array new-expression
throws an exception.

15 Replaceable: a C++ program may define a function with this function signature that displaces the
default version defined by the C++ standard library.

16 Requires: If an implementation has strict pointer safety (3.7.4.3) then ptr shall be a safely-derived
pointer.

17 Default behavior: calls operator delete[](ptr).

18.6.1.3 Placement forms [new.delete.placement]

1 These functions are reserved, a C++ program may not define functions that displace the versions in the
Standard C++ library (17.6.3). The provisions of (3.7.4) do not apply to these reserved placement forms of
operator new and operator delete.

void* operator new(std::size_t size, void* ptr) throw();

2 Returns: ptr.

3 Remarks: Intentionally performs no other action.

4 [Example: This can be useful for constructing an object at a known address:
void* place = operator new(sizeof(Something));
Something* p = new (place) Something();

— end example]

void* operator new[](std::size_t size, void* ptr) throw();

5 Returns: ptr.

6 Remarks: Intentionally performs no other action.

void operator delete(void* ptr, void*) throw();

7 Effects: Intentionally performs no action.

8 Requires: If an implementation has strict pointer safety (3.7.4.3) then ptr shall be a safely-derived
pointer.

9 Remarks: Default function called when any part of the initialization in a placement new expression that
invokes the library’s non-array placement operator new terminates by throwing an exception (5.3.4).

§ 18.6.1.3 448

c© ISO/IEC N3092

void operator delete[](void* ptr, void*) throw();

10 Effects: Intentionally performs no action.

11 Requires: If an implementation has strict pointer safety (3.7.4.3) then ptr shall be a safely-derived
pointer.

12 Remarks: Default function called when any part of the initialization in a placement new expression
that invokes the library’s array placement operator new terminates by throwing an exception (5.3.4).

18.6.1.4 Data races [new.delete.dataraces]

1 The library versions of operator new and operator delete, user replacement versions of global operator
new and operator delete, and the C standard library functions calloc, malloc, realloc, and free shall
not introduce data races (1.10) as a result of concurrent calls from different threads. Calls to these functions
that allocate or deallocate a particular unit of storage shall occur in a single total order, and each such
deallocation call shall happen before the next allocation (if any) in this order.

18.6.2 Storage allocation errors [alloc.errors]

18.6.2.1 Class bad_alloc [bad.alloc]

namespace std {
class bad_alloc : public exception {
public:

bad_alloc() throw();
bad_alloc(const bad_alloc&) throw();
bad_alloc& operator=(const bad_alloc&) throw();
virtual const char* what() const throw();

};
}

1 The class bad_alloc defines the type of objects thrown as exceptions by the implementation to report a
failure to allocate storage.

bad_alloc() throw();

2 Effects: Constructs an object of class bad_alloc.

3 Remarks: The result of calling what() on the newly constructed object is implementation-defined.

bad_alloc(const bad_alloc&) throw();
bad_alloc& operator=(const bad_alloc&) throw();

4 Effects: Copies an object of class bad_alloc.

virtual const char* what() const throw();

5 Returns: An implementation-defined ntbs.

18.6.2.2 Class bad_array_new_length [new.badlength]

namespace std {
class bad_array_new_length : public bad_alloc {
public:

bad_array_new_length() throw();
};

}

§ 18.6.2.2 449

c© ISO/IEC N3092

1 The class bad_array_new_length defines the type of objects thrown as exceptions by the implementation
to report an attempt to allocate an array of size greater than an implementation-defined limit (5.3.4).

bad_array_new_length() throw();

2 Effects: constructs an object of class bad_array_new_length.

3 Remarks: the result of calling what() on the newly constructed object is implementation-defined.

18.6.2.3 Type new_handler [new.handler]

typedef void (*new_handler)();

1 The type of a handler function to be called by operator new() or operator new[]() (18.6.1) when
they cannot satisfy a request for additional storage.

2 Required behavior: A new_handler shall perform one of the following:

— make more storage available for allocation and then return;

— throw an exception of type bad_alloc or a class derived from bad_alloc;

— terminate execution of the program without returning to the caller;

18.6.2.4 set_new_handler [set.new.handler]

new_handler set_new_handler(new_handler new_p) throw();

1 Effects: Establishes the function designated by new_p as the current new_handler.

2 Returns: 0 on the first call, the previous new_handler on subsequent calls.

18.7 Type identification [support.rtti]

1 The header <typeinfo> defines a type associated with type information generated by the implementation.
It also defines two types for reporting dynamic type identification errors.

Header <typeinfo> synopsis
namespace std {

class type_info;
class bad_cast;
class bad_typeid;

}

See also: 5.2.7, 5.2.8.

18.7.1 Class type_info [type.info]

namespace std {
class type_info {
public:

virtual ~type_info();
bool operator==(const type_info& rhs) const;
bool operator!=(const type_info& rhs) const;
bool before(const type_info& rhs) const;
size_t hash_code() const throw();
const char* name() const;

§ 18.7.1 450

c© ISO/IEC N3092

type_info(const type_info& rhs) = delete; // cannot be copied
type_info& operator=(const type_info& rhs) = delete; // cannot be copied

};
}

1 The class type_info describes type information generated by the implementation. Objects of this class
effectively store a pointer to a name for the type, and an encoded value suitable for comparing two types for
equality or collating order. The names, encoding rule, and collating sequence for types are all unspecified
and may differ between programs.

bool operator==(const type_info& rhs) const;

2 Effects: Compares the current object with rhs.

3 Returns: true if the two values describe the same type.

bool operator!=(const type_info& rhs) const;

4 Returns: !(*this == rhs).

bool before(const type_info& rhs) const;

5 Effects: Compares the current object with rhs.

6 Returns: true if *this precedes rhs in the implementation’s collation order.

size_t hash_code() const throw();

7 Returns: an unspecified value, except that within a single execution of the program, it shall return the
same value for any two type_info objects which compare equal.

8 Remark: an implementation should return different values for two type_info objects which do not
compare equal.

const char* name() const;

9 Returns: an implementation-defined ntbs.

10 Remarks: The message may be a null-terminated multibyte string (17.5.2.1.4.2), suitable for conversion
and display as a wstring (21.3, 22.4.1.4)

18.7.2 Class bad_cast [bad.cast]

namespace std {
class bad_cast : public exception {
public:

bad_cast() throw();
bad_cast(const bad_cast&) throw();
bad_cast& operator=(const bad_cast&) throw();
virtual const char* what() const throw();

};
}

1 The class bad_cast defines the type of objects thrown as exceptions by the implementation to report the
execution of an invalid dynamic-cast expression (5.2.7).

bad_cast() throw();

§ 18.7.2 451

c© ISO/IEC N3092

2 Effects: Constructs an object of class bad_cast.

3 Remarks: The result of calling what() on the newly constructed object is implementation-defined.

bad_cast(const bad_cast&) throw();
bad_cast& operator=(const bad_cast&) throw();

4 Effects: Copies an object of class bad_cast.

virtual const char* what() const throw();

5 Returns: An implementation-defined ntbs.

6 Remarks: The message may be a null-terminated multibyte string (17.5.2.1.4.2), suitable for conversion
and display as a wstring (21.3, 22.4.1.4)

18.7.3 Class bad_typeid [bad.typeid]

namespace std {
class bad_typeid : public exception {
public:

bad_typeid() throw();
bad_typeid(const bad_typeid&) throw();
bad_typeid& operator=(const bad_typeid&) throw();
virtual const char* what() const throw();

};
}

1 The class bad_typeid defines the type of objects thrown as exceptions by the implementation to report a
null pointer in a typeid expression (5.2.8).

bad_typeid() throw();

2 Effects: Constructs an object of class bad_typeid.

3 Remarks: The result of calling what() on the newly constructed object is implementation-defined.

bad_typeid(const bad_typeid&) throw();
bad_typeid& operator=(const bad_typeid&) throw();

4 Effects: Copies an object of class bad_typeid.

virtual const char* what() const throw();

5 Returns: An implementation-defined ntbs.

6 Remarks: The message may be a null-terminated multibyte string (17.5.2.1.4.2), suitable for conversion
and display as a wstring (21.3, 22.4.1.4)

18.8 Exception handling [support.exception]

1 The header <exception> defines several types and functions related to the handling of exceptions in a C++

program.

Header <exception> synopsis
namespace std {

class exception;
class bad_exception;

§ 18.8 452

c© ISO/IEC N3092

class nested_exception;

typedef void (*unexpected_handler)();
unexpected_handler set_unexpected(unexpected_handler f) throw();
void unexpected [[noreturn]] ();

typedef void (*terminate_handler)();
terminate_handler set_terminate(terminate_handler f) throw();
void terminate [[noreturn]] ();

bool uncaught_exception() throw();

typedef unspecified exception_ptr;

exception_ptr current_exception();
void rethrow_exception [[noreturn]] (exception_ptr p);
template<class E> exception_ptr make_exception_ptr(E e);

template <class T> void throw_with_nested [[noreturn]] (T&& t);
template <class E> void rethrow_if_nested(const E& e);

}

See also: 15.5.

18.8.1 Class exception [exception]

namespace std {
class exception {
public:

exception() throw();
exception(const exception&) throw();
exception& operator=(const exception&) throw();
virtual ~exception() throw();
virtual const char* what() const throw();

};
}

1 The class exception defines the base class for the types of objects thrown as exceptions by C++ standard
library components, and certain expressions, to report errors detected during program execution.

2 Each standard library class T that derives from class exception shall have a publicly accessible copy con-
structor and a publicly accessible copy assignment operator that do not exit with an exception. These
member functions shall meet the following postcondition: If two objects lhs and rhs both have dynamic
type T and lhs is a copy of rhs, then strcmp(lhs.what(), rhs.what()) shall equal 0.

exception() throw();

3 Effects: Constructs an object of class exception.

4 Remarks: Does not throw any exceptions.

exception(const exception& rhs) throw();
exception& operator=(const exception& rhs) throw();

5 Effects: Copies an exception object.

§ 18.8.1 453

c© ISO/IEC N3092

6 Postcondition: If *this and rhs both have dynamic type exception then strcmp(what(), rhs.what())
shall equal 0.

virtual ~exception() throw();

7 Effects: Destroys an object of class exception.

8 Remarks: Does not throw any exceptions.

virtual const char* what() const throw();

9 Returns: An implementation-defined ntbs.

10 Remarks: The message may be a null-terminated multibyte string (17.5.2.1.4.2), suitable for conversion
and display as a wstring (21.3, 22.4.1.4). The return value remains valid until the exception object
from which it is obtained is destroyed or a non-const member function of the exception object is called.

18.8.2 Violating exception-specifications [exception.unexpected]

18.8.2.1 Class bad_exception [bad.exception]

namespace std {
class bad_exception : public exception {
public:

bad_exception() throw();
bad_exception(const bad_exception&) throw();
bad_exception& operator=(const bad_exception&) throw();
virtual const char* what() const throw();

};
}

1 The class bad_exception defines the type of objects thrown as described in (15.5.2).

bad_exception() throw();

2 Effects: Constructs an object of class bad_exception.

3 Remarks: The result of calling what() on the newly constructed object is implementation-defined.

bad_exception(const bad_exception&) throw();
bad_exception& operator=(const bad_exception&) throw();

4 Effects: Copies an object of class bad_exception.

virtual const char* what() const throw();

5 Returns: An implementation-defined ntbs.

6 Remarks: The message may be a null-terminated multibyte string (17.5.2.1.4.2), suitable for conversion
and display as a wstring (21.3, 22.4.1.4).

18.8.2.2 Type unexpected_handler [unexpected.handler]

typedef void (*unexpected_handler)();

1 The type of a handler function to be called by unexpected() when a function attempts to throw an
exception not listed in its dynamic-exception-specification.

2 Required behavior: An unexpected_handler shall not return. See also 15.5.2.

§ 18.8.2.2 454

c© ISO/IEC N3092

3 Default behavior: The implementation’s default unexpected_handler calls terminate().

18.8.2.3 set_unexpected [set.unexpected]

unexpected_handler set_unexpected(unexpected_handler f) throw();

1 Effects: Establishes the function designated by f as the current unexpected_handler.

2 Requires: f shall not be a null pointer.

3 Returns: The previous unexpected_handler.

18.8.2.4 unexpected [unexpected]

void unexpected [[noreturn]] ();

1 Called by the implementation when a function exits via an exception not allowed by its exception-
specification (15.5.2). May also be called directly by the program.

2 Effects: Calls the unexpected_handler function in effect immediately after evaluating the throw-
expression (18.8.2.2), if called by the implementation, or calls the current unexpected_handler, if
called by the program.

18.8.3 Abnormal termination [exception.terminate]

18.8.3.1 Type terminate_handler [terminate.handler]

typedef void (*terminate_handler)();

1 The type of a handler function to be called by terminate() when terminating exception processing.

2 Required behavior: A terminate_handler shall terminate execution of the program without returning
to the caller.

3 Default behavior: The implementation’s default terminate_handler calls abort().

18.8.3.2 set_terminate [set.terminate]

terminate_handler set_terminate(terminate_handler f) throw();

1 Effects: Establishes the function designated by f as the current handler function for terminating
exception processing.

2 Requires: f shall not be a null pointer.

3 Returns: The previous terminate_handler.

18.8.3.3 terminate [terminate]

void terminate [[noreturn]] ();

1 Called by the implementation when exception handling must be abandoned for any of several rea-
sons (15.5.1). May also be called directly by the program.

2 Effects: Calls the terminate_handler function in effect immediately after evaluating the throw-
expression (18.8.3.1), if called by the implementation, or calls the current terminate_handler function,
if called by the program.

§ 18.8.3.3 455

c© ISO/IEC N3092

18.8.4 uncaught_exception [uncaught]

bool uncaught_exception() throw();

1 Returns: true after completing evaluation of a throw-expression until either completing initialization
of the exception-declaration in the matching handler or entering unexpected() due to the throw; or
after entering terminate() for any reason other than an explicit call to terminate(). [Note: This
includes stack unwinding (15.2). — end note]

2 Remarks: When uncaught_exception() returns true, throwing an exception can result in a call of
terminate() (15.5.1).

18.8.5 Exception Propagation [propagation]

typedef unspecified exception_ptr;

1 The type exception_ptr can be used to refer to an exception object.

2 exception_ptr shall satisfy the requirements of NullablePointer (20.2.3).

3 Two non-null values of type exception_ptr are equivalent and compare equal if and only if they refer
to the same exception.

4 The default constructor of exception_ptr produces the null value of the type.

5 exception_ptr shall not be implicitly convertible to any arithmetic, enumeration, or pointer type.

6 [Note: An implementation might use a reference-counted smart pointer as exception_ptr. — end
note]

exception_ptr current_exception();

7 Returns: An exception_ptr object that refers to the currently handled exception (15.3) or a copy of
the currently handled exception, or a null exception_ptr object if no exception is being handled. The
referenced object shall remain valid at least as long as there is an exception_ptr object that refers to
it. If the function needs to allocate memory and the attempt fails, it returns an exception_ptr object
that refers to an instance of bad_alloc. It is unspecified whether the return values of two successive
calls to current_exception refer to the same exception object. [Note: that is, it is unspecified whether
current_exception creates a new copy each time it is called. — end note] If the attempt to copy
the current exception object throws an exception, the function returns an exception_ptr object that
refers to the thrown exception or, if this is not possible, to an instance of bad_exception. [Note: The
copy constructor of the thrown exception may also fail, so the implementation is allowed to substitute
a bad_exception object to avoid infinite recursion. — end note]

8 Throws: nothing.

void rethrow_exception [[noreturn]] (exception_ptr p);

9 Requires: p shall not be a null pointer.

10 Throws: the exception object to which p refers.

template<class E> exception_ptr make_exception_ptr(E e);

11 Effects: Creates an exception_ptr object that refers to a copy of e, as if
try {

throw e;
} catch(...) {

§ 18.8.5 456

c© ISO/IEC N3092

return current_exception();
}

12 [Note: this function is provided for convenience and efficiency reasons. — end note]

18.8.6 nested_exception [except.nested]

namespace std {
class nested_exception {
public:

nested_exception() throw();
nested_exception(const nested_exception&) throw() = default;
nested_exception& operator=(const nested_exception&) throw() = default;
virtual ~nested_exception() = default;

// access functions
void rethrow_nested [[noreturn]] () const;
exception_ptr nested_ptr() const;

};

template<class T> void throw_with_nested [[noreturn]] (T&& t);
template <class E> void rethrow_if_nested(const E& e);

}

1 The class nested_exception is designed for use as a mixin through multiple inheritance. It captures the
currently handled exception and stores it for later use.

2 [Note: nested_exception has a virtual destructor to make it a polymorphic class. Its presence can be
tested for with dynamic_cast. — end note]

nested_exception() throw();

3 Effects: The constructor calls current_exception() and stores the returned value.

void rethrow_nested [[noreturn]] () const;

4 Effects: If nested_ptr() returns a null pointer, the function calls terminate(). Otherwise, it throws
the stored exception captured by *this.

exception_ptr nested_ptr() const;

5 Returns: the stored exception captured by this nested_exception object.

template <class T> void throw_with_nested [[noreturn]] (T&& t);

6 Requires: T shall be CopyConstructible.

7 Throws: If T is a non-union class type not derived from nested_exception, an exception of unspecified
type that is publicly derived from both T and nested_exception, otherwise t.

template <class E> void rethrow_if_nested(const E& e);

8 Effects: If the dynamic type of e is publicly and unambiguously derived from nested_exception, calls
dynamic_cast<const nested_exception&>(e).rethrow_nested().

§ 18.8.6 457

c© ISO/IEC N3092

18.9 Initializer lists [support.initlist]

1 The header <initializer_list> defines one type.

Header <initializer_list> synopsis
namespace std {

template<class E> class initializer_list {
public:

typedef E value_type;
typedef const E& reference;
typedef const E& const_reference;
typedef size_t size_type;

typedef const E* iterator;
typedef const E* const_iterator;

initializer_list();

size_t size() const; // number of elements
const E* begin() const; // first element
const E* end() const; // one past the last element

};

// 18.9.3 initializer list range access
template<class E> const E* begin(initializer_list<E> il);
template<class E> const E* end(initializer_list<E> il);

}

2 An object of type initializer_list<E> provides access to an array of objects of type const E. [Note:
A pair of pointers or a pointer plus a length would be obvious representations for initializer_list.
initializer_list is used to implement initializer lists as specified in 8.5.4. Copying an initializer list does
not copy the underlying elements. — end note]

18.9.1 Initializer list constructors [support.initlist.cons]

initializer_list();

1 Effects: constructs an empty initializer_list object.

2 Postcondition: size() == 0

3 Throws: nothing.

18.9.2 Initializer list access [support.initlist.access]

const E* begin() const;

1 Returns: a pointer to the beginning of the array. If size() == 0 the values of begin() and end()
are unspecified but they shall be identical.

2 Throws: nothing.

const E* end() const;

3 Returns: begin() + size()

4 Throws: nothing.

§ 18.9.2 458

c© ISO/IEC N3092

size_t size() const;

5 Returns: the number of elements in the array.

6 Throws: nothing.

7 Complexity: constant time.

18.9.3 Initializer list range access [support.initlist.range]

template<class E> const E* begin(initializer_list<E> il);

1 Returns: il.begin().

template<class E> const E* end(initializer_list<E> il);

2 Returns: il.end().

18.10 Other runtime support [support.runtime]

1 Headers <cstdarg> (variable arguments), <csetjmp> (nonlocal jumps), <ctime> (system clock clock(),
time()), <csignal> (signal handling), <cstdlib> (runtime environment getenv(), system()), and <cstd-
bool> (_ _ bool_true_false_are_defined).

Table 21 — Header <cstdarg> synopsis

Type Name(s)
Macros: va_arg va_end va_start
va_copy
Type: va_list

Table 22 — Header <csetjmp> synopsis

Type Name(s)
Macro: setjmp
Type: jmp_buf
Function: longjmp

Table 23 — Header <ctime> synopsis

Type Name(s)
Macro: CLOCKS_PER_SEC
Type: clock_t
Function: clock

2 The contents of these headers are the same as the Standard C library headers <stdarg.h>, <setjmp.h>,
<time.h>, <signal.h>, and <stdlib.h> respectively, with the following changes:

3 The restrictions that ISO C places on the second parameter to the va_start() macro in header <stdarg.h>
are different in this International Standard. The parameter parmN is the identifier of the rightmost parameter
in the variable parameter list of the function definition (the one just before the ...).231 If the parameter

231) Note that va_start is required to work as specified even if unary operator& is overloaded for the type of parmN.

§ 18.10 459

c© ISO/IEC N3092

Table 24 — Header <csignal> synopsis

Type Name(s)
Macros: SIGABRT SIGILL SIGSEGV SIG_DFL
SIG_IGN SIGFPE SIGINT SIGTERM SIG_ERR
Type: sig_atomic_t
Functions: raise signal

Table 25 — Header <cstdlib> synopsis

Type Name(s)
Functions: getenv system

Table 26 — Header <cstdbool> synopsis

Type Name(s)
Macro: __bool_true_false_are_defined

parmN is declared with a function, array, or reference type, or with a type that is not compatible with the
type that results when passing an argument for which there is no parameter, the behavior is undefined.

See also: ISO C 4.8.1.1.

4 The function signature longjmp(jmp_buf jbuf, int val) has more restricted behavior in this International
Standard. A setjmp/longjmp call pair has undefined behavior if replacing the setjmp and longjmp by catch
and throw would invoke any non-trivial destructors for any automatic objects.

See also: ISO C 7.10.4, 7.8, 7.6, 7.12.

5 Calls to the function getenv shall not introduce a data race (17.6.4.8) provided that nothing modifies the
environment. [Note: Calls to the POSIX functions setenv and putenv modify the environment. — end
note]

6 The header <cstdbool> and the header <stdbool.h> shall not define macros named bool, true, and false.

7 The common subset of the C and C++ languages consists of all declarations, definitions, and expressions
that may appear in a well formed C++ program and also in a conforming C program. A POF (“plain
old function”) is a function that uses only features from this common subset, and that does not directly
or indirectly use any function that is not a POF, except that it may use functions defined in Clause 29
that are not member functions. All signal handlers shall have C linkage. A POF that could be used as
a signal handler in a conforming C program does not produce undefined behavior when used as a signal
handler in a C++ program. The behavior of any other function used as a signal handler in a C++ program
is implementation-defined.232

232) In particular, a signal handler using exception handling is very likely to have problems. Also, invoking std::exit may cause
destruction of objects, including those of the standard library implementation, which, in general, yields undefined behavior in
a signal handler (see 1.9).

§ 18.10 460

c© ISO/IEC N3092

19 Diagnostics library [diagnostics]
19.1 General [diagnostics.general]

1 This Clause describes components that C++ programs may use to detect and report error conditions.

2 The following subclauses describe components for reporting several kinds of exceptional conditions, docu-
menting program assertions, and a global variable for error number codes, as summarized in Table 27.

Table 27 — Diagnostics library summary

Subclause Header(s)
19.2 Exception classes <stdexcept>
19.3 Assertions <cassert>
19.4 Error numbers <cerrno>
19.5 System error support <system_error>

19.2 Exception classes [std.exceptions]

1 The Standard C++ library provides classes to be used to report certain errors (17.6.4.11) in C++ programs.
In the error model reflected in these classes, errors are divided into two broad categories: logic errors and
runtime errors.

2 The distinguishing characteristic of logic errors is that they are due to errors in the internal logic of the
program. In theory, they are preventable.

3 By contrast, runtime errors are due to events beyond the scope of the program. They cannot be easily
predicted in advance. The header <stdexcept> defines several types of predefined exceptions for reporting
errors in a C++ program. These exceptions are related by inheritance.

Header <stdexcept> synopsis
namespace std {

class logic_error;
class domain_error;
class invalid_argument;
class length_error;
class out_of_range;

class runtime_error;
class range_error;
class overflow_error;
class underflow_error;

}

19.2.1 Class logic_error [logic.error]

namespace std {
class logic_error : public exception {
public:

explicit logic_error(const string& what_arg);

§ 19.2.1 461

c© ISO/IEC N3092

explicit logic_error(const char* what_arg);
};

}

1 The class logic_error defines the type of objects thrown as exceptions to report errors presumably de-
tectable before the program executes, such as violations of logical preconditions or class invariants.

logic_error(const string& what_arg);

2 Effects: Constructs an object of class logic_error.

3 Postcondition: strcmp(what(), what_arg.c_str()) == 0.

logic_error(const char* what_arg);

4 Effects: Constructs an object of class logic_error.

5 Postcondition: strcmp(what(), what_arg) == 0.

19.2.2 Class domain_error [domain.error]

namespace std {
class domain_error : public logic_error {
public:

explicit domain_error(const string& what_arg);
explicit domain_error(const char* what_arg);

};
}

1 The class domain_error defines the type of objects thrown as exceptions by the implementation to report
domain errors.

domain_error(const string& what_arg);

2 Effects: Constructs an object of class domain_error.

3 Postcondition: strcmp(what(), what_arg.c_str()) == 0.

domain_error(const char* what_arg);

4 Effects: Constructs an object of class domain_error.

5 Postcondition: strcmp(what(), what_arg) == 0.

19.2.3 Class invalid_argument [invalid.argument]

namespace std {
class invalid_argument : public logic_error {
public:

explicit invalid_argument(const string& what_arg);
explicit invalid_argument(const char* what_arg);

};
}

1 The class invalid_argument defines the type of objects thrown as exceptions to report an invalid argument.

invalid_argument(const string& what_arg);

§ 19.2.3 462

c© ISO/IEC N3092

2 Effects: Constructs an object of class invalid_argument.

3 Postcondition: strcmp(what(), what_arg.c_str()) == 0.

invalid_argument(const char* what_arg);

4 Effects: Constructs an object of class invalid_argument.

5 Postcondition: strcmp(what(), what_arg) == 0.

19.2.4 Class length_error [length.error]

namespace std {
class length_error : public logic_error {
public:

explicit length_error(const string& what_arg);
explicit length_error(const char* what_arg);

};
}

1 The class length_error defines the type of objects thrown as exceptions to report an attempt to produce
an object whose length exceeds its maximum allowable size.

length_error(const string& what_arg);

2 Effects: Constructs an object of class length_error.

3 Postcondition: strcmp(what(), what_arg.c_str()) == 0.

length_error(const char* what_arg);

4 Effects: Constructs an object of class length_error.

5 Postcondition: strcmp(what(), what_arg) == 0.

19.2.5 Class out_of_range [out.of.range]

namespace std {
class out_of_range : public logic_error {
public:

explicit out_of_range(const string& what_arg);
explicit out_of_range(const char* what_arg);

};
}

1 The class out_of_range defines the type of objects thrown as exceptions to report an argument value not
in its expected range.

out_of_range(const string& what_arg);

2 Effects: Constructs an object of class out_of_range.

3 Postcondition: strcmp(what(), what_arg.c_str()) == 0.

out_of_range(const char* what_arg);

4 Effects: Constructs an object of class out_of_range.

5 Postcondition: strcmp(what(), what_arg) == 0.

§ 19.2.5 463

c© ISO/IEC N3092

19.2.6 Class runtime_error [runtime.error]

namespace std {
class runtime_error : public exception {
public:

explicit runtime_error(const string& what_arg);
explicit runtime_error(const char* what_arg);

};
}

1 The class runtime_error defines the type of objects thrown as exceptions to report errors presumably
detectable only when the program executes.

runtime_error(const string& what_arg);

2 Effects: Constructs an object of class runtime_error.

3 Postcondition: strcmp(what(), what_arg.c_str()) == 0.

runtime_error(const char* what_arg);

4 Effects: Constructs an object of class runtime_error.

5 Postcondition: strcmp(what(), what_arg) == 0.

19.2.7 Class range_error [range.error]

namespace std {
class range_error : public runtime_error {
public:

explicit range_error(const string& what_arg);
explicit range_error(const char* what_arg);

};
}

1 The class range_error defines the type of objects thrown as exceptions to report range errors in internal
computations.

range_error(const string& what_arg);

2 Effects: Constructs an object of class range_error.

3 Postcondition: strcmp(what(), what_arg.c_str()) == 0.

range_error(const char* what_arg);

4 Effects: Constructs an object of class range_error.

5 Postcondition: strcmp(what(), what_arg) == 0.

19.2.8 Class overflow_error [overflow.error]

namespace std {
class overflow_error : public runtime_error {
public:

explicit overflow_error(const string& what_arg);
explicit overflow_error(const char* what_arg);

};

§ 19.2.8 464

c© ISO/IEC N3092

}

1 The class overflow_error defines the type of objects thrown as exceptions to report an arithmetic overflow
error.

overflow_error(const string& what_arg);

2 Effects: Constructs an object of class overflow_error.

3 Postcondition: strcmp(what(), what_arg.c_str()) == 0.

overflow_error(const char* what_arg);

4 Effects: Constructs an object of class overflow_error.

5 Postcondition: strcmp(what(), what_arg) == 0.

19.2.9 Class underflow_error [underflow.error]

namespace std {
class underflow_error : public runtime_error {
public:

explicit underflow_error(const string& what_arg);
explicit underflow_error(const char* what_arg);

};
}

1 The class underflow_error defines the type of objects thrown as exceptions to report an arithmetic under-
flow error.

underflow_error(const string& what_arg);

2 Effects: Constructs an object of class underflow_error.

3 Postcondition: strcmp(what(), what_arg.c_str()) == 0.

underflow_error(const char* what_arg);

4 Effects: Constructs an object of class underflow_error.

5 Postcondition: strcmp(what(), what_arg) == 0.

19.3 Assertions [assertions]

1 The header <cassert>, described in (Table 28), provides a macro for documenting C++ program assertions
and a mechanism for disabling the assertion checks.

Table 28 — Header <cassert> synopsis

Type Name(s)
Macro: assert

2 The contents are the same as the Standard C library header <assert.h>.

See also: ISO C 7.2.

§ 19.3 465

c© ISO/IEC N3092

19.4 Error numbers [errno]

1 The header <cerrno> is described in Table 29. Its contents are the same as the POSIX header <errno.h>,
except that errno shall be defined as a macro. [Note: The intent is to remain in close alignment with the
POSIX standard. — end note] A separate errno value shall be provided for each thread.

Table 29 — Header <cerrno> synopsis

Type Name(s)
Macros: ECONNREFUSED EIO ENODEV ENOTEMPTY ERANGE
E2BIG ECONNRESET EISCONN ENOENT ENOTRECOVERABLE EROFS
EACCES EDEADLK EISDIR ENOEXEC ENOTSOCK ESPIPE
EADDRINUSE EDESTADDRREQ ELOOP ENOLCK ENOTSUP ESRCH
EADDRNOTAVAIL EDOM EMFILE ENOLINK ENOTTY ETIME
EAFNOSUPPORT EEXIST EMLINK ENOMEM ENXIO ETIMEDOUT
EAGAIN EFAULT EMSGSIZE ENOMSG EOPNOTSUPP ETXTBSY
EALREADY EFBIG ENAMETOOLONG ENOPROTOOPT EOVERFLOW EWOULDBLOCK
EBADF EHOSTUNREACH ENETDOWN ENOSPC EOWNERDEAD EXDEV
EBADMSG EIDRM ENETRESET ENOSR EPERM errno
EBUSY EILSEQ ENETUNREACH ENOSTR EPIPE
ECANCELED EINPROGRESS ENFILE ENOSYS EPROTO
ECHILD EINTR ENOBUFS ENOTCONN EPROTONOSUPPORT
ECONNABORTED EINVAL ENODATA ENOTDIR EPROTOTYPE

19.5 System error support [syserr]

1 This subclause describes components that the standard library and C++ programs may use to report error
conditions originating from the operating system or other low-level application program interfaces.

2 Components described in this subclause shall not change the value of errno (19.4). Implementations should
leave the error states provided by other libraries unchanged.

Header <system_error> synopsis
namespace std {

class error_category;
class error_code;
class error_condition;
class system_error;

template <class T>
struct is_error_code_enum : public false_type {};

template <class T>
struct is_error_condition_enum : public false_type {};

enum class errc {
address_family_not_supported, // EAFNOSUPPORT
address_in_use, // EADDRINUSE
address_not_available, // EADDRNOTAVAIL
already_connected, // EISCONN
argument_list_too_long, // E2BIG
argument_out_of_domain, // EDOM
bad_address, // EFAULT

§ 19.5 466

c© ISO/IEC N3092

bad_file_descriptor, // EBADF
bad_message, // EBADMSG
broken_pipe, // EPIPE
connection_aborted, // ECONNABORTED
connection_already_in_progress, // EALREADY
connection_refused, // ECONNREFUSED
connection_reset, // ECONNRESET
cross_device_link, // EXDEV
destination_address_required, // EDESTADDRREQ
device_or_resource_busy, // EBUSY
directory_not_empty, // ENOTEMPTY
executable_format_error, // ENOEXEC
file_exists, // EEXIST
file_too_large, // EFBIG
filename_too_long, // ENAMETOOLONG
function_not_supported, // ENOSYS
host_unreachable, // EHOSTUNREACH
identifier_removed, // EIDRM
illegal_byte_sequence, // EILSEQ
inappropriate_io_control_operation, // ENOTTY
interrupted, // EINTR
invalid_argument, // EINVAL
invalid_seek, // ESPIPE
io_error, // EIO
is_a_directory, // EISDIR
message_size, // EMSGSIZE
network_down, // ENETDOWN
network_reset, // ENETRESET
network_unreachable, // ENETUNREACH
no_buffer_space, // ENOBUFS
no_child_process, // ECHILD
no_link, // ENOLINK
no_lock_available, // ENOLCK
no_message_available, // ENODATA
no_message, // ENOMSG
no_protocol_option, // ENOPROTOOPT
no_space_on_device, // ENOSPC
no_stream_resources, // ENOSR
no_such_device_or_address, // ENXIO
no_such_device, // ENODEV
no_such_file_or_directory, // ENOENT
no_such_process, // ESRCH
not_a_directory, // ENOTDIR
not_a_socket, // ENOTSOCK
not_a_stream, // ENOSTR
not_connected, // ENOTCONN
not_enough_memory, // ENOMEM
not_supported, // ENOTSUP
operation_canceled, // ECANCELED
operation_in_progress, // EINPROGRESS
operation_not_permitted, // EPERM
operation_not_supported, // EOPNOTSUPP
operation_would_block, // EWOULDBLOCK
owner_dead, // EOWNERDEAD
permission_denied, // EACCES

§ 19.5 467

c© ISO/IEC N3092

protocol_error, // EPROTO
protocol_not_supported, // EPROTONOSUPPORT
read_only_file_system, // EROFS
resource_deadlock_would_occur, // EDEADLK
resource_unavailable_try_again, // EAGAIN
result_out_of_range, // ERANGE
state_not_recoverable, // ENOTRECOVERABLE
stream_timeout, // ETIME
text_file_busy, // ETXTBSY
timed_out, // ETIMEDOUT
too_many_files_open_in_system, // ENFILE
too_many_files_open, // EMFILE
too_many_links, // EMLINK
too_many_symbolic_link_levels, // ELOOP
value_too_large, // EOVERFLOW
wrong_protocol_type, // EPROTOTYPE

};

template <> struct is_error_condition_enum<errc> : true_type { }

error_code make_error_code(errc e);
error_condition make_error_condition(errc e);

// 19.5.4 Comparison operators:
bool operator==(const error_code& lhs, const error_code& rhs);
bool operator==(const error_code& lhs, const error_condition& rhs);
bool operator==(const error_condition& lhs, const error_code& rhs);
bool operator==(const error_condition& lhs, const error_condition& rhs);
bool operator!=(const error_code& lhs, const error_code& rhs);
bool operator!=(const error_code& lhs, const error_condition& rhs);
bool operator!=(const error_condition& lhs, const error_code& rhs);
bool operator!=(const error_condition& lhs, const error_condition& rhs);

// 19.5.5 Hash support
template <class T> struct hash;
template <> struct hash<error_code>;

} // namespace std

3 The value of each enum errc constant shall be the same as the value of the <cerrno> macro shown in
the above synopsis. Whether or not the <system_error> implementation exposes the <cerrno> macros is
unspecified.

19.5.1 Class error_category [syserr.errcat]

19.5.1.1 Class error_category overview [syserr.errcat.overview]

1 The class error_category serves as a base class for types used to identify the source and encoding of a
particular category of error code. Classes may be derived from error_category to support categories of
errors in addition to those defined in this International Standard. Such classes shall behave as specified in
this subclause. [Note: error_category objects are passed by reference, and two such objects are equal
if they have the same address. This means that applications using custom error_category types should
create a single object of each such type. — end note]

namespace std {
class error_category {

§ 19.5.1.1 468

c© ISO/IEC N3092

public:
virtual ~error_category();
error_category(const error_category&) = delete;
error_category& operator=(const error_category&) = delete;
virtual const char* name() const = 0;
virtual error_condition default_error_condition(int ev) const;
virtual bool equivalent(int code, const error_condition& condition) const;
virtual bool equivalent(const error_code& code, int condition) const;
virtual string message(int ev) const = 0;

bool operator==(const error_category& rhs) const;
bool operator!=(const error_category& rhs) const;
bool operator<(const error_category& rhs) const;

};

const error_category& generic_category();
const error_category& system_category();

} // namespace std

19.5.1.2 Class error_category virtual members [syserr.errcat.virtuals]

virtual const char* name() const = 0;

1 Returns: A string naming the error category.

2 Throws: Nothing.

virtual error_condition default_error_condition(int ev) const;

3 Returns: error_condition(ev, *this).

4 Throws: Nothing.

virtual bool equivalent(int code, const error_condition& condition) const;

5 Returns: default_error_condition(code) == condition.

6 Throws: Nothing.

virtual bool equivalent(const error_code& code, int condition) const;

7 Returns: *this == code.category() && code.value() == condition.

8 Throws: Nothing.

virtual string message(int ev) const = 0;

9 Returns: A string that describes the error condition denoted by ev.

19.5.1.3 Class error_category non-virtual members [syserr.errcat.nonvirtuals]

bool operator==(const error_category& rhs) const;

1 Returns: this == &rhs.

bool operator!=(const error_category& rhs) const;

2 Returns: !(*this == rhs).

§ 19.5.1.3 469

c© ISO/IEC N3092

bool operator<(const error_category& rhs) const;

3 Returns: less<const error_category*>()(this, &rhs).

[Note: less (20.8.6) provides a total ordering for pointers. — end note]

4 Throws: Nothing.

19.5.1.4 Program defined classes derived from error_category [syserr.errcat.derived]

virtual const char *name() const = 0;

1 Returns: a string naming the error category.

2 Throws: Nothing.

virtual error_condition default_error_condition(int ev) const;

3 Returns: An object of type error_condition that corresponds to ev.

4 Throws: Nothing.

virtual bool equivalent(int code, const error_condition& condition) const;

5 Returns: true if, for the category of error represented by *this, code is considered equivalent to
condition; otherwise, false.

6 Throws: Nothing.

virtual bool equivalent(const error_code& code, int condition) const;

7 Returns: true if, for the category of error represented by *this, code is considered equivalent to
condition; otherwise, false.

8 Throws: Nothing.

19.5.1.5 Error category objects [syserr.errcat.objects]

const error_category& generic_category();

1 Returns: A reference to an object of a type derived from class error_category.

2 Remarks: The object’s default_error_condition and equivalent virtual functions shall behave as
specified for the class error_category. The object’s name virtual function shall return a pointer to
the string "generic".

const error_category& system_category();

3 Returns: A reference to an object of a type derived from class error_category.

4 Remarks: The object’s equivalent virtual functions shall behave as specified for class error_-
category. The object’s name virtual function shall return a pointer to the string "system". The
object’s default_error_condition virtual function shall behave as follows:

If the argument ev corresponds to a POSIX errno value posv, the function shall return error_-
condition(posv, generic_category()). Otherwise, the function shall return error_condition(ev,
system_category()). What constitutes correspondence for any given operating system is unspeci-
fied. [Note: The number of potential system error codes is large and unbounded, and some may
not correspond to any POSIX errno value. Thus implementations are given latitude in determining
correspondence. — end note]

§ 19.5.1.5 470

c© ISO/IEC N3092

19.5.2 Class error_code [syserr.errcode]

19.5.2.1 Class error_code overview [syserr.errcode.overview]

1 The class error_code describes an object used to hold error code values, such as those originating from the
operating system or other low-level application program interfaces. [Note: Class error_code is an adjunct
to error reporting by exception. — end note]

namespace std {
class error_code {
public:

// 19.5.2.2 constructors:
error_code();
error_code(int val, const error_category& cat);
template <class ErrorCodeEnum>

error_code(ErrorCodeEnum e);

// 19.5.2.3 modifiers:
void assign(int val, const error_category& cat);
template <class ErrorCodeEnum>

errorcode& operator=(ErrorCodeEnum e);
void clear();

// 19.5.2.4 observers:
int value() const;
const error_category& category() const;
error_condition default_error_condition() const;
string message() const;
explicit operator bool() const;

private:
int val_; // exposition only
const error_category* cat_; // exposition only

};

// 19.5.2.5 non-member functions:
bool operator<(const error_code& lhs, const error_code& rhs);

template <class charT, class traits>
basic_ostream<charT,traits>&

operator<<(basic_ostream<charT,traits>& os, const error_code& ec);
} // namespace std

19.5.2.2 Class error_code constructors [syserr.errcode.constructors]

error_code();

1 Effects: Constructs an object of type error_code.

2 Postconditions: val_ == 0 and cat_ == &system_category().

3 Throws: Nothing.

error_code(int val, const error_category& cat);

4 Effects: Constructs an object of type error_code.

5 Postconditions: val_ == val and cat_ == &cat.

§ 19.5.2.2 471

c© ISO/IEC N3092

6 Throws: Nothing.

template <class ErrorCodeEnum>
error_code(ErrorCodeEnum e);

7 Effects: Constructs an object of type error_code.

8 Postconditions: *this == make_error_code(e).

9 Throws: Nothing.

10 Remarks: This constructor shall not participate in overload resolution unless
is_error_code_enum<ErrorCodeEnum>::value is true.

19.5.2.3 Class error_code modifiers [syserr.errcode.modifiers]

void assign(int val, const error_category& cat);

1 Postconditions: val_ == val and cat_ == &cat.

2 Throws: Nothing.

template <class ErrorCodeEnum>
error_code& operator=(ErrorCodeEnum e);

3 Postconditions: *this == make_error_code(e).

4 Returns: *this.

5 Throws: Nothing.

6 Remarks: This operator shall not participate in overload resolution unless
is_error_code_enum<ErrorCodeEnum>::value is true.

void clear();

7 Postconditions: value() == 0 and category() == system_category().

19.5.2.4 Class error_code observers [syserr.errcode.observers]

int value() const;

1 Returns: val_.

2 Throws: Nothing.

const error_category& category() const;

3 Returns: *cat_.

4 Throws: Nothing.

error_condition default_error_condition() const;

5 Returns: category().default_error_condition(value()).

6 Throws: Nothing.

string message() const;

7 Returns: category().message(value()).

§ 19.5.2.4 472

c© ISO/IEC N3092

explicit operator bool() const;

8 Returns: value() != 0.

9 Throws: Nothing.

19.5.2.5 Class error_code non-member functions [syserr.errcode.nonmembers]

error_code make_error_code(errc e);

Returns: error_code(static_cast<int>(e), generic_category()).

bool operator<(const error_code& lhs, const error_code& rhs);

1 Returns: lhs.category() < rhs.category() || lhs.category() == rhs.category() && lhs.value()
< rhs.value().

2 Throws: Nothing.

template <class charT, class traits>
basic_ostream<charT,traits>&

operator<<(basic_ostream<charT,traits>& os, const error_code& ec);

3 Effects: os << ec.category().name() << ’:’ << ec.value().

19.5.3 Class error_condition [syserr.errcondition]

19.5.3.1 Class error_condition overview [syserr.errcondition.overview]

1 The class error_condition describes an object used to hold values identifying error conditions. [Note:
error_condition values are portable abstractions, while error_code values (19.5.2) are implementation
specific. — end note]

namespace std {
class error_condition {
public:

// 19.5.3.2 constructors:
error_condition();
error_condition(int val, const error_category& cat);
template <class ErrorConditionEnum>

error_condition(ErrorConditionEnum e);

// 19.5.3.3 modifiers:
void assign(int val, const error_category& cat);
template<class ErrorConditionEnum>

error_condition& operator=(ErrorConditionEnum e);
void clear();

// 19.5.3.4 observers:
int value() const;
const error_category& category() const;
string message() const;
explicit operator bool() const;

private:
int val_; // exposition only
const error_category* cat_; // exposition only

§ 19.5.3.1 473

c© ISO/IEC N3092

};

// 19.5.3.5 non-member functions:
bool operator<(const error_condition& lhs, const error_condition& rhs);

} // namespace std

19.5.3.2 Class error_condition constructors [syserr.errcondition.constructors]

error_condition();

1 Effects: Constructs an object of type error_condition.

2 Postconditions: val_ == 0 and cat_ == &generic_category().

3 Throws: Nothing.

error_condition(int val, const error_category& cat);

4 Effects: Constructs an object of type error_condition.

5 Postconditions: val_ == val and cat_ == &cat.

6 Throws: Nothing.

template <class ErrorConditionEnum>
error_condition(ErrorConditionEnum e);

7 Effects: Constructs an object of type error_condition.

8 Postcondition: *this == make_error_condition(e).

9 Throws: Nothing.

10 Remarks: This constructor shall not participate in overload resolution unless
is_error_condition_enum<ErrorConditionEnum>::value is true.

19.5.3.3 Class error_condition modifiers [syserr.errcondition.modifiers]

void assign(int val, const error_category& cat);

1 Postconditions: val_ == val and cat_ == &cat.

2 Throws: Nothing.

template <class ErrorConditionEnum>
error_condition& operator=(ErrorConditionEnum e);

3 Postcondition: *this == make_error_condition(e).

4 Returns: *this.

5 Throws: Nothing.

6 Remarks: This operator shall not participate in overload resolution unless
is_error_condition_enum<ErrorConditionEnum>::value is true.

void clear();

Postconditions: value() == 0 and category() == generic_category().

§ 19.5.3.3 474

c© ISO/IEC N3092

19.5.3.4 Class error_condition observers [syserr.errcondition.observers]

int value() const;

1 Returns: val_.

2 Throws: Nothing.

const error_category& category() const;

3 Returns: *cat_.

4 Throws: Nothing.

string message() const;

5 Returns: category().message(value()).

explicit operator bool() const;

6 Returns: value() != 0.

7 Throws: Nothing.

19.5.3.5 Class error_condition non-member functions [syserr.errcondition.nonmembers]

error_condition make_error_condition(errc e);

Returns: error_condition(static_cast<int>(e), generic_category()).

bool operator<(const error_condition& lhs, const error_condition& rhs);

1 Returns: lhs.category() < rhs.category() || lhs.category() == rhs.category() && lhs.value()
< rhs.value().

2 Throws: Nothing.

19.5.4 Comparison operators [syserr.compare]

bool operator==(const error_code& lhs, const error_code& rhs);

1 Returns: lhs.category() == rhs.category() && lhs.value() == rhs.value().

2 Throws: Nothing.

bool operator==(const error_code& lhs, const error_condition& rhs);

3 Returns: lhs.category().equivalent(lhs.value(), rhs) || rhs.category().equivalent(lhs,
rhs.value()).

4 Throws: Nothing.

bool operator==(const error_condition& lhs, const error_code& rhs);

5 Returns: rhs.category().equivalent(rhs.value(), lhs) || lhs.category.equivalent(rhs, lhs.value()).

6 Throws: Nothing.

bool operator==(const error_condition& lhs, const error_condition& rhs);

§ 19.5.4 475

c© ISO/IEC N3092

7 Returns: lhs.category() == rhs.category() && lhs.value() == rhs.value().

8 Throws: Nothing.

bool operator!=(const error_code& lhs, const error_code& rhs);
bool operator!=(const error_code& lhs, const error_condition& rhs);
bool operator!=(const error_condition& lhs, const error_code& rhs);
bool operator!=(const error_condition& lhs, const error_condition& rhs);

9 Returns: !(lhs == rhs).

10 Throws: Nothing.

19.5.5 Hash support [syserr.hash]

template <> struct hash<error_code>;

1 Requires: the template specialization shall meet the requirements of class template hash (20.8.15).

19.5.6 Class system_error [syserr.syserr]

19.5.6.1 Class system_error overview [syserr.syserr.overview]

1 The class system_error describes an exception object used to report error conditions that have an associated
error code. Such error conditions typically originate from the operating system or other low-level application
program interfaces.

2 [Note: If an error represents an out-of-memory condition, implementations are encouraged to throw an
exception object of type bad_alloc 18.6.2.1 rather than system_error. — end note]

namespace std {
class system_error : public runtime_error {
public:

system_error(error_code ec, const string& what_arg);
system_error(error_code ec, const char* what_arg);
system_error(error_code ec);
system_error(int ev, const error_category& ecat,

const string& what_arg);
system_error(int ev, const error_category& ecat,

const char* what_arg);
system_error(int ev, const error_category& ecat);
const error_code& code() const throw();
const char* what() const throw();

};
} // namespace std

19.5.6.2 Class system_error members [syserr.syserr.members]

system_error(error_code ec, const string& what_arg);

1 Effects: Constructs an object of class system_error.

2 Postconditions: code() == ec.

string(what()).find(what_arg) != string::npos.

system_error(error_code ec, const char* what_arg);

§ 19.5.6.2 476

c© ISO/IEC N3092

3 Effects: Constructs an object of class system_error.

4 Postconditions: code() == ec.

string(what()).find(what_arg) != string::npos.

system_error(error_code ec);

5 Effects: Constructs an object of class system_error.

6 Postconditions: code() == ec.

system_error(int ev, const error_category& ecat,
const string& what_arg);

7 Effects: Constructs an object of class system_error.

8 Postconditions: code() == error_code(ev, ecat).

string(what()).find(what_arg) != string::npos.

system_error(int ev, const error_category& ecat,
const char* what_arg);

9 Effects: Constructs an object of class system_error.

10 Postconditions: code() == error_code(ev, ecat).

string(what()).find(what_arg) != string::npos.

system_error(int ev, const error_category& ecat);

11 Effects: Constructs an object of class system_error.

12 Postconditions: code() == error_code(ev, ecat).

const error_code& code() const throw();

13 Returns: ec or error_code(ev, ecat), from the constructor, as appropriate.

const char *what() const throw();

14 Returns: An ntbs incorporating and code().message() the arguments supplied in the constructor.

[Note: The returned NTBS might be the contents of what_arg + ": " + code.message(). — end
note]

§ 19.5.6.2 477

c© ISO/IEC N3092

20 General utilities library [utilities]
20.1 General [utilities.general]

1 This Clause describes components used by other elements of the C++ standard library. These components
may also be used by C++ programs.

2 The following subclauses describe utility and allocator requirements, utility components, compile-time ratio-
nal arithmetic, tuples, type traits templates, function objects, dynamic memory management utilities, and
date/time utilities, as summarized in Table 30.

Table 30 — General utilities library summary

Subclause Header(s)
20.2 Requirements
20.3 Utility components <utility>
20.5 Fixed-size sequences of bits <bitset>
20.6 Compile-time rational arithmetic <ratio>
20.4 Tuples <tuple>
20.7 Type traits <type_traits>
20.8 Function objects <functional>

<memory>
20.9 Memory <cstdlib>

<cstring>
20.10 Time utilities <chrono>
20.11 Date and time functions <ctime>
20.12 Type indexes <typeindex>

20.2 Requirements [utility.requirements]

1 20.2.1 describes requirements on types and expressions used to instantiate templates defined in the C++

standard library. 20.2.2 describes the requirements on swappable types and swappable expressions. 20.2.4
describes the requirements on hash function objects. 20.2.5 describes the requirements on storage allocators.

20.2.1 Template argument requirements [utility.arg.requirements]

1 The template definitions in the C++ standard library refer to various named requirements whose details are
set out in tables 31–38. In these tables, T is an object or reference type to be supplied by a C++ program
instantiating a template; a, b, and c are values of type (possibly const) T; s and t are modifiable lvalues of
type T; u denotes an identifier; rv is an rvalue of type T; and v is an lvalue of type (possibly const) T or an
rvalue of type const T.

2 In general, a default constructor is not required. Certain container class member function signatures specify
the default constructor as a default argument. T() shall be a well-defined expression (8.5) if one of those
signatures is called using the default argument (8.3.6).

§ 20.2.1 478

c© ISO/IEC N3092

Table 31 — EqualityComparable requirements [equalitycomparable]

Expression Return type Requirement
a == b convertible to bool == is an equivalence relation, that is, it has the

following properties:
— For all a, a == a.
— If a == b, then b == a.
— If a == b and b == c, then a == c.

Table 32 — LessThanComparable requirements [lessthancomparable]

Expression Return type Requirement
a < b convertible to bool < is a strict weak ordering relation (25.4)

Table 33 — DefaultConstructible requirements [defaultconstructible]

Expression Post-condition
T t; object t is default-initialized
T u{}; object u is value-initialized
T() a temporary object of type T is value-initialized
T{}

Table 34 — MoveConstructible requirements [moveconstructible]

Expression Post-condition
T u(rv); u is equivalent to the value of rv before the construction
T(rv) T(rv) is equivalent to the value of rv before the construction
[Note: rv remains a valid object. Its state is unspecified — end note]

Table 35 — CopyConstructible requirements (in addition to MoveConstructible) [copyconstructible]

Expression Post-condition
T u(v); the value of v is unchanged and is equivalent to u
T(v) the value of v is unchanged and is equivalent to T(v)

Table 36 — MoveAssignable requirements [moveassignable]

Expression Return type Return value Post-condition
t = rv T& t t is equivalent to the value of rv before the assigment
[Note: rv remains a valid object. Its state is unspecified. — end note]

§ 20.2.1 479

c© ISO/IEC N3092

Table 37 — CopyAssignable requirements(in addition to MoveAssignable) [copyassignable]

Expression Return type Return value Post-condition
t = v T& t t is equivalent to v, the value of v is unchanged

Table 38 — Destructible requirements [destructible]

Expression Post-condition
u.∼T() All resources owned by u are reclaimed, no exception is propagated.

§ 20.2.1 480

c© ISO/IEC N3092

20.2.2 Swappable requirements [swappable.requirements]

1 This subclause provides definitions for swappable types and expressions. In these definitions, let t denote
an expression of type T, and let u denote an expression of type U.

2 An object t is swappable with an object u if and only if:

— the expressions swap(t, u) and swap(u, t) are valid when evaluated in the context described below,
and

— these expressions have the following effects:

— the object referred to by t has the value originally held by u and

— the object referred to by u has the value originally held by t.

3 The context in which swap(t, u) and swap(u, t) are evaluated shall ensure that a binary non-member
function named “swap” is selected via overload resolution (13.3) on a candidate set that includes:

— the two swap function templates defined in <utility> (20.3) and

— the lookup set produced by argument-dependent lookup (3.4.2).

[Note: If T and U are both fundamental types or arrays of fundamental types and the declarations from the
header <utility> are in scope, the overall lookup set described above is equivalent to that of the qualified
name lookup applied to the expression std::swap(t, u) or std::swap(u, t) as appropriate. — end note]

[Note: It is unspecified whether a library component that has a swappable requirement includes the header
<utility> to ensure an appropriate evaluation context. — end note]

4 An rvalue or lvalue t is swappable if and only if t is swappable with any rvalue or lvalue, respectively, of
type T.

5 A type X satisfying any of the iterator requirements (24.2) is ValueSwappable if, for any dereferenceable
object x of type X, *x is swappable.

[Example: User code can ensure that the evaluation of swap calls is performed in an appropriate context
under the various conditions as follows:

#include <utility>

// Requires: std::forward<T>(t) shall be swappable with std::forward<U>(u).
template <class T, class U>
void value_swap(T&& t, U&& u) {

using std::swap;
swap(std::forward<T>(t), std::forward<U>(u)); // OK: uses “swappable with” conditions

// for rvalues and lvalues
}

// Requires: lvalues of T shall be swappable.
template <class T>
void lv_swap(T& t1 T& t2) {

using std::swap;
swap(t1, t2); // OK: uses swappable conditions for

} // lvalues of type T

namespace N {
struct A { int m; };
struct Proxy { A *a; };
Proxy proxy(A& a) { return Proxy{ &a }; }

§ 20.2.2 481

c© ISO/IEC N3092

void swap(A& x, Proxy p) {
std::swap(x.m, p.a->m); // OK: uses context equivalent to swappable

// conditions for fundamental types
}
void swap(Proxy p, A& x) { swap(x, p); } // satisfy symmetry contraint

}

int main() {
int i = 1, j = 2;
lv_swap(i, j);
assert(i == 2 && j == 1);

N::A a1 = { 5 }, a2 = { -5 };
value_swap(a1, proxy(a2));
assert(a1.m == -5 && a2.m == 5);

}

— end example]

20.2.3 NullablePointer requirements [nullablepointer.requirements]

1 A NullablePointer type is a pointer-like type that supports null values. A type P meets the requirements
of NullablePointer if:

— P satisfies the requirements of EqualityComparable, DefaultConstructible, CopyConstructible,
CopyAssignable, and Destructible,

— lvalues of type P are swappable (20.2.2),

— the expressions shown in Table 39 are valid and have the indicated semantics, and

— P satisfies all the other requirements of this subclause.

2 A value-initialized object of type P produces the null value of the type. The null value shall be equivalent
only to itself. A default-initialized object of type P may have an indeterminate value. [Note: Operations
involving indeterminate values may cause undefined behavior. — end note]

3 An object p of type P can be contextually converted to bool (Clause 4). The effect shall be as if p !=
nullptr had been evaluated in place of p.

4 No operation which is part of the NullablePointer requirements shall exit via an exception.

5 In Table 39, u denotes an identifier, t denotes a non-const lvalue of type P, a and b denote values of type
(possibly const) P, and np denotes a value of type (possibly const) std::nullptr_t.

20.2.4 Hash requirements [hash.requirements]

1 A type H meets the Hash requirements if:

— it is a function object type (20.8),

— it satisifes the requirements of CopyConstructible and Destructible (20.2.1),

— the expressions shown in the following table are valid and have the indicated semantics, and

— it satisfies all other requirements in this subclause.

§ 20.2.4 482

c© ISO/IEC N3092

Table 39 — NullablePointer requirements [nullablepointer]

Expression Return type Operational semantics
P u(np); post: u == nullptr
P u = np;
P(np) post: P(np) == nullptr
t = np P& post: t == nullptr
a != b contextually convertible to bool !(a == b)
a == np contextually convertible to bool a == P()
np == a
a != np contextually convertible to bool !(a == np)
np != a

2 Given Key is an argument type for function objects of type H, in Table 40 h is a value of type (possibly
const) H, u is an lvalue of type Key, and k is a value of a type convertible to (possibly const) Key.

Table 40 — Hash requirements [hash]

Expression Return type Requirement
h(k) size_t Shall not throw exceptions. The value returned shall depend

only on the argument k. [Note: thus all evaluations of
the expression h(k) with the same value for k yield the
same result. — end note] [Note: for two different values
t1 and t2, the probability that h(t1) and h(t2) compare
equal should be very small, approaching 1.0 / numeric_-
limits<size_t>::max(). — end note]

h(u) size_t Shall not modify u.

20.2.5 Allocator requirements [allocator.requirements]

1 The library describes a standard set of requirements for allocators, which are class-type objects that encap-
sulate the information about an allocation model. This information includes the knowledge of pointer types,
the type of their difference, the type of the size of objects in this allocation model, as well as the memory
allocation and deallocation primitives for it. All of the string types (Clause 21), containers (Clause 23)
(except array (Clause 23)), string buffers and string streams (Clause 27), and match_results (Clause 28)
are parameterized in terms of allocators.

2 The template struct allocator_traits (20.9.4) supplies a uniform interface to all allocator types. Table 41
describes the types manipulated through allocators. Table 42 describes the requirements on allocator types
and thus on types used to instantiate allocator_traits. A requirement is optional if the last column of
Table 42 specifies a default for a given expression. Within the standard library allocator_traits template,
an optional requirement that is not supplied by an allocator is replaced by the specified default expression.
A user specialization of allocator_traits may provide different defaults and may provide defaults for
different requirements than the primary template. Within Tables 41 and 42, the use of move and forward
always refers to std::move and std::forward, respectively.

Table 41 — Descriptive variable definitions

Variable Definition
T, U, C any non-const, non-reference object type

§ 20.2.5 483

c© ISO/IEC N3092

Table 41 — Descriptive variable definitions (continued)

Variable Definition
V a type convertible to T
X an Allocator class for type T
Y the corresponding Allocator class for type U
XX the type allocator_traits<X>
YY the type allocator_traits<Y>
t a value of type const T&
a, a1, a2 values of type X&
a3 an rvalue of type X
b a value of type Y
c a dereferenceable pointer of type C*
p a value of type XX::pointer, obtained by calling

a1.allocate, where a1 == a
q a value of type XX::const_pointer obtained by

conversion from a value p.
w a value of type XX::void_pointer obtained by conversion

from a value p
z a value of type XX::const_void_pointer obtained by

conversion from a value q or a value w
r a value of type T& obtained by the expression *p.
s a value of type const T& obtained by the expression *q or

by conversion from a value r.
u a value of type YY::const_pointer obtained by calling

YY::allocate, or else nullptr.
v a value of type V
n a value of type XX::size_type.
Args a template parameter pack
args a function parameter pack with the pattern Args&&

§ 20.2.5 484

c© ISO/IEC N3092

Table 42 — Allocator requirements

Expression Return type Assertion/note Default
pre-/post-condition

X::pointer T*
X::const_pointer X::pointer is convertible to

X::const_pointer
pointer-
_traits<X
::pointer> ::
rebind<const
T>

X::void_pointer
Y::void_pointer

X::pointer is convertible to
X::void_pointer.
X::void_pointer and
Y::void_pointer are the same
type.

pointer_-
traits<X
::pointer>::
rebind<void>

X::const_void_-
pointer
Y::const_void_-
pointer

X::pointer,
X::const_pointer, and
X::void_pointer are
convertible to
X::const_void_pointer.
X::const_void_pointer and
Y::const_void_pointer are
the same type.

pointer-
_traits<X
::pointer> ::
rebind<const
void>

X::value_type Identical to T
X::size_type unsigned integral type a type that can represent the

size of the largest object in the
allocation model.

size_t

X::difference_type signed integral type a type that can represent the
difference between any two
pointers in the allocation
model.

ptrdiff_t

typename
X::template
rebind<U>::other

Y For all U (including T),
Y::template
rebind<T>::other is X.

See Note A,
below.

*p T&
*q const T& *q refers to the same object as

*p
p->m type of T::m pre: (*p).m is well-defined.

equivalent to (*p).m
q->m type of T::m pre: (*q).m is well-defined.

equivalent to (*q).m
static_-
cast<X::pointer>(w)

X::pointer static_cast<X::pointer>(w)
== p

static_cast<X
::const_pointer>(z)

X::const_pointer static_cast<X
::const_pointer>(z) == q

§ 20.2.5 485

c© ISO/IEC N3092

Table 42 — Allocator requirements (continued)

Expression Return type Assertion/note Default
pre-/post-condition

a.allocate(n) X::pointer Memory is allocated for n
objects of type T but objects
are not constructed. allocate
may raise an appropriate
exception.233[Note: If n == 0,
the return value is unspecified.
— end note]

a.allocate(n, u) X::pointer Same as a.allocate(n). The
use of u is unspecified, but it is
intended as an aid to locality.

a.allocate(n)

a.deallocate(p,n) (not used) All n T objects in the area
pointed to by p shall be
destroyed prior to this call. n
shall match the value passed to
allocate to obtain this
memory. Does not throw
exceptions. [Note:p shall not be
singular. — end note]

a.max_size() X::size_type the largest value that can
meaningfully be passed to
X::allocate()

numeric_-
limits<size_-
type>::max()

a1 == a2 bool returns true only if storage
allocated from each can be
deallocated via the other.
operator== shall be reflexive,
symmetric, and transitive, and
shall not exit via an exception.

a1 != a2 bool same as !(a1 == a2)
a == b bool same as a ==

Y::rebind<T>::other(b)
a != b bool same as !(a == b)
X a1(a); Shall not exit via an exception.

post: a1 == a
X a(b); Shall not exit via an exception.

post: Y(a) == b, a == X(b)
X a1(move(a)); Shall not exit via an exception.

post: a1 equals the prior value
of a.

X a(move(b)); Shall not exit via an exception.
post: a equals the prior value of
X(b).

a.construct(c,
args)

(not used) Effect: Constructs an object of
type C at c

::new
((void*)c)
C(forward<
Args>(args)...)

a.destroy(c) (not used) Effect: Destroys the object at c c->∼C()

§ 20.2.5 486

c© ISO/IEC N3092

Table 42 — Allocator requirements (continued)

Expression Return type Assertion/note Default
pre-/post-condition

a.select_on_-
container_copy_-
construction()

X Typically returns either a or
X()

return a;

X::propagate_on_-
container_copy_-
assignment

Identical to or derived
from true_type or
false_type

true_type only if an allocator
of type X should be copied when
the client container is
copy-assigned.

false_type

X::propagate_on_-
container_move_-
assignment

Identical to or derived
from true_type or
false_type

true_type only if an allocator
of type X should be copied when
the client container is
move-assigned.

false_type

X::propagate_on_-
container_swap

Identical to or derived
from true_type or
false_type

true_type only if an allocator
of type X should be swapped
when the client container is
swapped.

false_type

3 Note A: The member class template rebind in the table above is effectively a typedef template. [Note: in
general, if the name Allocator is bound to SomeAllocator<T>, then Allocator::rebind<U>::other is the
same type as SomeAllocator<U>, where SomeAllocator<T>::value_type is T and SomeAllocator<U>::value_-
type is U. — end note] If Allocator is a class template instantiation of the form SomeAllocator<T, Args>,
where Args is zero or more type arguments, and Allocator does not supply a rebind member template, the
standard allocator_traits template uses SomeAllocator<U, Args> in place of Allocator::rebind<U>::other
by default. For allocator types that are not template instantiations of the above form, no default is provided.

4 The X::pointer, X::const_pointer, X::void_pointer, and X::const_void_pointer types shall satisfy
the requirements of NullablePointer (20.2.3). No constructor, comparison operator, copy operation, move
operation, or swap operation on these types shall exit via an exception. X::pointer and X::const_pointer
shall also satisfy the requirements for a random access iterator (24.2).

5 An allocator may constrain the types on which it can be instantiated and the arguments for which its
construct member may be called. If a type cannot be used with a particular allocator, the allocator class
or the call to construct may fail to instantiate.

[Example: the following is an allocator class template supporting the minimal interface that satisfies the
requirements of Table 42:

template <class Tp>
struct SimpleAllocator {

typedef Tp value_type;
SimpleAllocator(ctor args);

template <class T> SimpleAllocator(const SimpleAllocator<T>& other);

Tp *allocate(std::size_t n);
void deallocate(Tp *p, std::size_t n);

};

233) It is intended that a.allocate be an efficient means of allocating a single object of type T, even when sizeof(T) is small.
That is, there is no need for a container to maintain its own free list.

§ 20.2.5 487

c© ISO/IEC N3092

— end example]

6 If the alignment associated with a specific over-aligned type is not supported by an allocator, instantiation
of the allocator for that type may fail. The allocator also may silently ignore the requested alignment.
[Note: additionally, the member function allocate for that type may fail by throwing an object of type
std::bad_alloc. — end note]

20.3 Utility components [utility]

1 This subclause contains some basic function and class templates that are used throughout the rest of the
library.

Header <utility> synopsis
#include <initializer_list>

namespace std {
// 20.3.1, operators:
namespace rel_ops {

template<class T> bool operator!=(const T&, const T&);
template<class T> bool operator> (const T&, const T&);
template<class T> bool operator<=(const T&, const T&);
template<class T> bool operator>=(const T&, const T&);

}

// 20.3.2, swap:
template<class T> void swap(T& a, T& b);
template <class T, size_t N> void swap(T (&a)[N], T (&b)[N]);

// 20.3.3, forward/move:
template <class T, class U> T&& forward(U&&);
template <class T> typename remove_reference<T>::type&& move(T&&);
template <class T> typename conditional<

!has_nothrow_move_constructor<T>::value && has_copy_constructor<T>::value,
const T&, T&&>::type move_if_noexcept(T& x);

// 20.3.4, declval:
template <class T>

typename add_rvalue_reference<T>::type declval() noexcept; // as unevaluated operand

// 20.3.5, pairs:
template <class T1, class T2> struct pair;
template <class T1, class T2>

bool operator==(const pair<T1,T2>&, const pair<T1,T2>&);
template <class T1, class T2>

bool operator< (const pair<T1,T2>&, const pair<T1,T2>&);
template <class T1, class T2>

bool operator!=(const pair<T1,T2>&, const pair<T1,T2>&);
template <class T1, class T2>

bool operator> (const pair<T1,T2>&, const pair<T1,T2>&);
template <class T1, class T2>

bool operator>=(const pair<T1,T2>&, const pair<T1,T2>&);
template <class T1, class T2>

bool operator<=(const pair<T1,T2>&, const pair<T1,T2>&);
template <class T1, class T2>

void swap(pair<T1,T2>&, pair<T1,T2>&);

§ 20.3 488

c© ISO/IEC N3092

struct piecewise_construct_t { };
constexpr piecewise_construct_t piecewise_construct = piecewise_construct_t();
template <class... Types> class tuple; // defined in <tuple>

// 20.3.5, tuple-like access to pair:
template <class T> class tuple_size;
template <size_t I, class T> class tuple_element;

template <class T1, class T2> struct tuple_size<std::pair<T1, T2> >;
template <class T1, class T2> struct tuple_element<0, std::pair<T1, T2> >;
template <class T1, class T2> struct tuple_element<1, std::pair<T1, T2> >;

template<size_t I, class T1, class T2>
typename tuple_element<I, std::pair<T1, T2> >::type& get(std::pair<T1, T2>&);

template<size_t I, class T1, class T2> const
typename const tuple_element<I, std::pair<T1, T2> >::type& get(const std::pair<T1, T2>&);

// 20.3.5.4, pair range access:
template <class InputIterator>

InputIterator begin(const std::pair<InputIterator, InputIterator>& p);
template <class InputIterator>

InputIterator end(const std::pair<InputIterator, InputIterator>& p);
}

20.3.1 Operators [operators]

1 To avoid redundant definitions of operator!= out of operator== and operators >, <=, and >= out of
operator<, the library provides the following:

template <class T> bool operator!=(const T& x, const T& y);

2 Requires: Type T is EqualityComparable (31).

3 Returns: !(x == y).

template <class T> bool operator>(const T& x, const T& y);

4 Requires: Type T is LessThanComparable (32).

5 Returns: y < x.

template <class T> bool operator<=(const T& x, const T& y);

6 Requires: Type T is LessThanComparable (32).

7 Returns: !(y < x).

template <class T> bool operator>=(const T& x, const T& y);

8 Requires: Type T is LessThanComparable (32).

9 Returns: !(x < y).

10 In this library, whenever a declaration is provided for an operator!=, operator>, operator>=, or operator<=,
and requirements and semantics are not explicitly provided, the requirements and semantics are as specified
in this Clause.

§ 20.3.1 489

c© ISO/IEC N3092

20.3.2 swap [utility.swap]

template<class T> void swap(T& a, T& b);

1 Requires: Type T shall be MoveConstructible (34) and MoveAssignable (36).

2 Effects: Exchanges values stored in two locations.

template<class T, size_t N>
void swap(T (&a)[N], T (&b)[N]);

3 Requires: a[i] shall be swappable with (20.2.2) b[i] for all i in the range [0,N).

4 Effects: swap_ranges(a, a + N, b)

20.3.3 forward/move helpers [forward]

1 The library provides templated helper functions to simplify applying move semantics to an lvalue and to
simplify the implementation of forwarding functions.

template <class T, class U> T&& forward(U&& u);

2 Returns: static_cast<T&&>(u).

3 Remarks: if the following constraints are not met, this signature shall not participate in overload
resolution:

— the type formed by remove_reference<U>::type* is implicitly convertible to the type remove_-
reference<T>::type*; and

— if T is an lvalue reference type, then U is also an lvalue reference type.

4 [Example:
template <class T, class A1, class A2>
shared_ptr<T> factory(A1&& a1, A2&& a2) {

return shared_ptr<T>(new T(std::forward<A1>(a1), std::forward<A2>(a2)));
}

struct A {
A(int&, const double&);

};

void g() {
shared_ptr<A> sp1 = factory<A>(2, 1.414); // error: 2 will not bind to int&
int i = 2;
shared_ptr<A> sp2 = factory<A>(i, 1.414); // OK

}

5 In the first call to factory, A1 is deduced as int, so 2 is forwarded to A’s constructor as an rvalue. In
the second call to factory, A1 is deduced as int&, so i is forwarded to A’s constructor as an lvalue.
In both cases, A2 is deduced as double, so 1.414 is forwarded to A’s constructor as an rvalue.

— end example]

template <class T> typename remove_reference<T>::type&& move(T&& t);

6 Returns: t.

7 [Example:

§ 20.3.3 490

c© ISO/IEC N3092

template <class T, class A1>
shared_ptr<T> factory(A1&& a1) {

return shared_ptr<T>(new T(std::forward<A1>(a1)));
}

struct A {
A();
A(const A&); // copies from lvalues
A(A&&); // moves from rvalues

};

void g() {
A a;
shared_ptr<A> sp1 = factory<A>(a); // “a” binds to A(const A&)
shared_ptr<A> sp1 = factory<A>(std::move(a)); // “a” binds to A(A&&)

}

8 In the first call to factory, A1 is deduced as A&, so a is forwarded as a non-const lvalue. This binds to
the constructor A(const A&), which copies the value from a. In the second call to factory, because of
the call std::move(a), A1 is deduced as A, so a is forwarded as an rvalue. This binds to the constructor
A(A&&), which moves the value from a.

— end example]

template <class T> typename conditional<
!has_nothrow_move_constructor<T>::value && has_copy_constructor<T>::value,
const T&, T&&>::type move_if_noexcept(T& x);

9 Returns: std::move(t)

20.3.4 Function template declval [declval]

1 The library provides the function template declval to simplify the definition of expressions which occur as
unevaluated operands (Clause 5).

template <class T>
typename add_rvalue_reference<T>::type declval() noexcept; // as unevaluated operand

2 Remarks: If this function is used (as defined by (3.2)), the program is ill-formed.

3 Remarks: The template parameter T of declval may be an incomplete type.

[Example:
template <class To, class From>

decltype(static_cast<To>(declval<From>())) convert(From&&);

declares a function template convert which only participats in overloading if the type From can be
explicitly converted to type To. For another example see class template common_type (20.7.6.6). — end
example]

20.3.5 Pairs [pairs]

20.3.5.1 In general [pairs.general]

1 The library provides a template for heterogeneous pairs of values. The library also provides a matching

§ 20.3.5.1 491

c© ISO/IEC N3092

function template to simplify their construction and several templates that provide access to pair objects
as if they were tuple objects (see 20.4.2.5 and 20.4.2.6).

20.3.5.2 Class template pair [pairs.pair]

namespace std {
template <class T1, class T2>
struct pair {

typedef T1 first_type;
typedef T2 second_type;

T1 first;
T2 second;
pair(const pair&) = default;
constexpr pair();
pair(const T1& x, const T2& y);
template<class U, class V> pair(U&& x, V&& y);
template<class U, class V> pair(const pair<U, V>& p);
template<class U, class V> pair(pair<U, V>&& p);
template <class... Args1, class... Args2>

pair(piecewise_construct_t,
tuple<Args1...> first_args, tuple<Args2...> second_args);

template<class U, class V> pair& operator=(const pair<U, V>& p);
pair& operator=(pair&& p);
template<class U, class V> pair& operator=(pair<U, V>&& p);

void swap(pair& p);
};

}

constexpr pair();

1 Effects: Initializes its members as if implemented: pair() : first(), second() { }

pair(const T1& x, const T2& y);

2 Effects: The constructor initializes first with x and second with y.

template<class U, class V> pair(U&& x, V&& y);

3 Effects: The constructor initializes first with std::forward<U>(x) and second with std::forward<V>(y).

4 Remarks: If U is not implicitly convertible to first_type or V is not implicitly convertible to second_-
type this constructor shall not participate in overload resolution.

template<class U, class V> pair(const pair<U, V>& p);

5 Effects: Initializes members from the corresponding members of the argument, performing implicit
conversions as needed.

template<class U, class V> pair(pair<U, V>&& p);

6 Effects: The constructor initializes first with std::move(p.first) and second with std::move(p.second).

template<class... Args1, class... Args2>
pair(piecewise_construct_t,

tuple<Args1...> first_args, tuple<Args2...> second_args);

§ 20.3.5.2 492

c© ISO/IEC N3092

7 Requires: All the types in Args1 and Args2 shall be CopyConstructible (Table 35). T1 shall be
constructible from Args1. T2 shall be constructible from Args2.

8 Effects: The constructor initializes first with arguments of types Args1... obtained by forwarding
the elements of first_args and initializes second with arguments of types Args2... obtained by
forwarding the elements of second_args. (Here, forwarding an element x of type U within a tuple
object means calling std::forward<U>(x).) This form of construction, whereby constructor arguments
for first and second are each provided in a separate tuple object, is called piecewise construction.

template<class U, class V> pair& operator=(const pair<U, V>& p);

9 Requires: T1 shall satisfy the requirements of CopyAssignable from U. T2 shall satisfy the requirements
of CopyAssignable from V.

10 Effects: Assigns p.first to first and p.second to second.

11 Returns: *this.

pair& operator=(pair&& p);

12 Effects: Assigns to first with std::move(p.first) and to second with std::move(p.second).

13 Returns: *this.

template<class U, class V> pair& operator=(pair<U, V>&& p);

14 Effects: Assigns to first with std::move(p.first) and to second with std::move(p.second).

15 Returns: *this.

void swap(pair& p);

16 Requires: first shall be swappable with (20.2.2) p.first and second shall be swappable with
p.second.

17 Effects: Swaps first with p.first and second with p.second.

template <class T1, class T2>
bool operator==(const pair<T1, T2>& x, const pair<T1, T2>& y);

18 Returns: x.first == y.first && x.second == y.second.

template <class T1, class T2>
bool operator<(const pair<T1, T2>& x, const pair<T1, T2>& y);

19 Returns: x.first < y.first || (!(y.first < x.first) && x.second < y.second).

template <class T1, class T2>
bool operator!=(const pair<T1, T2>& x, const pair<T1, T2>& y);

20 Returns: !(x == y)

template <class T1, class T2>
bool operator>(const pair<T1, T2>& x, const pair<T1, T2>& y);

21 Returns: y < x

template <class T1, class T2>
bool operator>=(const pair<T1, T2>& x, const pair<T1, T2>& y);

22 Returns: !(x < y)

§ 20.3.5.2 493

c© ISO/IEC N3092

template <class T1, class T2>
bool operator<=(const pair<T1, T2>& x, const pair<T1, T2>& y);

23 Returns: !(y < x)

template<class T1, class T2> void swap(pair<T1, T2>& x, pair<T1, T2>& y);

24 Effects: x.swap(y)

template <class T1, class T2>
pair<V1, V2> make_pair(T1&&, T2&&);

25 Returns:
pair<V1, V2>(std::forward<T1>(x), std::forward<T2>(y));

where V1 and V2 are determined as follows: Let Ui be decay<Ti>::type for each Ti. Then each Vi is
X& if Ui equals reference_wrapper<X>, otherwise Vi is Ui.

26 [Example: In place of:
return pair<int, double>(5, 3.1415926); // explicit types

a C++ program may contain:
return make_pair(5, 3.1415926); // types are deduced

— end example]

20.3.5.3 Tuple-like access to pair [pair.astuple]

tuple_size<pair<T1, T2> >::value

1 Returns: integral constant expression.

2 Value: 2.

tuple_element<0, pair<T1, T2> >::type

3 Value: the type T1.

tuple_element<1, pair<T1, T2> >::type

4 Value: the type T2.

template<size_t I, class T1, class T2>
typename tuple_element<I, std::pair<T1, T2> >::type& get(pair<T1, T2>&);

template<size_t I, class T1, class T2>
const typename tuple_element<I, std::pair<T1, T2> >::type& get(const pair<T1, T2>&);

5 Returns: If I == 0 returns p.first; if I == 1 returns p.second; otherwise the program is ill-formed.

6 Throws: nothing.

20.3.5.4 pair range access [pair.range]

template <class InputIterator>
InputIterator begin(const std::pair<InputIterator, InputIterator>& p);

§ 20.3.5.4 494

c© ISO/IEC N3092

1 Returns: p.first.

template <class InputIterator>
InputIterator end(const std::pair<InputIterator, InputIterator>& p);

2 Returns: p.second.

20.3.5.5 Piecewise construction [pair.piecewise]

struct piecewise_construct_t { };
constexpr piecewise_construct_t piecewise_construct = piecewise_construct_t();

1 The struct piecewise_construct_t is an empty structure type used as a unique type to disambiguate
constructor and function overloading. Specifically, pair has a constructor with piecewise_construct_t as
the first argument, immediately followed by two tuple (20.4) arguments used for piecewise construction of
the elements of the pair object.

20.4 Tuples [tuple]

20.4.1 In general [tuple.general]

1 This subclause describes the tuple library that provides a tuple type as the class template tuple that can
be instantiated with any number of arguments. Each template argument specifies the type of an element
in the tuple. Consequently, tuples are heterogeneous, fixed-size collections of values. An instantiation of
tuple with two arguments is similar to an instantiation of pair with the same two arguments. See 20.3.5.

2 Header <tuple> synopsis
namespace std {

// 20.4.2, class template tuple:
template <class... Types> class tuple;

// 20.4.2.4, tuple creation functions:
const unspecified ignore;

template <class... Types>
tuple<VTypes...> make_tuple(Types&&...);

template <class... Types>
tuple<ATypes...> pack_arguments(Types&&...);

template<class... Types>
tuple<Types&...> tie(Types&...);

template <class... TTypes, class... UTypes>
tuple<TTypes..., UTypes...> tuple_cat(const tuple<TTypes...>&, const tuple<UTypes...>&);

template <class... TTypes, class... UTypes>
tuple<TTypes..., UTypes...> tuple_cat(tuple<TTypes...>&&, const tuple<UTypes...>&);

template <class... TTypes, class... UTypes>
tuple<TTypes..., UTypes...> tuple_cat(const tuple<TTypes...>&, tuple<UTypes...>&&);

template <class... TTypes, class... UTypes>
tuple<TTypes..., UTypes...> tuple_cat(tuple<TTypes...>&&, tuple<UTypes...>&&);

// 20.4.2.5, tuple helper classes:
template <class T> class tuple_size; // undefined
template <class... Types> class tuple_size<tuple<Types...> >;

§ 20.4.1 495

c© ISO/IEC N3092

template <size_t I, class T> class tuple_element; // undefined
template <size_t I, class... Types> class tuple_element<I, tuple<Types...> >;

// 20.4.2.6, element access:
template <size_t I, class... Types>

typename tuple_element<I, tuple<Types...> >::type& get(tuple<Types...>&);
template <size_t I, class ... types>

typename tuple_element<I, tuple<Types...> >::type const& get(const tuple<Types...>&);

// 20.4.2.7, relational operators:
template<class... TTypes, class... UTypes>

bool operator==(const tuple<TTypes...>&, const tuple<UTypes...>&);
template<class... TTypes, class... UTypes>

bool operator<(const tuple<TTypes...>&, const tuple<UTypes...>&);
template<class... TTypes, class... UTypes>

bool operator!=(const tuple<TTypes...>&, const tuple<UTypes...>&);
template<class... TTypes, class... UTypes>

bool operator>(const tuple<TTypes...>&, const tuple<UTypes...>&);
template<class... TTypes, class... UTypes>

bool operator<=(const tuple<TTypes...>&, const tuple<UTypes...>&);
template<class... TTypes, class... UTypes>

bool operator>=(const tuple<TTypes...>&, const tuple<UTypes...>&);

// 20.4.2.8, allocator-related traits
template <class... Types, class Alloc>

struct uses_allocator<tuple<Types...>, Alloc>;

// 20.4.2.9, specialized algorithms:
template <class... Types>

void swap(tuple<Types...>& x, tuple<Types...>& y);

// 20.4.2.10, tuple range access:
template <class InputIterator>

InputIterator begin(const std::tuple<InputIterator, InputIterator>& t);
template <class InputIterator>

InputIterator end(const std::tuple<InputIterator, InputIterator>& t);
}

20.4.2 Class template tuple [tuple.tuple]

namespace std {
template <class... Types>
class tuple {
public:

// 20.4.2.1, tuple construction
constexpr tuple();
explicit tuple(const Types&...);
template <class... UTypes>

explicit tuple(UTypes&&...);

tuple(const tuple&) = default;
tuple(tuple&&);

template <class... UTypes>

§ 20.4.2 496

c© ISO/IEC N3092

tuple(const tuple<UTypes...>&);
template <class... UTypes>

tuple(tuple<UTypes...>&&);

template <class U1, class U2>
tuple(const pair<U1, U2>&); // iff sizeof...(Types) == 2

template <class U1, class U2>
tuple(pair<U1, U2>&&); // iff sizeof...(Types) == 2

// allocator-extended constructors
template <class Alloc>

tuple(allocator_arg_t, const Alloc& a);
template <class Alloc>

tuple(allocator_arg_t, const Alloc& a, const Types&...);
template <class Alloc, class... UTypes>

tuple(allocator_arg_t, const Alloc& a, const UTypes&&...);
template <class Alloc>

tuple(allocator_arg_t, const Alloc& a, const tuple&);
template <class Alloc>

tuple(allocator_arg_t, const Alloc& a, tuple&&);
template <class Alloc, class... UTypes>

tuple(allocator_arg_t, const Alloc& a, const tuple<UTypes...>&);
template <class Alloc, class... UTypes>

tuple(allocator_arg_t, const Alloc& a, tuple<UTypes...>&&);
template <class Alloc, class U1, class U2>

tuple(allocator_arg_t, const Alloc& a, const pair<U1, U2>&);
template <class Alloc, class U1, class U2>

tuple(allocator_arg_t, const Alloc& a, pair<U1, U2>&&);

// 20.4.2.2, tuple assignment
tuple& operator=(const tuple&);
tuple& operator=(tuple&&);

template <class... UTypes>
tuple& operator=(const tuple<UTypes...>&);

template <class... UTypes>
tuple& operator=(tuple<UTypes...>&&);

template <class U1, class U2>
tuple& operator=(const pair<U1, U2>&); // iff sizeof...(Types) == 2

template <class U1, class U2>
tuple& operator=(pair<U1, U2>&&); // iff sizeof...(Types) == 2

// 20.4.2.3, tuple swap
void swap(tuple&);

};
}

20.4.2.1 Construction [tuple.cnstr]

1 For each tuple constructor, an exception is thrown only if the construction of one of the types in Types
throws an exception.

constexpr tuple();

2 Requires: Each type in Types shall be default constructible.

§ 20.4.2.1 497

c© ISO/IEC N3092

3 Effects: Value initializes each element.

explicit tuple(const Types&...);

4 Requires: Each type in Types shall be copy constructible.

5 Effects: Copy initializes each element with the value of the corresponding parameter.

template <class... UTypes>
explicit tuple(UTypes&&... u);

6 Requires: Each type in Types shall satisfy the requirements of MoveConstructible (Table 34) from
the corresponding type in UTypes. sizeof...(Types) == sizeof...(UTypes).

7 Effects: Initializes the elements in the tuple with the corresponding value in std::forward<UTypes>(u).

tuple(const tuple& u) = default;

8 Requires: Each type in Types shall satisfy the requirements of CopyConstructible(Table 35).

9 Effects: Copy constructs each element of *this with the corresponding element of u.

tuple(tuple&& u);

10 Requires: Each type in Types shall shall satisfy the requirements of MoveConstructible (Table 34).

11 Effects: Move-constructs each element of *this with the corresponding element of u.

template <class... UTypes> tuple(const tuple<UTypes...>& u);

12 Requires: Each type in Types shall be constructible from the corresponding type in UTypes. sizeof...(Types)
== sizeof...(UTypes).

13 Effects: Constructs each element of *this with the corresponding element of u.

14 [Note: enable_if can be used to make the converting constructor and assignment operator exist only
in the cases where the source and target have the same number of elements. — end note]

template <class... UTypes> tuple(tuple<UTypes...>&& u);

15 Requires: Each type in Types shall shall satisfy the requirements of MoveConstructible (Table 34)
from the corresponding type in UTypes. sizeof...(Types) == sizeof...(UTypes).

16 Effects: Move-constructs each element of *this with the corresponding element of u.

[Note: enable_if can be used to make the converting constructor and assignment operator exist only
in the cases where the source and target have the same number of elements. — end note]

template <class U1, class U2> tuple(const pair<U1, U2>& u);

17 Requires: The first type in Types shall be constructible from U1 and the second type in Types shall be
constructible from U2. sizeof...(Types) == 2.

18 Effects: Constructs the first element with u.first and the second element with u.second.

template <class U1, class U2> tuple(pair<U1, U2>&& u);

19 Requires: The first type in Types shall shall satisfy the requirements of MoveConstructible(Table 34)
from U1 and the second type in Types shall be move-constructible from U2. sizeof...(Types) == 2.

20 Effects: Constructs the first element with std::move(u.first) and the second element with std::move(u.second).

§ 20.4.2.1 498

c© ISO/IEC N3092

template <class Alloc>
tuple(allocator_arg_t, const Alloc& a);

template <class Alloc>
tuple(allocator_arg_t, const Alloc& a, const Types&...);

template <class Alloc, class... UTypes>
tuple(allocator_arg_t, const Alloc& a, const UTypes&&...);

template <class Alloc>
tuple(allocator_arg_t, const Alloc& a, const tuple&);

template <class Alloc>
tuple(allocator_arg_t, const Alloc& a, tuple&&);

template <class Alloc, class... UTypes>
tuple(allocator_arg_t, const Alloc& a, const tuple<UTypes...>&);

template <class Alloc, class... UTypes>
tuple(allocator_arg_t, const Alloc& a, tuple<UTypes...>&&);

template <class Alloc, class U1, class U2>
tuple(allocator_arg_t, const Alloc& a, const pair<U1, U2>&);

template <class Alloc, class U1, class U2>
tuple(allocator_arg_t, const Alloc& a, pair<U1, U2>&&);

21 Requires: Alloc shall meet the requirements for an Allocator (20.2.5).

22 Effects: Equivalent to the preceding constructors except that each element is constructed with uses-
allocator construction (20.9.2.2).

20.4.2.2 Assignment [tuple.assign]

1 For each tuple assignment operator, an exception is thrown only if the assignment of one of the types in
Types throws an exception.

tuple& operator=(const tuple& u);

2 Requires: Each type in Types shall be CopyAssignable (Table 37).

3 Effects: Assigns each element of u to the corresponding element of *this.

4 Returns: *this

tuple& operator=(tuple&& u);

5 Requires: Each type in Types shall shall satisfy the requirements of MoveAssignable (Table 36).

6 Effects: Move-assigns each element of u to the corresponding element of *this.

7 Returns: *this.

template <class... UTypes>
tuple& operator=(const tuple<UTypes...>& u);

8 Requires: Each type in Types shall be Assignable from the corresponding type in UTypes.

9 Effects: Assigns each element of u to the corresponding element of *this.

10 Returns: *this

template <class... UTypes>
tuple& operator=(tuple<UTypes...>&& u);

11 Requires: Each type in Types shall satisfy the requirements of MoveAssignable (Table 36) from the
corresponding type in UTypes. sizeof...(Types) == sizeof...(UTypes).

§ 20.4.2.2 499

c© ISO/IEC N3092

12 Effects: Move-assigns each element of u to the corresponding element of *this.

13 Returns: *this.

template <class U1, class U2> tuple& operator=(const pair<U1, U2>& u);

14 Requires: The first type in Types shall shall satisfy the requirements of MoveAssignable (Table 36)
from U1 and the second type in Types shall shall satisfy the requirements of MoveAssignable (Table 36)
from U2. sizeof...(Types) == 2.

15 Effects: Assigns u.first to the first element of *this and u.second to the second element of *this.

16 Returns: *this

17 [Note: There are rare conditions where the converting copy constructor is a better match than the
element-wise construction, even though the user might intend differently. An example of this is if one
is constructing a one-element tuple where the element type is another tuple type T and if the parameter
passed to the constructor is not of type T, but rather a tuple type that is convertible to T. The effect of
the converting copy construction is most likely the same as the effect of the element-wise construction
would have been. However, is possible to compare the “nesting depths” of the source and target tuples
and decide to select the element-wise constructor if the source nesting depth is smaller than the target
nesting-depth. This can be accomplished using an enable_if template or other tools for constrained
templates. — end note]

template <class U1, class U2> tuple& operator=(pair<U1, U2>&& u);

18 Requires: The first type in Types shall be Assignable from U1 and the second type in Types shall be
Assignable from U2. sizeof...(Types) == 2.

19 Effects: Assigns std::move(u.first) to the first element of *this and std::move(u.second) to the
second element of *this.

20 Returns: *this.

20.4.2.3 swap [tuple.swap]

void swap(tuple& rhs);

1 Requires: Each element in *this shall be swappable with (20.2.2) the corresponding element in rhs.

2 Effects: Calls swap for each element in *this and its corresponding element in rhs.

3 Throws: Nothing unless one of the element-wise swap calls throws an exception.

20.4.2.4 Tuple creation functions [tuple.creation]

template<class... Types>
tuple<VTypes...> make_tuple(Types&&... t);

1 Let Ui be decay<Ti>::type for each Ti in Types. Then each Vi in VTypes is X& if Ui equals
reference_wrapper<X>, otherwise Vi is Ui.

2 Returns: tuple<VTypes...>(std::forward<Types>(t)...).

3 [Example:
int i; float j;
make_tuple(1, ref(i), cref(j))

§ 20.4.2.4 500

c© ISO/IEC N3092

creates a tuple of type
tuple<int, int&, const float&>

— end example]

template<class... Types>
tuple<ATypes...> pack_arguments(Types&&... t);

4 Types: Let Ti be each type in Types. Then each corresponding Ai in Atypes is Ti& if Ti is an array
type and std::add_rvalue_reference<Ti>::type otherwise.

5 Effects: Constructs a tuple of references to the arguments in t suitable for forwarding as arguments to
a function. Because the result may contain references to temporary variables, a program shall ensure
that the return value of this function does not outlive any of its arguments. (e.g., the program should
typically not store the result in a named variable).

6 Returns: tuple<Atypes...>(std::forward<Types>(t)...)

template<class... Types}
tuple<Types&...> tie(Types&... t);

7 Returns: tuple<Types&>(t...). When an argument in t is ignore, assigning any value to the
corresponding tuple element has no effect.

8 [Example: tie functions allow one to create tuples that unpack tuples into variables. ignore can be
used for elements that are not needed:

int i; std::string s;
tie(i, ignore, s) = make_tuple(42, 3.14, "C++");
// i == 42, s == "C++"

— end example]

template <class... TTypes, class... UTypes>
tuple<TTypes..., UTypes...> tuple_cat(const tuple<TTypes...>& t, const tuple<UTypes...>& u);

9 Requires: All the types in TTypes shall be CopyConstructible (Table 35). All the types in UTypes shall
be CopyConstructible (Table 35).

10 Returns: A tuple object constructed by copy constructing its first sizeof...(TTypes) elements from
the corresponding elements of t and copy constructing its last sizeof...(UTypes) elements from the
corresponding elements of u.

template <class... TTypes, class... UTypes>
tuple<TTypes..., UTypes...> tuple_cat(tuple<TTypes...>&& t, const tuple<UTypes...>& u);

11 Requires: All the types in TTypes shall be MoveConstructible (Table 34). All the types in UTypes
shall be CopyConstructible (Table 35).

12 Returns: A tuple object constructed by move constructing its first sizeof...(TTypes) elements from
the corresponding elements of t and copy constructing its last sizeof...(UTypes) elements from the
corresponding elements of u.

template <class... TTypes, class... UTypes>
tuple<TTypes..., UTypes...> tuple_cat(const tuple<TTypes...>& t, tuple<UTypes...>&& u);

13 Requires: All the types in TTypes shall be CopyConstructible (Table 35). All the types in UTypes shall
be MoveConstructible (Table 34).

§ 20.4.2.4 501

c© ISO/IEC N3092

14 Returns: A tuple object constructed by copy constructing its first sizeof...(TTypes) elements from
the corresponding elements of t and move constructing its last sizeof...(UTypes) elements from the
corresponding elements of u.

template <class... TTypes, class... UTypes>
tuple<TTypes..., UTypes...> tuple_cat(tuple<TTypes...>&& t, tuple<UTypes...>&& u);

15 Requires: All the types in TTypes shall be MoveConstructible (Table 34). All the types in UTypes
shall be MoveConstructible (Table 34).

16 Returns: A tuple object constructed by move constructing its first sizeof...(TTypes) elements from
the corresponding elements of t and move constructing its last sizeof...(UTypes) elements from the
corresponding elements of u.

20.4.2.5 Tuple helper classes [tuple.helper]

template <class... Types>
class tuple_size<tuple<Types...> >

: public integral_constant<size_t, sizeof...(Types)> { };

template <size_t I, class... Types>
class tuple_element<I, tuple<Types...> > {
public:

typedef TI type;
};

1 Requires: I < sizeof...(Types). The program is ill-formed if I is out of bounds.

2 Type: TI is the type of the Ith element of Types, where indexing is zero-based.

20.4.2.6 Element access [tuple.elem]

template <size_t I, class... Types>
typename tuple_element<I, tuple<Types...> >::type& get(tuple<Types...>& t);

1 Requires: I < sizeof...(Types). The program is ill-formed if I is out of bounds.

2 Returns: A reference to the Ith element of t, where indexing is zero-based.

3 Throws: nothing.

template <size_t I, class... Types>
typename tuple_element<I, tuple<Types...> >::type const& get(const tuple<Types...>& t);

4 Requires: I < sizeof...(Types). The program is ill-formed if I is out of bounds.

5 Returns: A const reference to the Ith element of t, where indexing is zero-based.

6 Throws: nothing.

7 [Note: Constness is shallow. If a T in Types is some reference type X&, the return type is X&, not
const X&. However, if the element type is non-reference type T, the return type is const T&. This is
consistent with how constness is defined to work for member variables of reference type. — end note]

8 [Note: The reason get is a nonmember function is that if this functionality had been provided as a
member function, code where the type depended on a template parameter would have required using
the template keyword. — end note]

§ 20.4.2.6 502

c© ISO/IEC N3092

20.4.2.7 Relational operators [tuple.rel]

template<class... TTypes, class... UTypes>
bool operator==(const tuple<TTypes...>& t, const tuple<UTypes...>& u);

1 Requires: For all i, where 0 <= i and i < sizeof...(Types), get<i>(t) == get<i>(u) is a valid
expression returning a type that is convertible to bool. sizeof...(TTypes) == sizeof...(UTypes).

2 Returns: true iff get<i>(t) == get<i>(u) for all i. For any two zero-length tuples e and f, e == f
returns true.

3 Effects: The elementary comparisons are performed in order from the zeroth index upwards. No
comparisons or element accesses are performed after the first equality comparison that evaluates to
false.

template<class... TTypes, class... UTypes>
bool operator<(const tuple<TTypes...>& t, const tuple<UTypes...>& u);

Requires: For all i, where 0 <= i and i < sizeof...(Types), get<i>(t) < get<i>(u) is a valid
expression returning a type that is convertible to bool. sizeof...(TTypes) == sizeof...(UTypes).

4 Returns: The result of a lexicographical comparison between t and u. The result is defined as:
(bool)(get<0>(t) < get<0>(u)) || (!(bool)(get<0>(u) < get<0>(t)) && ttail < utail), where
rtail for some tuple r is a tuple containing all but the first element of r. For any two zero-length tuples
e and f, e < f returns false.

template<class... TTypes, class... UTypes>
bool operator!=(const tuple<TTypes...>& t, const tuple<UTypes...>& u);

5 Returns: !(t == u).

template<class... TTypes, class... UTypes>
bool operator>(const tuple<TTypes...>& t, const tuple<UTypes...>& u);

6 Returns: u < t.

template<class... TTypes, class... UTypes>
bool operator<=(const tuple<TTypes...>& t, const tuple<UTypes...>& u);

7 Returns: !(u < t)

template<class... TTypes, class... UTypes>
bool operator>=(const tuple<TTypes...>& t, const tuple<UTypes...>& u);

8 Returns: !(t < u)

9 [Note: The above definitions for comparison operators do not require ttail (or utail) to be constructed. It may
not even be possible, as t and u are not required to be copy constructible. Also, all comparison operators
are short circuited; they do not perform element accesses beyond what is required to determine the result
of the comparison. — end note]

20.4.2.8 Tuple traits [tuple.traits]

template <class... Types, class Alloc>
struct uses_allocator<tuple<Types...>, Alloc> : true_type { };

Requires: Alloc shall be an Allocator (20.2.5).

§ 20.4.2.8 503

c© ISO/IEC N3092

1 [Note: Specialization of this trait informs other library components that tuple can be constructed
with an allocator, even though it does not have a nested allocator_type. — end note]

20.4.2.9 Tuple specialized algorithms [tuple.special]

template <class... Types>
void swap(tuple<Types...>& x, tuple<Types...>& y);

1 Effects: x.swap(y)

20.4.2.10 tuple range access [tuple.range]

template <class InputIterator>
InputIterator begin(const tuple<InputIterator, InputIterator>& t);

1 Returns: std::get<0>(t).

template <class InputIterator>
InputIterator end(const tuple<InputIterator, InputIterator>& t);

2 Returns: std::get<1>(t).

20.5 Class template bitset [template.bitset]

Header <bitset> synopsis
#include <string>
#include <iosfwd> // for istream, ostream
namespace std {

template <size_t N> class bitset;

// 20.5.4 bitset operators:
template <size_t N>

bitset<N> operator&(const bitset<N>&, const bitset<N>&);
template <size_t N>

bitset<N> operator|(const bitset<N>&, const bitset<N>&);
template <size_t N>

bitset<N> operator^(const bitset<N>&, const bitset<N>&);
template <class charT, class traits, size_t N>

basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>& is, bitset<N>& x);

template <class charT, class traits, size_t N>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const bitset<N>& x);

}

1 The header <bitset> defines a class template and several related functions for representing and manipulating
fixed-size sequences of bits.

namespace std {
template<size_t N> class bitset {
public:

// bit reference:
class reference {

friend class bitset;
reference();

§ 20.5 504

c© ISO/IEC N3092

public:
~reference();
reference& operator=(bool x); // for b[i] = x;
reference& operator=(const reference&); // for b[i] = b[j];
bool operator~() const; // flips the bit
operator bool() const; // for x = b[i];
reference& flip(); // for b[i].flip();

};

// 20.5.1 constructors:
constexpr bitset();
constexpr bitset(unsigned long long val);
template<class charT, class traits, class Allocator>

explicit bitset(
const basic_string<charT,traits,Allocator>& str,
typename basic_string<charT,traits,Allocator>::size_type pos = 0,
typename basic_string<charT,traits,Allocator>::size_type n =

basic_string<charT,traits,Allocator>::npos,
charT zero = charT(’0’), charT one = charT(’1’));

explicit bitset(const char *str);

// 20.5.2 bitset operations:
bitset<N>& operator&=(const bitset<N>& rhs);
bitset<N>& operator|=(const bitset<N>& rhs);
bitset<N>& operator^=(const bitset<N>& rhs);
bitset<N>& operator<<=(size_t pos);
bitset<N>& operator>>=(size_t pos);
bitset<N>& set();
bitset<N>& set(size_t pos, bool val = true);
bitset<N>& reset();
bitset<N>& reset(size_t pos);
bitset<N> operator~() const;
bitset<N>& flip();
bitset<N>& flip(size_t pos);

// element access:
constexpr bool operator[](size_t pos) const; // for b[i];
reference operator[](size_t pos); // for b[i];

unsigned long to_ulong() const;
unsigned long long to_ullong() const;
template <class charT = char,

class traits = char_traits<charT>,
class Allocator = allocator<charT> >

basic_string<charT, traits, Allocator>
to_string(charT zero = charT(’0’), charT one = charT(’1’)) const;

size_t count() const;
constexpr size_t size();
bool operator==(const bitset<N>& rhs) const;
bool operator!=(const bitset<N>& rhs) const;
bool test(size_t pos);
bool all() const;
bool any() const;
bool none() const;
bitset<N> operator<<(size_t pos) const;

§ 20.5 505

c© ISO/IEC N3092

bitset<N> operator>>(size_t pos) const;
};

// 20.5.3 Hash support
template <class T> struct hash;
template <size_t N> struct hash<bitset<N> >;

}

2 The class template bitset<N>describes an object that can store a sequence consisting of a fixed number of
bits, N.

3 Each bit represents either the value zero (reset) or one (set). To toggle a bit is to change the value zero to
one, or the value one to zero. Each bit has a non-negative position pos. When converting between an object
of class bitset<N> and a value of some integral type, bit position pos corresponds to the bit value 1 <<pos.
The integral value corresponding to two or more bits is the sum of their bit values.

4 The functions described in this subclause can report three kinds of errors, each associated with a distinct
exception:

— an invalid-argument error is associated with exceptions of type invalid_argument (19.2.3);

— an out-of-range error is associated with exceptions of type out_of_range (19.2.5);

— an overflow error is associated with exceptions of type overflow_error (19.2.8).

20.5.1 bitset constructors [bitset.cons]

constexpr bitset();

1 Effects: Constructs an object of class bitset<N>, initializing all bits to zero.

constexpr bitset(unsigned long long val);

2 Effects: Constructs an object of class bitset<N>, initializing the first M bit positions to the corre-
sponding bit values in val. M is the smaller of N and the number of bits in the value representation
(section 3.9) of unsigned long long. If M<N, the remaining bit positions are initialized to zero.

template <class charT, class traits, class Allocator>
explicit
bitset(const basic_string<charT, traits, Allocator>& str,

typename basic_string<charT, traits, Allocator>::size_type pos = 0,
typename basic_string<charT, traits, Allocator>::size_type n =

basic_string<charT, traits, Allocator>::npos,
charT zero = charT(’0’), charT one = charT(’1’));

3 Requires: pos <= str.size().

4 Throws: out_of_range if pos > str.size().

5 Effects: Determines the effective length rlen of the initializing string as the smaller of n and str.size()
- pos.

The function then throws invalid_argument if any of the rlen characters in str beginning at position
pos is other than zero or one. The function uses traits::eq() to compare the character values.

Otherwise, the function constructs an object of class bitset<N>, initializing the first M bit positions to
values determined from the corresponding characters in the string str. M is the smaller of N and rlen.

§ 20.5.1 506

c© ISO/IEC N3092

6 An element of the constructed string has value zero if the corresponding character in str, beginning
at position pos, is 0 zero. Otherwise, the element has the value 1. Character position pos + M - 1
corresponds to bit position zero. Subsequent decreasing character positions correspond to increasing
bit positions.

7 If M < N, remaining bit positions are initialized to zero.

explicit bitset(const char *str);

8 Effects: Constructs an object of class bitset<N> as if by bitset(string(str)).

20.5.2 bitset members [bitset.members]

bitset<N>& operator&=(const bitset<N>& rhs);

1 Effects: Clears each bit in *this for which the corresponding bit in rhs is clear, and leaves all other
bits unchanged.

2 Returns: *this.

bitset<N>& operator|=(const bitset<N>& rhs);

3 Effects: Sets each bit in *this for which the corresponding bit in rhs is set, and leaves all other bits
unchanged.

4 Returns: *this.

bitset<N>& operator^=(const bitset<N>& rhs);

5 Effects: Toggles each bit in *this for which the corresponding bit in rhs is set, and leaves all other
bits unchanged.

6 Returns: *this.

bitset<N>& operator<<=(size_t pos);

7 Effects: Replaces each bit at position I in *this with a value determined as follows:

— If I < pos, the new value is zero;

— If I >= pos, the new value is the previous value of the bit at position I - pos.

8 Returns: *this.

bitset<N>& operator>>=(size_t pos);

9 Effects: Replaces each bit at position I in *this with a value determined as follows:

— If pos >= N - I, the new value is zero;

— If pos < N - I, the new value is the previous value of the bit at position I + pos.

10 Returns: *this.

bitset<N>& set();

11 Effects: Sets all bits in *this.

12 Returns: *this.

bitset<N>& set(size_t pos, bool val = true);

§ 20.5.2 507

c© ISO/IEC N3092

13 Requires: pos is valid

14 Throws: out_of_range if pos does not correspond to a valid bit position.

15 Effects: Stores a new value in the bit at position pos in *this. If val is nonzero, the stored value is
one, otherwise it is zero.

16 Returns: *this.

bitset<N>& reset();

17 Effects: Resets all bits in *this.

18 Returns: *this.

bitset<N>& reset(size_t pos);

19 Requires: pos is valid

20 Throws: out_of_range if pos does not correspond to a valid bit position.

21 Effects: Resets the bit at position pos in *this.

22 Returns: *this.

bitset<N> operator~() const;

23 Effects: Constructs an object x of class bitset<N> and initializes it with *this.

24 Returns: x.flip().

bitset<N>& flip();

25 Effects: Toggles all bits in *this.

26 Returns: *this.

bitset<N>& flip(size_t pos);

27 Requires: pos is valid

28 Throws: out_of_range if pos does not correspond to a valid bit position.

29 Effects: Toggles the bit at position pos in *this.

30 Returns: *this.

unsigned long to_ulong() const;

31 Throws: overflow_error if the integral value x corresponding to the bits in *this cannot be repre-
sented as type unsigned long.

32 Returns: x.

unsigned long long to_ullong() const;

33 Throws: overflow_error if the integral value x corresponding to the bits in *this cannot be repre-
sented as type unsigned long long.

34 Returns: x.

template <class charT = char,
class traits = char_traits<charT>,
class Allocator = allocator<charT> >

§ 20.5.2 508

c© ISO/IEC N3092

basic_string<charT, traits, Allocator>
to_string(charT zero = charT(’0’), charT one = charT(’1’)) const;

35 Effects: Constructs a string object of the appropriate type and initializes it to a string of length N
characters. Each character is determined by the value of its corresponding bit position in *this.
Character position N - 1 corresponds to bit position zero. Subsequent decreasing character positions
correspond to increasing bit positions. Bit value zero becomes the character zero, bit value one
becomes the character one.

36 Returns: The created object.

size_t count() const;

37 Returns: A count of the number of bits set in *this.

constexpr size_t size();

38 Returns: N.

bool operator==(const bitset<N>& rhs) const;

39 Returns: A nonzero value if the value of each bit in *this equals the value of the corresponding bit in
rhs.

bool operator!=(const bitset<N>& rhs) const;

40 Returns: A nonzero value if !(*this == rhs).

bool test(size_t pos);

41 Requires: pos is valid

42 Throws: out_of_range if pos does not correspond to a valid bit position.

43 Returns: true if the bit at position pos in *this has the value one.

bool all() const;

44 Returns: count() == size()

bool any() const;

45 Returns: count() != 0

bool none() const;

46 Returns: count() == 0

bitset<N> operator<<(size_t pos) const;

47 Returns: bitset<N>(*this) <<= pos.

bitset<N> operator>>(size_t pos) const;

48 Returns: bitset<N>(*this) >>= pos.

constexpr bool operator[](size_t pos);

49 Requires: pos shall be valid.

50 Throws: nothing.

51 Returns: true if the bit at position pos in *this has the value one, otherwise false.

§ 20.5.2 509

c© ISO/IEC N3092

bitset<N>::reference operator[](size_t pos);

52 Requires: pos shall be valid.

53 Throws: nothing.

54 Returns: An object of type bitset<N>::reference such that (*this)[pos] == this->test(pos),
and such that (*this)[pos] = val is equivalent to this->set(pos, val).

55 Remark: For the purpose of determining the presence of a data race (1.10), any access or update
through the resulting reference potentially accesses or modifies, respectively, the entire underlying
bitset.

20.5.3 Hash support [bitset.hash]

template <size_t N> struct hash<bitset<N> >;

1 Requires: the template specialization shall meet the requirements of class template hash (20.8.15).

20.5.4 bitset operators [bitset.operators]

bitset<N> operator&(const bitset<N>& lhs, const bitset<N>& rhs);

1 Returns: bitset<N>(lhs) &= rhs.

bitset<N> operator|(const bitset<N>& lhs, const bitset<N>& rhs);

2 Returns: bitset<N>(lhs) |= rhs.

bitset<N> operator^(const bitset<N>& lhs, const bitset<N>& rhs);

3 Returns: bitset<N>(lhs) ˆ= rhs.

template <class charT, class traits, size_t N>
basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>& is, bitset<N>& x);

4 A formatted input function (27.7.1.2).

5 Effects: Extracts up to N characters from is. Stores these characters in a temporary object str of type
basic_string<charT, traits>, then evaluates the expression x = bitset<N>(str). Characters are
extracted and stored until any of the following occurs:

— N characters have been extracted and stored;

— end-of-file occurs on the input sequence;

— the next input character is neither is.widen(’0’) nor is.widen(’1’) (in which case the input
character is not extracted).

6 If no characters are stored in str, calls is.setstate(ios_base::failbit) (which may throw ios_-
base::failure (27.5.4.3)).

7 Returns: is.

template <class charT, class traits, size_t N>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const bitset<N>& x);

8 Returns:

§ 20.5.4 510

c© ISO/IEC N3092

os << x.template to_string<charT,traits,allocator<charT> >(
use_facet<ctype<charT> >(os.getloc()).widen(’0’),
use_facet<ctype<charT> >(os.getloc()).widen(’1’))

(see 27.7.2.6).

20.6 Compile-time rational arithmetic [ratio]

1 This subclause describes the ratio library. It provides a class template ratio which exactly represents any
finite rational number with a numerator and denominator representable by compile-time constants of type
intmax_t.

2 Throughout this subclause, if the template argument types R1 and R2 are not specializations of the ratio
template, the program is ill-formed.

3 Header <ratio> synopsis
namespace std {

template <intmax_t N, intmax_t D = 1> class ratio;

// ratio arithmetic
template <class R1, class R2> using ratio_add = see below;
template <class R1, class R2> using ratio_subtract = see below;
template <class R1, class R2> using ratio_multiply = see below;
template <class R1, class R2> using ratio_divide = see below;

// ratio comparison
template <class R1, class R2> struct ratio_equal;
template <class R1, class R2> struct ratio_not_equal;
template <class R1, class R2> struct ratio_less;
template <class R1, class R2> struct ratio_less_equal;
template <class R1, class R2> struct ratio_greater;
template <class R1, class R2> struct ratio_greater_equal;

// convenience SI typedefs
typedef ratio<1, 1000000000000000000000000> yocto; // see 20.6.4
typedef ratio<1, 1000000000000000000000> zepto; // see 20.6.4
typedef ratio<1, 1000000000000000000> atto;
typedef ratio<1, 1000000000000000> femto;
typedef ratio<1, 1000000000000> pico;
typedef ratio<1, 1000000000> nano;
typedef ratio<1, 1000000> micro;
typedef ratio<1, 1000> milli;
typedef ratio<1, 100> centi;
typedef ratio<1, 10> deci;
typedef ratio< 10, 1> deca;
typedef ratio< 100, 1> hecto;
typedef ratio< 1000, 1> kilo;
typedef ratio< 1000000, 1> mega;
typedef ratio< 1000000000, 1> giga;
typedef ratio< 1000000000000, 1> tera;
typedef ratio< 1000000000000000, 1> peta;
typedef ratio< 1000000000000000000, 1> exa;
typedef ratio< 1000000000000000000000, 1> zetta; // see 20.6.4
typedef ratio<1000000000000000000000000, 1> yotta; // see 20.6.4

}

§ 20.6 511

c© ISO/IEC N3092

20.6.1 Class template ratio [ratio.ratio]

namespace std {
template <intmax_t N, intmax_t D = 1>
class ratio {
public:

typedef ratio type;
static constexpr intmax_t num;
static constexpr intmax_t den;

};
}

1 If the template argument D is zero or the absolute values of either of the template arguments N and D is not
representable by type intmax_t, the program is ill-formed. [Note: These rules ensure that infinite ratios
are avoided and that for any negative input, there exists a representable value of its absolute value which is
positive. In a two’s complement representation, this excludes the most negative value. — end note]

2 The static data members num and den shall have the following values, where gcd represents the greatest
common divisor of the absolute values of N and D:

— num shall have the value sign(N) * sign(D) * abs(N) / gcd.

— den shall have the value abs(D) / gcd.

20.6.2 Arithmetic on ratio types [ratio.arithmetic]

1 Implementations may use other algorithms to compute these values. If overflow occurs, the program is
ill-formed.

template <class R1, class R2> using ratio_add = see below;

2 The type ratio_add<R1, R2> shall be a synonym for ratio<T1, T2> where T1 has the value R1::num
* R2::den + R2::num * R1::den and T2 has the value R1::den * R2::den.

template <class R1, class R2> using ratio_subtract = see below;

3 The type ratio_subtract<R1, R2> shall be a synonym for ratio<T1, T2> where T1 has the value
R1::num * R2::den - R2::num * R1::den and T2 has the value R1::den * R2::den.

template <class R1, class R2> using ratio_multiply = see below;

4 The type ratio_multiply<R1, R2> shall be a synonym for ratio<T1, T2> where T1 has the value
R1::num * R2::num and T2 has the value R1::den * R2::den.

template <class R1, class R2> using ratio_divide = see below;

5 The type ratio_divide<R1, R2> shall be a synonym for ratio<T1, T2> where T1 has the value
R1::num * R2::den and T2 has the value R1::den * R2::num.

20.6.3 Comparison of ratio types [ratio.comparison]

template <class R1, class R2> struct ratio_equal
: integral_constant<bool, see below> { };

1 If R1::num == R2::num and R1::den == R2::den, ratio_equal<R1, R2> shall be derived from
integral_constant<bool, true>; otherwise it shall be derived from integral_constant<bool,
false>.

§ 20.6.3 512

c© ISO/IEC N3092

template <class R1, class R2> struct ratio_not_equal
: integral_constant<bool, !ratio_equal<R1, R2>::value> { };

template <class R1, class R2> struct ratio_less
: integral_constant<bool, see below> { };

2 If R1::num * R2::den < R2::num * R1::den, ratio_less<R1, R2> shall be derived from integral_-
constant<bool, true>; otherwise it shall be derived from integral_constant<bool, false>. Im-
plementations may use other algorithms to compute this relationship to avoid overflow. If overflow
occurs, the program is ill-formed.

template <class R1, class R2> struct ratio_less_equal
: integral_constant<bool, !ratio_less<R2, R1>::value> { };

template <class R1, class R2> struct ratio_greater
: integral_constant<bool, ratio_less<R2, R1>::value> { };

template <class R1, class R2> struct ratio_greater_equal
: integral_constant<bool, !ratio_less<R1, R2>::value> { };

20.6.4 SI types for ratio [ratio.si]

1 For each of the typedefs yocto, zepto, zetta, and yotta, if both of the constants used in its specification
are representable by intmax_t, the typedef shall be defined; if either of the constants is not representable
by intmax_t, the typedef shall not be defined.

20.7 Metaprogramming and type traits [meta]

1 This subclause describes components used by C++ programs, particularly in templates, to support the
widest possible range of types, optimise template code usage, detect type related user errors, and perform
type inference and transformation at compile time. It includes type classification traits, type property
inspection traits, and type transformations. The type classification traits describe a complete taxonomy
of all possible C++ types, and state where in that taxonomy a given type belongs. The type property
inspection traits allow important characteristics of types or of combinations of types to be inspected. The
type transformations allow certain properties of types to be manipulated.

20.7.1 Requirements [meta.rqmts]

1 A UnaryTypeTrait describes a property of a type. It shall be a class template that takes one template
type argument and, optionally, additional arguments that help define the property being described. It
shall be DefaultConstructible, CopyConstructible, and publicly and unambiguously derived, directly or
indirectly, from its BaseCharacteristic, which is a specialization of the template integral_constant (20.7.3),
with the arguments to the template integral_constant determined by the requirements for the particular
property being described. The member names of the BaseCharacteristic shall not be hidden and shall be
unambiguously available in the UnaryTypeTrait.

2 A BinaryTypeTrait describes a relationship between two types. It shall be a class template that takes two
template type arguments and, optionally, additional arguments that help define the relationship being de-
scribed. It shall be DefaultConstructible, CopyConstructible, and publicly and unambiguously derived,
directly or indirectly, from its BaseCharacteristic, which is a specialization of the template integral_-
constant (20.7.3), with the arguments to the template integral_constant determined by the requirements
for the particular relationship being described. The member names of the BaseCharacteristic shall not be
hidden and shall be unambiguously available in the BinaryTypeTrait.

§ 20.7.1 513

c© ISO/IEC N3092

3 A TransformationTrait modifies a property of a type. It shall be a class template that takes one template
type argument and, optionally, additional arguments that help define the modification. It shall define a
nested type named type, which shall be a synonym for the modified type.

20.7.2 Header <type_traits> synopsis [meta.type.synop]

namespace std {
// 20.7.3, helper class:
template <class T, T v> struct integral_constant;
typedef integral_constant<bool, true> true_type;
typedef integral_constant<bool, false> false_type;

// 20.7.4.1, primary type categories:
template <class T> struct is_void;
template <class T> struct is_integral;
template <class T> struct is_floating_point;
template <class T> struct is_array;
template <class T> struct is_pointer;
template <class T> struct is_lvalue_reference;
template <class T> struct is_rvalue_reference;
template <class T> struct is_member_object_pointer;
template <class T> struct is_member_function_pointer;
template <class T> struct is_enum;
template <class T> struct is_union;
template <class T> struct is_class;
template <class T> struct is_function;

// 20.7.4.2, composite type categories:
template <class T> struct is_reference;
template <class T> struct is_arithmetic;
template <class T> struct is_fundamental;
template <class T> struct is_object;
template <class T> struct is_scalar;
template <class T> struct is_compound;
template <class T> struct is_member_pointer;

// 20.7.4.3, type properties:
template <class T> struct is_const;
template <class T> struct is_volatile;
template <class T> struct is_trivial;
template <class T> struct is_trivially_copyable;
template <class T> struct is_standard_layout;
template <class T> struct is_pod;
template <class T> struct is_literal_type;
template <class T> struct is_empty;
template <class T> struct is_polymorphic;
template <class T> struct is_abstract;
template <class T, class... Args> struct is_constructible;
template <class T, class... Args> struct is_nothrow_constructible;
template <class T> struct has_default_constructor;
template <class T> struct has_copy_constructor;
template <class T> struct has_copy_assign;
template <class T> struct has_move_constructor;
template <class T> struct has_move_assign;
template <class T> struct has_trivial_default_constructor;

§ 20.7.2 514

c© ISO/IEC N3092

template <class T> struct has_trivial_copy_constructor;
template <class T> struct has_trivial_move_constructor;
template <class T> struct has_trivial_copy_assign;
template <class T> struct has_trivial_move_assign;
template <class T> struct has_trivial_destructor;
template <class T> struct has_nothrow_default_constructor;
template <class T> struct has_nothrow_copy_constructor;
template <class T> struct has_nothrow_move_constructor;
template <class T> struct has_nothrow_copy_assign;
template <class T> struct has_nothrow_move_assign;
template <class T> struct has_virtual_destructor;
template <class T> struct is_signed;
template <class T> struct is_unsigned;
template <class T> struct alignment_of;
template <class T> struct rank;
template <class T, unsigned I = 0> struct extent;

// 20.7.5, type relations:
template <class T, class U> struct is_same;
template <class Base, class Derived> struct is_base_of;
template <class From, class To> struct is_convertible;
template <class From, class To> struct is_explicitly_convertible;

// 20.7.6.1, const-volatile modifications:
template <class T> struct remove_const;
template <class T> struct remove_volatile;
template <class T> struct remove_cv;
template <class T> struct add_const;
template <class T> struct add_volatile;
template <class T> struct add_cv;

// 20.7.6.2, reference modifications:
template <class T> struct remove_reference;
template <class T> struct add_lvalue_reference;
template <class T> struct add_rvalue_reference;

// 20.7.6.3, sign modifications:
template <class T> struct make_signed;
template <class T> struct make_unsigned;

// 20.7.6.4, array modifications:
template <class T> struct remove_extent;
template <class T> struct remove_all_extents;

// 20.7.6.5, pointer modifications:
template <class T> struct remove_pointer;
template <class T> struct add_pointer;

// 20.7.6.6, other transformations:
template <std::size_t Len, std::size_t Align> struct aligned_storage;
template <std::size_t Len, class... Types> struct aligned_union;
template <class T> struct decay;
template <bool, class T = void> struct enable_if;
template <bool, class T, class F> struct conditional;
template <class... T> struct common_type;

§ 20.7.2 515

c© ISO/IEC N3092

template <class T> struct underlying_type;
template <class> class result_of; // undefined
template <class F, class... ArgTypes> class result_of<F(ArgTypes...)>;

} // namespace std

1 The behavior of a program that adds specializations for any of the class templates defined in this subclause
is undefined unless otherwise specified.

20.7.3 Helper classes [meta.help]

namespace std {
template <class T, T v>
struct integral_constant {

static constexpr T value = v;
typedef T value_type;
typedef integral_constant<T,v> type;
constexpr operator value_type() { return value; }

};
typedef integral_constant<bool, true> true_type;
typedef integral_constant<bool, false> false_type;

}

1 The class template integral_constant and its associated typedefs true_type and false_type are used as
base classes to define the interface for various type traits.

20.7.4 Unary Type Traits [meta.unary]

1 This sub-clause contains templates that may be used to query the properties of a type at compile time.

2 Each of these templates shall be a UnaryTypeTrait (20.7.1) with a BaseCharacteristic of true_type if the
corresponding condition is true, otherwise false_type.

20.7.4.1 Primary Type Categories [meta.unary.cat]

1 The primary type categories correspond to the descriptions given in section 3.9 of the C++ standard.

2 For any given type T, the result of applying one of these templates to T and to cv-qualified T shall yield the
same result.

3 [Note: For any given type T, exactly one of the primary type categories has a value member that evaluates
to true. — end note]

Table 43 — Primary type category predicates

Template Condition Comments
template <class T>
struct is_void;

T is void

template <class T>
struct is_integral;

T is an integral type (3.9.1)

template <class T>
struct is_floating_point;

T is a floating point
type (3.9.1)

template <class T>
struct is_array;

T is an array type (3.9.2) of
known or unknown extent

Class template
array (23.3.1) is not an
array type.

§ 20.7.4.1 516

c© ISO/IEC N3092

Table 43 — Primary type category predicates (continued)

Template Condition Comments
template <class T>
struct is_pointer;

T is a pointer type (3.9.2) Includes pointers to
functions but not pointers
to non-static members.

template <class T>
struct is_lvalue_reference;

T is an lvalue reference
type (8.3.2)

template <class T>
struct is_rvalue_reference;

T is an rvalue reference
type (8.3.2)

template <class T>
struct is_member_object_pointer;

T is a pointer to non-static
data member

template <class T>
struct
is_member_function_pointer;

T is a pointer to non-static
member function

template <class T>
struct is_enum;

T is an enumeration
type (3.9.2)

template <class T>
struct is_union;

T is a union type (3.9.2)

template <class T>
struct is_class;

T is a class type but not a
union type (3.9.2)

template <class T>
struct is_function;

T is a function type (3.9.2)

20.7.4.2 Composite type traits [meta.unary.comp]

1 These templates provide convenient compositions of the primary type categories, corresponding to the de-
scriptions given in section 3.9.

2 For any given type T, the result of applying one of these templates to T, and to cv-qualified T shall yield the
same result.

Table 44 — Composite type category predicates

Template Condition Comments
template <class T>
struct is_reference;

T is an lvalue reference or
an rvalue reference

template <class T>
struct is_arithmetic;

T is an arithmetic
type (3.9.1)

template <class T>
struct is_fundamental;

T is a fundamental
type (3.9.1)

template <class T>
struct is_object;

T is an object type (3.9)

template <class T>
struct is_scalar;

T is a scalar type (3.9)

template <class T>
struct is_compound;

T is a compound
type (3.9.2)

template <class T>
struct is_member_pointer;

T is a pointer to non-static
data member or non-static
member function

§ 20.7.4.2 517

c© ISO/IEC N3092

20.7.4.3 Type properties [meta.unary.prop]

1 These templates provide access to some of the more important properties of types.

2 It is unspecified whether the library defines any full or partial specialisations of any of these templates.

3 For all of the class templates X declared in this Clause, instantiating that template with a template-argument
that is a class template specialization may result in the implicit instantiation of the template argument if
and only if the semantics of X require that the argument must be a complete type.

Table 45 — Type property predicates

Template Condition Preconditions
template <class T>
struct is_const;

T is const-qualified (3.9.3)

template <class T>
struct is_volatile;

T is
volatile-qualified (3.9.3)

template <class T>
struct is_trivial;

T is a trivial type (3.9) T shall be a complete type,
(possibly cv-qualified)
void, or an array of
unknown bound.

template <class T>
struct is_trivially_copyable;

T is a trivially copyable
type (3.9)

T shall be a complete type,
(possibly cv-qualified)
void, or an array of
unknown bound.

template <class T>
struct is_standard_layout;

T is a standard-layout
type (3.9)

T shall be a complete type,
(possibly cv-qualified)
void, or an array of
unknown bound.

template <class T>
struct is_pod;

T is a POD type (3.9) T shall be a complete type,
(possibly cv-qualified)
void, or an array of
unknown bound.

template <class T>
struct is_literal_type;

T is a literal type (3.9) T shall be a complete type,
(possibly cv-qualified)
void, or an array of
unknown bound.

template <class T>
struct is_empty;

T is a class type, but not a
union type, with no
non-static data members
other than bit-fields of
length 0, no virtual
member functions, no
virtual base classes, and
no base class B for which
is_empty::value is
false.

T shall be a complete type,
(possibly cv-qualified)
void, or an array of
unknown bound.

template <class T>
struct is_polymorphic;

T is a polymorphic
class (10.3)

T shall be a complete type,
type, (possibly
cv-qualified) void, or an
array of unknown bound.

§ 20.7.4.3 518

c© ISO/IEC N3092

Table 45 — Type property predicates (continued)

Template Condition Preconditions
template <class T>
struct is_abstract;

T is an abstract
class (10.4)

T shall be a complete type,
type, (possibly
cv-qualified) void, or an
array of unknown bound.

template <class T, class... Args>
struct is_constructible;

see below T and all types in the
parameter pack Args shall
be complete types,
(possibly cv-qualified)
void, or arrays of
unknown bound.

template <class T, class... Args>
struct is_nothrow_constructible;

is_constructible<T,
Args...>::value is true
and the expression
noexcept(CE) is true,
where CE is defined
below.

T and all types in the
parameter pack Args shall
be complete types,
(possibly cv-qualified)
void, or arrays of
unknown bound.

template <class T>
struct has_default_constructor;

is_-
constructible<U>::valueis
true, where U is remove_-
all_extents<T>::type.

T shall be a complete type,
(possibly cv-qualified)
void, or an array of
unknown bound.

template <class T>
struct has_copy_constructor;

is_constructible<U,
const U&>::value is
true, where U is remove_-
all_extents<T>::type.

T shall be a complete type,
(possibly cv-qualified)
void, or an array of
unknown bound.

template <class T>
struct has_copy_assign;

T is neither const nor a
reference type, and T is a
trivial type (3.9) or the
expression *(U*)0 =
declval<const U&>() is
well-formed when treated
as an unevaluated operand
(Clause 5), where U is
remove_all_-
extents<T>::type.

T shall be a complete type,
(possibly cv-qualified)
void, or an array of
unknown bound.

template <class T>
struct has_move_constructor;

is_constructible<U,
U&&>::value is true,
where U is remove_all_-
extents<T>::type.

T shall be a complete type,
(possibly cv-qualified)
void, or an array of
unknown bound.

§ 20.7.4.3 519

c© ISO/IEC N3092

Table 45 — Type property predicates (continued)

Template Condition Preconditions
template <class T>
struct has_move_assign;

T is neither const nor a
reference type, and T is a
trivial type (3.9) or the
expression *(U*)0 =
declval<U>() is
well-formed when treated
as an unevaluated operand
(Clause 5), where U is
remove_all_-
extents<T>::type.

T shall be a complete type,
(possibly cv-qualified)
void, or an array of
unknown bound.

template <class T>
struct
has_trivial_default_constructor;

T is a trivial type (3.9) or
a class type with a trivial
default constructor (12.1)
or an array of such a class
type.

T shall be a complete type,
(possibly cv-qualified)
void, or an array of
unknown bound.

template <class T>
struct
has_trivial_copy_constructor;

T is a trivial type (3.9) or
a reference type or a class
type whose copy
constructors (12.8) are all
trivial.

T shall be a complete type,
(possibly cv-qualified)
void, or an array of
unknown bound.

template <class T>
struct
has_trivial_move_constructor;

T is a trivial type (3.9) or
a reference type or a class
type whose move
constructors (12.8) are all
trivial.

T shall be a complete type,
(possibly cv-qualified)
void, or an array of
unknown bound.

template <class T>
struct has_trivial_copy_assign;

T is neither const nor a
reference type, and T is a
trivial type (3.9) or a class
type whose copy
assignment
operators (12.8) are all
trivial.

T shall be a complete type,
(possibly cv-qualified)
void, or an array of
unknown bound.

template <class T>
struct has_trivial_move_assign;

T is neither const nor a
reference type, and T is a
trivial type (3.9) or a class
type whose move
assignment
operators (12.8) are all
trivial.

T shall be a complete type,
(possibly cv-qualified)
void, or an array of
unknown bound.

template <class T>
struct has_trivial_destructor;

T is a trivial type (3.9) or
a reference type or a class
type with a trivial
destructor (12.4) or an
array of such a class type.

T shall be a complete type,
(possibly cv-qualified)
void, or an array of
unknown bound.

§ 20.7.4.3 520

c© ISO/IEC N3092

Table 45 — Type property predicates (continued)

Template Condition Preconditions
template <class T>
struct
has_nothrow_default_constructor;

has_trivial_default_-
constructor<T>::value
is true or is_nothrow_-
constructible<U>::value
is true, where U is
remove_all_-
extents<T>::type.

T shall be a complete type,
(possibly cv-qualified)
void, or an array of
unknown bound.

template <class T>
struct
has_nothrow_copy_constructor;

has_trivial_copy_-
constructor<T>::value
is true or is_nothrow_-
constructible<U, const
U&>::value is true,
where U is remove_all_-
extents<T>::type.

T shall be a complete type,
(possibly cv-qualified)
void, or an array of
unknown bound.

template <class T>
struct
has_nothrow_move_constructor;

has_trivial_move_-
constructor<T>::value
is true or is_nothrow_-
constructible<U,
U&&>::value is true,
where U is remove_all_-
extents<T>::type.

T shall be a complete type,
(possibly cv-qualified)
void, or an array of
unknown bound.

template <class T>
struct has_nothrow_copy_assign;

has_trivial_copy_-
assign<T>::value is
true or the expression
noexcept(*(U*)0 =
declval<const U&>()) is
well-formed and true,
where U is remove_all_-
extents<T>::type.

T shall be a complete type,
(possibly cv-qualified)
void, or an array of
unknown bound.

template <class T>
struct has_nothrow_move_assign;

has_trivial_move_-
assign<T>::value is
true and T is a trivial
type (3.9) or the
expression
noexcept(*(U*)0 =
declval<U>()) is
well-formed and true,
where U is remove_all_-
extents<T>::type.

T shall be a complete type,
(possibly cv-qualified)
void, or an array of
unknown bound.

template <class T>
struct has_virtual_destructor;

T has a virtual
destructor (12.4)

T shall be a complete type,
(possibly cv-qualified)
void, or an array of
unknown bound.

template <class T>
struct is_signed;

is_-
arithmetic<T>::value
&& T(-1) < T(0)

§ 20.7.4.3 521

c© ISO/IEC N3092

Table 45 — Type property predicates (continued)

Template Condition Preconditions
template <class T>
struct is_unsigned;

is_-
arithmetic<T>::value
&& T(0) < T(-1)

4 [Example:
is_const<const volatile int>::value // true
is_const<const int*>::value // false
is_const<const int&>::value // false
is_const<int[3]>::value // false
is_const<const int[3]>::value // true

— end example]

5 [Example:
remove_const<const volatile int>::type // volatile int
remove_const<const int* const>::type // const int*
remove_const<const int&>::type // const int&
remove_const<const int[3]>::type // int[3]

— end example]

6 Given the following function prototype:
template <class T>

typename add_rvalue_reference<T>::type create();

the predicate condition for a template specialization is_constructible<T, Args...> shall be satisfied if
and only if the following expression CE would be well-formed:

— if sizeof...(Args) == 1, the expression:
static_cast<T>(create<Args>()...)

— otherwise, the expression:
T(create<Args>()...)

Table 46 — Type property queries

Template Value
template <class T>
struct alignment_of;

alignof(T).
Requires:alignof(T) shall be a valid expression (5.3.6)

template <class T>
struct rank;

If T names an array type, an integer value representing the number of
dimensions of T; otherwise, 0.

template <class T,
unsigned I = 0>
struct extent;

If T is not an array type, or if it has rank less than or equal to I, or if I
is 0 and T has type “array of unknown bound of U”, then 0; otherwise,
the bound (8.3.4) of the I’th dimension of T, where indexing of I is
zero-based

§ 20.7.4.3 522

c© ISO/IEC N3092

7 [Example:
// the following assertions hold:
assert(rank<int>::value == 0);
assert(rank<int[2]>::value == 1);
assert(rank<int[][4]>::value == 2);

— end example]

8 [Example:
// the following assertions hold:

assert(extent<int>::value == 0);
assert(extent<int[2]>::value == 2);
assert(extent<int[2][4]>::value == 2);
assert(extent<int[][4]>::value == 0);
assert((extent<int, 1>::value) == 0);
assert((extent<int[2], 1>::value) == 0);
assert((extent<int[2][4], 1>::value) == 4);
assert((extent<int[][4], 1>::value) == 4);

— end example]

20.7.5 Relationships between types [meta.rel]

1 This sub-clause contains templates that may be used to query relationships between types at compile time.

2 Each of these templates shall be a BinaryTypeTrait (20.7.1) with a BaseCharacteristic of true_type if the
corresponding condition is true, otherwise false_type.

Table 47 — Type relationship predicates

Template Condition Comments
template <class T, class U>
struct is_same;

T and U name the same
type with the same
cv-qualifications

template <class Base, class
Derived>
struct is_base_of;

Base is a base class of
Derived (10) without
regard to cv-qualifiers
or Base and Derived
are not unions and
name the same class
type without regard to
cv-qualifiers

If Base and Derived are class
types and are different types
(ignoring possible cv-qualifiers)
then Derived shall be a complete
type. [Note: Base classes that
are private, protected, or
ambigious are, nonetheless, base
classes. — end note]

template <class From, class To>
struct is_convertible;

see below From and To shall be complete
types, arrays of unknown bound,
or (possibly cv-qualified) void
types.

template <class From, class To>
struct is_explicitly_convertible;

is_constructible<
To, From>::value

is_explicitly_convertible is
a synonym for a two-argument
version of is_constructible.
An implementation may define it
as a template alias.

§ 20.7.5 523

c© ISO/IEC N3092

3 [Example:
struct B {};
struct B1 : B {};
struct B2 : B {};
struct D : private B1, private B2 {};

is_base_of<B, D>::value // true
is_base_of<const B, D>::value // true
is_base_of<B, const D>::value // true
is_base_of<B, const B>::value // true
is_base_of<D, B>::value // false
is_base_of<B&, D&>::value // false
is_base_of<B[3], D[3]>::value // false
is_base_of<int, int>::value // false

— end example]

4 Given the following function prototype:
template <class T>

typename add_rvalue_reference<T>::type create();

the predicate condition for a template specialization is_convertible<From, To> shall be satisfied if and
only if the return expression in the following code would be well-formed, including any implicit conversions
to the return type of the function:

To test() {
return create<From>();

}

[Note: This requirement gives well defined results for reference types, void types, array types, and function
types. — end note]

20.7.6 Transformations between types [meta.trans]

1 This sub-clause contains templates that may be used to transform one type to another following some
predefined rule.

2 Each of the templates in this subclause shall be a TransformationTrait (20.7.1).

20.7.6.1 Const-volatile modifications [meta.trans.cv]

Table 48 — Const-volatile modifications

Template Comments
template <class T>
struct remove_const;

The member typedef type shall name the same type as T except that
any top-level const-qualifier has been removed.
[Example:remove_const<const volatile int>::type evaluates to
volatile int, whereas remove_const<const int*>::type evaluates
to const int*. — end example]

template <class T>
struct remove_volatile;

The member typedef type shall name the same type as T except that
any top-level volatile-qualifier has been removed.
[Example:remove_volatile<const volatile int>::type evaluates to
const int, whereas remove_volatile<volatile int*>::type
evaluates to volatile int*. — end example]

§ 20.7.6.1 524

c© ISO/IEC N3092

Table 48 — Const-volatile modifications (continued)

Template Comments
template <class T>
struct remove_cv;

The member typedef type shall be the same as T except that any
top-level cv-qualifier has been removed. [Example:remove_cv<const
volatile int>::type evaluates to int, whereas remove_cv<const
volatile int*>::type evaluates to const volatile int*. — end
example]

template <class T>
struct add_const;

If T is a reference, function, or top-level const-qualified type, then type
shall name the same type as T, otherwise T const.

template <class T>
struct add_volatile;

If T is a reference, function, or top-level volatile-qualified type, then
type shall name the same type as T, otherwise T volatile.

template <class T>
struct add_cv;

The member typedef type shall name the same type as
add_const<typename add_volatile<T>::type>::type.

20.7.6.2 Reference modifications [meta.trans.ref]

Table 49 — Reference modifications

Template Comments
template <class T>
struct remove_reference;

If T has type “reference to T1” then the member typedef type shall
name T1; otherwise, type shall name T.

template <class T>
struct
add_lvalue_reference;

If T names an object or function type then the member typedef type
shall name T&; otherwise, if T names a type “rvalue reference to T1” then
the member typedef type shall name T1&; otherwise, type shall name T.

template <class T>
struct
add_rvalue_reference;

If T names an object or function type then the member typedef type
shall name T&&; otherwise, type shall name T. [Note: This rule reflects
the semantics of reference collapsing. For example, when a type T names
a type T1&, the type add_rvalue_reference<T>::type is not an rvalue
reference. — end note]

20.7.6.3 Sign modifications [meta.trans.sign]

Table 50 — Sign modifications

Template Comments
template <class T>
struct make_signed;

If T names a (possibly cv-qualified) signed integral type (3.9.1) then the
member typedef type shall name the type T; otherwise, if T names a
(possibly cv-qualified) unsigned integral type then type shall name the
corresponding signed integral type, with the same cv-qualifiers as T;
otherwise, type shall name the signed integral type with smallest
rank (4.13) for which sizeof(T) == sizeof(type), with the same
cv-qualifiers as T.
Requires:T shall be a (possibly cv-qualified) integral type or enumeration
but not a bool type.

§ 20.7.6.3 525

c© ISO/IEC N3092

Table 50 — Sign modifications (continued)

Template Comments
template <class T>
struct make_unsigned;

If T names a (possibly cv-qualified) unsigned integral type (3.9.1) then
the member typedef type shall name the type T; otherwise, if T names a
(possibly cv-qualified) signed integral type then type shall name the
corresponding unsigned integral type, with the same cv-qualifiers as T;
otherwise, type shall name the unsigned integral type with smallest
rank (4.13) for which sizeof(T) == sizeof(type), with the same
cv-qualifiers as T.
Requires:T shall be a (possibly cv-qualified) integral type or enumeration
but not a bool type.

20.7.6.4 Array modifications [meta.trans.arr]

Table 51 — Array modifications

Template Comments
template <class T>
struct remove_extent;

If T names a type “array of U”, the member typedef type shall be U,
otherwise T. [Note: For multidimensional arrays, only the first array
dimension is removed. For a type “array of const U”, the resulting type
is const U. — end note]

template <class T>
struct remove_all_extents;

If T is “multi-dimensional array of U”, the resulting member typedef
type is U, otherwise T.

1 [Example
// the following assertions hold:
assert((is_same<remove_extent<int>::type, int>::value));
assert((is_same<remove_extent<int[2]>::type, int>::value));
assert((is_same<remove_extent<int[2][3]>::type, int[3]>::value));
assert((is_same<remove_extent<int[][3]>::type, int[3]>::value));

— end example]

2 [Example
// the following assertions hold:
assert((is_same<remove_all_extents<int>::type, int>::value));
assert((is_same<remove_all_extents<int[2]>::type, int>::value));
assert((is_same<remove_all_extents<int[2][3]>::type, int>::value));
assert((is_same<remove_all_extents<int[][3]>::type, int>::value));

— end example]

20.7.6.5 Pointer modifications [meta.trans.ptr]

§ 20.7.6.5 526

c© ISO/IEC N3092

Table 52 — Pointer modifications

Template Comments
template <class T>
struct remove_pointer;

If T has type “(possibly cv-qualified) pointer to T1” then the member
typedef type shall name T1; otherwise, it shall name T.

template <class T>
struct add_pointer;

The member typedef type shall name the same type as
remove_reference<T>::type*.

20.7.6.6 Other transformations [meta.trans.other]

Table 53 — Other transformations

Template Condition Comments
template <std::size_t Len,
std::size_t Align
= default-alignment>
struct aligned_storage;

Len shall not be zero. Align
shall be equal to
alignof(T) for some type T
or to default-alignment.

The value of default-alignment shall
be the most stringent alignment
requirement for any C++ object type
whose size is no greater than
Len (3.9). The member typedef type
shall be a POD type suitable for use
as uninitialized storage for any object
whose size is at most Len and whose
alignment is a divisor of Align.

template <class T> struct
decay;

Let U be
remove_reference<T>::type. If
is_array<U>::value is true, the
member typedef type shall equal
remove_extent<U>::type*. If
is_function<U>::value is true, the
member typedef type shall equal
add_pointer<U>::type. Otherwise
the member typedef type equals
remove_cv<U>::type.

template <bool B, class T =
void> struct enable_if;

If B is true, the member typedef type
shall equal T; otherwise, there shall be
no member typedef type.

template <bool B, class T,
class F> struct conditional;

If B is true, the member typedef type
shall equal T. If B is false, the
member typedef type shall equal F.

template <class... T>
struct common_type;

The member typedef type shall be
defined as set out below. All types in
the parameter pack T shall be
complete or (possibly cv) void. A
program may specialize this trait if at
least one template parameter in the
specialization is a user-defined type.
[Note: Such specializations are needed
when only explicit conversions are
desired among the template
arguments. — end note]

§ 20.7.6.6 527

c© ISO/IEC N3092

Table 53 — Other transformations (continued)

Template Condition Comments
template <class T>
struct underlying_type;

T shall be an enumeration
type (7.2)

The member typedef type shall name
the underlying type of T.

template <class Fn,
class... ArgTypes> struct
result_of<Fn(ArgTypes...)>;

Fn shall be a function object
type (20.8), reference to
function, or reference to
function object type. The
expression
decltype(declval<Fn>()
(declval<ArgTypes>()...))
shall be well formed.

The member typedef type shall name
the type decltype(declval<Fn>()
(declval<ArgTypes>()...))

1 [Note: A typical implementation would define aligned_storage as:
template <std::size_t Len, std::size_t Alignment>
struct aligned_storage {

typedef struct {
unsigned char __data [[align(Alignment)]] [Len];

} type;
};

— end note]

2 It is implementation-defined whether any extended alignment is supported (3.11).

3 The nested typedef common_type::type shall be defined as follows:
template <class ...T> struct common_type;

template <class T>
struct common_type<T> {

typedef T type;
};

template <class T, class U>
struct common_type<T, U> {

typedef decltype(true ? declval<T>() : declval<U>()) type;
};

template <class T, class U, class... V>
struct common_type<T, U, V...> {

typedef typename common_type<typename common_type<T, U>::type, V...>::type type;
};

4 [Example: Given these definitions:
typedef bool (&PF1)();
typedef short (*PF2)(long);

struct S {
operator PF2() const;
double operator()(char, int&);

};

§ 20.7.6.6 528

c© ISO/IEC N3092

the following assertions will hold:
static_assert(std::is_same<std::result_of<S(int)>::type, short>::value, "Error!");
static_assert(std::is_same<std::result_of<S&(unsigned char, int&)>::type, double>::value, "Error!");
static_assert(std::is_same<std::result_of<PF1()>::type, bool>::value, "Error!");

— end example]

20.8 Function objects [function.objects]

1 A function object type is an object type (3.9) that can be the type of the postfix-expression in a function call
(5.2.2, 13.3.1.1).234 A function object is an object of a function object type. In the places where one would
expect to pass a pointer to a function to an algorithmic template (Clause 25), the interface is specified to
accept a function object. This not only makes algorithmic templates work with pointers to functions, but
also enables them to work with arbitrary function objects.

2 Header <functional> synopsis
namespace std {

// 20.8.3, base:
template <class Arg, class Result> struct unary_function;
template <class Arg1, class Arg2, class Result> struct binary_function;

// 20.8.4, reference_wrapper:
template <class T> class reference_wrapper;

template <class T> reference_wrapper<T> ref(T&);
template <class T> reference_wrapper<const T> cref(const T&);
template <class T> void ref(const T&&) = delete;
template <class T> void cref(const T&&) = delete;

template <class T> reference_wrapper<T> ref(reference_wrapper<T>);
template <class T> reference_wrapper<const T> cref(reference_wrapper<T>);

// 20.8.5, arithmetic operations:
template <class T> struct plus;
template <class T> struct minus;
template <class T> struct multiplies;
template <class T> struct divides;
template <class T> struct modulus;
template <class T> struct negate;

// 20.8.6, comparisons:
template <class T> struct equal_to;
template <class T> struct not_equal_to;
template <class T> struct greater;
template <class T> struct less;
template <class T> struct greater_equal;
template <class T> struct less_equal;

// 20.8.7, logical operations:
template <class T> struct logical_and;
template <class T> struct logical_or;
template <class T> struct logical_not;

234) Such a type is a function pointer or a class type which has a member operator() or a class type which has a conversion
to a pointer to function.

§ 20.8 529

c© ISO/IEC N3092

// 20.8.8, bitwise operations:
template <class T> struct bit_and;
template <class T> struct bit_or;
template <class T> struct bit_xor;

// 20.8.9, negators:
template <class Predicate> class unary_negate;
template <class Predicate>

unary_negate<Predicate> not1(const Predicate&);
template <class Predicate> class binary_negate;
template <class Predicate>

binary_negate<Predicate> not2(const Predicate&);

// 20.8.10, bind:
template<class T> struct is_bind_expression;
template<class T> struct is_placeholder;

template<class F, class... BoundArgs>
unspecified bind(F&&, BoundArgs&&...);

template<class R, class F, class... BoundArgs>
unspecified bind(F&&, BoundArgs&&...);

namespace placeholders {
// M is the implementation-defined number of placeholders
extern unspecified _1;
extern unspecified _2;

.

.

.
extern unspecified _M;

}

// D.9, binders (deprecated):
template <class Fn> class binder1st;
template <class Fn, class T>

binder1st<Fn> bind1st(const Fn&, const T&);
template <class Fn> class binder2nd;
template <class Fn, class T>

binder2nd<Fn> bind2nd(const Fn&, const T&);

// 20.8.11, adaptors:
template <class Arg, class Result> class pointer_to_unary_function;
template <class Arg, class Result>

pointer_to_unary_function<Arg,Result> ptr_fun(Result (*)(Arg));
template <class Arg1, class Arg2, class Result>

class pointer_to_binary_function;
template <class Arg1, class Arg2, class Result>

pointer_to_binary_function<Arg1,Arg2,Result>
ptr_fun(Result (*)(Arg1,Arg2));

// 20.8.12, adaptors:
template<class S, class T> class mem_fun_t;
template<class S, class T, class A> class mem_fun1_t;
template<class S, class T>

§ 20.8 530

c© ISO/IEC N3092

mem_fun_t<S,T> mem_fun(S (T::*f)());
template<class S, class T, class A>

mem_fun1_t<S,T,A> mem_fun(S (T::*f)(A));
template<class S, class T> class mem_fun_ref_t;
template<class S, class T, class A> class mem_fun1_ref_t;
template<class S, class T>

mem_fun_ref_t<S,T> mem_fun_ref(S (T::*f)());
template<class S, class T, class A>

mem_fun1_ref_t<S,T,A> mem_fun_ref(S (T::*f)(A));

template <class S, class T> class const_mem_fun_t;
template <class S, class T, class A> class const_mem_fun1_t;
template <class S, class T>

const_mem_fun_t<S,T> mem_fun(S (T::*f)() const);
template <class S, class T, class A>

const_mem_fun1_t<S,T,A> mem_fun(S (T::*f)(A) const);
template <class S, class T> class const_mem_fun_ref_t;
template <class S, class T, class A> class const_mem_fun1_ref_t;
template <class S, class T>

const_mem_fun_ref_t<S,T> mem_fun_ref(S (T::*f)() const);
template <class S, class T, class A>

const_mem_fun1_ref_t<S,T,A> mem_fun_ref(S (T::*f)(A) const);

// 20.8.13, member function adaptors:
template<class R, class T> unspecified mem_fn(R T::*);
template<class R, class T, class... Args> unspecified mem_fn(R (T::*)(Args...));
template<class R, class T, class... Args> unspecified mem_fn(R (T::*)(Args...) const);
template<class R, class T, class... Args> unspecified mem_fn(R (T::*)(Args...) volatile);
template<class R, class T, class... Args> unspecified mem_fn(R (T::*)(Args...) const volatile);
template<class R, class T, class... Args> unspecified mem_fn(R (T::*)(Args...) &);
template<class R, class T, class... Args> unspecified mem_fn(R (T::*)(Args...) const &);
template<class R, class T, class... Args> unspecified mem_fn(R (T::*)(Args...) volatile &);
template<class R, class T, class... Args> unspecified mem_fn(R (T::*)(Args...) const volatile &);
template<class R, class T, class... Args> unspecified mem_fn(R (T::*)(Args...) &&);
template<class R, class T, class... Args> unspecified mem_fn(R (T::*)(Args...) const &&);
template<class R, class T, class... Args> unspecified mem_fn(R (T::*)(Args...) volatile &&);
template<class R, class T, class... Args> unspecified mem_fn(R (T::*)(Args...) const volatile &&);

// 20.8.14 polymorphic function wrappers:
class bad_function_call;

template<class> class function; // undefined
template<class R, class... ArgTypes> class function<R(ArgTypes...)>;

template<class R, class... ArgTypes>
void swap(function<R(ArgTypes...)>&, function<R(ArgTypes...)>&);

template<class R, class... ArgTypes>
bool operator==(const function<R(ArgTypes...)>&, nullptr_t);

template<class R, class... ArgTypes>
bool operator==(nullptr_t, const function<R(ArgTypes...)>&);

template<class R, class... ArgTypes>
bool operator!=(const function<R(ArgTypes...)>&, nullptr_t);

template<class R, class... ArgTypes>
bool operator!=(nullptr_t, const function<R(ArgTypes...)>&);

§ 20.8 531

c© ISO/IEC N3092

// 20.8.15, hash function base template:
template <class T> struct hash;

// Hash function specializations
template <> struct hash<bool>;
template <> struct hash<char>;
template <> struct hash<signed char>;
template <> struct hash<unsigned char>;
template <> struct hash<char16_t>;
template <> struct hash<char32_t>;
template <> struct hash<wchar_t>;
template <> struct hash<short>;
template <> struct hash<unsigned short>;
template <> struct hash<int>;
template <> struct hash<unsigned int>;
template <> struct hash<long>;
template <> struct hash<long long>;
template <> struct hash<unsigned long>;
template <> struct hash<unsigned long long>;

template <> struct hash<float>;
template <> struct hash<double>;
template <> struct hash<long double>;

template<class T> struct hash<T*>;
}

3 [Example: If a C++ program wants to have a by-element addition of two vectors a and b containing double
and put the result into a, it can do:

transform(a.begin(), a.end(), b.begin(), a.begin(), plus<double>());

— end example]

4 [Example: To negate every element of a:
transform(a.begin(), a.end(), a.begin(), negate<double>());

— end example]

5 To enable adaptors and other components to manipulate function objects that take one or two arguments
it is required that the function objects correspondingly provide typedefs argument_type and result_-
type for function objects that take one argument and first_argument_type, second_argument_type, and
result_type for function objects that take two arguments.

20.8.1 Definitions [func.def]

1 The following definitions apply to this Clause:

2 A call signature is the name of a return type followed by a parenthesized comma-separated list of zero or
more argument types.

3 A callable type is a function object type (20.8) or a pointer to member.

4 A callable object is an object of a callable type.

§ 20.8.1 532

c© ISO/IEC N3092

5 A call wrapper type is a type that holds a callable object and supports a call operation that forwards to that
object.

6 A call wrapper is an object of a call wrapper type.

7 A target object is the callable object held by a call wrapper.

20.8.2 Requirements [func.require]

1 Define INVOKE(f, t1, t2, ..., tN) as follows:

— (t1.*f)(t2, ..., tN) when f is a pointer to a member function of a class T and t1 is an object of
type T or a reference to an object of type T or a reference to an object of a type derived from T;

— ((*t1).*f)(t2, ..., tN) when f is a pointer to a member function of a class T and t1 is not one of
the types described in the previous item;

— t1.*f when f is a pointer to member data of a class T and t1 is an object of type T or a reference to
an object of type T or a reference to an object of a type derived from T;

— (*t1).*f when f is a pointer to member data of a class T and t1 is not one of the types described in
the previous item;

— f(t1, t2, ..., tN) in all other cases.

2 Define INVOKE(f, t1, t2, ..., tN, R) as INVOKE(f, t1, t2, ..., tN) implicitly converted to R.

3 If a call wrapper (20.8.1) has a weak result type the type of its member type result_type is based on the
type T of the wrapper’s target object (20.8.1):

— if T is a function, reference to function, or pointer to function type, result_type shall be a synonym
for the return type of T;

— if T is a pointer to member function, result_type shall be a synonym for the return type of T;

— if T is a class type with a member type result_type, then result_type shall be a synonym for
T::result_type;

— otherwise result_type shall not be defined.

4 Every call wrapper (20.8.1) shall be MoveConstructible. A simple call wrapper is a call wrapper that is
CopyConstructible and CopyAssignable and whose copy constructor, move constructor, and assignment
operator do not throw exceptions. A forwarding call wrapper is a call wrapper that can be called with an
argument list. [Note: in a typical implementation forwarding call wrappers have an overloaded function call
operator of the form

template<class... UnBoundArgs>
R operator()(UnBoundArgs&&... unbound_args) cv-qual;

— end note]

20.8.3 Base [base]

1 The following classes are provided to simplify the typedefs of the argument and result types:
namespace std {

template <class Arg, class Result>
struct unary_function {

typedef Arg argument_type;
typedef Result result_type;

§ 20.8.3 533

c© ISO/IEC N3092

};
}

namespace std {
template <class Arg1, class Arg2, class Result>
struct binary_function {

typedef Arg1 first_argument_type;
typedef Arg2 second_argument_type;
typedef Result result_type;

};
}

20.8.4 Class template reference_wrapper [refwrap]

namespace std {
template <class T> class reference_wrapper

: public unary_function<T1, R> // see below
: public binary_function<T1, T2, R> // see below

{
public :

// types
typedef T type;
typedef see below result_type; // not always defined

// construct/copy/destroy
reference_wrapper(T&);
reference_wrapper(T&&) = delete; // do not bind to temporary objects
reference_wrapper(const reference_wrapper<T>& x);

// assignment
reference_wrapper& operator=(const reference_wrapper<T>& x);

// access
operator T& () const;
T& get() const;

// invocation
template <class... ArgTypes>
typename result_of<T(ArgTypes...)>::type
operator() (ArgTypes&&...) const;

};
}

1 reference_wrapper<T> is a CopyConstructible and CopyAssignable wrapper around a reference to an object
or function of type T.

2 reference_wrapper has a weak result type (20.8.2).

3 The template instantiation reference_wrapper<T> shall be derived from std::unary_function<T1, R>
only if the type T is any of the following:

— a function type or a pointer to function type taking one argument of type T1 and returning R

— a pointer to member function R T0::f cv (where cv represents the member function’s cv-qualifiers);
the type T1 is cv T0*

— a class type that is derived from std::unary_function<T1, R>

§ 20.8.4 534

c© ISO/IEC N3092

4 The template instantiation reference_wrapper<T> shall be derived from std::binary_function<T1, T2,
R> only if the type T is any of the following:

— a function type or a pointer to function type taking two arguments of types T1 and T2 and returning R

— a pointer to member function R T0::f(T2) cv (where cv represents the member function’s cv-qualifiers);
the type T1 is cv T0*

— a class type that is derived from std::binary_function<T1, T2, R>

20.8.4.1 reference_wrapper construct/copy/destroy [refwrap.const]

reference_wrapper(T& t);

1 Effects: Constructs a reference_wrapper object that stores a reference to t.

2 Throws: nothing.

reference_wrapper(const reference_wrapper<T>& x);

3 Effects: Constructs a reference_wrapper object that stores a reference to x.get().

4 Throws: nothing.

20.8.4.2 reference_wrapper assignment [refwrap.assign]

reference_wrapper& operator=(const reference_wrapper<T>& x);

1 Postconditions: *this stores a reference to x.get().

2 Throws: nothing.

20.8.4.3 reference_wrapper access [refwrap.access]

operator T& () const;

1 Returns: The stored reference.

2 Throws: nothing.

T& get() const;

3 Returns: The stored reference.

4 Throws: nothing.

20.8.4.4 reference_wrapper invocation [refwrap.invoke]

template <class... ArgTypes>
typename result_of<T(ArgTypes...)>::type

operator()(ArgTypes&&... args) const;

1 Returns: INVOKE(get(), std::forward<ArgTypes>(args)...). (20.8.2)

2 Remark: operator() is described for exposition only. Implementations are not required to provide an
actual reference_wrapper::operator(). Implementations are permitted to support reference_-
wrapper function invocation through multiple overloaded operators or through other means.

§ 20.8.4.4 535

c© ISO/IEC N3092

20.8.4.5 reference_wrapper helper functions [refwrap.helpers]

template <class T> reference_wrapper<T> ref(T& t);

1 Returns: reference_wrapper<T>(t)

2 Throws: nothing.

template <class T> reference_wrapper<T> ref(reference_wrapper<T>t);

3 Returns: ref(t.get())

4 Throws: nothing.

template <class T> reference_wrapper<const T> cref(const T& t);

5 Returns: reference_wrapper <const T>(t)

6 Throws: nothing.

template <class T> reference_wrapper<const T> cref(reference_wrapper<T> t);

7 Returns: cref(t.get());

8 Throws: nothing.

20.8.5 Arithmetic operations [arithmetic.operations]

1 The library provides basic function object classes for all of the arithmetic operators in the language (5.6,
5.7).

template <class T> struct plus : binary_function<T,T,T> {
T operator()(const T& x, const T& y) const;

};

2 operator() returns x + y.

template <class T> struct minus : binary_function<T,T,T> {
T operator()(const T& x, const T& y) const;

};

3 operator() returns x - y.

template <class T> struct multiplies : binary_function<T,T,T> {
T operator()(const T& x, const T& y) const;

};

4 operator() returns x * y.

template <class T> struct divides : binary_function<T,T,T> {
T operator()(const T& x, const T& y) const;

};

5 operator() returns x / y.

template <class T> struct modulus : binary_function<T,T,T> {
T operator()(const T& x, const T& y) const;

};

6 operator() returns x % y.

§ 20.8.5 536

c© ISO/IEC N3092

template <class T> struct negate : unary_function<T,T> {
T operator()(const T& x) const;

};

7 operator() returns -x.

20.8.6 Comparisons [comparisons]

1 The library provides basic function object classes for all of the comparison operators in the language (5.9,
5.10).

template <class T> struct equal_to : binary_function<T,T,bool> {
bool operator()(const T& x, const T& y) const;

};

2 operator() returns x == y.

template <class T> struct not_equal_to : binary_function<T,T,bool> {
bool operator()(const T& x, const T& y) const;

};

3 operator() returns x != y.

template <class T> struct greater : binary_function<T,T,bool> {
bool operator()(const T& x, const T& y) const;

};

4 operator() returns x > y.

template <class T> struct less : binary_function<T,T,bool> {
bool operator()(const T& x, const T& y) const;

};

5 operator() returns x < y.

template <class T> struct greater_equal : binary_function<T,T,bool> {
bool operator()(const T& x, const T& y) const;

};

6 operator() returns x >= y.

template <class T> struct less_equal : binary_function<T,T,bool> {
bool operator()(const T& x, const T& y) const;

};

7 operator() returns x <= y.

8 For templates greater, less, greater_equal, and less_equal, the specializations for any pointer type
yield a total order, even if the built-in operators <, >, <=, >= do not.

20.8.7 Logical operations [logical.operations]

1 The library provides basic function object classes for all of the logical operators in the language (5.14, 5.15,
5.3.1).

template <class T> struct logical_and : binary_function<T,T,bool> {
bool operator()(const T& x, const T& y) const;

};

§ 20.8.7 537

c© ISO/IEC N3092

2 operator() returns x && y.

template <class T> struct logical_or : binary_function<T,T,bool> {
bool operator()(const T& x, const T& y) const;

};

3 operator() returns x || y.

template <class T> struct logical_not : unary_function<T,bool> {
bool operator()(const T& x) const;

};

4 operator() returns !x.

20.8.8 Bitwise operations [bitwise.operations]

1 The library provides basic function object classes for all of the bitwise operators in the language (5.11, 5.13,
5.12).

template <class T> struct bit_and : binary_function<T,T,T> {
T operator()(const T& x, const T& y) const;

};

2 operator() returns x & y.

template <class T> struct bit_or : binary_function<T,T,T> {
T operator()(const T& x, const T& y) const;

};

3 operator() returns x | y.

template <class T> struct bit_xor : binary_function<T,T,T> {
T operator()(const T& x, const T& y) const;

};

4 operator() returns x ˆ y.

20.8.9 Negators [negators]

1 Negators not1 and not2 take a unary and a binary predicate, respectively, and return their comple-
ments (5.3.1).

template <class Predicate>
class unary_negate

: public unary_function<typename Predicate::argument_type,bool> {
public:

explicit unary_negate(const Predicate& pred);
bool operator()(const typename Predicate::argument_type& x) const;

};

2 operator() returns !pred(x).

template <class Predicate>
unary_negate<Predicate> not1(const Predicate& pred);

3 Returns: unary_negate<Predicate>(pred).

§ 20.8.9 538

c© ISO/IEC N3092

template <class Predicate>
class binary_negate

: public binary_function<typename Predicate::first_argument_type,
typename Predicate::second_argument_type, bool> {

public:
explicit binary_negate(const Predicate& pred);
bool operator()(const typename Predicate::first_argument_type& x,

const typename Predicate::second_argument_type& y) const;
};

4 operator() returns !pred(x,y).

template <class Predicate>
binary_negate<Predicate> not2(const Predicate& pred);

5 Returns:

binary_negate<Predicate>(pred).

20.8.10 Function template bind [bind]

1 The function template bind returns an object that binds a callable object passed as an argument to additional
arguments.

20.8.10.1 Function object binders [func.bind]

1 This subclause describes a uniform mechanism for binding arguments of callable objects.

20.8.10.1.1 Class template is_bind_expression [func.bind.isbind]

namespace std {
template<class T> struct is_bind_expression

: integral_constant<bool, see below> { };
}

1 is_bind_expression can be used to detect function objects generated by bind. bind uses is_bind_-
expression to detect subexpressions. Users may specialize this template to indicate that a type should be
treated as a subexpression in a bind call.

2 If T is a type returned from bind, is_bind_expression<T> shall be publicly derived from integral_-
constant<bool, true>, otherwise from integral_constant<bool, false>.

3 is_placeholder can be used to detect the standard placeholders _1, _2, and so on. bind uses is_-
placeholder to detect placeholders. Users may specialize this template to indicate a placeholder type.

4 If T is the type of std::placeholders::_J, is_placeholder<T> shall be publicly derived from integral_-
constant<int, J>, otherwise from integral_constant<int, 0>.

20.8.10.1.2 Function template bind [func.bind.bind]

1 In the text that follows, the following names have the following meanings:

— FD is the type decay<F>::type,

— fd is an lvalue of type FD constructed from std::forward<F>(f),

— Ti is the ith type in the template parameter back BoundArgs,

— TiD is the type decay<Ti>::type,

§ 20.8.10.1.2 539

c© ISO/IEC N3092

— ti is the ith argument in the function paramater pack bound_args,

— tid is an lvalue of type TiD constructed from std::forward<Ti>(ti),

— Uj is the jth deduced type of the UnBoundArgs&&... parameter of the forwarding call wrapper, and

— uj is the jth argument associated with Uj.

template<class F, class... BoundArgs>
unspecified bind(F&& f, BoundArgs&&... bound_args);

2 Requires: is_constructible<FD, F>::value shall be true. For each Ti in BoundArgs, is_constructible<TiD,
Ti>::value shall be true. INVOKE (fd, w1, w2, ..., wN) (20.8.2) shall be a valid expression for
some values w1, w2, ..., wN, where N == sizeof...(bound_args).

3 Returns: A forwarding call wrapper g with a weak result type (20.8.2). The effect of g(u1, u2, ...,
uM) shall be INVOKE(fd, v1, v2, ..., vN, result_of<FD cv (V1, V2, ..., VN)>::type), where
cv represents the cv-qualifiers of g and the values and types of the bound arguments v1, v2, ...,
vN are determined as specified below. The copy constructor and move constructor of the forwarding
call wrapper shall throw an exception if and only if the corresponding constructor of FD or of any of
the types TiD throws an exception.

4 Throws: Nothing unless the construction of fd or of one of the values tid throws an exception.

5 Remarks: The return type shall satisfy the requirements of MoveConstructible. If all of FD and TiD
satisfy the requirements of CopyConstructible, then the return type shall satisfy the requirements
of CopyConstructible. [Note: this implies that all of FD and TiD are MoveConstructible. — end
note]

template<class R, class F, class... BoundArgs>
unspecified bind(F&& f, BoundArgs&&... bound_args);

6 Requires: is_constructible<FD, F>::value shall be true. For each Ti in BoundArgs, is_constructible<TiD,
Ti>::value shall be true. INVOKE(fd, w1, w2, ..., wN) shall be a valid expression for some values
w1, w2, ..., wN, where N == sizeof...(bound_args).

7 Returns: A forwarding call wrapper g with a nested type result_type defined as a synonym for
R. The effect of g(u1, u2, ..., uM) shall be INVOKE(fd, v1, v2, ..., vN, R), where the values
and types of the bound arguments v1, v2, ..., vN are determined as specified below. The copy
constructor and move constructor of the forwarding call wrapper shall throw an exception if and only
if the corresponding constructor of FD or of any of the types TiD throws an exception.

8 Throws: Nothing unless the construction of fd or of one of the values tid throws an exception.

9 Remarks: The return type shall satisfy the requirements of MoveConstructible. If all of FD and TiD
satisfy the requirements of CopyConstructible, then the return type shall satisfy the requirements
of CopyConstructible. [Note: this implies that all of FD and TiD are MoveConstructible. — end
note]

10 The values of the bound arguments v1, v2, ..., vN and their corresponding types V1, V2, ..., VN
depend on the types TiD derived from the call to bind and the cv-qualifiers cv of the call wrapper g as
follows:

— if TiD is reference_wrapper<T>, the argument is tid.get() and its type Vi is T&;

— if the value of is_bind_expression<TiD>::value is true, the argument is tid(std::forward<Uj>(uj)...)
and its type Vi is result_of<TiD cv (Uj...)>::type;

§ 20.8.10.1.2 540

c© ISO/IEC N3092

— if the value j of is_placeholder<TiD>::value is not zero, the argument is std::forward<Uj>(uj)
and its type Vi is Uj&&;

— otherwise, the value is tid and its type Vi is TiD cv &.

20.8.10.1.3 Placeholders [func.bind.place]

namespace std {
namespace placeholders {

// M is the implementation-defined number of placeholders
extern unspecified _1;
extern unspecified _2;

.

.

.
extern unspecified _M;

}
}

1 All placeholder types shall be DefaultConstructible and CopyConstructible, and their default con-
structors and copy/move constructors shall not throw exceptions. It is implementation-defined whether
placeholder types are CopyAssignable. CopyAssignable placeholders’ copy assignment operators shall not
throw exceptions.

20.8.11 Adaptors for pointers to functions [function.pointer.adaptors]

1 To allow pointers to (unary and binary) functions to work with function adaptors the library provides:

template <class Arg, class Result>
class pointer_to_unary_function : public unary_function<Arg, Result> {
public:

explicit pointer_to_unary_function(Result (*f)(Arg));
Result operator()(Arg x) const;

};

2 operator() returns f(x).

template <class Arg, class Result>
pointer_to_unary_function<Arg, Result> ptr_fun(Result (*f)(Arg));

3 Returns: pointer_to_unary_function<Arg, Result>(f).

template <class Arg1, class Arg2, class Result>
class pointer_to_binary_function :

public binary_function<Arg1,Arg2,Result> {
public:

explicit pointer_to_binary_function(Result (*f)(Arg1, Arg2));
Result operator()(Arg1 x, Arg2 y) const;

};

4 operator() returns f(x,y).

template <class Arg1, class Arg2, class Result>
pointer_to_binary_function<Arg1,Arg2,Result>

ptr_fun(Result (*f)(Arg1, Arg2));

5 Returns: pointer_to_binary_function<Arg1,Arg2,Result>(f).

§ 20.8.11 541

c© ISO/IEC N3092

6 [Example:
int compare(const char*, const char*);
replace_if(v.begin(), v.end(),

not1(bind2nd(ptr_fun(compare), "abc")), "def");

replaces each abc with def in sequence v. — end example]

20.8.12 Adaptors for pointers to members [member.pointer.adaptors]

1 The purpose of the following is to provide the same facilities for pointer to members as those provided for
pointers to functions in 20.8.11.

template <class S, class T> class mem_fun_t
: public unary_function<T*, S> {

public:
explicit mem_fun_t(S (T::*p)());
S operator()(T* p) const;

};

2 mem_fun_t calls the member function it is initialized with given a pointer argument.

template <class S, class T, class A> class mem_fun1_t
: public binary_function<T*, A, S> {

public:
explicit mem_fun1_t(S (T::*p)(A));
S operator()(T* p, A x) const;

};

3 mem_fun1_t calls the member function it is initialized with given a pointer argument and an additional
argument of the appropriate type.

template<class S, class T> mem_fun_t<S,T>
mem_fun(S (T::*f)());

template<class S, class T, class A> mem_fun1_t<S,T,A>
mem_fun(S (T::*f)(A));

4 mem_fun(&X::f) returns an object through which X::f can be called given a pointer to an X followed
by the argument required for f (if any).

template <class S, class T> class mem_fun_ref_t
: public unary_function<T, S> {

public:
explicit mem_fun_ref_t(S (T::*p)());
S operator()(T& p) const;

};

5 mem_fun_ref_t calls the member function it is initialized with given a reference argument.

template <class S, class T, class A> class mem_fun1_ref_t
: public binary_function<T, A, S> {

public:
explicit mem_fun1_ref_t(S (T::*p)(A));
S operator()(T& p, A x) const;

};

6 mem_fun1_ref_t calls the member function it is initialized with given a reference argument and an
additional argument of the appropriate type.

§ 20.8.12 542

c© ISO/IEC N3092

template<class S, class T> mem_fun_ref_t<S,T>
mem_fun_ref(S (T::*f)());

template<class S, class T, class A> mem_fun1_ref_t<S,T,A>
mem_fun_ref(S (T::*f)(A));

7 mem_fun_ref(&X::f) returns an object through which X::f can be called given a reference to an X
followed by the argument required for f (if any).

template <class S, class T> class const_mem_fun_t
: public unary_function<const T*, S> {

public:
explicit const_mem_fun_t(S (T::*p)() const);
S operator()(const T* p) const;

};

8 const_mem_fun_t calls the member function it is initialized with given a pointer argument.

template <class S, class T, class A> class const_mem_fun1_t
: public binary_function<const T*, A, S> {

public:
explicit const_mem_fun1_t(S (T::*p)(A) const);
S operator()(const T* p, A x) const;

};

9 const_mem_fun1_t calls the member function it is initialized with given a pointer argument and an
additional argument of the appropriate type.

template<class S, class T> const_mem_fun_t<S,T>
mem_fun(S (T::*f)() const);

template<class S, class T, class A> const_mem_fun1_t<S,T,A>
mem_fun(S (T::*f)(A) const);

10 mem_fun(&X::f) returns an object through which X::f can be called given a pointer to an X followed
by the argument required for f (if any).

template <class S, class T> class const_mem_fun_ref_t
: public unary_function<T, S> {

public:
explicit const_mem_fun_ref_t(S (T::*p)() const);
S operator()(const T& p) const;

};

11 const_mem_fun_ref_t calls the member function it is initialized with given a reference argument.

template <class S, class T, class A> class const_mem_fun1_ref_t
: public binary_function<T, A, S> {

public:
explicit const_mem_fun1_ref_t(S (T::*p)(A) const);
S operator()(const T& p, A x) const;

};

12 const_mem_fun1_ref_t calls the member function it is initialized with given a reference argument and
an additional argument of the appropriate type.

template<class S, class T> const_mem_fun_ref_t<S,T>
mem_fun_ref(S (T::*f)() const);

template<class S, class T, class A> const_mem_fun1_ref_t<S,T,A>
mem_fun_ref(S (T::*f)(A) const);

§ 20.8.12 543

c© ISO/IEC N3092

13 mem_fun_ref(&X::f) returns an object through which X::f can be called given a reference to an X
followed by the argument required for f (if any).

20.8.13 Function template mem_fn [func.memfn]

template<class R, class T>
unspecified mem_fn(R T::* pm);

template<class R, class T, class... Args>
unspecified mem_fn(R (T::* pm)(Args...));

template<class R, class T, class... Args>
unspecified mem_fn(R (T::* pm)(Args...) const);

template<class R, class T, class... Args>
unspecified mem_fn(R (T::* pm)(Args...) volatile);

template<class R, class T, class... Args>
unspecified mem_fn(R (T::* pm)(Args...) const volatile);

template<class R, class T, class... Args>
unspecified mem_fn(R (T::* pm)(Args...) &);

template<class R, class T, class... Args>
unspecified mem_fn(R (T::* pm)(Args...) const &);

template<class R, class T, class... Args>
unspecified mem_fn(R (T::* pm)(Args...) volatile &);

template<class R, class T, class... Args>
unspecified mem_fn(R (T::* pm)(Args...) const volatile &);

template<class R, class T, class... Args>
unspecified mem_fn(R (T::* pm)(Args...) &&);

template<class R, class T, class... Args>
unspecified mem_fn(R (T::* pm)(Args...) const &&);

template<class R, class T, class... Args>
unspecified mem_fn(R (T::* pm)(Args...) volatile &&);

template<class R, class T, class... Args>
unspecified mem_fn(R (T::* pm)(Args...) const volatile &&);

1 Returns: A simple call wrapper (20.8.1) fn such that the expression fn(t, a2, ..., aN) is equivalent
to INVOKE(pm, t, a2, ..., aN) (20.8.2). fn shall have a nested type result_type that is a synonym
for the return type of pm when pm is a pointer to member function.

2 The simple call wrapper shall be derived from std::unary_function<cv T*, Ret> when pm is a
pointer to member function with cv-qualifier cv and taking no arguments, where Ret is pm’s return
type.

3 The simple call wrapper shall be derived from std::binary_function<cv T*, T1, Ret> when pm is
a pointer to member function with cv-qualifier cv and taking one argument of type T1, where Ret is
pm’s return type.

4 Throws: Nothing.

20.8.14 Polymorphic function wrappers [func.wrap]

1 This subclause describes a polymorphic wrapper class that encapsulates arbitrary callable objects.

20.8.14.1 Class bad_function_call [func.wrap.badcall]

1 An exception of type bad_function_call is thrown by function::operator() (20.8.14.2.4) when the
function wrapper object has no target.

§ 20.8.14.1 544

c© ISO/IEC N3092

namespace std {
class bad_function_call : public std::exception {
public:

// 20.8.14.1.1, constructor:
bad_function_call();

};
} // namespace std

20.8.14.1.1 bad_function_call constructor [func.wrap.badcall.const]

bad_function_call();

1 Effects: constructs a bad_function_call object.

20.8.14.2 Class template function [func.wrap.func]

namespace std {
template<class> class function; // undefined

template<class R, class... ArgTypes>
class function<R(ArgTypes...)>

: public unary_function<T1, R> // iff sizeof...(ArgTypes) == 1 and ArgTypes contains T1
: public binary_function<T1, T2, R> // iff sizeof...(ArgTypes) == 2 and ArgTypes contains T1 and

T2
{
public:

typedef R result_type;

// 20.8.14.2.1, construct/copy/destroy:
explicit function();
function(nullptr_t);
function(const function&);
function(function&&);
template<class F> function(F);
template<class A> function(allocator_arg_t, const A&);
template<class A> function(allocator_arg_t, const A&,

nullptr_t);
template<class A> function(allocator_arg_t, const A&,

const function&);
template<class A> function(allocator_arg_t, const A&,

function&&);
template<class F, class A> function(allocator_arg_t, const A&, F);

function& operator=(const function&);
function& operator=(function&&);
function& operator=(nullptr_t);
template<class F> function& operator=(F&&);
template<class F> function& operator=(reference_wrapper<F>);

~function();

// 20.8.14.2.2, function modifiers:
void swap(function&);
template<class F, class A> void assign(F&&, const A&);

§ 20.8.14.2 545

c© ISO/IEC N3092

// 20.8.14.2.3, function capacity:
explicit operator bool() const;

// deleted overloads close possible hole in the type system
template<class R2, class... ArgTypes2>

bool operator==(const function<R2(ArgTypes2...)>&) = delete;
template<class R2, class... ArgTypes2>

bool operator!=(const function<R2(ArgTypes2...)>&) = delete;

// 20.8.14.2.4, function invocation:
R operator()(ArgTypes...) const;

// 20.8.14.2.5, function target access:
const std::type_info& target_type() const;
template <typename T> T* target();
template <typename T> const T* target() const;

};

// 20.8.14.2.6, Null pointer comparisons:
template <class R, class... ArgTypes>

bool operator==(const function<R(ArgTypes...)>&, nullptr_t);

template <class R, class... ArgTypes>
bool operator==(nullptr_t, const function<R(ArgTypes...)>&);

template <class R, class... ArgTypes>
bool operator!=(const function<R(ArgTypes...)>&, nullptr_t);

template <class R, class... ArgTypes>
bool operator!=(nullptr_t, const function<R(ArgTypes...)>&);

// 20.8.14.2.7, specialized algorithms:
template <class R, class... ArgTypes>

void swap(function<R(ArgTypes...)>&, function<R(ArgTypes...)>&);

template<class R, class... ArgTypes, class Alloc>
struct uses_allocator<function<R(ArgTypes...)>, Alloc>

: true_type { };
}

1 The function class template provides polymorphic wrappers that generalize the notion of a function pointer.
Wrappers can store, copy, and call arbitrary callable objects (20.8.1), given a call signature (20.8.1), allowing
functions to be first-class objects.

2 A callable object f of type F is Callable for argument types ArgTypes and return type R if the expres-
sion INVOKE(f, declval<ArgTypes>()..., R), considered as an unevaluated operand (Clause 5), is well
formed (20.8.2).

3 The function class template is a call wrapper (20.8.1) whose call signature (20.8.1) is R(ArgTypes...).

20.8.14.2.1 function construct/copy/destroy [func.wrap.func.con]

1 When any function constructor that takes a first argument of type allocator_arg_t is invoked, the second
argument shall have a type that conforms to the requirements for Allocator (Table 20.2.5). A copy of the

§ 20.8.14.2.1 546

c© ISO/IEC N3092

allocator argument is used to allocate memory, if necessary, for the internal data structures of the constructed
function object.

explicit function();
template <class A> function(allocator_arg_t, const A& a);

2 Postconditions: !*this.

3 Throws: nothing.

function(nullptr_t);
template <class A> function(allocator_arg_t, const A& a, nullptr_t);

4 Postconditions: !*this.

5 Throws: nothing.

function(const function& f);
template <class A> function(allocator_arg_t, const A& a, const function& f);

6 Postconditions: !*this if !f; otherwise, *this targets a copy of f.target().

7 Throws: shall not throw exceptions if f’s target is a callable object passed via reference_wrapper or
a function pointer. Otherwise, may throw bad_alloc or any exception thrown by the copy constructor
of the stored callable object. [Note: Implementations are encouraged to avoid the use of dynamically
allocated memory for small callable objects, for example, where f’s target is an object holding only a
pointer or reference to an object and a member function pointer. — end note]

function(function&& f);
template <class A> function(allocator_arg_t, const A& a, function&& f);

8 Effects: If !f, *this has no target; otherwise, move-constructs the target of f into the target of *this,
leaving f in a valid state with an unspecified value.

template<class F> function(F f);
template <class F, class A> function(allocator_arg_t, const A& a, F f);

9 Requires: F shall be CopyConstructible. f shall be Callable (20.8.14.2) for argument types ArgTypes
and return type R. The copy constructor and destructor of A shall not throw exceptions.

10 Postconditions: !*this if any of the following hold:

— f is a NULL function pointer.

— f is a NULL member function pointer.

— F is an instance of the function class template, and !f

11 Otherwise, *this targets a copy of f or std::move(f) if f is not a pointer to member function,
and targets a copy of mem_fn(f) if f is a pointer to member function. [Note: implementations are
encouraged to avoid the use of dynamically allocated memory for small callable objects, for example,
where f’s target is an object holding only a pointer or reference to an object and a member function
pointer. — end note]

12 Throws: shall not throw exceptions when f is a function pointer or a reference_wrapper<T> for some
T. Otherwise, may throw bad_alloc or any exception thrown by F’s copy or move constructor.

function& operator=(const function& f);

13 Effects: function(f).swap(*this);

§ 20.8.14.2.1 547

c© ISO/IEC N3092

14 Returns: *this

function& operator=(function&& f);

15 Effects: Replaces the target of *this with the target of f, leaving f in a valid but unspecified state.

16 Returns: *this

function& operator=(nullptr_t);

17 Effects: If *this != NULL, destroys the target of this.

18 Postconditions: !(*this).

19 Returns: *this

template<class F> function& operator=(F&& f);

20 Effects: function(std::forward<F>(f)).swap(*this);

21 Returns: *this

template<class F> function& operator=(reference_wrapper<F> f);

22 Effects: function(f).swap(*this);

23 Returns: *this

24 Throws: nothing.

~function();

25 Effects: If *this != NULL, destroys the target of this.

20.8.14.2.2 function modifiers [func.wrap.func.mod]

void swap(function& other);

1 Effects: interchanges the targets of *this and other.

2 Throws: nothing.

template<class F, class A>
void assign(F&& f, const A& a);

3 Effects: function(allocator_arg, a, std::forward<F>(f)).swap(*this)

20.8.14.2.3 function capacity [func.wrap.func.cap]

explicit operator bool() const

1 Returns: true if *this has a target, otherwise false.

2 Throws: nothing.

20.8.14.2.4 function invocation [func.wrap.func.inv]

R operator()(ArgTypes... args) const

§ 20.8.14.2.4 548

c© ISO/IEC N3092

1 Effects: INVOKE(f, t1, t2, ..., tN, R) (20.8.2), where f is the target object (20.8.1) of *this
and t1, t2, ..., tN are the values in args....

2 Returns: Nothing if R is void, otherwise the return value of INVOKE(f, t1, t2, ..., tN, R).

3 Throws: bad_function_call if !*this; otherwise, any exception thrown by the wrapped callable
object.

20.8.14.2.5 function target access [func.wrap.func.targ]

const std::type_info& target_type() const;

1 Returns: If *this has a target of type T, typeid(T); otherwise, typeid(void).

2 Throws: nothing.

template<typename T> T* target();
template<typename T> const T* target() const;

3 Requires: T shall be a type that is Callable (20.8.14.2) for parameter types ArgTypes and return type
R.

4 Returns: If target_type() == typeid(T) a pointer to the stored function target; otherwise a null
pointer.

5 Throws: nothing.

20.8.14.2.6 null pointer comparison operators [func.wrap.func.nullptr]

template <class R, class... ArgTypes>
bool operator==(const function<R(ArgTypes...)>& f, nullptr_t);

template <class R, class... ArgTypes>
bool operator==(nullptr_t, const function<R(ArgTypes...)>& f);

1 Returns: !f.

2 Throws: nothing.

template <class R, class... ArgTypes>
bool operator!=(const function<R(ArgTypes...)>& f, nullptr_t);

template <class R, class... ArgTypes>
bool operator!=(nullptr_t, const function<R(ArgTypes...)>& f);

3 Returns: (bool) f.

4 Throws: nothing.

20.8.14.2.7 specialized algorithms [func.wrap.func.alg]

template<class R, class... ArgTypes>
void swap(function<R(ArgTypes...)>& f1, function<R(ArgTypes...)>& f2);

1 Effects: f1.swap(f2);

§ 20.8.14.2.7 549

c© ISO/IEC N3092

20.8.15 Class template hash [unord.hash]

1 The unordered associative containers defined in Clause 23.5 use specializations of the class template hash
as the default hash function. For all object types Key for which there exists a specialization hash<Key>, the
instantiation hash<Key> shall:

— satisfy the Hash requirements (20.2.4), with Key as the function call argument type, the DefaultConstructible
requirements (33), the CopyAssignable requirements (37),

— be swappable (20.2.2) for lvalues,

— provide two nested types result_type and argument_type which shall be synonyms for size_t and
Key, respectively,

— satisfy the requirement that if k1 == k2 is true, h(k1) == h(k2) is also true, where h is an object of
type hash<Key> and k1 and k2 are objects of type Key.

template <> struct hash<bool>;
template <> struct hash<char>;
template <> struct hash<signed char>;
template <> struct hash<unsigned char>;
template <> struct hash<char16_t>;
template <> struct hash<char32_t>;
template <> struct hash<wchar_t>;
template <> struct hash<short>;
template <> struct hash<unsigned short>;
template <> struct hash<int>;
template <> struct hash<unsigned int>;
template <> struct hash<long>;
template <> struct hash<unsigned long>;
template <> struct hash<long long>;
template <> struct hash<unsigned long long>;
template <> struct hash<float>;
template <> struct hash<double>;
template <> struct hash<long double>;
template <> struct hash<T*>;

2 Requires: the template specializations shall meet the requirements of class template hash (20.8.15).

20.9 Memory [memory]

1 Header <memory> synopsis
namespace std {

// 20.9.1, allocator argument tag
struct allocator_arg_t { };
constexpr allocator_arg_t allocator_arg = allocator_arg_t();

// 20.9.2, uses_allocator
template <class T, class Alloc> struct uses_allocator;

// 20.9.3, pointer traits
template <class Ptr> struct pointer_traits;
template <class T> struct pointer_traits<T*>;

// 20.9.4, allocator traits
template <class Alloc> struct allocator_traits;

§ 20.9 550

c© ISO/IEC N3092

// 20.9.5, the default allocator:
template <class T> class allocator;
template <> class allocator<void>;
template <class T, class U>

bool operator==(const allocator<T>&, const allocator<U>&) throw();
template <class T, class U>

bool operator!=(const allocator<T>&, const allocator<U>&) throw();

// 20.9.6, scoped allocator adaptor
template <class OuterAlloc, class... InnerAlloc>

class scoped_allocator_adaptor;
template <class OuterA1, class OuterA2, class... InnerAllocs>

bool operator==(const scoped_allocator_adaptor<OuterA1, InnerAllocs...>& a,)
const scoped_allocator_adaptor<OuterA2, InnerAllocs...>& b);

template <class OuterA1, class OuterA2, class... InnerAllocs>
bool operator!=(const scoped_allocator_adaptor<OuterA1, InnerAllocs...>& a,)

const scoped_allocator_adaptor<OuterA2, InnerAllocs...>& b);

// 20.9.7, raw storage iterator:
template <class OutputIterator, class T> class raw_storage_iterator;

// 20.9.8, temporary buffers:
template <class T>

pair<T*,ptrdiff_t> get_temporary_buffer(ptrdiff_t n);
template <class T>

void return_temporary_buffer(T* p);

// 20.9.9, specialized algorithms:
template <class T> T* addressof(T& r);
template <class InputIterator, class ForwardIterator>

ForwardIterator uninitialized_copy(InputIterator first, InputIterator last,
ForwardIterator result);

template <class InputIterator, class Size, class ForwardIterator>
ForwardIterator uninitialized_copy_n(InputIterator first, Size n,

ForwardIterator result);
template <class ForwardIterator, class T>

void uninitialized_fill(ForwardIterator first, ForwardIterator last,
const T& x);

template <class ForwardIterator, class Size, class T>
void uninitialized_fill_n(ForwardIterator first, Size n, const T& x);

// 20.9.10 Class unique_ptr:
template <class T> class default_delete;
template <class T> class default_delete<T[]>;
template <class T, class D = default_delete<T>> class unique_ptr;
template <class T, class D> class unique_ptr<T[], D>;

template <class T1, class D1, class T2, class D2>
bool operator==(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);

template <class T1, class D1, class T2, class D2>
bool operator!=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);

template <class T1, class D1, class T2, class D2>
bool operator<(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);

template <class T1, class D1, class T2, class D2>

§ 20.9 551

c© ISO/IEC N3092

bool operator<=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);
template <class T1, class D1, class T2, class D2>

bool operator>(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);
template <class T1, class D1, class T2, class D2>

bool operator>=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);

// 20.9.11.1, Class bad_weak_ptr:
class bad_weak_ptr;

// 20.9.11.2, Class template shared_ptr:
template<class T> class shared_ptr;

// 20.9.11.2.7, shared_ptr comparisons:
template<class T, class U>

bool operator==(shared_ptr<T> const& a, shared_ptr<U> const& b);
template<class T, class U>

bool operator!=(shared_ptr<T> const& a, shared_ptr<U> const& b);
template<class T, class U>

bool operator<(shared_ptr<T> const& a, shared_ptr<U> const& b);
template<class T, class U>

bool operator>(shared_ptr<T> const& a, shared_ptr<U> const& b);
template<class T, class U>

bool operator<=(shared_ptr<T> const& a, shared_ptr<U> const& b);
template<class T, class U>

bool operator>=(shared_ptr<T> const& a, shared_ptr<U> const& b);

// 20.9.11.2.9, shared_ptr specialized algorithms:
template<class T> void swap(shared_ptr<T>& a, shared_ptr<T>& b);

// 20.9.11.2.10, shared_ptr casts:
template<class T, class U>

shared_ptr<T> static_pointer_cast(shared_ptr<U> const& r);
template<class T, class U>

shared_ptr<T> dynamic_pointer_cast(shared_ptr<U> const& r);
template<class T, class U>

shared_ptr<T> const_pointer_cast(shared_ptr<U> const& r);

// 20.9.11.2.8, shared_ptr I/O:
template<class E, class T, class Y>

basic_ostream<E, T>& operator<< (basic_ostream<E, T>& os, shared_ptr<Y> const& p);

// 20.9.11.2.11, shared_ptr get_deleter:
template<class D, class T> D* get_deleter(shared_ptr<T> const& p);

// 20.9.11.3, Class template weak_ptr:
template<class T> class weak_ptr;

// 20.9.11.3.6, weak_ptr specialized algorithms:
template<class T> void swap(weak_ptr<T>& a, weak_ptr<T>& b);

// 20.9.11.3.7, class owner_less:
template<class T> class owner_less;

// 20.9.11.4, Class enable_shared_from_this:
template<class T> class enable_shared_from_this;

§ 20.9 552

c© ISO/IEC N3092

// 20.9.11.5, shared_ptr atomic access:
template<class T>

bool atomic_is_lock_free(const shared_ptr<T>* p);

template<class T>
shared_ptr<T> atomic_load(const shared_ptr<T>* p);

template<class T>
shared_ptr<T> atomic_load_explicit(const shared_ptr<T>* p, memory_order mo);

template<class T>
void atomic_store(shared_ptr<T>* p, shared_ptr<T> r);

template<class T>
void atomic_store_explicit(shared_ptr<T>* p, shared_ptr<T> r, memory_order mo);

template<class T>
shared_ptr<T> atomic_exchange(shared_ptr<T>* p, shared_ptr<T> r);

template<class T>
shared_ptr<T> atomic_exchange_explicit(shared_ptr<T>* p, shared_ptr<T> r,

memory_order mo);

template<class T>
bool atomic_compare_exchange_weak(

shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w);
template<class T>

bool atomic_compare_exchange_strong(
shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w);

template<class T>
bool atomic_compare_exchange_weak_explicit(

shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w,
memory_order success, memory_order failure);

template<class T>
bool atomic_compare_exchange_strong_explicit(

shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w,
memory_order success, memory_order failure);

// 20.9.11.6 Hash support
template <class T> struct hash;
template <class T, class D> struct hash<unique_ptr<T, D> >;
template <class T> struct hash<shared_ptr<T> >;

// 20.9.12, Pointer safety
enum class pointer_safety { relaxed, preferred, strict };
void declare_reachable(void *p);
template <class T> T *undeclare_reachable(T *p);
void declare_no_pointers(char *p, size_t n);
void undeclare_no_pointers(char *p, size_t n);
pointer_safety get_pointer_safety();

// 20.9.13, Pointer alignment function
void *align(std::size_t alignment, std::size_t size,

void *&ptr, std::size_t& space);
}

§ 20.9 553

c© ISO/IEC N3092

20.9.1 Allocator argument tag [allocator.tag]

namespace std {
struct allocator_arg_t { };
const allocator_arg_t allocator_arg = allocator_arg_t();

}

1 The allocator_arg_t struct is an empty structure type used as a unique type to disambiguate constructor
and function overloading. Specifically, several types (see tuple 20.4) have constructors with allocator_-
arg_t as the first argument, immediately followed by an argument of a type that satisfies the Allocator
requirements (20.2.5).

20.9.2 uses_allocator [allocator.uses]

20.9.2.1 uses_allocator trait [allocator.uses.trait]

template <class T, class Alloc> struct uses_allocator;

1 Remark: automatically detects whether T has a nested allocator_type that is convertible from Alloc.
Meets the BinaryTypeTrait requirements (20.7.1). The implementation shall provide a definition
that is derived from true_type if a type T::allocator_type exists and is_convertible<Alloc,
T::allocator_- type>::value != false, otherwise it shall be derived from false_type. A program
may specialize this template to derive from true_type for a user-defined type T that does not have a
nested allocator_type but nonetheless can be constructed with an allocator where either:

— the first argument of a constructor has type allocator_arg_t and the second argument has type
Alloc or

— the last argument of a constructor has type Alloc.

20.9.2.2 uses-allocator construction [allocator.uses.construction]

1 Uses-allocator construction with allocator Alloc refers to the construction of an object obj of type T, using
constructor arguments v1, v2, ..., vN of types V1, V2, ..., VN, respectively, and an allocator alloc
of type Alloc, according to the following rules:

— if uses_allocator<T, Alloc>::value is false and is_constructible<T, V1, V2, ..., VN>::value
is true, then obj is initialized as obj(v1, v2, ..., vN);

— otherwise, if uses_allocator<T, Alloc>::value is true and is_constructible<T, allocator_-
arg_t, Alloc, V1, V2, ..., VN>::value is true, then obj is initialized as obj(allocator_arg,
alloc, v1, v2, ..., vN);

— otherwise, if uses_allocator<T, Alloc>::value is true and is_constructible<T, V1, V2, ...,
VN, Alloc>::value is true, then obj is initialized as obj(v1, v2, ..., vN, alloc);

— otherwise, the request for uses-allocator construction is ill-formed. [Note: an error will result if uses_-
allocator<T, Alloc>::value is true but the specific constructor does not take an allocator. This
definition prevents a silent failure to pass the allocator to an element. — end note]

20.9.3 Pointer traits [pointer.traits]

1 The class template pointer_traits supplies a uniform interface to certain attributes of pointer-like types.
namespace std {

template <class Ptr> struct pointer_traits {

§ 20.9.3 554

c© ISO/IEC N3092

typedef Ptr pointer;
typedef see below element_type;
typedef see below difference_type;

template <class U> using rebind = see below;

static pointer pointer_to(see below r);
};

template <class T> struct pointer_traits<T*> {
typedef T element_type;
typedef T* pointer;
typedef ptrdiff_t difference_type;

template <class U> using rebind = U*;

static pointer pointer_to(see below r);
};

}

20.9.3.1 Pointer traits member types [pointer.traits.types]

typedef see below element_type;

1 Type: Ptr::element_type if such a type exists; otherwise, T if Ptr is a class template instantia-
tion of the form SomePointer<T, Args>, where Args is zero or more type arguments; otherwise, the
specialization is ill-formed.

typedef see below difference_type;

2 Type: Ptr::difference_type if such a type exists; otherwise, std::ptrdiff_t.

template <class U> using rebind = see below;

3 Template alias: Ptr::rebind<U> if such a type exists; otherwise, SomePointer<U, Args> if Ptr is
a class template instantiation of the form SomePointer<T, Args>, where Args is zero or more type
arguments; otherwise, the instantiation of rebind is ill-formed.

20.9.3.2 Pointer traits member functions [pointer.traits.functions]

static pointer pointer_traits::pointer_to(see below r);
static pointer pointer_traits<T*>::pointer_to(see below r);

Remark: if element_type is (possibly cv-qualified) void, the type of r is unspecified; otherwise, it is
T&.

Returns: the first template function returns a dereferenceable pointer to r obtained by calling Ptr::pointer_-
to(r); an instantiation of this function is ill-formed if Ptr does not have a matching pointer_to static
member function. The second template function returns std::addressof(r).

20.9.4 Allocator traits [allocator.traits]

1 The class template allocator_traits supplies a uniform interface to all allocator types. An allocator cannot
be a non-class type, however, even if allocator_traits supplies the entire required interface. [Note: thus,
it is always possible to create a derived class from an allocator. — end note]

§ 20.9.4 555

c© ISO/IEC N3092

namespace std {
template <class Alloc> struct allocator_traits {

typedef Alloc allocator_type;

typedef typename Alloc::value_type value_type;

typedef see below pointer;
typedef see below const_pointer;
typedef see below void_pointer;
typedef see below const_void_pointer;

typedef see below difference_type;
typedef see below size_type;

typedef see below propagate_on_container_copy_assignment;
typedef see below propagate_on_container_move_assignment;
typedef see below propagate_on_container_swap;

template <class T> using rebind_alloc = see below;
template <class T> using rebind_traits = allocator_traits<rebind_alloc<T> >;

static pointer allocate(Alloc& a, size_type n);
static pointer allocate(Alloc& a, size_type n, const_void_pointer hint);

static void deallocate(Alloc& a, pointer p, size_type n);

template <class T, class... Args>
static void construct(Alloc& a, T* p, Args&&... args);

template <class T>
static void destroy(Alloc& a, T* p);

static size_type max_size(const Alloc& a);

static Alloc select_on_container_copy_construction(const Alloc& rhs);
};

}

20.9.4.1 Allocator traits member types [allocator.traits.types]

typedef see below pointer;

1 Type: Alloc::pointer if such a type exists; otherwise, value_type*.

typedef see below const_pointer;

2 Type: Alloc::const_pointer if such a type exists; otherwise, pointer_traits<pointer>::rebind<const
value_type>.

typedef see below void_pointer;

3 Type: Alloc::void_pointer if such a type exists; otherwise, pointer_traits<pointer>::rebind<void>.

typedef see below const_void_pointer;

4 Type: Alloc::const_void_pointer if such a type exists; otherwise, pointer_traits<pointer>::rebind<const
void>.

§ 20.9.4.1 556

c© ISO/IEC N3092

typedef see below difference_type;

5 Type: Alloc::difference_type if such a type exists; otherwise, ptrdiff_t.

typedef see below size_type;

6 Type: Alloc::size_type if such a type exists; otherwise, size_t.

typedef see below propagate_on_container_copy_assignment;

7 Type: Alloc::propagate_on_container_copy_assignment if such a type exits, otherwise false_-
type.

typedef see below propagate_on_container_move_assignment;

8 Type: Alloc::propagate_on_container_move_assignment if such a type exits, otherwise false_-
type.

typedef see below propagate_on_container_swap;

9 Type: Alloc::propagate_on_container_swap if such a type exits, otherwise false_type.

template <class T> using rebind_alloc = see below;

10 Template alias: Alloc::rebind<T>::other if such a type exists; otherwise, Alloc<T, Args> if Alloc
is a class template instantiation of the form Alloc<U, Args>, where Args is zero or more type argu-
ments; otherwise, the instantiation of rebind_alloc is ill-formed.

20.9.4.2 Allocator traits static member functions [allocator.traits.members]

static pointer allocate(Alloc& a, size_type n);

1 Returns: a.allocate(n).

static pointer allocate(Alloc& a, size_type n, const_void_pointer hint);

2 Returns: a.allocate(n, hint) if that expression is well-formed; otherwise, a.allocate(n).

static void deallocate(Alloc& a, pointer p, size_type n);

3 Effects: calls a.deallocate(p, n).

template <class T, class... Args>
static void construct(Alloc& a, T* p, Args&&... args);

4 Effects: calls a.construct(p, std::forward<Args>(args)...) if that call is well-formed; otherwise, invokes
::new (static_cast<void*>(p)) T(std::forward<Args>(args)...).

template <class T>
static void destroy(Alloc& a, T* p);

5 Effects: calls a.destroy(p) if that call is well-formed; otherwise, invokes p->∼T().

static size_type max_size(Alloc& a);

6 Returns: a.max_size() if that expression is well-formed; otherwise, numeric_limits<size_type>::max().

static Alloc select_on_container_copy_construction(const Alloc& rhs);

7 Returns: rhs.select_on_container_copy_construction() if that expression is well-formed; other-
wise, rhs.

§ 20.9.4.2 557

c© ISO/IEC N3092

20.9.5 The default allocator [default.allocator]

namespace std {
template <class T> class allocator;

// specialize for void:
template <> class allocator<void> {
public:

typedef void* pointer;
typedef const void* const_pointer;
// reference-to-void members are impossible.
typedef void value_type;
template <class U> struct rebind { typedef allocator<U> other; };

};

template <class T> class allocator {
public:
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef T* pointer;
typedef const T* const_pointer;
typedef T& reference;
typedef const T& const_reference;
typedef T value_type;
template <class U> struct rebind { typedef allocator<U> other; };

allocator() throw();
allocator(const allocator&) throw();
template <class U> allocator(const allocator<U>&) throw();

~allocator() throw();

pointer address(reference x) const;
const_pointer address(const_reference x) const;

pointer allocate(
size_type, allocator<void>::const_pointer hint = 0);

void deallocate(pointer p, size_type n);
size_type max_size() const throw();

template<class U, class... Args>
void construct(U* p, Args&&... args);

template <class U>
void destroy(U* p);

};
}

20.9.5.1 allocator members [allocator.members]

1 Except for the destructor, member functions of the default allocator shall not introduce data races (1.10)
as a result of concurrent calls to those member functions from different threads. Calls to these functions
that allocate or deallocate a particular unit of storage shall occur in a single total order, and each such
deallocation call shall happen before the next allocation (if any) in this order.

pointer address(reference x) const;

§ 20.9.5.1 558

c© ISO/IEC N3092

2 Returns: The actual address of the object referenced by x, even in the presence of an overloaded
operator&.

const_pointer address(const_reference x) const;

3 Returns: The actual address of the object referenced by x, even in the presence of an overloaded
operator&.

pointer allocate(size_type n, allocator<void>::const_pointer hint=0);

4 [Note: In a container member function, the address of an adjacent element is often a good choice to
pass for the hint argument. — end note]

5 Returns: a pointer to the initial element of an array of storage of size n * sizeof(T), aligned appropri-
ately for objects of type T. It is implementation-defined whether over-aligned types are supported (3.11).

6 Remark: the storage is obtained by calling ::operator new(std::size_t) (18.6.1), but it is unspec-
ified when or how often this function is called. The use of hint is unspecified, but intended as an aid
to locality if an implementation so desires.

7 Throws: bad_alloc if the storage cannot be obtained.

void deallocate(pointer p, size_type n);

8 Requires: p shall be a pointer value obtained from allocate(). n shall equal the value passed as the
first argument to the invocation of allocate which returned p.

9 Effects: Deallocates the storage referenced by p .

10 Remarks: Uses ::operator delete(void*) (18.6.1), but it is unspecified when this function is called.

size_type max_size() const throw();

11 Returns: the largest value N for which the call allocate(N,0) might succeed.

template <class U, class... Args>
void construct(U* p, Args&&... args);

12 Effects: ::new((void *)p) U(std::forward<Args>(args)...)

template <class U>
void destroy(U* p);

13 Effects: p-> U()

20.9.5.2 allocator globals [allocator.globals]

template <class T1, class T2>
bool operator==(const allocator<T1>&, const allocator<T2>&) throw();

1 Returns: true.

template <class T1, class T2>
bool operator!=(const allocator<T1>&, const allocator<T2>&) throw();

2 Returns: false.

§ 20.9.5.2 559

c© ISO/IEC N3092

20.9.6 Scoped allocator adaptor [allocator.adaptor]

1 The class template scoped_allocator_adaptor is an allocator template that specifies the memory resource
(the outer allocator) to be used by a container (as any other allocator does) and also specifies an inner
allocator resource to be passed to the constructor of every element within the container. This adaptor is
instantiated with one outer and zero or more inner allocator types. If instantiated with only one alloca-
tor type, the inner allocator becomes the scoped_allocator_adaptor itself, thus using the same allocator
resource for the container and every element within the container and, if the elements themselves are con-
tainers, each of their elements recursively. If instantiated with more than one allocator, the first allocator
is the outer allocator for use by the container, the second allocator is passed to the constructors of the
container’s elements, and, if the elements themselves are containers, the third allocator is passed to the
elements’ elements, and so on. If containers are nested to a depth greater than the number of allocators,
the last allocator is used repeatedly, as in the single-allocator case, for any remaining recursions. [Note: the
scoped_allocator_adaptor is derived from the outer allocator type so it can be substituted for the outer
allocator type in most expressions. — end note]

namespace std {
template <class OuterAlloc, class... InnerAllocs>

class scoped_allocator_adaptor : public OuterAlloc {
private:

typedef allocator_traits<OuterAlloc> OuterTraits; // exposition only
scoped_allocator_adaptor<InnerAllocs...> inner; // exposition only

public:
typedef OuterAlloc outer_allocator_type;
typedef see below inner_allocator_type;

typedef typename OuterTraits::value_type value_type;
typedef typename OuterTraits::size_type size_type;
typedef typename OuterTraits::difference_type difference_type;
typedef typename OuterTraits::pointer pointer;
typedef typename OuterTraits::const_pointer const_pointer;
typedef typename OuterTraits::void_pointer void_pointer;
typedef typename OuterTraits::const_void_pointer const_void_pointer;

typedef see below propagate_on_container_copy_assignment;
typedef see below propagate_on_container_move_assignment;
typedef see below propagate_on_container_swap;

template <class Tp>
struct rebind {

typedef scoped_allocator_adaptor<
OuterTraits::template rebind_alloc<Tp>, InnerAllocs...> other;

};

scoped_allocator_adaptor();
template <class OuterA2>}

scoped_allocator_adaptor(OuterA2&& outerAlloc,
const InnerAllocs&... innerAllocs)

scoped_allocator_adaptor(const scoped_allocator_adaptor& other);

template <class OuterA2>
scoped_allocator_adaptor(const scoped_allocator_adaptor<OuterA2, InnerAllocs...>& other);

template <class OuterA2>
scoped_allocator_adaptor(const scoped_allocator_adaptor<OuterA2, InnerAllocs...>&& other);

§ 20.9.6 560

c© ISO/IEC N3092

~scoped_allocator_adaptor();

inner_allocator_type& inner_allocator();
const inner_allocator_type& inner_allocator() const;
outer_allocator_type& outer_allocator();
const outer_allocator_type& outer_allocator() const;

pointer allocate(size_type n);
pointer allocate(size_type n, const_void_pointer hint);
void deallocate(pointer p, size_type n);
size_type max_size() const;

template <class T, class... Args>
void construct(T* p, Args&& args);

template <class T1, class T2, class... Args1, class... Args2>
void construct(pair<T1, T2>* p, piecewise_construct t,

tuple<Args1...> x, tuple<Args2...> y);
template <class T1, class T2>

void construct(pair<T1, T2>* p);
template <class T1, class T2, class U, class V>

void construct(pair<T1, T2>* p, U&& x, V&& y);
template <class T1, class T2, class U, class V>

void construct(pair<T1, T2>* p, const pair<U, V>& x);
template <class T1, class T2, class U, class V>

void construct(pair<T1, T2>* p, pair<U, V>&& x);

template <class T>
void destroy(T* p);

scoped_allocator_adaptor select_on_container_copy_construction() const;
};

template <class OuterA1, class OuterA2, class... InnerAllocs>
bool operator==(const scoped_allocator_adaptor<OuterA1, InnerAllocs...>& a,

const scoped_allocator_adaptor<OuterA2, InnerAllocs...>& b);
template <class OuterA1, class OuterA2, class... InnerAllocs>

bool operator!=(const scoped_allocator_adaptor<OuterA1, InnerAllocs...>& a,
const scoped_allocator_adaptor<OuterA2, InnerAllocs...>& b);

}

20.9.6.1 Scoped allocator adaptor member types [allocator.adaptor.types]

typedef see below inner_allocator_type;

1 Type: scoped_allocator_adaptor<OuterAlloc> if sizeof...(InnerAllocs) is zero; otherwise,
scoped_allocator_adaptor<InnerAllocs...>.

typedef see below propagate_on_container_copy_assignment;

2 Type: true_type if allocator_traits<A>::propagate_on_container_copy_assignment::value is
true for any A in the set of OuterAlloc and InnerAllocs...; otherwise, false_type.

typedef see below propagate_on_container_move_assignment;

§ 20.9.6.1 561

c© ISO/IEC N3092

3 Type: true_type if allocator_traits<A>::propagate_on_container_move_assignment::value is
true for any A in the set of OuterAlloc and InnerAllocs...; otherwise, false_type.

typedef see below propagate_on_container_swap;

4 Type: true_type if allocator_traits<A>::propagate_on_container_swap::value is true for any
A in the set of OuterAlloc and InnerAllocs...; otherwise, false_type.

20.9.6.2 Scoped allocator adaptor constructors [allocator.adaptor.cnstr]

scoped_allocator_adaptor();

1 Effects: value-initializes the OuterAlloc base class and the inner allocator object.

template <class OuterA2>
scoped_allocator_adaptor(OuterA2&& outerAlloc,

const InnerAllocs&... innerAllocs);

2 Requires: OuterAlloc shall be constructible from OuterA2.

3 Effects: initializes the OuterAlloc base class with std::forward<OuterA2>(outerAlloc) and inner
with innerAllocs... (hence recursively initializing each allocator within the adaptor with the corre-
sponding allocator from the argument list).

scoped_allocator_adaptor(const scoped_allocator_adaptor& other);

4 Effects: intializes each allocator within the adaptor with the corresponding allocator from other.

template <class OuterA2>
scoped_allocator_adaptor(const scoped_allocator_adaptor<OuterA2,

InnerAllocs...>& other);

5 Requires: OuterAlloc shall be constructible from OuterA2.

6 Effects: intializes each allocator within the adaptor with the corresponding allocator from other.

template <class OuterA2>
scoped_allocator_adaptor(const scoped_allocator_adaptor<OuterA2,

InnerAllocs...>&& other);

7 Requires: OuterAlloc shall be constructible from OuterA2.

8 Effects: intializes each allocator within the adaptor with the corresponding allocator rvalue from other.

20.9.6.3 Scoped allocator adaptor members [allocator.adaptor.members]

1 In the construct member functions, OUTERMOST(x) is x if x does not have an outer_allocator() mem-
ber function and
OUTERMOST(x.outer_allocator()) otherwise; OUTERMOST_ALLOC_TRAITS(x) is
allocator_traits<decltype(OUTERMOST (x))>. [Note: OUTERMOST (x) and
OUTERMOST_ALLOC_TRAITS(x) are recursive operations. It is incumbent upon the definition of
outer_allocator() to ensure that the recursion terminates. It will terminate for all instantiations of
scoped_allocator_adaptor. — end note]

inner_allocator_type& inner_allocator();
const inner_allocator_type& inner_allocator() const;

2 Returns: *this if sizeof...(InnerAllocs) is zero; otherwise, inner.

§ 20.9.6.3 562

c© ISO/IEC N3092

outer_allocator_type& outer_allocator();

3 Returns: static_cast<Outer&>(*this).

const outer_allocator_type& outer_allocator() const;

4 Returns: static_cast<const Outer&>(*this).

pointer allocate(size_type n);

5 Returns: allocator_traits<OuterAlloc>::allocate(outer_allocator(), n).

pointer allocate(size_type n, const_void_pointer hint);

6 Returns: allocator_traits<OuterAlloc>::allocate(outer_allocator(), n, hint).

void deallocate(pointer p, size_type n);

7 Effects: allocator_traits<OuterAlloc>::deallocate(outer_allocator(), p, n);

size_type max_size() const;

8
returns allocator_traits<OuterAlloc>::max_size(outer_allocator()).

template <class T, class... Args>
void construct(T* p, Args&&... args);

9 Effects:

— If uses_allocator<T, inner_allocator_type>::value is false and is_constructible<T,
Args...>::value is true, calls OUTERMOST_ALLOC_TRAITS(*this):: construct(OUTERMOST (*this),
p, std::forward<Args>(args)...).

— Otherwise, if uses_allocator<T, inner_allocator_type>::value is true and is_constructible<T,
allocator_arg_t, inner_allocator_type, Args...>::value is true, calls OUTERMOST_-
ALLOC_TRAITS(*this):: construct(OUTERMOST (*this), p, allocator_arg, inner_allocator(),
std::forward<Args>(args)...).

— Otherwise, if uses_allocator<T, inner_allocator_type>::value is true and is_constructible<T,
Args..., inner_allocator_type>::value is true, calls OUTERMOST_ALLOC_TRAITS(*this)::
construct(OUTERMOST (*this), p, std::forward<Args>(args)..., inner_allocator()).

— Otherwise, the program is ill-formed. [Note: an error will result if uses_allocator evaluates
to true but the specific constructor does not take an allocator. This definition prevents a silent
failure to pass an inner allocator to a contained element. — end note]

template <class T1, class T2, class... Args1, class... Args2>
void construct(pair<T1, T2>* p,piecewise_construct_t,

tuple<Args1...> x, tuple<Args2...> y);

10 Requires: all of the types in Args1 and Args2 shall be CopyConstructible (Table 35).

11 Effects: Constructs a tuple object xprime from x by the following rules:

— If uses_allocator<T1, inner_allocator_type>::value is false and is_constructible<T1,
Args1...>::value is true, then xprime is x.

— Otherwise, if uses_allocator<T1, inner_allocator_type>::value is true and is_constructible<T1,
allocator_arg_t, inner_allocator_type, Args1...>::value is true, then xprime is tuple_-

§ 20.9.6.3 563

c© ISO/IEC N3092

cat(tuple<allocator_arg_t, inner_allocator_type&>(allocator_arg, inner_allocator_-
type()), x).

— Otherwise, if uses_allocator<T1, inner_allocator_type>::value is true and is_constructible<T1,
Args1..., inner_allocator_type>::value is true, then xprime is tuple_cat(x, tuple<inner_-
allocator_type&>(inner_allocator_type())).

— Otherwise, the program is ill-formed.

and constructs a tuple object yprime from y by the following rules:

— If uses_allocator<T2, inner_allocator_type>::value is false and is_constructible<T2,
Args2...>::value is true, then yprime is y.

— Otherwise, if uses_allocator<T2, inner_allocator_type>::value is true and is_constructible<T2,
allocator_arg_t, inner_allocator_type, Args2...>::value is true, then yprime is tuple_-
cat(tuple<allocator_arg_t, inner_allocator_type&>(allocator_arg, inner_allocator_-
type()), y).

— Otherwise, if uses_allocator<T2, inner_allocator_type>::value is true and is_constructible<T2,
Args2..., inner_allocator_type>::value is true, then yprime is tuple_cat(y, tuple<inner_-
allocator_type&>(inner_allocator_type())).

— Otherwise, the program is ill-formed.

then calls OUTERMOST_ALLOC_TRAITS(*this)::construct(OUTERMOST (*this), p, piecewise_construct,
xprime, yprime).

template <class T1, class T2>
void construct(pair<T1, T2>* p);

12 Effects: equivalent to this->construct(p, piecewise_construct, tuple<>(), tuple<>()).

template <class T1, class T2, class U, class V>
void construct(pair<T1, T2>* p, U&& x, V&& y);

13 Effects: equivalent to this->construct(p, piecewise_construct, pack_arguments(std::forward<U>(x)),
pack_arguments(std::forward<V>(y))).

template <class T1, class T2, class U, class V>
void construct(pair<T1, T2>* p, const pair<U, V>& x);

14 Effects: equivalent to this->construct(p, piecewise_construct, pack_arguments(x.first), pack_-
arguments(x.second)).

template <class T1, class T2, class U, class V>
void construct(pair<T1, T2>* p, pair<U, V>&& x);

15 Effects: equivalent to this->construct(p, piecewise_construct, pack_arguments(std::forward<U>(x.first)),
pack_arguments(std::forward<V>(x.second))).

template <class T>
void destroy(T* p);

16 Effects: calls OUTERMOST_ALLOC_TRAITS(*this)::destroy(OUTERMOST (*this), p).

scoped_allocator_adaptor select_on_container_copy_construction() const;

§ 20.9.6.3 564

c© ISO/IEC N3092

17 Returns: a new scoped_allocator_adaptor object where each allocator A in the adaptor is initialized
from the result of calling allocator_traits<A>::select_on_container_copy_construction() on
the corresponding allocator in *this.

20.9.7 Raw storage iterator [storage.iterator]

1 raw_storage_iterator is provided to enable algorithms to store their results into uninitialized memory.
The formal template parameter OutputIterator is required to have its operator* return an object for
which operator& is defined and returns a pointer to T, and is also required to satisfy the requirements of an
output iterator (24.2.4).

namespace std {
template <class OutputIterator, class T>
class raw_storage_iterator

: public iterator<output_iterator_tag,void,void,void,void> {
public:

explicit raw_storage_iterator(OutputIterator x);

raw_storage_iterator<OutputIterator,T>& operator*();
raw_storage_iterator<OutputIterator,T>& operator=(const T& element);
raw_storage_iterator<OutputIterator,T>& operator++();
raw_storage_iterator<OutputIterator,T> operator++(int);

};
}

raw_storage_iterator(OutputIterator x);

2 Effects: Initializes the iterator to point to the same value to which x points.

raw_storage_iterator<OutputIterator,T>& operator*();

3 Returns: *this

raw_storage_iterator<OutputIterator,T>& operator=(const T& element);

4 Effects: Constructs a value from element at the location to which the iterator points.

5 Returns: A reference to the iterator.

raw_storage_iterator<OutputIterator,T>& operator++();

6 Effects: Pre-increment: advances the iterator and returns a reference to the updated iterator.

raw_storage_iterator<OutputIterator,T> operator++(int);

7 Effects: Post-increment: advances the iterator and returns the old value of the iterator.

20.9.8 Temporary buffers [temporary.buffer]

template <class T>
pair<T*, ptrdiff_t> get_temporary_buffer(ptrdiff_t n);

1 Effects: Obtains a pointer to storage sufficient to store up to n adjacent T objects. It is implementation-
defined whether over-aligned types are supported (3.11).

2 Returns: A pair containing the buffer’s address and capacity (in the units of sizeof(T)), or a pair
of 0 values if no storage can be obtained or if n <= 0.

§ 20.9.8 565

c© ISO/IEC N3092

template <class T> void return_temporary_buffer(T* p);

3 Effects: Deallocates the buffer to which p points.

4 Requires: The buffer shall have been previously allocated by get_temporary_buffer.

20.9.9 Specialized algorithms [specialized.algorithms]

1 All the iterators that are used as formal template parameters in the following algorithms are required to
have their operator* return an object for which operator& is defined and returns a pointer to T. In the
algorithm uninitialized_copy, the formal template parameter InputIterator is required to satisfy the
requirements of an input iterator (24.2.3). In all of the following algorithms, the formal template parameter
ForwardIterator is required to satisfy the requirements of a forward iterator (24.2.5), and is required to
have the property that no exceptions are thrown from increment, assignment, comparison, or dereference of
valid iterators. In the following algorithms, if an exception is thrown there are no effects.

20.9.9.1 addressof [specialized.addressof]

template <class T> T* addressof(T& r);

1 Returns: the actual address of the object or function referenced by r, even in the presence of an
overloaded operator&.

Throws: nothing.

20.9.9.2 uninitialized_copy [uninitialized.copy]

template <class InputIterator, class ForwardIterator>
ForwardIterator uninitialized_copy(InputIterator first, InputIterator last,

ForwardIterator result);

1 Effects:
for (; first != last; ++result, ++first)

::new (static_cast<void*>(&*result))
typename iterator_traits<ForwardIterator>::value_type(*first);

2 Returns: result

template <class InputIterator, class Size, class ForwardIterator>
ForwardIterator uninitialized_copy_n(InputIterator first, Size n,

ForwardIterator result);

3 Effects:
for (; n > 0; ++result, ++first, --n) {

::new (static_cast<void*>(&*result))
typename iterator_traits<ForwardIterator>::value_type(*first);

}

4 Returns: result

20.9.9.3 uninitialized_fill [uninitialized.fill]

template <class ForwardIterator, class T>
void uninitialized_fill(ForwardIterator first, ForwardIterator last,

const T& x);

§ 20.9.9.3 566

c© ISO/IEC N3092

1 Effects:
for (; first != last; ++first)

::new (static_cast<void*>(&*first))
typename iterator_traits<ForwardIterator>::value_type(x);

20.9.9.4 uninitialized_fill_n [uninitialized.fill.n]

template <class ForwardIterator, class Size, class T>
void uninitialized_fill_n(ForwardIterator first, Size n, const T& x);

1 Effects:
for (; n--; ++first)

::new (static_cast<void*>(&*first))
typename iterator_traits<ForwardIterator>::value_type(x);

20.9.10 Class template unique_ptr [unique.ptr]

1 A unique pointer is an object that owns another object and manages that other object through a pointer.
More precisely, a unique pointer is an object u that stores a pointer to a second object p and will dispose of
p when u is itself destroyed (e.g., when leaving block scope (6.7)). In this context, u is said to own p.

2 The mechanism by which u disposes of p is known as p’s associated deleter , a function object whose correct
invocation results in p’s appropriate disposition (typically its deletion).

3 Let the notation u.p denote the pointer stored by u, and let u.d denote the associated deleter. Upon request,
u can reset (replace) u.p and u.d with another pointer and deleter, but must properly dispose of its owned
object via the associated deleter before such replacement is considered completed.

4 Additionally, u can, upon request, transfer ownership to another unique pointer u2. Upon completion of
such a transfer, the following postconditions hold:

— u2.p is equal to the pre-transfer u.p,

— u.p is equal to nullptr, and

— if the pre-transfer u.d maintained state, such state has been transferred to u2.d.

As in the case of a reset, u2 must properly dispose of its pre-transfer owned object via the pre-transfer
associated deleter before the ownership transfer is considered complete. [Note: A deleter’s state need never
be copied, only moved or swapped as ownership is transferred. — end note]

5 Each object of a type U instantiated form the unique_ptr template specified in this subclause has the strict
ownership semantics, specified above, of a unique pointer. In partial satisfaction of these semantics, each
such U is MoveConstructible and MoveAssignable, but is not CopyConstructible nor CopyAssignable.
The template parameter T of unique_ptr may be an incomplete type.

6 [Note: The uses of unique_ptr include providing exception safety for dynamically allocated memory, passing
ownership of dynamically allocated memory to a function, and returning dynamically allocated memory from
a function. — end note]

namespace std {
template<class T> struct default_delete;
template<class T> struct default_delete<T[]>;

template<class T, class D = default_delete<T>> class unique_ptr;

§ 20.9.10 567

c© ISO/IEC N3092

template<class T, class D> class unique_ptr<T[], D>;

template<class T, class D> void swap(unique_ptr<T, D>& x, unique_ptr<T, D>& y);

template<class T1, class D1, class T2, class D2>
bool operator==(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);

template<class T1, class D1, class T2, class D2>
bool operator!=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);

template<class T1, class D1, class T2, class D2>
bool operator<(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);

template<class T1, class D1, class T2, class D2>
bool operator<=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);

template<class T1, class D1, class T2, class D2>
bool operator>(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);

template<class T1, class D1, class T2, class D2>
bool operator>=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);

}

20.9.10.1 Default deleters [unique.ptr.dltr]

20.9.10.1.1 In general [unique.ptr.dltr.general]

1 The class template default_delete serves as the default deleter (destruction policy) for the class template
unique_ptr.

2 The template parameter T of default_delete may be an incomplete type.

20.9.10.1.2 default_delete [unique.ptr.dltr.dflt]

namespace std {
template <class T> struct default_delete {

constexpr default_delete();
template <class U> default_delete(const default_delete<U>&);
void operator()(T*) const;

};
}

constexpr default_delete();

1 Effects: Default constructs a default_delete object.

template <class U> default_delete(const default_delete<U>& other);

2 Effects: Constructs a default_delete object from another default_delete<U> object.

3 Remarks: This constructor shall not participate in overload resolution unless U* is implicitly convertible
to T*.

void operator()(T *ptr) const;

4 Effects: calls delete on ptr.

5 Remarks: If T is an incomplete type, the program is ill-formed.

20.9.10.1.3 default_delete<T[]> [unique.ptr.dltr.dflt1]

§ 20.9.10.1.3 568

c© ISO/IEC N3092

namespace std {
template <class T> struct default_delete<T[]> {

constexpr default_delete();
void operator()(T*) const;

template <class U> void operator()(U*) const = delete;
};

}

void operator()(T* ptr) const;

1 Effects: calls delete[] on ptr.

2 Remarks: If T is an incomplete type, the program is ill-formed.

20.9.10.2 unique_ptr for single objects [unique.ptr.single]

namespace std {
template <class T, class D = default_delete<T>> class unique_ptr {
public:

typedef see below pointer;
typedef T element_type;
typedef D deleter_type;

// constructors
constexpr unique_ptr();
explicit unique_ptr(pointer p);
unique_ptr(pointer p, implementation-defined d1);
unique_ptr(pointer p, implementation-defined d2);
unique_ptr(unique_ptr&& u);
unique_ptr(nullptr_t) : unique_ptr() { }
template <class U, class E>

unique_ptr(unique_ptr<U, E>&& u);
template <class U>

explicit unique_ptr(auto_ptr<U>& u);
template <class U>

unique_ptr(auto_ptr<U>&& u);

// destructor
~unique_ptr();

// assignment
unique_ptr& operator=(unique_ptr&& u);
template <class U, class E> unique_ptr& operator=(unique_ptr<U, E>&& u);
unique_ptr& operator=(nullptr_t);

// observers
typename add_lvalue_reference<T>::type operator*() const;
pointer operator->() const;
pointer get() const;
deleter_type& get_deleter();
const deleter_type& get_deleter() const;
explicit operator bool() const;

// modifiers
pointer release();

§ 20.9.10.2 569

c© ISO/IEC N3092

void reset(pointer p = pointer());
void swap(unique_ptr& u);

// disable copy from lvalue
unique_ptr(const unique_ptr&) = delete;
unique_ptr& operator=(const unique_ptr&) = delete;

};
}

1 The default type for the template parameter D is default_delete. A client-supplied template argument D
shall be a function object type (20.8), lvalue-reference to function, or lvalue-reference to function object type
for which, given a value d of type D and a value ptr of type unique_ptr<T, D>::pointer, the expression
d(ptr) is valid and has the effect of disposing of the pointer as appropriate for that deleter.

2 If the deleter’s type D is not a reference type, D shall satisfy the requirements of Destructible (38).

3 If the type remove_reference<D>::type::pointer exists, then unique_ptr<T, D>::pointer shall be a
synonym for remove_reference<D>::type::pointer. Otherwise unique_ptr<T, D>::pointer shall be a
synonym for T*. The type unique_ptr<T, D>::pointer shall satisfy the requirements of NullablePointer (20.2.3).

4 [Example: Given an allocator type X (20.2.5) and letting A be a synonym for allocator_traits<X>, the
types A::pointer, A::const_pointer, A::void_pointer, and A::const_void_pointer may be used as
unique_ptr<T, D>::pointer. — end example]

20.9.10.2.1 unique_ptr constructors [unique.ptr.single.ctor]

constexpr unique_ptr();

1 Requires: D shall satisfy the requirements of DefaultConstructible (33), and that construction shall
not throw an exception.

2 Effects: Constructs a unique_ptr object that owns nothing, value-initializing the stored pointer and
the stored deleter.

3 Postconditions: get() == nullptr. get_deleter() returns a reference to the stored deleter.

4 Throws: nothing.

5 Remarks: If this constructor is instantiated with a pointer type or reference type for the template
argument D, the program is ill-formed.

unique_ptr(pointer p);

6 Requires: D shall satisfy the requirements of DefaultConstructible (33), and that construction shall
not throw an exception.

7 Effects: Constructs a unique_ptr which owns p, initializing the stored pointer with p and value-
initializing the stored deleter.

8 Postconditions: get() == p. get_deleter() returns a reference to the stored deleter.

9 Throws: nothing.

10 Remarks: If this constructor is instantiated with a pointer type or reference type for the template
argument D, the program is ill-formed.

unique_ptr(pointer p, see below d1);
unique_ptr(pointer p, see below d2);

§ 20.9.10.2.1 570

c© ISO/IEC N3092

11 The signature of these constructors depends upon whether D is a reference type. If D is non-reference
type A, then the signatures are:

unique_ptr(pointer p, const A& d);
unique_ptr(pointer p, A&& d);

12 If D is an lvalue-reference type A&, then the signatures are:
unique_ptr(pointer p, A& d);
unique_ptr(pointer p, A&& d);

13 If D is an lvalue-reference type const A&, then the signatures are:
unique_ptr(pointer p, const A& d);
unique_ptr(pointer p, const A&& d);

14 Requires:

— If D is not an lvalue-reference type then

— If d is an lvalue or const rvalue then the first constructor of this pair will be selected. D shall
satisfy the requirements of CopyConstructible (Table 35), and the copy constructor of D
shall not throw an exception. This unique_ptr will hold a copy of d.

— Otherwise, d is a non-const rvalue and the second constructor of this pair will be selected. D
shall satisfy the requirements of MoveConstructible (Table 34), and the move constructor
of D shall not throw an exception. This unique_ptr will hold a value move constructed from
d.

— Otherwise D is an lvalue-reference type. d shall be reference-compatible with one of the con-
structors. If d is an rvalue, it will bind to the second constructor of this pair and the program
is ill-formed. [Note: The diagnostic could be implemented using a static_assert which as-
sures that D is not a reference type. — end note] Else d is an lvalue and will bind to the
first constructor of this pair. The type which D references need not be CopyConstructible nor
MoveConstructible. This unique_ptr will hold a D which refers to the lvalue d. [Note: D may
not be an rvalue-reference type. — end note]

15 Effects: Constructs a unique_ptr object which owns p, initializing the stored pointer with p and
initializing the deleter as described above.

16 Postconditions: get() == p. get_deleter() returns a reference to the stored deleter. If D is a
reference type then get_deleter() returns a reference to the lvalue d.

17 Throws: nothing.

[Example:
D d;
unique_ptr<int, D> p1(new int, D()); // D must be MoveConstructible
unique_ptr<int, D> p2(new int, d); // D must be Copyconstructible
unique_ptr<int, D&> p3(new int, d); // p3 holds a reference to d
unique_ptr<int, const D&> p4(new int, D()); // error: rvalue deleter object combined

// with reference deleter type

— end example]

unique_ptr(unique_ptr&& u);

§ 20.9.10.2.1 571

c© ISO/IEC N3092

18 Requires: If D is not a reference type, D shall satisfy the requirements of MoveConstructible (34).
Construction of the deleter from an rvalue of type D shall not throw an exception.

19 Effects: Constructs a unique_ptr by transferring ownership from u to *this. If D is a reference type,
this deleter is copy constructed from u’s deleter; otherwise, this deleter is move constructed from u’s
deleter. [Note: The deleter constructor can be implemented with std::forward<D>. — end note]

20 Postconditions: get() yields the value u.get() yielded before the construction. get_deleter()
returns a reference to the stored deleter that was constructed from u.get_deleter(). If D is a
reference type then get_deleter() and u.get_deleter() both reference the same lvalue deleter.

21 Throws: nothing.

template <class U, class E> unique_ptr(unique_ptr<U, E>&& u);

22 Requires: If E is not a reference type, construction of the deleter from an rvalue of type E shall be
well formed and shall not throw an exception. Otherwise, E is a reference type and construction of the
deleter from an lvalue of type E shall be well formed and shall not throw an exception.

23 Remarks: This constructor shall not participate in overload resolution unless:

— unique_ptr<U, E>::pointer is implicitly convertible to pointer,

— U is not an array type, and

— either D is a reference type and E is the same type as D, or D is not a reference type and E is
implicitly convertible to D.

24 Effects: Constructs a unique_ptr by transferring ownership from u to *this. If E is a reference type,
this deleter is copy constructed from u’s deleter; otherwise, this deleter is move constructed from u’s
deleter. [Note: The deleter constructor can be implemented with std::forward<E>. — end note]

25 Postconditions: get() yields the value u.get() yielded before the construction. get_deleter()
returns a reference to the stored deleter that was constructed from u.get_deleter().

26 Throws: nothing.

template <class U>
explicit unique_ptr(auto_ptr<U>& u);

template <class U>
unique_ptr(auto_ptr<U>&& u);

27 Effects: Constructs a unique_ptr object, initializing the stored pointer with u.release() and value-
initializing the stored deleter.

28 Postconditions: get() yields the value u.get() yielded before the construction. u.get() == nullptr.
get_deleter() returns a reference to the stored deleter.

29 Throws: Nothing.

30 Remarks: These constructors shall not participate in overload resolution unless U* is implictly con-
vertible to T* and D is the same type as default_delete<T>.

20.9.10.2.2 unique_ptr destructor [unique.ptr.single.dtor]

~unique_ptr();

§ 20.9.10.2.2 572

c© ISO/IEC N3092

1 Requires: The expression get_deleter()(get()) shall be well formed, shall have well-defined behav-
ior, and shall not throw exceptions. [Note: The use of default_delete requires T to be a complete
type. — end note]

2 Effects: If get() == nullptr there are no effects. Otherwise get_deleter()(get()).

3 Throws: nothing.

20.9.10.2.3 unique_ptr assignment [unique.ptr.single.asgn]

unique_ptr& operator=(unique_ptr&& u);

1 Requires: If D is not a reference type, D shall satisfy the requirements of MoveAssignable (36) and
assignment of the deleter from an rvalue of type D shall not throw an execption. Otherwise, D is
a reference type; remove_reference<D>::type shall satisfy the CopyAssignable requirements and
assignment of the deleter from an lvalue of type D shall not throw an exception.

2 Effects: Transfers ownership from u to *this as if by calling reset(u.release()) followed by an
assignment from std::forward<D>(u.get_deleter()).

3 Returns: *this.

4 Throws: nothing.

template <class U, class E> unique_ptr& operator=(unique_ptr<U, E>&& u);

5 Requires: If E is not a reference type, assignment of the deleter from an rvalue of type E shall be
well-formed and shall not throw an exception. Otherwise, E is a reference type and assignment of the
deleter from an lvalue of type E shall be well-formed and shall not throw an exception.

6 Remarks: This operator shall not participate in overload resolution unless:

— unique_ptr<U, E>::pointer is implicitly convertible to pointer and

— U is not an array type.

7 Effects: Transfers ownership from u to *this as if by calling reset(u.release()) followed by an
assignment from std::forward<D>(u.get_deleter()).

8 Returns: *this.

9 Throws: nothing.

unique_ptr& operator=(nullptr_t);

10 Effects: reset().

11 Postcondition: get() == nullptr

12 Returns: *this.

13 Throws: nothing.

20.9.10.2.4 unique_ptr observers [unique.ptr.single.observers]

typename add_lvalue_reference<T>::type operator*() const;

1 Requires: get() != nullptr.

2 Returns: *get().

§ 20.9.10.2.4 573

c© ISO/IEC N3092

pointer operator->() const;

3 Requires: get() != nullptr.

4 Returns: get().

5 Throws: nothing.

6 Note: use typically requires that T be a complete type.

pointer get() const;

7 Returns: The stored pointer.

8 Throws: nothing.

deleter_type& get_deleter();
const deleter_type& get_deleter() const;

9 Returns: A reference to the stored deleter.

10 Throws: nothing.

explicit operator bool() const;

11 Returns: get() != nullptr.

12 Throws: nothing.

20.9.10.2.5 unique_ptr modifiers [unique.ptr.single.modifiers]

pointer release();

1 Postcondition: get() == nullptr.

2 Returns: The value get() had at the start of the call to release.

3 Throws: nothing.

void reset(pointer p = pointer());

4 Requires: The expression get_deleter()(get()) shall be well formed, shall have well-defined behav-
ior, and shall not throw exceptions.

5 Effects: assigns p to the stored pointer, and then if the old value of the stored pointer, old_p, was not
equal to nullptr, calls get_deleter()(old_p). [Note: the order of these operations is significant
because the call to get_deleter() may destroy *this. — end note]

6 Postconditions: get() == p.

7 Throws: nothing.

void swap(unique_ptr& u);

8 Requires: get_deleter() shall be swappable (20.2.2) and shall not throw an exception under swap.

9 Effects: Invokes swap on the stored pointers and on the stored deleters of *this and u.

10 Throws: nothing.

§ 20.9.10.2.5 574

c© ISO/IEC N3092

20.9.10.3 unique_ptr for array objects with a runtime length [unique.ptr.runtime]

namespace std {
template <class T, class D> class unique_ptr<T[], D> {
public:

typedef implementation-defined pointer;
typedef T element_type;
typedef D deleter_type;

// constructors
constexpr unique_ptr();
explicit unique_ptr(pointer p);
unique_ptr(pointer p, implementation-defined d);
unique_ptr(pointer p, implementation-defined d);
unique_ptr(unique_ptr&& u);
unique_ptr(nullptr_t) : unique_ptr() { }

// destructor
∼unique_ptr();

// assignment
unique_ptr& operator=(unique_ptr&& u);
unique_ptr& operator=(nullptr_t);

// observers
T& operator[](size_t i) const;
pointer get() const;
deleter_type& get_deleter();
const deleter_type& get_deleter() const;
explicit operator bool() const;

// modifiers
pointer release();
void reset(pointer p = pointer());
void reset(nullptr_t);
template <class U> void reset(U) = delete;
void swap(unique_ptr& u);

// disable copy from lvalue
unique_ptr(const unique_ptr&) = delete;
unique_ptr& operator=(const unique_ptr&) = delete;

};
}

1 A specialization for array types is provided with a slightly altered interface.

— Conversions among different types of unique_ptr<T[], D> or to or from the non-array forms of
unique_ptr produce an ill-formed program.

— Pointers to types derived from T are rejected by the constructors, and by reset.

— The observers operator* and operator-> are not provided.

— The indexing observer operator[] is provided.

— The default deleter will call delete[].

§ 20.9.10.3 575

c© ISO/IEC N3092

2 Descriptions are provided below only for member functions that have behavior different from the primary
template.

3 The template argument T shall be a complete type.

20.9.10.3.1 unique_ptr constructors [unique.ptr.runtime.ctor]

unique_ptr(pointer p);
unique_ptr(pointer p, implementation-defined d);
unique_ptr(pointer p, implementation-defined d);

These constructors behave the same as in the primary template except that they do not accept pointer
types which are convertible to pointer. [Note: One implementation technique is to create private
templated overloads of these members. — end note]

20.9.10.3.2 unique_ptr observers [unique.ptr.runtime.observers]

T& operator[](size_t i) const;

1 Requires: i < the size of the array to which the stored pointer points.

2 Returns: get()[i].

20.9.10.3.3 unique_ptr modifiers [unique.ptr.runtime.modifiers]

void reset(pointer p = pointer());
void reset(nullptr_t p);

1 Effects: If get() == nullptr there are no effects. Otherwise get_deleter()(get()).

2 Postcondition: get() == p.

3 Throws: nothing.

20.9.10.4 unique_ptr specialized algorithms [unique.ptr.special]

template <class T, class D> void swap(unique_ptr<T, D>& x, unique_ptr<T, D>& y);

1 Effects: Calls x.swap(y).

template <class T1, class D1, class T2, class D2>
bool operator==(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);

2 Returns: x.get() == y.get().

template <class T1, class D1, class T2, class D2>
bool operator!=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);

3 Returns: x.get() != y.get().

template <class T1, class D1, class T2, class D2>
bool operator<(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);

4 Returns: x.get() < y.get().

template <class T1, class D1, class T2, class D2>
bool operator<=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);

§ 20.9.10.4 576

c© ISO/IEC N3092

5 Returns: x.get() <= y.get().

template <class T1, class D1, class T2, class D2>
bool operator>(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);

6 Returns: x.get() > y.get().

template <class T1, class D1, class T2, class D2>
bool operator>=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);

7 Returns: x.get() >= y.get().

20.9.11 Smart pointers [util.smartptr]

20.9.11.1 Class bad_weak_ptr [util.smartptr.weakptr]

namespace std {
class bad_weak_ptr: public std::exception {
public:

bad_weak_ptr();
};

} // namespace std

1 An exception of type bad_weak_ptr is thrown by the shared_ptr constructor taking a weak_ptr.

bad_weak_ptr();

2 Postconditions: what() returns "bad_weak_ptr".

3 Throws: nothing.

20.9.11.2 Class template shared_ptr [util.smartptr.shared]

1 The shared_ptr class template stores a pointer, usually obtained via new. shared_ptr implements semantics
of shared ownership; the last remaining owner of the pointer is responsible for destroying the object, or
otherwise releasing the resources associated with the stored pointer. A shared_ptr object is empty if it does
not own a pointer.

namespace std {
template<class T> class shared_ptr {
public:

typedef T element_type;

// 20.9.11.2.1, constructors:
constexpr shared_ptr();
template<class Y> explicit shared_ptr(Y* p);
template<class Y, class D> shared_ptr(Y* p, D d);
template<class Y, class D, class A> shared_ptr(Y* p, D d, A a);
template <class D> shared_ptr(nullptr_t p, D d)
template <class D, class A> shared_ptr(nullptr_t p, D d, A a)
template<class Y> shared_ptr(const shared_ptr<Y>& r, T *p);
shared_ptr(const shared_ptr& r);
template<class Y> shared_ptr(const shared_ptr<Y>& r);
shared_ptr(shared_ptr&& r);
template<class Y> shared_ptr(shared_ptr<Y>&& r);
template<class Y> explicit shared_ptr(const weak_ptr<Y>& r);
template<class Y> shared_ptr(auto_ptr<Y>&& r);

§ 20.9.11.2 577

c© ISO/IEC N3092

template <class Y, class D> shared_ptr(unique_ptr<Y, D>&& r);
shared_ptr(nullptr_t) : shared_ptr() { }

// 20.9.11.2.2, destructor:
~shared_ptr();

// 20.9.11.2.3, assignment:
shared_ptr& operator=(const shared_ptr& r);
template<class Y> shared_ptr& operator=(const shared_ptr<Y>& r);
shared_ptr& operator=(shared_ptr&& r);
template<class Y> shared_ptr& operator=(shared_ptr<Y>&& r);
template<class Y> shared_ptr& operator=(auto_ptr<Y>&& r);
template <class Y, class D> shared_ptr& operator=(unique_ptr<Y, D>&& r);

// 20.9.11.2.4, modifiers:
void swap(shared_ptr& r);
void reset();
template<class Y> void reset(Y* p);
template<class Y, class D> void reset(Y* p, D d);
template<class Y, class D, class A> void reset(Y* p, D d, A a);

// 20.9.11.2.5, observers:
T* get() const;
T& operator*() const;
T* operator->() const;
long use_count() const;
bool unique() const;
explicit operator bool() const;
template<class U> bool owner_before(shared_ptr<U> const& b) const;
template<class U> bool owner_before(weak_ptr<U> const& b) const;

};

// 20.9.11.2.6, shared_ptr creation
template<class T, class... Args> shared_ptr<T> make_shared(Args&&... args);
template<class T, class A, class... Args>

shared_ptr<T> allocate_shared(const A& a, Args&&... args);

// 20.9.11.2.7, shared_ptr comparisons:
template<class T, class U>

bool operator==(const shared_ptr<T>& a, const shared_ptr<U>& b);
template<class T, class U>

bool operator!=(const shared_ptr<T>& a, const shared_ptr<U>& b);
template<class T, class U>

bool operator<(const shared_ptr<T>& a, const shared_ptr<U>& b);

// 20.9.11.2.8, shared_ptr I/O:
template<class E, class T, class Y>

basic_ostream<E, T>& operator<< (basic_ostream<E, T>& os, const shared_ptr<Y>& p);

// 20.9.11.2.9, shared_ptr specialized algorithms:
template<class T> void swap(shared_ptr<T>& a, shared_ptr<T>& b);

// 20.9.11.2.10, shared_ptr casts:
template<class T, class U>

shared_ptr<T> static_pointer_cast(const shared_ptr<U>& r);

§ 20.9.11.2 578

c© ISO/IEC N3092

template<class T, class U>
shared_ptr<T> dynamic_pointer_cast(const shared_ptr<U>& r);

template<class T, class U>
shared_ptr<T> const_pointer_cast(const shared_ptr<U>& r);

// 20.9.11.2.11, shared_ptr get_deleter:
template<class D, class T> D* get_deleter(const shared_ptr<T>& p);

} // namespace std

2 Specializations of shared_ptr shall be CopyConstructible, CopyAssignable, and LessThanComparable,
allowing their use in standard containers. Specializations of shared_ptr shall be convertible to bool,
allowing their use in boolean expressions and declarations in conditions. The template parameter T of
shared_ptr may be an incomplete type.

3 [Example:
if(shared_ptr<X> px = dynamic_pointer_cast<X>(py)) {

// do something with px
}

— end example]

4 For purposes of determining the presence of a data race, member functions shall access and modify only the
shared_ptr and weak_ptr objects themselves and not objects they refer to. Changes in use_count() do
not reflect modifications that can introduce data races.

20.9.11.2.1 shared_ptr constructors [util.smartptr.shared.const]

constexpr shared_ptr();

1 Effects: Constructs an empty shared_ptr object.

2 Postconditions: use_count() == 0 && get() == 0.

3 Throws: nothing.

template<class Y> explicit shared_ptr(Y* p);

4 Requires: p shall be convertible to T*. Y shall be a complete type. The expression delete p shall be
well formed, shall have well defined behavior, and shall not throw exceptions.

5 Effects: Constructs a shared_ptr object that owns the pointer p.

6 Postconditions: use_count() == 1 && get() == p.

7 Throws: bad_alloc, or an implementation-defined exception when a resource other than memory
could not be obtained.

8 Exception safety: If an exception is thrown, delete p is called.

template<class Y, class D> shared_ptr(Y* p, D d);
template<class Y, class D, class A> shared_ptr(Y* p, D d, A a);
template <class D> shared_ptr(nullptr_t p, D d);
template <class D, class A> shared_ptr(nullptr_t p, D d, A a);

9 Requires: p shall be convertible to T*. D shall be CopyConstructible. The copy constructor and
destructor of D shall not throw exceptions. The expression d(p) shall be well formed, shall have well
defined behavior, and shall not throw exceptions. A shall be an allocator (20.2.5). The copy constructor
and destructor of A shall not throw exceptions.

§ 20.9.11.2.1 579

c© ISO/IEC N3092

10 Effects: Constructs a shared_ptr object that owns the object p and the deleter d. The second and
fourth constructors shall use a copy of a to allocate memory for internal use.

11 Postconditions: use_count() == 1 && get() == p.

12 Throws: bad_alloc, or an implementation-defined exception when a resource other than memory
could not be obtained.

13 Exception safety: If an exception is thrown, d(p) is called.

template<class Y> shared_ptr(const shared_ptr<Y>& r, T *p);

14 Effects: Constructs a shared_ptr instance that stores p and shares ownership with r.

15 Postconditions: get() == p && use_count() == r.use_count()

16 Throws: nothing.

17 [Note: to avoid the possibility of a dangling pointer, the user of this constructor must ensure that p
remains valid at least until the ownership group of r is destroyed. — end note]

18 [Note: this constructor allows creation of an empty shared_ptr instance with a non-NULL stored
pointer. — end note]

shared_ptr(const shared_ptr& r);
template<class Y> shared_ptr(const shared_ptr<Y>& r);

19 Requires: The second constructor shall not participate in the overload resolution unless Y* is implicitly
convertible to T*.

20 Effects: If r is empty, constructs an empty shared_ptr object; otherwise, constructs a shared_ptr
object that shares ownership with r.

21 Postconditions: get() == r.get() && use_count() == r.use_count().

22 Throws: nothing.

shared_ptr(shared_ptr&& r);
template<class Y> shared_ptr(shared_ptr<Y>&& r);

23 Remark: The second constructor shall not participate in overload resolution unless Y* is convertible
to T*.

24 Effects: Move-constructs a shared_ptr instance from r.

25 Postconditions: *this shall contain the old value of r. r shall be empty. r.get() == 0.

26 Throws: nothing.

template<class Y> explicit shared_ptr(const weak_ptr<Y>& r);

27 Requires: Y* shall be convertible to T*.

28 Effects: Constructs a shared_ptr object that shares ownership with r and stores a copy of the pointer
stored in r.

29 Postconditions: use_count() == r.use_count().

30 Throws: bad_weak_ptr when r.expired().

31 Exception safety: If an exception is thrown, the constructor has no effect.

template<class Y> shared_ptr(auto_ptr<Y>&& r);

§ 20.9.11.2.1 580

c© ISO/IEC N3092

32 Requires: r.release() shall be convertible to T*. Y shall be a complete type. The expression delete
r.release() shall be well formed, shall have well defined behavior, and shall not throw exceptions.

33 Effects: Constructs a shared_ptr object that stores and owns r.release().

34 Postconditions: use_count() == 1 && r.get() == 0.

35 Throws: bad_alloc, or an implementation-defined exception when a resource other than memory
could not be obtained.

36 Exception safety: If an exception is thrown, the constructor has no effect.

template <class Y, class D> shared_ptr(unique_ptr<Y, D>&&r);

37 Effects: Equivalent to shared_ptr(r.release(), r.get_deleter()) when D is not a reference type,
otherwise shared_ptr(r.release(), ref(r.get_deleter())).

38 Exception safety: If an exception is thrown, the constructor has no effect.

20.9.11.2.2 shared_ptr destructor [util.smartptr.shared.dest]

~shared_ptr();

1 Effects:

— If *this is empty or shares ownership with another shared_ptr instance (use_count() > 1),
there are no side effects.

— Otherwise, if *this owns an object p and a deleter d, d(p) is called.

— Otherwise, *this owns a pointer p, and delete p is called.

2 Throws: nothing.

3 [Note: Since the destruction of *this decreases the number of instances that share ownership with *this
by one, after *this has been destroyed all shared_ptr instances that shared ownership with *this will
report a use_count() that is one less than its previous value. — end note]

20.9.11.2.3 shared_ptr assignment [util.smartptr.shared.assign]

shared_ptr& operator=(const shared_ptr& r);
template<class Y> shared_ptr& operator=(const shared_ptr<Y>& r);
template<class Y> shared_ptr& operator=(auto_ptr<Y>&& r);

1 Effects: Equivalent to shared_ptr(r).swap(*this).

2 Returns: *this.

3 [Note: The use count updates caused by the temporary object construction and destruction are not
observable side effects, so the implementation may meet the effects (and the implied guarantees) via
different means, without creating a temporary. In particular, in the example:

shared_ptr<int> p(new int);
shared_ptr<void> q(p);
p = p;
q = p;

both assignments may be no-ops. — end note]

§ 20.9.11.2.3 581

c© ISO/IEC N3092

shared_ptr& operator=(shared_ptr&& r);
template<class Y> shared_ptr& operator=(shared_ptr<Y>&& r);

4 Effects: Equivalent to shared_ptr(std::move(r)).swap(*this).

5 Returns: *this.

template <class Y, class D> shared_ptr& operator=(unique_ptr<Y, D>&& r);

6 Effects: Equivalent to shared_ptr(std::move(r)).swap(*this).

7 Returns: *this

20.9.11.2.4 shared_ptr modifiers [util.smartptr.shared.mod]

void swap(shared_ptr& r);

1 Effects: Exchanges the contents of *this and r.

2 Throws: nothing.

void reset();

3 Effects: Equivalent to shared_ptr().swap(*this).

template<class Y> void reset(Y* p);

4 Effects: Equivalent to shared_ptr(p).swap(*this).

template<class Y, class D> void reset(Y* p, D d);

5 Effects: Equivalent to shared_ptr(p, d).swap(*this).

template<class Y, class D, class A> void reset(Y* p, D d, A a);

6 Effects: Equivalent to shared_ptr(p, d, a).swap(*this).

20.9.11.2.5 shared_ptr observers [util.smartptr.shared.obs]

T* get() const;

1 Returns: the stored pointer.

2 Throws: nothing.

T& operator*() const;

3 Requires: get() != 0.

4 Returns: *get().

5 Throws: nothing.

6 Remarks: When T is void, it is unspecified whether this member function is declared. If it is declared,
it is unspecified what its return type is, except that the declaration (although not necessarily the
definition) of the function shall be well formed.

T* operator->() const;

7 Requires: get() != 0.

8 Returns: get().

§ 20.9.11.2.5 582

c© ISO/IEC N3092

9 Throws: nothing.

long use_count() const;

10 Returns: the number of shared_ptr objects, *this included, that share ownership with *this, or 0
when *this is empty.

11 Throws: nothing.

12 [Note: use_count() is not necessarily efficient. — end note]

bool unique() const;

13 Returns: use_count() == 1.

14 Throws: nothing.

15 [Note: unique() may be faster than use_count(). If you are using unique() to implement copy on
write, do not rely on a specific value when get() == 0. — end note]

explicit operator bool() const;

16 Returns: get() != 0.

17 Throws: nothing.

template<class U> bool owner_before(shared_ptr<U> const& b) const;
template<class U> bool owner_before(weak_ptr<U> const& b) const;

18 Returns: an unspecified value such that

— x.owner_before(y) defines a strict weak ordering as defined in 25.4;

— under the equivalence relation defined by owner_before, !a.owner_before(b) && !b.owner_-
before(a), two shared_ptr or weak_ptr instances are equivalent if and only if they share own-
ership or are both empty.

20.9.11.2.6 shared_ptr creation [util.smartptr.shared.create]

template<class T, class... Args> shared_ptr<T> make_shared(Args&&... args);
template<class T, class A, class... Args>

shared_ptr<T> allocate_shared(const A& a, Args&&... args);

1 Requires: The expression ::new (pv) T(std::forward<Args>(args)...), where pv has type void*
and points to storage suitable to hold an object of type T, shall be well formed. A shall be an alloca-
tor (20.2.5). The copy constructor and destructor of A shall not throw exceptions.

2 Effects: Allocates memory suitable for an object of type T and constructs an object in that memory via
the placement new expression ::new (pv) T() or ::new (pv) T(std::forward<Args>(args)...).
The template allocate_shared uses a copy of a to allocate memory. If an exception is thrown, the
functions have no effect.

3 Returns: A shared_ptr instance that stores and owns the address of the newly constructed object of
type T.

4 Postconditions: get() != 0 && use_count() == 1

5 Throws: bad_alloc, or an exception thrown from A::allocate or from the constructor of T.

6 Remarks: Implementations are encouraged, but not required, to perform no more than one memory
allocation. [Note: this provides efficiency equivalent to an intrusive smart pointer. — end note]

§ 20.9.11.2.6 583

c© ISO/IEC N3092

7 [Note: these functions will typically allocate more memory than sizeof(T) to allow for internal
bookkeeping structures such as the reference counts. — end note]

20.9.11.2.7 shared_ptr comparison [util.smartptr.shared.cmp]

template<class T, class U> bool operator==(const shared_ptr<T>& a, const shared_ptr<U>& b);

1 Returns: a.get() == b.get().

2 Throws: nothing.

template<class T, class U> bool operator<(const shared_ptr<T>& a, const shared_ptr<U>& b);

3 Returns: less<V>()(a.get(), b.get()), where V is the composite pointer type (5.9) of T* and U*.

4 Throws: nothing.

5 [Note: Defining a comparison operator allows shared_ptr objects to be used as keys in associative
containers. — end note]

20.9.11.2.8 shared_ptr I/O [util.smartptr.shared.io]

template<class E, class T, class Y>
basic_ostream<E, T>& operator<< (basic_ostream<E, T>& os, shared_ptr<Y> const& p);

1 Effects: os << p.get();.

2 Returns: os.

20.9.11.2.9 shared_ptr specialized algorithms [util.smartptr.shared.spec]

template<class T> void swap(shared_ptr<T>& a, shared_ptr<T>& b);

1 Effects: Equivalent to a.swap(b).

2 Throws: nothing.

20.9.11.2.10 shared_ptr casts [util.smartptr.shared.cast]

template<class T, class U> shared_ptr<T> static_pointer_cast(const shared_ptr<U>& r);

1 Requires: The expression static_cast<T*>(r.get()) shall be well formed.

2 Returns: If r is empty, an empty shared_ptr<T>; otherwise, a shared_ptr<T> object that stores
static_cast<T*>(r.get()) and shares ownership with r.

3 Postconditions: w.get() == static_cast<T*>(r.get()) and w.use_count() == r.use_count(),
where w is the return value.

4 Throws: nothing.

5 [Note: The seemingly equivalent expression shared_ptr<T>(static_cast<T*>(r.get())) will even-
tually result in undefined behavior, attempting to delete the same object twice. — end note]

template<class T, class U> shared_ptr<T> dynamic_pointer_cast(const shared_ptr<U>& r);

§ 20.9.11.2.10 584

c© ISO/IEC N3092

6 Requires: The expression dynamic_cast<T*>(r.get()) shall be well formed and shall have well defined
behavior.

7 Returns:

— When dynamic_cast<T*>(r.get()) returns a nonzero value, a shared_ptr<T> object that stores
a copy of it and shares ownership with r;

— Otherwise, an empty shared_ptr<T> object.

8 Postcondition: w.get() == dynamic_cast<T*>(r.get()), where w is the return value.

9 Throws: nothing.

10 [Note: The seemingly equivalent expression shared_ptr<T>(dynamic_cast<T*>(r.get())) will even-
tually result in undefined behavior, attempting to delete the same object twice. — end note]

template<class T, class U> shared_ptr<T> const_pointer_cast(const shared_ptr<U>& r);

11 Requires: The expression const_cast<T*>(r.get()) shall be well formed.

12 Returns: If r is empty, an empty shared_ptr<T>; otherwise, a shared_ptr<T> object that stores
const_cast<T*>(r.get()) and shares ownership with r.

13 Postconditions: w.get() == const_cast<T*>(r.get()) and w.use_count() == r.use_count(), where
w is the return value.

14 Throws: nothing.

15 [Note: The seemingly equivalent expression shared_ptr<T>(const_cast<T*>(r.get())) will even-
tually result in undefined behavior, attempting to delete the same object twice. — end note]

20.9.11.2.11 get_deleter [util.smartptr.getdeleter]

template<class D, class T> D* get_deleter(const shared_ptr<T>& p);

1 Returns: If p owns a deleter d of type cv-unqualified D, returns &d; otherwise returns 0. The returned
pointer remains valid as long as there exists a shared_ptr instance that owns d. [Note: It is unspecified
whether the pointer remains valid longer than that. This can happen if the implementation doesn’t
destroy the deleter until all weak_ptr instances that share ownership with p have been destroyed.
— end note]

2 Throws: nothing.

20.9.11.3 Class template weak_ptr [util.smartptr.weak]

1 The weak_ptr class template stores a weak reference to an object that is already managed by a shared_ptr.
To access the object, a weak_ptr can be converted to a shared_ptr using the member function lock.

namespace std {
template<class T> class weak_ptr {
public:

typedef T element_type;

// constructors
constexpr weak_ptr();
template<class Y> weak_ptr(shared_ptr<Y> const& r);
weak_ptr(weak_ptr const& r);
template<class Y> weak_ptr(weak_ptr<Y> const& r);

§ 20.9.11.3 585

c© ISO/IEC N3092

// destructor
~weak_ptr();

// assignment
weak_ptr& operator=(weak_ptr const& r);
template<class Y> weak_ptr& operator=(weak_ptr<Y> const& r);
template<class Y> weak_ptr& operator=(shared_ptr<Y> const& r);

// modifiers
void swap(weak_ptr& r);
void reset();

// observers
long use_count() const;
bool expired() const;
shared_ptr<T> lock() const;
template<class U> bool owner_before(shared_ptr<U> const& b);
template<class U> bool owner_before(weak_ptr<U> const& b);

};

// specialized algorithms
template<class T> void swap(weak_ptr<T>& a, weak_ptr<T>& b);

} // namespace std

2 Specializations of weak_ptr shall be CopyConstructible and CopyAssignable, allowing their use in stan-
dard containers. The template parameter T of weak_ptr may be an incomplete type.

20.9.11.3.1 weak_ptr constructors [util.smartptr.weak.const]

constexpr weak_ptr();

1 Effects: Constructs an empty weak_ptr object.

2 Postconditions: use_count() == 0.

3 Throws: nothing.

weak_ptr(const weak_ptr& r);
template<class Y> weak_ptr(const weak_ptr<Y>& r);
template<class Y> weak_ptr(const shared_ptr<Y>& r);

4 Requires: The second and third constructors shall not participate in the overload resolution unless Y*
is implicitly convertible to T*.

5 Effects: If r is empty, constructs an empty weak_ptr object; otherwise, constructs a weak_ptr object
that shares ownership with r and stores a copy of the pointer stored in r.

6 Postconditions: use_count() == r.use_count().

7 Throws: nothing.

20.9.11.3.2 weak_ptr destructor [util.smartptr.weak.dest]

~weak_ptr();

1 Effects: Destroys this weak_ptr object but has no effect on the object its stored pointer points to.

§ 20.9.11.3.2 586

c© ISO/IEC N3092

2 Throws: nothing.

20.9.11.3.3 weak_ptr assignment [util.smartptr.weak.assign]

weak_ptr& operator=(const weak_ptr& r);
template<class Y> weak_ptr& operator=(const weak_ptr<Y>& r);
template<class Y> weak_ptr& operator=(const shared_ptr<Y>& r);

1 Effects: Equivalent to weak_ptr(r).swap(*this).

2 Throws: nothing.

3 Remarks: The implementation may meet the effects (and the implied guarantees) via different means,
without creating a temporary.

20.9.11.3.4 weak_ptr modifiers [util.smartptr.weak.mod]

void swap(weak_ptr& r);

1 Effects: Exchanges the contents of *this and r.

2 Throws: nothing.

void reset();

3 Effects: Equivalent to weak_ptr().swap(*this).

20.9.11.3.5 weak_ptr observers [util.smartptr.weak.obs]

long use_count() const;

1 Returns: 0 if *this is empty; otherwise, the number of shared_ptr instances that share ownership
with *this.

2 Throws: nothing.

3 [Note: use_count() is not necessarily efficient. — end note]

bool expired() const;

4 Returns: use_count() == 0.

5 Throws: nothing.

6 [Note: expired() may be faster than use_count(). — end note]

shared_ptr<T> lock() const;

7 Returns: expired() ? shared_ptr<T>() : shared_ptr<T>(*this).

8 Throws: nothing.

template<class U> bool owner_before(shared_ptr<U> const& b);
template<class U> bool owner_before(weak_ptr<U> const& b);

9 Returns: an unspecified value such that

— x.owner_before(y) defines a strict weak ordering as defined in 25.4;

§ 20.9.11.3.5 587

c© ISO/IEC N3092

— under the equivalence relation defined by owner_before, !a.owner_before(b) && !b.owner_-
before(a), two shared_ptr or weak_ptr instances are equivalent if and only if they share own-
ership or are both empty.

20.9.11.3.6 weak_ptr specialized algorithms [util.smartptr.weak.spec]

template<class T> void swap(weak_ptr<T>& a, weak_ptr<T>& b)

1 Effects: Equivalent to a.swap(b).

2 Throws: nothing.

20.9.11.3.7 Class template owner_less [util.smartptr.ownerless]

1 The class template owner_less allows ownership-based mixed comparisons of shared and weak pointers.
namespace std {

template<class T> struct owner_less;

template<class T> struct owner_less<shared_ptr<T> >
: binary_function<shared_ptr<T>, shared_ptr<T>, bool>
{
typedef bool result_type;
bool operator()(shared_ptr<T> const&, shared_ptr<T> const&) const;
bool operator()(shared_ptr<T> const&, weak_ptr<T> const&) const;
bool operator()(weak_ptr<T> const&, shared_ptr<T> const&) const;
};

template<class T> struct owner_less<weak_ptr<T> >
: binary_function<weak_ptr<T>, weak_ptr<T>, bool>
{
typedef bool result_type;
bool operator()(weak_ptr<T> const&, weak_ptr<T> const&) const;
bool operator()(shared_ptr<T> const&, weak_ptr<T> const&) const;
bool operator()(weak_ptr<T> const&, shared_ptr<T> const&) const;
};

}

2 operator()(x,y) shall return x.owner_before(y). [Note: Note that

— operator() defines a strict weak ordering as defined in 25.4;

— under the equivalence relation defined by operator(), !operator()(a, b) && !operator()(b, a),
two shared_ptr or weak_ptr instances are equivalent if and only if they share ownership or are both
empty.

20.9.11.4 Class template enable_shared_from_this [util.smartptr.enab]

1 A class T can inherit from enable_shared_from_this<T> to inherit the shared_from_this member func-
tions that obtain a shared_ptr instance pointing to *this.

2 [Example:
struct X: public enable_shared_from_this<X> {
};

§ 20.9.11.4 588

c© ISO/IEC N3092

int main() {
shared_ptr<X> p(new X);
shared_ptr<X> q = p->shared_from_this();
assert(p == q);
assert(!(p < q) && !(q < p)); // p and q share ownership

}

— end example]
namespace std {

template<class T> class enable_shared_from_this {
protected:

constexpr enable_shared_from_this();
enable_shared_from_this(enable_shared_from_this const&);
enable_shared_from_this& operator=(enable_shared_from_this const&);
~enable_shared_from_this();

public:
shared_ptr<T> shared_from_this();
shared_ptr<T const> shared_from_this() const;

};
} // namespace std

3 The template parameter T of enable_shared_from_this may be an incomplete type.

constexpr enable_shared_from_this();
enable_shared_from_this(const enable_shared_from_this<T>&);

4 Effects: Constructs an enable_shared_from_this<T> object.

5 Throws: nothing.

enable_shared_from_this<T>& operator=(const enable_shared_from_this<T>&);

6 Returns: *this.

7 Throws: nothing.

~enable_shared_from_this();

8 Effects: Destroys *this.

9 Throws: nothing.

shared_ptr<T> shared_from_this();
shared_ptr<T const> shared_from_this() const;

10 Requires: enable_shared_from_this<T> shall be an accessible base class of T. *this shall be a
subobject of an object t of type T. There shall be at least one shared_ptr instance p that owns &t.

11 Returns: A shared_ptr<T> object r that shares ownership with p.

12 Postconditions: r.get() == this.

13 [Note: a possible implementation is shown below:
template<class T> class enable_shared_from_this {
private:

weak_ptr<T> __weak_this;
protected:

constexpr enable_shared_from_this() : __weak_this() { }

§ 20.9.11.4 589

c© ISO/IEC N3092

enable_shared_from_this(enable_shared_from_this const &) { }
enable_shared_from_this& operator=(enable_shared_from_this const &) { return *this; }
~enable_shared_from_this() { }

public:
shared_ptr<T> shared_from_this() { return shared_ptr<T>(__weak_this); }
shared_ptr<T const> shared_from_this() const { return shared_ptr<T const>(__weak_this); }

};

14 The shared_ptr constructors that create unique pointers can detect the presence of an enable_shared_-
from_this base and assign the newly created shared_ptr to its __weak_this member. — end note]

20.9.11.5 shared_ptr atomic access [util.smartptr.shared.atomic]

1 Concurrent access to a shared_ptr object from multiple threads does not introduce a data race if the access
is done exclusively via the functions in this section and the instance is passed as their first argument.

2 The meaning of the arguments of type memory_order is explained in 29.3.

template<class T>
bool atomic_is_lock_free(const shared_ptr<T>* p);

3 Requires: p shall not be null.

4 Returns: true if atomic access to *p is lock-free, false otherwise.

5 Throws: nothing.

template<class T>
shared_ptr<T> atomic_load(const shared_ptr<T>* p);

6 Requires: p shall not be null.

7 Returns: atomic_load_explicit(p, memory_order_seq_cst).

template<class T>
shared_ptr<T> atomic_load_explicit(const shared_ptr<T>* p, memory_order mo);

8 Requires: p shall not be null.

9 Requires: mo shall not be memory_order_release or memory_order_acq_rel.

10 Returns: *p.

11 Throws: nothing.

template<class T>
void atomic_store(shared_ptr<T>* p, shared_ptr<T> r);

12 Requires: p shall not be null.

13 Effects: atomic_store_explicit(p, r, memory_order_seq_cst).

template<class T>
void atomic_store_explicit(shared_ptr<T>* p, shared_ptr<T> r, memory_order mo);

14 Requires: p shall not be null.

15 Requires: mo shall not be memory_order_acquire or memory_order_acq_rel.

16 Effects: p->swap(r).

§ 20.9.11.5 590

c© ISO/IEC N3092

17 Throws: nothing.

template<class T>
shared_ptr<T> atomic_exchange(shared_ptr<T>* p, shared_ptr<T> r);

18 Requires: p shall not be null.

19 Returns: atomic_exchange_explicit(p, r, memory_order_seq_cst).

template<class T>
shared_ptr<T> atomic_exchange_explicit(shared_ptr<T>* p, shared_ptr<T> r,

memory_order mo);

20 Requires: p shall not be null.

21 Effects: p->swap(r).

22 Returns: the previous value of *p.

23 Throws: nothing.

template<class T>
bool atomic_compare_exchange_weak(

shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w);

24 Requires: p shall not be null.

25 Returns: atomic_compare_exchange_weak_explicit(p, v, w, memory_order_seq_cst, memory_-
order_seq_cst).

template<class T>
bool atomic_compare_exchange_strong(

shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w);

26 Returns: atomic_compare_exchange_strong_explicit(p, v, w, memory_order_seq_cst, memory_-
order_seq_cst).

template<class T>
bool atomic_compare_exchange_weak_explicit(

shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w,
memory_order success, memory_order failure);

template<class T>
bool atomic_compare_exchange_strong_explicit(

shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w,
memory_order success, memory_order failure);

27 Requires: p shall not be null.

28 Requires: failure shall not be memory_order_release, memory_order_acq_rel, or stronger than
success.

29 Effects: If *p is equivalent to *v, assigns w to *p and has synchronization semantics corresponding to
the value of success, otherwise assigns *p to *v and has synchronization semantics corresponding to
the value of failure.

30 Returns: true if *p was equivalent to *v, false otherwise.

31 Throws: nothing.

32 Remarks: two shared_ptr objects are equivalent if they store the same pointer value and share
ownership.

§ 20.9.11.5 591

c© ISO/IEC N3092

33 Remarks: the weak forms may fail spuriously. See 29.6.

20.9.11.6 Hash support [util.smartptr.hash]

template <class T, class D> struct hash<unique_ptr<T, D> >;

1 Requires: The template specialization shall meet the requirements of class template hash (20.8.15). For
an object p of type UP, where UP is unique_ptr<T, D>, hash<UP>()(p) shall evaluate to the same value
as hash<typename UP::pointer>()(p.get()). The specialization hash<typename UP::pointer>
shall be well-formed.

template <class T> struct hash<shared_ptr<T> >;

2 Requires: The template specialization shall meet the requirements of class template hash (20.8.15).
For an object p of type shared_ptr<T>, hash<shared_ptr<T> >()(p) shall evaluate to the same value
as hash<T*>()(p.get()).

20.9.12 Pointer safety [util.dynamic.safety]

1 A complete object is declared reachable while the number of calls to declare_reachable with an argument
referencing the object exceeds the number of calls to undeclare_reachable with an argument referencing
the object.

void declare_reachable(void *p);

2 Requires: p shall be a safely-derived pointer (3.7.4.3) or a null pointer value.

3 Effects: If p is not null, the complete object referenced by p is subsequently declared reachable (3.7.4.3).

4 Throws: May throw std::bad_alloc if the system cannot allocate additional memory that may be
required to track objects declared reachable.

template <class T> T *undeclare_reachable(T *p);

5 Requires: If p is not null, the complete object referenced by p shall have been previously declared
reachable, and shall be live (3.8) from the time of the call until the last undeclare_reachable(p) call
on the object.

6 Returns: a safely derived copy of p which shall compare equal to p.

7 Throws: nothing.

8 [Note: It is expected that calls to declare_reachable(p) will consume a small amount of memory in
addition to that occupied by the referenced object until the matching call to undeclare_reachable(p)
is encountered. Long running programs should arrange that calls are matched. — end note]

void declare_no_pointers(char *p, size_t n);

9 Requires: No bytes in the specified range have been previously registered with declare_no_pointers().
If the specified range is in an allocated object, then it must be entirely within a single allocated ob-
ject. The object must be live until the corresponding undeclare_no_pointers() call. [Note: In a
garbage-collecting implementation, the fact that a region in an object is registered with declare_no_-
pointers() should not prevent the object from being collected. — end note]

10 Effects: The n bytes starting at p no longer contain traceable pointer locations, independent of their
type. Hence pointers located there may not be dereferenced if the object they point to was created

§ 20.9.12 592

c© ISO/IEC N3092

by global operator new and not previously declared reachable. [Note: This may be used to inform a
garbage collector or leak detector that this region of memory need not be traced. — end note]

11 Throws: nothing. [Note: Under some conditions implementations may need to allocate memory.
However, the request can be ignored if memory allocation fails. — end note]

void undeclare_no_pointers(char *p, size_t n);

12 Requires: The same range must previously have been passed to declare_no_pointers().

13 Effects: Unregisters a range registered with declare_no_pointers() for destruction. It must be called
before the lifetime of the object ends.

14 Throws: nothing.

pointer_safety get_pointer_safety();

15 Returns: pointer_safety::strict if the implementation has strict pointer safety (3.7.4.3). It is im-
plementation defined whether get_pointer_safety returns pointer_safety::relaxed or pointer_-
safety::preferred if the implementation has relaxed pointer safety.235

16 Throws: Nothing.

20.9.13 Align [ptr.align]

void *align(std::size_t alignment, std::size_t size,
void *&ptr, std::size_t& space);

1 Effects: If it is possible to fit size bytes of storage aligned by alignment into the buffer pointed to by
ptr with length space, the function updates ptr to point to the first possible address of such storage
and decreases space by the number of bytes used for alignment. Otherwise, the function does nothing.

2 Requires:

— alignment shall be a fundamental alignment value or an extended alignment value supported by
the implementation in this context

— ptr shall point to contiguous storage of at least space bytes

3 Returns: a null pointer if the requested aligned buffer would not fit into the available space, otherwise
the adjusted value of ptr.

4 [Note: the function updates its ptr and space arguments so that it can be called repeatedly with
possibly different alignment and size arguments for the same buffer.

20.9.14 C Library [c.malloc]

1 Table 54 describes the header <cstdlib>.

Table 54 — Header <cstdlib> synopsis

Type Name(s)
Functions: calloc malloc

free realloc

235) pointer_safety::preferred might be returned to indicate that a leak detector is running so that the program can avoid
spurious leak reports.

§ 20.9.14 593

c© ISO/IEC N3092

2 The contents are the same as the Standard C library header <stdlib.h>, with the following changes:

3 The functions calloc(), malloc(), and realloc() do not attempt to allocate storage by calling ::operator
new() (18.6).

4 The function free() does not attempt to deallocate storage by calling ::operator delete().

See also: ISO C Clause 7.11.2.

5 Storage allocated directly with malloc(), calloc(), or realloc() is implicitly declared reachable (see 3.7.4.3)
on allocation, ceases to be declared reachable on deallocation, and need not cease to be declared reachable as
the result of an undeclare_reachable() call. [Note: This allows existing C libraries to remain unaffected
by restrictions on pointers that are not safely derived, at the expense of providing far fewer garbage collec-
tion and leak detection options for malloc()-allocated objects. It also allows malloc() to be implemented
with a separate allocation arena, bypassing the normal declare_reachable() implementation. The above
functions should never intentionally be used as a replacement for declare_reachable(), and newly written
code is strongly encouraged to treat memory allocated with these functions as though it were allocated with
operator new. — end note]

6 Table 55 describes the header <cstring>.

Table 55 — Header <cstring> synopsis

Type Name(s)
Macro: NULL
Type: size_t
Functions: memchr memcmp
memcpy memmove memset

7 The contents are the same as the Standard C library header <string.h>, with the change to memchr()
specified in 21.7.

See also: ISO C Clause 7.11.2.

20.10 Time utilities [time]

1 This subclause describes the chrono library that provides generally useful time utilities.

Header <chrono> synopsis
namespace std {
namespace chrono {

template <class Rep, class Period = ratio<1>> class duration;
template <class Clock, class Duration = typename Clock::duration> class time_point;

} // namespace chrono

// common_type traits
template <class Rep1, class Period1, class Rep2, class Period2>

struct common_type<chrono::duration<Rep1, Period1>, chrono::duration<Rep2, Period2>>;

template <class Clock, class Duration1, class Duration2>
struct common_type<chrono::time_point<Clock, Duration1>, chrono::time_point<Clock, Duration2>>;

namespace chrono {

§ 20.10 594

c© ISO/IEC N3092

// customization traits
template <class Rep> struct treat_as_floating_point;
template <class Rep> struct duration_values;

// duration arithmetic
template <class Rep1, class Period1, class Rep2, class Period2>

typename common_type<duration<Rep1, Period1>, duration<Rep2, Period2>>::type
operator+(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);

template <class Rep1, class Period1, class Rep2, class Period2>
typename common_type<duration<Rep1, Period1>, duration<Rep2, Period2>>::type
operator-(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);

template <class Rep1, class Period, class Rep2>
duration<typename common_type<Rep1, Rep2>::type, Period>
operator*(const duration<Rep1, Period>& d, const Rep2& s);

template <class Rep1, class Period, class Rep2>
duration<typename common_type<Rep1, Rep2>::type, Period>
operator*(const Rep1& s, const duration<Rep2, Period>& d);

template <class Rep1, class Period, class Rep2>
duration<typename common_type<Rep1, Rep2>::type, Period>
operator/(const duration<Rep1, Period>& d, const Rep2& s);

template <class Rep1, class Period1, class Rep2, class Period2>
typename common_type<Rep1, Rep2>::type
operator/(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);

template <class Rep1, class Period, class Rep2>
duration<typename common_type<Rep1, Rep2>::type, Period>
operator%(const duration<Rep1, Period>& d, const Rep2& s);

template <class Rep1, class Period1, class Rep2, class Period2>
typename common_type<duration<Rep1, Period1>, duration<Rep2, Period2>>::type
operator%(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);

// duration comparisons
template <class Rep1, class Period1, class Rep2, class Period2>

bool operator==(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);
template <class Rep1, class Period1, class Rep2, class Period2>

bool operator!=(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);
template <class Rep1, class Period1, class Rep2, class Period2>

bool operator< (const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);
template <class Rep1, class Period1, class Rep2, class Period2>

bool operator<=(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);
template <class Rep1, class Period1, class Rep2, class Period2>

bool operator> (const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);
template <class Rep1, class Period1, class Rep2, class Period2>

bool operator>=(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);

// duration_cast
template <class ToDuration, class Rep, class Period>

ToDuration duration_cast(const duration<Rep, Period>& d);

// convenience typedefs
typedef duration<signed integral type of at least 64 bits , nano> nanoseconds;
typedef duration<signed integral type of at least 55 bits , micro> microseconds;
typedef duration<signed integral type of at least 45 bits , milli> milliseconds;
typedef duration<signed integral type of at least 35 bits > seconds;
typedef duration<signed integral type of at least 29 bits , ratio< 60>> minutes;

§ 20.10 595

c© ISO/IEC N3092

typedef duration<signed integral type of at least 23 bits , ratio<3600>> hours;

// time_point arithmetic
template <class Clock, class Duration1, class Rep2, class Period2>

time_point<Clock, typename common_type<Duration1, duration<Rep2, Period2>>::type>
operator+(const time_point<Clock, Duration1>& lhs, const duration<Rep2, Period2>& rhs);

template <class Rep1, class Period1, class Clock, class Duration2>
time_point<Clock, typename common_type<duration<Rep1, Period1>, Duration2>::type>
operator+(const duration<Rep1, Period1>& lhs, const time_point<Clock, Duration2>& rhs);

template <class Clock, class Duration1, class Rep2, class Period2>
time_point<Clock, typename common_type<Duration1, duration<Rep2, Period2>>::type>
operator-(const time_point<Clock, Duration1>& lhs, const duration<Rep2, Period2>& rhs);

template <class Clock, class Duration1, class Duration2>
typename common_type<Duration1, Duration2>::type
operator-(const time_point<Clock, Duration1>& lhs, const time_point<Clock, Duration2>& rhs);

// time_point comparisons
template <class Clock, class Duration1, class Duration2>

bool operator==(const time_point<Clock, Duration1>& lhs, const time_point<Clock, Duration2>& rhs);
template <class Clock, class Duration1, class Duration2>

bool operator!=(const time_point<Clock, Duration1>& lhs, const time_point<Clock, Duration2>& rhs);
template <class Clock, class Duration1, class Duration2>

bool operator< (const time_point<Clock, Duration1>& lhs, const time_point<Clock, Duration2>& rhs);
template <class Clock, class Duration1, class Duration2>

bool operator<=(const time_point<Clock, Duration1>& lhs, const time_point<Clock, Duration2>& rhs);
template <class Clock, class Duration1, class Duration2>

bool operator> (const time_point<Clock, Duration1>& lhs, const time_point<Clock, Duration2>& rhs);
template <class Clock, class Duration1, class Duration2>

bool operator>=(const time_point<Clock, Duration1>& lhs, const time_point<Clock, Duration2>& rhs);

// time_point_cast

template <class ToDuration, class Clock, class Duration>
time_point<Clock, ToDuration> time_point_cast(const time_point<Clock, Duration>& t);

// Clocks
class system_clock;
class monotonic_clock;
class high_resolution_clock;

} // namespace chrono
} // namespace std

20.10.1 Clock requirements [time.clock.req]

1 A clock is a bundle consisting of a native duration, a native time_point, and a function now() to get the
current time_point. The origin of the clock’s time_point is referred to as the clock’s epoch. A clock shall
meet the requirements in Table 56.

2 In Table 56 C1 and C2 denote clock types. t1 and t2 are values returned by C1::now() where the call
returning t1 happens before (1.10) the call returning t2 and both of these calls happen before C1::time_-
point::max().

§ 20.10.1 596

c© ISO/IEC N3092

Table 56 — Clock requirements

Expression Return type Operational semantics
C1::rep An arithmetic type or a class

emulating an arithmetic type
The representation type of the
native duration and
time_point.

C1::period a specialization of ratio The tick period of the clock in
seconds.

C1::duration chrono::duration<C1::rep,
C1::period>

The native duration type of
the clock.

C1::time_point chrono::time_point<C1> or
chrono::time_point<C2,
C1::duration>

The native time_point type
of the clock. C1 and C2 shall
refer to the same epoch.

C1::is_monotonic const bool true if t1 <= t2 is always
true, otherwise false. [Note:
A clock that can be adjusted
backwards is not monotonic.
— end note]

C1::now() C1::time_point Returns a time_point object
representing the current point
in time.

20.10.2 Time-related traits [time.traits]

20.10.2.1 treat_as_floating_point [time.traits.is_fp]

template <class Rep> struct treat_as_floating_point
: is_floating_point<Rep> { };

1 The duration template uses the treat_as_floating_point trait to help determine if a duration object can
be converted to another duration with a different tick period. If treat_as_floating_point<Rep>::value
is true, then Rep is a floating-point type and implicit conversions are allowed among durations. Otherwise,
the implicit convertibility depends on the tick periods of the durations. If Rep is a class type which emulates
a floating-point type, the author of Rep can specialize treat_as_floating_point so that duration will
treat this Rep as if it were a floating-point type. Otherwise Rep is assumed to be an integral type or a class
emulating an integral type.

20.10.2.2 duration_values [time.traits.duration_values]

template <class Rep>
struct duration_values {
public:

static constexpr Rep zero();
static constexpr Rep min();
static constexpr Rep max();

};

1 The duration template uses the duration_values trait to construct special values of the durations repre-
sentation (Rep). This is done because the representation might be a class type with behavior which requires
some other implementation to return these special values. In that case, the author of that class type should
specialize duration_values to return the indicated values.

§ 20.10.2.2 597

c© ISO/IEC N3092

static constexpr Rep zero();

2 Returns: Rep(0). [Note: Rep(0) is specified instead of Rep() because Rep() may have some other
meaning, such as an uninitialized value. — end note]

3 Remark: The value returned shall be the additive identity.

static constexpr Rep min();

4 Returns: numeric_limits<Rep>::lowest().

5 Remark: The value returned shall compare less than or equal to zero().

static constexpr Rep max();

6 Returns: numeric_limits<Rep>::max().

7 Remark: The value returned shall compare greater than zero().

20.10.2.3 Specializations of common_type [time.traits.specializations]

template <class Rep1, class Period1, class Rep2, class Period2>
struct common_type<chrono::duration<Rep1, Period1>, chrono::duration<Rep2, Period2>> {

typedef chrono::duration<typename common_type<Rep1, Rep2>::type, see below}> type;
};

1 The period of the duration indicated by this specialization of common_type shall be the greatest com-
mon divisor of Period1 and Period2. [Note: This can be computed by forming a ratio of the greatest
common divisor of Period1::num and Period2::num and the least common multiple of Period1::den and
Period2::den. — end note]

2 [Note: The typedef name type is a synonym for the duration with the largest tick period possible where
both duration arguments will convert to it without requiring a division operation. The representation of
this type is intended to be able to hold any value resulting from this conversion with no truncation eror,
although floating-point durations may have round-off errors. — end note]

template <class Clock, class Duration1, class Duration2>
struct common_type<chrono::time_point<Clock, Duration1>, chrono::time_point<Clock, Duration2>> {

typedef chrono::time_point<Clock, typename common_type<Duration1, Duration2>::type> type;
};

3 The common type of two time_point types is a time_point with the same clock as the two types and the
common type of their two durations.

20.10.3 Class template duration [time.duration]

1 A duration type measures time between two points in time (time_points). A duration has a representation
which holds a count of ticks and a tick period. The tick period is the amount of time which occurs from one
tick to the next, in units of seconds. It is expressed as a rational constant using the template ratio.

template <class Rep, class Period = ratio<1>>
class duration {
public:

typedef Rep rep;
typedef Period period;

private:
rep rep_; // exposition only

public:

§ 20.10.3 598

c© ISO/IEC N3092

// 20.10.3.1, construct/copy/destroy:
constexpr duration() = default;
template <class Rep2>

constexpr explicit duration(const Rep2& r);
template <class Rep2, class Period2>

constexpr duration(const duration<Rep2, Period2>& d);
~duration() = default;
duration(const duration&) = default;
duration& operator=(const duration&) = default;

// 20.10.3.2, observer:
constexpr rep count() const;

// 20.10.3.3, arithmetic:
constexpr duration operator+() const;
constexpr duration operator-() const;
duration& operator++();
duration operator++(int);
duration& operator--();
duration operator--(int);

duration& operator+=(const duration& d);
duration& operator-=(const duration& d);

duration& operator*=(const rep& rhs);
duration& operator/=(const rep& rhs);
duration& operator%=(const rep& rhs);
duration& operator%=(const duration& rhs);

// 20.10.3.4, special values:
static constexpr duration zero();
static constexpr duration min();
static constexpr duration max();

};

2 Requires: Rep shall be an arithmetic type or a class emulating an arithmetic type.

3 Remarks: If duration is instantiated with a duration type for the template argument Rep, the
program is ill-formed.

4 Remarks: If Period is not a specialization of ratio, the program is ill-formed.

5 Remarks: If Period::num is not positive, the program is ill-formed.

6 Requires: Members of duration shall not throw exceptions other than those thrown by the indicated
operations on their representations.

[Example:
duration<long, ratio<60>> d0; // holds a count of minutes using a long
duration<long long, milli> d1; // holds a count of milliseconds using a long long
duration<double, ratio<1, 30>> d2; // holds a count with a tick period of 1

30
of a second

// (30 Hz) using a double

— end example]

§ 20.10.3 599

c© ISO/IEC N3092

20.10.3.1 duration constructors [time.duration.cons]

template <class Rep2>
constexpr explicit duration(const Rep2& r);

1 Remarks: This constructor shall not participate in overload resolution unless Rep2 is implicitly con-
vertible to rep and

— treat_as_floating_point<rep>::value is true or

— treat_as_floating_point<Rep2>::value is false.

[Example:
duration<int, milli> d(3); // OK
duration<int, milli> d(3.5); // error

— end example]

2 Effects: Constructs an object of type duration.

3 Postcondition: count() == static_cast<rep>(r).

template <class Rep2, class Period2>
constexpr duration(const duration<Rep2, Period2>& d);

4 Remarks: This constructor shall not participate in overload resolution unless treat_as_floating_-
point<rep>::value is true or both ratio_divide<Period2, period>::den is 1 and treat_as_-
floating_point<Rep2>::value is false. [Note: This requirement prevents implicit truncation error
when converting between integral-based duration types. Such a construction could easily lead to
confusion about the value of the duration. — end note] [Example:

duration<int, milli> ms(3);
duration<int, micro> us = ms; // OK
duration<int, milli> ms2 = us; // error

— end example]

5 Effects: Constructs an object of type duration, constructing rep_ from duration_cast<duration>(d).count().

20.10.3.2 duration observer [time.duration.observer]

constexpr rep count() const;

1 Returns: rep_.

20.10.3.3 duration arithmetic [time.duration.arithmetic]

constexpr duration operator+() const;

1 Returns: *this.

constexpr duration operator-() const;

2 Returns: duration(-rep_);.

duration& operator++();

§ 20.10.3.3 600

c© ISO/IEC N3092

3 Effects: ++rep_.

4 Returns: *this.

duration operator++(int);

5 Returns: duration(rep_++);.

duration& operator--();

6 Effects: --rep_.

7 Returns: *this.

duration operator--(int);

8 Returns: duration(rep_--);.

duration& operator+=(const duration& d);

9 Effects: rep_ += d.count().

10 Returns: *this.

duration& operator-=(const duration& d);

11 Effects: rep_ -= d.count().

12 Returns: *this.

duration& operator*=(const rep& rhs);

13 Effects: rep_ *= rhs.

14 Returns: *this.

duration& operator/=(const rep& rhs);

15 Effects: rep_ /= rhs.

16 Returns: *this.

duration& operator%=(const rep& rhs);

17 Effects: rep_ %= rhs.

18 Returns: *this.

duration& operator%=(const duration& rhs);

19 Effects: rep_ %= rhs.count().

20 Returns: *this.

20.10.3.4 duration special values [time.duration.special]

static constexpr duration zero();

1 Returns: duration(duration_values<rep>::zero()).

static constexpr duration min();

2 Returns: duration(duration_values<rep>::min()).

§ 20.10.3.4 601

c© ISO/IEC N3092

static constexpr duration max();

3 Returns: duration(duration_values<rep>::max()).

20.10.3.5 duration non-member arithmetic [time.duration.nonmember]

1 In the function descriptions that follow, CD represents the return type of the function. CR(A,B) represents
common_type<A, B>::type.

template <class Rep1, class Period1, class Rep2, class Period2>
typename common_type<duration<Rep1, Period1>, duration<Rep2, Period2>{>}::type
operator+(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);

2 Returns: CD(lhs) += rhs.

template <class Rep1, class Period1, class Rep2, class Period2>
typename common_type<duration<Rep1, Period1>, duration<Rep2, Period2>{>}::type
operator-(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);

3 Returns: CD(lhs) -= rhs.

template <class Rep1, class Period, class Rep2>
duration<typename common_type<Rep1, Rep2>::type, Period>
operator*(const duration<Rep1, Period>& d, const Rep2& s);

4 Remarks: This operator shall not participate in overload resolution unless Rep2 is implicitly convertible
to CR(Rep1, Rep2).

5 Returns: duration<CR(Rep1, Rep2), Period>(d) *= s.

template <class Rep1, class Period, class Rep2>
duration<typename common_type<Rep1, Rep2>::type, Period>
operator*(const Rep1& s, const duration<Rep2, Period>& d);

6 Remarks: This operator shall not participate in overload resolution unless Rep1 is implicitly convertible
to CR(Rep1, Rep2).

7 Returns: d * s.

template <class Rep1, class Period, class Rep2>
duration<typename common_type<Rep1, Rep2>::type, Period>
operator/(const duration<Rep1, Period>& d, const Rep2& s);

8 Remarks: This operator shall not participate in overload resolution unless Rep2 is implicitly convertible
to CR(Rep1, Rep2) and Rep2 is not an instantiation of duration.

9 Returns: duration<CR(Rep1, Rep2), Period>(d) /= s.

template <class Rep1, class Period1, class Rep2, class Period2>
typename common_type<Rep1, Rep2>::type
operator/(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);

10 Returns: CD(lhs).count() / CD(rhs).count().

template <class Rep1, class Period, class Rep2>
duration<typename common_type<Rep1, Rep2>::type, Period>
operator%(const duration<Rep1, Period>& d, const Rep2& s);

11 Remarks: This operator shall not participate in overload resolution unless Rep2 is implicitly convertible
to CR(Rep1, Rep2) and Rep2 is not an instantiation of duration.

§ 20.10.3.5 602

c© ISO/IEC N3092

12 Returns: duration<CR(Rep1, Rep2), Period>(d) %= s

template <class Rep1, class Period1, class Rep2, class Period2>
typename common_type<duration<Rep1, Period1>, duration<Rep2, Period2>>::type
operator%(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);

13 Returns: common_type<duration<Rep1, Period1>, duration<Rep2, Period2> >::type(lhs) %=
rhs.

20.10.3.6 duration comparisons [time.duration.comparisons]

1 In the function descriptions that follow, CT represents common_type<A, B>::type, where A and B are the
types of the two arguments to the function.

template <class Rep1, class Period1, class Rep2, class Period2>
bool operator==(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);

2 Returns: CT(lhs).count() == CT(rhs).count().

template <class Rep1, class Period1, class Rep2, class Period2>
bool operator!=(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);

3 Returns: !(lhs == rhs).

template <class Rep1, class Period1, class Rep2, class Period2>
bool operator<(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);

4 Returns: CT(lhs).count() < CT(rhs).count().

template <class Rep1, class Period1, class Rep2, class Period2>
bool operator<=(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);

5 Returns: !(rhs < lhs).

template <class Rep1, class Period1, class Rep2, class Period2>
bool operator>(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);

6 Returns: rhs < lhs.

template <class Rep1, class Period1, class Rep2, class Period2>
bool operator>=(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);

7 Returns: !(lhs < rhs).

20.10.3.7 duration_cast [time.duration.cast]

template <class ToDuration, class Rep, class Period>
ToDuration duration_cast(const duration<Rep, Period>& d);

1 Remarks: This function shall not participate in overload resolution unless ToDuration is an instanti-
ation of duration.

2 Returns: Let CF be ratio_divide<Period, typename ToDuration::period>, and CR be common_-
type< typename ToDuration::rep, Rep, intmax_t>::type.

— If CF::num == 1 and CF::den == 1, returns
ToDuration(static_cast<typename ToDuration::rep>(d.count()))

§ 20.10.3.7 603

c© ISO/IEC N3092

— otherwise, if CF::num != 1 and CF::den == 1, returns
ToDuration(static_cast<typename ToDuration::rep>(

static_cast<CR>(d.count()) * static_cast<CR>(CF::num)))

— otherwise, if CF::num == 1 and CF::den != 1, returns
ToDuration(static_cast<typename ToDuration::rep>(

static_cast<CR>(d.count()) / static_cast<CR>(CF::den)))

— otherwise, returns
ToDuration(static_cast<typename ToDuration::rep>(

static_cast<CR>(d.count()) * static_cast<CR>(CF::num) / static_cast<CR>(CF::den)))

Notes: This function does not use any implicit conversions; all conversions are done with static_cast.
It avoids multiplications and divisions when it is known at compile time that one or more arguments
is 1. Intermediate computations are carried out in the widest representation and only converted to the
destination representation at the final step.

20.10.4 Class template time_point [time.point]

template <class Clock, class Duration = typename Clock::duration>
class time_point {
public:

typedef Clock clock;
typedef Duration duration;
typedef typename duration::rep rep;
typedef typename duration::period period;

private:
duration d_; // exposition only

public:
// 20.10.4.1, construct
time_point(); // has value epoch
explicit time_point(const duration& d); // same as time_point() + d
template <class Duration2>

time_point(const time_point<clock, Duration2>& t);

// 20.10.4.2, observer:
duration time_since_epoch() const;

// 20.10.4.3, arithmetic:
time_point& operator+=(const duration& d);
time_point& operator-=(const duration& d);

// 20.10.4.4, special values:
static constexpr time_point min();
static constexpr time_point max();

};

1 Clock shall meet the Clock requirements (20.10.5).

2 If Duration is not an instance of duration, the program is ill-formed.

20.10.4.1 time_point constructors [time.point.cons]

§ 20.10.4.1 604

c© ISO/IEC N3092

time_point();

1 Effects: Constructs an object of type time_point, initializing d_ with duration::zero(). Such a
time_point object represents the epoch.

time_point(const duration& d);

2 Effects: Constructs an object of type time_point, initializing d_ with d. Such a time_point object
represents the epoch + d.

template <class Duration2>
time_point(const time_point<clock, Duration2>& t);

3 Remarks: This constructor shall not participate in overload resolution unless Duration2 is implicitly
convertible to duration.

4 Effects: Constructs an object of type time_point, initializing d_ with t.time_since_epoch().

20.10.4.2 time_point observer [time.point.observer]

duration time_since_epoch() const;

1 Returns: d_.

20.10.4.3 time_point arithmetic [time.point.arithmetic]

time_point& operator+=(const duration& d);

1 Effects: d_ += d.

2 Returns: *this.

time_point& operator-=(const duration& d);

3 Effects: d_ -= d.

4 Returns: *this.

20.10.4.4 time_point special values [time.point.special]

static constexpr time_point min();

1 Returns: time_point(duration::min()).

static constexpr time_point max();

2 Returns: time_point(duration::max()).

20.10.4.5 time_point non-member arithmetic [time.point.nonmember]

template <class Clock, class Duration1, class Rep2, class Period2>
time_point<Clock, typename common_type<Duration1, duration<Rep2, Period2>>::type>
operator+(const time_point<Clock, Duration1>& lhs, const duration<Rep2, Period2>& rhs);

1 Returns: CT(lhs) += rhs, where CT is the type of the return value.

§ 20.10.4.5 605

c© ISO/IEC N3092

template <class Rep1, class Period1, class Clock, class Duration2>
time_point<Clock, typename common_type<duration<Rep1, Period1>, Duration2>::type>
operator+(const duration<Rep1, Period1>& lhs, const time_point<Clock, Duration2>& rhs);

2 Returns: rhs + lhs.

template <class Clock, class Duration1, class Rep2, class Period2>
time_point<Clock, typename common_type<Duration1, duration<Rep2, Period2>>::type>
operator-(const time_point<Clock, Duration1>& lhs, const duration<Rep2, Period2>& rhs);

3 Returns: lhs + (-rhs).

template <class Clock, class Duration1, class Duration2>
typename common_type<Duration1, Duration2>::type
operator-(const time_point<Clock, Duration1>& lhs, const time_point<Clock, Duration2>& rhs);

4 Returns: lhs.time_since_epoch() - rhs.time_since_epoch().

20.10.4.6 time_point comparisons [time.point.comparisons]

template <class Clock, class Duration1, class Duration2>
bool operator==(const time_point<Clock, Duration1>& lhs, const time_point<Clock, Duration2>& rhs);

1 Returns: lhs.time_since_epoch() == rhs.time_since_epoch().

template <class Clock, class Duration1, class Duration2>
bool operator!=(const time_point<Clock, Duration1>& lhs, const time_point<Clock, Duration2>& rhs);

2 Returns: !(lhs == rhs).

template <class Clock, class Duration1, class Duration2>
bool operator<(const time_point<Clock, Duration1>& lhs, const time_point<Clock, Duration2>& rhs);

3 Returns: lhs.time_since_epoch() < rhs.time_since_epoch().

template <class Clock, class Duration1, class Duration2>
bool operator<=(const time_point<Clock, Duration1>& lhs, const time_point<Clock, Duration2>& rhs);

4 Returns: !(rhs < lhs).

template <class Clock, class Duration1, class Duration2>
bool operator>(const time_point<Clock, Duration1>& lhs, const time_point<Clock, Duration2>& rhs);

5 Returns: rhs < lhs.

template <class Clock, class Duration1, class Duration2>
bool operator>=(const time_point<Clock, Duration1>& lhs, const time_point<Clock, Duration2>& rhs);

6 Returns: !(lhs < rhs).

20.10.4.7 time_point_cast [time.point.cast]

template <class ToDuration, class Clock, class Duration>
time_point<Clock, ToDuration> time_point_cast(const time_point<Clock, Duration>& t);

1 Remarks: This function shall not participate in overload resolution unless ToDuration is an instanti-
ation of duration.

2 Returns: time_point<Clock, ToDuration>(duration_cast<ToDuration>(t.time_since_epoch())).

§ 20.10.4.7 606

c© ISO/IEC N3092

20.10.5 Clocks [time.clock]

1 The types defined in this subclause shall satisfy the Clock requirements (20.10.1).

20.10.5.1 Class system_clock [time.clock.system]

1 Objects of class system_clock represent wall clock time from the system-wide realtime clock.
class system_clock {
public:

typedef see below rep;
typedef ratio<unspecified , unspecified > period;
typedef chrono::duration<rep, period> duration;
typedef chrono::time_point<system_clock> time_point;
static const bool is_monotonic = unspecified;

static time_point now();

// Map to C API
static time_t to_time_t (const time_point& t);
static time_point from_time_t(time_t t);

};

typedef unspecified system_clock::rep;

2 Requires: system_clock::duration::min() < system_clock::duration::zero() shall be true.
[Note: This implies that rep is a signed type. — end note]

time_t to_time_t(const time_point& t);

3 Returns: A time_t object that represents the same point in time as t when both values are restricted
to the coarser of the precisions of time_t and time_point. It is implementation defined whether
values are rounded or truncated to the required precision.

time_point from_time_t(time_t t);

4 Returns: A time_point object that represents the same point in time as t when both values are
restricted to the coarser of the precisions of time_t and time_point. It is implementation defined
whether values are rounded or truncated to the required precision.

20.10.5.2 Class monotonic_clock [time.clock.monotonic]

1 Objects of class monotonic_clock represent clocks for which values of time_point never decrease as physical
time advances. monotonic_clock may be a synonym for system_clock if system_clock::is_monotonic
is true.

2 The class monotonic_clock is conditionally supported.
class monotonic_clock {
public:

typedef unspecified rep;
typedef ratio<unspecified , unspecified > period;
typedef chrono::duration<rep, period> duration;
typedef chrono::time_point<unspecified, duration> time_point;
static const bool is_monotonic = true;

static time_point now();
};

§ 20.10.5.2 607

c© ISO/IEC N3092

20.10.5.3 Class high_resolution_clock [time.clock.hires]

1 Objects of class high_resolution_clock represent clocks with the shortest tick period. high_resolution_-
clock may be a synonym for system_clock or monotonic_clock.

class high_resolution_clock {
public:

typedef unspecified rep;
typedef ratio<unspecified , unspecified > period;
typedef chrono::duration<rep, period> duration;
typedef chrono::time_point<unspecified , duration> time_point;
static const bool is_monotonic = unspecified;

static time_point now();
};

20.11 Date and time functions [date.time]

1 Table 57 describes the header <ctime>.

Table 57 — Header <ctime> synopsis

Type Name(s)
Macros: NULL CLOCKS_PER_SEC
Types: size_t clock_t time_t
Struct: tm
Functions:
asctime clock difftime localtime strftime
ctime gmtime mktime time

2 The contents are the same as the Standard C library header <time.h>.236 The functions asctime, ctime,
gmtime, and localtime are not required to avoid data races (17.6.4.8).

See also: ISO C Clause 7.12, Amendment 1 Clause 4.6.4.

20.12 Class type_index [type.index]

20.12.1 Header <typeindex> synopsis [type.index.synopsis]

namespace std {
class type_index;
template <class T> struct hash;
template<> struct hash<type_index>;

}

20.12.2 type_index overview [type.index.overview]

namespace std {
class type_index {
public:

type_index(const type_info& rhs);
bool operator==(const type_index& rhs) const;

236) strftime supports the C conversion specifiers C, D, e, F, g, G, h, r, R, t, T, u, V, and z, and the modifiers E and O.

§ 20.12.2 608

c© ISO/IEC N3092

bool operator!=(const type_index& rhs) const;
bool operator< (const type_index& rhs) const;
bool operator<= (const type_index& rhs) const;
bool operator> (const type_index& rhs) const;
bool operator>= (const type_index& rhs) const;
size_t hash_code() const;
const char* name() const;

private:
const type_info* target; // exposition only
// Note that the use of a pointer here, rather than a reference,
// means that the default copy/move constructor and assignment
// operators will be provided and work as expected.

};
}

1 The class type_index provides a simple wrapper for type_info which can be used as an index type in
associative containers (23.4) and in unordered associative containers (23.5).

20.12.3 type_index members [type.index.members]

type_index(const type_info& rhs);

1 Effects: constructs a type_index object, the equivalent of target = &rhs.

bool operator==(const type_index& rhs) const;

2 Returns: *target == *rhs.target

bool operator!=(const type_index& rhs) const;

3 Returns: *target != *rhs.target

bool operator<(const type_index& rhs) const;

4 Returns: target->before(*rhs.target)

bool operator<=(const type_index& rhs) const;

5 Returns: !rhs.target->before(*target)

bool operator>(const type_index& rhs) const;

6 Returns: rhs.target->before(*target)

bool operator>=(const type_index& rhs) const;

7 Returns: !target->before(*rhs.target)

size_t hash_code() const;

8 Returns: target->hash_code()

const char* name() const;

9 Returns: target->name()

20.12.4 Hash support [type.index.hash]

template <> struct hash<type_index>;

§ 20.12.4 609

c© ISO/IEC N3092

1 Requires: the template specialization shall meet the requirements of class template hash (20.8.15). For
an object index of type type_index, hash<type_index>()(index) shall evaluate to the same result
as index.hash_code().

§ 20.12.4 610

c© ISO/IEC N3092

21 Strings library [strings]
21.1 General [strings.general]

1 This Clause describes components for manipulating sequences of any non-array POD (3.9) type. In this
Clause such types are called char-like types , and objects of char-like types are called char-like objects or
simply characters.

2 The following subclauses describe a character traits class, a string class, and null-terminated sequence
utilities, as summarized in Table 58.

Table 58 — Strings library summary

Subclause Header(s)
21.2 Character traits <string>
21.3 String classes <string>

<cctype>
<cwctype>

21.7 Null-terminated sequence utilities <cstring>
<cwchar>
<cstdlib>
<cuchar>

21.2 Character traits [char.traits]

1 This subclause defines requirements on classes representing character traits, and defines a class template
char_traits<charT>, along with four specializations, char_traits<char>, char_traits<char16_t>, char_-
traits <char32_t>, and char_traits<wchar_t>, that satisfy those requirements.

2 Most classes specified in Clauses 21.3 and 27 need a set of related types and functions to complete the
definition of their semantics. These types and functions are provided as a set of member typedefs and
functions in the template parameter ‘traits’ used by each such template. This subclause defines the semantics
guaranteed by these members.

3 To specialize those templates to generate a string or iostream class to handle a particular character container
type CharT, that and its related character traits class Traits are passed as a pair of parameters to the string
or iostream template as formal parameters charT and traits. Traits::char_type shall be the same as
CharT.

4 This subclause specifies a struct template, char_traits<charT>, and four explicit specializations of it,
char_traits<char>, char_traits<char16_t>, char_traits<char32_t>, and char_traits<wchar_t>, all
of which appear in the header <string> and satisfy the requirements below.

21.2.1 Character traits requirements [char.traits.require]

1 In Table 59, X denotes a Traits class defining types and functions for the character container type CharT;
c and d denote values of type CharT; p and q denote values of type const CharT*; s denotes a value of
type CharT*; n, i and j denote values of type std::size_t; e and f denote values of type X::int_type;

§ 21.2.1 611

c© ISO/IEC N3092

pos denotes a value of type X::pos_type; state denotes a value of type X::state_type; and r denotes an
lvalue of type CharT. Operations on Traits shall not throw exceptions.

Table 59 — Character traits requirements

Expression Return type Assertion/note Complexity
pre-/post-condition

X::char_type charT (described in 21.2.2) compile-time
X::int_type (described in 21.2.2) compile-time
X::off_type (described in 21.2.2) compile-time
X::pos_type (described in 21.2.2) compile-time
X::state_type (described in 21.2.2) compile-time
X::eq(c,d) bool yields: whether c is to be

treated as equal to d.
constant

X::lt(c,d) bool yields: whether c is to be
treated as less than d.

constant

X::compare(p,q,n) int yields: 0 if for each i in [0,n),
X::eq(p[i],q[i]) is true; else,
a negative value if, for some j
in [0,n), X::lt(p[j],q[j]) is
true and for each i in [0,j)
X::eq(p[i],q[i]) is true; else
a positive value.

linear

X::length(p) std::size_t yields: the smallest i such that
X::eq(p[i],charT()) is true.

linear

X::find(p,n,c) const X::char_type* yields: the smallest q in
[p,p+n) such that
X::eq(*q,c) is true, zero
otherwise.

linear

X::move(s,p,n) X::char_type* for each i in [0,n), performs
X::assign(s[i],p[i]).
Copies correctly even where the
ranges [p,p+n) and [s,s+n)
overlap. yields: s.

linear

X::copy(s,p,n) X::char_type* pre: p not in [s,s+n). yields:
s. for each i in [0,n), performs
X::assign(s[i],p[i]).

linear

X::assign(r,d) (not used) assigns r=d. constant
X::assign(s,n,c) X::char_type* for each i in [0,n), performs

X::assign(s[i],c). yields: s.
linear

X::not_eof(e) int_type yields: e if
X::eq_int_type(e,X::eof())
is false, otherwise a value f
such that
X::eq_int_type(f,X::eof())
is false.

constant

X::to_char_type(e) X::char_type yields: if for some c,
X::eq_int_type(e,X::to_-
int_type(c)) is true, c; else
some unspecified value.

constant

§ 21.2.1 612

c© ISO/IEC N3092

Table 59 — Character traits requirements (continued)

Expression Return type Assertion/note Complexity
pre-/post-condition

X::to_int_type(c) X::int_type yields: some value e,
constrained by the definitions of
to_char_type and
eq_int_type.

constant

X::eq_int_type(e,f) bool yields: for all c and d,
X::eq(c,d) is equal to
X::eq_int_type(X::to_int_-
type(c),
X::to_int_type(d));
otherwise, yields true if e and f
are both copies of X::eof();
otherwise, yields false if one of
e and f is a copy of X::eof()
and the other is not; otherwise
the value is unspecified.

constant

X::eof() X::int_type yields: a value e such that
X::eq_int_type(e,X::to_-
int_type(c)) is false for all
values c.

constant

2 The struct template
template<class charT> struct char_traits;

shall be provided in the header <string> as a basis for explicit specializations.

21.2.2 traits typedefs [char.traits.typedefs]

typedef CHAR_T char_type;

1 The type char_type is used to refer to the character container type in the implementation of the
library classes defined in 21.3 and Clause 27.

typedef INT_T int_type;

2 Requires: For a certain character container type char_type, a related container type INT_T shall be a
type or class which can represent all of the valid characters converted from the corresponding char_-
type values, as well as an end-of-file value, eof(). The type int_type represents a character container
type which can hold end-of-file to be used as a return type of the iostream class member functions.237

typedef implementation-defined off_type;
typedef implementation-defined pos_type;

3 Requires: Requirements for off_type and pos_type are described in 27.2.2.

typedef STATE_T state_type;

4 Requires: state_type shall meet the requirements of CopyAssignable, CopyConstructible (35), and
DefaultConstructible types.

237) If eof() can be held in char_type then some iostreams operations may give surprising results.

§ 21.2.2 613

c© ISO/IEC N3092

21.2.3 char_traits specializations [char.traits.specializations]

namespace std {
template<> struct char_traits<char>;
template<> struct char_traits<char16_t>;
template<> struct char_traits<char32_t>;
template<> struct char_traits<wchar_t>;

}

1 The header <string> shall define four specializations of the template struct char_traits: char_traits<char>,
char_traits<char16_t>, char_traits<char32_t>, and char_traits<wchar_t>.

2 The requirements for the members of these specializations are given in Clause 21.2.1.

21.2.3.1 struct char_traits<char> [char.traits.specializations.char]

namespace std {
template<> struct char_traits<char> {

typedef char char_type;
typedef int int_type;
typedef streamoff off_type;
typedef streampos pos_type;
typedef mbstate_t state_type;

static void assign(char_type& c1, const char_type& c2);
static constexpr bool eq(char_type c1, char_type c2);
static constexpr bool lt(char_type c1, char_type c2);

static int compare(const char_type* s1, const char_type* s2, size_t n);
static size_t length(const char_type* s);
static const char_type* find(const char_type* s, size_t n,

const char_type& a);
static char_type* move(char_type* s1, const char_type* s2, size_t n);
static char_type* copy(char_type* s1, const char_type* s2, size_t n);
static char_type* assign(char_type* s, size_t n, char_type a);

static constexpr int_type not_eof(int_type c);
static constexpr char_type to_char_type(int_type c);
static constexpr int_type to_int_type(char_type c);
static constexpr bool eq_int_type(int_type c1, int_type c2);
static constexpr int_type eof();

};
}

1 The defined types for int_type, pos_type, off_type, and state_type shall be int, streampos, streamoff,
and mbstate_t respectively.

2 The type streampos shall be an implementation-defined type that satisfies the requirements for pos_type
in 21.2.2.

3 The type streamoff shall be an implementation-defined type that satisfies the requirements for off_type
in 21.2.2.

4 The type mbstate_t is defined in <cwchar> and can represent any of the conversion states that can occur
in an implementation-defined set of supported multibyte character encoding rules.

§ 21.2.3.1 614

c© ISO/IEC N3092

5 The two-argument member assign shall be defined identically to the built-in operator =. The two-argument
members eq and lt shall be defined identically to the built-in operators == and < for type unsigned char.

6 The member eof() shall return EOF.

21.2.3.2 struct char_traits<char16_t> [char.traits.specializations.char16_t]

namespace std {
template<> struct char_traits<char16_t> {

typedef char16_t char_type;
typedef uint_least16_t int_type;
typedef streamoff off_type;
typedef u16streampos pos_type;
typedef mbstate_t state_type;

static void assign(char_type& c1, const char_type& c2);
static constexpr bool eq(char_type c1, char_type c2);
static constexpr bool lt(char_type c1, char_type c2);

static int compare(const char_type* s1, const char_type* s2, size_t n);
static size_t length(const char_type* s);
static const char_type* find(const char_type* s, size_t n,

const char_type& a);
static char_type* move(char_type* s1, const char_type* s2, size_t n);
static char_type* copy(char_type* s1, const char_type* s2, size_t n);
static char_type* assign(char_type* s, size_t n, char_type a);

static constexpr int_type not_eof(int_type c);
static constexpr char_type to_char_type(int_type c);
static constexpr int_type to_int_type(char_type c);
static constexpr bool eq_int_type(int_type c1, int_type c2);
static constexpr int_type eof();

};
}

1 The type u16streampos shall be an implementation-defined type that satisfies the requirements for POS_T
in 21.2.2.

2 The two-argument members assign, eq, and lt shall be defined identically to the built-in operators =, ==,
and < respectively.

3 The member eof() shall return an implementation-defined constant that cannot appear as a valid UTF-16
code unit.

21.2.3.3 struct char_traits<char32_t> [char.traits.specializations.char32_t]

namespace std {
template<> struct char_traits<char32_t> {

typedef char32_t char_type;
typedef uint_least32_t int_type;
typedef streamoff off_type;
typedef u32streampos pos_type;
typedef mbstate_t state_type;

static void assign(char_type& c1, const char_type& c2);
static constexpr bool eq(char_type c1, char_type c2);
static constexpr bool lt(char_type c1, char_type c2);

§ 21.2.3.3 615

c© ISO/IEC N3092

static int compare(const char_type* s1, const char_type* s2, size_t n);
static size_t length(const char_type* s);
static const char_type* find(const char_type* s, size_t n,

const char_type& a);
static char_type* move(char_type* s1, const char_type* s2, size_t n);
static char_type* copy(char_type* s1, const char_type* s2, size_t n);
static char_type* assign(char_type* s, size_t n, char_type a);

static constexpr int_type not_eof(int_type c);
static constexpr char_type to_char_type(int_type c);
static constexpr int_type to_int_type(char_type c);
static constexpr bool eq_int_type(int_type c1, int_type c2);
static constexpr int_type eof();

};
}

1 The type u32streampos shall be an implementation-defined type that satisfies the requirements for POS_T
in 21.2.2.

2 The two-argument members assign, eq, and lt shall be defined identically to the built-in operators =, ==,
and < respectively.

3 The member eof() shall return an implementation-defined constant that cannot appear as a Unicode code
point.

21.2.3.4 struct char_traits<wchar_t> [char.traits.specializations.wchar.t]

namespace std {
template<> struct char_traits<wchar_t> {

typedef wchar_t char_type;
typedef wint_t int_type;
typedef streamoff off_type;
typedef wstreampos pos_type;
typedef mbstate_t state_type;

static void assign(char_type& c1, const char_type& c2);
static constexpr bool eq(char_type c1, char_type c2);
static constexpr bool lt(char_type c1, char_type c2);

static int compare(const char_type* s1, const char_type* s2, size_t n);
static size_t length(const char_type* s);
static const char_type* find(const char_type* s, size_t n,

const char_type& a);
static char_type* move(char_type* s1, const char_type* s2, size_t n);
static char_type* copy(char_type* s1, const char_type* s2, size_t n);
static char_type* assign(char_type* s, size_t n, char_type a);

static constexpr int_type not_eof(int_type c);
static constexpr char_type to_char_type(int_type c);
static constexpr int_type to_int_type(char_type c);
static constexpr bool eq_int_type(int_type c1, int_type c2);
static constexpr int_type eof();

};
}

§ 21.2.3.4 616

c© ISO/IEC N3092

1 The defined types for int_type, pos_type, and state_type shall be wint_t, wstreampos, and mbstate_t
respectively.

2 The type wstreampos shall be an implementation-defined type that satisfies the requirements for POS_T
in 21.2.2.

3 The type mbstate_t is defined in <cwchar> and can represent any of the conversion states that can occur
in an implementation-defined set of supported multibyte character encoding rules.

4 The two-argument members assign, eq, and lt shall be defined identically to the built-in operators =, ==,
and < respectively.

5 The member eof() shall return WEOF.

21.3 String classes [string.classes]

1 The header <string> defines the basic_string class template for manipulating varying-length sequences of
char-like objects and four typedefs, string, u16string, u32string, and wstring, that name the specializa-
tions basic_string<char>, basic_string<char16_t>, basic_string<char32_t>, and basic_string<wchar_-
t>, respectively.

Header <string> synopsis
namespace std {

#include <initializer_list>

// 21.2, character traits:
template<class charT> struct char_traits;
template <> struct char_traits<char>;
template <> struct char_traits<char16_t>;
template <> struct char_traits<char32_t>;
template <> struct char_traits<wchar_t>;

// 21.4, basic_string:
template<class charT, class traits = char_traits<charT>,

class Allocator = allocator<charT> >
class basic_string;

template<class charT, class traits, class Allocator>
basic_string<charT,traits,Allocator>

operator+(const basic_string<charT,traits,Allocator>& lhs,
const basic_string<charT,traits,Allocator>& rhs);

template<class charT, class traits, class Allocator>
basic_string<charT,traits,Allocator>

operator+(basic_string<charT,traits,Allocator>&& lhs,
const basic_string<charT,traits,Allocator>& rhs);

template<class charT, class traits, class Allocator>
basic_string<charT,traits,Allocator>

operator+(const basic_string<charT,traits,Allocator>& lhs,
basic_string<charT,traits,Allocator>&& rhs);

template<class charT, class traits, class Allocator>
basic_string<charT,traits,Allocator>

operator+(basic_string<charT,traits,Allocator>&& lhs,
basic_string<charT,traits,Allocator>&& rhs);

template<class charT, class traits, class Allocator>
basic_string<charT,traits,Allocator>

operator+(const charT* lhs,

§ 21.3 617

c© ISO/IEC N3092

const basic_string<charT,traits,Allocator>& rhs);
template<class charT, class traits, class Allocator>

basic_string<charT,traits,Allocator>
operator+(const charT* lhs,

basic_string<charT,traits,Allocator>&& rhs);
template<class charT, class traits, class Allocator>

basic_string<charT,traits,Allocator>
operator+(charT lhs, const basic_string<charT,traits,Allocator>& rhs);

template<class charT, class traits, class Allocator>
basic_string<charT,traits,Allocator>

operator+(charT lhs, basic_string<charT,traits,Allocator>&& rhs);
template<class charT, class traits, class Allocator>

basic_string<charT,traits,Allocator>
operator+(const basic_string<charT,traits,Allocator>& lhs,

const charT* rhs);
template<class charT, class traits, class Allocator>

basic_string<charT,traits,Allocator>
operator+(basic_string<charT,traits,Allocator>&& lhs,

const charT* rhs);
template<class charT, class traits, class Allocator>

basic_string<charT,traits,Allocator>
operator+(const basic_string<charT,traits,Allocator>& lhs, charT rhs);

template<class charT, class traits, class Allocator>
basic_string<charT,traits,Allocator>

operator+(basic_string<charT,traits,Allocator>&& lhs, charT rhs);

template<class charT, class traits, class Allocator>
bool operator==(const basic_string<charT,traits,Allocator>& lhs,

const basic_string<charT,traits,Allocator>& rhs);
template<class charT, class traits, class Allocator>

bool operator==(const charT* lhs,
const basic_string<charT,traits,Allocator>& rhs);

template<class charT, class traits, class Allocator>
bool operator==(const basic_string<charT,traits,Allocator>& lhs,

const charT* rhs);
template<class charT, class traits, class Allocator>

bool operator!=(const basic_string<charT,traits,Allocator>& lhs,
const basic_string<charT,traits,Allocator>& rhs);

template<class charT, class traits, class Allocator>
bool operator!=(const charT* lhs,

const basic_string<charT,traits,Allocator>& rhs);
template<class charT, class traits, class Allocator>

bool operator!=(const basic_string<charT,traits,Allocator>& lhs,
const charT* rhs);

template<class charT, class traits, class Allocator>
bool operator< (const basic_string<charT,traits,Allocator>& lhs,

const basic_string<charT,traits,Allocator>& rhs);
template<class charT, class traits, class Allocator>

bool operator< (const basic_string<charT,traits,Allocator>& lhs,
const charT* rhs);

template<class charT, class traits, class Allocator>
bool operator< (const charT* lhs,

const basic_string<charT,traits,Allocator>& rhs);
template<class charT, class traits, class Allocator>

§ 21.3 618

c© ISO/IEC N3092

bool operator> (const basic_string<charT,traits,Allocator>& lhs,
const basic_string<charT,traits,Allocator>& rhs);

template<class charT, class traits, class Allocator>
bool operator> (const basic_string<charT,traits,Allocator>& lhs,

const charT* rhs);
template<class charT, class traits, class Allocator>

bool operator> (const charT* lhs,
const basic_string<charT,traits,Allocator>& rhs);

template<class charT, class traits, class Allocator>
bool operator<=(const basic_string<charT,traits,Allocator>& lhs,

const basic_string<charT,traits,Allocator>& rhs);
template<class charT, class traits, class Allocator>

bool operator<=(const basic_string<charT,traits,Allocator>& lhs,
const charT* rhs);

template<class charT, class traits, class Allocator>
bool operator<=(const charT* lhs,

const basic_string<charT,traits,Allocator>& rhs);
template<class charT, class traits, class Allocator>

bool operator>=(const basic_string<charT,traits,Allocator>& lhs,
const basic_string<charT,traits,Allocator>& rhs);

template<class charT, class traits, class Allocator>
bool operator>=(const basic_string<charT,traits,Allocator>& lhs,

const charT* rhs);
template<class charT, class traits, class Allocator>

bool operator>=(const charT* lhs,
const basic_string<charT,traits,Allocator>& rhs);

// 21.4.8.8: swap
template<class charT, class traits, class Allocator>

void swap(basic_string<charT,traits,Allocator>& lhs,
basic_string<charT,traits,Allocator>& rhs);

// 21.4.8.9: inserters and extractors
template<class charT, class traits, class Allocator>

basic_istream<charT,traits>&
operator>>(basic_istream<charT,traits>&& is,

basic_string<charT,traits,Allocator>& str);
template<class charT, class traits, class Allocator>

basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>&& os,

const basic_string<charT,traits,Allocator>& str);
template<class charT, class traits, class Allocator>

basic_istream<charT,traits>&
getline(basic_istream<charT,traits>&& is,

basic_string<charT,traits,Allocator>& str,
charT delim);

template<class charT, class traits, class Allocator>
basic_istream<charT,traits>&

getline(basic_istream<charT,traits>&& is,
basic_string<charT,traits,Allocator>& str);

// basic_string typedef names
typedef basic_string<char> string;
typedef basic_string<char16_t> u16string;

§ 21.3 619

c© ISO/IEC N3092

typedef basic_string<char32_t> u32string;
typedef basic_string<wchar_t> wstring;

// 21.5: numeric conversions
int stoi(const string& str, size_t *idx = 0, int base = 10);
long stol(const string& str, size_t *idx = 0, int base = 10);
unsigned long stoul(const string& str, size_t *idx = 0, int base = 10);
long long stoll(const string& str, size_t *idx = 0, int base = 10);
unsigned long long stoull(const string& str, size_t *idx = 0, int base = 10);
float stof(const string& str, size_t *idx = 0);
double stod(const string& str, size_t *idx = 0);
long double stold(const string& str, size_t *idx = 0);
string to_string(int val);
string to_string(unsigned val);
string to_string(long val);
string to_string(unsigned long val);
string to_string(long long val);
string to_string(unsigned long long val);
string to_string(float val);
string to_string(double val);
string to_string(long double val);

int stoi(const wstring& str, size_t *idx = 0, int base = 10);
long stol(const wstring& str, size_t *idx = 0, int base = 10);
unsigned long stoul(const wstring& str, size_t *idx = 0, int base = 10);
long long stoll(const wstring& str, size_t *idx = 0, int base = 10);
unsigned long long stoull(const wstring& str, size_t *idx = 0, int base = 10);
float stof(const wstring& str, size_t *idx = 0);
double stod(const wstring& str, size_t *idx = 0);
long double stold(const wstring& str, size_t *idx = 0);
wstring to_wstring(int val);
wstring to_wstring(unsigned val);
wstring to_wstring(long val);
wstring to_wstring(unsigned long val);
wstring to_wstring(long long val);
wstring to_wstring(unsigned long long val);
wstring to_wstring(float val);
wstring to_wstring(double val);
wstring to_wstring(long double val);

// 21.6 Hash support
template <class T> struct hash;
template <> struct hash<string>;
template <> struct hash<u16string>;
template <> struct hash<u32string>;
template <> struct hash<2string>;

}

21.4 Class template basic_string [basic.string]

1 The class template basic_string describes objects that can store a sequence consisting of a varying number
of arbitrary char-like objects with the first element of the sequence at position zero. Such a sequence is also
called a “string” if the type of the char-like objects that it holds is clear from context. In the rest of this
Clause, the type of the char-like objects held in a basic_string object is designated by charT.

§ 21.4 620

c© ISO/IEC N3092

2 The member functions of basic_string use an object of the Allocator class passed as a template parameter
to allocate and free storage for the contained char-like objects. 238

3 The class template basic_string conforms to the requirements for a Sequence Container (23.2.3), for a Re-
versible Container (23.2), and for an Allocator-aware container (96), except that basic_string does not con-
struct or destroy its elements using allocator_traits<Alloc>::construct and allocator_traits<Alloc>::destroy..
The iterators supported by basic_string are random access iterators (24.2.7).

4 In all cases, size() <= capacity().

5 The functions described in this Clause can report two kinds of errors, each associated with an exception
type:

— a length error is associated with exceptions of type length_error (19.2.4);

— an out-of-range error is associated with exceptions of type out_of_range (19.2.5).
namespace std {

template<class charT, class traits = char_traits<charT>,
class Allocator = allocator<charT> >

class basic_string {
public:

// types:
typedef traits traits_type;
typedef typename traits::char_type value_type;
typedef Allocator allocator_type;
typedef typename allocator_traits<Allocator>::size_type size_type;
typedef typename allocator_traits<Allocator>::difference_type difference_type;

typedef value_type& reference;
typedef const value_type& const_reference;
typedef typename allocator_traits<Allocator>::pointer pointer;
typedef typename allocator_traits<Allocator>::const_pointer const_pointer;

typedef implementation-defined iterator; // See 23.2
typedef implementation-defined const_iterator; // See 23.2
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
static const size_type npos = -1;

// 21.4.2 construct/copy/destroy:
explicit basic_string(const Allocator& a = Allocator());
basic_string(const basic_string& str);
basic_string(basic_string&& str);
basic_string(const basic_string& str, size_type pos, size_type n = npos,

const Allocator& a = Allocator());
basic_string(const charT* s,

size_type n, const Allocator& a = Allocator());
basic_string(const charT* s, const Allocator& a = Allocator());
basic_string(size_type n, charT c, const Allocator& a = Allocator());
template<class InputIterator>

basic_string(InputIterator begin, InputIterator end,
const Allocator& a = Allocator());

basic_string(initializer_list<charT>, const Allocator& = Allocator());
basic_string(const basic_string&, const Allocator&);

238) [Note: Allocator::value_type must name the same type as charT (21.4.1). — end note]

§ 21.4 621

c© ISO/IEC N3092

basic_string(basic_string&&, const Allocator&);

~basic_string();
basic_string& operator=(const basic_string& str);
basic_string& operator=(basic_string&& str);
basic_string& operator=(const charT* s);
basic_string& operator=(charT c);
basic_string& operator=(initializer_list<charT>);

// 21.4.3 iterators:
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;

reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;

const_iterator cbegin() const;
const_iterator cend() const;
const_reverse_iterator crbegin() const;
const_reverse_iterator crend() const;

// 21.4.4 capacity:
size_type size() const;
size_type length() const;
size_type max_size() const;
void resize(size_type n, charT c);
void resize(size_type n);
size_type capacity() const;
void reserve(size_type res_arg = 0);
void shrink_to_fit();
void clear();
bool empty() const;

// 21.4.5 element access:
const_reference operator[](size_type pos) const;
reference operator[](size_type pos);
const_reference at(size_type n) const;
reference at(size_type n);

const charT& front() const;
charT& front();
const charT& back() const;
charT& back();

// 21.4.6 modifiers:
basic_string& operator+=(const basic_string& str);
basic_string& operator+=(const charT* s);
basic_string& operator+=(charT c);
basic_string& operator+=(initializer_list<charT>);
basic_string& append(const basic_string& str);
basic_string& append(const basic_string& str, size_type pos,

§ 21.4 622

c© ISO/IEC N3092

size_type n);
basic_string& append(const charT* s, size_type n);
basic_string& append(const charT* s);
basic_string& append(size_type n, charT c);
template<class InputIterator>

basic_string& append(InputIterator first, InputIterator last);
basic_string& append(initializer_list<charT>);
void push_back(charT c);

basic_string& assign(const basic_string& str);
basic_string& assign(basic_string&& str);
basic_string& assign(const basic_string& str, size_type pos,

size_type n);
basic_string& assign(const charT* s, size_type n);
basic_string& assign(const charT* s);
basic_string& assign(size_type n, charT c);
template<class InputIterator>

basic_string& assign(InputIterator first, InputIterator last);
basic_string& assign(initializer_list<charT>);

basic_string& insert(size_type pos1, const basic_string& str);
basic_string& insert(size_type pos1, const basic_string& str,

size_type pos2, size_type n);
basic_string& insert(size_type pos, const charT* s, size_type n);
basic_string& insert(size_type pos, const charT* s);
basic_string& insert(size_type pos, size_type n, charT c);
iterator insert(const_iterator p, charT c);
iterator insert(const_iterator p, size_type n, charT c);
template<class InputIterator>

iterator insert(const_iterator p, InputIterator first, InputIterator last);
iterator insert(const_iterator p, initializer_list<charT>);

basic_string& erase(size_type pos = 0, size_type n = npos);
iterator erase(const_iterator p);
iterator erase(const_iterator first, const_iterator last);

void pop_back();

basic_string& replace(size_type pos1, size_type n1,
const basic_string& str);

basic_string& replace(size_type pos1, size_type n1,
const basic_string& str,
size_type pos2, size_type n2);

basic_string& replace(size_type pos, size_type n1, const charT* s,
size_type n2);

basic_string& replace(size_type pos, size_type n1, const charT* s);
basic_string& replace(size_type pos, size_type n1, size_type n2,

charT c);

basic_string& replace(iterator i1, iterator i2,
const basic_string& str);

basic_string& replace(iterator i1, iterator i2, const charT* s,
size_type n);

basic_string& replace(iterator i1, iterator i2, const charT* s);
basic_string& replace(iterator i1, iterator i2,

§ 21.4 623

c© ISO/IEC N3092

size_type n, charT c);
template<class InputIterator>

basic_string& replace(iterator i1, iterator i2,
InputIterator j1, InputIterator j2);

basic_string& replace(iterator, iterator, initializer_list<charT>);

size_type copy(charT* s, size_type n, size_type pos = 0) const;
void swap(basic_string& str);

// 21.4.7 string operations:
const charT* c_str() const; // explicit
const charT* data() const;
allocator_type get_allocator() const;

size_type find (const basic_string& str, size_type pos = 0) const;
size_type find (const charT* s, size_type pos, size_type n) const;
size_type find (const charT* s, size_type pos = 0) const;
size_type find (charT c, size_type pos = 0) const;
size_type rfind(const basic_string& str, size_type pos = npos) const;
size_type rfind(const charT* s, size_type pos, size_type n) const;
size_type rfind(const charT* s, size_type pos = npos) const;
size_type rfind(charT c, size_type pos = npos) const;

size_type find_first_of(const basic_string& str,
size_type pos = 0) const;

size_type find_first_of(const charT* s,
size_type pos, size_type n) const;

size_type find_first_of(const charT* s, size_type pos = 0) const;
size_type find_first_of(charT c, size_type pos = 0) const;
size_type find_last_of (const basic_string& str,

size_type pos = npos) const;
size_type find_last_of (const charT* s,

size_type pos, size_type n) const;
size_type find_last_of (const charT* s, size_type pos = npos) const;
size_type find_last_of (charT c, size_type pos = npos) const;

size_type find_first_not_of(const basic_string& str,
size_type pos = 0) const;

size_type find_first_not_of(const charT* s, size_type pos,
size_type n) const;

size_type find_first_not_of(const charT* s, size_type pos = 0) const;
size_type find_first_not_of(charT c, size_type pos = 0) const;
size_type find_last_not_of (const basic_string& str,

size_type pos = npos) const;
size_type find_last_not_of (const charT* s, size_type pos,

size_type n) const;
size_type find_last_not_of (const charT* s,

size_type pos = npos) const;
size_type find_last_not_of (charT c, size_type pos = npos) const;

basic_string substr(size_type pos = 0, size_type n = npos) const;
int compare(const basic_string& str) const;
int compare(size_type pos1, size_type n1,

const basic_string& str) const;
int compare(size_type pos1, size_type n1,

§ 21.4 624

c© ISO/IEC N3092

const basic_string& str,
size_type pos2, size_type n2) const;

int compare(const charT* s) const;
int compare(size_type pos1, size_type n1,

const charT* s) const;
int compare(size_type pos1, size_type n1,

const charT* s, size_type n2) const;
};

}

21.4.1 basic_string general requirements [string.require]

1 If any operation would cause size() to exceed max_size(), that operation shall throw an exception object
of type length_error.

2 If any member function or operator of basic_string throws an exception, that function or operator shall
have no other effect.

3 No erase() or pop_back() member function shall throw any exceptions.

4 In every specialization basic_string<charT, traits, Allocator>, the type allocator_traits<Allocator>::value_-
type shall name the same type as charT. Every object of type basic_string<charT, traits, Allocator>
shall use an object of type Allocator to allocate and free storage for the contained charT objects as needed.
The Allocator object used shall be obtained as described in 23.2.1.

5 The char-like objects in a basic_string object shall be stored contiguously. That is, for any basic_string
object s, the identity &*(s.begin() + n) == &*s.begin() + n shall hold for all values of n such that 0
<= n < s.size().

6 References, pointers, and iterators referring to the elements of a basic_string sequence may be invalidated
by the following uses of that basic_string object:

— as an argument to any standard library function taking a reference to non-const basic_string as an
argument.239

— Calling non-const member functions, except operator[], at, front, back, begin, rbegin, end, and
rend.

21.4.2 basic_string constructors and assigment operators [string.cons]

explicit basic_string(const Allocator& a = Allocator());

1 Effects: Constructs an object of class basic_string. The postconditions of this function are indicated
in Table 60.

Table 60 — basic_string(const Allocator&) effects

Element Value
data() a non-null pointer that is copyable and can have 0

added to it
size() 0
capacity() an unspecified value

239) For example, as an argument to non-member functions swap() (21.4.8.8), operator>>() (21.4.8.9), and
getline() (21.4.8.9), or as an argument to basic_string::swap()

§ 21.4.2 625

c© ISO/IEC N3092

basic_string(const basic_string<charT,traits,Allocator>& str);
basic_string(basic_string<charT,traits,Allocator>&& str);

2 Effects: Constructs an object of class basic_string as indicated in Table 61. In the second form, str
is left in a valid state with an unspecified value.

3 Throws: The second form throws nothing if the allocator’s move constructor throws nothing.

Table 61 — basic_string(const basic_string&) effects

Element Value
data() points at the first element of an allocated copy

of the array whose first element is pointed at by
str.data()

size() str.size()
capacity() a value at least as large as size()

basic_string(const basic_string<charT,traits,Allocator>& str,
size_type pos, size_type n = npos,
const Allocator& a = Allocator());

4 Requires: pos <= str.size()

5 Throws: out_of_range if pos > str.size().

6 Effects: Constructs an object of class basic_string and determines the effective length rlen of the
initial string value as the smaller of n and str.size() - pos, as indicated in Table 62.

Table 62 — basic_string(const basic_string&, size_type, size_type, const Allocator&) effects

Element Value
data() points at the first element of an allocated copy of

rlen consecutive elements of the string controlled
by str beginning at position pos

size() rlen
capacity() a value at least as large as size()

basic_string(const charT* s, size_type n,
const Allocator& a = Allocator());

7 Requires: s shall not be a null pointer and n < npos.

8 Effects: Constructs an object of class basic_string and determines its initial string value from the
array of charT of length n whose first element is designated by s, as indicated in Table 63.

Table 63 — basic_string(const charT*, size_type, const Allocator&) effects

Element Value
data() points at the first element of an allocated copy of

the array whose first element is pointed at by s
size() n
capacity() a value at least as large as size()

basic_string(const charT* s, const Allocator& a = Allocator());

§ 21.4.2 626

c© ISO/IEC N3092

9 Requires: s shall not be a null pointer.

10 Effects: Constructs an object of class basic_string and determines its initial string value from the
array of charT of length traits::length(s) whose first element is designated by s, as indicated in
Table 64.

Table 64 — basic_string(const charT*, const Allocator&) effects

Element Value
data() points at the first element of an allocated copy of

the array whose first element is pointed at by s
size() traits::length(s)
capacity() a value at least as large as size()

11 Remarks: Uses traits::length().

basic_string(size_type n, charT c, const Allocator& a = Allocator());

12 Requires: n < npos

13 Effects: Constructs an object of class basic_string and determines its initial string value by repeating
the char-like object c for all n elements, as indicated in Table 65.

Table 65 — basic_string(size_t, charT, const Allocator&) effects

Element Value
data() points at the first element of an allocated array of

n elements, each storing the initial value c
size() n
capacity() a value at least as large as size()

template<class InputIterator>
basic_string(InputIterator begin, InputIterator end,

const Allocator& a = Allocator());

14 Effects: If InputIterator is an integral type, equivalent to
basic_string(static_cast<size_type>(begin), static_cast<value_type>(end), a)

15 Otherwise constructs a string from the values in the range [begin, end), as indicated in the Sequence
Requirements table (see 23.2.3).

basic_string(initializer_list<charT> il, const Allocator& a = Allocator());

16 Effects: Same as basic_string(il.begin(), il.end(), a).

basic_string(const basic_string& str, const Allocator& alloc);
basic_string(basic_string&& str, const Allocator& alloc);

Effects: Constructs an object of class basic_string as indicated in Table 66. The stored allocator is
constructed from alloc. In the second form, str is left in a valid state with an unspecified value.

17 Throws: The second form throws nothing if alloc == str.get_allocator() unless the copy con-
structor for Allocator throws.

basic_string<charT,traits,Allocator>&
operator=(const basic_string<charT,traits,Allocator>& str);

§ 21.4.2 627

c© ISO/IEC N3092

Table 66 — basic_string(const basic_string&, const Allocator&) and
basic_string(basic_string&&, const Allocator&) effects

Element Value
data() points at the first element of an allocated copy of

the array whose first element is pointed at by the
original value of str.data().

size() the original value of str.size()
capacity() a value at least as large as size()
get_allocator() alloc

18 Effects: If *this and str are not the same object, modifies *this as shown in Table 67.

19 If *this and str are the same object, the member has no effect.

20 Returns: *this

Table 67 — operator=(const basic_string<charT, traits, Allocator>&) effects

Element Value
data() points at the first element of an allocated copy

of the array whose first element is pointed at by
str.data()

size() str.size()
capacity() a value at least as large as size()

basic_string<charT,traits,Allocator>&
operator=(basic_string<charT,traits,Allocator>&& str);

21 Effects: If *this and str are not the same object, modifies *this as shown in Table 68. The
constructor leaves str in a valid but unspecified state. [Note: A valid implementation is swap(str).
— end note]

22 If *this and str are the same object, the member has no effect.

23 Throws: Nothing.

24 Returns: *this

Table 68 — operator=(const basic_string<charT, traits, Allocator>&&) effects

Element Value
data() points at the array whose first element was pointed

at by str.data()
size() previous value of str.size()
capacity() a value at least as large as size()

basic_string<charT,traits,Allocator>&
operator=(const charT* s);

25 Returns: *this = basic_string<charT,traits,Allocator>(s).

26 Remarks: Uses traits::length().

basic_string<charT,traits,Allocator>& operator=(charT c);

§ 21.4.2 628

c© ISO/IEC N3092

27 Returns: *this = basic_string<charT,traits,Allocator>(1,c).

basic_string& operator=(initializer_list<charT> il);

28 Effects: *this = basic_string(il).

29 Returns: *this.

21.4.3 basic_string iterator support [string.iterators]

iterator begin();
const_iterator begin() const;
const_iterator cbegin() const;

1 Returns: an iterator referring to the first character in the string.

iterator end();
const_iterator end() const;
const_iterator cend() const;

2 Returns: an iterator which is the past-the-end value.

reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
const_reverse_iterator crbegin() const;

3 Returns: an iterator which is semantically equivalent to reverse_iterator(end()).

reverse_iterator rend();
const_reverse_iterator rend() const;
const_reverse_iterator crend() const;

4 Returns: an iterator which is semantically equivalent to reverse_iterator(begin()).

21.4.4 basic_string capacity [string.capacity]

size_type size() const;

1 Returns: a count of the number of char-like objects currently in the string.

2 Throws: nothing.

3 Complexity: constant time.

size_type length() const;

4 Returns: size().

size_type max_size() const;

5 Returns: The size of the largest possible string.

6 Complexity: constant time.

void resize(size_type n, charT c);

7 Requires: n <= max_size()

8 Throws: length_error if n > max_size().

9 Effects: Alters the length of the string designated by *this as follows:

§ 21.4.4 629

c© ISO/IEC N3092

— If n <= size(), the function replaces the string designated by *this with a string of length n
whose elements are a copy of the initial elements of the original string designated by *this.

— If n > size(), the function replaces the string designated by *this with a string of length n
whose first size() elements are a copy of the original string designated by *this, and whose
remaining elements are all initialized to c.

void resize(size_type n);

10 Effects: resize(n,charT()).

size_type capacity() const;

11 Returns: the size of the allocated storage in the string.

void reserve(size_type res_arg=0);

12 The member function reserve() is a directive that informs a basic_string object of a planned change
in size, so that it can manage the storage allocation accordingly.

13 Effects: After reserve(), capacity() is greater or equal to the argument of reserve. [Note: Calling
reserve() with a res_arg argument less than capacity() is in effect a non-binding shrink request.
A call with res_arg <= size() is in effect a non-binding shrink-to-fit request. — end note]

14 Throws: length_error if res_arg > max_size().240

void shrink_to_fit();

15 Remarks: shrink_to_fit is a non-binding request to reduce capacity() to size(). [Note: The
request is non-binding to allow latitude for implementation-specific optimizations. — end note]

void clear();

16 Effects: Behaves as if the function calls:
erase(begin(), end());

bool empty() const;

17 Returns: size() == 0.

21.4.5 basic_string element access [string.access]

const_reference operator[](size_type pos) const;
reference operator[](size_type pos);

1 Requires: pos <= size().

2 Returns: *(begin() + pos) if pos < size(), otherwise a reference to an object of type T with value
charT(); the referenced value shall not be modified.

3 Throws: nothing.

4 Complexity: constant time.

const_reference at(size_type pos) const;
reference at(size_type pos);

240) reserve() uses allocator_traits<Allocator>::allocate() which may throw an appropriate exception.

§ 21.4.5 630

c© ISO/IEC N3092

5 Requires: pos < size()

6 Throws: out_of_range if pos >= size().

7 Returns: operator[](pos).

const charT& front() const;
charT& front();

8 Requires: !empty()

9 Effects: Equivalent to operator[](0).

const charT& back() const;
charT& back();

10 Requires: !empty()

11 Effects: Equivalent to operator[](size() - 1).

21.4.6 basic_string modifiers [string.modifiers]

21.4.6.1 basic_string::operator+= [string::op+=]

basic_string&
operator+=(const basic_string& str);

1 Effects: Calls append(str.data, str.size()).

2 Returns: *this.

basic_string& operator+=(const charT* s);

3 Effects: Calls append(s).

4 Returns: *this.

basic_string& operator+=(charT c);

5 Effects: Calls append(1, c);

6 Returns: *this.

basic_string& operator+=(initializer_list<charT> il);

7 Effects: Calls append(il.first(), il.size()).

8 Returns: *this.

21.4.6.2 basic_string::append [string::append]

basic_string&
append(const basic_string& str);

1 Effects: Calls append(str.data(), str.size()).

2 Returns: *this.

basic_string&
append(const basic_string& str, size_type pos, size_type n);

§ 21.4.6.2 631

c© ISO/IEC N3092

3 Requires: pos <= str.size()

4 Throws: out_of_range if pos > str.size().

5 Effects: Determines the effective length rlen of the string to append as the smaller of n and str.size()
- pos and calls append(str.data() + pos, rlen).

6 Returns: *this.

basic_string&
append(const charT* s, size_type n);

7 Requires: s points to an array of at least n elements of charT.

8 Throws: length_error if size() + n > max_size().

9 Effects: The function replaces the string controlled by *this with a string of length size() + n
whose first size() elements are a copy of the original string controlled by *this and whose remaining
elements are a copy of the initial n elements of s.

10 Returns: *this.

basic_string& append(const charT* s);

11 Requires: s points to an array of at least traits::length(s) + 1 elements of charT.

12 Effects: Calls append(s, traits::length(s)).

13 Returns: *this.

basic_string&
append(size_type n, charT c);

14 Effects: Equivalent to append(basic_string(n, c)).

15 Returns: *this.

template<class InputIterator>
basic_string& append(InputIterator first, InputIterator last);

16 Requires: [first,last) is a valid range.

17 Effects: Equivalent to append(basic_string(first, last)).

18 Returns: *this.

basic_string& append(initializer_list<charT> il);

19 Effects: Calls append(il.begin(), il.size()).

20 *this.

void push_back(charT c)

21 Effects: Equivalent to append(static_cast<size_type>(1), c).

21.4.6.3 basic_string::assign [string::assign]

basic_string&
assign(const basic_string& str);

§ 21.4.6.3 632

c© ISO/IEC N3092

1 Effects: Equivalent to assign(str, 0, npos).

2 Returns: *this.

basic_string&
assign(basic_string&& str);

Effects: The function replaces the string controlled by *this with a string of length str.size() whose
elements are a copy of the string controlled by str. Leaves str in a valid but unspecified state. [Note:
A valid implementation is swap(str). — end note]

3 Throws: Nothing.

4 Returns: *this.

basic_string&
assign(const basic_string& str, size_type pos,

size_type n);

5 Requires: pos <= str.size()

6 Throws: out_of_range if pos > str.size().

7 Effects: Determines the effective length rlen of the string to assign as the smaller of n and str.size()
- pos and calls assign(str.data() + pos rlen).

8 Returns: *this.

basic_string&
assign(const charT* s, size_type n);

9 Requires: s points to an array of at least n elements of charT.

10 Throws: length_error if n > max_size().

11 Effects: Replaces the string controlled by *this with a string of length n whose elements are a copy
of those pointed to by s.

12 Returns: *this.

basic_string& assign(const charT* s);

13 Requires: s points to an array of at least traits::length(s) + 1 elements of charT.

14 Effects: Calls assign(s, traits::length(s)).

15 Returns: *this.

basic_string& assign(initializer_list<charT> il);

16 Effects: Calls assign(il.begin(), il.size()).

17 *this.

basic_string&
assign(size_type n, charT c);

1819 Effects: Equivalent to assign(basic_string(n, c)).

20 Returns: *this.

template<class InputIterator>
basic_string& assign(InputIterator first, InputIterator last);

§ 21.4.6.3 633

c© ISO/IEC N3092

21 Effects: Equivalent to assign(basic_string(first, last)).

22 Returns: *this.

21.4.6.4 basic_string::insert [string::insert]

basic_string&
insert(size_type pos1,

const basic_string& str);

1 Requires: pos <= size().

2 Throws: out_of_range if pos > size().

3 Effects: Calls insert(pos, str.data(), str.size()).

4 Returns: *this.

basic_string&
insert(size_type pos1,

const basic_string& str,
size_type pos2, size_type n);

5 Requires: pos1 <= size() and pos2 <= str.size()

6 Throws: out_of_range if pos1 > size() or pos2 > str.size().

7 Effects: Determines the effective length rlen of the string to insert as the smaller of n and str.size()
- pos2 and calls insert(pos1, str.data() + pos2, rlen).

8 Returns: *this.

basic_string&
insert(size_type pos, const charT* s, size_type n);

9 Requires: s points to an array of at least n elements of charT and pos <= size().

10 Throws: out_of_range if pos > size() or length_error if size() + n > max_size().

11 Effects: Replaces the string controlled by *this with a string of length size() + n whose first pos
elements are a copy of the initial elements of the original string controlled by *this and whose next
n elements are a copy of the elements in s and whose remaining elements are a copy of the remaining
elements of the original string controlled by *this.

12 Returns: *this.

basic_string&
insert(size_type pos, const charT* s);

13 Requires: pos <= size() and s points to an array of at least traits::length(s) + 1 elements of
charT.

14 Effects: Calls insert(pos, s, traits::length(s)).

15 Returns: *this.

basic_string&
insert(size_type pos, size_type n, charT c);

16 Effects: Equivalent to insert(pos basic_string(n, c)).

17 Returns: *this.

§ 21.4.6.4 634

c© ISO/IEC N3092

iterator insert(const_iterator p, charT c);

18 Requires: p is a valid iterator on *this.

19 Effects: inserts a copy of c before the character referred to by p.

20 Returns: an iterator which refers to the copy of the inserted character.

iterator insert(const_iterator p, size_type n, charT c);

21 Requires: p is a valid iterator on *this.

22 Effects: inserts n copies of c before the character referred to by p.

23 Returns: an iterator which refers to the copy of the first inserted character, or p if n == 0.

template<class InputIterator>
iterator insert(const_iterator p, InputIterator first, InputIterator last);

24 Requires: p is a valid iterator on *this. [first,last) is a valid range.

25 Effects: Equivalent to insert(p - begin(), basic_string(first, last)).

26 Returns: an iterator which refers to the copy of the first inserted character, or p if first == last.

iterator insert(const_iterator p, initializer_list<charT> il);

27 Effects: insert(p, il.begin(), il.end()).

28 Returns: an iterator which refers to the copy of the first inserted character, or p if i1 is empty.

21.4.6.5 basic_string::erase [string::erase]

basic_string<charT,traits,Allocator>&
erase(size_type pos = 0, size_type n = npos);

1 Requires: pos <= size()

2 Throws: out_of_range if pos > size().

3 Effects: Determines the effective length xlen of the string to be removed as the smaller of n and
size() - pos.

4 The function then replaces the string controlled by *this with a string of length size() - xlen
whose first pos elements are a copy of the initial elements of the original string controlled by *this,
and whose remaining elements are a copy of the elements of the original string controlled by *this
beginning at position pos + xlen.

5 Returns: *this.

iterator erase(const_iterator p);

6 Effects: removes the character referred to by p.

7 Returns: an iterator which points to the element immediately following p prior to the element being
erased. If no such element exists, end() is returned.

iterator erase(const_iterator first, const_iterator last);

8 Requires: first and last are valid iterators on *this, defining a range [first,last).

9 Effects: removes the characters in the range [first,last).

§ 21.4.6.5 635

c© ISO/IEC N3092

10 Returns: an iterator which points to the element pointed to by last prior to the other elements being
erased. If no such element exists, end() is returned.

void pop_back();

11 Requires: !empty()

12 Effects: Equivalent to erase(size() - 1, 1).

21.4.6.6 basic_string::replace [string::replace]

basic_string&
replace(size_type pos1, size_type n1,

const basic_string& str);

1 Requires: pos1 <= size().

2 Throws: out_of_range if pos1 > size().

3 Effects: Calls replace(pos1, n1, str.data(), str.size()).

4 Returns: *this.

basic_string&
replace(size_type pos1, size_type n1,

const basic_string& str,
size_type pos2, size_type n2);

5 Requires: pos1 <= size() and pos2 <= str.size().

6 Throws: out_of_range if pos1 > size() or pos2 > str.size().

7 Effects: Determines the effective length rlen of the string to be inserted as the smaller of n2 and
str.size() - pos2 and calls replace(pos1, n1, str.data() + pos2, rlen).

8 Returns: *this.

basic_string&
replace(size_type pos1, size_type n1, const charT* s, size_type n2);

9 Requires: pos1 <= size() and s points to an array of at least n2 elements of charT.

10 Throws: out_of_range if pos1 > size() or length_error if the length of the resulting string would
exceed max_size() (see below).

11 Effects: Determines the effective length xlen of the string to be removed as the smaller of n1 and
size() - pos1. If size() - xlen >= max_size() - n2 throws length_error. Otherwise, the func-
tion replaces the string controlled by *this with a string of length size() - xlen + n2 whose first
pos1 elements are a copy of the initial elements of the original string controlled by *this, whose next
n2 elements are a copy of the initial n2 elements of s, and whose remaining elements are a copy of the
elements of the original string controlled by *this beginning at position pos + xlen.

12 Returns: *this.

basic_string&
replace(size_type pos, size_type n, const charT* s);

13 Requires: pos <= size() and s points to an array of at least traits::length(s) + 1 elements of
charT.

§ 21.4.6.6 636

c© ISO/IEC N3092

14 Effects: Calls replace(pos, n, s, traits::length(s)).

15 Returns: *this.

basic_string&
replace(size_type pos1, size_type n1,

size_type n2, charT c);

16 Effects: Equivalent to replace(pos1, n1, basic_string(n2, c)).

17 Returns: *this.

basic_string& replace(iterator i1, iterator i2, const basic_string& str);

18 Requires: [begin(),i1) and [i1,i2) are valid ranges.

19 Effects: Calls replace(i1 - begin(), i2 - i1, str).

20 Returns: *this.

basic_string&
replace(iterator i1, iterator i2, const charT* s, size_type n);

21 Requires: [begin(),i1) and [i1,i2) are valid ranges and s points to an array of at least n elements
of charT.

22 Effects: Calls replace(i1 - begin(), i2 - i1, s, n).

23 Returns: *this.

basic_string& replace(iterator i1, iterator i2, const charT* s);

24 Requires: [begin(),i1) and [i1,i2) are valid ranges and s points to an array of at least traits::length(s)
+ 1 elements of charT.

25 Effects: Calls replace(i1 - begin(), i2 - i1, s, traits::length(s)).

26 Returns: *this.

basic_string& replace(iterator i1, iterator i2, size_type n,
charT c);

27 Requires: [begin(),i1) and [i1,i2) are valid ranges.

28 Effects: Calls replace(i1 - begin(), i2 - i1, basic_string(n, c)).

29 Returns: *this.

template<class InputIterator>
basic_string& replace(iterator i1, iterator i2,

InputIterator j1, InputIterator j2);

30 Requires: [begin(),i1), [i1,i2) and [j1,j2) are valid ranges.

31 Effects: Calls replace(i1 - begin(), i2 - i1, basic_string(j1, j2)).

32 Returns: *this.

basic_string& replace(iterator i1, iterator i2,
initializer_list<charT> il);

33 Requires: [begin(),i1) and [i1,i2) are valid ranges.

34 Effects: Calls replace(i1 - begin(), i2 - i1, il.begin(), il.size()).

§ 21.4.6.6 637

c© ISO/IEC N3092

35 *this.

21.4.6.7 basic_string::copy [string::copy]

size_type copy(charT* s, size_type n, size_type pos = 0) const;

1 Requires: pos <= size()

2 Throws: out_of_range if pos > size().

3 Effects: Determines the effective length rlen of the string to copy as the smaller of n and size() -
pos. s shall designate an array of at least rlen elements.

The function then replaces the string designated by s with a string of length rlen whose elements are
a copy of the string controlled by *this beginning at position pos.

The function does not append a null object to the string designated by s.

4 Returns: rlen.

21.4.6.8 basic_string::swap [string::swap]

void swap(basic_string<charT,traits,Allocator>& s);

1 Throws: Nothing.

2 Postcondition: *this contains the same sequence of characters that was in s, s contains the same
sequence of characters that was in *this.

3 Complexity: constant time.

21.4.7 basic_string string operations [string.ops]

21.4.7.1 basic_string accessors [string.accessors]

const charT* c_str() const;
const charT* data() const;

1 Returns: a pointer p such that p + i == &operator[](i) for each i in [0,size()].

2 Throws: nothing.

3 Complexity: constant time.

4 Requires: The program shall not alter any of the values stored in the character array.

allocator_type get_allocator() const;

5 Returns: a copy of the Allocator object used to construct the string or, if that allocator has been
replaced, a copy of the most recent replacement.

21.4.7.2 basic_string::find [string::find]

size_type find(const basic_string& str,
size_type pos = 0) const;

1 Effects: Determines the lowest position xpos, if possible, such that both of the following conditions
obtain:

§ 21.4.7.2 638

c© ISO/IEC N3092

— pos <= xpos and xpos + str.size() <= size();

— traits::eq(at(xpos+I), str.at(I)) for all elements I of the string controlled by str.

2 Returns: xpos if the function can determine such a value for xpos. Otherwise, returns npos.

3 Remarks: Uses traits::eq().

size_type find(const charT* s, size_type pos, size_type n) const;

4 Returns: find(basic_string<charT,traits,Allocator>(s,n),pos).

size_type find(const charT* s, size_type pos = 0) const;

5 Requires: s points to an array of at least traits::length(s) + 1 elements of charT.

6 Returns: find(basic_string(s), pos).

size_type find(charT c, size_type pos = 0) const;

7 Returns: find(basic_string<charT,traits,Allocator>(1,c),pos).

21.4.7.3 basic_string::rfind [string::rfind]

size_type rfind(const basic_string& str,
size_type pos = npos) const;

1 Effects: Determines the highest position xpos, if possible, such that both of the following conditions
obtain:

— xpos <= pos and xpos + str.size() <= size();

— traits::eq(at(xpos+I), str.at(I)) for all elements I of the string controlled by str.

2 Returns: xpos if the function can determine such a value for xpos. Otherwise, returns npos.

3 Remarks: Uses traits::eq().

size_type rfind(const charT* s, size_type pos, size_type n) const;

4 Returns: rfind(basic_string(s, n), pos).

size_type rfind(const charT* s, size_type pos = npos) const;

5 Requires: s points to an array of at least traits::length(s) + 1 elements of charT.

6 Returns: rfind(basic_string(s), pos).

size_type rfind(charT c, size_type pos = npos) const;

7 Returns: rfind(basic_string<charT,traits,Allocator>(1,c),pos).

21.4.7.4 basic_string::find_first_of [string::find.first.of]

size_type
find_first_of(const basic_string& str,

size_type pos = 0) const;

1 Effects: Determines the lowest position xpos, if possible, such that both of the following conditions
obtain:

— pos <= xpos and xpos < size();

§ 21.4.7.4 639

c© ISO/IEC N3092

— traits::eq(at(xpos), str.at(I)) for some element I of the string controlled by str.

2 Returns: xpos if the function can determine such a value for xpos. Otherwise, returns npos.

3 Remarks: Uses traits::eq().

size_type
find_first_of(const charT* s, size_type pos, size_type n) const;

4 Returns: find_first_of(basic_string(s, n), pos).

size_type find_first_of(const charT* s, size_type pos = 0) const;

5 Requires: s points to an array of at least traits::length(s) + 1 elements of charT.

6 Returns: find_first_of(basic_string(s), pos).

size_type find_first_of(charT c, size_type pos = 0) const;

7 Returns: find_first_of(basic_string<charT,traits,Allocator>(1,c),pos).

21.4.7.5 basic_string::find_last_of [string::find.last.of]

size_type
find_last_of(const basic_string& str,

size_type pos = npos) const;

1 Effects: Determines the highest position xpos, if possible, such that both of the following conditions
obtain:

— xpos <= pos and xpos < size();

— traits::eq(at(xpos), str.at(I)) for some element I of the string controlled by str.

2 Returns: xpos if the function can determine such a value for xpos. Otherwise, returns npos.

3 Remarks: Uses traits::eq().

size_type find_last_of(const charT* s, size_type pos, size_type n) const;

4 Returns: find_last_of(basic_string(s, n), pos).

size_type find_last_of(const charT* s, size_type pos = npos) const;

5 Requires: s points to an array of at least traits::length(s) + 1 elements of charT.

6 Returns: find_last_of(basic_string(s), pos).

size_type find_last_of(charT c, size_type pos = npos) const;

7 Returns: find_last_of(basic_string<charT,traits,Allocator>(1,c),pos).

21.4.7.6 basic_string::find_first_not_of [string::find.first.not.of]

size_type
find_first_not_of(const basic_string& str,

size_type pos = 0) const;

1 Effects: Determines the lowest position xpos, if possible, such that both of the following conditions
obtain:

§ 21.4.7.6 640

c© ISO/IEC N3092

— pos <= xpos and xpos < size();

— traits::eq(at(xpos), str.at(I)) for no element I of the string controlled by str.

2 Returns: xpos if the function can determine such a value for xpos. Otherwise, returns npos.

3 Remarks: Uses traits::eq().

size_type
find_first_not_of(const charT* s, size_type pos, size_type n) const;

4 Returns: find_first_not_of(basic_string(s, n), pos).

size_type find_first_not_of(const charT* s, size_type pos = 0) const;

5 Requires: s points to an array of at least traits::length(s) + 1 elements of charT.

6 Returns: find_first_not_of(basic_string(s), pos).

size_type find_first_not_of(charT c, size_type pos = 0) const;

7 Returns: find_first_not_of(basic_string(1, c), pos).

21.4.7.7 basic_string::find_last_not_of [string::find.last.not.of]

size_type
find_last_not_of(const basic_string& str,

size_type pos = npos) const;

1 Effects: Determines the highest position xpos, if possible, such that both of the following conditions
obtain:

— xpos <= pos and xpos < size();

— traits::eq(at(xpos), str.at(I)) for no element I of the string controlled by str.

2 Returns: xpos if the function can determine such a value for xpos. Otherwise, returns npos.

3 Remarks: Uses traits::eq().

size_type find_last_not_of(const charT* s, size_type pos,
size_type n) const;

4 Returns: find_last_not_of(basic_string(s, n), pos).

size_type find_last_not_of(const charT* s, size_type pos = npos) const;

5 Requires: s points to an array of at least traits::length(s) + 1 elements of charT.

6 Returns: find_last_not_of(basic_string(s), pos).

size_type find_last_not_of(charT c, size_type pos = npos) const;

7 Returns: find_last_not_of(basic_string(1, c), pos).

21.4.7.8 basic_string::substr [string::substr]

basic_string<charT,traits,Allocator>
substr(size_type pos = 0, size_type n = npos) const;

§ 21.4.7.8 641

c© ISO/IEC N3092

1 Requires: pos <= size()

2 Throws: out_of_range if pos > size().

3 Effects: Determines the effective length rlen of the string to copy as the smaller of n and size() -
pos.

4 Returns: basic_string<charT,traits,Allocator>(data()+pos,rlen).

21.4.7.9 basic_string::compare [string::compare]

int compare(const basic_string& str) const

1 Effects: Determines the effective length rlen of the strings to compare as the smallest of size()
and str.size(). The function then compares the two strings by calling traits::compare(data(),
str.data(), rlen).

2 Returns: the nonzero result if the result of the comparison is nonzero. Otherwise, returns a value as
indicated in Table 69.

Table 69 — compare() results

Condition Return Value
size() < str.size() < 0
size() == str.size() 0
size() > str.size() > 0

int compare(size_type pos1, size_type n1,
const basic_string& str) const;

3 Returns:
basic_string(*this,pos1,n1).compare(str).

int compare(size_type pos1, size_type n1,
const basic_string& str,
size_type pos2, size_type n2) const;

4 Returns:
basic_string(*this,pos1,n1).compare(

basic_string(str,pos2,n2)).

int compare(const charT *s) const;

5 Returns: compare(basic_string(s)).

int compare(size_type pos, size_type n1,
const charT *s) const;

6 Returns:
basic_string(*this,pos,n1).compare(

basic_string(s))

int compare(size_type pos, size_type n1,
const charT *s, size_type n2) const;

§ 21.4.7.9 642

c© ISO/IEC N3092

7 Returns:
basic_string(*this,pos,n1).compare(

basic_string(s,n2))

21.4.8 basic_string non-member functions [string.nonmembers]

21.4.8.1 operator+ [string::op+]

template<class charT, class traits, class Allocator>
basic_string<charT,traits,Allocator>

operator+(const basic_string<charT,traits,Allocator>& lhs,
const basic_string<charT,traits,Allocator>& rhs);

1 Returns: basic_string<charT,traits,Allocator>(lhs).append(rhs)

template<class charT, class traits, class Allocator>
basic_string<charT,traits,Allocator>

operator+(basic_string<charT,traits,Allocator>&& lhs,
const basic_string<charT,traits,Allocator>& rhs);

2 Returns: std::move(lhs.append(rhs))

template<class charT, class traits, class Allocator>
basic_string<charT,traits,Allocator>

operator+(const basic_string<charT,traits,Allocator>& lhs,
basic_string<charT,traits,Allocator>&& rhs);

3 Returns: std::move(rhs.insert(0, lhs))

template<class charT, class traits, class Allocator>
basic_string<charT,traits,Allocator>

operator+(basic_string<charT,traits,Allocator>&& lhs,
basic_string<charT,traits,Allocator>&& rhs);

4 Returns: std::move(lhs.append(rhs)) [Note: Or equivalently std::move(rhs.insert(0, lhs))
— end note]

template<class charT, class traits, class Allocator>
basic_string<charT,traits,Allocator>

operator+(const charT* lhs,
const basic_string<charT,traits,Allocator>& rhs);

5 Returns: basic_string<charT,traits,Allocator>(lhs) + rhs.

6 Remarks: Uses traits::length().

template<class charT, class traits, class Allocator>
basic_string<charT,traits,Allocator>

operator+(const charT* lhs,
basic_string<charT,traits,Allocator>&& rhs);

7 Returns: std::move(rhs.insert(0, lhs)).

8 Remarks: Uses traits::length().

template<class charT, class traits, class Allocator>
basic_string<charT,traits,Allocator>

operator+(charT lhs,

§ 21.4.8.1 643

c© ISO/IEC N3092

const basic_string<charT,traits,Allocator>& rhs);

9 Returns: basic_string<charT,traits,Allocator>(1,lhs) + rhs.

template<class charT, class traits, class Allocator>
basic_string<charT,traits,Allocator>

operator+(charT lhs,
basic_string<charT,traits,Allocator>&& rhs);

10 Returns: std::move(rhs.insert(0, 1, lhs)).

template<class charT, class traits, class Allocator>
basic_string<charT,traits,Allocator>

operator+(const basic_string<charT,traits,Allocator>& lhs,
const charT* rhs);

11 Returns: lhs + basic_string<charT,traits,Allocator>(rhs).

12 Remarks: Uses traits::length().

template<class charT, class traits, class Allocator>
basic_string<charT,traits,Allocator>

operator+(basic_string<charT,traits,Allocator>&& lhs,
const charT* rhs);

13 Returns: std::move(lhs.append(rhs)).

14 Remarks: Uses traits::length().

template<class charT, class traits, class Allocator>
basic_string<charT,traits,Allocator>

operator+(const basic_string<charT,traits,Allocator>& lhs,
charT rhs);

15 Returns: lhs + basic_string<charT,traits,Allocator>(1,rhs).

template<class charT, class traits, class Allocator>
basic_string<charT,traits,Allocator>

operator+(basic_string<charT,traits,Allocator>&& lhs,
charT rhs);

16 Returns: std::move(lhs.append(1, rhs)).

21.4.8.2 operator== [string::operator==]

template<class charT, class traits, class Allocator>
bool operator==(const basic_string<charT,traits,Allocator>& lhs,

const basic_string<charT,traits,Allocator>& rhs);

1 Returns: lhs.compare(rhs) == 0.

template<class charT, class traits, class Allocator>
bool operator==(const charT* lhs,

const basic_string<charT,traits,Allocator>& rhs);

2 Returns: rhs == lhs.

template<class charT, class traits, class Allocator>
bool operator==(const basic_string<charT,traits,Allocator>& lhs,

const charT* rhs);

§ 21.4.8.2 644

c© ISO/IEC N3092

3 Requires: rhs points to an array of at least traits::length(rhs) + 1 elements of charT.

4 Returns: lhs.compare(rhs) == 0.

21.4.8.3 operator!= [string::op!=]

template<class charT, class traits, class Allocator>
bool operator!=(const basic_string<charT,traits,Allocator>& lhs,

const basic_string<charT,traits,Allocator>& rhs);

1 Returns: !(lhs == rhs).

template<class charT, class traits, class Allocator>
bool operator!=(const charT* lhs,

const basic_string<charT,traits,Allocator>& rhs);

2 Returns: rhs != lhs.

template<class charT, class traits, class Allocator>
bool operator!=(const basic_string<charT,traits,Allocator>& lhs,

const charT* rhs);

3 Requires: rhs points to an array of at least traits::length(rhs) + 1 elements of charT.

4 Returns: lhs.compare(rhs) != 0.

21.4.8.4 operator< [string::op<]

template<class charT, class traits, class Allocator>
bool operator< (const basic_string<charT,traits,Allocator>& lhs,

const basic_string<charT,traits,Allocator>& rhs);

1 Returns: lhs.compare(rhs) < 0.

template<class charT, class traits, class Allocator>
bool operator< (const charT* lhs,

const basic_string<charT,traits,Allocator>& rhs);

2 Returns: basic_string<charT,traits,Allocator>(lhs) < rhs.

template<class charT, class traits, class Allocator>
bool operator< (const basic_string<charT,traits,Allocator>& lhs,

const charT* rhs);

3 Returns: lhs < basic_string<charT,traits,Allocator>(rhs).

21.4.8.5 operator> [string::op>]

template<class charT, class traits, class Allocator>
bool operator> (const basic_string<charT,traits,Allocator>& lhs,

const basic_string<charT,traits,Allocator>& rhs);

1 Returns: lhs.compare(rhs) > 0.

template<class charT, class traits, class Allocator>
bool operator> (const charT* lhs,

const basic_string<charT,traits,Allocator>& rhs);

§ 21.4.8.5 645

c© ISO/IEC N3092

2 Returns: basic_string<charT,traits,Allocator>(lhs) > rhs.

template<class charT, class traits, class Allocator>
bool operator> (const basic_string<charT,traits,Allocator>& lhs,

const charT* rhs);

3 Returns: lhs > basic_string<charT,traits,Allocator>(rhs).

21.4.8.6 operator<= [string::op<=]

template<class charT, class traits, class Allocator>
bool operator<=(const basic_string<charT,traits,Allocator>& lhs,

const basic_string<charT,traits,Allocator>& rhs);

1 Returns: lhs.compare(rhs) <= 0.

template<class charT, class traits, class Allocator>
bool operator<=(const charT* lhs,

const basic_string<charT,traits,Allocator>& rhs);

2 Returns: basic_string<charT,traits,Allocator>(lhs) <= rhs.

template<class charT, class traits, class Allocator>
bool operator<=(const basic_string<charT,traits,Allocator>& lhs,

const charT* rhs);

3 Returns: lhs <= basic_string<charT,traits,Allocator>(rhs).

21.4.8.7 operator>= [string::op>=]

template<class charT, class traits, class Allocator>
bool operator>=(const basic_string<charT,traits,Allocator>& lhs,

const basic_string<charT,traits,Allocator>& rhs);

1 Returns: lhs.compare(rhs) >= 0.

template<class charT, class traits, class Allocator>
bool operator>=(const charT* lhs,

const basic_string<charT,traits,Allocator>& rhs);

2 Returns: basic_string<charT,traits,Allocator>(lhs) >= rhs.

template<class charT, class traits, class Allocator>
bool operator>=(const basic_string<charT,traits,Allocator>& lhs,

const charT* rhs);

3 Returns: lhs >= basic_string<charT,traits,Allocator>(rhs).

21.4.8.8 swap [string.special]

template<class charT, class traits, class Allocator>
void swap(basic_string<charT,traits,Allocator>& lhs,

basic_string<charT,traits,Allocator>& rhs);

1 Effects: lhs.swap(rhs);

§ 21.4.8.8 646

c© ISO/IEC N3092

21.4.8.9 Inserters and extractors [string.io]

template<class charT, class traits, class Allocator>
basic_istream<charT,traits>&

operator>>(basic_istream<charT,traits>& is,
basic_string<charT,traits,Allocator>& str);

1 Effects: Behaves as a formatted input function (27.7.1.2.1). After constructing a sentry object, if the
sentry converts to true, calls str.erase() and then extracts characters from is and appends them to
str as if by calling str.append(1,c). If is.width() is greater than zero, the maximum number n
of characters appended is is.width(); otherwise n is str.max_size(). Characters are extracted and
appended until any of the following occurs:

— n characters are stored;

— end-of-file occurs on the input sequence;

— isspace(c,is.getloc()) is true for the next available input character c.

2 After the last character (if any) is extracted, is.width(0) is called and the sentry object k is de-
stroyed.

3 If the function extracts no characters, it calls is.setstate(ios::failbit), which may throw ios_-
base::failure (27.5.4.3).

4 Returns: is

template<class charT, class traits, class Allocator>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os,
const basic_string<charT,traits,Allocator>& str);

5 Effects: Behaves as a formatted output function (27.7.2.6.1). After constructing a sentry object,
if this object returns true when converted to a value of type bool, determines padding as described
in 22.4.2.2.2, then inserts the resulting sequence of characters seq as if by calling os.rdbuf()->sputn(seq,
n), where n is the larger of os.width() and str.size(); then calls os.width(0).

6 Returns: os

template<class charT, class traits, class Allocator>
basic_istream<charT,traits>&

getline(basic_istream<charT,traits>& is,
basic_string<charT,traits,Allocator>& str,
charT delim);

template<class charT, class traits, class Allocator>
basic_istream<charT,traits>&

getline(basic_istream<charT,traits>&& is,
basic_string<charT,traits,Allocator>& str,
charT delim);

7 Effects: Behaves as an unformatted input function (27.7.1.3), except that it does not affect the value
returned by subsequent calls to basic_istream<>::gcount(). After constructing a sentry object,
if the sentry converts to true, calls str.erase() and then extracts characters from is and appends
them to str as if by calling str.append(1, c) until any of the following occurs:

— end-of-file occurs on the input sequence (in which case, the getline function calls is.setstate(ios_-
base::eofbit)).

§ 21.4.8.9 647

c© ISO/IEC N3092

— traits::eq(c, delim) for the next available input character c (in which case, c is extracted but
not appended) (27.5.4.3)

— str.max_size() characters are stored (in which case, the function calls is.setstate(ios_base
::failbit)) (27.5.4.3)

8 The conditions are tested in the order shown. In any case, after the last character is extracted, the
sentry object k is destroyed.

9 If the function extracts no characters, it calls is.setstate(ios_base::failbit) which may throw
ios_base::failure (27.5.4.3).

10 Returns: is.

template<class charT, class traits, class Allocator>
basic_istream<charT,traits>&

getline(basic_istream<charT,traits>& is,
basic_string<charT,traits,Allocator>& str)

template<class charT, class traits, class Allocator>
basic_istream<charT,traits>&

getline(basic_istream<charT,traits>&& is,
basic_string<charT,traits,Allocator>& str)

11 Returns: getline(is,str,is.widen(’\n’))

21.5 Numeric Conversions [string.conversions]

int stoi(const string& str, size_t *idx = 0, int base = 10);
long stol(const string& str, size_t *idx = 0, int base = 10);
unsigned long stoul(const string& str, size_t *idx = 0, int base = 10);
long long stoll(const string& str, size_t *idx = 0, int base = 10);
unsigned long long stoull(const string& str, size_t *idx = 0, int base = 10);

1 Effects: the first two functions call strtol(str.c_str(), ptr, base), and the last three functions
call strtoul(str.c_str(), ptr, base), strtoll(str.c_str(), ptr, base), and strtoull(str.c_-
str(), ptr, base), respectively. Each function returns the converted result, if any. The argument
ptr designates a pointer to an object internal to the function that is used to determine what to store
at *idx. If the function does not throw an exception and idx != 0, the function stores in *idx the
index of the first unconverted element of str.

2 Returns: the converted result.

3 Throws: invalid_argument if strtol, strtoul, strtoll, or strtoull reports that no conversion
could be performed. Throws out_of_range if the converted value is outside the range of representable
values for the return type.

float stof(const string& str, size_t *idx = 0);
double stod(const string& str, size_t *idx = 0);
long double stold(const string& str, size_t *idx = 0);

4 Effects: the first two functions call strtod(str.c_str(), ptr) and the third function calls strtold(str.c_-
str(), ptr). Each function returns the converted result, if any. The argument ptr designates a
pointer to an object internal to the function that is used to determine what to store at *idx. If the
function does not throw an exception and idx != 0, the function stores in *idx the index of the first
unconverted element of str.

5 Returns: the converted result.

§ 21.5 648

c© ISO/IEC N3092

6 Throws: invalid_argument if strtod or strtold reports that no conversion could be performed.
Throws out_of_range if strtod or strtold sets errno to ERANGE.

string to_string(int val);
string to_string(unsigned val);
string to_string(long val);
string to_string(unsigned long val);
string to_string(long long val);
string to_string(unsigned long long val);
string to_string(float val);
string to_string(double val);
string to_string(long double val);

7 Returns: each function returns a string object holding the character representation of the value of
its argument that would be generated by calling sprintf(buf, fmt, val) with a format specifier of
"%d", "%u", "%ld", "%lu", "%lld", "%llu", "%f", "%f", or "%Lf", respectively, where buf designates
an internal character buffer of sufficient size.

int stoi(const wstring& str, size_t *idx = 0, int base = 10);
long stol(const wstring& str, size_t *idx = 0, int base = 10);
unsigned long stoul(const wstring& str, size_t *idx = 0, int base = 10);
long long stoll(const wstring& str, size_t *idx = 0, int base = 10);
unsigned long long stoull(const wstring& str, size_t *idx = 0, int base = 10);

8 Effects: the first two functions call wcstol(str.c_str(), ptr, base), and the last three functions
call wcstoul(str.c_str(), ptr, base), wcstoll(str.c_str(), ptr, base), and wcstoull(str.c_-
str(), ptr, base), respectively. Each function returns the converted result, if any. The argument
ptr designates a pointer to an object internal to the function that is used to determine what to store
at *idx. If the function does not throw an exception and idx != 0, the function stores in *idx the
index of the first unconverted element of str.

9 Returns: the converted result.

10 Throws: invalid_argument if wcstol, wcstoul, wcstoll, or wcstoull reports that no conversion
could be performed. Throws out_of_range if the converted value is outside the range of representable
values for the return type.

float stof(const wstring& str, size_t *idx = 0);
double stod(const wstring& str, size_t *idx = 0);
long double stold(const wstring& str, size_t *idx = 0);

11 Effects: the first two functions call wcstod(str.c_str(), ptr) and the third function calls wcstold(str.c_-
str(), ptr). Each function returns the converted result, if any. The argument ptr designates a
pointer to an object internal to the function that is used to determine what to store at *idx. If the
function does not throw an exception and idx != 0, the function stores in *idx the index of the first
unconverted element of str.

12 Returns: the converted result.

13 Throws: invalid_argument if wcstod or wcstold reports that no conversion could be performed.
Throws out_of_range if wcstod or wcstold sets errno to ERANGE.

wstring to_wstring(int val);
wstring to_wstring(unsigned val);
wstring to_wstring(long val);
wstring to_wstring(unsigned long val);
wstring to_wstring(long long val);

§ 21.5 649

c© ISO/IEC N3092

wstring to_wstring(unsigned long long val);
wstring to_wstring(float val);
wstring to_wstring(double val);
wstring to_wstring(long double val);

14 Returns: Each function returns a wstring object holding the character representation of the value of
its argument that would be generated by calling swprintf(buf, buffsz, fmt, val) with a format
specifier of L"%d", L"%u", L"%ld", L"%lu", L"%lld", L"%llu", L"%f", L"%f", or L"%Lf", respectively,
where buf designates an internal character buffer of sufficient size buffsz.

21.6 Hash support [basic.string.hash]

template <> struct hash<string>;
template <> struct hash<u16string>;
template <> struct hash<u32string>;
template <> struct hash<wstring>;

1 Requires: the template specializations shall meet the requirements of class template hash (20.8.15).

21.7 Null-terminated sequence utilities [c.strings]

1 Tables 71, 72, 73, 74,75. and 76 describe headers <cctype>, <cwctype>, <cstring>, <cwchar>, <cstdlib>
(character conversions), and <cuchar>, respectively.

2 The contents of these headers shall be the same as the Standard C Library headers <ctype.h>, <wctype.h>,
<string.h>, <wchar.h>, and <stdlib.h> and the C Unicode TR header <uchar.h>, respectively, with the
following modifications:

3 The headers shall not define the types char16_t, char32_t, and wchar_t (2.12).

4 The function signature strchr(const char*, int) shall be replaced by the two declarations:
const char* strchr(const char* s, int c);

char* strchr(char* s, int c);

both of which shall have the same behavior as the original declaration.

5 The function signature strpbrk(const char*, const char*) shall be replaced by the two declarations:
const char* strpbrk(const char* s1, const char* s2);

char* strpbrk(char* s1, const char* s2);

both of which shall have the same behavior as the original declaration.

6 The function signature strrchr(const char*, int) shall be replaced by the two declarations:
const char* strrchr(const char* s, int c);

char* strrchr(char* s, int c);

both of which shall have the same behavior as the original declaration.

7 The function signature strstr(const char*, const char*) shall be replaced by the two declarations:
const char* strstr(const char* s1, const char* s2);

char* strstr(char* s1, const char* s2);

both of which shall have the same behavior as the original declaration.

8 The function signature memchr(const void*, int, size_t) shall be replaced by the two declarations:

§ 21.7 650

c© ISO/IEC N3092

const void* memchr(const void* s, int c, size_t n);
void* memchr(void* s, int c, size_t n);

both of which shall have the same behavior as the original declaration.

9 The function signature wcschr(const wchar_t*, wchar_t) shall be replaced by the two declarations:
const wchar_t* wcschr(const wchar_t* s, wchar_t c);

wchar_t* wcschr(wchar_t* s, wchar_t c);

both of which shall have the same behavior as the original declaration.

10 The function signature wcspbrk(const wchar_t*, const wchar_t*) shall be replaced by the two declara-
tions:

const wchar_t* wcspbrk(const wchar_t* s1, const wchar_t* s2);
wchar_t* wcspbrk(wchar_t* s1, const wchar_t* s2);

both of which shall have the same behavior as the original declaration.

11 The function signature wcsrchr(const wchar_t*, wchar_t) shall be replaced by the two declarations:
const wchar_t* wcsrchr(const wchar_t* s, wchar_t c);

wchar_t* wcsrchr(wchar_t* s, wchar_t c);

both of which shall have the same behavior as the original declaration.

12 The function signature wcsstr(const wchar_t*, const wchar_t*) shall be replaced by the two declara-
tions:

const wchar_t* wcsstr(const wchar_t* s1, const wchar_t* s2);
wchar_t* wcsstr(wchar_t* s1, const wchar_t* s2);

both of which shall have the same behavior as the original declaration.

13 The function signature wmemchr(const wwchar_t*, int, size_t) shall be replaced by the two declara-
tions:

const wchar_t* wmemchr(const wchar_t* s, wchar_t c, size_t n);
wchar_t* wmemchr(wchar_t* s, wchar_t c, size_t n);

both of which shall have the same behavior as the original declaration.

14 The functions strerror and strtok are not required to avoid data races (17.6.4.8).

15 Calling the functions listed in Table 70 with an mbstate_t* argument of NULL may introduce a data
race (17.6.4.8) with other calls to these functions with an mbstate_t* argument of NULL.

Table 70 — Potential mbstate_t data races

mbrlen mbrtowc mbsrtowc mbtowc wcrtomb
wcsrtomb wctomb

See also: ISO C 7.3, 7.10.7, 7.10.8, and 7.11. Amendment 1 4.4, 4.5, and 4.6.

§ 21.7 651

c© ISO/IEC N3092

Table 71 — Header <cctype> synopsis

Type Name(s)
Functions:
isalnum isblank isdigit isprint isupper
tolower isalpha isgraph ispunct isxdigit
toupper iscntrl islower isspace

Table 72 — Header <cwctype> synopsis

Type Name(s)
Macro: WEOF <cwctype>
Types: wctrans_t wctype_t wint_t <cwctype>
Functions:
iswalnum iswcntrl iswgraph iswpunct iswxdigit towupper
iswalpha iswctype iswlower iswspace towctrans wctrans
iswblank iswdigit iswprint iswupper towlower wctype

Table 73 — Header <cstring> synopsis

Type Name(s)
Macro: NULL <cstring>
Type: size_t <cstring>
Functions:
memchr strcat strcspn strncpy strtok
memcmp strchr strerror strpbrk strxfrm
memcpy strcmp strlen strrchr
memmove strcoll strncat strspn
memset strcpy strncmp strstr

Table 74 — Header <cwchar> synopsis

Type Name(s)
Macros: NULL <cwchar> WCHAR_MAX WCHAR_MIN WEOF <cwchar>
Types: mbstate_t wint_t <cwchar> size_t tm
Functions:
btowc mbrlen vfwscanf wcscpy wcsspn wcsxfrm
fgetwc mbrtowc vswscanf wcscspn wcsstr wctob
fgetws mbsinit vswprintf wcsftime wcstod wmemchr
fputwc mbsrtowcs vwprintf wcslen wcstof wmemcmp
fputws putwc vwscanf wcsncat wcstok wmemcpy
fwide putwchar wcrtomb wcsncmp wcstol wmemmove
fwprintf swprintf wcscat wcsncpy wcstold wmemset
fwscanf swscanf wcschr wcspbrk wcstoll wprintf
getwc ungetwc wcscmp wcsrchr wcstoul wscanf
getwchar vfwprintf wcscoll wcsrtombs wcstoull

§ 21.7 652

c© ISO/IEC N3092

Table 75 — Header <cstdlib> synopsis

Type Name(s)
Macros: MB_CUR_MAX
Functions:
atof mblen strtof strtoul
atoi mbtowc strtol strtoull
atol mbstowcs strtold wctomb
atoll strtod strtoll wcstombs

Table 76 — Header <cuchar> synopsis

Type Name(s)
Macros: __STDC_UTF_16__ __STDC_UTF_32__
Functions: mbrtoc16 c16rtomb

mbrtoc32 c32rtomb

§ 21.7 653

c© ISO/IEC N3092

22 Localization library [localization]
22.1 General [localization.general]

1 This Clause describes components that C++ programs may use to encapsulate (and therefore be more
portable when confronting) cultural differences. The locale facility includes internationalization support for
character classification and string collation, numeric, monetary, and date/time formatting and parsing, and
message retrieval.

2 The following subclauses describe components for locales themselves, the standard facets, and facilities from
the ISO C library, as summarized in Table 77.

Table 77 — Localization library summary

Subclause Header(s)
22.3 Locales <locale>
22.4 Standard locale Categories
22.5 Standard code conversion facets <codecvt>
22.6 C library locales <clocale>

22.2 Header <locale> synopsis [locale.syn]

namespace std {
// 22.3.1, locale:
class locale;
template <class Facet> const Facet& use_facet(const locale&);
template <class Facet> bool has_facet(const locale&) throw();

// 22.3.3, convenience interfaces:
template <class charT> bool isspace (charT c, const locale& loc);
template <class charT> bool isprint (charT c, const locale& loc);
template <class charT> bool iscntrl (charT c, const locale& loc);
template <class charT> bool isupper (charT c, const locale& loc);
template <class charT> bool islower (charT c, const locale& loc);
template <class charT> bool isalpha (charT c, const locale& loc);
template <class charT> bool isdigit (charT c, const locale& loc);
template <class charT> bool ispunct (charT c, const locale& loc);
template <class charT> bool isxdigit(charT c, const locale& loc);
template <class charT> bool isalnum (charT c, const locale& loc);
template <class charT> bool isgraph (charT c, const locale& loc);
template <class charT> charT toupper(charT c, const locale& loc);
template <class charT> charT tolower(charT c, const locale& loc);
template <class Codecvt, class Elem = wchar_t,

class Wide_alloc = std::allocator<Elem>,
class Byte_alloc = std::allocator<char> > class wstring_convert;

template <class Codecvt, class Elem = wchar_t,
class Tr = char_traits<Elem>> class wbuffer_convert;

// 22.4.1 and 22.4.1.3, ctype:

§ 22.2 654

c© ISO/IEC N3092

class ctype_base;
template <class charT> class ctype;
template <> class ctype<char>; // specialization
template <class charT> class ctype_byname;
class codecvt_base;
template <class internT, class externT, class stateT> class codecvt;
template <class internT, class externT, class stateT> class codecvt_byname;

// 22.4.2 and 22.4.3, numeric:
template <class charT, class InputIterator = istreambuf_iterator<charT> > class num_get;
template <class charT, class OutputIterator = osterambuf_iterator<charT> > class num_put;
template <class charT> class numpunct;
template <class charT> class numpunct_byname;

// 22.4.4, collation:
template <class charT> class collate;
template <class charT> class collate_byname;

// 22.4.5, date and time:
class time_base;
template <class charT, class InputIterator = istreambuf_iterator<charT> > class time_get;
template <class charT, class InputIterator> = istreambuf_iterator<charT> > class time_get_byname;
template <class charT, class OutputIterator> = ostreambuf_iterator<charT> > class time_put;
template <class charT, class OutputIterator> = ostreambuf_iterator<charT> > class time_put_byname;

// 22.4.6, money:
class money_base;
template <class charT, class InputIterator = istreambuf_iterator<charT> > > class money_get;
template <class charT, class OutputIterator = ostreambuf_iterator<charT> > > class money_put;
template <class charT, bool Intl = false> class moneypunct;
template <class charT, bool Intl = false> class moneypunct_byname;

// 22.4.7, message retrieval:
class messages_base;
template <class charT> class messages;
template <class charT> class messages_byname;

}

1 The header <locale> defines classes and declares functions that encapsulate and manipulate the information
peculiar to a locale.241

22.3 Locales [locales]

22.3.1 Class locale [locale]

namespace std {
class locale {
public:

// types:
class facet;
class id;
typedef int category;
static const category // values assigned here are for exposition only

241) In this subclause, the type name struct tm is an incomplete type that is defined in <ctime>.

§ 22.3.1 655

c© ISO/IEC N3092

none = 0,
collate = 0x010, ctype = 0x020,
monetary = 0x040, numeric = 0x080,
time = 0x100, messages = 0x200,
all = collate | ctype | monetary | numeric | time | messages;

// construct/copy/destroy:
locale() throw();
locale(const locale& other) throw();
explicit locale(const char* std_name);
explicit locale(const string& std_name);
locale(const locale& other, const char* std_name, category);
locale(const locale& other, const string& std_name, category);
template <class Facet> locale(const locale& other, Facet* f);
locale(const locale& other, const locale& one, category);
∼locale() throw(); // not virtual
const locale& operator=(const locale& other) throw();
template <class Facet> locale combine(const locale& other) const;

// locale operations:
basic_string<char> name() const;

bool operator==(const locale& other) const;
bool operator!=(const locale& other) const;

template <class charT, class Traits, class Allocator>
bool operator()(const basic_string<charT,Traits,Allocator>& s1,

const basic_string<charT,Traits,Allocator>& s2) const;

// global locale objects:
static locale global(const locale&);
static const locale& classic();

};
}

1 Class locale implements a type-safe polymorphic set of facets, indexed by facet type. In other words, a
facet has a dual role: in one sense, it’s just a class interface; at the same time, it’s an index into a locale’s
set of facets.

2 Access to the facets of a locale is via two function templates, use_facet<> and has_facet<>.

3 [Example: An iostream operator<< might be implemented as:242

template <class charT, class traits>
basic_ostream<charT,traits>&
operator<< (basic_ostream<charT,traits>& s, Date d) {

typename basic_ostream<charT,traits>::sentry cerberos(s);
if (cerberos) {

ios_base::iostate err = ios_base::iostate::goodbit;
tm tmbuf; d.extract(tmbuf);
use_facet< time_put<charT,ostreambuf_iterator<charT,traits> > >(

s.getloc()).put(s, s, s.fill(), err, &tmbuf, ’x’);
s.setstate(err); // might throw

}

242) Notice that, in the call to put, the stream is implicitly converted to an ostreambuf_iterator<charT,traits>.

§ 22.3.1 656

c© ISO/IEC N3092

return s;
}

— end example]

4 In the call to use_facet<Facet>(loc), the type argument chooses a facet, making available all members
of the named type. If Facet is not present in a locale, it throws the standard exception bad_cast. A C++

program can check if a locale implements a particular facet with the function template has_facet<Facet>().
User-defined facets may be installed in a locale, and used identically as may standard facets (22.4.8).

5 [Note: All locale semantics are accessed via use_facet<> and has_facet<>, except that:

— A member operator template operator()(const basic_string<C,T,A>&, const basic_string<C,T,A>&)
is provided so that a locale may be used as a predicate argument to the standard collections, to collate
strings.

— Convenient global interfaces are provided for traditional ctype functions such as isdigit() and
isspace(), so that given a locale object loc a C++ program can call isspace(c,loc). (This eases
upgrading existing extractors (27.7.1.2).) — end note]

6 Once a facet reference is obtained from a locale object by calling use_facet<>, that reference remains usable,
and the results from member functions of it may be cached and re-used, as long as some locale object refers
to that facet.

7 In successive calls to a locale facet member function on a facet object installed in the same locale, the
returned result shall be identical.

8 A locale constructed from a name string (such as "POSIX"), or from parts of two named locales, has a
name; all others do not. Named locales may be compared for equality; an unnamed locale is equal only to
(copies of) itself. For an unnamed locale, locale::name() returns the string "*".

9 Whether there is one global locale object for the entire program or one global locale object per thread is
implementation-defined. Implementations should provide one global locale object per thread. If there is a
single global locale object for the entire program, implementations are not required to avoid data races on
it (17.6.4.8).

22.3.1.1 locale types [locale.types]

22.3.1.1.1 Type locale::category [locale.category]

typedef int category;

1 Valid category values include the locale member bitmask elements collate, ctype, monetary, numeric,
time, and messages, each of which represents a single locale category. In addition, locale member bitmask
constant none is defined as zero and represents no category. And locale member bitmask constant all is
defined such that the expression

(collate | ctype | monetary | numeric | time | messages | all) == all

is true, and represents the union of all categories. Further, the expression (X | Y), where X and Y each
represent a single category, represents the union of the two categories.

§ 22.3.1.1.1 657

c© ISO/IEC N3092

Table 78 — Locale category facets

Category Includes facets
collate collate<char>, collate<wchar_t>
ctype ctype<char>, ctype<wchar_t>

codecvt<char,char,mbstate_t>
codecvt<char16_t,char,mbstate_t>
codecvt<char32_t,char,mbstate_t>
codecvt<wchar_t,char,mbstate_t>

monetary moneypunct<char>, moneypunct<wchar_t>
moneypunct<char,true>, moneypunct<wchar_t,true>
money_get<char>, money_get<wchar_t>
money_put<char>, money_put<wchar_t>

numeric numpunct<char>, numpunct<wchar_t>
num_get<char>, num_get<wchar_t>
num_put<char>, num_put<wchar_t>

time time_get<char>, time_get<wchar_t>
time_put<char>, time_put<wchar_t>

messages messages<char>, messages<wchar_t>

2 locale member functions expecting a category argument require one of the category values defined above,
or the union of two or more such values. Such a category value identifies a set of locale categories. Each
locale category, in turn, identifies a set of locale facets, including at least those shown in Table 78.

3 For any locale loc either constructed, or returned by locale::classic(), and any facet Facet shown in
Table 78, has_facet<Facet>(loc) is true. Each locale member function which takes a locale::category
argument operates on the corresponding set of facets.

4 An implementation is required to provide those specializations for facet templates identified as members of
a category, and for those shown in Table 79.

5 The provided implementation of members of facets num_get<charT> and num_put<charT> calls use_fac-
et <F> (l) only for facet F of types numpunct<charT> and ctype<charT>, and for locale l the value obtained
by calling member getloc() on the ios_base& argument to these functions.

6 In declarations of facets, a template formal parameter with name InputIterator or OutputIterator indi-
cates the set of all possible specializations on parameters that satisfy the requirements of an Input Iterator
or an Output Iterator, respectively (24.2). A template formal parameter with name C represents the set of
types containing char, wchar_t, and any other implementation-defined character types that satisfy the re-
quirements for a character on which any of the iostream components can be instantiated. A template formal
parameter with name International represents the set of all possible specializations on a bool parameter.

22.3.1.1.2 Class locale::facet [locale.facet]

namespace std {
class locale::facet {
protected:

explicit facet(size_t refs = 0);
virtual ~facet();
facet(const facet&) = delete;
void operator=(const facet&) = delete;

};
}

§ 22.3.1.1.2 658

c© ISO/IEC N3092

Table 79 — Required specializations

Category Includes facets
collate collate_byname<char>, collate_byname<wchar_t>
ctype ctype_byname<char>, ctype_byname<wchar_t>

codecvt_byname<char,char,mbstate_t>
codecvt_byname<char16_t,char,mbstate_t>
codecvt_byname<char32_t,char,mbstate_t>
codecvt_byname<wchar_t,char,mbstate_t>

monetary moneypunct_byname<char,International>
moneypunct_byname<wchar_t,International>
money_get<C,InputIterator>
money_put<C,OutputIterator>

numeric numpunct_byname<char>, numpunct_byname<wchar_t>
num_get<C,InputIterator>, num_put<C,OutputIterator>

time time_get<char,InputIterator>
time_get_byname<char,InputIterator>
time_get<wchar_t,InputIterator>
time_get_byname<wchar_t,InputIterator>
time_put<char,OutputIterator>
time_put_byname<char,OutputIterator>
time_put<wchar_t,OutputIterator>
time_put_byname<wchar_t,OutputIterator>

messages messages_byname<char>, messages_byname<wchar_t>

1 Template parameters in this Clause which are required to be facets are those named Facet in declarations. A
program that passes a type that is not a facet, or a type that refers to a volatile-qualified facet, as an (explicit
or deduced) template parameter to a locale function expecting a facet, is ill-formed. A const-qualified facet
is a valid template argument to any locale function that expects a Facet template parameter.

2 The refs argument to the constructor is used for lifetime management.

— For refs == 0, the implementation performs delete static_cast<locale::facet*>(f) (where f is
a pointer to the facet) when the last locale object containing the facet is destroyed; for refs == 1,
the implementation never destroys the facet.

3 Constructors of all facets defined in this Clause take such an argument and pass it along to their facet
base class constructor. All one-argument constructors defined in this Clause are explicit, preventing their
participation in automatic conversions.

4 For some standard facets a standard “. . ._byname” class, derived from it, implements the virtual function
semantics equivalent to that facet of the locale constructed by locale(const char*) with the same name.
Each such facet provides a constructor that takes a const char* argument, which names the locale, and a
refs argument, which is passed to the base class constructor. Each such facet also provides a constructor
that takes a string argument str and a refs argument, which has the same effect as calling the first
constructor with the two arguments str.c_str() and refs. If there is no “. . ._byname” version of a facet,
the base class implements named locale semantics itself by reference to other facets.

22.3.1.1.3 Class locale::id [locale.id]

namespace std {
class locale::id {

§ 22.3.1.1.3 659

c© ISO/IEC N3092

public:
id();
void operator=(const id&) = delete;
id(const id&) = delete;

};
}

1 The class locale::id provides identification of a locale facet interface, used as an index for lookup and to
encapsulate initialization.

2 [Note: Because facets are used by iostreams, potentially while static constructors are running, their ini-
tialization cannot depend on programmed static initialization. One initialization strategy is for locale to
initialize each facet’s id member the first time an instance of the facet is installed into a locale. This depends
only on static storage being zero before constructors run (3.6.2). — end note]

22.3.1.2 locale constructors and destructor [locale.cons]

locale() throw();

1 Default constructor: a snapshot of the current global locale.

2 Effects: Constructs a copy of the argument last passed to locale::global(locale&), if it has been
called; else, the resulting facets have virtual function semantics identical to those of locale::classic().
[Note: This constructor is commonly used as the default value for arguments of functions that take a
const locale& argument. — end note]

locale(const locale& other) throw();

3 Effects: Constructs a locale which is a copy of other.

const locale& operator=(const locale& other) throw();

4 Effects: Creates a copy of other, replacing the current value.

5 Returns: *this

explicit locale(const char* std_name);

6 Effects: Constructs a locale using standard C locale names, e.g., "POSIX". The resulting locale imple-
ments semantics defined to be associated with that name.

7 Throws: runtime_error if the argument is not valid, or is null.

8 Remarks: The set of valid string argument values is "C", "", and any implementation-defined values.

explicit locale(const string& std_name);

9 Effects: The same as locale(std_name.c_str()).

locale(const locale& other, const char* std_name, category);

10 Effects: Constructs a locale as a copy of other except for the facets identified by the category
argument, which instead implement the same semantics as locale(std_name).

11 Throws: runtime_error if the argument is not valid, or is null.

12 Remarks: The locale has a name if and only if other has a name.

locale(const locale& other, const string& std_name, category cat);

13 Effects: The same as locale(other, std_name.c_str(), cat).

§ 22.3.1.2 660

c© ISO/IEC N3092

template <class Facet> locale(const locale& other, Facet* f);

14 Effects: Constructs a locale incorporating all facets from the first argument except that of type Facet,
and installs the second argument as the remaining facet. If f is null, the resulting object is a copy of
other.

15 Remarks: The resulting locale has no name.

locale(const locale& other, const locale& one, category cats);

16 Effects: Constructs a locale incorporating all facets from the first argument except those that imple-
ment cats, which are instead incorporated from the second argument.

17 Remarks: The resulting locale has a name if and only if the first two arguments have names.

~locale() throw();

18 A non-virtual destructor that throws no exceptions.

22.3.1.3 locale members [locale.members]

template <class Facet> locale combine(const locale& other) const;

1 Effects: Constructs a locale incorporating all facets from *this except for that one facet of other that
is identified by Facet.

2 Returns: The newly created locale.

3 Throws: runtime_error if has_facet<Facet>(other) is false.

4 Remarks: The resulting locale has no name.

basic_string<char> name() const;

5 Returns: The name of *this, if it has one; otherwise, the string "*". If *this has a name, then
locale(name().c_str()) is equivalent to *this. Details of the contents of the resulting string are
otherwise implementation-definedreturn value of locale::name.

22.3.1.4 locale operators [locale.operators]

bool operator==(const locale& other) const;

1 Returns: true if both arguments are the same locale, or one is a copy of the other, or each has a name
and the names are identical; false otherwise.

bool operator!=(const locale& other) const;

2 Returns: The result of the expression: !(*this == other).

template <class charT, class Traits, class Allocator>
bool operator()(const basic_string<charT,Traits,Allocator>& s1,

const basic_string<charT,Traits,Allocator>& s2) const;

3 Effects: Compares two strings according to the collate<charT> facet.

4 Remarks: This member operator template (and therefore locale itself) satisfies requirements for a
comparator predicate template argument (Clause 25) applied to strings.

5 Returns: The result of the following expression:

§ 22.3.1.4 661

c© ISO/IEC N3092

use_facet< collate<charT> >(*this).compare
(s1.data(), s1.data()+s1.size(), s2.data(), s2.data()+s2.size()) < 0;

6 [Example: A vector of strings v can be collated according to collation rules in locale loc simply
by (25.4.1, 23.3.6):

std::sort(v.begin(), v.end(), loc);

— end example]

22.3.1.5 locale static members [locale.statics]

static locale global(const locale& loc);

1 Sets the global locale to its argument.

2 Effects: Causes future calls to the constructor locale() to return a copy of the argument. If the
argument has a name, does

std::setlocale(LC_ALL, loc.name().c_str());

otherwise, the effect on the C locale, if any, is implementation-defined. No library function other
than locale::global() shall affect the value returned by locale(). [Note: see 22.6 for data race
considerations when setlocale is invoked. — end note]

3 Returns: The previous value of locale().

static const locale& classic();

4 The "C" locale.

5 Returns: A locale that implements the classic "C" locale semantics, equivalent to the value locale("C").

6 Remarks: This locale, its facets, and their member functions, do not change with time.

22.3.2 locale globals [locale.global.templates]

template <class Facet> const Facet& use_facet(const locale& loc);

1 Requires: Facet is a facet class whose definition contains the public static member id as defined
in 22.3.1.1.2.

2 Returns: a reference to the corresponding facet of loc, if present.

3 Throws: bad_cast if has_facet<Facet>(loc) is false.

4 Remarks: The reference returned remains valid at least as long as any copy of loc exists.

template <class Facet> bool has_facet(const locale& loc) throw();

5 Returns: true if the facet requested is present in loc; otherwise false.

22.3.3 Convenience interfaces [locale.convenience]

22.3.3.1 Character classification [classification]

§ 22.3.3.1 662

c© ISO/IEC N3092

template <class charT> bool isspace (charT c, const locale& loc);
template <class charT> bool isprint (charT c, const locale& loc);
template <class charT> bool iscntrl (charT c, const locale& loc);
template <class charT> bool isupper (charT c, const locale& loc);
template <class charT> bool islower (charT c, const locale& loc);
template <class charT> bool isalpha (charT c, const locale& loc);
template <class charT> bool isdigit (charT c, const locale& loc);
template <class charT> bool ispunct (charT c, const locale& loc);
template <class charT> bool isxdigit(charT c, const locale& loc);
template <class charT> bool isalnum (charT c, const locale& loc);
template <class charT> bool isgraph (charT c, const locale& loc);

1 Each of these functions isF returns the result of the expression:
use_facet< ctype<charT> >(loc).is(ctype_base::F, c)

where F is the ctype_base::mask value corresponding to that function (22.4.1).243

22.3.3.2 Conversions [conversions]

22.3.3.2.1 Character conversions [conversions.character]

template <class charT> charT toupper(charT c, const locale& loc);

1 Returns: use_facet<ctype<charT> >(loc).toupper(c).

template <class charT> charT tolower(charT c, const locale& loc);

2 Returns: use_facet<ctype<charT> >(loc).tolower(c).

22.3.3.2.2 string conversions [conversions.string]

1 Class template wstring_convert performs conversions between a wide string and a byte string. It lets you
specify a code conversion facet (like class template codecvt) to perform the conversions, without affecting
any streams or locales. [Example: Say, for example, you have a code conversion facet called codecvt_utf8
that you want to use to output to cout a UTF-8 multibyte sequence corresponding to a wide string, but
you don’t want to alter the locale for cout. You can write something like:

wstring_convert<codecvt_utf8<wchar_t>> myconv;
std::string mbstring = myconv.to_bytes(L"Hello\n");
std::cout << mbstring;

— end example]

2 Class template wstring_convert synopsis
namespace std {
template<class Codecvt, class Elem = wchar_t,

class Wide_alloc = std::allocator<Elem>,
class Byte_alloc = std::allocator<char> > class wstring_convert {

public:
typedef std::basic_string<char, char_traits<char>, Byte_alloc> byte_string;
typedef std::basic_string<Elem, char_traits<Elem>, Wide_alloc> wide_string;
typedef typename Codecvt::state_type state_type;
typedef typename wide_string::traits_type::int_type int_type;

243) When used in a loop, it is faster to cache the ctype<> facet and use it directly, or use the vector form of ctype<>::is.

§ 22.3.3.2.2 663

c© ISO/IEC N3092

wstring_convert(Codecvt *pcvt = new Codecvt);
wstring_convert(Codecvt *pcvt, state_type state);
wstring_convert(const byte_string& byte_err,

const wide_string& wide_err = wide_string());
~wstring_convert();

wide_string from_bytes(char byte);
wide_string from_bytes(const char *ptr);
wide_string from_bytes(const byte_string& str);
wide_string from_bytes(const char *first, const char *last);

byte_string to_bytes(Elem wchar);
byte_string to_bytes(const Elem *wptr);
byte_string to_bytes(const wide_string& wstr);
byte_string to_bytes(const Elem *first, const Elem *last);

size_t converted() const;
state_type state() const;

private:
byte_string byte_err_string; // exposition only
wide_string wide_err_string; // exposition only
Codecvt *cvtptr; // exposition only
state_type cvtstate; // exposition only
size_t cvtcount; // exposition only

};
}

3 The class template describes an object that controls conversions between wide string objects of class
std::basic_string<Elem, char_traits<Elem>, Wide_alloc> and byte string objects of class std::basic_-
string<char, char_traits<char>, Byte_alloc>. The class template defines the types wide_string and
byte_string as synonyms for these two types. Conversion between a sequence of Elem values (stored
in a wide_string object) and multibyte sequences (stored in a byte_string object) is performed by an
object of class Codecvt<Elem, char, std::mbstate_t>, which meets the requirements of the standard
code-conversion facet std::codecvt<Elem, char, std::mbstate_t>.

4 An object of this class template stores:

— byte_err_string — a byte string to display on errors

— wide_err_string — a wide string to display on errors

— cvtptr — a pointer to the allocated conversion object (which is freed when the wstring_convert
object is destroyed)

— cvtstate — a conversion state object

— cvtcount — a conversion count

typedef std::basic_string<char> byte_string;

5 The type shall be a synonym for std::basic_string<char>

size_t converted() const;

6 Returns: cvtcount.

wide_string from_bytes(char byte);
wide_string from_bytes(const char *ptr);

§ 22.3.3.2.2 664

c© ISO/IEC N3092

wide_string from_bytes(const byte_string& str);
wide_string from_bytes(const char *first, const char *last);

7 Effects: The first member function shall convert the single-element sequence byte to a wide string.
The second member function shall convert the nul-terminated sequence beginning at ptr to a wide
string. The third member function shall convert the sequence stored in str to a wide string. The fourth
member function shall convert the sequence defined by the range [first,last) to a wide string.

8 In all cases:

— If the cvtstate object was not constructed with an explicit value, it shall be set to its default value
(the initial conversion state) before the conversion begins. Otherwise it shall be left unchanged.

— The number of input elements successfully converted shall be stored in cvtcount.

9 Returns: If no conversion error occurs, the member function shall return the converted wide string.
Otherwise, if the object was constructed with a wide-error string, the member function shall return
the wide-error string. Otherwise, the member function throws an object of class std::range_error.

typedef typename wide_string::traits_type::int_type int_type;

The type shall be a synonym for wide_string::traits_type::int_type.

state_type state() const;

10 returns cvtstate.

typedef typename Codecvt::state_type state_type;

11 The type shall be a synonym for Codecvt::state_type.

byte_string to_bytes(Elem wchar);
byte_string to_bytes(const Elem *wptr);
byte_string to_bytes(const wide_string& wstr);
byte_string to_bytes(const Elem *first, const Elem *last);

12 Effects: The first member function shall convert the single-element sequence wchar to a byte string.
The second member function shall convert the nul-terminated sequence beginning at wptr to a byte
string. The third member function shall convert the sequence stored in wstr to a byte string. The
fourth member function shall convert the sequence defined by the range [first,last) to a byte string.

13 In all cases:

— If the cvtstate object was not constructed with an explicit value, it shall be set to its default value
(the initial conversion state) before the conversion begins. Otherwise it shall be left unchanged.

— The number of input elements successfully converted shall be stored in cvtcount.

14 Returns: If no conversion error occurs, the member function shall return the converted byte string.
Otherwise, if the object was constructed with a byte-error string, the member function shall return the
byte-error string. Otherwise, the member function shall throw an object of class std::range_error.

typedef std::basic_string<Elem> wide_string;

15 The type shall be a synonym for std::basic_string<Elem>.

wstring_convert(Codecvt *pcvt = new Codecvt);
wstring_convert(Codecvt *pcvt, state_type state);
wstring_convert(const byte_string& byte_err,

const wide_string& wide_err = wide_string());

§ 22.3.3.2.2 665

c© ISO/IEC N3092

16 Effects: The first constructor shall store pcvt in cvtptr and default values in cvtstate, byte_-
err_string, and wide_err_string. The second constructor shall store pcvt in cvtptr, state in
cvtstate, and default values in byte_err_string and wide_err_string; moreover the stored state
shall be retained between calls to from_bytes and to_bytes. The third constructor shall store new
Codecvt in cvtptr, state_type() in cvtstate, byte_err in byte_err_string, and wide_err in
wide_err_string.

∼wstring_convert();

17 Effects: The destructor shall delete cvtptr.

22.3.3.2.3 Buffer conversions [conversions.buffer]

1 Class template wbuffer_convert looks like a wide stream buffer, but performs all its I/O through an
underlying byte stream buffer that you specify when you construct it. Like class template wstring_convert,
it lets you specify a code conversion facet to perform the conversions, without affecting any streams or locales.

2 Class template wbuffer_convert synopsis
namespace std {
template<class Codecvt,

class Elem = wchar_t,
class Tr = std::char_traits<Elem> >

class wbuffer_convert
: public std::basic_streambuf<Elem, Tr> {

public:
typedef typename Tr::state_type state_type;

wbuffer_convert(std::streambuf *bytebuf = 0,
Codecvt *pcvt = new Codecvt,
state_type state = state_type());

std::streambuf *rdbuf() const;
std::streambuf *rdbuf(std::streambuf *bytebuf);

state_type state() const;

private:
std::streambuf *bufptr; // exposition only
Codecvt *cvtptr; // exposition only
state_type cvtstate; // exposition only
};

}

3 The class template describes a stream buffer that controls the transmission of elements of type Elem, whose
character traits are described by the class Tr, to and from a byte stream buffer of type std::streambuf.
Conversion between a sequence of Elem values and multibyte sequences is performed by an object of
class Codecvt<Elem, char, std::mbstate_t>, which shall meet the requirements of the standard code-
conversion facet std::codecvt<Elem, char, std::mbstate_t>.

4 An object of this class template stores:

— bufptr — a pointer to its underlying byte stream buffer

— cvtptr — a pointer to the allocated conversion object (which is freed when the wbuffer_convert
object is destroyed)

§ 22.3.3.2.3 666

c© ISO/IEC N3092

— cvtstate — a conversion state object

state_type state() const;

5 Returns: cvtstate.

std::streambuf *rdbuf() const;

6 Returns: bufptr.

std::streambuf *rdbuf(std::streambuf *bytebuf);

7 Effects: stores bytebuf in bufptr.

8 Returns: the previous value of bufptr.

typedef typename Codecvt::state_type state_type;

9 The type shall be a synonym for Codecvt::state_type.

wbuffer_convert(std::streambuf *bytebuf = 0,
Codecvt *pcvt = new Codecvt, state_type state = state_type());

10 Effects: The constructor constructs a stream buffer object, initializes bufptr to bytebuf, initializes
cvtptr to pcvt, and initializes cvtstate to state.

∼wbuffer_convert();

11 Effects: The destructor shall delete cvtptr.

22.4 Standard locale categories [locale.categories]

1 Each of the standard categories includes a family of facets. Some of these implement formatting or parsing of
a datum, for use by standard or users’ iostream operators << and >>, as members put() and get(), respec-
tively. Each such member function takes an ios_base& argument whose members flags(), precision(),
and width(), specify the format of the corresponding datum (27.5.2). Those functions which need to use
other facets call its member getloc() to retrieve the locale imbued there. Formatting facets use the character
argument fill to fill out the specified width where necessary.

2 The put() members make no provision for error reporting. (Any failures of the OutputIterator argument
must be extracted from the returned iterator.) The get() members take an ios_base::iostate& argument
whose value they ignore, but set to ios_base::failbit in case of a parse error.

3 Within this clause it is unspecified whether one virtual function calls another virtual function.

22.4.1 The ctype category [category.ctype]

namespace std {
class ctype_base {
public:

typedef T mask;

// numeric values are for exposition only.
static const mask space = 1 << 0;
static const mask print = 1 << 1;
static const mask cntrl = 1 << 2;
static const mask upper = 1 << 3;
static const mask lower = 1 << 4;
static const mask alpha = 1 << 5;

§ 22.4.1 667

c© ISO/IEC N3092

static const mask digit = 1 << 6;
static const mask punct = 1 << 7;
static const mask xdigit = 1 << 8;
static const mask alnum = alpha | digit;
static const mask graph = alnum | punct;

};
}

1 The type mask is a bitmask type (17.5.2.1.3).

22.4.1.1 Class template ctype [locale.ctype]

namespace std {
template <class charT>
class ctype : public locale::facet, public ctype_base {
public:

typedef charT char_type;

explicit ctype(size_t refs = 0);

bool is(mask m, charT c) const;
const charT* is(const charT* low, const charT* high, mask* vec) const;
const charT* scan_is(mask m,

const charT* low, const charT* high) const;
const charT* scan_not(mask m,

const charT* low, const charT* high) const;
charT toupper(charT c) const;
const charT* toupper(charT* low, const charT* high) const;
charT tolower(charT c) const;
const charT* tolower(charT* low, const charT* high) const;

charT widen(char c) const;
const char* widen(const char* low, const char* high, charT* to) const;
char narrow(charT c, char dfault) const;
const charT* narrow(const charT* low, const charT*, char dfault,

char* to) const;

static locale::id id;

protected:
~ctype();
virtual bool do_is(mask m, charT c) const;
virtual const charT* do_is(const charT* low, const charT* high,

mask* vec) const;
virtual const charT* do_scan_is(mask m,

const charT* low, const charT* high) const;
virtual const charT* do_scan_not(mask m,

const charT* low, const charT* high) const;
virtual charT do_toupper(charT) const;
virtual const charT* do_toupper(charT* low, const charT* high) const;
virtual charT do_tolower(charT) const;
virtual const charT* do_tolower(charT* low, const charT* high) const;
virtual charT do_widen(char) const;
virtual const char* do_widen(const char* low, const char* high,

charT* dest) const;
virtual char do_narrow(charT, char dfault) const;

§ 22.4.1.1 668

c© ISO/IEC N3092

virtual const charT* do_narrow(const charT* low, const charT* high,
char dfault, char* dest) const;

};
}

1 Class ctype encapsulates the C library <cctype> features. istream members are required to use ctype<>
for character classing during input parsing.

2 The specializations required in Table 78 (22.3.1.1.1), namely ctype<char> and ctype<wchar_t>, implement
character classing appropriate to the implementation’s native character set.

22.4.1.1.1 ctype members [locale.ctype.members]

bool is(mask m, charT c) const;
const charT* is(const charT* low, const charT* high,

mask* vec) const;

1 Returns: do_is(m,c) or do_is(low,high,vec)

const charT* scan_is(mask m,
const charT* low, const charT* high) const;

2 Returns: do_scan_is(m,low,high)

const charT* scan_not(mask m,
const charT* low, const charT* high) const;

3 Returns: do_scan_not(m,low,high)

charT toupper(charT) const;
const charT* toupper(charT* low, const charT* high) const;

4 Returns: do_toupper(c) or do_toupper(low,high)

charT tolower(charT c) const;
const charT* tolower(charT* low, const charT* high) const;

5 Returns: do_tolower(c) or do_tolower(low,high)

charT widen(char c) const;
const char* widen(const char* low, const char* high, charT* to) const;

6 Returns: do_widen(c) or do_widen(low,high,to)

char narrow(charT c, char dfault) const;
const charT* narrow(const charT* low, const charT*, char dfault,

char* to) const;

7 Returns: do_narrow(c,dfault) or do_narrow(low,high,dfault,to)

22.4.1.1.2 ctype virtual functions [locale.ctype.virtuals]

bool do_is(mask m, charT c) const;
const charT* do_is(const charT* low, const charT* high,

mask* vec) const;

1 Effects: Classifies a character or sequence of characters. For each argument character, identifies a
value M of type ctype_base::mask. The second form identifies a value M of type ctype_base::mask
for each *p where (low<=p && p<high), and places it into vec[p-low].

§ 22.4.1.1.2 669

c© ISO/IEC N3092

2 Returns: The first form returns the result of the expression (M & m) != 0; i.e., true if the character
has the characteristics specified. The second form returns high.

const charT* do_scan_is(mask m,
const charT* low, const charT* high) const;

3 Effects: Locates a character in a buffer that conforms to a classification m.

4 Returns: The smallest pointer p in the range [low, high) such that is(m,*p) would return true;
otherwise, returns high.

const charT* do_scan_not(mask m,
const charT* low, const charT* high) const;

5 Effects: Locates a character in a buffer that fails to conform to a classification m.

6 Returns: The smallest pointer p, if any, in the range [low,high) such that is(m,*p) would return
false; otherwise, returns high.

charT do_toupper(charT c) const;
const charT* do_toupper(charT* low, const charT* high) const;

7 Effects: Converts a character or characters to upper case. The second form replaces each character *p
in the range [low,high) for which a corresponding upper-case character exists, with that character.

8 Returns: The first form returns the corresponding upper-case character if it is known to exist, or its
argument if not. The second form returns high.

charT do_tolower(charT c) const;
const charT* do_tolower(charT* low, const charT* high) const;

9 Effects: Converts a character or characters to lower case. The second form replaces each character *p in
the range [low,high) and for which a corresponding lower-case character exists, with that character.

10 Returns: The first form returns the corresponding lower-case character if it is known to exist, or its
argument if not. The second form returns high.

charT do_widen(char c) const;
const char* do_widen(const char* low, const char* high,

charT* dest) const;

11 Effects: Applies the simplest reasonable transformation from a char value or sequence of char values
to the corresponding charT value or values.244 The only characters for which unique transformations
are required are those in the basic source character set (2.3).

For any named ctype category with a ctype<charT> facet ctc and valid ctype_base::mask value M,
(ctc.is(M, c) || !is(M, do_widen(c))) is true.245

The second form transforms each character *p in the range [low,high), placing the result in dest[p-low].

12 Returns: The first form returns the transformed value. The second form returns high.

char do_narrow(charT c, char dfault) const;
const charT* do_narrow(const charT* low, const charT* high,

char dfault, char* dest) const;

244) The char argument of do_widen is intended to accept values derived from character literals for conversion to the locale’s
encoding.
245) In other words, the transformed character is not a member of any character classification that c is not also a member of.

§ 22.4.1.1.2 670

c© ISO/IEC N3092

13 Effects: Applies the simplest reasonable transformation from a charT value or sequence of charT values
to the corresponding char value or values.

For any character c in the basic source character set (2.3) the transformation is such that
do_widen(do_narrow(c,0)) == c

For any named ctype category with a ctype<char> facet ctc however, and ctype_base::mask value
M,

(is(M,c) || !ctc.is(M, do_narrow(c,dfault)))

is true (unless do_narrow returns dfault). In addition, for any digit character c, the expression (do_-
narrow(c, dfault) - ’0’) evaluates to the digit value of the character. The second form transforms
each character *p in the range [low,high), placing the result (or dfault if no simple transformation
is readily available) in dest[p-low].

14 Returns: The first form returns the transformed value; or dfault if no mapping is readily available.
The second form returns high.

22.4.1.2 Class template ctype_byname [locale.ctype.byname]

namespace std {
template <class charT>
class ctype_byname : public ctype<charT> {
public:

typedef typename ctype<charT>::mask mask;
explicit ctype_byname(const char*, size_t refs = 0);
explicit ctype_byname(const string&, size_t refs = 0);

protected:
~ctype_byname();

};
}

22.4.1.3 ctype specializations [facet.ctype.special]

namespace std {
template <> class ctype<char>

: public locale::facet, public ctype_base {
public:

typedef char char_type;

explicit ctype(const mask* tab = 0, bool del = false,
size_t refs = 0);

bool is(mask m, char c) const;
const char* is(const char* low, const char* high, mask* vec) const;
const char* scan_is (mask m,

const char* low, const char* high) const;
const char* scan_not(mask m,

const char* low, const char* high) const;

char toupper(char c) const;
const char* toupper(char* low, const char* high) const;
char tolower(char c) const;
const char* tolower(char* low, const char* high) const;

§ 22.4.1.3 671

c© ISO/IEC N3092

char widen(char c) const;
const char* widen(const char* low, const char* high, char* to) const;
char narrow(char c, char dfault) const;
const char* narrow(const char* low, const char* high, char dfault,

char* to) const;

static locale::id id;
static const size_t table_size = implementation-defined;

const mask* table() const throw();
static const mask* classic_table() throw();

protected:
~ctype();
virtual char do_toupper(char c) const;
virtual const char* do_toupper(char* low, const char* high) const;
virtual char do_tolower(char c) const;
virtual const char* do_tolower(char* low, const char* high) const;

virtual char do_widen(char c) const;
virtual const char* do_widen(const char* low,

const char* high,
char* to) const;

virtual char do_narrow(char c, char dfault) const;
virtual const char* do_narrow(const char* low,

const char* high,
char dfault, char* to) const;

};
}

1 A specialization ctype<char> is provided so that the member functions on type char can be implemented
inline.246 The implementation-defined value of member table_size is at least 256.

22.4.1.3.1 ctype<char> destructor [facet.ctype.char.dtor]

~ctype();

1 Effects: If the constructor’s first argument was nonzero, and its second argument was true, does delete
[] table().

22.4.1.3.2 ctype<char> members [facet.ctype.char.members]

1 In the following member descriptions, for unsigned char values v where v >= table_size, table()[v]
is assumed to have an implementation-specific value (possibly different for each such value v) without
performing the array lookup.

explicit ctype(const mask* tbl = 0, bool del = false,
size_t refs = 0);

2 Requires: tbl either 0 or an array of at least table_size elements.

3 Effects: Passes its refs argument to its base class constructor.

246) Only the char (not unsigned char and signed char) form is provided. The specialization is specified in the standard,
and not left as an implementation detail, because it affects the derivation interface for ctype<char>.

§ 22.4.1.3.2 672

c© ISO/IEC N3092

bool is(mask m, char c) const;
const char* is(const char* low, const char* high,

mask* vec) const;

4 Effects: The second form, for all *p in the range [low,high), assigns into vec[p-low] the value
table()[(unsigned char)*p].

5 Returns: The first form returns table()[(unsigned char)c] & m; the second form returns high.

const char* scan_is(mask m,
const char* low, const char* high) const;

6 Returns: The smallest p in the range [low,high) such that
table()[(unsigned char) *p] & m

is true.

const char* scan_not(mask m,
const char* low, const char* high) const;

7 Returns: The smallest p in the range [low,high) such that
table()[(unsigned char) *p] & m

is false.

char toupper(char c) const;
const char* toupper(char* low, const char* high) const;

8 Returns: do_toupper(c) or do_toupper(low,high), respectively.

char tolower(char c) const;
const char* tolower(char* low, const char* high) const;

9 Returns: do_tolower(c) or do_tolower(low,high), respectively.

char widen(char c) const;
const char* widen(const char* low, const char* high,

char* to) const;

10 Returns: do_widen(c) or do_widen(low, high, to), respectively.

char narrow(char c, char dfault) const;
const char* narrow(const char* low, const char* high,

char dfault, char* to) const;

11 Returns: do_narrow(c, dfault) or do_narrow(low, high, dfault, to), respectively.

const mask* table() const throw();

12 Returns: The first constructor argument, if it was non-zero, otherwise classic_table().

22.4.1.3.3 ctype<char> static members [facet.ctype.char.statics]

static const mask* classic_table() throw();

1 Returns: A pointer to the initial element of an array of size table_size which represents the classifi-
cations of characters in the "C" locale.

§ 22.4.1.3.3 673

c© ISO/IEC N3092

22.4.1.3.4 ctype<char> virtual functions [facet.ctype.char.virtuals]

char do_toupper(char) const;
const char* do_toupper(char* low, const char* high) const;
char do_tolower(char) const;
const char* do_tolower(char* low, const char* high) const;

virtual char do_widen(char c) const;
virtual const char* do_widen(const char* low,

const char* high,
char* to) const;

virtual char do_narrow(char c, char dfault) const;
virtual const char* do_narrow(const char* low,

const char* high,
char dfault, char* to) const;

These functions are described identically as those members of the same name in the ctype class tem-
plate (22.4.1.1.1).

22.4.1.4 Class template codecvt [locale.codecvt]

namespace std {
class codecvt_base {
public:

enum result { ok, partial, error, noconv };
};

template <class internT, class externT, class stateT>
class codecvt : public locale::facet, public codecvt_base {
public:

typedef internT intern_type;
typedef externT extern_type;
typedef stateT state_type;

explicit codecvt(size_t refs = 0);

result out(stateT& state,
const internT* from, const internT* from_end, const internT*& from_next,
externT* to, externT* to_end, externT*& to_next) const;

result unshift(stateT& state,
externT* to, externT* to_end, externT*& to_next) const;

result in(stateT& state,
const externT* from, const externT* from_end, const externT*& from_next,
internT* to, internT* to_end, internT*& to_next) const;

int encoding() const throw();
bool always_noconv() const throw();
int length(stateT&, const externT* from, const externT* end,

size_t max) const;
int max_length() const throw();

static locale::id id;

protected:
~codecvt();
virtual result do_out(stateT& state,

const internT* from, const internT* from_end, const internT*& from_next,

§ 22.4.1.4 674

c© ISO/IEC N3092

externT* to, externT* to_end, externT*& to_next) const;
virtual result do_in(stateT& state,

const externT* from, const externT* from_end, const externT*& from_next,
internT* to, internT* to_end, internT*& to_next) const;

virtual result do_unshift(stateT& state,
externT* to, externT* to_end, externT*& to_next) const;

virtual int do_encoding() const throw();
virtual bool do_always_noconv() const throw();
virtual int do_length(stateT&, const externT* from,

const externT* end, size_t max) const;
virtual int do_max_length() const throw();

};
}

1 The class codecvt<internT,externT,stateT> is for use when converting from one character encoding to
another, such as from wide characters to multibyte characters or between wide character encodings such as
Unicode and EUC.

2 The stateT argument selects the pair of character encodings being mapped between.

3 The specializations required in Table 78 (22.3.1.1.1) convert the implementation-defined native character
set. codecvt<char, char, mbstate_t> implements a degenerate conversion; it does not convert at all. The
specialization codecvt<char16_t, char, mbstate_t> converts between the UTF-16 and UTF-8 encodings
schemes, and the specialization codecvt <char32_t, char, mbstate_t> converts between the UTF-32 and
UTF-8 encodings schemes. codecvt<wchar_t,char,mbstate_t> converts between the native character sets
for narrow and wide characters. Specializations on mbstate_t perform conversion between encodings known
to the library implementor. Other encodings can be converted by specializing on a user-defined stateT type.
The stateT object can contain any state that is useful to communicate to or from the specialized do_in or
do_out members.

22.4.1.4.1 codecvt members [locale.codecvt.members]

result out(stateT& state,
const internT* from, const internT* from_end, const internT*& from_next,

externT* to, externT* to_end, externT*& to_next) const;

1 Returns: do_out(state, from, from_end, from_next, to,to_end, to_next)

result unshift(stateT& state,
externT* to, externT* to_end, externT*& to_next) const;

2 Returns: do_unshift(state, to, to_end, to_next)

result in(stateT& state,
const externT* from, const externT* from_end, const externT*& from_next,

internT* to, internT* to_end, internT*& to_next) const;

3 Returns: do_in(state, from,from_end,from_next, to,to_end,to_next)

int encoding() const throw();

4 Returns: do_encoding()

bool always_noconv() const throw();

5 Returns: do_always_noconv()

int length(stateT& state, const externT* from, const externT* from_end,

§ 22.4.1.4.1 675

c© ISO/IEC N3092

size_t max) const;

6 Returns: do_length(state, from,from_end,max)

int max_length() const throw();

7 Returns: do_max_length()

22.4.1.4.2 codecvt virtual functions [locale.codecvt.virtuals]

result do_out(stateT& state,
const internT* from, const internT* from_end, const internT*& from_next,
externT* to, externT* to_end, externT*& to_next) const;

result do_in(stateT& state,
const externT* from, const externT* from_end, const externT*& from_next,

internT* to, internT* to_end, internT*& to_next) const;

1 Requires: (from<=from_end && to<=to_end) well-defined and true; state initialized, if at the be-
ginning of a sequence, or else equal to the result of converting the preceding characters in the sequence.

2 Effects: Translates characters in the source range [from,from_end), placing the results in sequential
positions starting at destination to. Converts no more than (from_end-from) source elements, and
stores no more than (to_end-to) destination elements.

Stops if it encounters a character it cannot convert. It always leaves the from_next and to_next
pointers pointing one beyond the last element successfully converted. If returns noconv, internT
and externT are the same type and the converted sequence is identical to the input sequence [from,
from_next). to_next is set equal to to, the value of state is unchanged, and there are no changes
to the values in [to, to_end).

3 A codecvt facet that is used by basic_filebuf (27.9) shall have the property that if
do_out(state, from, from_end, from_next, to, to_end, to_next)

would return ok, where from != from_end, then
do_out(state, from, from + 1, from_next, to, to_end, to_next)

shall also return ok, and that if
do_in(state, from, from_end, from_next, to, to_end, to_next)

would return ok, where to != to_end, then
do_in(state, from, from_end, from_next, to, to + 1, to_next)

shall also return ok.247 [Note: As a result of operations on state, it can return ok or partial and
set from_next == from and to_next != to. — end note]

4 Remarks: Its operations on state are unspecified. [Note: This argument can be used, for example, to
maintain shift state, to specify conversion options (such as count only), or to identify a cache of seek
offsets. — end note]

5 Returns: An enumeration value, as summarized in Table 80.

247) Informally, this means that basic_filebuf assumes that the mappings from internal to external characters is 1 to N: a
codecvt facet that is used by basic_filebuf must be able to translate characters one internal character at a time.

§ 22.4.1.4.2 676

c© ISO/IEC N3092

Table 80 — do_in/do_out result values

Value Meaning
ok completed the conversion
partial not all source characters converted
error encountered a character in [from,from_end) that

it could not convert
noconv internT and externT are the same type, and in-

put sequence is identical to converted sequence

A return value of partial, if (from_next==from_end), indicates that either the destination sequence
has not absorbed all the available destination elements, or that additional source elements are needed
before another destination element can be produced.

result do_unshift(stateT& state,
externT* to, externT* to_end, externT*& to_next) const;

6 Requires: (to <= to_end) well defined and true; state initialized, if at the beginning of a sequence,
or else equal to the result of converting the preceding characters in the sequence.

7 Effects: Places characters starting at to that should be appended to terminate a sequence when the
current stateT is given by state.248 Stores no more than (to_end-to) destination elements, and
leaves the to_next pointer pointing one beyond the last element successfully stored.

8 Returns: An enumeration value, as summarized in Table 81.

Table 81 — do_unshift result values

Value Meaning
ok completed the sequence
partial space for more than to_end-to destination elements

was needed to terminate a sequence given the value of
state

error an unspecified error has occurred
noconv no termination is needed for this state_type

int do_encoding() const throw();

9 Returns:-1 if the encoding of the externT sequence is state-dependent; else the constant number of
externT characters needed to produce an internal character; or 0 if this number is not a constant249.

bool do_always_noconv() const throw();

10 Returns: true if do_in() and do_out() return noconv for all valid argument values. codecvt<char,
char, mbstate_t> returns true.

int do_length(stateT& state, const externT* from, const externT* from_end,
size_t max) const;

11 Requires: (from<=from_end) well-defined and true; state initialized, if at the beginning of a sequence,
or else equal to the result of converting the preceding characters in the sequence.

248) Typically these will be characters to return the state to stateT()
249) If encoding() yields -1, then more than max_length() externT elements may be consumed when producing a single
internT character, and additional externT elements may appear at the end of a sequence after those that yield the final internT
character.

§ 22.4.1.4.2 677

c© ISO/IEC N3092

12 Effects: The effect on the state argument is “as if” it called do_in(state, from, from_end, from,
to, to+max, to) for to pointing to a buffer of at least max elements.

13 Returns: (from_next-from) where from_next is the largest value in the range [from,from_end] such
that the sequence of values in the range [from,from_next) represents max or fewer valid complete
characters of type internT. The specialization codecvt<char, char, mbstate_t>, returns the lesser
of max and (from_end-from).

int do_max_length() const throw();

14 Returns: The maximum value that do_length(state, from, from_end, 1) can return for any
valid range [from, from_end) and stateT value state. The specialization codecvt<char, char,
mbstate_t>::do_max_length() returns 1.

22.4.1.5 Class template codecvt_byname [locale.codecvt.byname]

namespace std {
template <class internT, class externT, class stateT>
class codecvt_byname : public codecvt<internT, externT, stateT> {
public:

explicit codecvt_byname(const char*, size_t refs = 0);
explicit codecvt_byname(const string&, size_t refs = 0);

protected:
~codecvt_byname();

};
}

22.4.2 The numeric category [category.numeric]

1 The classes num_get<> and num_put<> handle numeric formatting and parsing. Virtual functions are pro-
vided for several numeric types. Implementations may (but are not required to) delegate extraction of
smaller types to extractors for larger types.250

2 All specifications of member functions for num_put and num_get in the subclauses of 22.4.2 only apply to the
specializations required in Tables 78 and 79 (22.3.1.1.1), namely num_get<char>, num_get<wchar_t>, num_-
get<C, InputIterator>, num_put<char>, num_put<wchar_t>, and num_put<C,OutputIterator>. These
specializations refer to the ios_base& argument for formatting specifications (22.4), and to its imbued locale
for the numpunct<> facet to identify all numeric punctuation preferences, and also for the ctype<> facet to
perform character classification.

3 Extractor and inserter members of the standard iostreams use num_get<> and num_put<> member functions
for formatting and parsing numeric values (27.7.1.2.1, 27.7.2.6.1).

22.4.2.1 Class template num_get [locale.num.get]

namespace std {
template <class charT, class InputIterator = istreambuf_iterator<charT> >
class num_get : public locale::facet {
public:

typedef charT char_type;
typedef InputIterator iter_type;

explicit num_get(size_t refs = 0);

250) Parsing "-1" correctly into, e.g., an unsigned short requires that the corresponding member get() at least extract the
sign before delegating.

§ 22.4.2.1 678

c© ISO/IEC N3092

iter_type get(iter_type in, iter_type end, ios_base&,
ios_base::iostate& err, bool& v) const;

iter_type get(iter_type in, iter_type end, ios_base& ,
ios_base::iostate& err, long& v) const;

iter_type get(iter_type in, iter_type end, ios_base& ,
ios_base::iostate& err, long long& v) const;}

iter_type get(iter_type in, iter_type end, ios_base&,
ios_base::iostate& err, unsigned short& v) const;

iter_type get(iter_type in, iter_type end, ios_base&,
ios_base::iostate& err, unsigned int& v) const;

iter_type get(iter_type in, iter_type end, ios_base&,
ios_base::iostate& err, unsigned long& v) const;

iter_type get(iter_type in, iter_type end, ios_base& ,
ios_base::iostate& err, unsigned long long& v) const;

iter_type get(iter_type in, iter_type end, ios_base&,
ios_base::iostate& err, float& v) const;

iter_type get(iter_type in, iter_type end, ios_base&,
ios_base::iostate& err, double& v) const;

iter_type get(iter_type in, iter_type end, ios_base&,
ios_base::iostate& err, long double& v) const;

iter_type get(iter_type in, iter_type end, ios_base&,
ios_base::iostate& err, void*& v) const;

static locale::id id;

protected:
~num_get();
virtual iter_type do_get(iter_type, iter_type, ios_base&,

ios_base::iostate& err, bool& v) const;
virtual iter_type do_get(iter_type, iter_type, ios_base&,

ios_base::iostate& err, long& v) const;
virtual iter_type do_get(iter_type, iter_type, ios_base&,

ios_base::iostate& err, long long& v) const;
virtual iter_type do_get(iter_type, iter_type, ios_base&,

ios_base::iostate& err, unsigned short& v) const;
virtual iter_type do_get(iter_type, iter_type, ios_base&,

ios_base::iostate& err, unsigned int& v) const;
virtual iter_type do_get(iter_type, iter_type, ios_base&,

ios_base::iostate& err, unsigned long& v) const;
virtual iter_type do_get(iter_type, iter_type, ios_base&,

ios_base::iostate& err, unsigned long long& v) const;
virtual iter_type do_get(iter_type, iter_type, ios_base&,

ios_base::iostate& err, float& v) const;
virtual iter_type do_get(iter_type, iter_type, ios_base&,

ios_base::iostate& err, double& v) const;
virtual iter_type do_get(iter_type, iter_type, ios_base&,

ios_base::iostate& err, long double& v) const;
virtual iter_type do_get(iter_type, iter_type, ios_base&,

ios_base::iostate& err, void*& v) const;
};

}

§ 22.4.2.1 679

c© ISO/IEC N3092

1 The facet num_get is used to parse numeric values from an input sequence such as an istream.

22.4.2.1.1 num_get members [facet.num.get.members]

iter_type get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, bool& val) const;

iter_type get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, long& val) const;

iter_type get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, long long& val) const;

iter_type get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, unsigned short& val) const;

iter_type get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, unsigned int& val) const;

iter_type get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, unsigned long& val) const;

iter_type get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, unsigned long long& val) const;

iter_type get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, float& val) const;

iter_type get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, double& val) const;

iter_type get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, long double& val) const;

iter_type get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, void*& val) const;

1 Returns: do_get(in, end, str, err, val).

22.4.2.1.2 num_get virtual functions [facet.num.get.virtuals]

iter_type do_get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, long& val) const;

iter_type do_get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, long long& val) const;

iter_type do_get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, unsigned short& val) const;

iter_type do_get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, unsigned int& val) const;

iter_type do_get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, unsigned long& val) const;

iter_type do_get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, unsigned long long& val) const;

iter_type do_get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, float& val) const;

iter_type do_get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, double& val) const;

iter_type do_get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, long double& val) const;

iter_type do_get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, void*& val) const;

1 Effects: Reads characters from in, interpreting them according to str.flags(), use_facet<ctype<charT>
>(loc), and use_facet< numpunct<charT> >(loc), where loc is str.getloc().

2 The details of this operation occur in three stages

§ 22.4.2.1.2 680

c© ISO/IEC N3092

— Stage 1: Determine a conversion specifier

— Stage 2: Extract characters from in and determine a corresponding char value for the format
expected by the conversion specification determined in stage 1.

— Stage 3: Store results

3 The details of the stages are presented below.

Stage 1: The function initializes local variables via
fmtflags flags = str .flags();
fmtflags basefield = (flags & ios_base::basefield);
fmtflags uppercase = (flags & ios_base::uppercase);
fmtflags boolalpha = (flags & ios_base::boolalpha);

For conversion to an integral type, the function determines the integral conversion specifier as
indicated in Table 82. The table is ordered. That is, the first line whose condition is true applies.

Table 82 — Integer conversions

State stdio equivalent
basefield == oct %o
basefield == hex %X
basefield == 0 %i
signed integral type %d
unsigned integral type %u

For conversions to a floating type the specifier is %g.

For conversions to void* the specifier is %p.

A length modifier is added to the conversion specification, if needed, as indicated in Table 83.

Table 83 — Length modifier

Type Length modifier
short h
unsigned short h
long l
unsigned long l
long long ll
unsigned long long ll
double l
long double L

Stage 2: If in==end then stage 2 terminates. Otherwise a charT is taken from in and local variables
are initialized as if by

char_type ct = *in ;
char c = src[find(atoms, atoms + sizeof(src) - 1, ct) - atoms];
if (ct == use_facet<numpunct<charT> >(loc).decimal_point())
c = ’.’;
bool discard =

ct == use_facet<numpunct<charT> >(loc).thousands_sep()
&& use_facet<numpunct<charT> >(loc).grouping().length() != 0;

§ 22.4.2.1.2 681

c© ISO/IEC N3092

where the values src and atoms are defined as if by:
static const char src[] = "0123456789abcdefxABCDEFX+-";
char_type atoms[sizeof(src)];
use_facet<ctype<charT> >(loc).widen(src, src + sizeof(src), atoms);

for this value of loc.

If discard is true, then if ’.’ has not yet been accumulated, then the position of the character
is remembered, but the character is otherwise ignored. Otherwise, if ’.’ has already been
accumulated, the character is discarded and Stage 2 terminates.

If the character is either discarded or accumulated then in is advanced by ++in and processing
returns to the beginning of stage 2.

Stage 3: The sequence of chars accumulated in stage 2 (the field) is converted to a numeric value
by the rules of one of the functions declared in the header <cstdlib>:

— For a signed integer value, the function strtoll.

— For an unsigned integer value, the function strtoull.

— For a floating-point value, the function strtold.

The numeric value to be stored can be one of:

— zero, if the conversion function fails to convert the entire field. ios_base::failbit is assigned
to err.

— the most positive representable value, if the field represents a value too large positive to be
represented in val. ios_base::failbit is assigned to err.

— the most negative representable value or zero for an unsigned integer type, if the field repre-
sents a value too large negative to be represented in val. ios_base::failbit is assigned to
err.

— the converted value, otherwise.

The resultant numeric value is stored in val.

4 Digit grouping is checked. That is, the positions of discarded separators is examined for consis-
tency with use_facet<numpunct<charT> >(loc).grouping(). If they are not consistent then ios_-
base::failbit is assigned to err.

5 In any case, if stage 2 processing was terminated by the test for in==end then err |=ios_base::eofbit
is performed.

iter_type do_get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, bool& val) const;

6 Effects: If (str.flags()&ios_base::boolalpha)==0 then input proceeds as it would for a long
except that if a value is being stored into val, the value is determined according to the following: If
the value to be stored is 0 then false is stored. If the value is 1 then true is stored. Otherwise true
is stored and ios_base::failbit is assigned to err.

7 Otherwise target sequences are determined “as if” by calling the members falsename() and truename()
of the facet obtained by use_facet<numpunct<charT> >(str.getloc()). Successive characters in the
range [in,end) (see 23.2.3) are obtained and matched against corresponding positions in the target
sequences only as necessary to identify a unique match. The input iterator in is compared to end

§ 22.4.2.1.2 682

c© ISO/IEC N3092

only when necessary to obtain a character. If a target sequence is uniquely matched, val is set to the
corresponding value. Otherwise false is stored and ios_base::failbit is assigned to err.

8 The in iterator is always left pointing one position beyond the last character successfully matched.
If val is set, then err is set to str.goodbit; or to str.eofbit if, when seeking another character
to match, it is found that (in == end). If val is not set, then err is set to str.failbit; or to
(str.failbit|str.eofbit) if the reason for the failure was that (in == end). [Example: For targets
true: "a" and false: "abb", the input sequence "a" yields val == true and err == str.eofbit;
the input sequence "abc" yields err = str.failbit, with in ending at the ’c’ element. For targets
true: "1" and false: "0", the input sequence "1" yields val == true and err == str.goodbit.
For empty targets (""), any input sequence yields err == str.failbit. — end example]

9 Returns: in.

22.4.2.2 Class template num_put [locale.nm.put]

namespace std {
template <class charT, class OutputIterator = ostreambuf_iterator<charT> >
class num_put : public locale::facet {
public:

typedef charT char_type;
typedef OutputIterator iter_type;

explicit num_put(size_t refs = 0);

iter_type put(iter_type s, ios_base& f, char_type fill, bool v) const;
iter_type put(iter_type s, ios_base& f, char_type fill, long v) const;
iter_type put(iter_type s, ios_base& f, char_type fill, long long v) const;
iter_type put(iter_type s, ios_base& f, char_type fill,

unsigned long v) const;
iter_type put(iter_type s, ios_base& f, char_type fill,

unsigned long long v) const;
iter_type put(iter_type s, ios_base& f, char_type fill,

double v) const;
iter_type put(iter_type s, ios_base& f, char_type fill,

long double v) const;
iter_type put(iter_type s, ios_base& f, char_type fill,

const void* v) const;

static locale::id id;

protected:
~num_put();
virtual iter_type do_put(iter_type, ios_base&, char_type fill,

bool v) const;
virtual iter_type do_put(iter_type, ios_base&, char_type fill,

long v) const;
virtual iter_type do_put(iter_type, ios_base&, char_type fill,

long long v) const;
virtual iter_type do_put(iter_type, ios_base&, char_type fill,

unsigned long) const;
virtual iter_type do_put(iter_type, ios_base&, char_type fill,

unsigned long long) const;
virtual iter_type do_put(iter_type, ios_base&, char_type fill,

double v) const;

§ 22.4.2.2 683

c© ISO/IEC N3092

virtual iter_type do_put(iter_type, ios_base&, char_type fill,
long double v) const;

virtual iter_type do_put(iter_type, ios_base&, char_type fill,
const void* v) const;

};
}

1 The facet num_put is used to format numeric values to a character sequence such as an ostream.

22.4.2.2.1 num_put members [facet.num.put.members]

iter_type put(iter_type out, ios_base& str, char_type fill,
bool val) const;

iter_type put(iter_type out, ios_base& str, char_type fill,
long val) const;

iter_type put(iter_type out, ios_base& str, char_type fill,
long long val) const;

iter_type put(iter_type out, ios_base& str, char_type fill,
unsigned long val) const;

iter_type put(iter_type out, ios_base& str, char_type fill,
unsigned long long val) const;

iter_type put(iter_type out, ios_base& str, char_type fill,
double val) const;

iter_type put(iter_type out, ios_base& str, char_type fill,
long double val) const;

iter_type put(iter_type out, ios_base& str, char_type fill,
const void* val) const;

1 Returns: do_put(out, str, fill, val).

22.4.2.2.2 num_put virtual functions [facet.num.put.virtuals]

iter_type do_put(iter_type out, ios_base& str, char_type fill,
long val) const;

iter_type do_put(iter_type out, ios_base& str, char_type fill,
long long val) const;

iter_type do_put(iter_type out, ios_base& str, char_type fill,
unsigned long val) const;

iter_type do_put(iter_type out, ios_base& str, char_type fill,
unsigned long long val) const;

iter_type do_put(iter_type out, ios_base& str, char_type fill,
double val) const;

iter_type do_put(iter_type out, ios_base& str, char_type fill,
long double val) const;

iter_type do_put(iter_type out, ios_base& str, char_type fill,
const void* val) const;

1 Effects: Writes characters to the sequence out, formatting val as desired. In the following description,
a local variable initialized with

locale loc = str.getloc();

2 The details of this operation occur in several stages:

— Stage 1: Determine a printf conversion specifier spec and determining the characters that would
be printed by printf (27.9.2) given this conversion specifier for

§ 22.4.2.2.2 684

c© ISO/IEC N3092

printf(spec, val)

assuming that the current locale is the "C" locale.

— Stage 2: Adjust the representation by converting each char determined by stage 1 to a charT using
a conversion and values returned by members of use_facet< numpunct<charT> >(str.getloc())

— Stage 3: Determine where padding is required.

— Stage 4: Insert the sequence into the out.

3 Detailed descriptions of each stage follow.

4 Returns: out.

5

Stage 1: The first action of stage 1 is to determine a conversion specifier. The tables that describe
this determination use the following local variables

fmtflags flags = str.flags() ;
fmtflags basefield = (flags & (ios_base::basefield));
fmtflags uppercase = (flags & (ios_base::uppercase));
fmtflags floatfield = (flags & (ios_base::floatfield));
fmtflags showpos = (flags & (ios_base::showpos));
fmtflags showbase = (flags & (ios_base::showbase));

All tables used in describing stage 1 are ordered. That is, the first line whose condition is true
applies. A line without a condition is the default behavior when none of the earlier lines apply.

For conversion from an integral type other than a character type, the function determines the
integral conversion specifier as indicated in Table 84.

Table 84 — Integer conversions

State stdio equivalent
basefield == ios_base::oct %o
(basefield == ios_base::hex) && !uppercase %x
(basefield == ios_base::hex) %X
for a signed integral type %d
for an unsigned integral type %u

For conversion from a floating-point type, the function determines the floating-point conversion
specifier as indicated in Table 85.

Table 85 — Floating-point conversions

State stdio equivalent
floatfield == ios_base::fixed %f
floatfield == ios_base::scientific && !uppercase %e
floatfield == ios_base::scientific %E
floatfield == (ios_base::fixed | ios_base::scientific) && !uppercase %a
floatfield == (ios_base::fixed | ios_base::scientific) %A
!uppercase %g
otherwise %G

§ 22.4.2.2.2 685

c© ISO/IEC N3092

For conversions from an integral or floating-point type a length modifier is added to the conversion
specifier as indicated in Table 86.

Table 86 — Length modifier

Type Length modifier
long l
long long ll
unsigned long l
unsigned long long ll
long double L
otherwise none

The conversion specifier has the following optional additional qualifiers prepended as indicated in
Table 87.

Table 87 — Numeric conversions
Type(s) State stdio equivalent

an integral type flags & showpos +
flags & showbase #

a floating-point type flags & showpos +
flags & showpoint #

For conversion from a floating-point type, if floatfield != (ios_base::fixed | ios_base::scientific),
str.precision() is specified as precision in the conversion specification. Otherwise, no precision
is specified.

For conversion from void* the specifier is %p.

The representations at the end of stage 1 consists of the char’s that would be printed by a call
of printf(s, val) where s is the conversion specifier determined above.

Stage 2: Any character c other than a decimal point(.) is converted to a charT via use_-
facet<ctype<charT> >(loc).widen(c)

A local variable punct is initialized via
const numpunct<charT>& punct = use_facet< numpunct<charT> >(str.getloc());

For arithmetic types, punct.thousands_sep() characters are inserted into the sequence as deter-
mined by the value returned by punct.do_grouping() using the method described in 22.4.3.1.2

Decimal point characters(.) are replaced by punct.decimal_point()

Stage 3: A local variable is initialized as
fmtflags adjustfield= (flags & (ios_base::adjustfield));

The location of any padding251 is determined according to Table 88.

If str.width() is nonzero and the number of charT’s in the sequence after stage 2 is less than
str.width(), then enough fill characters are added to the sequence at the position indicated
for padding to bring the length of the sequence to str.width().

251) The conversion specification #o generates a leading 0 which is not a padding character.

§ 22.4.2.2.2 686

c© ISO/IEC N3092

Table 88 — Fill padding

State Location
adjustfield == ios_base::left pad after
adjustfield == ios_base::right pad before
adjustfield == internal and a sign occurs in
the representation

pad after the sign

adjustfield == internal and representation
after stage 1 began with 0x or 0X

pad after x or X

otherwise pad before

str.width(0) is called.

Stage 4: The sequence of charT’s at the end of stage 3 are output via
*out++ = c

iter_type do_put(iter_type out, ios_base& str, char_type fill,
bool val) const;

6 Returns: If (str.flags() & ios_base::boolalpha) == 0 returns do_put(out, str, fill, (int)val),
otherwise obtains a string s as if by

string_type s =
val ? use_facet<ctype<charT> >(loc).truename()

: use_facet<ctype<charT> >(loc).falsename();

and then inserts each character c of s into out via *out++ = c and returns out.

22.4.3 The numeric punctuation facet [facet.numpunct]

22.4.3.1 Class template numpunct [locale.numpunct]

namespace std {
template <class charT>
class numpunct : public locale::facet {
public:

typedef charT char_type;
typedef basic_string<charT> string_type;

explicit numpunct(size_t refs = 0);

char_type decimal_point() const;
char_type thousands_sep() const;
string grouping() const;
string_type truename() const;
string_type falsename() const;

static locale::id id;

protected:
~numpunct(); // virtual
virtual char_type do_decimal_point() const;
virtual char_type do_thousands_sep() const;

§ 22.4.3.1 687

c© ISO/IEC N3092

virtual string do_grouping() const;
virtual string_type do_truename() const; // for bool
virtual string_type do_falsename() const; // for bool

};
}

1 numpunct<> specifies numeric punctuation. The specializations required in Table 78 (22.3.1.1.1), namely
numpunct<wchar_t> and numpunct<char>, provide classic "C" numeric formats, i.e., they contain informa-
tion equivalent to that contained in the "C" locale or their wide character counterparts as if obtained by a
call to widen.

2 The syntax for number formats is as follows, where digit represents the radix set specified by the fmtflags
argument value, and thousands-sep and decimal-point are the results of corresponding numpunct<charT>
members. Integer values have the format:

integer ::= [sign] units
sign ::= plusminus
plusminus ::= ’+’ | ’-’
units ::= digits [thousands-sep units]
digits ::= digit [digits]

and floating-point values have:
floatval ::= [sign] units [decimal-point [digits]] [e [sign] digits] |

[sign] decimal-point digits [e [sign] digits]
e ::= ’e’ | ’E’

where the number of digits between thousands-seps is as specified by do_grouping(). For parsing, if the
digits portion contains no thousands-separators, no grouping constraint is applied.

22.4.3.1.1 numpunct members [facet.numpunct.members]

char_type decimal_point() const;

1 Returns: do_decimal_point()

char_type thousands_sep() const;

2 Returns: do_thousands_sep()

string grouping() const;

3 Returns: do_grouping()

string_type truename() const;
string_type falsename() const;

4 Returns: do_truename() or do_falsename(), respectively.

22.4.3.1.2 numpunct virtual functions [facet.numpunct.virtuals]

char_type do_decimal_point() const;

1 Returns: A character for use as the decimal radix separator. The required specializations return ’.’
or L’.’.

char_type do_thousands_sep() const;

§ 22.4.3.1.2 688

c© ISO/IEC N3092

2 Returns: A character for use as the digit group separator. The required specializations return ’,’ or
L’,’.

string do_grouping() const;

3 Returns: A basic_string<char> vec used as a vector of integer values, in which each element vec[i]
represents the number of digits252 in the group at position i, starting with position 0 as the rightmost
group. If vec.size() <= i, the number is the same as group (i-1); if (i<0 || vec[i]<=0 ||
vec[i]==CHAR_MAX), the size of the digit group is unlimited.

4 The required specializations return the empty string, indicating no grouping.

string_type do_truename() const;
string_type do_falsename() const;

5 Returns: A string representing the name of the boolean value true or false, respectively.

6 In the base class implementation these names are "true" and "false", or L"true" and L"false".

22.4.3.2 Class template numpunct_byname [locale.numpunct.byname]

namespace std {
template <class charT>
class numpunct_byname : public numpunct<charT> {
// this class is specialized for char and wchar_t.
public:

typedef charT char_type;
typedef basic_string<charT> string_type;
explicit numpunct_byname(const char*, size_t refs = 0);
explicit numpunct_byname(const string&, size_t refs = 0);

protected:
~numpunct_byname();

};
}

22.4.4 The collate category [category.collate]

22.4.4.1 Class template collate [locale.collate]

namespace std {
template <class charT>
class collate : public locale::facet {
public:

typedef charT char_type;
typedef basic_string<charT> string_type;

explicit collate(size_t refs = 0);

int compare(const charT* low1, const charT* high1,
const charT* low2, const charT* high2) const;

string_type transform(const charT* low, const charT* high) const;
long hash(const charT* low, const charT* high) const;

static locale::id id;

252) Thus, the string "\003" specifies groups of 3 digits each, and "3" probably indicates groups of 51 (!) digits each, because
51 is the ASCII value of "3".

§ 22.4.4.1 689

c© ISO/IEC N3092

protected:
~collate();
virtual int do_compare(const charT* low1, const charT* high1,

const charT* low2, const charT* high2) const;
virtual string_type do_transform(const charT* low, const charT* high) const;
virtual long do_hash (const charT* low, const charT* high) const;

};
}

1 The class collate<charT> provides features for use in the collation (comparison) and hashing of strings.
A locale member function template, operator(), uses the collate facet to allow a locale to act directly
as the predicate argument for standard algorithms (Clause 25) and containers operating on strings. The
specializations required in Table 78 (22.3.1.1.1), namely collate<char> and collate<wchar_t>, apply
lexicographic ordering (25.4.8).

2 Each function compares a string of characters *p in the range [low,high).

22.4.4.1.1 collate members [locale.collate.members]

int compare(const charT* low1, const charT* high1,
const charT* low2, const charT* high2) const;

1 Returns: do_compare(low1, high1, low2, high2)

string_type transform(const charT* low, const charT* high) const;

2 Returns: do_transform(low, high)

long hash(const charT* low, const charT* high) const;

3 Returns: do_hash(low, high)

22.4.4.1.2 collate virtual functions [locale.collate.virtuals]

int do_compare(const charT* low1, const charT* high1,
const charT* low2, const charT* high2) const;

1 Returns: 1 if the first string is greater than the second, -1 if less, zero otherwise. The specializa-
tions required in Table 78 (22.3.1.1.1), namely collate<char> and collate<wchar_t>, implement a
lexicographical comparison (25.4.8).

string_type do_transform(const charT* low, const charT* high) const;

2 Returns: A basic_string<charT> value that, compared lexicographically with the result of calling
transform() on another string, yields the same result as calling do_compare() on the same two
strings.253

long do_hash(const charT* low, const charT* high) const;

3 Returns: An integer value equal to the result of calling hash() on any other string for which do_-
compare() returns 0 (equal) when passed the two strings. [Note: The probability that the result
equals that for another string which does not compare equal should be very small, approaching
(1.0/numeric_limits<unsigned long>::max()). — end note]

253) This function is useful when one string is being compared to many other strings.

§ 22.4.4.1.2 690

c© ISO/IEC N3092

22.4.4.2 Class template collate_byname [locale.collate.byname]

namespace std {
template <class charT>
class collate_byname : public collate<charT> {
public:

typedef basic_string<charT> string_type;
explicit collate_byname(const char*, size_t refs = 0);
explicit collate_byname(const string&, size_t refs = 0);

protected:
~collate_byname();

};
}

22.4.5 The time category [category.time]

1 Templates time_get<charT,InputIterator> and time_put<charT,OutputIterator> provide date and
time formatting and parsing. All specifications of member functions for time_put and time_get in the
subclauses of 22.4.5 only apply to the specializations required in Tables 78 and 79 (22.3.1.1.1). Their
members use their ios_base&, ios_base::iostate&, and fill arguments as described in (22.4), and the
ctype<> facet, to determine formatting details.

22.4.5.1 Class template time_get [locale.time.get]

namespace std {
class time_base {
public:

enum dateorder { no_order, dmy, mdy, ymd, ydm };
};

template <class charT, class InputIterator = istreambuf_iterator<charT> >
class time_get : public locale::facet, public time_base {
public:

typedef charT char_type;
typedef InputIterator iter_type;

explicit time_get(size_t refs = 0);

dateorder date_order() const { return do_date_order(); }
iter_type get_time(iter_type s, iter_type end, ios_base& f,

ios_base::iostate& err, tm* t) const;
iter_type get_date(iter_type s, iter_type end, ios_base& f,

ios_base::iostate& err, tm* t) const;
iter_type get_weekday(iter_type s, iter_type end, ios_base& f,

ios_base::iostate& err, tm* t) const;
iter_type get_monthname(iter_type s, iter_type end, ios_base& f,

ios_base::iostate& err, tm* t) const;
iter_type get_year(iter_type s, iter_type end, ios_base& f,

ios_base::iostate& err, tm* t) const;
iter_type get(iter_type s, iter_type end, ios_base& f,

ios_base::iostate& err, tm *t, char format, char modifier = 0) const;
iter_type get(iter_type s, iter_type end, ios_base& f,

ios_base::iostate& err, tm *t, const char_type *fmt, const char_type *fmtend) const;

static locale::id id;

§ 22.4.5.1 691

c© ISO/IEC N3092

protected:
~time_get();
virtual dateorder do_date_order() const;
virtual iter_type do_get_time(iter_type s, iter_type end, ios_base&,

ios_base::iostate& err, tm* t) const;
virtual iter_type do_get_date(iter_type s, iter_type end, ios_base&,

ios_base::iostate& err, tm* t) const;
virtual iter_type do_get_weekday(iter_type s, iter_type end, ios_base&,

ios_base::iostate& err, tm* t) const;
virtual iter_type do_get_monthname(iter_type s, iter_type end, ios_base&,

ios_base::iostate& err, tm* t) const;
virtual iter_type do_get_year(iter_type s, iter_type end, ios_base&,

ios_base::iostate& err, tm* t) const;
virtual iter_type do_get(iter_type s, iter_type end, ios_base& f,

ios_base::iostate& err, tm *t, char format, char modifier) const;
};

}

1 time_get is used to parse a character sequence, extracting components of a time or date into a struct
tm record. Each get member parses a format as produced by a corresponding format specifier to time_-
put<>::put. If the sequence being parsed matches the correct format, the corresponding members of the
struct tm argument are set to the values used to produce the sequence; otherwise either an error is reported
or unspecified values are assigned.254

2 If the end iterator is reached during parsing by any of the get() member functions, the member sets ios_-
base::eofbit in err.

22.4.5.1.1 time_get members [locale.time.get.members]

dateorder date_order() const;

1 Returns: do_date_order()

iter_type get_time(iter_type s, iter_type end, ios_base& str,
ios_base::iostate& err, tm* t) const;

2 Returns: do_get_time(s, end, str, err, t)

iter_type get_date(iter_type s, iter_type end, ios_base& str,
ios_base::iostate& err, tm* t) const;

3 Returns: do_get_date(s, end, str, err, t)

iter_type get_weekday(iter_type s, iter_type end, ios_base& str,
ios_base::iostate& err, tm* t) const;

iter_type get_monthname(iter_type s, iter_type end, ios_base& str,
ios_base::iostate& err, tm* t) const;

4 Returns: do_get_weekday(s, end, str, err, t) or do_get_monthname(s, end, str, err, t)

iter_type get_year(iter_type s, iter_type end, ios_base& str,
ios_base::iostate& err, tm* t) const;

5 Returns: do_get_year(s, end, str, err, t)

254) In other words, user confirmation is required for reliable parsing of user-entered dates and times, but machine-generated
formats can be parsed reliably. This allows parsers to be aggressive about interpreting user variations on standard formats.

§ 22.4.5.1.1 692

c© ISO/IEC N3092

iter_type get(iter_type s, iter_type end, ios_base& f,
ios_base::iostate& err, tm *t, char format, char modifier = 0) const;

6 Returns: do_get(s, end, f, err, t, format, modifier)

iter_type get(iter_type s, iter_type end, ios_base& f,
ios_base::iostate& err, tm *t, const char_type *fmt, const char_type *fmtend) const;

7 Requires: [fmt,fmtend) shall be a valid range.

8 Effects: The function starts by evaluating err = ios_base::goodbit. It then enters a loop, reading
zero or more characters from s at each iteration. Unless otherwise specified below, the loop terminates
when the first of the following conditions holds:

— The expression fmt == fmtend evaluates to true.

— The expression err == ios_base::goodbit evaluates to false.

— The expression s == end evaluates to true, in which case the function evaluates err = ios_-
base::eofbit | ios_base::failbit.

— The next element of fmt is equal to ’%’, optionally followed by a modifier character, followed
by a conversion specifier character, format, together forming a conversion specification valid for
the ISO/IEC 9945 function strptime. If the number of elements in the range [fmt,fmtend) is
not sufficient to unambiguously determine whether the conversion specification is complete and
valid, the function evaluates err = ios_base::failbit. Otherwise, the function evaluates s =
do_get(s, end, f, err, t, format, modifier), where the value of modifier is ’\0’ when
the optional modifier is absent from the conversion specification. If err == ios_base::goodbit
holds after the evaluation of the expression, the function increments fmt to point just past the
end of the conversion specification and continues looping.

— The expression isspace(*fmt, f.getloc()) evaluates to true, in which case the function first
increments fmt until fmt == fmtend || !isspace(*fmt, f.getloc()) evaluates to true, then
advances s until s == end || !isspace(*s, f.getloc()) is true, and finally resumes looping.

— The next character read from s matches the element pointed to by fmt in a case-insensitive
comparison, in which case the function evaluates ++fmt, ++s and continues looping. Otherwise,
the function evaluates err = ios_base::failbit.

9 [Note: The function uses the ctype<charT> facet installed in f’s locale to determine valid whitespace
characters. It is unspecified by what means the function performs case-insensitive comparison or
whether multi-character sequences are considered while doing so.

10 Returns: s

22.4.5.1.2 time_get virtual functions [locale.time.get.virtuals]

dateorder do_date_order() const;

1 Returns: An enumeration value indicating the preferred order of components for those date formats
that are composed of day, month, and year.255 Returns no_order if the date format specified by ’x’
contains other variable components (e.g., Julian day, week number, week day).

iter_type do_get_time(iter_type s, iter_type end, ios_base& str,
ios_base::iostate& err, tm* t) const;

255) This function is intended as a convenience only, for common formats, and may return no_order in valid locales.

§ 22.4.5.1.2 693

c© ISO/IEC N3092

2 Effects: Reads characters starting at s until it has extracted those struct tm members, and remaining
format characters, used by time_put<>::put to produce the format specified by "%H:%M:%S", or until
it encounters an error or end of sequence.

3 Returns: An iterator pointing immediately beyond the last character recognized as possibly part of a
valid time.

iter_type do_get_date(iter_type s, iter_type end, ios_base& str,
ios_base::iostate& err, tm* t) const;

4 Effects: Reads characters starting at s until it has extracted those struct tm members and remaining
format characters used by time_put<>::put to produce one of the following formats, or until it
encounters an error. The format depends on the value returned by date_order() as shown in Table 89.

Table 89 — do_get_date effects

date_order() Format
no_order "%m%d%y"
dmy "%d%m%y"
mdy "%m%d%y"
ymd "%y%m%d"
ydm "%y%d%m"

5 An implementation may also accept additional implementation-defined formats.

6 Returns: An iterator pointing immediately beyond the last character recognized as possibly part of a
valid date.

iter_type do_get_weekday(iter_type s, iter_type end, ios_base& str,
ios_base::iostate& err, tm* t) const;

iter_type do_get_monthname(iter_type s, iter_type end, ios_base& str,
ios_base::iostate& err, tm* t) const;

7 Effects: Reads characters starting at s until it has extracted the (perhaps abbreviated) name of a
weekday or month. If it finds an abbreviation that is followed by characters that could match a full
name, it continues reading until it matches the full name or fails. It sets the appropriate struct tm
member accordingly.

8 Returns: An iterator pointing immediately beyond the last character recognized as part of a valid
name.

iter_type do_get_year(iter_type s, iter_type end, ios_base& str,
ios_base::iostate& err, tm* t) const;

9 Effects: Reads characters starting at s until it has extracted an unambiguous year identifier. It is
implementation-defined whether two-digit year numbers are accepted, and (if so) what century they
are assumed to lie in. Sets the t->tm_year member accordingly.

10 Returns: An iterator pointing immediately beyond the last character recognized as part of a valid year
identifier.

iter_type do_get(iter_type s, iter_type end, ios_base& f,
ios_base::iostate& err, tm *t, char format, char modifier) const;

11 Requires: t shall be dereferenceable.

§ 22.4.5.1.2 694

c© ISO/IEC N3092

12 Effects: The function starts by evaluating err = ios_base::goodbit. It then reads characters start-
ing at s until it encounters an error, or until it has extracted and assigned those struct tm members,
and any remaining format characters, corresponding to a conversion directive appropriate for the
ISO/IEC 9945 function strptime, formed by concatenating ’%’, the modifier character, when non-
NUL, and the format character. When the concatenation fails to yield a complete valid directive
the function leaves the object pointed to by t unchanged and evaluates err |= ios_base::failbit.
When s == end evaluates to true after reading a character the function evaluates err |= ios_-
base::eofbit.

13 For complex conversion directives such as %c, %x, or %X, or directives that involve the optional modifiers
E or O, when the function is unable to unambiguously determine some or all struct tm members from
the input sequence [s,end), it evaluates err |= ios_base::eofbit. In such cases the values of those
struct tm members are unspecified and may be outside their valid range.

14 Remark: It is unspecified whether multiple calls to do_get() with the address of the same struct
tm object will update the current contents of the object or simply overwrite its members. Portable
programs must zero out the object before invoking the function.

15 Returns: An iterator pointing immediately beyond the last character recognized as possibly part of a
valid input sequence for the given format and modifier.

22.4.5.2 Class template time_get_byname [locale.time.get.byname]

namespace std {
template <class charT, class InputIterator = istreambuf_iterator<charT> >
class time_get_byname : public time_get<charT, InputIterator> {
public:

typedef time_base::dateorder dateorder;
typedef InputIterator iter_type;

explicit time_get_byname(const char*, size_t refs = 0);
explicit time_get_byname(const string&, size_t refs = 0);

protected:
~time_get_byname();

};
}

22.4.5.3 Class template time_put [locale.time.put]

namespace std {
template <class charT, class OutputIterator = ostreambuf_iterator<charT> >
class time_put : public locale::facet {
public:

typedef charT char_type;
typedef OutputIterator iter_type;

explicit time_put(size_t refs = 0);

// the following is implemented in terms of other member functions.
iter_type put(iter_type s, ios_base& f, char_type fill, const tm* tmb,

const charT* pattern, const charT* pat_end) const;
iter_type put(iter_type s, ios_base& f, char_type fill,

const tm* tmb, char format, char modifier = 0) const;

static locale::id id;

§ 22.4.5.3 695

c© ISO/IEC N3092

protected:
~time_put();
virtual iter_type do_put(iter_type s, ios_base&, char_type, const tm* t,

char format, char modifier) const;
};

}

22.4.5.3.1 time_put members [locale.time.put.members]

iter_type put(iter_type s, ios_base& str, char_type fill, const tm* t,
const charT* pattern, const charT* pat_end) const;

iter_type put(iter_type s, ios_base& str, char_type fill, const tm* t,
char format, char modifier = 0) const;

1 Effects: The first form steps through the sequence from pattern to pat_end, identifying characters
that are part of a format sequence. Each character that is not part of a format sequence is written
to s immediately, and each format sequence, as it is identified, results in a call to do_put; thus,
format elements and other characters are interleaved in the output in the order in which they appear
in the pattern. Format sequences are identified by converting each character c to a char value as
if by ct.narrow(c,0), where ct is a reference to ctype<charT> obtained from str.getloc(). The
first character of each sequence is equal to ’%’, followed by an optional modifier character mod256

and a format specifier character spec as defined for the function strftime. If no modifier character
is present, mod is zero. For each valid format sequence identified, calls do_put(s, str, fill, t,
spec, mod).

2 The second form calls do_put(s, str, fill, t, format, modifier).

3 [Note: The fill argument may be used in the implementation-defined formats or by derivations. A
space character is a reasonable default for this argument. — end note]

4 Returns: An iterator pointing immediately after the last character produced.

22.4.5.3.2 time_put virtual functions [locale.time.put.virtuals]

iter_type do_put(iter_type s, ios_base&, char_type fill, const tm* t,
char format, char modifier) const;

1 Effects: Formats the contents of the parameter t into characters placed on the output sequence s.
Formatting is controlled by the parameters format and modifier, interpreted identically as the format
specifiers in the string argument to the standard library function strftime().257 except that the
sequence of characters produced for those specifiers that are described as depending on the C locale
are instead implementation-defined.258

2 Returns: An iterator pointing immediately after the last character produced. [Note: The fill argu-
ment may be used in the implementation-defined formats or by derivations. A space character is a
reasonable default for this argument. — end note]

22.4.5.4 Class template time_put_byname [locale.time.put.byname]

256) Although the C programming language defines no modifiers, most vendors do.
257) Interpretation of the modifier argument is implementation-defined, but should follow POSIX conventions.
258) Implementations are encouraged to refer to other standards (such as POSIX) for these definitions.

§ 22.4.5.4 696

c© ISO/IEC N3092

namespace std {
template <class charT, class OutputIterator = ostreambuf_iterator<charT> >
class time_put_byname : public time_put<charT, OutputIterator>
{
public:

typedef charT char_type;
typedef OutputIterator iter_type;

explicit time_put_byname(const char*, size_t refs = 0);
explicit time_put_byname(const string&, size_t refs = 0);

protected:
~time_put_byname();

};
}

22.4.6 The monetary category [category.monetary]

1 These templates handle monetary formats. A template parameter indicates whether local or international
monetary formats are to be used.

2 All specifications of member functions for money_put and money_get in the subclauses of 22.4.6 only apply
to the specializations required in Tables 78 and 79 (22.3.1.1.1). Their members use their ios_base&, ios_-
base :: iostate&, and fill arguments as described in (22.4), and the moneypunct<> and ctype<> facets,
to determine formatting details.

22.4.6.1 Class template money_get [locale.money.get]

namespace std {
template <class charT,

class InputIterator = istreambuf_iterator<charT> >
class money_get : public locale::facet {
public:

typedef charT char_type;
typedef InputIterator iter_type;
typedef basic_string<charT> string_type;

explicit money_get(size_t refs = 0);

iter_type get(iter_type s, iter_type end, bool intl,
ios_base& f, ios_base::iostate& err,
long double& units) const;

iter_type get(iter_type s, iter_type end, bool intl,
ios_base& f, ios_base::iostate& err,
string_type& digits) const;

static locale::id id;

protected:
~money_get();
virtual iter_type do_get(iter_type, iter_type, bool, ios_base&,

ios_base::iostate& err, long double& units) const;
virtual iter_type do_get(iter_type, iter_type, bool, ios_base&,

ios_base::iostate& err, string_type& digits) const;
};

}

§ 22.4.6.1 697

c© ISO/IEC N3092

22.4.6.1.1 money_get members [locale.money.get.members]

iter_type get(iter_type s, iter_type end, bool intl,
ios_base& f, ios_base::iostate& err,
long double& quant) const;

iter_type get(s, iter_type end, bool intl, ios_base&f,
ios_base::iostate& err, string_type& quant) const;

1 Returns: do_get(s, end, intl, f, err, quant)

22.4.6.1.2 money_get virtual functions [locale.money.get.virtuals]

iter_type do_get(iter_type s, iter_type end, bool intl,
ios_base& str, ios_base::iostate& err,
long double& units) const;

iter_type do_get(iter_type s, iter_type end, bool intl,
ios_base& str, ios_base::iostate& err,
string_type& digits) const;

1 Effects: Reads characters from s to parse and construct a monetary value according to the for-
mat specified by a moneypunct<charT,Intl> facet reference mp and the character mapping spec-
ified by a ctype<charT> facet reference ct obtained from the locale returned by str.getloc(),
and str.flags(). If a valid sequence is recognized, does not change err; otherwise, sets err to
(err|str.failbit), or (err|str.failbit|str.eofbit) if no more characters are available, and
does not change units or digits. Uses the pattern returned by mp.neg_format() to parse all values.
The result is returned as an integral value stored in units or as a sequence of digits possibly pre-
ceded by a minus sign (as produced by ct.widen(c) where c is ’-’ or in the range from ’0’ through
’9’, inclusive) stored in digits. [Example: The sequence $1,056.23 in a common United States
locale would yield, for units, 105623, or, for digits, "105623". — end example] If mp.grouping()
indicates that no thousands separators are permitted, any such characters are not read, and parsing
is terminated at the point where they first appear. Otherwise, thousands separators are optional; if
present, they are checked for correct placement only after all format components have been read.

2 Where money_base::space or money_base::none appears as the last element in the format pattern, no
white space is consumed. Otherwise, where money_base::space appears in any of the initial elements
of the format pattern, at least one white space character is required. Where money_base::none
appears in any of the initial elements of the format pattern, white space is allowed but not required.
If (str.flags() & str.showbase) is false, the currency symbol is optional and is consumed only if
other characters are needed to complete the format; otherwise, the currency symbol is required.

3 If the first character (if any) in the string pos returned by mp.positive_sign() or the string neg
returned by mp.negative_sign() is recognized in the position indicated by sign in the format pattern,
it is consumed and any remaining characters in the string are required after all the other format
components. [Example: If showbase is off, then for a neg value of "()" and a currency symbol of
"L", in "(100 L)" the "L" is consumed; but if neg is "-", the "L" in "-100 L" is not consumed.
— end example] If pos or neg is empty, the sign component is optional, and if no sign is detected, the
result is given the sign that corresponds to the source of the empty string. Otherwise, the character
in the indicated position must match the first character of pos or neg, and the result is given the
corresponding sign. If the first character of pos is equal to the first character of neg, or if both strings
are empty, the result is given a positive sign.

4 Digits in the numeric monetary component are extracted and placed in digits, or into a character
buffer buf1 for conversion to produce a value for units, in the order in which they appear, preceded

§ 22.4.6.1.2 698

c© ISO/IEC N3092

by a minus sign if and only if the result is negative. The value units is produced as if by259

for (int i = 0; i < n; ++i)
buf2[i] = src[find(atoms, atoms+sizeof(src), buf1[i]) - atoms];

buf2[n] = 0;
sscanf(buf2, "%Lf", &units);

where n is the number of characters placed in buf1, buf2 is a character buffer, and the values src and
atoms are defined as if by

static const char src[] = "0123456789-";
charT atoms[sizeof(src)];
ct.widen(src, src + sizeof(src) - 1, atoms);

5 Returns: An iterator pointing immediately beyond the last character recognized as part of a valid
monetary quantity.

22.4.6.2 Class template money_put [locale.money.put]

namespace std {
template <class charT,

class OutputIterator = ostreambuf_iterator<charT> >
class money_put : public locale::facet {
public:

typedef charT char_type;
typedef OutputIterator iter_type;
typedef basic_string<charT> string_type;

explicit money_put(size_t refs = 0);

iter_type put(iter_type s, bool intl, ios_base& f,
char_type fill, long double units) const;

iter_type put(iter_type s, bool intl, ios_base& f,
char_type fill, const string_type& digits) const;

static locale::id id;

protected:
~money_put();
virtual iter_type do_put(iter_type, bool, ios_base&, char_type fill,

long double units) const;
virtual iter_type do_put(iter_type, bool, ios_base&, char_type fill,

const string_type& digits) const;
};

}

22.4.6.2.1 money_put members [locale.money.put.members]

iter_type put(iter_type s, bool intl, ios_base& f, char_type fill,
long double quant) const;

iter_type put(iter_type s, bool intl, ios_base& f, char_type fill,
const string_type& quant) const;

1 Returns: do_put(s, intl, f, loc, quant)

259) The semantics here are different from ct.narrow.

§ 22.4.6.2.1 699

c© ISO/IEC N3092

22.4.6.2.2 money_put virtual functions [locale.money.put.virtuals]

iter_type do_put(iter_type s, bool intl, ios_base& str,
char_type fill, long double units) const;

iter_type do_put(iter_type s, bool intl, ios_base& str,
char_type fill, const string_type& digits) const;

1 Effects: Writes characters to s according to the format specified by a moneypunct<charT,Intl> facet
reference mp and the character mapping specified by a ctype<charT> facet reference ct obtained from
the locale returned by str.getloc(), and str.flags(). The argument units is transformed into a
sequence of wide characters as if by

ct.widen(buf1, buf1 + sprintf(buf1, "%.0Lf", units), buf2)

for character buffers buf1 and buf2. If the first character in digits or buf2 is equal to ct.widen(’-’),
then the pattern used for formatting is the result of mp.neg_format(); otherwise the pattern is the
result of mp.pos_format(). Digit characters are written, interspersed with any thousands separators
and decimal point specified by the format, in the order they appear (after the optional leading minus
sign) in digits or buf2. In digits, only the optional leading minus sign and the immediately subse-
quent digit characters (as classified according to ct) are used; any trailing characters (including digits
appearing after a non-digit character) are ignored. Calls str.width(0).

2 Remarks: The currency symbol is generated if and only if (str.flags() & str.showbase) is nonzero.
If the number of characters generated for the specified format is less than the value returned by
str.width() on entry to the function, then copies of fill are inserted as necessary to pad to the speci-
fied width. For the value af equal to (str.flags() & str.adjustfield), if (af == str.internal)
is true, the fill characters are placed where none or space appears in the formatting pattern; otherwise
if (af == str.left) is true, they are placed after the other characters; otherwise, they are placed
before the other characters. [Note: It is possible, with some combinations of format patterns and flag
values, to produce output that cannot be parsed using num_get<>::get. — end note]

3 Returns: An iterator pointing immediately after the last character produced.

22.4.6.3 Class template moneypunct [locale.moneypunct]

namespace std {
class money_base {
public:

enum part { none, space, symbol, sign, value };
struct pattern { char field[4]; };

};

template <class charT, bool International = false>
class moneypunct : public locale::facet, public money_base {
public:

typedef charT char_type;
typedef basic_string<charT> string_type;

explicit moneypunct(size_t refs = 0);

charT decimal_point() const;
charT thousands_sep() const;
string grouping() const;
string_type curr_symbol() const;
string_type positive_sign() const;

§ 22.4.6.3 700

c© ISO/IEC N3092

string_type negative_sign() const;
int frac_digits() const;
pattern pos_format() const;
pattern neg_format() const;

static locale::id id;
static const bool intl = International;

protected:
~moneypunct();
virtual charT do_decimal_point() const;
virtual charT do_thousands_sep() const;
virtual string do_grouping() const;
virtual string_type do_curr_symbol() const;
virtual string_type do_positive_sign() const;
virtual string_type do_negative_sign() const;
virtual int do_frac_digits() const;
virtual pattern do_pos_format() const;
virtual pattern do_neg_format() const;

};
}

1 The moneypunct<> facet defines monetary formatting parameters used by money_get<> and money_put<>.
A monetary format is a sequence of four components, specified by a pattern value p, such that the part value
static_cast<part>(p.field[i]) determines the ith component of the format260 In the field member of
a pattern object, each value symbol, sign, value, and either space or none appears exactly once. The
value none, if present, is not first; the value space, if present, is neither first nor last.

2 Where none or space appears, white space is permitted in the format, except where none appears at the end,
in which case no white space is permitted. The value space indicates that at least one space is required at
that position. Where symbol appears, the sequence of characters returned by curr_symbol() is permitted,
and can be required. Where sign appears, the first (if any) of the sequence of characters returned by
positive_sign() or negative_sign() (respectively as the monetary value is non-negative or negative) is
required. Any remaining characters of the sign sequence are required after all other format components.
Where value appears, the absolute numeric monetary value is required.

3 The format of the numeric monetary value is a decimal number:
value ::= units [decimal-point [digits]] |

decimal-point digits

if frac_digits() returns a positive value, or
value ::= units

otherwise. The symbol decimal-point indicates the character returned by decimal_point(). The other
symbols are defined as follows:

units ::= digits [thousands-sep units]
digits ::= adigit [digits]

In the syntax specification, the symbol adigit is any of the values ct.widen(c) for c in the range ’0’
through ’9’, inclusive, and ct is a reference of type const ctype<charT>& obtained as described in the
definitions of money_get<> and money_put<>. The symbol thousands-sep is the character returned by

260) An array of char, rather than an array of part, is specified for pattern::field purely for efficiency.

§ 22.4.6.3 701

c© ISO/IEC N3092

thousands_sep(). The space character used is the value ct.widen(’ ’). White space characters are those
characters c for which ci.is(space,c) returns true. The number of digits required after the decimal point
(if any) is exactly the value returned by frac_digits().

4 The placement of thousands-separator characters (if any) is determined by the value returned by grouping(),
defined identically as the member numpunct<>::do_grouping().

22.4.6.3.1 moneypunct members [locale.moneypunct.members]

charT decimal_point() const;
charT thousands_sep() const;
string grouping() const;
string_type curr_symbol() const;
string_type positive_sign() const;
string_type negative_sign() const;
int frac_digits() const;
pattern pos_format() const;
pattern neg_format() const;

1 Each of these functions F returns the result of calling the corresponding virtual member function do_F().

22.4.6.3.2 moneypunct virtual functions [locale.moneypunct.virtuals]

charT do_decimal_point() const;

1 Returns: The radix separator to use in case do_frac_digits() is greater than zero.261

charT do_thousands_sep() const;

2 Returns: The digit group separator to use in case do_grouping() specifies a digit grouping pattern.262

string do_grouping() const;

3 Returns: A pattern defined identically as, but not necessarily equal to, the result of numpunct<charT>::do_-
grouping().263

string_type do_curr_symbol() const;

4 Returns: A string to use as the currency identifier symbol.264

string_type do_positive_sign() const;
string_type do_negative_sign() const;

5 Returns: do_positive_sign() returns the string to use to indicate a positive monetary value;265

do_negative_sign() returns the string to use to indicate a negative value.

int do_frac_digits() const;

6 Returns: The number of digits after the decimal radix separator, if any.266

pattern do_pos_format() const;
pattern do_neg_format() const;

261) In common U.S. locales this is ’.’.
262) In common U.S. locales this is ’,’.
263) To specify grouping by 3s, the value is "\003" not "3".
264) For international specializations (second template parameter true) this is typically four characters long, usually three
letters and a space.
265) This is usually the empty string.
266) In common U.S. locales, this is 2.

§ 22.4.6.3.2 702

c© ISO/IEC N3092

7 Returns: The specializations required in Table 79 (22.3.1.1.1), namely moneypunct<char>, moneypunct<
wchar_t>, moneypunct<char,true>, and moneypunct<wchar_t,true>, return an object of type pattern
initialized to { symbol, sign, none, value }.267

22.4.6.4 Class template moneypunct_byname [locale.moneypunct.byname]

namespace std {
template <class charT, bool Intl = false>
class moneypunct_byname : public moneypunct<charT, Intl> {
public:

typedef money_base::pattern pattern;
typedef basic_string<charT> string_type;

explicit moneypunct_byname(const char*, size_t refs = 0);
explicit moneypunct_byname(const string&, size_t refs = 0);

protected:
~moneypunct_byname();

};
}

22.4.7 The message retrieval category [category.messages]

1 Class messages<charT> implements retrieval of strings from message catalogs.

22.4.7.1 Class template messages [locale.messages]

namespace std {
class messages_base {
public:

typedef int catalog;
};

template <class charT>
class messages : public locale::facet, public messages_base {
public:

typedef charT char_type;
typedef basic_string<charT> string_type;

explicit messages(size_t refs = 0);

catalog open(const basic_string<char>& fn, const locale&) const;
string_type get(catalog c, int set, int msgid,

const string_type& dfault) const;
void close(catalog c) const;

static locale::id id;

protected:
~messages();
virtual catalog do_open(const basic_string<char>&, const locale&) const;
virtual string_type do_get(catalog, int set, int msgid,

const string_type& dfault) const;
virtual void do_close(catalog) const;

267) Note that the international symbol returned by do_curr_sym() usually contains a space, itself; for example, "USD ".

§ 22.4.7.1 703

c© ISO/IEC N3092

};
}

1 Values of type messages_base::catalog usable as arguments to members get and close can be obtained
only by calling member open.

22.4.7.1.1 messages members [locale.messages.members]

catalog open(const basic_string<char>& name, const locale& loc) const;

1 Returns: do_open(name, loc).

string_type get(catalog cat, int set, int msgid,
const string_type& dfault) const;

2 Returns: do_get(cat, set, msgid, dfault).

void close(catalog cat) const;

3 Effects: Calls do_close(cat).

22.4.7.1.2 messages virtual functions [locale.messages.virtuals]

catalog do_open(const basic_string<char>& name,
const locale& loc) const;

1 Returns: A value that may be passed to get() to retrieve a message from the message catalog identified
by the string name according to an implementation-defined mapping. The result can be used until it
is passed to close().

2 Returns a value less than 0 if no such catalog can be opened.

3 Remarks: The locale argument loc is used for character set code conversion when retrieving messages,
if needed.

string_type do_get(catalog cat, int set, int msgid,
const string_type& dfault) const;

4 Requires: cat shall be a catalog obtained from open() and not yet closed.

5 Returns: A message identified by arguments set, msgid, and dfault, according to an implementation-
defined mapping. If no such message can be found, returns dfault.

void do_close(catalog cat) const;

6 Requires: cat shall be a catalog obtained from open() and not yet closed.

7 Effects: Releases unspecified resources associated with cat.

8 Remarks: The limit on such resources, if any, is implementation-defined.

22.4.7.2 Class template messages_byname [locale.messages.byname]

namespace std {
template <class charT>
class messages_byname : public messages<charT> {
public:

typedef messages_base::catalog catalog;
typedef basic_string<charT> string_type;

§ 22.4.7.2 704

c© ISO/IEC N3092

explicit messages_byname(const char*, size_t refs = 0);
explicit messages_byname(const string&, size_t refs = 0);

protected:
~messages_byname();

};
}

22.4.8 Program-defined facets [facets.examples]

1 A C++ program may define facets to be added to a locale and used identically as the built-in facets. To
create a new facet interface, C++ programs simply derive from locale::facet a class containing a static
member: static locale::id id.

2 [Note: The locale member function templates verify its type and storage class. — end note]

3 [Example: Traditional global localization is still easy:
#include <iostream>
#include <locale>
int main(int argc, char** argv) {

using namespace std;
locale::global(locale("")); // set the global locale

// imbue it on all the std streams
cin.imbue(locale());
cout.imbue(locale());
cerr.imbue(locale());
wcin.imbue(locale());
wcout.imbue(locale());
wcerr.imbue(locale());

return MyObject(argc, argv).doit();
}

— end example]

4 [Example: Greater flexibility is possible:
#include <iostream>
#include <locale>
int main() {

using namespace std;
cin.imbue(locale("")); // the user’s preferred locale
cout.imbue(locale::classic());
double f;
while (cin >> f) cout << f << endl;
return (cin.fail() != 0);

}

In a European locale, with input 3.456,78, output is 3456.78. — end example]

5 This can be important even for simple programs, which may need to write a data file in a fixed format,
regardless of a user’s preference.

6 [Example: Here is an example of the use of locales in a library interface.
// file: Date.h
#include <iosfwd>

§ 22.4.8 705

c© ISO/IEC N3092

#include <string>
#include <locale>

class Date {
public:

Date(unsigned day, unsigned month, unsigned year);
std::string asString(const std::locale& = std::locale());

};

std::istream& operator>>(std::istream& s, Date& d);
std::ostream& operator<<(std::ostream& s, Date d);

7 This example illustrates two architectural uses of class locale.

8 The first is as a default argument in Date::asString(), where the default is the global (presumably user-
preferred) locale.

9 The second is in the operators << and >>, where a locale “hitchhikes” on another object, in this case a
stream, to the point where it is needed.

// file: Date.C
#include "Date" // includes <ctime>
#include <sstream>
std::string Date::asString(const std::locale& l) {

using namespace std;
ostringstream s; s.imbue(l);
s << *this; return s.str();

}

std::istream& operator>>(std::istream& s, Date& d) {
using namespace std;
istream::sentry cerberos(s);
if (cerberos) {

ios_base::iostate err = goodbit;
struct tm t;
use_facet< time_get<char> >(s.getloc()).get_date(s, 0, s, err, &t);
if (!err) d = Date(t.tm_day, t.tm_mon + 1, t.tm_year + 1900);
s.setstate(err);

}
return s;

}

— end example]

10 A locale object may be extended with a new facet simply by constructing it with an instance of a class
derived from locale::facet. The only member a C++ program must define is the static member id, which
identifies your class interface as a new facet.

11 [Example: Classifying Japanese characters:
// file: <jctype>
#include <locale>
namespace My {

using namespace std;
class JCtype : public locale::facet {
public:

static locale::id id; // required for use as a new locale facet

§ 22.4.8 706

c© ISO/IEC N3092

bool is_kanji (wchar_t c) const;
JCtype() { }

protected:
~JCtype() { }

};
}

// file: filt.C
#include <iostream>
#include <locale>
#include "jctype" // above
std::locale::id My::JCtype::id; // the static JCtype member declared above.

int main() {
using namespace std;
typedef ctype<wchar_t> wctype;
locale loc(locale(""), // the user’s preferred locale ...

new My::JCtype); // and a new feature ...
wchar_t c = use_facet<wctype>(loc).widen(’!’);
if (!use_facet<My::JCtype>(loc).is_kanji(c))

cout << "no it isn’t!" << endl;
return 0;

}

12 The new facet is used exactly like the built-in facets. — end example]

13 [Example: Replacing an existing facet is even easier. Here we do not define a member id because we are
reusing the numpunct<charT> facet interface:

// file: my_bool.C
#include <iostream>
#include <locale>
#include <string>
namespace My {

using namespace std;
typedef numpunct_byname<char> cnumpunct;
class BoolNames : public cnumpunct {
protected:

string do_truename() const { return "Oui Oui!"; }
string do_falsename() const { return "Mais Non!"; }
~BoolNames() { }

public:
BoolNames(const char* name) : cnumpunct(name) { }

};
}

int main(int argc, char** argv) {
using namespace std;
// make the user’s preferred locale, except for...
locale loc(locale(""), new My::BoolNames(""));
cout.imbue(loc);
cout << boolalpha << "Any arguments today? " << (argc > 1) << endl;
return 0;

}

§ 22.4.8 707

c© ISO/IEC N3092

— end example]

22.5 Standard code conversion facets [locale.stdcvt]

1 The header <codecvt> provides code conversion facets for various character encodings.

2 Header <codecvt> synopsis
namespace std {

enum codecvt_mode {
consume_header = 4,
generate_header = 2,
little_endian = 1

};

template<class Elem, unsigned long Maxcode = 0x10ffff,
codecvt_mode Mode = (codecvt_mode)0>

class codecvt_utf8
: public codecvt<Elem, char, mbstate_t> {
// unspecified

};

template<class Elem, unsigned long Maxcode = 0x10ffff,
codecvt_mode Mode = (codecvt_mode)0>

class codecvt_utf16
: public codecvt<Elem, char, mbstate_t> {
// unspecified

};

template<class Elem, unsigned long Maxcode = 0x10ffff,
codecvt_mode Mode = (codecvt_mode)0>

class codecvt_utf8_utf16
: public codecvt<Elem, char, mbstate_t> {
// unspecified

};
}

3 For each of the three code conversion facets codecvt_utf8, codecvt_utf16, and codecvt_utf8_utf16:

— Elem is the wide-character type, such as wchar_t, char16_t, or char32_t.

— Maxcode is the largest wide-character code that the facet will read or write without reporting a con-
version error.

— If (Mode & consume_header), the facet shall consume an initial header sequence, if present, when
reading a multibyte sequence to determine the endianness of the subsequent multibyte sequence to be
read.

— If (Mode & generate_header), the facet shall generate an initial header sequence when writing a
multibyte sequence to advertise the endianness of the subsequent multibyte sequence to be written.

— If (Mode & little_endian), the facet shall generate a multibyte sequence in little-endian order, as
opposed to the default big-endian order.

4 For the facet codecvt_utf8:

— The facet shall convert between UTF-8 multibyte sequences and UCS2 or UCS4 (depending on the
size of Elem) within the program.

§ 22.5 708

c© ISO/IEC N3092

— Endianness shall not affect how multibyte sequences are read or written.

— The multibyte sequences may be written as either a text or a binary file.

5 For the facet codecvt_utf16:

— The facet shall convert between UTF-16 multibyte sequences and UCS2 or UCS4 (depending on the
size of Elem) within the program.

— Multibyte sequences shall be read or written according to the Mode flag, as set out above.

— The multibyte sequences may be written only as a binary file. Attempting to write to a text file
produces undefined behavior.

6 For the facet codecvt_utf8_utf16:

— The facet shall convert between UTF-8 multibyte sequences and UTF-16 (one or two 16-bit codes)
within the program.

— Endianness shall not affect how multibyte sequences are read or written.

— The multibyte sequences may be written as either a text or a binary file.

See also: ISO/IEC 10646-1:1993.

22.6 C Library Locales [c.locales]

1 Table 90 describes header <clocale>.

Table 90 — Header <clocale> synopsis

Type Name(s)
Macros: LC_ALL LC_COLLATE LC_CTYPE

LC_MONETARY LC_NUMERIC LC_TIME
NULL

Struct: lconv
Functions: localeconv setlocale

2 The contents are the same as the Standard C library header <locale.h>.

3 Calls to the function setlocale may introduce a data race (17.6.4.8) with other calls to setlocale or with
calls to the functions listed in Table 91.

Table 91 — Potential setlocale data races
fprintf isprint iswctype localeconv tolower
fscanf ispunct iswdigit mblen toupper
isalnum ispunct iswgraph mbstowcs towlower
isalpha isspace iswlower mbtowc towupper
isblank isupper iswprint setlocale wcscoll
iscntrl iswalnum iswspace strcoll wcstod
isdigit iswalpha iswupper strerror wcstombs
isgraph iswblank iswxdigit strtod wcsxfrm
islower iswcntrl isxdigit strxfrm wctomb

See also: ISO C Clause 7.4.

§ 22.6 709

c© ISO/IEC N3092

23 Containers library [containers]
23.1 General [containers.general]

1 This Clause describes components that C++ programs may use to organize collections of information.

2 The following subclauses describe container requirements, and components for sequence containers and
associative containers, as summarized in Table 92.

Table 92 — Containers library summary

Subclause Header(s)
23.2 Requirements
23.3 Sequence containers <array>

<deque>
<forwardlist>
<list>
<queue>
<stack>
<vector>

23.4 Associative containers <map>
<set>

20.5 bitset <bitset>
23.5 Unordered associative containers <unordered_map>

<unordered_set>

23.2 Container requirements [container.requirements]

23.2.1 General container requirements [container.requirements.general]

1 Containers are objects that store other objects. They control allocation and deallocation of these objects
through constructors, destructors, insert and erase operations.

2 All of the complexity requirements in this Clause are stated solely in terms of the number of operations on the
contained objects. [Example: the copy constructor of type vector <vector<int> > has linear complexity,
even though the complexity of copying each contained vector<int> is itself linear. — end example]

3 For the components affected by this subclause that declare an allocator_type, objects stored in these
components shall be constructed using the allocator_traits<allocator_type>::constuct function and
destroyed using the allocator_traits<allocator_type>::destroy function (20.9.4.2). These functions
are called only for the container’s element type, not for internal types used by the container. [Note: this
means, for example, that a node-based container might need to construct nodes containing aligned buffers
and call construct to place the element into the buffer. — end note]

4 In Tables 93 and 94, X denotes a container class containing objects of type T, a and b denote values of type
X, u denotes an identifier, r denotes a non-const value of type X, and rv denotes a non-const rvalue of type
X.

§ 23.2.1 710

c© ISO/IEC N3092

Table 93 — Container requirements

Expression Return type Operational Assertion/note Complexity
semantics pre-/post-condition

X::value_-
type

T Requires: T is
Destructible

compile time

X::reference lvalue of T compile time
X::const_-
reference

const lvalue of
T

compile time

X::iterator iterator type
whose value
type is T

any iterator category
except output
iterator. convertible
to
X::const_iterator.

compile time

X::const_-
iterator

constant
iterator type
whose value
type is T

any iterator category
except output
iterator

compile time

X::dif-
ference_type

signed integral
type

is identical to the
difference type of
X::iterator and
X::const_iterator

compile time

X::size_type unsigned
integral type

size_type can
represent any
non-negative value of
difference_type

compile time

X u; post: u.empty()
returns true

constant

X() post: X().empty()
returns true

constant

X(a) Requires:T is
CopyConstructible.
post: a == X(a).

linear

X u(a) Requires:T is
CopyConstructible.

linear

X u = a; post: u == a
X u(rv) Requires:T is

MoveConstructible.
(Note B)

X u = rv post: u shall be
equal to the value
that rv had before
this construction

a = rv X& All existing elements
of a are either move
assigned to or
destroyed

a shall be equal to
the value that rv
had before this
assignment

linear

§ 23.2.1 711

c© ISO/IEC N3092

Table 93 — Container requirements (continued)

Expression Return type Operational Assertion/note Complexity
semantics pre-/post-condition

(&a)->∼X() void note: the destructor
is applied to every
element of a; all the
memory is
deallocated.

linear

a.begin() iterator;
const_-
iterator for
constant a

constant

a.end() iterator;
const_-
iterator for
constant a

constant

a.cbegin() const_-
iterator

const_cast<X
const&>(a).begin();

constant

a.cend() const_-
iterator

const_cast<X
const&>(a).end();

constant

a == b convertible to
bool

== is an equivalence
relation.
distance(a.begin(),
a.end()) ==
distance(b.begin(),
b.end()) &&
equal(a.begin(),
a.end(),
b.begin())

Requires: T is
EqualityComparable

linear

a != b convertible to
bool

Equivalent to: !(a
== b)

linear

a.swap(b) void exchanges the
contents of a and b

(Note A)

swap(a, b) void a.swap(b) (Note A)
r = a X& post: r == a. linear
a.size() size_type distance(a.begin(),

a.end())
constant

a.max_size() size_type distance(begin(),
end()) for the
largest possible
container

constant

a.empty() convertible to
bool

a.begin() ==
a.end()

constant

Notes: the algorithms equal() and lexicographical_compare() are defined in Clause 25. Those entries
marked “(Note A)” or “(Note B)” have linear complexity for array and have constant complexity for all
other standard containers.

5 The member function size() returns the number of elements in the container. The number of elements is

§ 23.2.1 712

c© ISO/IEC N3092

defined by the rules of constructors, inserts, and erases.

6 begin() returns an iterator referring to the first element in the container. end() returns an iterator which
is the past-the-end value for the container. If the container is empty, then begin() == end();

7 In the expressions
i == j
i != j
i < j
i <= j
i >= j
i > j
i - j

where i and j denote objects of a container’s iterator type, either or both may be replaced by an object
of the container’s const_iterator type referring to the same element with no change in semantics.

8 Unless otherwise specified, all containers defined in this clause obtain memory using an allocator (see 20.2.5).
Copy constructors for these container types obtain an allocator by calling allocator_traits<allocator_-
type>::select_on_container_copy_construction on their first parameters. Move constructors obtain
an allocator by move constuction of the allocator belonging to the container being moved. Such move con-
struction of the allocator shall not exit via an exception. All other constructors for these container types
take an Allocator& argument (20.2.5), an allocator whose value type is the same as the container’s value
type. [Note: if an invocation of a constructor uses the default value of an optional allocator argument, then
the Allocator type must support value initialization. — end note] A copy of this allocator is used for any
memory allocation performed, by these constructors and by all member functions, during the lifetime of each
container object or until the allocator is replaced. The allocator may be replaced only via assignment or
swap(). Allocator replacement is performed by copy assignment, move assignment, or swapping of the alloca-
tor only if allocator_traits<allocator_type>::propagate_on_container_copy_assignment::value,
allocator_traits<allocator_type>::propagate_on_container_move_assignment::value, or allocator_-
traits<allocator_type>::propagate_on_container_swap::value is true within the implementation of
the corresponding container operation. The behavior of a call to a container’s swap function is undefined
unless the objects being swapped have allocators that compare equal or allocator_traits<allocator_-
type>::propagate_on_container_swap::value is true. In all container types defined in this Clause, the
member get_allocator() returns a copy of the allocator used to construct the container or, if that allocator
has been replaced, a copy of the most recent replacement.

9 The expression a.swap(b), for containers a and b of a standard container type other than array, shall ex-
change the values of a and b without invoking any move, copy, or swap operations on the individual container
elements. Any Compare, Pred, or Hash objects belonging to a and b shall be swappable and shall be ex-
changed by unqualified calls to non-member swap. If allocator_traits<allocator_type>::propagate_-
on_container_swap::value is true, then the allocators of a and b shall also be exchanged using an unqual-
ified call to non-member swap. Otherwise, they shall not be swapped, and the behavior is undefined unless
a.get_allocator() == b.get_allocator(). Every iterator referring to an element in one container before
the swap shall refer to the same element in the other container after the swap. It is unspecified whether an
iterator with value a.end() before the swap will have value b.end() after the swap.

10 If the iterator type of a container belongs to the bidirectional or random access iterator categories (24.2),
the container is called reversible and satisfies the additional requirements in Table 94.

§ 23.2.1 713

c© ISO/IEC N3092

Table 94 — Reversible container requirements

Expression Return type Assertion/note Complexity
pre-/post-condition

X::reverse_-
iterator

iterator type whose value type
is T

reverse_iterator<iterator> compile time

X::const_-
reverse_-
iterator

iterator type whose value type
is const T

reverse_iterator<const_-
iterator>

compile time

a.rbegin() reverse_iterator;
const_reverse_iterator for
constant a

reverse_iterator(end()) constant

a.rend() reverse_iterator;
const_reverse_iterator for
constant a

reverse_iterator(begin()) constant

a.crbegin(); const_reverse_iterator const_cast<X
const&>(a).rbegin();

constant

a.crend(); const_reverse_iterator const_cast<X
const&>(a).rend();

constant

11 Unless otherwise specified (see 23.2.4.1, 23.2.5.1, 23.3.2.3, and 23.3.6.4) all container types defined in this
Clause meet the following additional requirements:

— if an exception is thrown by an insert() function while inserting a single element, that function has
no effects.

— if an exception is thrown by a push_back() or push_front() function, that function has no effects.

— no erase(), clear(), pop_back() or pop_front() function throws an exception.

— no copy constructor or assignment operator of a returned iterator throws an exception.

— no swap() function throws an exception.

— no swap() function invalidates any references, pointers, or iterators referring to the elements of the
containers being swapped. [Note: the end() iterator does not refer to any element, so it may be
invalidated. — end note]

12 Unless otherwise specified (either explicitly or by defining a function in terms of other functions), invoking a
container member function or passing a container as an argument to a library function shall not invalidate
iterators to, or change the values of, objects within that container.

13 Table 95 lists operations that are provided for some types of containers but not others. Those containers
for which the listed operatiosn are provided shall implement the semantics described in Table 95 unless
otherwise stated.

§ 23.2.1 714

c© ISO/IEC N3092

Table 95 — Optional container operations

Expression Return type Operational Assertion/note Complexity
semantics pre-/post-condition

a < b convertible to
bool

lexicographical_-
compare(
a.begin(),
a.end(),
b.begin(),
b.end())

pre: < is defined for
values of T. < is a
total ordering
relationship.

linear

a > b convertible to
bool

b < a linear

a <= b convertible to
bool

!(a > b) linear

a >= b convertible to
bool

!(a < b) linear

14 All of the containers defined in this Clause and in (21.4) except array meet the additional requirements of
an allocator-aware container, as described in Table 96.

15 The descriptions of the requirements of the type T in this section use the terms CopyConstructible,
MoveConstructible, constructible from *i, and constructible from args. These terms are equivalent to
the following expression using the appropriate arguments:

allocator_traits<allocator_type>::construct(x.get_allocator(), q, args...);

where x is a non-const lvalue of some container type X and q has type X::value_type*. [Example: The
container is going to move construct a T, so will call:

allocator_traits<allocator_type>::construct(x.get_allocator(), q, std::move(t));

The default implementation of construct will call:
::new (q) T(std::forward<T>(t)); // where forward is the same as move here, cast to rvalue

But the allocator author may override the above definition of construct and do the construction of T by
some other means. — end example]

16 In Table 96, X denotes an allocator-aware container class with a value_type of T using allocator of type A,
u denotes a variable, a and b denote non-const lvalues of type X, t denotes an lvalue or a const rvalue of
type X, rv denotes a non-const rvalue of type X, m is a value of type A, and Q is an allocator type.

Table 96 — Allocator-aware container requirements

Expression Return type Assertion/note Complexity
pre-/post-condition

allocator_-
type

A Requires:allocator_-
type::value_type is the same
as X::value_type.

compile time

get_-
allocator()

A constant

§ 23.2.1 715

c© ISO/IEC N3092

Table 96 — Allocator-aware container requirements (continued)

Expression Return type Assertion/note Complexity
pre-/post-condition

X() Requires: A is
DefaultConstructible.

constant

X u; post: u.empty() returns true,
u.get_allocator() == A()

X(m) post: u.empty() returns true, constant
X u(m); u.get_allocator() == m
X(t, m) Requires: T is

CopyConstructible.
linear

X u(t, m); post: u == t,
get_allocator() == m

X(rv)
X u(rv)

Requires: move construction of
A shall not exit via an
exception.
post: u shall have the same
elements as rv had before this
construction; the value of
get_allocator() shall be the
same as the value of
rv.get_allocator() before
this construction.

constant

X(rv, m) Requires: T is
MoveConstructible.

constant if m
== rv.get_-
allocator(),
otherwise
linear

X u(rv, m); post: u shall have the same
elements, or copies of the
elements, that rv had before
this construction,
get_allocator() == m

a = t X& Requires: T is
CopyConstructible and
CopyAssignable.
post: a == t

linear

a = rv X& Requires: If allocator_-
traits<allocator_type>
::propagate_on_container_-
move_assignment::value is
false, T is MoveConstructible
and MoveAssignable. All
existing elements of a are either
move assigned to or destroyed.
post: a shall be equal to the
value that rv had before this
assignment.

linear

§ 23.2.1 716

c© ISO/IEC N3092

Table 96 — Allocator-aware container requirements (continued)

Expression Return type Assertion/note Complexity
pre-/post-condition

a.swap(b) void exchanges the contents of a and
b

constant

23.2.2 Container data races [container.requirements.dataraces]

1 For purposes of avoiding data races (17.6.4.8), implementations shall consider the following functions to be
const: begin, end, rbegin, rend, front, back, data, find, lower_bound, upper_bound, equal_range, at
and, except in associative or unordered associative containers, operator[].

2 Notwithstanding (17.6.4.8), implementations are required to avoid data races when the contents of the con-
tained object in different elements in the same sequence, excepting vector<bool>, are modified concurrently.

3 [Note: For a vector<int> x with a size greater than one, x[1] = 5 and *x.begin() = 10 can be executed
concurrently without a data race, but x[0] = 5 and *x.begin() = 10 executed concurrently may result in
a data race. As an exception to the general rule, for a vector<bool> y, y[0] = true may race with y[1]
= true. — end note]

23.2.3 Sequence containers [sequence.reqmts]

1 A sequence container organizes a finite set of objects, all of the same type, into a strictly linear arrangement.
The library provides four basic kinds of sequence containers: vector, forward_list, list, and deque. In
addition, array is provided as a sequence container which provides limited sequence operations because it
has a fixed number of elements. The library also provides container adaptors that make it easy to construct
abstract data types, such as stacks or queues, out of the basic sequence container kinds (or out of other
kinds of sequence containers that the user might define).

2 The sequence containers offer the programmer different complexity trade-offs and should be used accordingly.
vector or array is the type of sequence container that should be used by default. list or forward_list
should be used when there are frequent insertions and deletions from the middle of the sequence. deque is
the data structure of choice when most insertions and deletions take place at the beginning or at the end of
the sequence.

3 In Tables 97 and 98, X denotes a sequence container class, a denotes a value of X containing elements of
type T, A denotes X::allocator_type if it exists and std::allocator<T> if it doesn’t, i and j denote
iterators satisfying input iterator requirements and refer to elements implicitly convertible to value_type,
[i, j) denotes a valid range, il designates an object of type initializer_list<value_type>, n denotes
a value of X::size_type, p denotes a valid const iterator to a, q denotes a valid dereferenceable const
iterator to a, [q1, q2) denotes a valid range of const iterators in a, t denotes an lvalue or a const rvalue of
X::value_type, and rv denotes a non-const rvalue of X::value_type. Args denotes a template parameter
pack; args denotes a function parameter pack with the pattern Args&&.

4 The complexities of the expressions are sequence dependent.

§ 23.2.3 717

c© ISO/IEC N3092

Table 97 — Sequence container requirements (in addition to con-
tainer)

Expression Return type Assertion/note
pre-/post-condition

X(n, t)
X a(n, t)

Requires:T shall be CopyConstructible.
post: distance(begin(), end()) == n
Constructs a sequence container with n copies
of t

X(i, j)
X a(i, j)

Requires: T shall be constructible from *i.
For vector, if the iterator does not meet the
forward iterator requirements (24.2.5), T shall
also be MoveConstructible. Each iterator in
the range [i,j) shall be dereferenced exactly
once.
post: distance(begin(), end()) ==
distance(i, j)
Constructs a sequence container equal to the
range [i, j)

X(il); Equivalent to X(il.begin(), il.end())
a = il; X& Requires: T is CopyConstructible and

CopyAssignable. Assigns the range
[il.begin(),il.end()) into a. All existing
elements of a are either assigned to or
destroyed.
Returns: *this.

a.emplace(p, args); iterator Requires: T is constructible from args. For
vector and deque, T is also
MoveConstructible and MoveAssignable.
Effects: Inserts an object of type T
constructed with
std::forward<Args>(args)... before p.

a.insert(p,t) iterator Requires:T shall be CopyConstructible. For
vector and deque, T shall also be
CopyAssignable.
Effects: Inserts a copy of t before p.

a.insert(p,rv) iterator Requires: T shall be MoveConstructible. For
vector and deque, T shall also be
MoveAssignable.
Effects: Inserts a copy of rv before p.

a.insert(p,n,t) iterator Requires:T shall be CopyConstructible and
CopyAssignable.
Inserts n copies of t before p.

§ 23.2.3 718

c© ISO/IEC N3092

Table 97 — Sequence container requirements (in addition to con-
tainer) (continued)

Expression Return type Assertion/note
pre-/post-condition

a.insert(p,i,j) iterator Requires:T shall be constructible from *i. For
vector, if the iterator does not meet the
forward iterator requirements (24.2.5), T shall
also be MoveConstructible and
MoveAssignable. Each iterator in the range
[i,j) shall be dereferenced exactly once.
pre: i and j are not iterators into a.
Inserts copies of elements in [i, j) before p

a.insert(p, il); iterator a.insert(p, il.begin(), il.end()).
a.erase(q) iterator Requires: For vector and deque, T shall be

MoveAssignable.
Effects: Erases the element pointed to by q

a.erase(q1,q2) iterator Requires: For vector and deque, T shall be
MoveAssignable.
Effects: Erases the elements in the range [q1,
q2).

a.clear() void Destroys all elements in a. Invalidates all
references, pointers, and iterators referring to
the elements of a and may invalidate the
past-the-end iterator.
post: a.empty() returns true

a.assign(i,j) void Requires: T shall be constructible from *i and
assignable from *i. For vector, if the
iterator does not meet the forward iterator
requirements (24.2.5), T shall also be
MoveConstructible.
Each iterator in the range [i,j) shall be
dereferenced exactly once.
pre: i, j are not iterators into a.
Replaces elements in a with a copy of [i, j).

a.assign(il) void a.assign(il.begin(), il.end()).
a.assign(n,t) void Requires:T shall be CopyConstructible and

CopyAssignable.
pre: t is not a reference into a.
Replaces elements in a with n copies of t.

5 iterator and const_iterator types for sequence containers shall be at least of the forward iterator category.

6 The iterator returned from a.insert(p, t) points to the copy of t inserted into a.

7 The iterator returned from a.insert(p, rv) points to the copy of rv inserted into a.

8 The iterator returned from a.insert(p, n, t) points to the copy of the first element inserted into a, or p
if n == 0.

9 The iterator returned from a.insert(p, i, j) points to the copy of the first element inserted into a, or p
if i == j.

§ 23.2.3 719

c© ISO/IEC N3092

10 The iterator returned from a.insert(p, i1) points to the copy of the first element inserted into a, or p if
i1 is empty.

11 The iterator returned from a.emplace(p, args) points to the new element constructed from args
into a.

12 The iterator returned from a.erase(q) points to the element immediately following q prior to the element
being erased. If no such element exists, a.end() is returned.

13 The iterator returned by a.erase(q1,q2) points to the element pointed to by q2 prior to any elements
being erased. If no such element exists, a.end() is returned.

14 For every sequence container defined in this Clause and in Clause 21:

— If the constructor
template <class InputIterator>
X(InputIterator first, InputIterator last,

const allocator_type& alloc = allocator_type())

is called with a type InputIterator that does not qualify as an input iterator, then the constructor
will behave as if the overloaded constructor:

X(size_type, const value_type& = value_type(),
const allocator_type& = allocator_type())

were called instead, with the arguments static_cast<size_type>(first), last and alloc, respec-
tively.

— If the member functions of the forms:
template <class InputIterator> // such as insert()
rt fx1(iterator p, InputIterator first, InputIterator last);

template <class InputIterator> // such as append(), assign()
rt fx2(InputIterator first, InputIterator last);

template <class InputIterator> // such as replace()
rt fx3(iterator i1, iterator i2, InputIterator first, InputIterator last);

are called with a type InputIterator that does not qualify as an input iterator, then these functions
will behave as if the overloaded member functions:

rt fx1(iterator, size_type, const value_type&);

rt fx2(size_type, const value_type&);

rt fx3(iterator, iterator, size_type, const value_type&);

were called instead, with the same arguments.

15 In the previous paragraph the alternative binding will fail if first is not implicitly convertible to X::size_-
type or if last is not implicitly convertible to X::value_type.

16 The extent to which an implementation determines that a type cannot be an input iterator is unspecified,
except that as a minimum integral types shall not qualify as input iterators.

17 Table 98 lists operations that are provided for some types of sequence containers but not others. An
implementation shall provide these operations for all container types shown in the “container” column, and
shall implement them so as to take amortized constant time.

§ 23.2.3 720

c© ISO/IEC N3092

Table 98 — Optional sequence container operations

Expression Return type Operational semantics Container
a.front() reference; const_reference

for constant a
*a.begin() basic_-

string,
array, deque,
forward_-
list, list,
vector

a.back() reference; const_reference
for constant a

{ auto tmp = a.end();
--tmp;
return *tmp; }

basic_-
string,
array, deque,
list, vector

a.emplace_-
front(args)

void Prepends an object of type T
constructed with
std::forward<Arg>(args)....
Requires: T shall be
constructible from args.

deque,
forward_-
list,
list

a.emplace_-
back(args)

void Appends an object of type T
constructed with
std::forward<Args>(args)....

Requires: T shall be
constructible from args. For
vector, T shall also be
MoveConstructible.

deque, list,
vector

a.push_-
front(t)

void Prepends a copy of t.
Requires: T shall be
CopyConstructible.

deque,
forward_-
list,
list

a.push_-
front(rv)

void Prepends a copy of rv.
Requires: T shall be
MoveConstructible.

deque,
forward_-
list,
list

a.push_-
back(t)

void Appends a copy of t.
Requires: T shall be
CopyConstructible.

basic_-
string,
deque, list,
vector

a.push_-
back(rv)

void Appends a copy of rv.
Requires: T shall be
MoveConstructible.

basic_-
string,
deque, list,
vector

a.pop_-
front()

void Destroys the first element.
Requires: a.empty() shall be
false.

deque,
forward_-
list,
list

a.pop_back() void Destroys the last element.
Requires: a.empty() shall be
false.

basic_-
string,
deque, list,
vector

§ 23.2.3 721

c© ISO/IEC N3092

Table 98 — Optional sequence container operations (continued)

Expression Return type Operational semantics Container
a[n] reference; const_reference

for constant a
*(a.begin() + n) basic_-

string,
array, deque,
vector

a.at(n) reference; const_reference
for constant a

*(a.begin() + n) basic_-
string,
array, deque,
vector

18 The member function at() provides bounds-checked access to container elements. at() throws out_of_-
range if n >= a.size().

23.2.4 Associative containers [associative.reqmts]

1 Associative containers provide fast retrieval of data based on keys. The library provides four basic kinds of
associative containers: set, multiset, map and multimap.

2 Each associative container is parameterized on Key and an ordering relation Compare that induces a strict
weak ordering (25.4) on elements of Key. In addition, map and multimap associate an arbitrary type T with
the Key. The object of type Compare is called the comparison object of a container.

3 The phrase “equivalence of keys” means the equivalence relation imposed by the comparison and not the
operator== on keys. That is, two keys k1 and k2 are considered to be equivalent if for the comparison
object comp, comp(k1, k2) == false && comp(k2, k1) == false. For any two keys k1 and k2 in the
same container, calling comp(k1, k2) shall always return the same value.

4 An associative container supports unique keys if it may contain at most one element for each key. Otherwise,
it supports equivalent keys. The set and map classes support unique keys; the multiset and multimap classes
support equivalent keys. For multiset and multimap, insert and erase preserve the relative ordering of
equivalent elements.

5 For set and multiset the value type is the same as the key type. For map and multimap it is equal to
pair<const Key, T>. Keys in an associative container are immutable.

6 iterator of an associative container is of the bidirectional iterator category. For associative containers where
the value type is the same as the key type, both iterator and const_iterator are constant iterators. It is
unspecified whether or not iterator and const_iterator are the same type. [Note: iterator and const_-
iterator have identical semantics in this case, and iterator is convertible to const_iterator. Users can
avoid violating the One Definition Rule by always using const_iterator in their function parameter lists.
— end note]

7 The associative containers meet all the requirements of Allocator-aware containers (23.2.1), except that
for map and multimap, the requirements placed on value_type in Table 93 apply instead to key_type and
mapped_type. [Note: For example, key_type and mapped_type are sometimes required to be CopyAssignable
even though the associated value_type, pair<const key_type, mapped_type>, is not CopyAssignable.
— end note]

8 In Table 99, X denotes an associative container class, a denotes a value of X, a_uniq denotes a value of
X when X supports unique keys, a_eq denotes a value of X when X supports multiple keys, u denotes an

§ 23.2.4 722

c© ISO/IEC N3092

identifier, i and j satisfy input iterator requirements and refer to elements implicitly convertible to value_-
type, [i,j) denotes a valid range, p denotes a valid const iterator to a, q denotes a valid dereferenceable
const iterator to a, [q1, q2) denotes a valid range of const iterators in a, il designates an object of type
initializer_list<value_type>, t denotes a value of X::value_type, k denotes a value of X::key_-
type and c denotes a value of type X::key_compare. A denotes the storage allocator used by X, if any, or
std::allocator<X::value_type> otherwise, and m denotes an allocator of a type convertible to A.

Table 99 — Associative container requirements (in addition to con-
tainer)

Expression Return type Assertion/note Complexity
pre-/post-condition

X::key_type Key Requires: Key is
Destructible.

compile time

mapped_type
(map and
multimap
only)

T Requires: T is Destructible. compile time

X::key_-
compare

Compare defaults to less<key_type> compile time

X::value_-
compare

a binary
predicate type

is the same as key_compare
for set and multiset; is an
ordering relation on pairs
induced by the first component
(i.e., Key) for map and
multimap.

compile time

X(c)
X a(c);

Requires: key_compare is
CopyConstructible.
Effects: Constructs an empty
container. Uses a copy of c as
a comparison object.

constant

X()
X a;

Requires: key_compare is
DefaultConstructible.
Effects: Constructs an empty
container. Uses Compare() as
a comparison object

constant

X(i,j,c)
X a(i,j,c);

Requires: key_compare is
CopyConstructible.
value_type is constructible
from *i.
Effects: Constructs an empty
container and inserts elements
from the range [i, j) into it;
uses c as a comparison object.

N log N in general (N has
the value distance(i, j));
linear if [i, j) is sorted
with value_comp()

§ 23.2.4 723

c© ISO/IEC N3092

Table 99 — Associative container requirements (in addition to con-
tainer) (continued)

Expression Return type Assertion/note Complexity
pre-/post-condition

X(i,j)
X a(i,j);

Requires: key_compare is
DefaultConstructible.
value_type is constructible
from *i.
Effects: Same as above, but
uses Compare() as a
comparison object

same as above

X(il); Same as X(il.begin(),
il.end()).

same as X(il.begin(),
il.end()).

a = il X& Requires: T is
CopyConstructible and
CopyAssignable.
Effects: Assigns the range
[il.begin(),il.end()) into
a. All existing elements of a
are either assigned to or
destroyed.

NlogN in general (where N
has the value il.size() +
a.size()); linear if
[il.begin(),il.end()) is
sorted with value_comp().

a.key_-
comp()

X::key_-
compare

returns the comparison object
out of which a was
constructed.

constant

a.value_-
comp()

X::value_-
compare

returns an object of
value_compare constructed
out of the comparison object

constant

a_uniq.
emplace(args)

pair<iterator,
bool>

Requires: T shall be
constructible from args.
Effects: Inserts a T object t
constructed with
std::forward<Args>(args)...
if and only if there is no
element in the container with
key equivalent to the key of t.
The bool component of the
returned pair is true if and
only if the insertion takes
place, and the iterator
component of the pair points
to the element with key
equivalent to the key of t.

logarithmic

§ 23.2.4 724

c© ISO/IEC N3092

Table 99 — Associative container requirements (in addition to con-
tainer) (continued)

Expression Return type Assertion/note Complexity
pre-/post-condition

a_eq.
emplace(args)

iterator Requires: T shall be
constructible from args.
Effects: Inserts a T object t
constructed with
std::forward<Args>(args)...
and returns the iterator
pointing to the newly inserted
element.

logarithmic

a.emplace_-
hint(p,
args)

iterator equivalent to a.emplace(
std::forward<Args>(args)...).
Return value is an iterator
pointing to the element with
the key equivalent to the
newly inserted element. The
const_iterator p is a hint
pointing to where the search
should start. Implementations
are permitted to ignore the
hint.

logarithmic in general, but
amortized constant if the
element is inserted right
after p

a_-
uniq.insert(t)

pair<iterator,
bool>

Requires: If t is a non-const
rvalue expression, T shall be
MoveConstructible;
otherwise, T shall be
CopyConstructible.
Effects: Inserts t if and only if
there is no element in the
container with key equivalent
to the key of t. The bool
component of the returned
pair is true if and only if the
insertion takes place, and the
iterator component of the
pair points to the element with
key equivalent to the key of t.

logarithmic

§ 23.2.4 725

c© ISO/IEC N3092

Table 99 — Associative container requirements (in addition to con-
tainer) (continued)

Expression Return type Assertion/note Complexity
pre-/post-condition

a_-
eq.insert(t)

iterator Requires: If t is a non-const
rvalue expression, T shall be
MoveConstructible;
otherwise, T shall be
CopyConstructible.
Effects: Inserts t and returns
the iterator pointing to the
newly inserted element. If a
range containing elements
equivalent to t exists in a_eq,
t is inserted at the end of that
range.

logarithmic

a.insert(p,
t)

iterator Requires: If t is a non-const
rvalue expression, T shall be
MoveConstructible;
otherwise, T shall be
CopyConstructible.
Effects: Inserts t if and only if
there is no element with key
equivalent to the key of t in
containers with unique keys;
always inserts t in containers
with equivalent keys. always
returns the iterator pointing to
the element with key
equivalent to the key of t. t is
inserted as close as possible to
the position just prior to p.

logarithmic in general, but
amortized constant if t is
inserted right before p.

a.insert(i,
j)

void Requires: T shall be
constructible from *i.
pre: i, j are not iterators into
a. inserts each element from
the range [i,j) if and only if
there is no element with key
equivalent to the key of that
element in containers with
unique keys; always inserts
that element in containers
with equivalent keys.

N log(a.size() + N) (N has
the value distance(i, j)

a.insert(il) void Equivalent to
a.insert(il.begin(),
il.end()).

§ 23.2.4 726

c© ISO/IEC N3092

Table 99 — Associative container requirements (in addition to con-
tainer) (continued)

Expression Return type Assertion/note Complexity
pre-/post-condition

a.erase(k) size_type erases all elements in the
container with key equivalent
to k. returns the number of
erased elements.

log(a.size()) + a.count(k)

a.erase(q) iterator erases the element pointed to
by q. Returns an iterator
pointing to the element
immediately following q prior
to the element being erased. If
no such element exists, returns
a.end().

amortized constant

a.erase(q1,
q2)

iterator erases all the elements in the
range [q1,q2). Returns q2.

log(a.size()) + N where N
has the value distance(q1,
q2).

a.clear() void a.erase(a.begin(),a.end())

post: a.empty() returns true

linear in a.size().

a.find(k) iterator;
const_-
iterator for
constant a.

returns an iterator pointing to
an element with the key
equivalent to k, or a.end() if
such an element is not found

logarithmic

a.count(k) size_type returns the number of elements
with key equivalent to k

log(a.size()) + a.count(k)

a.lower_-
bound(k)

iterator;
const_-
iterator for
constant a.

returns an iterator pointing to
the first element with key not
less than k, or a.end() if such
an element is not found.

logarithmic

a.upper_-
bound(k)

iterator;
const_-
iterator for
constant a.

returns an iterator pointing to
the first element with key
greater than k, or a.end() if
such an element is not found.

logarithmic

a.equal_-
range(k)

pair<iterator,
iterator>;
pair<const_-
iterator,
const_-
iterator> for
constant a.

equivalent to make_-
pair(a.lower_bound(k),
a.upper_bound(k)).

logarithmic

9 The insert members shall not affect the validity of iterators and references to the container, and the erase
members shall invalidate only iterators and references to the erased elements.

10 The fundamental property of iterators of associative containers is that they iterate through the containers
in the non-descending order of keys where non-descending is defined by the comparison that was used to
construct them. For any two dereferenceable iterators i and j such that distance from i to j is positive,

§ 23.2.4 727

c© ISO/IEC N3092

value_comp(*j, *i) == false

11 For associative containers with unique keys the stronger condition holds,
value_comp(*i, *j) != false.

12 When an associative container is constructed by passing a comparison object the container shall not store
a pointer or reference to the passed object, even if that object is passed by reference. When an associative
container is copied, either through a copy constructor or an assignment operator, the target container shall
then use the comparison object from the container being copied, as if that comparison object had been
passed to the target container in its constructor.

23.2.4.1 Exception safety guarantees [associative.reqmts.except]

1 For associative containers, no clear() function throws an exception. erase(k) does not throw an exception
unless that exception is thrown by the container’s Compare object (if any).

2 For associative containers, if an exception is thrown by any operation from within an insert() function
inserting a single element, the insert() function has no effect.

3 For associative containers, no swap function throws an exception unless that exception is thrown by the
swap of the container’s Compare object (if any).

23.2.5 Unordered associative containers [unord.req]

1 Unordered associative containers provide an ability for fast retrieval of data based on keys. The worst-
case complexity for most operations is linear, but the average case is much faster. The library provides four
unordered associative containers: unordered_set, unordered_map, unordered_multiset, and unordered_-
multimap.

2 Unordered associative containers conform to the requirements for Containers (23.2), except that the expres-
sions a == b and a != b have different semantics than for the other container types.

3 Each unordered associative container is parameterized by Key, by a function object type Hash that meets
the Hash requirements (20.2.4) and acts as a hash function for argument values of type Key, and by a binary
predicate Pred that induces an equivalence relation on values of type Key. Additionally, unordered_map
and unordered_multimap associate an arbitrary mapped type T with the Key.

4 A hash function is a function object that takes a single argument of type Key and returns a value of type
std::size_t.

5 Two values k1 and k2 of type Key are considered equivalent if the container’s key_equal function object
returns true when passed those values. If k1 and k2 are equivalent, the hash function shall return the same
value for both. [Note: thus, when an unordered associative container is instantiated with a non-default Pred
parameter it usually needs a non-default Hash parameter as well. — end note]

6 An unordered associative container supports unique keys if it may contain at most one element for each
key. Otherwise, it supports equivalent keys. unordered_set and unordered_map support unique keys.
unordered_multiset and unordered_multimap support equivalent keys. In containers that support equiv-
alent keys, elements with equivalent keys are adjacent to each other in the iteration order of the container.
Thus, although the absolute order of elements in an unordered container is not specified, its elements are
grouped into equivalent-key groups such that all elements of each group have equivalent keys. Mutating
operations on unordered containers shall preserve the relative order of elements within each equivalent-key
group unless otherwise specified.

7 For unordered_set and unordered_multiset the value type is the same as the key type. For unordered_-
map and unordered_multimap it is std::pair<const Key, T>.

§ 23.2.5 728

c© ISO/IEC N3092

8 The elements of an unordered associative container are organized into buckets. Keys with the same hash
code appear in the same bucket. The number of buckets is automatically increased as elements are added
to an unordered associative container, so that the average number of elements per bucket is kept below
a bound. Rehashing invalidates iterators, changes ordering between elements, and changes which buckets
elements appear in, but does not invalidate pointers or references to elements. For unordered_multiset
and unordered_multimap, rehashing preserves the relative ordering of equivalent elements.

9 The unordered associative containers meet all the requirements of Allocator-aware containers (23.2.1), except
that for unordered_map and unordered_multimap, the requirements placed on value_type in Table 93 apply
instead to key_type and mapped_type. [Note: For example, key_type and mapped_type are sometimes
required to be CopyAssignable even though the associated value_type, pair<const key_type, mapped_-
type>, is not CopyAssignable. — end note]

10 In table 100: X is an unordered associative container class, a is an object of type X, b is a possibly const
object of type X, a_uniq is an object of type X when X supports unique keys, a_eq is an object of type X
when X supports equivalent keys, i and j are input iterators that refer to value_type, [i, j) is a valid
range, p and q2 are valid const iterators to a, q and q1 are valid dereferenceable const iterators to a, [q1,
q2) is a valid range in a, il designates an object of type initializer_list<value_type>, t is a value of
type X::value_type, k is a value of type key_type, hf is a possibly const value of type hasher, eq is a
possibly const value of type key_equal, n is a value of type size_type, and z is a value of type float.

Table 100 — Unordered associative container requirements (in ad-
dition to container)

Expression Return type Assertion/note pre-/post-condition Complexity
X::key_type Key Requires: Key shall be

Destructible.
compile time

X::mapped_type
(unordered_map and
unordered_multimap
only)

T Requires: T is Destructible. compile time

X::hasher Hash Hash shall be a unary function
object type such that the
expression hf(k) has type
std::size_t.

compile time

X::key_equal Pred Pred shall be a binary predicate
that takes two arguments of
type Key. Pred is an
equivalence relation.

compile time

X::local_iterator An iterator type whose
category, value type,
difference type, and
pointer and reference
types are the same as
X::iterator’s.

A local_iterator object may
be used to iterate through a
single bucket, but may not be
used to iterate across buckets.

compile time

X::const_local_-
iterator

An iterator type whose
category, value type,
difference type, and
pointer and reference
types are the same as
X::const_iterator’s.

A const_local_iterator
object may be used to iterate
through a single bucket, but
may not be used to iterate
across buckets.

compile time

§ 23.2.5 729

c© ISO/IEC N3092

Table 100 — Unordered associative container requirements (in ad-
dition to container) (continued)

Expression Return type Assertion/note pre-/post-condition Complexity
X(n, hf, eq)
X a(n, hf, eq)

X Requires: hasher and
key_equal are
CopyConstructible.
Effects: Constructs an empty
container with at least n
buckets, using hf as the hash
function and eq as the key
equality predicate.

O(n)

X(n, hf)
X a(n, hf)

X Requires: hasher is
CopyConstructible and
key_equal is
DefaultConstructible.
Effects: Constructs an empty
container with at least n
buckets, using hf as the hash
function and key_equal() as
the key equality predicate.

O(n)

X(n)
X a(n)

X Requires: hasher and
key_equal are
DefaultConstructible.
Effects: Constructs an empty
container with at least n
buckets, using hasher() as the
hash function and key_equal()
as the key equality predicate.

O(n)

X()
X a

X Requires: hasher and
key_equal are
DefaultConstructible.
Effects: Constructs an empty
container with an unspecified
number of buckets, using
hasher() as the hash function
and key_equal() as the key
equality predicate.

constant

X(i, j, n, hf, eq)
X a(i, j, n, hf,
eq)

X Requires: hasher and
key_equal are
CopyConstructible.
value_type is constructible
from *i.
Effects: Constructs an empty
container with at least n
buckets, using hf as the hash
function and eq as the key
equality predicate, and inserts
elements from [i, j) into it.

Average case
O(N) (N is
distance(i,
j)), worst case
O(N2)

§ 23.2.5 730

c© ISO/IEC N3092

Table 100 — Unordered associative container requirements (in ad-
dition to container) (continued)

Expression Return type Assertion/note pre-/post-condition Complexity
X(i, j, n, hf)
X a(i, j, n, hf)

X Requires: hasher is
CopyConstructible and
key_equal is
DefaultConstructible.
value_type is constructible
from *i.
Effects: Constructs an empty
container with at least n
buckets, using hf as the hash
function and key_equal() as
the key equality predicate, and
inserts elements from [i, j)
into it.

Average case
O(N) (N is
distance(i,
j)), worst case
O(N2)

X(i, j, n)
X a(i, j, n)

X Requires: hasher and
key_equal are
DefaultConstructible.
value_type is constructible
from *i.
Effects: Constructs an empty
container with at least n
buckets, using hasher() as the
hash function and key_equal()
as the key equality predicate,
and inserts elements from [i,
j) into it.

Average case
O(N) (N is
distance(i,
j)), worst case
O(N2)

X(i, j)
X a(i, j)

X Requires: hasher and
key_equal are
DefaultConstructible.
value_type is constructible
from *i.
Effects: Constructs an empty
container with an unspecified
number of buckets, using
hasher() as the hash function
and key_equal() as the key
equality predicate, and inserts
elements from [i, j) into it.

Average case
O(N) (N is
distance(i,
j)), worst case
O(N2)

X(il) X Same as X(il.begin(),
il.end()).

Same as
X(il.begin(),
il.end()).

X(b)
X a(b)

X Copy constructor. In addition
to the requirements of Table 93,
copies the hash function,
predicate, and maximum load
factor.

Average case
linear in
b.size(),
worst case
quadratic.

§ 23.2.5 731

c© ISO/IEC N3092

Table 100 — Unordered associative container requirements (in ad-
dition to container) (continued)

Expression Return type Assertion/note pre-/post-condition Complexity
a = b X& Copy assignment operator. In

addition to the requirements of
Table 93, copies the hash
function, predicate, and
maximum load factor.

Average case
linear in
b.size(),
worst case
quadratic.

a = il X& Requires: T is
CopyConstructible and
CopyAssignable.
Effects: Assigns the range
[il.begin(),il.end()) into
a. All existing elements of a are
either assigned to or destroyed.

Same as a =
X(il).

b.hash_function() hasher Returns b’s hash function. constant
b.key_eq() key_equal Returns b’s key equality

predicate.
constant

a_uniq.
emplace(args)

pair<iterator, bool> Requires: T shall be
constructible from args.
Effects: Inserts a T object t
constructed with
std::forward<Args>(args)...
if and only if there is no
element in the container with
key equivalent to the key of t.
The bool component of the
returned pair is true if and only
if the insertion takes place, and
the iterator component of the
pair points to the element with
key equivalent to the key of t.

Average case
O(1), worst case
O(a_uniq.size()).

a_eq. emplace(args) iterator Requires: T shall be
constructible from args.
Effects: Inserts a T object t
constructed with
std::forward<Args>(args)...
and returns the iterator
pointing to the newly inserted
element.

Average case
O(1), worst case
O(a_eq.size()).

§ 23.2.5 732

c© ISO/IEC N3092

Table 100 — Unordered associative container requirements (in ad-
dition to container) (continued)

Expression Return type Assertion/note pre-/post-condition Complexity
a.emplace_hint(p,
args)

iterator Requires: T shall be
constructible from args.
Effects: Equivalent to
a.emplace(
std::forward<Args>(args)...).
Return value is an iterator
pointing to the element with
the key equivalent to the newly
inserted element. The
const_iterator p is a hint
pointing to where the search
should start. Implementations
are permitted to ignore the
hint.

Average case
O(1), worst
case
O(a.size()).

a_uniq.insert(t) pair<iterator,
bool>

Requires: If t is a non-const
rvalue expression, T shall be
MoveConstructible; otherwise,
T shall be CopyConstructible.
Effects: Inserts t if and only if
there is no element in the
container with key equivalent to
the key of t. The bool
component of the returned pair
indicates whether the insertion
takes place, and the iterator
component points to the
element with key equivalent to
the key of t.

Average case
O(1), worst case
O(a_uniq.size()).

a_eq.insert(t) iterator Requires: If t is a non-const
rvalue expression, T shall be
MoveConstructible; otherwise,
T shall be CopyConstructible.
Effects: Inserts t, and returns
an iterator pointing to the
newly inserted element.

Average case
O(1), worst case
O(a_eq.size()).

§ 23.2.5 733

c© ISO/IEC N3092

Table 100 — Unordered associative container requirements (in ad-
dition to container) (continued)

Expression Return type Assertion/note pre-/post-condition Complexity
a.insert(q, t) iterator Requires: If t is a non-const

rvalue expression, T shall be
MoveConstructible; otherwise,
T shall be CopyConstructible.
Effects: Equivalent to
a.insert(t). Return value is an
iterator pointing to the element
with the key equivalent to that
of t. The iterator q is a hint
pointing to where the search
should start. Implementations
are permitted to ignore the
hint.

Average case
O(1), worst
case
O(a.size()).

a.insert(i, j) void Requires: T shall be
constructible from *i.
Pre: i and j are not iterators in
a. Equivalent to a.insert(t)
for each element in [i,j).

Average case
O(N), where N
is distance(i,
j). Worst case
O(N ∗
(a.size()) + N).

a.insert(il) void Same as
a.insert(il.begin(),
il.end()).

Same as
a.insert(
il.begin(),
il.end()).

a.erase(k) size_type Erases all elements with key
equivalent to k. Returns the
number of elements erased.

Average case
O(a.count(k)).
Worst case
O(a.size()).

a.erase(q) iterator Erases the element pointed to
by q. Return value is the
iterator immediately following q
prior to the erasure.

Average case
O(1), worst
case
O(a.size()).

a.erase(q1, q2) iterator Erases all elements in the range
[q1, q2). Return value is the
iterator immediately following
the erased elements prior to the
erasure.

Average case
linear in
distance(q1,
q2), worst case
O(a.size()).

a.clear() void Erases all elements in the
container. Post: a.empty()
returns true

Linear.

b.find(k) iterator;
const_iterator for
const b.

Returns an iterator pointing to
an element with key equivalent
to k, or b.end() if no such
element exists.

Average case
O(1), worst
case
O(b.size()).

§ 23.2.5 734

c© ISO/IEC N3092

Table 100 — Unordered associative container requirements (in ad-
dition to container) (continued)

Expression Return type Assertion/note pre-/post-condition Complexity
b.count(k) size_type Returns the number of elements

with key equivalent to k.
Average case
O(1), worst
case
O(b.size()).

b.equal_range(k) pair<iterator,
iterator>;
pair<const_-
iterator,
const_iterator> for
const b.

Returns a range containing all
elements with keys equivalent
to k. Returns
make_pair(b.end(),
b.end()) if no such elements
exist.

Average case
O(b.count(k)).
Worst case
O(b.size()).

b.bucket_count() size_type Returns the number of buckets
that b contains.

Constant

b.max_bucket_-
count()

size_type Returns an upper bound on the
number of buckets that b might
ever contain.

Constant

b.bucket(k) size_type Pre: b.bucket_count() > 0.
Returns the index of the bucket
in which elements with keys
equivalent to k would be found,
if any such element existed.
Post: the return value shall be
in the range [0,
b.bucket_count()).

Constant

b.bucket_size(n) size_type Pre: n shall be in the range [0,
b.bucket_count()). Returns
the number of elements in the
n th bucket.

O(b.bucket_size(n))

b.begin(n) local_iterator;
const_local_-
iterator for const
b.

Pre: n shall be in the range [0,
b.bucket_count()).
b.begin(n) returns an iterator
referring to the first element in
the bucket. If the bucket is
empty, then b.begin(n) ==
b.end(n).

Constant

b.end(n) local_iterator;
const_local_-
iterator for const
b.

Pre: n shall be in the range [0,
b.bucket_count()). b.end(n)
returns an iterator which is the
past-the-end value for the
bucket.

Constant

b.cbegin(n) const_local_-
iterator

Pre: n shall be in the range [0,
b.bucket_count()). Note:
[b.cbegin(n), b.cend(n)) is
a valid range containing all of
the elements in the n th bucket.

Constant

b.cend(n) const_local_-
iterator

Pre: n shall be in the range [0,
b.bucket_count()).

Constant

§ 23.2.5 735

c© ISO/IEC N3092

Table 100 — Unordered associative container requirements (in ad-
dition to container) (continued)

Expression Return type Assertion/note pre-/post-condition Complexity
b.load_factor() float Returns the average number of

elements per bucket.
Constant

b.max_load_factor() float Returns a positive number that
the container attempts to keep
the load factor less than or
equal to. The container
automatically increases the
number of buckets as necessary
to keep the load factor below
this number.

Constant

a.max_load_-
factor(z)

void Pre: z shall be positive. May
change the container’s
maximum load load factor,
using z as a hint.

Constant

a.rehash(n) void Post: a.bucket_count() >
a.size() /
a.max_load_factor() and
a.bucket_count() >= n.

Average case
linear in
a.size(),
worst case
quadratic.

a.reserve(n) void Same as a.rehash(ceil(n /
a.max_load_factor())).

Average case
linear in
a.size(),
worst case
quadratic.

11 Two unordered containers a and b compare equal if a.size() == b.size() and, for every equivalent-
key group [Ea1,Ea2) obtained from a.equal_range(Ea1), there exists an equivalent-key group [Eb1,Eb2)
obtained from b.equal_range(Ea1), such that distance(Ea1, Ea2) == distance(Eb1, Eb2) and is_-
permutation(Ea1, Ea2, Eb1) returns true. For unordered_set and unordered_map, the complexity of
operator== (i.e., the number of calls to the == operator of the value_type, to the predicate returned by
key_equal(), and to the hasher returned by hash_function()) is proportional to N in the average case
and to N2 in the worst case, where N is a.size(). For unordered_multiset and unordered_multimap,
the complexity of operator== is proportional to

∑
E2

i in the average case and to N2 in the worst case,
where N is a.size(), and Ei is the size of the ith equivalent-key group in a. However, if the respective
elements of each corresponding pair of equivalent-key groups Eai and Ebi are arranged in the same order
(as is commonly the case, e.g., if a and b are unodified copies of the same container), then the average-case
complexity for unordered_multiset and unordered_multimap becomes proportional to N (but worst-case
complexity remains O(N2), e.g., for a pathologically bad hash function). The behavior of a program that
uses operator== or operator!= on unordered containers is undefined unless the Hash and Pred function
objects respectively have the same behavior for both containers and the equality comparison operator for
Key is a refinement268 of the partition into equivalent-key groups produced by Pred.

12 The iterator types iterator and const_iterator of an unordered associative container are of at least the
forward iterator category. For unordered associative containers where the key type and value type are the
same, both iterator and const_iterator are const iterators.

268) Equality comparison is a refinement of partitioning if no two objects that compare equal fall into different partitions.

§ 23.2.5 736

c© ISO/IEC N3092

13 The insert members shall not affect the validity of references to container elements, but may invalidate all
iterators to the container. The erase members shall invalidate only iterators and references to the erased
elements.

14 The insert members shall not affect the validity of iterators if (N+n) < z * B, where N is the number
of elements in the container prior to the insert operation, n is the number of elements inserted, B is the
container’s bucket count, and z is the container’s maximum load factor.

23.2.5.1 Exception safety guarantees [unord.req.except]

1 For unordered associative containers, no clear() function throws an exception. erase(k) does not throw
an exception unless that exception is thrown by the container’s Hash or Pred object (if any).

2 For unordered associative containers, if an exception is thrown by any operation other than the container’s
hash function from within an insert() function inserting a single element, the insert() function has no
effect.

3 For unordered associative containers, no swap function throws an exception unless that exception is thrown
by the swap of the container’s Hash or Pred object (if any).

4 For unordered associative containers, if an exception is thrown from within a rehash() function other than
by the container’s hash function or comparison function, the rehash() function has no effect.

23.3 Sequence containers [sequences]

1 Headers <array>, <deque>, <forward_list>, <list>, <queue>, <stack>, and <vector>.

Header <array> synopsis
namespace std {

#include <initializer_list>

template <class T, size_t N > struct array;
template <class T, size_t N>

bool operator==(const array<T,N>& x, const array<T,N>& y);
template <class T, size_t N>

bool operator!=(const array<T,N>& x, const array<T,N>& y);
template <class T, size_t N>

bool operator<(const array<T,N>& x, const array<T,N>& y);
template <class T, size_t N>

bool operator>(const array<T,N>& x, const array<T,N>& y);
template <class T, size_t N>

bool operator<=(const array<T,N>& x, const array<T,N>& y);
template <class T, size_t N>

bool operator>=(const array<T,N>& x, const array<T,N>& y);
template <class T, size_t N >

void swap(array<T,N>& x, array<T,N>& y);

template <class T> class tuple_size;
template <size_t I, class T> class tuple_element;
template <class T, size_t N>

struct tuple_size<array<T, N> >;
template <size_t I, class T, size_t N>

struct tuple_element<I, array<T, N> >;
template <size_t I, class T, size_t N>

T& get(array<T, N>&);
template <size_t I, class T, size_t N>

§ 23.3 737

c© ISO/IEC N3092

const T& get(const array<T, N>&);
}

Header <deque> synopsis
namespace std {

#include <initializer_list>

template <class T, class Allocator = allocator<T> > class deque;
template <class T, class Allocator>

bool operator==(const deque<T,Allocator>& x, const deque<T,Allocator>& y);
template <class T, class Allocator>

bool operator<(const deque<T,Allocator>& x, const deque<T,Allocator>& y);
template <class T, class Allocator>

bool operator!=(const deque<T,Allocator>& x, const deque<T,Allocator>& y);
template <class T, class Allocator>

bool operator>(const deque<T,Allocator>& x, const deque<T,Allocator>& y);
template <class T, class Allocator>

bool operator>=(const deque<T,Allocator>& x, const deque<T,Allocator>& y);
template <class T, class Allocator>

bool operator<=(const deque<T,Allocator>& x, const deque<T,Allocator>& y);
template <class T, class Allocator>

void swap(deque<T,Allocator>& x, deque<T,Allocator>& y);
}

Header <forward_list> synopsis
namespace std {

#include <initializer_list>

template <class T, class Allocator = allocator<T> > class forward_list;
template <class T, class Allocator>

bool operator==(const forward_list<T,Allocator>& x, const forward_list<T,Allocator>& y);
template <class T, class Allocator>

bool operator< (const forward_list<T,Allocator>& x, const forward_list<T,Allocator>& y);
template <class T, class Allocator>

bool operator!=(const forward_list<T,Allocator>& x, const forward_list<T,Allocator>& y);
template <class T, class Allocator>

bool operator> (const forward_list<T,Allocator>& x, const forward_list<T,Allocator>& y);
template <class T, class Allocator>

bool operator>=(const forward_list<T,Allocator>& x, const forward_list<T,Allocator>& y);
template <class T, class Allocator>

bool operator<=(const forward_list<T,Allocator>& x, const forward_list<T,Allocator>& y);
template <class T, class Allocator>

void swap(forward_list<T,Allocator>& x, forward_list<T,Allocator>& y);
}

Header <list> synopsis
namespace std {

#include <initializer_list>

template <class T, class Allocator = allocator<T> > class list;
template <class T, class Allocator>

bool operator==(const list<T,Allocator>& x, const list<T,Allocator>& y);
template <class T, class Allocator>

§ 23.3 738

c© ISO/IEC N3092

bool operator< (const list<T,Allocator>& x, const list<T,Allocator>& y);
template <class T, class Allocator>

bool operator!=(const list<T,Allocator>& x, const list<T,Allocator>& y);
template <class T, class Allocator>

bool operator> (const list<T,Allocator>& x, const list<T,Allocator>& y);
template <class T, class Allocator>

bool operator>=(const list<T,Allocator>& x, const list<T,Allocator>& y);
template <class T, class Allocator>

bool operator<=(const list<T,Allocator>& x, const list<T,Allocator>& y);
template <class T, class Allocator>

void swap(list<T,Allocator>& x, list<T,Allocator>& y);
}

Header <queue> synopsis
namespace std {

#include <initializer_list>

template <class T, class Container = deque<T> > class queue;
template <class T, class Container>

bool operator==(const queue<T, Container>& x,const queue<T, Container>& y);
template <class T, class Container>

bool operator< (const queue<T, Container>& x,const queue<T, Container>& y);
template <class T, class Container>

bool operator!=(const queue<T, Container>& x,const queue<T, Container>& y);
template <class T, class Container>

bool operator> (const queue<T, Container>& x,const queue<T, Container>& y);
template <class T, class Container>

bool operator>=(const queue<T, Container>& x,const queue<T, Container>& y);
template <class T, class Container>

bool operator<=(const queue<T, Container>& x,const queue<T, Container>& y);
template <class T, class Allocator>

void swap(queue<T, Container>& x, queue<T, Container>& y);

template <class T, class Container = vector<T>,
class Compare = less<typename Container::value_type> >

class priority_queue;
template <class T, class Container, class Compare>

void swap(priority_queue<T, Container, Compare>& x, priority_queue<T, Container, Compare>& y);
}

Header <stack> synopsis
namespace std {

#include <initializer_list>

template <class T, class Container = deque<T> > class stack;
template <class T, class Container>

bool operator==(const stack<T, Container>& x,const stack<T, Container>& y);
template <class T, class Container>

bool operator< (const stack<T, Container>& x,const stack<T, Container>& y);
template <class T, class Container>

bool operator!=(const stack<T, Container>& x,const stack<T, Container>& y);
template <class T, class Container>

bool operator> (const stack<T, Container>& x,const stack<T, Container>& y);
template <class T, class Container>

§ 23.3 739

c© ISO/IEC N3092

bool operator>=(const stack<T, Container>& x,const stack<T, Container>& y);
template <class T, class Container>

bool operator<=(const stack<T, Container>& x,const stack<T, Container>& y);
template <class T, class Container>

void swap(stack<T, Container>& x, stack<T, Container>& y);
}

Header <vector> synopsis
namespace std {

#include <initializer_list>

template <class T, class Allocator = allocator<T> > class vector;
template <class T, class Allocator>

bool operator==(const vector<T,Allocator>& x,const vector<T,Allocator>& y);
template <class T, class Allocator>

bool operator< (const vector<T,Allocator>& x,const vector<T,Allocator>& y);
template <class T, class Allocator>

bool operator!=(const vector<T,Allocator>& x,const vector<T,Allocator>& y);
template <class T, class Allocator>

bool operator> (const vector<T,Allocator>& x,const vector<T,Allocator>& y);
template <class T, class Allocator>

bool operator>=(const vector<T,Allocator>& x,const vector<T,Allocator>& y);
template <class T, class Allocator>

bool operator<=(const vector<T,Allocator>& x,const vector<T,Allocator>& y);
template <class T, class Allocator>

void swap(vector<T,Allocator>& x, vector<T,Allocator>& y);

template <class Allocator> class vector<bool,Allocator>;

// Hash support
template <class T> struct hash;
template <class Allocator> struct hash<vector<bool, Allocator> >;

23.3.1 Class template array [array]

1 The header <array> defines a class template for storing fixed-size sequences of objects. An array supports
random access iterators. An instance of array<T, N> stores N elements of type T, so that size() == N is
an invariant. The elements of an array are stored contiguously, meaning that if a is an array<T, N> then
it obeys the identity &a[n] == &a[0] + n for all 0 <= n < N.

2 An array is an aggregate (8.5.1) that can be initialized with the syntax
array a<T, N> = { initializer-list };

where initializer-list is a comma separated list of up to N elements whose types are convertible to T.

3 An array satisfies all of the requirements of a container and of a reversible container (23.2), except that a
default constructed array object is not empty and that swap does not have constant complexity. An array
satisfies some of the requirements of a sequence container (23.2.3). Descriptions are provided here only for
operations on array that are not described in one of these tables and for operations where there is additional
semantic information.

namespace std {
template <class T, size_t N >
struct array {

§ 23.3.1 740

c© ISO/IEC N3092

// types:
typedef T& reference;
typedef const T& const_reference;
typedef implementation-defined iterator;
typedef implementation-defined const_iterator;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef T value_type;
typedef T* pointer;
typedef const T* const_pointer;
typedef reverse_iterator<iterator> reverse_iterator;
typedef reverse_iterator<const_iterator> const_reverse_iterator;

T elems[N]; // exposition only

// No explicit construct/copy/destroy for aggregate type

void fill(const T& u);
void swap(array<T, N>&);

// iterators:
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;

reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;

const_iterator cbegin() const;
const_iterator cend() const;
const_reverse_iterator crbegin() const;
const_reverse_iterator crend() const;

// capacity:
constexpr size_type size();
constexpr size_type max_size();
constexpr bool empty();

// element access:
reference operator[](size_type n);
const_reference operator[](size_type n) const;
const_reference at(size_type n) const;
reference at(size_type n);
reference front();
const_reference front() const;
reference back();
const_reference back() const;

T * data();
const T * data() const;

};
}

§ 23.3.1 741

c© ISO/IEC N3092

4 [Note: The member variable elems is shown for exposition only, to emphasize that array is a class aggregate.
The name elems is not part of array’s interface. — end note]

23.3.1.1 array constructors, copy, and assignment [array.cons]

1 The conditions for an aggregate (8.5.1) shall be met. Class array relies on the implicitly-declared special
member functions (12.1, 12.4, and 12.8) to conform to the container requirements table in 23.2.

23.3.1.2 array specialized algorithms [array.special]

template <class T, size_t N> void swap(array<T,N>& x, array<T,N>& y);

1 Effects:
x.swap(y);

2 Complexity: linear in N.

23.3.1.3 array::size [array.size]

template <class T, size_t N> constexpr size_type array<T,N>::size();

1 Returns: N

23.3.1.4 array::data [array.data]

T *data();
const T *data() const;

1 Returns: elems.

23.3.1.5 array::fill [array.fill]

void fill(const T& u);

1 Effects: fill_n(begin(), N, u)

23.3.1.6 array::swap [array.swap]

void swap(array& y);

1 Effects: swap_ranges(begin(), end(), y.begin())

2 Throws: Nothing unless one of the element-wise swap calls throws an exception.

3 Note: Unlike the swap function for other containers, array::swap takes linear time, may exit via an
exception, and does not cause iterators to become associated with the other container.

23.3.1.7 Zero sized arrays [array.zero]

1 array shall provide support for the special case N == 0.

2 In the case that N == 0, begin() == end() == unique value. The return value of data() is unspecified.

3 The effect of calling front() or back() for a zero-sized array is implementation-defined.

23.3.1.8 Tuple interface to class template array [array.tuple]

§ 23.3.1.8 742

c© ISO/IEC N3092

tuple_size<array<T, N> >::value

1 Return type: integral constant expression.

2 Value: N

tuple_element<I, array<T, N> >::type

3 Requires: I < N. The program is ill-formed if I is out of bounds.

4 Value: The type T.

template <size_t I, class T, size_t N> T& get(array<T, N>& a);

5 Requires: I < N. The program is ill-formed if I is out of bounds.

6 Returns: A reference to the Ith element of a, where indexing is zero-based.

7 Throws: nothing.

template <size_t I, class T, size_t N> const T& get(const array<T, N>& a);

8 Requires: I < N. The program is ill-formed if I is out of bounds.

9 Returns: A const reference to the Ith element of a, where indexing is zero-based.

10 Throws: nothing.

23.3.2 Class template deque [deque]

1 A deque is a sequence container that, like a vector (23.3.6), supports random access iterators. In addition,
it supports constant time insert and erase operations at the beginning or the end; insert and erase in the
middle take linear time. That is, a deque is especially optimized for pushing and popping elements at the
beginning and end. As with vectors, storage management is handled automatically.

2 A deque satisfies all of the requirements of a container, of a reversible container (given in tables in 23.2), of
a sequence container, including the optional sequence container requirements (23.2.3), and of an allocator-
aware container (Table 96). Descriptions are provided here only for operations on deque that are not
described in one of these tables or for operations where there is additional semantic information.

namespace std {
template <class T, class Allocator = allocator<T> >
class deque {
public:

// types:
typedef value_type& reference;
typedef const value_type& const_reference;
typedef implementation-defined iterator; // See 23.2
typedef implementation-defined const_iterator; // See 23.2
typedef implementation-defined size_type; // See 23.2
typedef implementation-defined difference_type;// See 23.2
typedef T value_type;
typedef Allocator allocator_type;
typedef typename allocator_traits<Allocator>::pointer pointer;
typedef typename allocator_traits<Allocator>::const_pointer const_pointer;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;

// 23.3.2.1 construct/copy/destroy:

§ 23.3.2 743

c© ISO/IEC N3092

explicit deque(const Allocator& = Allocator());
explicit deque(size_type n);
deque(size_type n, const T& value,const Allocator& = Allocator());
template <class InputIterator>

deque(InputIterator first, InputIterator last,const Allocator& = Allocator());
deque(const deque<T,Allocator>& x);
deque(deque&&);
deque(const deque&, const Allocator&);
deque(deque&&, const Allocator&);
deque(initializer_list<T>, const Allocator& = Allocator());

~deque();
deque<T,Allocator>& operator=(const deque<T,Allocator>& x);
deque<T,Allocator>& operator=(deque<T,Allocator>&& x);
deque& operator=(initializer_list<T>);
template <class InputIterator>

void assign(InputIterator first, InputIterator last);
void assign(size_type n, const T& t);
void assign(initializer_list<T>);
allocator_type get_allocator() const;

// iterators:
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;

const_iterator cbegin() const;
const_iterator cend() const;
const_reverse_iterator crbegin() const;
const_reverse_iterator crend() const;

// 23.3.2.2 capacity:
size_type size() const;
size_type max_size() const;
void resize(size_type sz);
void resize(size_type sz, const T& c);
void shrink_to_fit();
bool empty() const;

// element access:
reference operator[](size_type n);
const_reference operator[](size_type n) const;
reference at(size_type n);
const_reference at(size_type n) const;
reference front();
const_reference front() const;
reference back();
const_reference back() const;

// 23.3.2.3 modifiers:

§ 23.3.2 744

c© ISO/IEC N3092

template <class... Args> void emplace_front(Args&&... args);
template <class... Args> void emplace_back(Args&&... args);
template <class... Args> iterator emplace(const_iterator position, Args&&... args);

void push_front(const T& x);
void push_front(T&& x);
void push_back(const T& x);
void push_back(T&& x);

iterator insert(const_iterator position, const T& x);
iterator insert(const_iterator position, T&& x);
iterator insert(const_iterator position, size_type n, const T& x);
template <class InputIterator>

iterator insert (const_iterator position, InputIterator first, InputIterator last);
iterator insert(const_iterator position, initializer_list<T>);

void pop_front();
void pop_back();

iterator erase(const_iterator position);
iterator erase(const_iterator first, const_iterator last);
void swap(deque<T,Allocator>&);
void clear();

};

template <class T, class Allocator>
bool operator==(const deque<T,Allocator>& x, const deque<T,Allocator>& y);

template <class T, class Allocator>
bool operator< (const deque<T,Allocator>& x, const deque<T,Allocator>& y);

template <class T, class Allocator>
bool operator!=(const deque<T,Allocator>& x, const deque<T,Allocator>& y);

template <class T, class Allocator>
bool operator> (const deque<T,Allocator>& x, const deque<T,Allocator>& y);

template <class T, class Allocator>
bool operator>=(const deque<T,Allocator>& x, const deque<T,Allocator>& y);

template <class T, class Allocator>
bool operator<=(const deque<T,Allocator>& x, const deque<T,Allocator>& y);

// specialized algorithms:
template <class T, class Allocator>

void swap(deque<T,Allocator>& x, deque<T,Allocator>& y);
}

23.3.2.1 deque constructors, copy, and assignment [deque.cons]

explicit deque(const Allocator& = Allocator());

1 Effects: Constructs an empty deque, using the specified allocator.

2 Complexity: Constant.

explicit deque(size_type n);

3 Effects: Constructs a deque with n default constructed elements.

4 Requires: T shall be DefaultConstructible.

§ 23.3.2.1 745

c© ISO/IEC N3092

5 Complexity: Linear in n.

deque(size_type n, const T& value,
const Allocator& = Allocator());

6 Effects: Constructs a deque with n copies of value, using the specified allocator.

7 Requires: T shall be CopyConstructible.

8 Complexity: Linear in n.

template <class InputIterator>
deque(InputIterator first, InputIterator last,

const Allocator& = Allocator());

9 Effects: Constructs a deque equal to the the range [first,last), using the specified allocator.

10 Complexity: distance(first, last).

template <class InputIterator>
void assign(InputIterator first, InputIterator last);

11 Effects:
erase(begin(), end());
insert(begin(), first, last);

void assign(size_type n, const T& t);

12 Effects:
erase(begin(), end());
insert(begin(), n, t);

23.3.2.2 deque capacity [deque.capacity]

void resize(size_type sz);

1 Effects: If sz < size(), equivalent to erase(begin() + sz, end());. If size() < sz, appends sz
- size() default constructed elements to the sequence.

2 Requires: T shall be DefaultConstructible.

void resize(size_type sz, const T& c);

3 Effects:
if (sz > size())

insert(end(), sz-size(), c);
else if (sz < size())

erase(begin()+sz, end());
else

; // do nothing

4 Requires: T shall be CopyConstructible.

void shrink_to_fit();

5 Remarks: shrink_to_fit is a non-binding request to reduce memory use. [Note: The request is
non-binding to allow latitude for implementation-specific optimizations. — end note]

§ 23.3.2.2 746

c© ISO/IEC N3092

23.3.2.3 deque modifiers [deque.modifiers]

iterator insert(const_iterator position, const T& x);
iterator insert(const_iterator position, T&& x);
iterator insert(const_iterator position, size_type n, const T& x);
template <class InputIterator>

iterator insert(const_iterator position,
InputIterator first, InputIterator last);

iterator insert(const_iterator position, initializer_list<T>);

template <class... Args> void emplace_front(Args&&... args);
template <class... Args> void emplace_back(Args&&... args);
template <class... Args> iterator emplace(const_iterator position, Args&&... args);
void push_front(const T& x);
void push_front(T&& x);
void push_back(const T& x);
void push_back(T&& x);

1 Effects: An insertion in the middle of the deque invalidates all the iterators and references to elements
of the deque. An insertion at either end of the deque invalidates all the iterators to the deque, but has
no effect on the validity of references to elements of the deque.

2 Remarks: If an exception is thrown other than by the copy constructor, move constructor, assignment
operator, or move assignment operator of T there are no effects. If an exception is thrown by the move
constructor of a non-CopyConstructible T, the effects are unspecified.

3 Complexity: The complexity is linear in the number of elements inserted plus the lesser of the distances
to the beginning and end of the deque. Inserting a single element either at the beginning or end of a
deque always takes constant time and causes a single call to a constructor of T.

iterator erase(const_iterator position);
iterator erase(const_iterator first, const_iterator last);

4 Effects: An erase operation that erases the last element of a deque invalidates only the past-the-end
iterator and all iterators and references to the erased elements. An erase operation that erases the first
element of a deque but not the last element invalidates only the erased elements. An erase operation
that erases neither the first element nor the last element of a deque invalidates the past-the-end iterator
and all iterators and references to all the elements of the deque.

5 Complexity: The number of calls to the destructor is the same as the number of elements erased, but
the number of calls to the assignment operator is no more than the lesser of the number of elements
before the erased elements and the number of elements after the erased elements.

6 Throws: Nothing unless an exception is thrown by the copy constructor, move constructor, assignment
operator, or move assignment operator of T.

23.3.2.4 deque specialized algorithms [deque.special]

template <class T, class Allocator>
void swap(deque<T,Allocator>& x, deque<T,Allocator>& y);

1 Effects:
x.swap(y);

§ 23.3.2.4 747

c© ISO/IEC N3092

23.3.3 Class template forward_list [forwardlist]

1 A forward_list is a container that supports forward iterators and allows constant time insert and erase
operations anywhere within the sequence, with storage management handled automatically. Fast random
access to list elements is not supported. [Note: It is intended that forward_list have zero space or time
overhead relative to a hand-written C-style singly linked list. Features that would conflict with that goal
have been omitted. — end note]

2 A forward_list satisfies all of the requirements of a container (table 93), except that the size() member
function is not provided. A forward_list also satisfies all of the requirements for an allocator-aware
container (Table 96). In addition, a forward_list provides the assign member functions (Table 97) and
several of the optional container requirements (Table 98). Descriptions are provided here only for operations
on forward_list that are not described in that table or for operations where there is additional semantic
information.

3 [Note: modifying any list requires access to the element preceding the first element of interest, but in a
forward_list there is no constant-time way to acess a preceding element. For this reason, ranges that are
modified, such as those supplied to erase and splice, must be open at the beginning. — end note]

namespace std {
template <class T, class Allocator = allocator<T> >
class forward_list {
public:

// types:
typedef value_type& reference;
typedef const value_type& const_reference;
typedef implementation-defined iterator; // See 23.2
typedef implementation-defined const_iterator; // See 23.2
typedef implementation-defined size_type; // See 23.2
typedef implementation-defined difference_type;// See 23.2
typedef T value_type;
typedef Allocator allocator_type;
typedef typename allocator_traits<Allocator>::pointer pointer;
typedef typename allocator_traits<Allocator>::const_pointer const_pointer;

// 23.3.3.1 construct/copy/destroy:
explicit forward_list(const Allocator& = Allocator());
explicit forward_list(size_type n);
forward_list(size_type n, const T& value,

const Allocator& = Allocator());
template <class InputIterator>

forward_list(InputIterator first, InputIterator last,
const Allocator& = Allocator());

forward_list(const forward_list& x);
forward_list(forward_list&& x);
forward_list(const forward_list& x, const Allocator&);
forward_list(forward_list&& x, const Allocator&);
forward_list(initializer_list<T>, const Allocator& = Allocator());
~forward_list();
forward_list<T,Allocator>& operator=(const forward_list<T,Allocator>& x);
forward_list<T,Allocator>& operator=(forward_list<T,Allocator>&& x);
forward_list& operator=(initializer_list<T>);
template <class InputIterator>

void assign(InputIterator first, InputIterator last);
void assign(size_type n, const T& t);
void assign(initializer_list<T>);

§ 23.3.3 748

c© ISO/IEC N3092

allocator_type get_allocator() const;

// 23.3.3.2 iterators:
iterator before_begin();
const_iterator before_begin() const;
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;

const_iterator cbegin() const;
const_iterator cbefore_begin() const;
const_iterator cend() const;

// capacity:
bool empty() const;
size_type max_size() const;

// 23.3.3.3 element access:
reference front();
const_reference front() const;

// 23.3.3.4 modifiers:
template <class... Args> void emplace_front(Args&&... args);
void push_front(const T& x);
void push_front(T&& x);
void pop_front();

template <class... Args> iterator emplace_after(const_iterator position, Args&&... args);
iterator insert_after(const_iterator position, const T& x);
iterator insert_after(const_iterator position, T&& x);

iterator insert_after(const_iterator position, size_type n, const T& x);
template <class InputIterator>

iterator insert_after(const_iterator position, InputIterator first, InputIterator last);
iterator insert_after(const_iterator position, initializer_list<T> il);

void erase_after(const_iterator position);
void erase_after(const_iterator position, iterator last);
void swap(forward_list<T,Allocator>&);

void resize(size_type sz);
void resize(size_type sz, value_type c);
void clear();

// 23.3.3.5 forward_list operations:
void splice_after(const_iterator position, forward_list<T,Allocator>&& x);
void splice_after(const_iterator position, forward_list<T,Allocator>&& x,

const_iterator i);
void splice_after(const_iterator position, forward_list<T,Allocator>&& x,

const_iterator first, const_iterator last);

void remove(const T& value);
template <class Predicate> void remove_if(Predicate pred);

§ 23.3.3 749

c© ISO/IEC N3092

void unique();
template <class BinaryPredicate> void unique(BinaryPredicate binary_pred);

void merge(forward_list<T,Allocator>&& x);
template <class Compare> void merge(forward_list<T,Allocator>&& x, Compare comp);

void sort();
template <class Compare> void sort(Compare comp);

void reverse();
};

// Comparison operators
template <class T, class Allocator>

bool operator==(const forward_list<T,Allocator>& x, const forward_list<T,Allocator>& y);
template <class T, class Allocator>

bool operator< (const forward_list<T,Allocator>& x, const forward_list<T,Allocator>& y);
template <class T, class Allocator>

bool operator!=(const forward_list<T,Allocator>& x, const forward_list<T,Allocator>& y);
template <class T, class Allocator>

bool operator> (const forward_list<T,Allocator>& x, const forward_list<T,Allocator>& y);
template <class T, class Allocator>

bool operator>=(const forward_list<T,Allocator>& x, const forward_list<T,Allocator>& y);
template <class T, class Allocator>

bool operator<=(const forward_list<T,Allocator>& x, const forward_list<T,Allocator>& y);

// 23.3.3.6 specialized algorithms:
template <class T, class Allocator>

void swap(forward_list<T,Allocator>& x, forward_list<T,Allocator>& y);
}

23.3.3.1 forward_list constructors, copy, assignment [forwardlist.cons]

explicit forward_list(const Allocator& = Allocator());

1 Effects: Constructs an empty forward_list object using the specified allocator.

2 Complexity: Constant.

explicit forward_list(size_type n);

3 Effects: Constructs a forward_list object with n default constructed elements.

4 Requires: T shall be DefaultConstructible.

5 Complexity: Linear in n.

forward_list(size_type n, const T& value, const Allocator& = Allocator());

6 Effects: Constructs a forward_list object with n copies of value using the specified allocator.

7 Requires: T shall be CopyConstructible.

8 Complexity: Linear in n.

template <class InputIterator>
forward_list(InputIterator first, InputIterator last, const Allocator& = Allocator());

9 Effects: Constructs a forward_list object equal to the range [first,last).

§ 23.3.3.1 750

c© ISO/IEC N3092

10 Complexity: Linear in distance(first, last).

template <class InputIterator>
void assign(InputIterator first, InputIterator last);

11 Effects: clear(); insert_after(before_begin(), first, last);

void assign(size_type n, const T& t);

12 Effects: clear(); insert_after(before_begin(), n, t);

23.3.3.2 forward_list iterators [forwardlist.iter]

iterator before_begin();
const_iterator before_begin() const;
const_iterator cbefore_begin() const;

1 Returns: A non-dereferenceable iterator that, when incremented, is equal to the iterator returned by
begin().

23.3.3.3 forward_list element access [forwardlist.access]

reference front();
const_reference front() const;

1 Returns: *begin()

23.3.3.4 forward_list modifiers [forwardlist.modifiers]

1 None of the overloads of insert_after shall affect the validity of iterators and references, and erase_-
after shall invalidate only iterators and references to the erased elements. If an exception is thrown during
insert_after there shall be no effect. Inserting n elements into a forward_list is linear in n, and the
number of calls to the copy or move constructor of T is exactly equal to n. Erasing n elements from a
forward_list is linear in n and the number of calls to the destructor of type T is exactly equal to n.

template <class... Args> void emplace_front(Args&&... args);

2 Effects: Inserts an object of type value_type constructed with value_type(std::forward<Args>(args)...)
at the beginning of the list.

void push_front(const T& x);
void push_front(T&& x);

3 Effects: Inserts a copy of x at the beginning of the list.

void pop_front();

4 Effects: erase_after(before_begin())

iterator insert_after(const_iterator position, const T& x);
iterator insert_after(const_iterator position, T&& x);

5 Requires: position is before_begin() or is a dereferenceable iterator in the range [begin(),end()).

6 Effects: Inserts a copy of x after position.

7 Returns: An iterator pointing to the copy of x.

§ 23.3.3.4 751

c© ISO/IEC N3092

iterator insert_after(const_iterator position, size_type n, const T& x);

8 Requires: position is before_begin() or is a dereferenceable iterator in the range [begin(),end()).

9 Effects: Inserts n copies of x after position.

10 Returns: position.

template <class InputIterator>
iterator insert_after(const_iterator position, InputIterator first, InputIterator last);

11 Requires: position is before_begin() or is a dereferenceable iterator in the range [begin(),end()).
first and last are not iterators in *this.

12 Effects: Inserts copies of elements in [first,last) after position.

13 Returns: position.

iterator insert_after(const_iterator position, initializer_list<T> il);

14 Effects: insert_after(p, il.begin(), il.end()).

15 Returns: position.

template <class... Args>
iterator emplace_after(const_iterator position, Args&&... args);

16 Requires: position is before_begin() or is a dereferenceable iterator in the range [begin(),end()).

17 Effects: Inserts an object of type value_type constructed with value_type(std::forward<Args>(args)...)
after position.

void erase_after(const_iterator position);

18 Requires: The iterator following position is dereferenceable.

19 Effects: Erases the element pointed to by the iterator following position.

void erase_after(const_iterator position, iterator last);

20 Requires: All iterators in the range (position,last) are dereferenceable.

21 Effects: Erases the elements in the range (position,last).

void resize(size_type sz);
void resize(size_type sz, value_type c);

22 Effects: If sz < distance(begin(), end()), erases the last distance(begin(), end()) - sz ele-
ments from the list. Otherwise, inserts sz - distance(begin(), end()) elements at the end of the
list. For the first signature the inserted elements are default constructed, and for the second signature
they are copies of c.

void clear();

23 Effects: Erases all elements in the range [begin(),end()).

24 Remarks: Does not invalidate past-the-end iterators.

23.3.3.5 forward_list operations [forwardlist.ops]

void splice_after(const_iterator position, forward_list<T,Allocator>&& x);

§ 23.3.3.5 752

c© ISO/IEC N3092

1 Requires: position is before_begin() or is a dereferenceable iterator in the range [begin(),end()).
&x != this.

2 Effects: Inserts the contents of x after position, and x becomes empty. Pointers and references to the
moved elements of x now refer to those same elements but as members of *this. Iterators referring
to the moved elements will continue to refer to their elements, but they now behave as iterators into
*this, not into x.

3 Throws: Nothing.

4 Complexity: O(distance(x.begin(), x.end()))

void splice_after(const_iterator position, forward_list<T,Allocator>&& x, const_iterator i);

5 Requires: position is before_begin() or is a dereferenceable iterator in the range [begin(),end()).
The iterator following i is a dereferenceable iterator in x.

6 Effects: Inserts the element following i into *this, following position, and removes it from x. The
result is unchanged if position == i or position == ++i. Pointers and references to *i continue to
refer to the same element but as a member of *this. Iterators to *i (including i itself) continue to
refer to the same element, but now behave as iterators into *this, not into x.

7 Throws: Nothing.

8 Complexity: O(1)

void splice_after(const_iterator position, forward_list<T,Allocator>&& x,
const_iterator first, const_iterator last);

9 Requires: position is before_begin() or is a dereferenceable iterator in the range [begin(),end()).
(first,last) is a valid range in x, and all iterators in the range (first,last) are dereferenceable.
position is not an iterator in the range (first,last).

10 Effects: Inserts elements in the range (first,last) after position and removes the elements from x.
Pointers and references to the moved elements of x now refer to those same elements but as members
of *this. Iterators referring to the moved elements will continue to refer to their elements, but they
now behave as iterators into *this, not into x.

11 Complexity: O(distance(first, last))

void remove(const T& value);
template <class Predicate> void remove_if(Predicate pred);

12 Effects: Erases all the elements in the list referred by a list iterator i for which the following conditions
hold: *i == value (for remove()), pred(*i) is true (for remove_if()). This operation shall be stable:
the relative order of the elements that are not removed is the same as their relative order in the original
list.

13 Throws: Nothing unless an exception is thrown by the equality comparison or the predicate.

14 Complexity: Exactly distance(begin(), end()) applications of the corresponding predicate.

void unique();
template <class BinaryPredicate> void unique(BinaryPredicate pred);

15 Effects: Eliminates all but the first element from every consecutive group of equal elements referred
to by the iterator i in the range [first + 1,last) for which *i == *(i-1) (for the version with no
arguments) or pred(*i, *(i - 1)) (for the version with a predicate argument) holds.

16 Throws: Nothing unless an exception is thrown by the equality comparison or the predicate.

§ 23.3.3.5 753

c© ISO/IEC N3092

17 Complexity: If the range [first,last) is not empty, exactly (last - first) - 1 applications of
the corresponding predicate, otherwise no applications of the predicate.

void merge(forward_list<T,Allocator>&& x);
template <class Compare> void merge(forward_list<T,Allocator>&& x, Compare comp)

18 Requires: comp defines a strict weak ordering (25.4), and *this and x are both sorted according to
this ordering.

19 Effects: Merges x into *this. This operation shall be stable: for equivalent elements in the two lists,
the elements from *this shall always precede the elements from x. x is empty after the merge. If an
exception is thrown other than by a comparison there are no effects.

20 Complexity: At most distance(begin(), end()) + distance(x.begin(), x.end()) - 1 comparisons.

void sort();
template <class Compare> void sort(Compare comp);

21 Requires: operator< (for the version with no arguments) or comp (for the version with a comparison
argument) defines a strict weak ordering (25.4).

22 Effects: Sorts the list according to the operator< or the comp function object. This operation shall be
stable: the relative order of the equivalent elements is preserved. If an exception is thrown the order
of the elements in *this is unspecified.

23 Complexity: Approximately N log N comparisons, where N is distance(begin(), end()).

void reverse();

24 Effects: Reverses the order of the elements in the list.

25 Throws: Nothing.

26 Complexity: Linear time.

23.3.3.6 forward_list specialized algorithms [forwardlist.spec]

template <class T, class Allocator>
void swap(forward_list<T,Allocator>& x, forward_list<T,Allocator>& y);

1 Effects: x.swap(y)

23.3.4 Class template list [list]

1 A list is a sequence container that supports bidirectional iterators and allows constant time insert and
erase operations anywhere within the sequence, with storage management handled automatically. Unlike
vectors (23.3.6) and deques (23.3.2), fast random access to list elements is not supported, but many algo-
rithms only need sequential access anyway.

2 A list satisfies all of the requirements of a container, of a reversible container (given in two tables in 23.2),
of a sequence container, including most of the the optional sequence container requirements (23.2.3), and
of an allocator-aware container (Table 96). The exceptions are the operator[] and at member functions,
which are not provided.269 Descriptions are provided here only for operations on list that are not described
in one of these tables or for operations where there is additional semantic information.

269) These member functions are only provided by containers whose iterators are random access iterators.

§ 23.3.4 754

c© ISO/IEC N3092

namespace std {
template <class T, class Allocator = allocator<T> >
class list {
public:

// types:
typedef value_type& reference;
typedef const value_type& const_reference;
typedef implementation-defined iterator; // See 23.2
typedef implementation-defined const_iterator; // See 23.2
typedef implementation-defined size_type; // See 23.2
typedef implementation-defined difference_type;// See 23.2
typedef T value_type;
typedef Allocator allocator_type;
typedef typename allocator_traits<Allocator>::pointer pointer;
typedef typename allocator_traits<Allocator>::const_pointer const_pointer;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;

// 23.3.4.1 construct/copy/destroy:
explicit list(const Allocator& = Allocator());
explicit list(size_type n);
list(size_type n, const T& value, const Allocator& = Allocator());
template <class InputIterator>

list(InputIterator first, InputIterator last, const Allocator& = Allocator());
list(const list<T,Allocator>& x);
list(list&& x);
list(const list&, const Allocator&);
list(list&&, const Allocator&);
list(initializer_list<T>, const Allocator& = Allocator());

~list();
list<T,Allocator>& operator=(const list<T,Allocator>& x);
list<T,Allocator>& operator=(list<T,Allocator>&& x);
list& operator=(initializer_list<T>);
template <class InputIterator>

void assign(InputIterator first, InputIterator last);
void assign(size_type n, const T& t);
void assign(initializer_list<T>);
allocator_type get_allocator() const;

// iterators:
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;

const_iterator cbegin() const;
const_iterator cend() const;
const_reverse_iterator crbegin() const;
const_reverse_iterator crend() const;

// 23.3.4.2 capacity:

§ 23.3.4 755

c© ISO/IEC N3092

bool empty() const;
size_type size() const;
size_type max_size() const;
void resize(size_type sz);
void resize(size_type sz, const T& c);

// element access:
reference front();
const_reference front() const;
reference back();
const_reference back() const;

// 23.3.4.3 modifiers:
template <class... Args> void emplace_front(Args&&... args);
void pop_front();
template <class... Args> void emplace_back(Args&&... args);
void push_front(const T& x);
void push_front(T&& x);
void push_back(const T& x);
void push_back(T&& x);
void pop_back();

template <class... Args> iterator emplace(const_iterator position, Args&&... args);
iterator insert(const_iterator position, const T& x);
iterator insert(const_iterator position, T&& x);
iterator insert(const_iterator position, size_type n, const T& x);
template <class InputIterator>

iterator insert(const_iterator position, InputIterator first,
InputIterator last);

iterator insert(const_iterator position, initializer_list<T> il);

iterator erase(const_iterator position);
iterator erase(const_iterator position, const_iterator last);
void swap(list<T,Allocator>&);
void clear();

// 23.3.4.4 list operations:
void splice(const_iterator position, list<T,Allocator>& x);
void splice(const_iterator position, list<T,Allocator>&& x);
void splice(const_iterator position, list<T,Allocator>& x, const_iterator i);
void splice(const_iterator position, list<T,Allocator>&& x, const_iterator i);
void splice(const_iterator position, list<T,Allocator>& x,

const_iterator first, const_iterator last);
void splice(const_iterator position, list<T,Allocator>&& x,

const_iterator first, const_iterator last);

void remove(const T& value);
template <class Predicate> void remove_if(Predicate pred);

void unique();
template <class BinaryPredicate>

void unique(BinaryPredicate binary_pred);

void merge(list<T,Allocator>& x);
void merge(list<T,Allocator>&& x);

§ 23.3.4 756

c© ISO/IEC N3092

template <class Compare> void merge(list<T,Allocator>& x, Compare comp);
template <class Compare> void merge(list<T,Allocator>&& x, Compare comp);

void sort();
template <class Compare> void sort(Compare comp);

void reverse();
};

template <class T, class Allocator>
bool operator==(const list<T,Allocator>& x, const list<T,Allocator>& y);

template <class T, class Allocator>
bool operator< (const list<T,Allocator>& x, const list<T,Allocator>& y);

template <class T, class Allocator>
bool operator!=(const list<T,Allocator>& x, const list<T,Allocator>& y);

template <class T, class Allocator>
bool operator> (const list<T,Allocator>& x, const list<T,Allocator>& y);

template <class T, class Allocator>
bool operator>=(const list<T,Allocator>& x, const list<T,Allocator>& y);

template <class T, class Allocator>
bool operator<=(const list<T,Allocator>& x, const list<T,Allocator>& y);

// specialized algorithms:
template <class T, class Allocator>

void swap(list<T,Allocator>& x, list<T,Allocator>& y);
}

23.3.4.1 list constructors, copy, and assignment [list.cons]

explicit list(const Allocator& = Allocator());

1 Effects: Constructs an empty list, using the specified allocator.

2 Complexity: Constant.

explicit list(size_type n);

3 Effects: Constructs a list with n default constructed elements.

4 Requires: T shall be DefaultConstructible.

5 Complexity: Linear in n.

list(size_type n, const T& value,
const Allocator& = Allocator());

6 Effects: Constructs a list with n copies of value, using the specified allocator.

7 Requires: T shall be CopyConstructible.

8 Complexity: Linear in n.

template <class InputIterator>
list(InputIterator first, InputIterator last,

const Allocator& = Allocator());

9 Effects: Constructs a list equal to the range [first,last).

10 Complexity: Linear in distance(first, last).

§ 23.3.4.1 757

c© ISO/IEC N3092

template <class InputIterator>
void assign(InputIterator first, InputIterator last);

11 Effects: Replaces the contents of the list with the range [first, last).
erase(begin(), end());
insert(begin(), n, t);

void assign(size_type n, const T& t);

12 Effects: Replaces the contents of the list with n copies of t.

23.3.4.2 list capacity [list.capacity]

void resize(size_type sz);

1 Effects: If sz < size(), equivalent to list<T>::iterator it = begin(); advance(it, sz); erase(it,
end());. If size() < sz, appends sz - size() default constructed elements to the sequence.

2 Requires: T shall be DefaultConstructible.

void resize(size_type sz, const T& c);

3 Effects:
if (sz > size())

insert(end(), sz-size(), c);
else if (sz < size()) {

iterator i = begin();
advance(i, sz);
erase(i, end());

}
else

; // do nothing

4 Requires: T shall be CopyConstructible.

23.3.4.3 list modifiers [list.modifiers]

iterator insert(const_iterator position, const T& x);
iterator insert(const_iterator position, T&& x);
iterator insert(const_iterator position, size_type n, const T& x);
template <class InputIterator>

iterator insert(const_iterator position, InputIterator first,
InputIterator last);

iterator insert(const_iterator position, initializer_list<T>);

template <class... Args> void emplace_front(Args&&... args);
template <class... Args> void emplace_back(Args&&... args);
template <class... Args> iterator emplace(const_iterator position, Args&&... args);
void push_front(const T& x);
void push_front(T&& x);
void push_back(const T& x);
void push_back(T&& x);

1 Remarks: Does not affect the validity of iterators and references. If an exception is thrown there are
no effects.

§ 23.3.4.3 758

c© ISO/IEC N3092

2 Complexity: Insertion of a single element into a list takes constant time and exactly one call to a
constructor of T. Insertion of multiple elements into a list is linear in the number of elements inserted,
and the number of calls to the copy constructor or move constructor of T is exactly equal to the number
of elements inserted.

iterator erase(const_iterator position);
iterator erase(const_iterator first, const_iterator last);

void pop_front();
void pop_back();
void clear();

3 Effects: Invalidates only the iterators and references to the erased elements.

4 Throws: Nothing.

5 Complexity: Erasing a single element is a constant time operation with a single call to the destructor
of T. Erasing a range in a list is linear time in the size of the range and the number of calls to the
destructor of type T is exactly equal to the size of the range.

23.3.4.4 list operations [list.ops]

1 Since lists allow fast insertion and erasing from the middle of a list, certain operations are provided specifically
for them.270

2 list provides three splice operations that destructively move elements from one list to another. The behavior
of splice operations is undefined if get_allocator() != x.get_allocator().

void splice(const_iterator position, list<T,Allocator>& x);
void splice(const_iterator position, list<T,Allocator>&& x);

3 Requires: &x != this.

4 Effects: Inserts the contents of x before position and x becomes empty. Pointers and references to
the moved elements of x now refer to those same elements but as members of *this. Iterators referring
to the moved elements will continue to refer to their elements, but they now behave as iterators into
*this, not into x.

5 Throws: Nothing

6 Complexity: Constant time.

void splice(const_iterator position, list<T,Allocator>& x, const_iterator i);
void splice(const_iterator position, list<T,Allocator>&& x, const_iterator i);

7 Effects: Inserts an element pointed to by i from list x before position and removes the element from
x. The result is unchanged if position == i or position == ++i. Pointers and references to *i
continue to refer to this same element but as a member of *this. Iterators to *i (including i itself)
continue to refer to the same element, but now behave as iterators into *this, not into x.

8 Throws: Nothing

9 Requires: i is a valid dereferenceable iterator of x.

10 Complexity: Constant time.

270) As specified in 20.2.5, the requirements in this Clause apply only to lists whose allocators compare equal.

§ 23.3.4.4 759

c© ISO/IEC N3092

void splice(const_iterator position, list<T,Allocator>& x, const_iterator first,
const_iterator last);

void splice(const_iterator position, list<T,Allocator>&& x, const_iterator first,
const_iterator last);

11 Effects: Inserts elements in the range [first,last) before position and removes the elements from
x.

12 Requires: [first, last) is a valid range in x. The result is undefined if position is an iterator in
the range [first,last). Pointers and references to the moved elements of x now refer to those same
elements but as members of *this. Iterators referring to the moved elements will continue to refer to
their elements, but they now behave as iterators into *this, not into x.

13 Throws: Nothing

14 Complexity: Constant time if &x == this; otherwise, linear time.

void remove(const T& value);
template <class Predicate> void remove_if(Predicate pred);

15 Effects: Erases all the elements in the list referred by a list iterator i for which the following conditions
hold: *i == value, pred(*i) != false.

16 Throws: Nothing unless an exception is thrown by *i == value or pred(*i) != false.

17 Remarks: Stable.

18 Complexity: Exactly size() applications of the corresponding predicate.

void unique();
template <class BinaryPredicate> void unique(BinaryPredicate binary_pred);

19 Effects: Eliminates all but the first element from every consecutive group of equal elements referred to
by the iterator i in the range [first + 1,last) for which *i == *(i-1) (for the version of unique
with no arguments) or pred(*i, *(i - 1)) (for the version of unique with a predicate argument)
holds.

20 Throws: Nothing unless an exception in thrown by *i == *(i-1) or pred(*i, *(i - 1))

21 Complexity: If the range [first, last) is not empty, exactly (last - first) - 1 applications of
the corresponding predicate, otherwise no applications of the predicate.

void merge(list<T,Allocator>& x);
void merge(list<T,Allocator>&& x);
template <class Compare> void merge(list<T,Allocator>& x, Compare comp);
template <class Compare> void merge(list<T,Allocator>&& x, Compare comp);

22 Requires: comp shall define a strict weak ordering (25.4), and both the list and the argument list shall
be sorted according to this ordering.

23 Effects: If (&x == this) does nothing; otherwise, merges the two sorted ranges [begin(), end())
and [x.begin(), x.end()). The result is a range in which the elements will be sorted in non-
decreasing order according to the ordering defined by comp; that is, for every iterator i, in the range
other than the first, the condition comp(*i, *(i - 1) will be false.

24 Remarks: Stable. If (&x != this) the range [x.begin(), x.end()) is empty after the merge.

25 Complexity: At most size() + x.size() - 1 applications of comp if (&x != this); otherwise, no
applications of comp are performed. If an exception is thrown other than by a comparison there are
no effects.

§ 23.3.4.4 760

c© ISO/IEC N3092

void reverse();

26 Effects: Reverses the order of the elements in the list.

27 Throws: Nothing.

28 Complexity: Linear time.

void sort();
template <class Compare> void sort(Compare comp);

29 Requires: operator< (for the first version) or comp (for the second version) shall define a strict weak
ordering (25.4).

30 Effects: Sorts the list according to the operator< or a Compare function object.

31 Remarks: Stable.

32 Complexity: Approximately N log(N) comparisons, where N == size().

23.3.4.5 list specialized algorithms [list.special]

template <class T, class Allocator>
void swap(list<T,Allocator>& x, list<T,Allocator>& y);

1 Effects:
x.swap(y);

23.3.5 Container adaptors [container.adaptors]

1 The container adaptors each take a Container template parameter, and each constructor takes a Container
reference argument. This container is copied into the Container member of each adaptor. If the container
takes an allocator, then a compatible allocator may be passed in to the adaptor’s constructor. Otherwise,
normal copy or move construction is used for the container argument.

2 For container adaptors, no swap function throws an exception unless that exception is thrown by the swap
of the adaptor’s Container or Compare object (if any).

23.3.5.1 Class template queue [queue]

1 Any sequence container supporting operations front(), back(), push_back() and pop_front() can be
used to instantiate queue. In particular, list (23.3.4) and deque (23.3.2) can be used.

23.3.5.1.1 queue definition [queue.defn]

namespace std {
template <class T, class Container = deque<T> >
class queue {
public:

typedef typename Container::value_type value_type;
typedef typename Container::reference reference;
typedef typename Container::const_reference const_reference;
typedef typename Container::size_type size_type;
typedef Container container_type;

protected:
Container c;

§ 23.3.5.1.1 761

c© ISO/IEC N3092

public:
explicit queue(const Container&);
explicit queue(Container&& = Container());
queue(queue&& q);
template <class Alloc> explicit queue(const Alloc&);
template <class Alloc> queue(const Container&, const Alloc&);
template <class Alloc> queue(Container&&, const Alloc&);
template <class Alloc> queue(const queue&, const Alloc&);
template <class Alloc> queue(queue&&, const Alloc&);
queue& operator=(queue&& q);

bool empty() const { return c.empty(); }
size_type size() const { return c.size(); }
reference front() { return c.front(); }
const_reference front() const { return c.front(); }
reference back() { return c.back(); }
const_reference back() const { return c.back(); }
void push(const value_type& x) { c.push_back(x); }
void push(value_type&& x) { c.push_back(std::move(x)); }
template <class... Args> void emplace(Args&&... args)

{ c.emplace_back(std::forward<Args>(args)...); }
void pop() { c.pop_front(); }
void swap(queue& q) { c.swap(q.c); }

};

template <class T, class Container>
bool operator==(const queue<T, Container>& x, const queue<T, Container>& y);

template <class T, class Container>
bool operator< (const queue<T, Container>& x, const queue<T, Container>& y);

template <class T, class Container>
bool operator!=(const queue<T, Container>& x, const queue<T, Container>& y);

template <class T, class Container>
bool operator> (const queue<T, Container>& x, const queue<T, Container>& y);

template <class T, class Container>
bool operator>=(const queue<T, Container>& x, const queue<T, Container>& y);

template <class T, class Container>
bool operator<=(const queue<T, Container>& x, const queue<T, Container>& y);

template <class T, class Container>
void swap(queue<T, Container>& x, queue<T, Container>& y);

template <class T, class Container, class Alloc>
struct uses_allocator<queue<T, Container>, Alloc>

: uses_allocator<Container, Alloc>::type { };
}

23.3.5.1.2 queue constructors [queue.cons]

explicit queue(const Container& cont);

1 Effects: Initialzies c with cont.

explicit queue(Container&& cont = Container());

2 Effects: Initializes c with std::move(cont).

§ 23.3.5.1.2 762

c© ISO/IEC N3092

queue(queue&& q);

3 Effects: Initializes c with std::move(q.c).

queue& operator=(queue&& q);

4 Effects: Assigns std::move(q.c) to c.

5 Returns: *this.

23.3.5.1.3 queue constructors with allocators [queue.cons.alloc]

1 If uses_allocator<container_type, Alloc>::value is false the constructors in this subclause shall not
participate in overload resolution.

template <class Alloc>
explicit queue(const Alloc& a);

2 Effects: Initializes c with a.

template <class Alloc>
queue(const container_type& cont, const Alloc& a);

3 Effects: Initializes c with with cont as the first argument and a as the second argument.

template <class Alloc>
queue(container_type&& cont, const Alloc& a);

4 Effects: Initializes c with std::move(cont) as the first argument and a as the second argument.

template <class Alloc>
queue(const queue& q, const Alloc& a);

5 Effects: Initializes c with q.c as the first argument and a as the second argument.

template <class Alloc>
queue(queue&& q, const Alloc& a);

6 Effects: Initializes c with std::move(q.c) as the first argument and a as the second argument.

23.3.5.1.4 queue operators [queue.ops]

template <class T, class Container>
bool operator==(const queue<T, Container>& x,

const queue<T, Container>& y);

1 Returns: x.c == y.c.

template <class T, class Container>
bool operator!=(const queue<T, Container>& x,

const queue<T, Container>& y);

2 Returns: x.c != y.c.

template <class T, class Container>
bool operator< (const queue<T, Container>& x,

const queue<T, Container>& y);

3 Returns: x.c < y.c.

§ 23.3.5.1.4 763

c© ISO/IEC N3092

template <class T, class Container>
bool operator<=(const queue<T, Container>& x,

const queue<T, Container>& y);

4 Returns: x.c <= y.c.

template <class T, class Container>
bool operator> (const queue<T, Container>& x,

const queue<T, Container>& y);

5 Returns: x.c > y.c.

template <class T, class Container>
bool operator>=(const queue<T, Container>& x,

const queue<T, Container>& y);

6 Returns: x.c >= y.c.

23.3.5.1.5 queue specialized algorithms [queue.special]

template <class T, class Container>
void swap(queue<T, Container>& x, queue<T, Container>& y);

1 Effects: x.swap(y).

23.3.5.2 Class template priority_queue [priority.queue]

1 Any sequence container with random access iterator and supporting operations front(), push_back() and
pop_back() can be used to instantiate priority_queue. In particular, vector (23.3.6) and deque (23.3.2)
can be used. Instantiating priority_queue also involves supplying a function or function object for mak-
ing priority comparisons; the library assumes that the function or function object defines a strict weak
ordering (25.4).

namespace std {
template <class T, class Container = vector<T>,

class Compare = less<typename Container::value_type> >
class priority_queue {
public:

typedef typename Container::value_type value_type;
typedef typename Container::reference reference;
typedef typename Container::const_reference const_reference;
typedef typename Container::size_type size_type;
typedef Container container_type;

protected:
Container c;
Compare comp;

public:
priority_queue(const Compare& x, const Container&);
explicit priority_queue(const Compare& x = Compare(), Container&& = Container());
template <class InputIterator>

priority_queue(InputIterator first, InputIterator last,
const Compare& x, const Container&);

template <class InputIterator>
priority_queue(InputIterator first, InputIterator last,

const Compare& x = Compare(), Container&& = Container());

§ 23.3.5.2 764

c© ISO/IEC N3092

priority_queue(priority_queue&&);
template <class Alloc> explicit priority_queue(const Alloc&);
template <class Alloc> priority_queue(const Compare&, const Alloc&);
template <class Alloc> priority_queue(const Compare&,

const Container&, const Alloc&);
template <class Alloc> priority_queue(const Compare&,

Container&&, const Alloc&);
template <class Alloc> priority_queue(const priority_queue&, const Alloc&);
template <class Alloc> priority_queue(priority_queue&&, const Alloc&);
priority_queue& operator=(priority_queue&&);

bool empty() const { return c.empty(); }
size_type size() const { return c.size(); }
const_reference top() const { return c.front(); }
void push(const value_type& x);
void push(value_type&& x);
template <class... Args> void emplace(Args&&... args)
void pop();
void swap(priority_queue&);

};
// no equality is provided
template <class T, class Container, class Compare>

void swap(priority_queue<T, Container, Compare>& x, priority_queue<T, Container, Compare>& y);

template <class T, class Container, class Compare, class Alloc>
struct uses_allocator<priority_queue<T, Container, Compare>, Alloc>

: uses_allocator<Container, Alloc>::type { };
}

23.3.5.2.1 priority_queue constructors [priqueue.cons]

priority_queue(const Compare& x,
const Container& y);

explicit priority_queue(const Compare& x = Compare(),
Container&& y = Container());

1 Requires: x shall define a strict weak ordering (25.4).

2 Effects: Initializes comp with x and c with y (copy constructing or move constructing as appropriate);
calls make_heap(c.begin(), c.end(), comp).

template <class InputIterator>
priority_queue(InputIterator first, InputIterator last,

const Compare& x,
const Container& y);

template <class InputIterator>
priority_queue(InputIterator first, InputIterator last,

const Compare& x = Compare(),
Container&& y = Container());

3 Requires: x shall define a strict weak ordering (25.4).

4 Effects: Initializes comp with x and c with y (copy constructing or move constructing as appropriate);
calls c.insert(c.end(), first, last); and finally calls make_heap(c.begin(), c.end(), comp).

priority_queue(priority_queue&& q);

§ 23.3.5.2.1 765

c© ISO/IEC N3092

5 Effects: Initializes c with std::move(q.c) and initializes comp with std::move(q.comp).

priority_queue& operator=(priority_queue&& q);

6 Effects: Assigns std::move(q.c) to c and assigns std::move(q.comp) to comp.

7 Returns: *this.

23.3.5.2.2 priority_queue constructors with allocators [priqueue.cons.alloc]

1 If uses_allocator<container_type, Alloc>::value is false the constructors in this subclause shall not
participate in overload resolution.

template <class Alloc>
explicit priority_queue(const Alloc& a);

2 Effects: Initializes c with a and value-initializes comp.

template <class Alloc>
priority_queue(const Compare& compare, const Alloc& a);

3 Effects: Initializes c with a and initializes comp with compare.

template <class Alloc>
priority_queue(const Compare& compare, const Container& cont, const Alloc& a);

4 Effects: Initializes c with cont as the first argument and a as the second argument, and initializes
comp with compare.

template <class Alloc>
priority_queue(const Compare& compare, Container&& cont, const Alloc& a);

5 Effects: Initializes c with std::move(cont) as the first argument and a as the second argument, and
initializes comp with compare.

template <class Alloc>
priority_queue(const priority_queue& q, const Alloc& a);

6 Effects: Initializes c with q.c as the first argument and a as the second argument, and initializes comp
with q.comp.

template <class Alloc>
priority_queue(priority_queue&& q, const Alloc& a);

7 Effects: Initializes c with std::move(q.c) as the first argument and a as the second argument, and
initializes comp with std::move(q.comp).

23.3.5.2.3 priority_queue members [priqueue.members]

void push(const value_type& x);

1 Effects:
c.push_back(x);
push_heap(c.begin(), c.end(), comp);

void push(value_type&& x);

2 Effects:

§ 23.3.5.2.3 766

c© ISO/IEC N3092

c.push_back(std::move(x));
push_heap(c.begin(), c.end(), comp);

template <class... Args> void emplace(Args&&... args)

3 Effects:
c.emplace_back(std::forward<Args>(args)...);
push_heap(c.begin(), c.end(), comp);

void pop();

4 Effects:
pop_heap(c.begin(), c.end(), comp);
c.pop_back();

23.3.5.2.4 priority_queue specialized algorithms [priqueue.special]

template <class T, class Container, Compare>
void swap(priority_queue<T, Container, Compare>& x, priority_queue<T, Container, Compare>& y);

1 Effects: x.swap(y).

23.3.5.3 Class template stack [stack]

1 Any sequence container supporting operations back(), push_back() and pop_back() can be used to in-
stantiate stack. In particular, vector (23.3.6), list (23.3.4) and deque (23.3.2) can be used.

23.3.5.3.1 stack definition [stack.defn]

namespace std {
template <class T, class Container = deque<T> >
class stack {
public:

typedef typename Container::value_type value_type;
typedef typename Container::reference reference;
typedef typename Container::const_reference const_reference;
typedef typename Container::size_type size_type;
typedef Container container_type;

protected:
Container c;

public:
explicit stack(const Container&);
explicit stack(Container&& = Container());
stack(stack&&s);
template <class Alloc> explicit stack(const Alloc&);
template <class Alloc> stack(const Container&, const Alloc&);
template <class Alloc> stack(Container&&, const Alloc&);
template <class Alloc> stack(const stack&, const Alloc&);
template <class Alloc> stack(stack&&, const Alloc&);
stack& operator=(stack&& s);

bool empty() const { return c.empty(); }
size_type size() const { return c.size(); }

§ 23.3.5.3.1 767

c© ISO/IEC N3092

reference top() { return c.back(); }
const_reference top() const { return c.back(); }
void push(const value_type& x) { c.push_back(x); }
void push(value_type&& x) { c.push_back(std::move(x)); }
template <class... Args> void emplace(Args&&... args)

{ c.emplace_back(std::forward<Args>(args)...); }
void pop() { c.pop_back(); }
void swap(stack& s) { c.swap(s.c); }

};

template <class T, class Container>
bool operator==(const stack<T, Container>& x, const stack<T, Container>& y);

template <class T, class Container>
bool operator< (const stack<T, Container>& x, const stack<T, Container>& y);

template <class T, class Container>
bool operator!=(const stack<T, Container>& x, const stack<T, Container>& y);

template <class T, class Container>
bool operator> (const stack<T, Container>& x, const stack<T, Container>& y);

template <class T, class Container>
bool operator>=(const stack<T, Container>& x, const stack<T, Container>& y);

template <class T, class Container>
bool operator<=(const stack<T, Container>& x, const stack<T, Container>& y);

template <class T, class Allocator>
void swap(stack<T,Allocator>& x, stack<T,Allocator>& y);

template <class T, class Container, class Alloc>
struct uses_allocator<stack<T, Container>, Alloc>

: uses_allocator<Container, Alloc>::type { };
}

23.3.5.3.2 stack constructors [stack.cons]

stack(stack&& s);

Effects: Initializes c with std::move(s.c).

stack& operator=(stack&& s);

1 Effects: Assigns std::move(s.c) to c.

2 Returns: *this.

23.3.5.3.3 stack constructors with allocators [stack.cons.alloc]

1 If uses_allocator<container_type, Alloc>::value is false the constructors in this subclause shall not
participate in overload resolution.

template <class Alloc>
explicit stack(const Alloc& a);

2 Effects: Initializes c with a.

template <class Alloc>
stack(const container_type& cont, const Alloc& a);

3 Effects: Initializes c with cont as the first argument and a as the second argument.

§ 23.3.5.3.3 768

c© ISO/IEC N3092

template <class Alloc>
stack(container_type&& cont, const Alloc& a);

4 Effects: Initializes c with std::move(cont) as the first argument and a as the second argument.

template <class Alloc>
stack(const stack& s, const Alloc& a);

5 Effects: Initializes c with s.c as the first argument and a as the second argument.

template <class Alloc>
stack(stack&& s, const Alloc& a);

6 Effects: Initializes c with std::move(s.c) as the first argument and a as the second argument.

23.3.5.3.4 stack operators [stack.ops]

template <class T, class Container>
bool operator==(const stack<T, Container>& x,

const stack<T, Container>& y);

1 Returns: x.c == y.c.

template <class T, class Container>
bool operator!=(const stack<T, Container>& x,

const stack<T, Container>& y);

2 Returns: x.c != y.c.

template <class T, class Container>
bool operator< (const stack<T, Container>& x,

const stack<T, Container>& y);

3 Returns: x.c < y.c.

template <class T, class Container>
bool operator<=(const stack<T, Container>& x,

const stack<T, Container>& y);

4 Returns: x.c <= y.c.

template <class T, class Container>
bool operator> (const stack<T, Container>& x,

const stack<T, Container>& y);

5 Returns: x.c > y.c.

template <class T, class Container>
bool operator>=(const stack<T, Container>& x,

const stack<T, Container>& y);

6 Returns: x.c >= y.c.

23.3.5.3.5 stack specialized algorithms [stack.special]

template <class T, class Container>
void swap(stack<T, Container>& x, stack<T, Container>& y);

1 Effects: x.swap(y).

§ 23.3.5.3.5 769

c© ISO/IEC N3092

23.3.6 Class template vector [vector]

1 A vector is a sequence container that supports random access iterators. In addition, it supports (amortized)
constant time insert and erase operations at the end; insert and erase in the middle take linear time. Storage
management is handled automatically, though hints can be given to improve efficiency. The elements of a
vector are stored contiguously, meaning that if v is a vector<T, Allocator> where T is some type other
than bool, then it obeys the identity &v[n] == &v[0] + n for all 0 <= n < v.size().

2 A vector satisfies all of the requirements of a container and of a reversible container (given in two tables
in 23.2), of a sequence container, including most of the optional sequence container requirements (23.2.3),
and of an allocator-aware container (Table 96). The exceptions are the push_front and pop_front member
functions, which are not provided. Descriptions are provided here only for operations on vector that are
not described in one of these tables or for operations where there is additional semantic information.

namespace std {
template <class T, class Allocator = allocator<T> >
class vector {
public:

// types:
typedef value_type& reference;
typedef const value_type& const_reference;
typedef implementation-defined iterator; // See 23.2
typedef implementation-defined const_iterator; // See 23.2
typedef implementation-defined size_type; // See 23.2
typedef implementation-defined difference_type;// See 23.2
typedef T value_type;
typedef Allocator allocator_type;
typedef typename allocator_traits<Allocator>::pointer pointer;
typedef typename allocator_traits<Allocator>::const_pointer const_pointer;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;

// 23.3.6.1 construct/copy/destroy:
explicit vector(const Allocator& = Allocator());
explicit vector(size_type n);
vector(size_type n, const T& value, const Allocator& = Allocator());
template <class InputIterator>

vector(InputIterator first, InputIterator last,
const Allocator& = Allocator());

vector(const vector<T,Allocator>& x);
vector(vector&&);
vector(const vector&, const Allocator&);
vector(vector&&, const Allocator&);
vector(initializer_list<T>, const Allocator& = Allocator());

~vector();
vector<T,Allocator>& operator=(const vector<T,Allocator>& x);
vector<T,Allocator>& operator=(vector<T,Allocator>&& x);
vector& operator=(initializer_list<T>);
template <class InputIterator>

void assign(InputIterator first, InputIterator last);
void assign(size_type n, const T& u);
void assign(initializer_list<T>);
allocator_type get_allocator() const;

// iterators:

§ 23.3.6 770

c© ISO/IEC N3092

iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;

const_iterator cbegin() const;
const_iterator cend() const;
const_reverse_iterator crbegin() const;
const_reverse_iterator crend() const;

// 23.3.6.2 capacity:
size_type size() const;
size_type max_size() const;
void resize(size_type sz);
void resize(size_type sz, const T& c);
size_type capacity() const;
bool empty() const;
void reserve(size_type n);
void shrink_to_fit();

// element access:
reference operator[](size_type n);
const_reference operator[](size_type n) const;
const_reference at(size_type n) const;
reference at(size_type n);
reference front();
const_reference front() const;
reference back();
const_reference back() const;

// 23.3.6.3 data access
T* data();
const T* data() const;

// 23.3.6.4 modifiers:
template <class... Args> void emplace_back(Args&&... args);
void push_back(const T& x);
void push_back(T&& x);
void pop_back();

template <class... Args> iterator emplace(const_iterator position, Args&&... args);
iterator insert(const_iterator position, const T& x);
iterator insert(const_iterator position, T&& x);
iterator insert(const_iterator position, size_type n, const T& x);
template <class InputIterator>

iterator insert(const_iterator position,
InputIterator first, InputIterator last);

iterator insert(const_iterator position, initializer_list<T> il);
iterator erase(const_iterator position);
iterator erase(const_iterator first, const_iterator last);
void swap(vector<T,Allocator>&);

§ 23.3.6 771

c© ISO/IEC N3092

void clear();
};

template <class T, class Allocator>
bool operator==(const vector<T,Allocator>& x, const vector<T,Allocator>& y);

template <class T, class Allocator>
bool operator< (const vector<T,Allocator>& x, const vector<T,Allocator>& y);

template <class T, class Allocator>
bool operator!=(const vector<T,Allocator>& x, const vector<T,Allocator>& y);

template <class T, class Allocator>
bool operator> (const vector<T,Allocator>& x, const vector<T,Allocator>& y);

template <class T, class Allocator>
bool operator>=(const vector<T,Allocator>& x, const vector<T,Allocator>& y);

template <class T, class Allocator>
bool operator<=(const vector<T,Allocator>& x, const vector<T,Allocator>& y);

// specialized algorithms:
template <class T, class Allocator>

void swap(vector<T,Allocator>& x, vector<T,Allocator>& y);
}

23.3.6.1 vector constructors, copy, and assignment [vector.cons]

explicit vector(const Allocator& = Allocator());

1 Effects: Constructs an empty vector, using the specified allocator.

2 Complexity: Constant.

explicit vector(size_type n);

3 Effects: Constructs a vector with n default constructed elements.

4 Requires: T shall be DefaultConstructible.

5 Complexity: Linear in n.

vector(size_type n, const T& value,
const Allocator& = Allocator());

6 Effects: Constructs a vector with n copies of value, using the specified allocator.

7 Requires: T shall be CopyConstructible.

8 Complexity: Linear in n.

template <class InputIterator>
vector(InputIterator first, InputIterator last,

const Allocator& = Allocator());

9 Effects: Constructs a vector equal to the range [first,last), using the specified allocator.

10 Complexity: Makes only N calls to the copy constructor of T (where N is the distance between first
and last) and no reallocations if iterators first and last are of forward, bidirectional, or random access
categories. It makes order N calls to the copy constructor of T and order log(N) reallocations if they
are just input iterators.

template <class InputIterator>
void assign(InputIterator first, InputIterator last);

§ 23.3.6.1 772

c© ISO/IEC N3092

11 Effects:
erase(begin(), end());
insert(begin(), first, last);

void assign(size_type n, const T& t);

12 Effects:
erase(begin(), end());
insert(begin(), n, t);

23.3.6.2 vector capacity [vector.capacity]

size_type capacity() const;

1 Returns: The total number of elements that the vector can hold without requiring reallocation.

void reserve(size_type n);

2 Effects: A directive that informs a vector of a planned change in size, so that it can manage the storage
allocation accordingly. After reserve(), capacity() is greater or equal to the argument of reserve if
reallocation happens; and equal to the previous value of capacity() otherwise. Reallocation happens
at this point if and only if the current capacity is less than the argument of reserve(). If an exception
is thrown other than by the move constructor of a non-CopyConstructible type, there are no effects.

3 Complexity: It does not change the size of the sequence and takes at most linear time in the size of
the sequence.

4 Throws: length_error if n > max_size().271

5 Remarks: Reallocation invalidates all the references, pointers, and iterators referring to the elements
in the sequence. It is guaranteed that no reallocation takes place during insertions that happen after
a call to reserve() until the time when an insertion would make the size of the vector greater than
the value of capacity().

void shrink_to_fit();

6 Remarks: shrink_to_fit is a non-binding request to reduce capacity() to size(). [Note: The
request is non-binding to allow latitude for implementation-specific optimizations. — end note]

void swap(vector<T,Allocator>& x);

7 Effects: Exchanges the contents and capacity() of *this with that of x.

8 Complexity: Constant time.

void resize(size_type sz);

9 Effects: If sz < size(), equivalent to erase(begin() + sz, end());. If size() < sz, appends sz
- size() default constructed elements to the sequence.

10 Requires: T shall be CopyConstructible.

void resize(size_type sz, const T& c);

11 Effects:

271) reserve() uses Allocator::allocate() which may throw an appropriate exception.

§ 23.3.6.2 773

c© ISO/IEC N3092

if (sz > size())
insert(end(), sz-size(), c);

else if (sz < size())
erase(begin()+sz, end());

else
; // do nothing

12 Requires: If an exception is thrown other than by the move constructor of a non-CopyConstructible
T there are no effects.

23.3.6.3 vector data [vector.data]

T* data();
const T* data() const;

1 Returns: A pointer such that [data(),data() + size()) is a valid range. For a non-empty vector,
data() == &front().

2 Complexity: Constant time.

3 Throws: Nothing.

23.3.6.4 vector modifiers [vector.modifiers]

iterator insert(const_iterator position, const T& x);
iterator insert(const_iterator position, T&& x);
iterator insert(const_iterator position, size_type n, const T& x);
template <class InputIterator>

iterator insert(const_iterator position, InputIterator first, InputIterator last);
iterator insert(const_iterator position, initializer_list<T>);

template <class... Args> void emplace_back(Args&&... args);
template <class... Args> iterator emplace(const_iterator position, Args&&... args);
void push_back(const T& x);
void push_back(T&& x);

1 Remarks: Causes reallocation if the new size is greater than the old capacity. If no reallocation happens,
all the iterators and references before the insertion point remain valid. If an exception is thrown other
than by the copy constructor, move constructor, assignment operator, or move assignment operator
of T or by any InputIterator operation there are no effects. If an exception is thrown by the move
constructor of a non-CopyConstructible T, the effects are unspecified.

2 Complexity: The complexity is linear in the number of elements inserted plus the distance to the end
of the vector.

iterator erase(const_iterator position);
iterator erase(const_iterator first, const_iterator last);

3 Effects: Invalidates iterators and references at or after the point of the erase.

4 Complexity: The destructor of T is called the number of times equal to the number of the elements
erased, but the move assignment operator of T is called the number of times equal to the number of
elements in the vector after the erased elements.

5 Throws: Nothing unless an exception is thrown by the copy constructor, move constructor, assignment
operator, or move assignment operator of T.

§ 23.3.6.4 774

c© ISO/IEC N3092

23.3.6.5 vector specialized algorithms [vector.special]

template <class T, class Allocator>
void swap(vector<T,Allocator>& x, vector<T,Allocator>& y);

1 Effects:
x.swap(y);

23.3.7 Class vector<bool> [vector.bool]

1 To optimize space allocation, a specialization of vector for bool elements is provided:
namespace std {

template <class Allocator> class vector<bool, Allocator> {
public:

// types:
typedef bool const_reference;
typedef implementation-defined iterator; // See 23.2
typedef implementation-defined const_iterator; // See 23.2
typedef implementation-defined size_type; // See 23.2
typedef implementation-defined difference_type;// See 23.2
typedef bool value_type;
typedef Allocator allocator_type;
typedef implementation-defined pointer;
typedef implementation-defined const_pointer;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;

// bit reference:
class reference {

friend class vector;
reference();

public:
~reference();
operator bool() const;
reference& operator=(const bool x);
reference& operator=(const reference& x);
void flip(); // flips the bit

};

// construct/copy/destroy:
explicit vector(const Allocator& = Allocator());
explicit vector(size_type n, const bool& value = bool(),

const Allocator& = Allocator());
template <class InputIterator>

vector(InputIterator first, InputIterator last,
const Allocator& = Allocator());

vector(const vector<bool,Allocator>& x);
vector(vector<bool,Allocator>&& x);
vector(const vector&, const Allocator&);
vector(vector&&, const Allocator&);
vector(initializer_list<bool>, const Allocator& = Allocator()));

~vector();
vector<bool,Allocator>& operator=(const vector<bool,Allocator>& x);

§ 23.3.7 775

c© ISO/IEC N3092

vector<bool,Allocator>& operator=(vector<bool,Allocator>&& x);
vector operator=(initializer_list<bool>);
template <class InputIterator>

void assign(InputIterator first, InputIterator last);
void assign(size_type n, const bool& t);
void assign(initializer_list<bool>;
allocator_type get_allocator() const;

// iterators:
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;

const_iterator cbegin() const;
const_iterator cend() const;
const_reverse_iterator crbegin() const;
const_reverse_iterator crend() const;

// capacity:
size_type size() const;
size_type max_size() const;
void resize(size_type sz, bool c = false);
size_type capacity() const;
bool empty() const;
void reserve(size_type n);
void shrink_to_fit();

// element access:
reference operator[](size_type n);
const_reference operator[](size_type n) const;
const_reference at(size_type n) const;
reference at(size_type n);
reference front();
const_reference front() const;
reference back();
const_reference back() const;

// modifiers:
void push_back(const bool& x);
void pop_back();
iterator insert(const_iterator position, const bool& x);
iterator insert (const_iterator position, size_type n, const bool& x);
template <class InputIterator>

iterator insert(const_iterator position,
InputIterator first, InputIterator last);

iterator insert(const_iterator position, initializer_list<bool> il);

iterator erase(const_iterator position);
iterator erase(const_iterator first, const_iterator last);
void swap(vector<bool,Allocator>&);

§ 23.3.7 776

c© ISO/IEC N3092

static void swap(reference x, reference y);
void flip(); // flips all bits
void clear();

};
}

2 Unless described below, all operations have the same requirements and semantics as the primary vector
template, except that operations dealing with the bool value type map to bit values in the container storage
and allocator_traits::construct (20.9.4.2) is not used to construct these values.

3 There is no requirement that the data be stored as a contiguous allocation of bool values. A space-optimized
representation of bits is recommended instead.

4 reference is a class that simulates the behavior of references of a single bit in vector<bool>. The conversion
operator returns true when the bit is set, and false otherwise. The assignment operator sets the bit when
the argument is (convertible to) true and clears it otherwise. flip reverses the state of the bit.

void flip();

5 Effects: Replaces each element in the container with its complement.

static void swap(reference x, reference y);

6 Effects: exchanges the contents of x and y as if by
bool b = x;
x = y;
y = b;

template <class Allocator> struct hash<vector<bool, Allocator> >;

7 Requires: the template specialization shall meet the requirements of class template hash (20.8.15).

23.4 Associative containers [associative]

1 Headers <map> and <set>:

Header <map> synopsis
namespace std {

#include <initializer_list>

template <class Key, class T, class Compare = less<Key>,
class Allocator = allocator<pair<const Key, T> > >

class map;
template <class Key, class T, class Compare, class Allocator>

bool operator==(const map<Key,T,Compare,Allocator>& x,
const map<Key,T,Compare,Allocator>& y);

template <class Key, class T, class Compare, class Allocator>
bool operator< (const map<Key,T,Compare,Allocator>& x,

const map<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>

bool operator!=(const map<Key,T,Compare,Allocator>& x,
const map<Key,T,Compare,Allocator>& y);

template <class Key, class T, class Compare, class Allocator>
bool operator> (const map<Key,T,Compare,Allocator>& x,

const map<Key,T,Compare,Allocator>& y);

§ 23.4 777

c© ISO/IEC N3092

template <class Key, class T, class Compare, class Allocator>
bool operator>=(const map<Key,T,Compare,Allocator>& x,

const map<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>

bool operator<=(const map<Key,T,Compare,Allocator>& x,
const map<Key,T,Compare,Allocator>& y);

template <class Key, class T, class Compare, class Allocator>
void swap(map<Key,T,Compare,Allocator>& x,

map<Key,T,Compare,Allocator>& y);

template <class Key, class T, class Compare = less<Key>,
class Allocator = allocator<pair<const Key, T> > >

class multimap;
template <class Key, class T, class Compare, class Allocator>

bool operator==(const multimap<Key,T,Compare,Allocator>& x,
const multimap<Key,T,Compare,Allocator>& y);

template <class Key, class T, class Compare, class Allocator>
bool operator< (const multimap<Key,T,Compare,Allocator>& x,

const multimap<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>

bool operator!=(const multimap<Key,T,Compare,Allocator>& x,
const multimap<Key,T,Compare,Allocator>& y);

template <class Key, class T, class Compare, class Allocator>
bool operator> (const multimap<Key,T,Compare,Allocator>& x,

const multimap<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>

bool operator>=(const multimap<Key,T,Compare,Allocator>& x,
const multimap<Key,T,Compare,Allocator>& y);

template <class Key, class T, class Compare, class Allocator>
bool operator<=(const multimap<Key,T,Compare,Allocator>& x,

const multimap<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>

void swap(multimap<Key,T,Compare,Allocator>& x,
multimap<Key,T,Compare,Allocator>& y);

}

Header <set> synopsis
namespace std {

#include <initializer_list>

template <class Key, class Compare = less<Key>,
class Allocator = allocator<Key> >

class set;
template <class Key, class Compare, class Allocator>

bool operator==(const set<Key,Compare,Allocator>& x,
const set<Key,Compare,Allocator>& y);

template <class Key, class Compare, class Allocator>
bool operator< (const set<Key,Compare,Allocator>& x,

const set<Key,Compare,Allocator>& y);
template <class Key, class Compare, class Allocator>

bool operator!=(const set<Key,Compare,Allocator>& x,
const set<Key,Compare,Allocator>& y);

template <class Key, class Compare, class Allocator>
bool operator> (const set<Key,Compare,Allocator>& x,

const set<Key,Compare,Allocator>& y);

§ 23.4 778

c© ISO/IEC N3092

template <class Key, class Compare, class Allocator>
bool operator>=(const set<Key,Compare,Allocator>& x,

const set<Key,Compare,Allocator>& y);
template <class Key, class Compare, class Allocator>

bool operator<=(const set<Key,Compare,Allocator>& x,
const set<Key,Compare,Allocator>& y);

template <class Key, class Compare, class Allocator>
void swap(set<Key,Compare,Allocator>& x,

set<Key,Compare,Allocator>& y);

template <class Key, class Compare = less<Key>,
class Allocator = allocator<Key> >

class multiset;
template <class Key, class Compare, class Allocator>

bool operator==(const multiset<Key,Compare,Allocator>& x,
const multiset<Key,Compare,Allocator>& y);

template <class Key, class Compare, class Allocator>
bool operator< (const multiset<Key,Compare,Allocator>& x,

const multiset<Key,Compare,Allocator>& y);
template <class Key, class Compare, class Allocator>

bool operator!=(const multiset<Key,Compare,Allocator>& x,
const multiset<Key,Compare,Allocator>& y);

template <class Key, class Compare, class Allocator>
bool operator> (const multiset<Key,Compare,Allocator>& x,

const multiset<Key,Compare,Allocator>& y);
template <class Key, class Compare, class Allocator>

bool operator>=(const multiset<Key,Compare,Allocator>& x,
const multiset<Key,Compare,Allocator>& y);

template <class Key, class Compare, class Allocator>
bool operator<=(const multiset<Key,Compare,Allocator>& x,

const multiset<Key,Compare,Allocator>& y);
template <class Key, class Compare, class Allocator>

void swap(multiset<Key,Compare,Allocator>& x,
multiset<Key,Compare,Allocator>& y);

}

23.4.1 Class template map [map]

1 A map is an associative container that supports unique keys (contains at most one of each key value) and
provides for fast retrieval of values of another type T based on the keys. The map class supports bidirectional
iterators.

2 A map satisfies all of the requirements of a container, of a reversible container (23.2), of an associative
container (23.2.4), and of an allocator-aware container (Table 96). A map also provides most operations
described in (23.2.4) for unique keys. This means that a map supports the a_uniq operations in (23.2.4)
but not the a_eq operations. For a map<Key,T> the key_type is Key and the value_type is pair<const
Key,T>. Descriptions are provided here only for operations on map that are not described in one of those
tables or for operations where there is additional semantic information.

namespace std {
template <class Key, class T, class Compare = less<Key>,

class Allocator = allocator<pair<const Key, T> > >
class map {
public:

// types:

§ 23.4.1 779

c© ISO/IEC N3092

typedef Key key_type;
typedef T mapped_type;
typedef pair<const Key, T> value_type;
typedef Compare key_compare;
typedef Allocator allocator_type;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef implementation-defined iterator; // See 23.2
typedef implementation-defined const_iterator; // See 23.2
typedef implementation-defined size_type; // See 23.2
typedef implementation-defined difference_type;// See 23.2
typedef typename allocator_traits<Allocator>::pointer pointer;
typedef typename allocator_traits<Allocator>::const_pointer const_pointer;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;

class value_compare
: public binary_function<value_type,value_type,bool> {

friend class map;
protected:

Compare comp;
value_compare(Compare c) : comp(c) {}

public:
bool operator()(const value_type& x, const value_type& y) const {

return comp(x.first, y.first);
}

};

// 23.4.1.1 construct/copy/destroy:
explicit map(const Compare& comp = Compare(),

const Allocator& = Allocator());
template <class InputIterator>

map(InputIterator first, InputIterator last,
const Compare& comp = Compare(), const Allocator& = Allocator());

map(const map<Key,T,Compare,Allocator>& x);
map(map<Key,T,Compare,Allocator>&& x);
map(const Allocator&);
map(const map&, const Allocator&);
map(map&&, const Allocator&);
map(initializer_list<value_type>,

const Compare& = Compare(),
const Allocator& = Allocator());

~map();
map<Key,T,Compare,Allocator>&

operator=(const map<Key,T,Compare,Allocator>& x);
map<Key,T,Compare,Allocator>&

operator=(map<Key,T,Compare,Allocator>&& x);
map& operator=(initializer_list<value_type>);
allocator_type get_allocator() const;

// iterators:
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;

§ 23.4.1 780

c© ISO/IEC N3092

reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;

const_iterator cbegin() const;
const_iterator cend() const;
const_reverse_iterator crbegin() const;
const_reverse_iterator crend() const;

// capacity:
bool empty() const;
size_type size() const;
size_type max_size() const;

// 23.4.1.2 element access:
T& operator[](const key_type& x);
T& operator[](key_type&& x);
T& at(const key_type& x);
const T& at(const key_type& x) const;

// modifiers:
template <class... Args> pair<iterator, bool> emplace(Args&&... args);
template <class... Args> iterator emplace_hint(const_iterator position, Args&&... args);
pair<iterator, bool> insert(const value_type& x);
template <class P> pair<iterator, bool> insert(P&& x);
iterator insert(const_iterator position, const value_type& x);
template <class P>

iterator insert(const_iterator position, P&&);
template <class InputIterator>

void insert(InputIterator first, InputIterator last);
void insert(initializer_list<value_type>);

iterator erase(const_iterator position);
size_type erase(const key_type& x);
iterator erase(const_iterator first, const_iterator last);
void swap(map<Key,T,Compare,Allocator>&);
void clear();

// observers:
key_compare key_comp() const;
value_compare value_comp() const;

// 23.4.1.4 map operations:
iterator find(const key_type& x);
const_iterator find(const key_type& x) const;
size_type count(const key_type& x) const;

iterator lower_bound(const key_type& x);
const_iterator lower_bound(const key_type& x) const;
iterator upper_bound(const key_type& x);
const_iterator upper_bound(const key_type& x) const;

pair<iterator,iterator>

§ 23.4.1 781

c© ISO/IEC N3092

equal_range(const key_type& x);
pair<const_iterator,const_iterator>

equal_range(const key_type& x) const;
};

template <class Key, class T, class Compare, class Allocator>
bool operator==(const map<Key,T,Compare,Allocator>& x,

const map<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>

bool operator< (const map<Key,T,Compare,Allocator>& x,
const map<Key,T,Compare,Allocator>& y);

template <class Key, class T, class Compare, class Allocator>
bool operator!=(const map<Key,T,Compare,Allocator>& x,

const map<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>

bool operator> (const map<Key,T,Compare,Allocator>& x,
const map<Key,T,Compare,Allocator>& y);

template <class Key, class T, class Compare, class Allocator>
bool operator>=(const map<Key,T,Compare,Allocator>& x,

const map<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>

bool operator<=(const map<Key,T,Compare,Allocator>& x,
const map<Key,T,Compare,Allocator>& y);

// specialized algorithms:
template <class Key, class T, class Compare, class Allocator>

void swap(map<Key,T,Compare,Allocator>& x,
map<Key,T,Compare,Allocator>& y);

}

23.4.1.1 map constructors, copy, and assignment [map.cons]

explicit map(const Compare& comp = Compare(),
const Allocator& = Allocator());

1 Effects: Constructs an empty map using the specified comparison object and allocator.

2 Complexity: Constant.

template <class InputIterator>
map(InputIterator first, InputIterator last,

const Compare& comp = Compare(), const Allocator& = Allocator());

3 Requires: If the iterator’s dereference operator returns an lvalue or a const rvalue pair<key_type,
mapped_type>, then both key_type and mapped_type shall be CopyConstructible.

4 Effects: Constructs an empty map using the specified comparison object and allocator, and inserts
elements from the range [first,last).

5 Complexity: Linear in N if the range [first,last) is already sorted using comp and otherwise N log N ,
where N is last - first.

23.4.1.2 map element access [map.access]

T& operator[](const key_type& x);

§ 23.4.1.2 782

c© ISO/IEC N3092

1 Effects: If there is no key equivalent to x in the map, inserts value_type(x, T()) into the map.

2 Requires: key_type shall be CopyConstructible and mapped_type shall be DefaultConstructible.

3 Returns: A reference to the mapped_type corresponding to x in *this.

4 Complexity: logarithmic.

T& operator[](key_type&& x);

5 Effects: If there is no key equivalent to x in the map, inserts value_type(std::move(x), T()) into
the map.

6 Requires: mapped_type shall be DefaultConstructible.

7 Returns: A reference to the mapped_type corresponding to x in *this.

8 Complexity: logarithmic.

T& at(const key_type& x);
const T& at(const key_type& x) const;

9 Returns: A reference to the element whose key is equivalent to x.

10 Throws: An exception object of type out_of_range if no such element is present.

11 Complexity: logarithmic.

23.4.1.3 map modifiers [map.modifiers]

template <class P> pair<iterator, bool> insert(P&& x);
template <class P> pair<iterator, bool> insert(const_iterator position, P&& x);

1 Requires: P shall be convertible to value_type.

If P is instantiated as a reference type, then the argument x is copied from. Otherwise x is con-
sidered to be an rvalue as it is converted to value_type and inserted into the map. Specifically, in
such cases CopyConstructible is not required of key_type or mapped_type unless the conversion
from P specifically requires it (e.g., if P is a tuple<const key_type, mapped_type>, then key_type
must be CopyConstructible). The signature taking InputIterator parameters does not require
CopyConstructible of either key_type or mapped_type if the dereferenced InputIterator returns a
non-const rvalue pair<key_type,mapped_type>. Otherwise CopyConstructible is required for both
key_type and mapped_type.

23.4.1.4 map operations [map.ops]

iterator find(const key_type& x);
const_iterator find(const key_type& x) const;

iterator lower_bound(const key_type& x);
const_iterator lower_bound(const key_type& x) const;

iterator upper_bound(const key_type& x);
const_iterator upper_bound(const key_type &x) const;

pair<iterator, iterator>
equal_range(const key_type &x);

pair<const_iterator, const_iterator>

§ 23.4.1.4 783

c© ISO/IEC N3092

equal_range(const key_type& x) const;

1 The find, lower_bound, upper_bound and equal_range member functions each have two versions,
one const and the other non-const. In each case the behavior of the two functions is identical except
that the const version returns a const_iterator and the non-const version an iterator (23.2.4).

23.4.1.5 map specialized algorithms [map.special]

template <class Key, class T, class Compare, class Allocator>
void swap(map<Key,T,Compare,Allocator>& x,

map<Key,T,Compare,Allocator>& y);

1 Effects:
x.swap(y);

23.4.2 Class template multimap [multimap]

1 A multimap is an associative container that supports equivalent keys (possibly containing multiple copies
of the same key value) and provides for fast retrieval of values of another type T based on the keys. The
multimap class supports bidirectional iterators.

2 A multimap satisfies all of the requirements of a container and of a reversible container (23.2), of an asso-
ciative container (23.2.4), and of an allocator-aware container (Table 96). A multimap also provides most
operations described in (23.2.4) for equal keys. This means that a multimap supports the a_eq operations
in (23.2.4) but not the a_uniq operations. For a multimap<Key,T> the key_type is Key and the value_-
type is pair<const Key,T>. Descriptions are provided here only for operations on multimap that are not
described in one of those tables or for operations where there is additional semantic information.

namespace std {
template <class Key, class T, class Compare = less<Key>,

class Allocator = allocator<pair<const Key, T> > >
class multimap {
public:

// types:
typedef Key key_type;
typedef T mapped_type;
typedef pair<const Key,T> value_type;
typedef Compare key_compare;
typedef Allocator allocator_type;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef implementation-defined iterator; // See 23.2
typedef implementation-defined const_iterator; // See 23.2
typedef implementation-defined size_type; // See 23.2
typedef implementation-defined difference_type;// See 23.2
typedef typename allocator_traits<Allocator>::pointer pointer;
typedef typename allocator_traits<Allocator>::const_pointer const_pointer;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;

class value_compare
: public binary_function<value_type,value_type,bool> {

friend class multimap;
protected:

§ 23.4.2 784

c© ISO/IEC N3092

Compare comp;
value_compare(Compare c) : comp(c) { }

public:
bool operator()(const value_type& x, const value_type& y) const {

return comp(x.first, y.first);
}

};

// construct/copy/destroy:
explicit multimap(const Compare& comp = Compare(),

const Allocator& = Allocator());
template <class InputIterator>

multimap(InputIterator first, InputIterator last,
const Compare& comp = Compare(),
const Allocator& = Allocator());

multimap(const multimap<Key,T,Compare,Allocator>& x);
multimap(multimap<Key,T,Compare,Allocator>&& x);
multimap(const Allocator&);
multimap(const multimap&, const Allocator&);
multimap(multimap&&, const Allocator&);
multimap(initializer_list<value_type>,

const Compare& = Compare(),
const Allocator& = Allocator());

~multimap();
multimap<Key,T,Compare,Allocator>&

operator=(const multimap<Key,T,Compare,Allocator>& x);
multimap<Key,T,Compare,Allocator>&

operator=(multimap<Key,T,Compare,Allocator>&& x);
multimap& operator=(initializer_list<value_type>);
allocator_type get_allocator() const;

// iterators:
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;

reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;

const_iterator cbegin() const;
const_iterator cend() const;
const_reverse_iterator crbegin() const;
const_reverse_iterator crend() const;

// capacity:
bool empty() const;
size_type size() const;
size_type max_size() const;

// modifiers:
template <class... Args> iterator emplace(Args&&... args);
template <class... Args> iterator emplace_hint(const_iterator position, Args&&... args);

§ 23.4.2 785

c© ISO/IEC N3092

iterator insert(const value_type& x);
template <class P> iterator insert(P&& x);
iterator insert(const_iterator position, const value_type& x);
template <class P> iterator insert(const_iterator position, P&& x);
template <class InputIterator>

void insert(InputIterator first, InputIterator last);
void insert(initializer_list<value_type>);

iterator erase(const_iterator position);
size_type erase(const key_type& x);
iterator erase(const_iterator first, const_iterator last);
void swap(multimap<Key,T,Compare,Allocator>&);
void clear();

// observers:
key_compare key_comp() const;
value_compare value_comp() const;

// map operations:
iterator find(const key_type& x);
const_iterator find(const key_type& x) const;
size_type count(const key_type& x) const;

iterator lower_bound(const key_type& x);
const_iterator lower_bound(const key_type& x) const;
iterator upper_bound(const key_type& x);
const_iterator upper_bound(const key_type& x) const;

pair<iterator,iterator>
equal_range(const key_type& x);

pair<const_iterator,const_iterator>
equal_range(const key_type& x) const;

};

template <class Key, class T, class Compare, class Allocator>
bool operator==(const multimap<Key,T,Compare,Allocator>& x,

const multimap<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>

bool operator< (const multimap<Key,T,Compare,Allocator>& x,
const multimap<Key,T,Compare,Allocator>& y);

template <class Key, class T, class Compare, class Allocator>
bool operator!=(const multimap<Key,T,Compare,Allocator>& x,

const multimap<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>

bool operator> (const multimap<Key,T,Compare,Allocator>& x,
const multimap<Key,T,Compare,Allocator>& y);

template <class Key, class T, class Compare, class Allocator>
bool operator>=(const multimap<Key,T,Compare,Allocator>& x,

const multimap<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>

bool operator<=(const multimap<Key,T,Compare,Allocator>& x,
const multimap<Key,T,Compare,Allocator>& y);

// specialized algorithms:
template <class Key, class T, class Compare, class Allocator>

§ 23.4.2 786

c© ISO/IEC N3092

void swap(multimap<Key,T,Compare,Allocator>& x,
multimap<Key,T,Compare,Allocator>& y);

}

23.4.2.1 multimap constructors [multimap.cons]

explicit multimap(const Compare& comp = Compare(),
const Allocator& = Allocator());

1 Effects: Constructs an empty multimap using the specified comparison object and allocator.

2 Complexity: Constant.

template <class InputIterator>
multimap(InputIterator first, InputIterator last,

const Compare& comp = Compare(),
const Allocator& = Allocator());

3 Requires: If the iterator’s dereference operator returns an lvalue or a const rvalue pair<key_type,
mapped_type>, then both key_type and mapped_type shall be CopyConstructible.

4 Effects: Constructs an empty multimap using the specified comparison object and allocator, and inserts
elements from the range [first,last).

5 Complexity: Linear in N if the range [first,last) is already sorted using comp and otherwise N log N ,
where N is last - first.

23.4.2.2 multimap modifiers [multimap.modifiers]

template <class P> iterator insert(P&& x);
template <class P> iterator insert(const_iterator position, P&& x);

1 Requires: P shall be convertible to value_type.

If P is instantiated as a reference type, then the argument x is copied from. Otherwise x is con-
sidered to be an rvalue as it is converted to value_type and inserted into the map. Specifically, in
such cases CopyConstructible is not required of key_type or mapped_type unless the conversion
from P specifically requires it (e.g., if P is a tuple<const key_type, mapped_type>, then key_type
must be CopyConstructible). The signature taking InputIterator parameters does not require
CopyConstructible of either key_type or mapped_type if the dereferenced InputIterator returns a
non-const rvalue pair<key_type, mapped_type>. Otherwise CopyConstructible is required for both
key_type and mapped_type.

23.4.2.3 multimap operations [multimap.ops]

iterator find(const key_type &x);
const_iterator find(const key_type& x) const;

iterator lower_bound(const key_type& x);
const_iterator lower_bound(const key_type& x) const;

pair<iterator, iterator>
equal_range(const key_type& x);

pair<const_iterator, const_iterator>
equal_range(const key_type& x) const;

§ 23.4.2.3 787

c© ISO/IEC N3092

1 The find, lower_bound, upper_bound, and equal_range member functions each have two versions,
one const and one non-const. In each case the behavior of the two versions is identical except that the
const version returns a const_iterator and the non-const version an iterator (23.2.4).

23.4.2.4 multimap specialized algorithms [multimap.special]

template <class Key, class T, class Compare, class Allocator>
void swap(multimap<Key,T,Compare,Allocator>& x,

multimap<Key,T,Compare,Allocator>& y);

1 Effects:
x.swap(y);

23.4.3 Class template set [set]

1 A set is an associative container that supports unique keys (contains at most one of each key value) and
provides for fast retrieval of the keys themselves. Class set supports bidirectional iterators.

2 A set satisfies all of the requirements of a container, of a reversible container (23.2), of an associative
container (23.2.4), and of an allocator-aware container (Table 96). A set also provides most operations
described in (23.2.4) for unique keys. This means that a set supports the a_uniq operations in (23.2.4) but
not the a_eq operations. For a set<Key> both the key_type and value_type are Key. Descriptions are
provided here only for operations on set that are not described in one of these tables and for operations
where there is additional semantic information.

namespace std {
template <class Key, class Compare = less<Key>,

class Allocator = allocator<Key> >
class set {
public:

// types:
typedef Key key_type;
typedef Key value_type;
typedef Compare key_compare;
typedef Compare value_compare;
typedef Allocator allocator_type;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef implementation-defined iterator; // See 23.2
typedef implementation-defined const_iterator; // See 23.2
typedef implementation-defined size_type; // See 23.2
typedef implementation-defined difference_type;// See 23.2
typedef typename allocator_traits<Allocator>::pointer pointer;
typedef typename allocator_traits<Allocator>::const_pointer const_pointer;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;

// 23.4.3.1 construct/copy/destroy:
explicit set(const Compare& comp = Compare(),

const Allocator& = Allocator());
template <class InputIterator>

set(InputIterator first, InputIterator last,
const Compare& comp = Compare(), const Allocator& = Allocator());

set(const set<Key,Compare,Allocator>& x);

§ 23.4.3 788

c© ISO/IEC N3092

set(set<Key,Compare,Allocator>&& x);
set(const Allocator&);
set(const set&, const Allocator&);
set(set&&, const Allocator&);
set(initializer_list<value_type>,

const Compare& = Compare(),
const Allocator& = Allocator());

~set();
set<Key,Compare,Allocator>& operator=

(const set<Key,Compare,Allocator>& x);
set<Key,Compare,Allocator>& operator=

(set<Key,Compare,Allocator>&& x);
set& operator=(initializer_list<value_type>);
allocator_type get_allocator() const;

// iterators:
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;

reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;

const_iterator cbegin() const;
const_iterator cend() const;
const_reverse_iterator crbegin() const;
const_reverse_iterator crend() const;

// capacity:
bool empty() const;
size_type size() const;
size_type max_size() const;

// modifiers:
template <class... Args> pair<iterator, bool> emplace(Args&&... args);
template <class... Args> iterator emplace_hint(const_iterator position, Args&&... args);
pair<iterator,bool> insert(const value_type& x);
pair<iterator,bool> insert(value_type&& x);
iterator insert(const_iterator position, const value_type& x);
iterator insert(const_iterator position, value_type&& x);
template <class InputIterator>

void insert(InputIterator first, InputIterator last);
void insert(initializer_list<value_type>);

iterator erase(const_iterator position);
size_type erase(const key_type& x);
iterator erase(const_iterator first, const_iterator last);
void swap(set<Key,Compare,Allocator>&);
void clear();

// observers:
key_compare key_comp() const;

§ 23.4.3 789

c© ISO/IEC N3092

value_compare value_comp() const;

// set operations:
iterator find(const key_type& x);
const_iterator find(const key_type& x) const;

size_type count(const key_type& x) const;

iterator lower_bound(const key_type& x);
const_iterator lower_bound(const key_type& x) const;

iterator upper_bound(const key_type& x);
const_iterator upper_bound(const key_type& x) const;

pair<iterator,iterator> equal_range(const key_type& x);
pair<const_iterator,const_iterator> equal_range(const key_type& x) const;

};

template <class Key, class Compare, class Allocator>
bool operator==(const set<Key,Compare,Allocator>& x,

const set<Key,Compare,Allocator>& y);
template <class Key, class Compare, class Allocator>

bool operator< (const set<Key,Compare,Allocator>& x,
const set<Key,Compare,Allocator>& y);

template <class Key, class Compare, class Allocator>
bool operator!=(const set<Key,Compare,Allocator>& x,

const set<Key,Compare,Allocator>& y);
template <class Key, class Compare, class Allocator>

bool operator> (const set<Key,Compare,Allocator>& x,
const set<Key,Compare,Allocator>& y);

template <class Key, class Compare, class Allocator>
bool operator>=(const set<Key,Compare,Allocator>& x,

const set<Key,Compare,Allocator>& y);
template <class Key, class Compare, class Allocator>

bool operator<=(const set<Key,Compare,Allocator>& x,
const set<Key,Compare,Allocator>& y);

// specialized algorithms:
template <class Key, class Compare, class Allocator>

void swap(set<Key,Compare,Allocator>& x,
set<Key,Compare,Allocator>& y);

}

23.4.3.1 set constructors, copy, and assignment [set.cons]

explicit set(const Compare& comp = Compare(),
const Allocator& = Allocator());

1 Effects: Constructs an empty set using the specified comparison objects and allocator.

2 Complexity: Constant.

template <class InputIterator>
set(InputIterator first, InputIterator last,

const Compare& comp = Compare(), const Allocator& = Allocator());

§ 23.4.3.1 790

c© ISO/IEC N3092

3 Effects: Constructs an empty set using the specified comparison object and allocator, and inserts
elements from the range [first,last).

4 Requires: If the iterator’s dereference operator returns an lvalue or a non-const rvalue, then Key shall
be CopyConstructible.

5 Complexity: Linear in N if the range [first,last) is already sorted using comp and otherwise N log N ,
where N is last - first.

23.4.3.2 set specialized algorithms [set.special]

template <class Key, class Compare, class Allocator>
void swap(set<Key,Compare,Allocator>& x,

set<Key,Compare,Allocator>& y);

1 Effects:
x.swap(y);

23.4.4 Class template multiset [multiset]

1 A multiset is an associative container that supports equivalent keys (possibly contains multiple copies of the
same key value) and provides for fast retrieval of the keys themselves. Class multiset supports bidirectional
iterators.

2 A multiset satisfies all of the requirements of a container, of a reversible container (23.2), of an associative
container (23.2.4), and of an allocator-aware container (Table 96). multiset also provides most opera-
tions described in (23.2.4) for duplicate keys. This means that a multiset supports the a_eq operations
in (23.2.4) but not the a_uniq operations. For a multiset<Key> both the key_type and value_type are
Key. Descriptions are provided here only for operations on multiset that are not described in one of these
tables and for operations where there is additional semantic information.

namespace std {
template <class Key, class Compare = less<Key>,

class Allocator = allocator<Key> >
class multiset {
public:

// types:
typedef Key key_type;
typedef Key value_type;
typedef Compare key_compare;
typedef Compare value_compare;
typedef Allocator allocator_type;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef implementation-defined iterator; // See 23.2
typedef implementation-defined const_iterator; // See 23.2
typedef implementation-defined size_type; // See 23.2
typedef implementation-defined difference_type;// See 23.2
typedef typename allocator_traits<Allocator>::pointer pointer;
typedef typename allocator_traits<Allocator>::const_pointer const_pointer;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;

// construct/copy/destroy:

§ 23.4.4 791

c© ISO/IEC N3092

explicit multiset(const Compare& comp = Compare(),
const Allocator& = Allocator());

template <class InputIterator>
multiset(InputIterator first, InputIterator last,

const Compare& comp = Compare(),
const Allocator& = Allocator());

multiset(const multiset<Key,Compare,Allocator>& x);
multiset(multiset<Key,Compare,Allocator>&& x);
multiset(const Allocator&);
multiset(const multiset&, const Allocator&);
multiset(multiset&&, const Allocator&);
multiset(initializer_list<value_type>,

const Compare& = Compare(),
const Allocator& = Allocator());

~multiset();
multiset<Key,Compare,Allocator>&

operator=(const multiset<Key,Compare,Allocator>& x);
multiset<Key,Compare,Allocator>&

operator=(multiset<Key,Compare,Allocator>&& x);
multiset& operator=(initializer_list<value_type>);
allocator_type get_allocator() const;

// iterators:
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;

reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;

const_iterator cbegin() const;
const_iterator cend() const;
const_reverse_iterator crbegin() const;
const_reverse_iterator crend() const;

// capacity:
bool empty() const;
size_type size() const;
size_type max_size() const;

// modifiers:
template <class... Args> iterator emplace(Args&&... args);
template <class... Args> iterator emplace_hint(const_iterator position, Args&&... args);
iterator insert(const value_type& x);
iterator insert(value_type&& x);
iterator insert(const_iterator position, const value_type& x);
iterator insert(const_iterator position, value_type&& x);
template <class InputIterator>

void insert(InputIterator first, InputIterator last);
void insert(initializer_list<value_type>);

iterator erase(const_iterator position);

§ 23.4.4 792

c© ISO/IEC N3092

size_type erase(const key_type& x);
iterator erase(const_iterator first, const_iterator last);
void swap(multiset<Key,Compare,Allocator>&);
void clear();

// observers:
key_compare key_comp() const;
value_compare value_comp() const;

// set operations:
iterator find(const key_type& x);
const_iterator find(const key_type& x) const;

size_type count(const key_type& x) const;

iterator lower_bound(const key_type& x);
const_iterator lower_bound(const key_type& x) const;

iterator upper_bound(const key_type& x);
const_iterator upper_bound(const key_type& x) const;

pair<iterator,iterator> equal_range(const key_type& x);
pair<const_iterator,const_iterator> equal_range(const key_type& x) const;

};

template <class Key, class Compare, class Allocator>
bool operator==(const multiset<Key,Compare,Allocator>& x,

const multiset<Key,Compare,Allocator>& y);
template <class Key, class Compare, class Allocator>

bool operator< (const multiset<Key,Compare,Allocator>& x,
const multiset<Key,Compare,Allocator>& y);

template <class Key, class Compare, class Allocator>
bool operator!=(const multiset<Key,Compare,Allocator>& x,

const multiset<Key,Compare,Allocator>& y);
template <class Key, class Compare, class Allocator>

bool operator> (const multiset<Key,Compare,Allocator>& x,
const multiset<Key,Compare,Allocator>& y);

template <class Key, class Compare, class Allocator>
bool operator>=(const multiset<Key,Compare,Allocator>& x,

const multiset<Key,Compare,Allocator>& y);
template <class Key, class Compare, class Allocator>

bool operator<=(const multiset<Key,Compare,Allocator>& x,
const multiset<Key,Compare,Allocator>& y);

// specialized algorithms:
template <class Key, class Compare, class Allocator>

void swap(multiset<Key,Compare,Allocator>& x,
multiset<Key,Compare,Allocator>& y);

}

23.4.4.1 multiset constructors [multiset.cons]

explicit multiset(const Compare& comp = Compare(),
const Allocator& = Allocator());

§ 23.4.4.1 793

c© ISO/IEC N3092

1 Effects: Constructs an empty set using the specified comparison object and allocator.

2 Complexity: Constant.

template <class InputIterator>
multiset(InputIterator first, last,

const Compare& comp = Compare(), const Allocator& = Allocator());

3 Requires: If the iterator’s dereference operator returns an lvalue or a const rvalue, then Key shall be
CopyConstructible.

4 Effects: Constructs an empty multiset using the specified comparison object and allocator, and inserts
elements from the range [first,last).

5 Complexity: Linear in N if the range [first,last) is already sorted using comp and otherwise N log N ,
where N is last - first.

23.4.4.2 multiset specialized algorithms [multiset.special]

template <class Key, class Compare, class Allocator>
void swap(multiset<Key,Compare,Allocator>& x,

multiset<Key,Compare,Allocator>& y);

1 Effects:
x.swap(y);

23.5 Unordered associative containers [unord]

1 Headers <unordered_map> and <unordered_set>:

Header <unordered_map> synopsis
namespace std {

#include <initializer_list>

// 23.5.1, class template unordered_map:
template <class Key,

class T,
class Hash = hash<Key>,
class Pred = std::equal_to<Key>,
class Alloc = std::allocator<std::pair<const Key, T> > >

class unordered_map;

// 23.5.2, class template unordered_multimap:
template <class Key,

class T,
class Hash = hash<Key>,
class Pred = std::equal_to<Key>,
class Alloc = std::allocator<std::pair<const Key, T> > >

class unordered_multimap;

template <class Key, class T, class Hash, class Pred, class Alloc>
void swap(unordered_map<Key, T, Hash, Pred, Alloc>& x,

unordered_map<Key, T, Hash, Pred, Alloc>& y);

template <class Key, class T, class Hash, class Pred, class Alloc>

§ 23.5 794

c© ISO/IEC N3092

void swap(unordered_multimap<Key, T, Hash, Pred, Alloc>& x,
unordered_multimap<Key, T, Hash, Pred, Alloc>& y);

template <class Key, class T, class Hash, class Pred, class Alloc>
bool operator==(const unordered_map<Key, T, Hash, Pred, Alloc>& a,

const unordered_map<Key, T, Hash, Pred, Alloc>& b);
template <class Key, class T, class Hash, class Pred, class Alloc>

bool operator!=(const unordered_map<Key, T, Hash, Pred, Alloc>& a,
const unordered_map<Key, T, Hash, Pred, Alloc>& b);

template <class Key, class T, class Hash, class Pred, class Alloc>
bool operator==(const unordered_multimap<Key, T, Hash, Pred, Alloc>& a,

const unordered_multimap<Key, T, Hash, Pred, Alloc>& b);
template <class Key, class T, class Hash, class Pred, class Alloc>

bool operator!=(const unordered_multimap<Key, T, Hash, Pred, Alloc>& a,
const unordered_multimap<Key, T, Hash, Pred, Alloc>& b);

} // namespace std

Header <unordered_set> synopsis
namespace std {

#include <initializer_list>

// 23.5.3, class template unordered_set:
template <class Key,

class Hash = hash<Key>,
class Pred = std::equal_to<Key>,
class Alloc = std::allocator<Key> >

class unordered_set;

// 23.5.4, class template unordered_multiset:
template <class Key,

class Hash = hash<Key>,
class Pred = std::equal_to<Key>,
class Alloc = std::allocator<Key> >

class unordered_multiset;

template <class Key, class Hash, class Pred, class Alloc>
void swap(unordered_set<Key, Hash, Pred, Alloc>& x,

unordered_set<Key, Hash, Pred, Alloc>& y);

template <class Key, class Hash, class Pred, class Alloc>
void swap(unordered_multiset<Key, Hash, Pred, Alloc>& x,

unordered_multiset<Key, Hash, Pred, Alloc>& y);

template <class Key, class Hash, class Pred, class Alloc>
bool operator==(const unordered_set<Key, Hash, Pred, Alloc>& a,

const unordered_set<Key, Hash, Pred, Alloc>& b);
template <class Key, class Hash, class Pred, class Alloc>

bool operator!=(const unordered_set<Key, Hash, Pred, Alloc>& a,
const unordered_set<Key, Hash, Pred, Alloc>& b);

template <class Key, class Hash, class Pred, class Alloc>
bool operator==(const unordered_multiset<Key, Hash, Pred, Alloc>& a,

const unordered_multiset<Key, Hash, Pred, Alloc>& b);
template <class Key, class Hash, class Pred, class Alloc>

bool operator!=(const unordered_multiset<Key, Hash, Pred, Alloc>& a,
const unordered_multiset<Key, Hash, Pred, Alloc>& b);

§ 23.5 795

c© ISO/IEC N3092

} // namespace std

23.5.1 Class template unordered_map [unord.map]

1 An unordered_map is an unordered associative container that supports unique keys (an unordered_map
contains at most one of each key value) and that associates values of another type mapped_type with the
keys.

2 An unordered_map satisfies all of the requirements of a container, of an unordered associative container, and
of an allocator-aware container (Table 96). It provides the operations described in the preceding requirements
table for unique keys; that is, an unordered_map supports the a_uniq operations in that table, not the a_eq
operations. For an unordered_map<Key, T> the key type is Key, the mapped type is T, and the value type
is std::pair<const Key, T>.

3 This section only describes operations on unordered_map that are not described in one of the requirement
tables, or for which there is additional semantic information.

namespace std {
template <class Key,

class T,
class Hash = hash<Key>,
class Pred = std::equal_to<Key>,
class Alloc = std::allocator<std::pair<const Key, T> > >

class unordered_map
{
public:

// types
typedef Key key_type;
typedef std::pair<const Key, T> value_type;
typedef T mapped_type;
typedef Hash hasher;
typedef Pred key_equal;
typedef Alloc allocator_type;
typedef typename allocator_type::pointer pointer;
typedef typename allocator_type::const_pointer const_pointer;
typedef typename allocator_type::reference reference;
typedef typename allocator_type::const_reference const_reference;
typedef implementation-defined size_type;
typedef implementation-defined difference_type;

typedef implementation-defined iterator;
typedef implementation-defined const_iterator;
typedef implementation-defined local_iterator;
typedef implementation-defined const_local_iterator;

// construct/destroy/copy
explicit unordered_map(size_type n = see below,

const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

template <class InputIterator>
unordered_map(InputIterator f, InputIterator l,

size_type n = see below,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

§ 23.5.1 796

c© ISO/IEC N3092

unordered_map(const unordered_map&);
unordered_map(unordered_map&&);
unordered_map(const Allocator&);
unordered_map(const unordered_map&, const Allocator&);
unordered_map(unordered_map&&, const Allocator&);
unordered_map(initializer_list<value_type>,

size_type = see below,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

~unordered_map();
unordered_map& operator=(const unordered_map&);
unordered_map& operator=(unordered_map&&);
unordered_map& operator=(initializer_list<value_type>);
allocator_type get_allocator() const;

// size and capacity
bool empty() const;
size_type size() const;
size_type max_size() const;

// iterators
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
const_iterator cbegin() const;
const_iterator cend() const;

// modifiers
template <class... Args> pair<iterator, bool> emplace(Args&&... args);
template <class... Args> iterator emplace_hint(const_iterator position, Args&&... args);
pair<iterator, bool> insert(const value_type& obj);
template <class P> pair<iterator, bool> insert(P&& obj);
iterator insert(const_iterator hint, const value_type& obj);
template <class P> iterator insert(const_iterator hint, P&& obj);
template <class InputIterator> void insert(InputIterator first, InputIterator last);
void insert(initializer_list<value_type>);

iterator erase(const_iterator position);
size_type erase(const key_type& k);
iterator erase(const_iterator first, const_iterator last);
void clear();

void swap(unordered_map&);

// observers
hasher hash_function() const;
key_equal key_eq() const;

// lookup
iterator find(const key_type& k);
const_iterator find(const key_type& k) const;
size_type count(const key_type& k) const;
std::pair<iterator, iterator> equal_range(const key_type& k);

§ 23.5.1 797

c© ISO/IEC N3092

std::pair<const_iterator, const_iterator> equal_range(const key_type& k) const;

mapped_type& operator[](const key_type& k);
mapped_type& operator[](key_type&& k);
mapped_type& at(const key_type& k);
const mapped_type& at(const key_type& k) const;

// bucket interface
size_type bucket_count() const;
size_type max_bucket_count() const;
size_type bucket_size(size_type n);
size_type bucket(const key_type& k) const;
local_iterator begin(size_type n);
const_local_iterator begin(size_type n) const;
local_iterator end(size_type n);
const_local_iterator end(size_type n) const;
const_local_iterator cbegin(size_type n) const;
const_local_iterator cend(size_type n) const;

// hash policy
float load_factor() const;
float max_load_factor() const;
void max_load_factor(float z);
void rehash(size_type n);
void reserve(size_type n);

};

template <class Key, class T, class Hash, class Pred, class Alloc>
void swap(unordered_map<Key, T, Hash, Pred, Alloc>& x,

unordered_map<Key, T, Hash, Pred, Alloc>& y);
}

23.5.1.1 unordered_map constructors [unord.map.cnstr]

explicit unordered_map(size_type n = see below,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

1 Effects: Constructs an empty unordered_map using the specified hash function, key equality function,
and allocator, and using at least n buckets. If n is not provided, the number of buckets is impldefdefault
number of buckets in unordered_map. max_load_factor() returns 1.0.

2 Complexity: Constant.

template <class InputIterator>
unordered_map(InputIterator f, InputIterator l,

size_type n = see below,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

3 Effects: Constructs an empty unordered_map using the specified hash function, key equality function,
and allocator, and using at least n buckets. If n is not provided, the number of buckets is impldefdefault
number of buckets in unordered_map. Then inserts elements from the range [f, l). max_load_-
factor() returns 1.0.

§ 23.5.1.1 798

c© ISO/IEC N3092

4 Complexity: Average case linear, worst case quadratic.

23.5.1.2 unordered_map element access [unord.map.elem]

mapped_type& operator[](const key_type& k);
mapped_type& operator[](key_type&& k);

1 Requires: mapped_type shall be DefaultConstructible. For the first operator, key_type shall be
CopyConstructible. For the second operator, key_type shall be MoveConstructible.

2 Effects: If the unordered_map does not already contain an element whose key is equivalent to k, the
first operator inserts the value value_type(k, mapped_type()) and the second operator inserts the
value value_type(std::move(k), mapped_type()).

3 Returns: A reference to x.second, where x is the (unique) element whose key is equivalent to k.

4 Complexity: Average case O(1), worst case O(size()).

mapped_type& at(const key_type& k);
const mapped_type& at(const key_type& k) const;

5 Returns: A reference to x.second, where x is the (unique) element whose key is equivalent to k.

6 Throws: An exception object of type out_of_range if no such element is present.

23.5.1.3 unordered_map modifiers [unord.map.modifers]

template <class P>
pair<iterator, bool> insert(P&& obj);

1 Requires: value_type is constructible from std::forward<P>(obj).

2 Effects: Inserts obj converted to value_type if and only if there is no element in the container with
key equivalent to the key of value_type(obj).

3 Returns: The bool component of the returned pair object indicates whether the insertion took place
and the iterator component points to the element with key equivalent to the key of value_type(obj).

4 Complexity: Average case O(1), worst case O(size()).

5 Remarks: This signature shall not participate in overload resolution unless P is implicitly convertible
to value_type.

template <class P>
iterator insert(const_iterator hint, P&& obj);

6 Requires: value_type is constructible from std::forward<P>(obj).

7 Effects: Inserts obj converted to value_type if and only if there is no element in the container with
key equivalent to the key of value_type(obj). The iterator hint is a hint pointing to where the
search should start.

8 Returns: An iterator that points to the element with key equivalent to the key of value_type(obj).

9 Complexity: Average case O(1), worst case O(size()).

10 Remarks: This signature shall not participate in overload resolution unless P is implicitly convertible
to value_type.

§ 23.5.1.3 799

c© ISO/IEC N3092

23.5.1.4 unordered_map swap [unord.map.swap]

template <class Key, class T, class Hash, class Pred, class Alloc>
void swap(unordered_map<Key, T, Hash, Pred, Alloc>& x,

unordered_map<Key, T, Hash, Pred, Alloc>& y);

1 Effects: x.swap(y).

23.5.2 Class template unordered_multimap [unord.multimap]

1 An unordered_multimap is an unordered associative container that supports equivalent keys (an unordered_-
multimap may contain multiple copies of each key value) and that associates values of another type mapped_-
type with the keys.

2 An unordered_multimap satisfies all of the requirements of a container, of an unordered associative con-
tainer, and of an allocator-aware container (Table 96). It provides the operations described in the preceding
requirements table for equivalent keys; that is, an unordered_multimap supports the a_eq operations in
that table, not the a_uniq operations. For an unordered_multimap<Key, T> the key type is Key, the
mapped type is T, and the value type is std::pair<const Key, T>.

3 This section only describes operations on unordered_multimap that are not described in one of the require-
ment tables, or for which there is additional semantic information.

namespace std {
template <class Key,

class T,
class Hash = hash<Key>,
class Pred = std::equal_to<Key>,
class Alloc = std::allocator<std::pair<const Key, T> > >

class unordered_multimap
{
public:

// types
typedef Key key_type;
typedef std::pair<const Key, T> value_type;
typedef T mapped_type;
typedef Hash hasher;
typedef Pred key_equal;
typedef Alloc allocator_type;
typedef typename allocator_type::pointer pointer;
typedef typename allocator_type::const_pointer const_pointer;
typedef typename allocator_type::reference reference;
typedef typename allocator_type::const_reference const_reference;
typedef implementation-defined size_type;
typedef implementation-defined difference_type;

typedef implementation-defined iterator;
typedef implementation-defined const_iterator;
typedef implementation-defined local_iterator;
typedef implementation-defined const_local_iterator;

// construct/destroy/copy
explicit unordered_multimap(size_type n = seebelow,

const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

§ 23.5.2 800

c© ISO/IEC N3092

template <class InputIterator>
unordered_multimap(InputIterator f, InputIterator l,

size_type n = see below,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

unordered_multimap(const unordered_multimap&);
unordered_multimap(unordered_multimap&&);
unordered_multimap(const Allocator&);
unordered_multimap(const unordered_multimap&, const Allocator&);
unordered_multimap(unordered_multimap&&, const Allocator&);
unordered_multimap(initializer_list<value_type>,

size_type = see below,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

~unordered_multimap();
unordered_multimap& operator=(const unordered_multimap&);
unordered_multimap& operator=(unordered_multimap&&);
unordered_multimap& operator=(initializer_list<value_type>);
allocator_type get_allocator() const;

// size and capacity
bool empty() const;
size_type size() const;
size_type max_size() const;

// iterators
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
const_iterator cbegin() const;
const_iterator cend() const;

// modifiers
template <class... Args> iterator emplace(Args&&... args);
template <class... Args> iterator emplace_hint(const_iterator position, Args&&... args);
iterator insert(const value_type& obj);
template <class P> iterator insert(P&& obj);
iterator insert(const_iterator hint, const value_type& obj);
template <class P> iterator insert(const_iterator hint, P&& obj);
template <class InputIterator> void insert(InputIterator first, InputIterator last);
void insert(initializer_list<value_type>);

iterator erase(const_iterator position);
size_type erase(const key_type& k);
iterator erase(const_iterator first, const_iterator last);
void clear();

void swap(unordered_multimap&);

// observers
hasher hash_function() const;
key_equal key_eq() const;

§ 23.5.2 801

c© ISO/IEC N3092

// lookup
iterator find(const key_type& k);
const_iterator find(const key_type& k) const;
size_type count(const key_type& k) const;
std::pair<iterator, iterator> equal_range(const key_type& k);
std::pair<const_iterator, const_iterator> equal_range(const key_type& k) const;

// bucket interface
size_type bucket_count() const;
size_type max_bucket_count() const;
size_type bucket_size(size_type n);
size_type bucket(const key_type& k) const;
local_iterator begin(size_type n);
const_local_iterator begin(size_type n) const;
local_iterator end(size_type n);
const_local_iterator end(size_type n) const;
const_local_iterator cbegin(size_type n) const;
const_local_iterator cend(size_type n) const;

// hash policy
float load_factor() const;
float max_load_factor() const;
void max_load_factor(float z);
void rehash(size_type n);
void reserve(size_type n);

};

template <class Key, class T, class Hash, class Pred, class Alloc>
void swap(unordered_multimap<Key, T, Hash, Pred, Alloc>& x,

unordered_multimap<Key, T, Hash, Pred, Alloc>& y);
}

23.5.2.1 unordered_multimap constructors [unord.multimap.cnstr]

explicit unordered_multimap(size_type n = see below,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

1 Effects: Constructs an empty unordered_multimap using the specified hash function, key equality
function, and allocator, and using at least n buckets. If n is not provided, the number of buckets is
impldefdefault number of buckets in unordered_multimap. max_load_factor() returns 1.0.

2 Complexity: Constant.

template <class InputIterator>
unordered_multimap(InputIterator f, InputIterator l,

size_type n = see below,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

3 Effects: Constructs an empty unordered_multimap using the specified hash function, key equality
function, and allocator, and using at least n buckets. If n is not provided, the number of buckets is

§ 23.5.2.1 802

c© ISO/IEC N3092

impldefdefault number of buckets in unordered_multimap. Then inserts elements from the range [f,
l). max_load_factor() returns 1.0.

4 Complexity: Average case linear, worst case quadratic.

23.5.2.2 unordered_multimap modifiers [unord.multimap.modifers]

template <class P>
iterator insert(P&& obj);

1 Requires: value_type is constructible from std::forward<P>(obj).

2 Effects: Inserts obj converted to value_type.

3 Returns: An iterator that points to the element with key equivalent to the key of value_type(obj).

4 Complexity: Average case O(1), worst case O(size()).

5 Remarks: This signature shall not participate in overload resolution unless P is implicitly convertible
to value_type.

template <class P>
iterator insert(const_iterator hint, P&& obj);

6 Requires: value_type is constructible from std::forward<P>(obj).

7 Effects: Inserts obj converted to value_type. The iterator hint is a hint pointing to where the search
should start.

8 Returns: An iterator that points to the element with key equivalent to the key of value_type(obj).

9 Complexity: Average case O(1), worst case O(size()).

10 Remarks: This signature shall not participate in overload resolution unless P is implicitly convertible
to value_type.

23.5.2.3 unordered_multimap swap [unord.multimap.swap]

template <class Key, class T, class Hash, class Pred, class Alloc>
void swap(unordered_multimap<Key, T, Hash, Pred, Alloc>& x,

unordered_multimap<Key, T, Hash, Pred, Alloc>& y);

1 Effects: x.swap(y).

23.5.3 Class template unordered_set [unord.set]

1 An unordered_set is an unordered associative container that supports unique keys (an unordered_set
contains at most one of each key value) and in which the elements’ keys are the elements themselves.

2 An unordered_set satisfies all of the requirements of a container, of an unordered associative container, and
of an allocator-aware container (Table 96). It provides the operations described in the preceding requirements
table for unique keys; that is, an unordered_set supports the a_uniq operations in that table, not the a_eq
operations. For an unordered_set<Key> the key type and the value type are both Key. The iterator and
const_iterator types are both const iterator types. It is unspecified whether they are the same type.

3 This section only describes operations on unordered_set that are not described in one of the requirement
tables, or for which there is additional semantic information.

§ 23.5.3 803

c© ISO/IEC N3092

namespace std {
template <class Key,

class Hash = hash<Key>,
class Pred = std::equal_to<Key>,
class Alloc = std::allocator<Key> >

class unordered_set
{
public:

// types
typedef Key key_type;
typedef Key value_type;
typedef Hash hasher;
typedef Pred key_equal;
typedef Alloc allocator_type;
typedef typename allocator_type::pointer pointer;
typedef typename allocator_type::const_pointer const_pointer;
typedef typename allocator_type::reference reference;
typedef typename allocator_type::const_reference const_reference;
typedef implementation-defined size_type;
typedef implementation-defined difference_type;

typedef implementation-defined iterator;
typedef implementation-defined const_iterator;
typedef implementation-defined local_iterator;
typedef implementation-defined const_local_iterator;

// construct/destroy/copy
explicit unordered_set(size_type n = implementation-defined,

const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

template <class InputIterator>
unordered_set(InputIterator f, InputIterator l,

size_type n = see below,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

unordered_set(const unordered_set&);
unordered_set(unordered_set&&);
unordered_set(const Allocator&);
unordered_set(const unordered_set&, const Allocator&);
unordered_set(unordered_set&&, const Allocator&);
unordered_set(initializer_list<value_type>,

size_type = see below,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

~unordered_set();
unordered_set& operator=(const unordered_set&);
unordered_set& operator=(unordered_set&&);
unordered_set& operator=(initializer_list<value_type>);
allocator_type get_allocator() const;

// size and capacity
bool empty() const;

§ 23.5.3 804

c© ISO/IEC N3092

size_type size() const;
size_type max_size() const;

// iterators
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
const_iterator cbegin() const;
const_iterator cend() const;

// modifiers
template <class... Args> pair<iterator, bool> emplace(Args&&... args);
template <class... Args> iterator emplace_hint(const_iterator position, Args&&... args);
pair<iterator, bool> insert(const value_type& obj);
pair<iterator, bool> insert(value_type&& obj);
iterator insert(const_iterator hint, const value_type& obj);
iterator insert(const_iterator hint, value_type&& obj);
template <class InputIterator> void insert(InputIterator first, InputIterator last);
void insert(initializer_list<value_type>);

iterator erase(const_iterator position);
size_type erase(const key_type& k);
iterator erase(const_iterator first, const_iterator last);
void clear();

void swap(unordered_set&);

// observers
hasher hash_function() const;
key_equal key_eq() const;

// lookup
iterator find(const key_type& k);
const_iterator find(const key_type& k) const;
size_type count(const key_type& k) const;
std::pair<iterator, iterator> equal_range(const key_type& k);
std::pair<const_iterator, const_iterator> equal_range(const key_type& k) const;

// bucket interface
size_type bucket_count() const;
size_type max_bucket_count() const;
size_type bucket_size(size_type n) const;
size_type bucket(const key_type& k) const;
local_iterator begin(size_type n);
const_local_iterator begin(size_type n) const;
local_iterator end(size_type n);
const_local_iterator end(size_type n) const;
const_local_iterator cbegin(size_type n) const;
const_local_iterator cend(size_type n) const;

// hash policy
float load_factor() const;
float max_load_factor() const;
void max_load_factor(float z);

§ 23.5.3 805

c© ISO/IEC N3092

void rehash(size_type n);
void reserve(size_type n);

};

template <class Key, class Hash, class Pred, class Alloc>
void swap(unordered_set<Key, Hash, Pred, Alloc>& x,

unordered_set<Key, Hash, Pred, Alloc>& y);
}

23.5.3.1 unordered_set constructors [unord.set.cnstr]

explicit unordered_set(size_type n = see below,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

1 Effects: Constructs an empty unordered_set using the specified hash function, key equality function,
and allocator, and using at least n buckets. If n is not provided, the number of buckets is impldefdefault
number of buckets in unordered_set. max_load_factor() returns 1.0.

2 Complexity: Constant.

template <class InputIterator>
unordered_set(InputIterator f, InputIterator l,

size_type n = see below,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

3 Effects: Constructs an empty unordered_set using the specified hash function, key equality function,
and allocator, and using at least n buckets. If n is not provided, the number of buckets is impldefdefault
number of buckets in unordered_set. Then inserts elements from the range [f, l). max_load_-
factor() returns 1.0.

4 Complexity: Average case linear, worst case quadratic.

23.5.3.2 unordered_set swap [unord.set.swap]

template <class Key, class Hash, class Pred, class Alloc>
void swap(unordered_set<Key, Hash, Pred, Alloc>& x,

unordered_set<Key, Hash, Pred, Alloc>& y);

1 Effects: x.swap(y).

23.5.4 Class template unordered_multiset [unord.multiset]

1 An unordered_multiset is an unordered associative container that supports equivalent keys (an unordered_-
multiset may contain multiple copies of the same key value) and in which each element’s key is the element
itself.

2 An unordered_multiset satisfies all of the requirements of a container, of an unordered associative con-
tainer, and of an allocator-aware container (Table 96). It provides the operations described in the preceding
requirements table for equivalent keys; that is, an unordered_multiset supports the a_eq operations in
that table, not the a_uniq operations. For an unordered_multiset<Key> the key type and the value type

§ 23.5.4 806

c© ISO/IEC N3092

are both Key. The iterator and const_iterator types are both const iterator types. It is unspecified
whether they are the same type.

3 This section only describes operations on unordered_multiset that are not described in one of the require-
ment tables, or for which there is additional semantic information.

namespace std {
template <class Key,

class Hash = hash<Key>,
class Pred = std::equal_to<Key>,
class Alloc = std::allocator<Key> >

class unordered_multiset
{
public:

// types
typedef Key key_type;
typedef Key value_type;
typedef Hash hasher;
typedef Pred key_equal;
typedef Alloc allocator_type;
typedef typename allocator_type::pointer pointer;
typedef typename allocator_type::const_pointer const_pointer;
typedef typename allocator_type::reference reference;
typedef typename allocator_type::const_reference const_reference;
typedef implementation-defined size_type;
typedef implementation-defined difference_type;

typedef implementation-defined iterator;
typedef implementation-defined const_iterator;
typedef implementation-defined local_iterator;
typedef implementation-defined const_local_iterator;

// construct/destroy/copy
explicit unordered_multiset(size_type n = implementation-defined,

const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

template <class InputIterator>
unordered_multiset(InputIterator f, InputIterator l,

size_type n = see below,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

unordered_multiset(const unordered_multiset&);
unordered_multiset(unordered_multiset&&);
unordered_multiset(const Allocator&);
unordered_multiset(const unordered_multiset&, const Allocator&);
unordered_multiset(unordered_multiset&&, const Allocator&);
unordered_multiset(initializer_list<value_type>,

size_type = see below,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

~unordered_multiset();
unordered_multiset& operator=(const unordered_multiset&);
unordered_multiset operator=(unordered_multiset&&);

§ 23.5.4 807

c© ISO/IEC N3092

unordered_multiset& operator=(initializer_list<value_type>);
allocator_type get_allocator() const;

// size and capacity
bool empty() const;
size_type size() const;
size_type max_size() const;

// iterators
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
const_iterator cbegin() const;
const_iterator cend() const;

// modifiers
template <class... Args> iterator emplace(Args&&... args);
template <class... Args> iterator emplace_hint(const_iterator position, Args&&... args);
iterator insert(const value_type& obj);
iterator insert(value_type&& obj);
iterator insert(const_iterator hint, const value_type& obj);
iterator insert(const_iterator hint, value_type&& obj);
template <class InputIterator> void insert(InputIterator first, InputIterator last);
void insert(initializer_list<value_type>);

iterator erase(const_iterator position);
size_type erase(const key_type& k);
iterator erase(const_iterator first, const_iterator last);
void clear();

void swap(unordered_multiset&);

// observers
hasher hash_function() const;
key_equal key_eq() const;

// lookup
iterator find(const key_type& k);
const_iterator find(const key_type& k) const;
size_type count(const key_type& k) const;
std::pair<iterator, iterator> equal_range(const key_type& k);
std::pair<const_iterator, const_iterator> equal_range(const key_type& k) const;

// bucket interface
size_type bucket_count() const;
size_type max_bucket_count() const;
size_type bucket_size(size_type n);
size_type bucket(const key_type& k) const;
local_iterator begin(size_type n);
const_local_iterator begin(size_type n) const;
local_iterator end(size_type n);
const_local_iterator end(size_type n) const;
const_local_iterator cbegin(size_type n) const;
const_local_iterator cend(size_type n) const;

§ 23.5.4 808

c© ISO/IEC N3092

// hash policy
float load_factor() const;
float max_load_factor() const;
void max_load_factor(float z);
void rehash(size_type n);
void reserve(size_type n);

};

template <class Key, class Hash, class Pred, class Alloc>
void swap(unordered_multiset<Key, Hash, Pred, Alloc>& x,

unordered_multiset<Key, Hash, Pred, Alloc>& y);
}

23.5.4.1 unordered_multiset constructors [unord.multiset.cnstr]

explicit unordered_multiset(size_type n = see below,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

1 Effects: Constructs an empty unordered_multiset using the specified hash function, key equality
function, and allocator, and using at least n buckets. If n is not provided, the number of buckets is
impldefdefault number of buckets in unordered_multiset. max_load_factor() returns 1.0.

2 Complexity: Constant.

template <class InputIterator>
unordered_multiset(InputIterator f, InputIterator l,

size_type n = see below,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

3 Effects: Constructs an empty unordered_multiset using the specified hash function, key equality
function, and allocator, and using at least n buckets. If n is not provided, the number of buckets is
impldefdefault number of buckets in unordered_multiset. Then inserts elements from the range [f,
l). max_load_factor() returns 1.0.

4 Complexity: Average case linear, worst case quadratic.

23.5.4.2 unordered_multiset swap [unord.multiset.swap]

template <class Key, class Hash, class Pred, class Alloc>
void swap(unordered_multiset<Key, Hash, Pred, Alloc>& x,

unordered_multiset<Key, Hash, Pred, Alloc>& y);

1 Effects: x.swap(y);

§ 23.5.4.2 809

c© ISO/IEC N3092

24 Iterators library [iterators]
24.1 General [iterators.general]

1 This Clause describes components that C++ programs may use to perform iterations over containers (Clause 23),
streams (27.7), and stream buffers (27.6).

2 The following subclauses describe iterator requirements, and components for iterator primitives, predefined
iterators, and stream iterators, as summarized in Table 101.

Table 101 — Iterators library summary

Subclause Header(s)
24.2 Requirements
24.4 Iterator primitives <iterator>
24.5 Predefined iterators
24.6 Stream iterators

24.2 Iterator requirements [iterator.requirements]

24.2.1 In general [iterator.requirements.general]

1 Iterators are a generalization of pointers that allow a C++ program to work with different data structures
(containers) in a uniform manner. To be able to construct template algorithms that work correctly and
efficiently on different types of data structures, the library formalizes not just the interfaces but also the
semantics and complexity assumptions of iterators. All input iterators i support the expression *i, resulting
in a value of some class, enumeration, or built-in type T, called the value type of the iterator. All output
iterators support the expression *i = o where o is a value of some type that is in the set of types that are
writable to the particular iterator type of i. All iterators i for which the expression (*i).m is well-defined,
support the expression i->m with the same semantics as (*i).m. For every iterator type X for which equality
is defined, there is a corresponding signed integral type called the difference type of the iterator.

2 Since iterators are an abstraction of pointers, their semantics is a generalization of most of the semantics
of pointers in C++. This ensures that every function template that takes iterators works as well with
regular pointers. This International Standard defines five categories of iterators, according to the operations
defined on them: input iterators, output iterators, forward iterators, bidirectional iterators and random access
iterators, as shown in Table 102.

Table 102 — Relations among iterator categories

Random Access → Bidirectional → Forward → Input
→ Output

3 Forward iterators satisfy all the requirements of input iterators and can be used whenever an input iterator is
specified; Bidirectional iterators also satisfy all the requirements of forward iterators and can be used when-
ever a forward iterator is specified; Random access iterators also satisfy all the requirements of bidirectional
iterators and can be used whenever a bidirectional iterator is specified.

§ 24.2.1 810

c© ISO/IEC N3092

4 Iterators that further satisfy the requirements of output iterators are called mutable iterators. Nonmutable
iterators are referred to as constant iterators.

5 Just as a regular pointer to an array guarantees that there is a pointer value pointing past the last element
of the array, so for any iterator type there is an iterator value that points past the last element of a
corresponding sequence. These values are called past-the-end values. Values of an iterator i for which the
expression *i is defined are called dereferenceable. The library never assumes that past-the-end values are
dereferenceable. Iterators can also have singular values that are not associated with any sequence. [Example:
After the declaration of an uninitialized pointer x (as with int* x;), x must always be assumed to have a
singular value of a pointer. — end example] Results of most expressions are undefined for singular values;
the only exceptions are destroying an iterator that holds a singular value, the assignment of a non-singular
value to an iterator that holds a singular value, and, for iterators that satisfy the DefaultConstructible
requirements, using a value-initialized iterator as the source of a copy or move operation. [Note: This
guarantee is not offered for default initialization, although the distinction only matters for types with trivial
default constructors such as pointers or aggregates holding pointers. — end note] In these cases the singular
value is overwritten the same way as any other value. Dereferenceable values are always non-singular.

6 An iterator j is called reachable from an iterator i if and only if there is a finite sequence of applications of
the expression ++i that makes i == j. If j is reachable from i, they refer to elements of the same sequence.

7 Most of the library’s algorithmic templates that operate on data structures have interfaces that use ranges.
A range is a pair of iterators that designate the beginning and end of the computation. A range [i,i) is an
empty range; in general, a range [i,j) refers to the elements in the data structure starting with the element
pointed to by i and up to but not including the element pointed to by j. Range [i,j) is valid if and only if
j is reachable from i. The result of the application of functions in the library to invalid ranges is undefined.

8 All the categories of iterators require only those functions that are realizable for a given category in constant
time (amortized). Therefore, requirement tables for the iterators do not have a complexity column.

9 Destruction of an iterator may invalidate pointers and references previously obtained from that iterator.

10 An invalid iterator is an iterator that may be singular.272

11 In the following sections, a and b denote values of type X or const X, difference_type and reference refer
to the types iterator_traits<X>::difference_type and iterator_traits<X>::reference, respectively,
n denotes a value of difference_type, u, tmp, and m denote identifiers, r denotes a value of X&, t denotes
a value of value type T, o denotes a value of some type that is writable to the output iterator. [Note: For
an iterator type X there must be an instantiation of iterator_traits<X> (24.4.1). — end note]

24.2.2 Iterator [iterator.iterators]

1 The Iterator requirements form the basis of the iterator concept taxonomy; every iterator satisfies the
Iterator requirements. This set of requirements specifies opearations for dereferencing and incrementing
an iterator. Most algorithms will require additional operations to read (24.2.3) or write (24.2.4) values, or
to provide a richer set of iterator movements (24.2.5, 24.2.6, 24.2.7).)

2 A type X satisfies the Iterator requirements if:

— X satisfies the CopyConstructible, CopyAssignable, and Destructible requirements (20.2.1) and
lvalues of type X are swappable (20.2.2), and

— the expressions in Table 103 are valid and have the indicated semantics.

272) This definition applies to pointers, since pointers are iterators. The effect of dereferencing an iterator that has been
invalidated is undefined.

§ 24.2.2 811

c© ISO/IEC N3092

Table 103 — Iterator requirements

Expression Return type Operational Assertion/note
semantics pre-/post-condition

*r reference pre: r is dereferenceable.
++r X&

24.2.3 Input iterators [input.iterators]

1 A class or a built-in type X satisfies the requirements of an input iterator for the value type T if X satisfies
the Iterator (24.2.2) and EqualityComparable (Table 31) requirements and the expressions in Table 104
are valid and have the indicated semantics.

2 In Table 104, the term the domain of == is used in the ordinary mathematical sense to denote the set of
values over which == is (required to be) defined. This set can change over time. Each algorithm places
additional requirements on the domain of == for the iterator values it uses. These requirements can be
inferred from the uses that algorithm makes of == and !=. [Example: the call find(a,b,x) is defined only
if the value of a has the property p defined as follows: b has property p and a value i has property p if
(*i==x) or if (*i!=x and ++i has property p). — end example]

Table 104 — Input iterator requirements (in addition to Iterator)

Expression Return type Operational Assertion/note
semantics pre-/post-condition

a != b contextually
convertible to
bool

!(a == b) pre: (a, b) is in the domain
of ==.

*a convertible to T pre: a is dereferenceable.
The expression
(void)*a, *a is equivalent
to *a.
If a == b and (a,b) is in
the domain of == then *a is
equivalent to *b.

a->m (*a).m pre: a is dereferenceable.
++r X& pre: r is dereferenceable.

post: r is dereferenceable or
r is past-the-end.
post: any copies of the
previous value of r are no
longer required either to be
dereferenceable or to be in
the domain of ==.

(void)r++ equivalent to (void)++r
*r++ convertible to T { T tmp = *r;

++r;
return tmp; }

3 [Note: For input iterators, a == b does not imply ++a == ++b. (Equality does not guarantee the substi-

§ 24.2.3 812

c© ISO/IEC N3092

tution property or referential transparency.) Algorithms on input iterators should never attempt to pass
through the same iterator twice. They should be single pass algorithms. Value type T is not required to be
a CopyAssignable type (Table 37). These algorithms can be used with istreams as the source of the input
data through the istream_iterator class template. — end note]

24.2.4 Output iterators [output.iterators]

1 A class or a built-in type X satisfies the requirements of an output iterator if X if X satisfies the Iterator
requirements (24.2.2) and the expressions in Table 105 are valid and have the indicated semantics.

Table 105 — Output iterator requirements (in addition to Iterator)

Expression Return type Operational Assertion/note
semantics pre-/post-condition

*r = o result is not
used

Remark: After this operation
r is not required to be
dereferenceable.
post: r is incrementable.

++r X& &r == &++r.
Remark: After this operation
r is not required to be
dereferenceable.
post: r is incrementable.

r++ convertible to
const X&

{ X tmp = r;
++r;
return tmp; }

Remark: After this operation
r is not required to be
dereferenceable.
post: r is incrementable.

*r++ = o result is not
used

Remark: After this operation
r is not required to be
dereferenceable.
post: r is incrementable.

2 [Note: The only valid use of an operator* is on the left side of the assignment statement. Assignment
through the same value of the iterator happens only once. Algorithms on output iterators should never
attempt to pass through the same iterator twice. They should be single pass algorithms. Equality and
inequality might not be defined. Algorithms that take output iterators can be used with ostreams as the
destination for placing data through the ostream_iterator class as well as with insert iterators and insert
pointers. — end note]

24.2.5 Forward iterators [forward.iterators]

1 A class or a built-in type X satisfies the requirements of a forward iterator if

— X satisfies the requirements of an input iterator (24.2.3),

— X satisfies the DefaultConstructible requirements (20.2.1),

— if X is a mutable iterator, reference is a reference to T; if X is a const iterator, reference is a reference
to const T,

— the expressions in Table 106 are valid and have the indicated semantics, and

— objects of type X offer the multi-pass guarantee, described below.

§ 24.2.5 813

c© ISO/IEC N3092

2 The domain of == for forward iterators is that of iterators over the same underlying sequence.

3 Two dereferenceable iterators a and b of type X offer the multi-pass guarantee if:

— a == b implies ++a == ++b and

— X is a pointer type or the expression (void)++X(a), *a is equivalent to the expression *a.

4 [Note: The requirement that a == b implies ++a == ++b (which is not true for input and output iterators)
and the removal of the restrictions on the number of the assignments through a mutable iterator (which
applies to output iterators) allows the use of multi-pass one-directional algorithms with forward iterators.
— end note]

Table 106 — Forward iterator requirements (in addition to input
iterator)

Expression Return type Operational Assertion/note
semantics pre-/post-condition

r++ convertible to
const X&

{ X tmp = r;
++r;
return tmp; }

*r++ reference

5 If a and b are equal, then either a and b are both dereferenceable or else neither is dereferenceable.

6 If a and b are both dereferenceable, then a == b if and only if *a and *b are bound to the same object.

24.2.6 Bidirectional iterators [bidirectional.iterators]

1 A class or a built-in type X satisfies the requirements of a bidirectional iterator if, in addition to satisfying
the requirements for forward iterators, the following expressions are valid as shown in Table 107.

Table 107 — Bidirectional iterator requirements (in addition to
forward iterator)

Expression Return type Operational Assertion/note
semantics pre-/post-condition

--r X& pre: there exists s such that
r == ++s.
post: r is dereferenceable.
--(++r) == r.
--r == --s implies r == s.
&r == &--r.

r-- convertible to
const X&

{ X tmp = r;
--r;
return tmp; }

*r-- reference

§ 24.2.6 814

c© ISO/IEC N3092

2 [Note: Bidirectional iterators allow algorithms to move iterators backward as well as forward. — end note]

24.2.7 Random access iterators [random.access.iterators]

1 A class or a built-in type X satisfies the requirements of a random access iterator if, in addition to satisfying
the requirements for bidirectional iterators, the following expressions are valid as shown in Table 108.

Table 108 — Random access iterator requirements (in addition to
bidirectional iterator)

Expression Return type Operational Assertion/note
semantics pre-/post-condition

r += n X& { difference_type m = n;
if (m >= 0)
while (m--)
++r;
else
while (m++)
--r;
return r; }

a + n
n + a

X { X tmp = a;
return tmp += n; }

a + n == n + a.

r -= n X& return r += -n;
a - n X { X tmp = a;

return tmp -= n; }
b - a difference_-

type
return n pre: there exists a value n of

type difference_type such
that a + n == b.
b == a + (b - a).

a[n] convertible to
reference

*(a + n)

a < b contextually
convertible to
bool

b - a > 0 < is a total ordering relation

a > b contextually
convertible to
bool

b < a > is a total ordering relation
opposite to <.

a >= b contextually
convertible to
bool

!(a < b)

a <= b contextually
convertible to
bool.

!(a > b)

24.3 Header <iterator> synopsis [iterator.synopsis]

namespace std {
// 24.4, primitives:
template<class Iterator> struct iterator_traits;
template<class T> struct iterator_traits<T*>;

§ 24.3 815

c© ISO/IEC N3092

template<class Category, class T, class Distance = ptrdiff_t,
class Pointer = T*, class Reference = T&> struct iterator;

struct input_iterator_tag { };
struct output_iterator_tag { };
struct forward_iterator_tag: public input_iterator_tag { };
struct bidirectional_iterator_tag: public forward_iterator_tag { };
struct random_access_iterator_tag: public bidirectional_iterator_tag { };

// 24.4.4, iterator operations:
template <class InputIterator, class Distance>

void advance(InputIterator& i, Distance n);
template <class InputIterator>

typename iterator_traits<InputIterator>::difference_type
distance(InputIterator first, InputIterator last);

template <class ForwardIterator>
ForwardIterator next(ForwardIterator x,

typename std::iterator_traits<ForwardIterator>::difference_type n = 1);
template <class BidirectionalIterator>

BidirectionalIterator prev(BidirectionalIterator x,
typename std::iterator_traits<BidirectionalIterator>::difference_type n = 1);

// 24.5, predefined iterators:
template <class Iterator> class reverse_iterator;

template <class Iterator1, class Iterator2>
bool operator==(

const reverse_iterator<Iterator1>& x,
const reverse_iterator<Iterator2>& y);

template <class Iterator1, class Iterator2>
bool operator<(

const reverse_iterator<Iterator1>& x,
const reverse_iterator<Iterator2>& y);

template <class Iterator1, class Iterator2>
bool operator!=(

const reverse_iterator<Iterator1>& x,
const reverse_iterator<Iterator2>& y);

template <class Iterator1, class Iterator2>
bool operator>(

const reverse_iterator<Iterator1>& x,
const reverse_iterator<Iterator2>& y);

template <class Iterator1, class Iterator2>
bool operator>=(

const reverse_iterator<Iterator1>& x,
const reverse_iterator<Iterator2>& y);

template <class Iterator1, class Iterator2>
bool operator<=(

const reverse_iterator<Iterator1>& x,
const reverse_iterator<Iterator2>& y);

template <class Iterator1, class Iterator2>
auto operator-(

const reverse_iterator<Iterator1>& x,
const reverse_iterator<Iterator2>& y) ->decltype(y.base() - x.base());

template <class Iterator>

§ 24.3 816

c© ISO/IEC N3092

reverse_iterator<Iterator>
operator+(

typename reverse_iterator<Iterator>::difference_type n,
const reverse_iterator<Iterator>& x);

template <class Container> class back_insert_iterator;
template <class Container>

back_insert_iterator<Container> back_inserter(Container& x);

template <class Container> class front_insert_iterator;
template <class Container>

front_insert_iterator<Container> front_inserter(Container& x);

template <class Container> class insert_iterator;
template <class Container>

insert_iterator<Container> inserter(Container& x, typename Container::iterator i);

template <class Iterator> class move_iterator;
template <class Iterator1, class Iterator2>

bool operator==(
const move_iterator<Iterator1>& x, const move_iterator<Iterator2>& y);

template <class Iterator1, class Iterator2>
bool operator!=(

const move_iterator<Iterator1>& x, const move_iterator<Iterator2>& y);
template <class Iterator1, class Iterator2>

bool operator<(
const move_iterator<Iterator1>& x, const move_iterator<Iterator2>& y);

template <class Iterator1, class Iterator2>
bool operator<=(

const move_iterator<Iterator1>& x, const move_iterator<Iterator2>& y);
template <class Iterator1, class Iterator2>

bool operator>(
const move_iterator<Iterator1>& x, const move_iterator<Iterator2>& y);

template <class Iterator1, class Iterator2>
bool operator>=(

const move_iterator<Iterator1>& x, const move_iterator<Iterator2>& y);

template <class Iterator1, class Iterator2>
auto operator-(
const move_iterator<Iterator1>& x,
const move_iterator<Iterator2>& y) -> decltype(x.base() - y.base());

template <class Iterator>
move_iterator<Iterator> operator+(

typename move_iterator<Iterator>::difference_type n, const move_iterator<Iterator>& x);
template <class Iterator>

move_iterator<Iterator> make_move_iterator(const Iterator& i);

// 24.6, stream iterators:
template <class T, class charT = char, class traits = char_traits<charT>,

class Distance = ptrdiff_t>
class istream_iterator;
template <class T, class charT, class traits, class Distance>

bool operator==(const istream_iterator<T,charT,traits,Distance>& x,
const istream_iterator<T,charT,traits,Distance>& y);

template <class T, class charT, class traits, class Distance>

§ 24.3 817

c© ISO/IEC N3092

bool operator!=(const istream_iterator<T,charT,traits,Distance>& x,
const istream_iterator<T,charT,traits,Distance>& y);

template <class T, class charT = char, class traits = char_traits<charT> >
class ostream_iterator;

template<class charT, class traits = char_traits<charT> >
class istreambuf_iterator;

template <class charT, class traits>
bool operator==(const istreambuf_iterator<charT,traits>& a,

const istreambuf_iterator<charT,traits>& b);
template <class charT, class traits>

bool operator!=(const istreambuf_iterator<charT,traits>& a,
const istreambuf_iterator<charT,traits>& b);

template <class charT, class traits = char_traits<charT> >
class ostreambuf_iterator;

// 24.6.5, range access:
template <class C> auto begin(C& c) -> decltype(c.begin());
template <class C> auto begin(const C& c) -> decltype(c.begin());
template <class C> auto end(C& c) -> decltype(c.end());
template <class C> auto end(const C& c) -> decltype(c.end());
template <class T, size_t N> T* begin(T (&array)[N]);
template <class T, size_t N> T* end(T (&array)[N]);

}

24.4 Iterator primitives [iterator.primitives]

1 To simplify the task of defining iterators, the library provides several classes and functions:

24.4.1 Iterator traits [iterator.traits]

1 To implement algorithms only in terms of iterators, it is often necessary to determine the value and difference
types that correspond to a particular iterator type. Accordingly, it is required that if Iterator is the type
of an iterator, the types

iterator_traits<Iterator>::difference_type
iterator_traits<Iterator>::value_type
iterator_traits<Iterator>::iterator_category

be defined as the iterator’s difference type, value type and iterator category, respectively. In addition, the
types

iterator_traits<Iterator>::reference
iterator_traits<Iterator>::pointer

shall be defined as the iterator’s reference and pointer types, that is, for an iterator object a, the same type
as the type of *a and a->, respectively. In the case of an output iterator, the types

iterator_traits<Iterator>::difference_type
iterator_traits<Iterator>::value_type
iterator_traits<Iterator>::reference
iterator_traits<Iterator>::pointer

may be defined as void.

§ 24.4.1 818

c© ISO/IEC N3092

2 The template iterator_traits<Iterator> is defined as
namespace std {

template<class Iterator> struct iterator_traits {
typedef typename Iterator::difference_type difference_type;
typedef typename Iterator::value_type value_type;
typedef typename Iterator::pointer pointer;
typedef typename Iterator::reference reference;
typedef typename Iterator::iterator_category iterator_category;

};
}

3 It is specialized for pointers as
namespace std {

template<class T> struct iterator_traits<T*> {
typedef ptrdiff_t difference_type;
typedef T value_type;
typedef T* pointer;
typedef T& reference;
typedef random_access_iterator_tag iterator_category;

};
}

and for pointers to const as
namespace std {

template<class T> struct iterator_traits<const T*> {
typedef ptrdiff_t difference_type;
typedef T value_type;
typedef const T* pointer;
typedef const T& reference;
typedef random_access_iterator_tag iterator_category;

};
}

4 [Note: If there is an additional pointer type _ _ far such that the difference of two _ _ far is of type long,
an implementation may define

template<class T> struct iterator_traits<T _ _ far*> {
typedef long difference_type;
typedef T value_type;
typedef T _ _ far* pointer;
typedef T _ _ far& reference;
typedef random_access_iterator_tag iterator_category;

};

— end note]

5 [Example: To implement a generic reverse function, a C++ program can do the following:
template <class BidirectionalIterator>
void reverse(BidirectionalIterator first, BidirectionalIterator last) {

typename iterator_traits<BidirectionalIterator>::difference_type n =
distance(first, last);

--n;
while(n > 0) {

§ 24.4.1 819

c© ISO/IEC N3092

typename iterator_traits<BidirectionalIterator>::value_type
tmp = *first;

*first++ = *--last;
*last = tmp;
n -= 2;

}
}

— end example]

24.4.2 Basic iterator [iterator.basic]

1 The iterator template may be used as a base class to ease the definition of required types for new iterators.
namespace std {

template<class Category, class T, class Distance = ptrdiff_t,
class Pointer = T*, class Reference = T&>

struct iterator {
typedef T value_type;
typedef Distance difference_type;
typedef Pointer pointer;
typedef Reference reference;
typedef Category iterator_category;

};
}

24.4.3 Standard iterator tags [std.iterator.tags]

1 It is often desirable for a function template specialization to find out what is the most specific cate-
gory of its iterator argument, so that the function can select the most efficient algorithm at compile
time. To facilitate this, the library introduces category tag classes which are used as compile time tags
for algorithm selection. They are: input_iterator_tag, output_iterator_tag, forward_iterator_tag,
bidirectional_iterator_tag and random_access_iterator_tag. For every iterator of type Iterator,
iterator_traits<Iterator>::iterator_category shall be defined to be the most specific category tag
that describes the iterator’s behavior.

namespace std {
struct input_iterator_tag { };
struct output_iterator_tag { };
struct forward_iterator_tag: public input_iterator_tag { };
struct bidirectional_iterator_tag: public forward_iterator_tag { };
struct random_access_iterator_tag: public bidirectional_iterator_tag { };

}

2 [Example: For a program-defined iterator BinaryTreeIterator, it could be included into the bidirectional
iterator category by specializing the iterator_traits template:

template<class T> struct iterator_traits<BinaryTreeIterator<T> > {
typedef std::ptrdiff_t difference_type;
typedef T value_type;
typedef T* pointer;
typedef T& reference;
typedef bidirectional_iterator_tag iterator_category;

};

§ 24.4.3 820

c© ISO/IEC N3092

Typically, however, it would be easier to derive BinaryTreeIterator<T> from iterator<bidirectional_-
iterator_tag,T,ptrdiff_t,T*,T&>. — end example]

3 [Example: If evolve() is well defined for bidirectional iterators, but can be implemented more efficiently
for random access iterators, then the implementation is as follows:

template <class BidirectionalIterator>
inline void
evolve(BidirectionalIterator first, BidirectionalIterator last) {

evolve(first, last,
typename iterator_traits<BidirectionalIterator>::iterator_category());

}

template <class BidirectionalIterator>
void evolve(BidirectionalIterator first, BidirectionalIterator last,

bidirectional_iterator_tag) {
// more generic, but less efficient algorithm

}

template <class RandomAccessIterator>
void evolve(RandomAccessIterator first, RandomAccessIterator last,

random_access_iterator_tag) {
// more efficient, but less generic algorithm

}

— end example]

4 [Example: If a C++ program wants to define a bidirectional iterator for some data structure containing
double and such that it works on a large memory model of the implementation, it can do so with:

class MyIterator :
public iterator<bidirectional_iterator_tag, double, long, T*, T&> {
// code implementing ++, etc.

};

5 Then there is no need to specialize the iterator_traits template. — end example]

24.4.4 Iterator operations [iterator.operations]

1 Since only random access iterators provide + and - operators, the library provides two function templates
advance and distance. These function templates use + and - for random access iterators (and are, therefore,
constant time for them); for input, forward and bidirectional iterators they use ++ to provide linear time
implementations.

template <class InputIterator, class Distance>
void advance(InputIterator& i, Distance n);

2 Requires: n shall be negative only for bidirectional and random access iterators.

3 Effects: Increments (or decrements for negative n) iterator reference i by n.

template<class InputIterator>
typename iterator_traits<InputIterator>::difference_type

distance(InputIterator first, InputIterator last);

4 Effects: If InputIterator meets the requirements of random access iterator, returns (last - first);
otherwise, returns the number of increments needed to get from first to last.

§ 24.4.4 821

c© ISO/IEC N3092

5 Requires: If InputIterator meets the requirements of random access iterator, last shall be reachable
from first or first shall be reachable from last; otherwise, last shall be reachable from first.

template <class ForwardIterator>
ForwardIterator next(ForwardIterator x,

typename std::iterator_traits<ForwardIterator>::difference_type n = 1);

6 Effects: Equivalent to advance(x, n); return x;

template <class BidirectionalIterator>
BidirectionalIterator prev(BidirectionalIterator x,

typename std::iterator_traits<BidirectionalIterator>::difference_type n = 1);

7 Effects: Equivalent to advance(x, -n); return x;

24.5 Iterator adaptors [predef.iterators]

24.5.1 Reverse iterators [reverse.iterators]

1 Class template reverse_iterator is an iterator adaptor that iterates from the end of the sequence defined
by its underlying iterator to the beginning of that sequence. The fundamental relation between a reverse
iterator and its corresponding iterator i is established by the identity: &*(reverse_iterator(i)) == &*(i
- 1).

24.5.1.1 Class template reverse_iterator [reverse.iterator]

namespace std {
template <class Iterator>
class reverse_iterator : public

iterator<typename iterator_traits<Iterator>::iterator_category,
typename iterator_traits<Iterator>::value_type,
typename iterator_traits<Iterator>::difference_type,
typename iterator_traits<Iterator>::pointer,
typename iterator_traits<Iterator>::reference> {

public:
typedef Iterator iterator_type;
typedef typename iterator_traits<Iterator>::difference_type difference_type;
typedef typename iterator_traits<Iterator>::reference reference;
typedef typename iterator_traits<Iterator>::pointer pointer;

reverse_iterator();
explicit reverse_iterator(Iterator x);
template <class U> reverse_iterator(const reverse_iterator<U>& u);
template <class U> reverse_iterator& operator=(const reverse_iterator<U>& u);

Iterator base() const; // explicit
reference operator*() const;
pointer operator->() const;

reverse_iterator& operator++();
reverse_iterator operator++(int);
reverse_iterator& operator--();
reverse_iterator operator--(int);

reverse_iterator operator+ (difference_type n) const;
reverse_iterator& operator+=(difference_type n);

§ 24.5.1.1 822

c© ISO/IEC N3092

reverse_iterator operator- (difference_type n) const;
reverse_iterator& operator-=(difference_type n);
unspecified operator[](difference_type n) const;

protected:
Iterator current;

private:
Iterator deref_tmp; // exposition only

};

template <class Iterator1, class Iterator2>
bool operator==(

const reverse_iterator<Iterator1>& x,
const reverse_iterator<Iterator2>& y);

template <class Iterator1, class Iterator2>
bool operator<(

const reverse_iterator<Iterator1>& x,
const reverse_iterator<Iterator2>& y);

template <class Iterator1, class Iterator2>
bool operator!=(

const reverse_iterator<Iterator1>& x,
const reverse_iterator<Iterator2>& y);

template <class Iterator1, class Iterator2>
bool operator>(

const reverse_iterator<Iterator1>& x,
const reverse_iterator<Iterator2>& y);

template <class Iterator1, class Iterator2>
bool operator>=(

const reverse_iterator<Iterator1>& x,
const reverse_iterator<Iterator2>& y);

template <class Iterator1, class Iterator2>
bool operator<=(

const reverse_iterator<Iterator1>& x,
const reverse_iterator<Iterator2>& y);

template <class Iterator1, class Iterator2>
auto operator-(

const reverse_iterator<Iterator1>& x,
const reverse_iterator<Iterator2>& y) -> decltype(y.current - x.current);

template <class Iterator>
reverse_iterator<Iterator> operator+(

typename reverse_iterator<Iterator>::difference_type n,
const reverse_iterator<Iterator>& x);

}

24.5.1.2 reverse_iterator requirements [reverse.iter.requirements]

1 The template parameter Iterator shall meet all the requirements of a Bidirectional Iterator (24.2.6).

2 Additionally, Iterator shall meet the requirements of a Random Access Iterator (24.2.7) if any of the mem-
bers operator+ (24.5.1.3.8), operator- (24.5.1.3.10), operator+= (24.5.1.3.9), operator-= (24.5.1.3.11),
operator [] (24.5.1.3.12), or the global operators operator< (24.5.1.3.14), operator> (24.5.1.3.16), operator <= (24.5.1.3.18),
operator>= (24.5.1.3.17), operator- (24.5.1.3.19) or operator+ (24.5.1.3.20). is referenced in a way that

§ 24.5.1.2 823

c© ISO/IEC N3092

requires instantiation (14.7.1).

24.5.1.3 reverse_iterator operations [reverse.iter.ops]

24.5.1.3.1 reverse_iterator constructor [reverse.iter.cons]

reverse_iterator();

1 Effects: Value initializes current. Iterator operations applied to the resulting iterator have defined
behavior if and only if the corresponding operations are defined on a value-initialized iterator of type
Iterator.

explicit reverse_iterator(Iterator x);

2 Effects: Initializes current with x.

template <class U> reverse_iterator(const reverse_iterator<U> &u);

3 Effects: Initializes current with u.current.

24.5.1.3.2 reverse_iterator::operator= [reverse.iter.op=]

template <class U>
reverse_iterator&

operator=(const reverse_iterator<U>& u);

1 Effects: Assigns u.base() to current.

2 Returns: *this.

24.5.1.3.3 Conversion [reverse.iter.conv]

Iterator base() const; // explicit

1 Returns: current.

24.5.1.3.4 operator* [reverse.iter.op.star]

reference operator*() const;

1 Effects:
deref_tmp = current;
--deref_tmp;
return *deref_tmp;

2 [Note: This operation must use an auxiliary member variable rather than a temporary variable to
avoid returning a reference that persists beyond the lifetime of its associated iterator. (See 24.2.)
— end note]

24.5.1.3.5 operator-> [reverse.iter.opref]

pointer operator->() const;

1 Returns: &(operator*()).

§ 24.5.1.3.5 824

c© ISO/IEC N3092

24.5.1.3.6 operator++ [reverse.iter.op++]

reverse_iterator& operator++();

1 Effects: --current;

2 Returns: *this.

reverse_iterator operator++(int);

3 Effects:
reverse_iterator tmp = *this;
--current;
return tmp;

24.5.1.3.7 operator-- [reverse.iter.op--]

reverse_iterator& operator--();

1 Effects: ++current

2 Returns: *this.

reverse_iterator operator--(int);

3 Effects:
reverse_iterator tmp = *this;
++current;
return tmp;

24.5.1.3.8 operator+ [reverse.iter.op+]

reverse_iterator
operator+(typename reverse_iterator<Iterator>::difference_type n) const;

1 Returns: reverse_iterator(current-n).

24.5.1.3.9 operator+= [reverse.iter.op+=]

reverse_iterator&
operator+=(typename reverse_iterator<Iterator>::difference_type n);

1 Effects: current -= n;

2 Returns: *this.

24.5.1.3.10 operator- [reverse.iter.op-]

reverse_iterator
operator-(typename reverse_iterator<Iterator>::difference_type n) const;

1 Returns: reverse_iterator(current+n).

§ 24.5.1.3.10 825

c© ISO/IEC N3092

24.5.1.3.11 operator-= [reverse.iter.op-=]

reverse_iterator&
operator-=(typename reverse_iterator<Iterator>::difference_type n);

1 Effects: current += n;

2 Returns: *this.

24.5.1.3.12 operator[] [reverse.iter.opindex]

unspecified operator[](
typename reverse_iterator<Iterator>::difference_type n) const;

1 Returns: current[-n-1].

24.5.1.3.13 operator== [reverse.iter.op==]

template <class Iterator1, class Iterator2>
bool operator==(

const reverse_iterator<Iterator1>& x,
const reverse_iterator<Iterator2>& y);

1 Returns: x.current == y.current.

24.5.1.3.14 operator< [reverse.iter.op<]

template <class Iterator1, class Iterator2>
bool operator<(

const reverse_iterator<Iterator1>& x,
const reverse_iterator<Iterator2>& y);

1 Returns: x.current > y.current.

24.5.1.3.15 operator!= [reverse.iter.op!=]

template <class Iterator1, class Iterator2>
bool operator!=(

const reverse_iterator<Iterator1>& x,
const reverse_iterator<Iterator2>& y);

1 Returns: x.current != y.current.

24.5.1.3.16 operator> [reverse.iter.op>]

template <class Iterator1, class Iterator2>
bool operator>(

const reverse_iterator<Iterator1>& x,
const reverse_iterator<Iterator2>& y);

1 Returns: x.current < y.current.

§ 24.5.1.3.16 826

c© ISO/IEC N3092

24.5.1.3.17 operator>= [reverse.iter.op>=]

template <class Iterator1, class Iterator2>
bool operator>=(

const reverse_iterator<Iterator1>& x,
const reverse_iterator<Iterator2>& y);

1 Returns: x.current <= y.current.

24.5.1.3.18 operator<= [reverse.iter.op<=]

template <class Iterator1, class Iterator2>
bool operator<=(

const reverse_iterator<Iterator1>& x,
const reverse_iterator<Iterator2>& y);

1 Returns: x.current >= y.current.

24.5.1.3.19 operator- [reverse.iter.opdiff]

template <class Iterator1, class Iterator2>
auto operator-(
const reverse_iterator<Iterator1>& x,
const reverse_iterator<Iterator2>& y) -> decltype(y.current - x.current);

1 Returns: y.current - x.current.

24.5.1.3.20 operator+ [reverse.iter.opsum]

template <class Iterator>
reverse_iterator<Iterator> operator+(

typename reverse_iterator<Iterator>::difference_type n,
const reverse_iterator<Iterator>& x);

1 Returns: reverse_iterator<Iterator> (x.current - n).

24.5.2 Insert iterators [insert.iterators]

1 To make it possible to deal with insertion in the same way as writing into an array, a special kind of iterator
adaptors, called insert iterators, are provided in the library. With regular iterator classes,

while (first != last) *result++ = *first++;

causes a range [first,last) to be copied into a range starting with result. The same code with result
being an insert iterator will insert corresponding elements into the container. This device allows all of the
copying algorithms in the library to work in the insert mode instead of the regular overwrite mode.

2 An insert iterator is constructed from a container and possibly one of its iterators pointing to where insertion
takes place if it is neither at the beginning nor at the end of the container. Insert iterators satisfy the require-
ments of output iterators. operator* returns the insert iterator itself. The assignment operator=(const
T& x) is defined on insert iterators to allow writing into them, it inserts x right before where the insert
iterator is pointing. In other words, an insert iterator is like a cursor pointing into the container where the
insertion takes place. back_insert_iterator inserts elements at the end of a container, front_insert_-
iterator inserts elements at the beginning of a container, and insert_iterator inserts elements where

§ 24.5.2 827

c© ISO/IEC N3092

the iterator points to in a container. back_inserter, front_inserter, and inserter are three functions
making the insert iterators out of a container.

24.5.2.1 Class template back_insert_iterator [back.insert.iterator]

namespace std {
template <class Container>
class back_insert_iterator :

public iterator<output_iterator_tag,void,void,void,void> {
protected:

Container* container;

public:
typedef Container container_type;
explicit back_insert_iterator(Container& x);
back_insert_iterator<Container>&

operator=(typename Container::const_reference value);
back_insert_iterator<Container>&

operator=(typename Container::value_type&& value);

back_insert_iterator<Container>& operator*();
back_insert_iterator<Container>& operator++();
back_insert_iterator<Container> operator++(int);

};

template <class Container>
back_insert_iterator<Container> back_inserter(Container& x);

}

24.5.2.2 back_insert_iterator operations [back.insert.iter.ops]

24.5.2.2.1 back_insert_iterator constructor [back.insert.iter.cons]

explicit back_insert_iterator(Container& x);

1 Effects: Initializes container with &x.

24.5.2.2.2 back_insert_iterator::operator= [back.insert.iter.op=]

back_insert_iterator<Container>&
operator=(typename Container::const_reference value);

1 Effects: container->push_back(value);

2 Returns: *this.

back_insert_iterator<Container>&
operator=(typename Container::value_type&& value);

3 Effects: container->push_back(std::move(value));

4 Returns: *this.

24.5.2.2.3 back_insert_iterator::operator* [back.insert.iter.op*]

back_insert_iterator<Container>& operator*();

§ 24.5.2.2.3 828

c© ISO/IEC N3092

1 Returns: *this.

24.5.2.2.4 back_insert_iterator::operator++ [back.insert.iter.op++]

back_insert_iterator<Container>& operator++();
back_insert_iterator<Container> operator++(int);

1 Returns: *this.

24.5.2.2.5 back_inserter [back.inserter]

template <class Container>
back_insert_iterator<Container> back_inserter(Container& x);

1 Returns: back_insert_iterator<Container>(x).

24.5.2.3 Class template front_insert_iterator [front.insert.iterator]

namespace std {
template <class Container>
class front_insert_iterator :

public iterator<output_iterator_tag,void,void,void,void> {
protected:

Container* container;

public:
typedef Container container_type;
explicit front_insert_iterator(Container& x);
front_insert_iterator<Container>&

operator=(typename Container::const_reference value);
front_insert_iterator<Container>&

operator=(typename Container::value_type&& value);

front_insert_iterator<Container>& operator*();
front_insert_iterator<Container>& operator++();
front_insert_iterator<Container> operator++(int);

};

template <class Container>
front_insert_iterator<Container> front_inserter(Container& x);

}

24.5.2.4 front_insert_iterator operations [front.insert.iter.ops]

24.5.2.4.1 front_insert_iterator constructor [front.insert.iter.cons]

explicit front_insert_iterator(Container& x);

1 Effects: Initializes container with &x.

24.5.2.4.2 front_insert_iterator::operator= [front.insert.iter.op=]

front_insert_iterator<Container>&
operator=(typename Container::const_reference value);

§ 24.5.2.4.2 829

c© ISO/IEC N3092

1 Effects: container->push_front(value);

2 Returns: *this.

front_insert_iterator<Container>&
operator=(typename Container::value_type&& value);

3 Effects: container->push_front(std::move(value));

4 Returns: *this.

24.5.2.4.3 front_insert_iterator::operator* [front.insert.iter.op*]

front_insert_iterator<Container>& operator*();

1 Returns: *this.

24.5.2.4.4 front_insert_iterator::operator++ [front.insert.iter.op++]

front_insert_iterator<Container>& operator++();
front_insert_iterator<Container> operator++(int);

1 Returns: *this.

24.5.2.4.5 front_inserter [front.inserter]

template <class Container>
front_insert_iterator<Container> front_inserter(Container& x);

1 Returns: front_insert_iterator<Container>(x).

24.5.2.5 Class template insert_iterator [insert.iterator]

namespace std {
template <class Container>
class insert_iterator :

public iterator<output_iterator_tag,void,void,void,void> {
protected:

Container* container;
typename Container::iterator iter;

public:
typedef Container container_type;
insert_iterator(Container& x, typename Container::iterator i);
insert_iterator<Container>&

operator=(typename Container::const_reference value);
insert_iterator<Container>&

operator=(typename Container::value_type&& value);

insert_iterator<Container>& operator*();
insert_iterator<Container>& operator++();
insert_iterator<Container>& operator++(int);

};

template <class Container>
insert_iterator<Container> inserter(Container& x, typename Container::iterator i);

§ 24.5.2.5 830

c© ISO/IEC N3092

}

24.5.2.6 insert_iterator operations [insert.iter.ops]

24.5.2.6.1 insert_iterator constructor [insert.iter.cons]

insert_iterator(Container& x, typename Container::iterator i);

1 Effects: Initializes container with &x and iter with i.

24.5.2.6.2 insert_iterator::operator= [insert.iter.op=]

insert_iterator<Container>&
operator=(typename Container::const_reference value);

1 Effects:
iter = container->insert(iter, value);
++iter;

2 Returns: *this.

insert_iterator<Container>&
operator=(typename Container::value_type&& value);

3 Effects:
iter = container->insert(iter, std::move(value));
++iter;

4 Returns: *this.

24.5.2.6.3 insert_iterator::operator* [insert.iter.op*]

insert_iterator<Container>& operator*();

1 Returns: *this.

24.5.2.6.4 insert_iterator::operator++ [insert.iter.op++]

insert_iterator<Container>& operator++();
insert_iterator<Container>& operator++(int);

1 Returns: *this.

24.5.2.6.5 inserter [inserter]

template <class Container>
insert_iterator<Container> inserter(Container& x, typename Container::iterator i);

1 Returns: insert_iterator<Container>(x, i).

§ 24.5.2.6.5 831

c© ISO/IEC N3092

24.5.3 Move iterators [move.iterators]

1 Class template move_iterator is an iterator adaptor with the same behavior as the underlying iterator
except that its dereference operator implicitly converts the value returned by the underlying iterator’s
dereference operator to an rvalue reference. Some generic algorithms can be called with move iterators to
replace copying with moving.

2 [Example:
list<string> s;
// populate the list s
vector<string> v1(s.begin(), s.end()); // copies strings into v1
vector<string> v2(make_move_iterator(s.begin()),

make_move_iterator(s.end())); // moves strings into v2

— end example]

24.5.3.1 Class template move_iterator [move.iterator]

namespace std {
template <class Iterator>
class move_iterator {
public:

typedef Iterator iterator_type;
typedef typename iterator_traits<Iterator>::difference_type difference_type;
typedef Iterator pointer;
typedef typename iterator_traits<Iterator>::value_type value_type;
typedef typename iterator_traits<Iterator>::iterator_category iterator_category;
typedef value_type&& reference;

move_iterator();
explicit move_iterator(Iterator i);
template <class U> move_iterator(const move_iterator<U>& u);
template <class U> move_iterator& operator=(const move_iterator<U>& u);

iterator_type base() const;
reference operator*() const;
pointer operator->() const;

move_iterator& operator++();
move_iterator operator++(int);
move_iterator& operator--();
move_iterator operator--(int);

move_iterator operator+(difference_type n) const;
move_iterator& operator+=(difference_type n);
move_iterator operator-(difference_type n) const;
move_iterator& operator-=(difference_type n);
unspecified operator[](difference_type n) const;

private:
Iterator current; // exposition only

};

template <class Iterator1, class Iterator2>
bool operator==(

§ 24.5.3.1 832

c© ISO/IEC N3092

const move_iterator<Iterator1>& x, const move_iterator<Iterator2>& y);
template <class Iterator1, class Iterator2>

bool operator!=(
const move_iterator<Iterator1>& x, const move_iterator<Iterator2>& y);

template <class Iterator1, class Iterator2>
bool operator<(

const move_iterator<Iterator1>& x, const move_iterator<Iterator2>& y);
template <class Iterator1, class Iterator2>

bool operator<=(
const move_iterator<Iterator1>& x, const move_iterator<Iterator2>& y);

template <class Iterator1, class Iterator2>
bool operator>(

const move_iterator<Iterator1>& x, const move_iterator<Iterator2>& y);
template <class Iterator1, class Iterator2>

bool operator>=(
const move_iterator<Iterator1>& x, const move_iterator<Iterator2>& y);

template <class Iterator1, class Iterator2>
auto operator-(

const move_iterator<Iterator1>& x,
const move_iterator<Iterator2>& y) -> decltype(x.base() - y.base());

template <class Iterator>
move_iterator<Iterator> operator+(

typename move_iterator<Iterator>::difference_type n, const move_iterator<Iterator>& x);
template <class Iterator>

move_iterator<Iterator> make_move_iterator(const Iterator& i);
}

24.5.3.2 move_iterator requirements [move.iter.requirements]

1 The template parameter Iterator shall meet the requirements for an Input Iterator (24.2.3). Additionally,
if any of the bidirectional or random access traversal functions are instantiated, the template parameter shall
meet the requirements for a Bidirectional Iterator (24.2.6) or a Random Access Iterator (24.2.7), respectively.

24.5.3.3 move_iterator operations [move.iter.ops]

24.5.3.3.1 move_iterator constructors [move.iter.op.const]

move_iterator();

1 Effects: Constructs a move_iterator, value initializing current. Iterator operations applied to the
resulting iterator have defined behavior if and only if the corresponding operations are defined on a
value-initialized iterator of type Iterator.

explicit move_iterator(Iterator i);

2 Effects: Constructs a move_iterator, initializing current with i.

template <class U> move_iterator(const move_iterator<U>& u);

3 Effects: Constructs a move_iterator, initializing current with u.base().

4 Requires: U shall be convertible to Iterator.

24.5.3.3.2 move_iterator::operator= [move.iter.op=]

§ 24.5.3.3.2 833

c© ISO/IEC N3092

template <class U> move_iterator& operator=(const move_iterator<U>& u);

1 Effects: Assigns u.base() to current.

2 Requires: U shall be convertible to Iterator.

24.5.3.3.3 move_iterator conversion [move.iter.op.conv]

Iterator base() const;

1 Returns: current.

24.5.3.3.4 move_iterator::operator* [move.iter.op.star]

reference operator*() const;

1 Returns: std::move(*current).

24.5.3.3.5 move_iterator::operator-> [move.iter.op.ref]

pointer operator->() const;

1 Returns: current.

24.5.3.3.6 move_iterator::operator++ [move.iter.op.incr]

move_iterator& operator++();

1 Effects: ++current.

2 Returns: *this.

move_iterator operator++(int);

3 Effects:
move_iterator tmp = *this;
++current;
return tmp;

24.5.3.3.7 move_iterator::operator-- [move.iter.op.decr]

move_iterator& operator--();

1 Effects: --current.

2 Returns: *this.

move_iterator operator--(int);

3 Effects:
move_iterator tmp = *this;
--current;
return tmp;

§ 24.5.3.3.7 834

c© ISO/IEC N3092

24.5.3.3.8 move_iterator::operator+ [move.iter.op.+]

move_iterator operator+(difference_type n) const;

1 Returns: move_iterator(current + n).

24.5.3.3.9 move_iterator::operator+= [move.iter.op.+=]

move_iterator& operator+=(difference_type n);

1 Effects: current += n.

2 Returns: *this.

24.5.3.3.10 move_iterator::operator- [move.iter.op.-]

move_iterator operator-(difference_type n) const;

1 Returns: move_iterator(current - n).

24.5.3.3.11 move_iterator::operator-= [move.iter.op.-=]

move_iterator& operator-=(difference_type n);

1 Effects: current -= n.

2 Returns: *this.

24.5.3.3.12 move_iterator::operator[] [move.iter.op.index]

unspecified operator[](difference_type n) const;

1 Returns: std::move(current[n]).

24.5.3.3.13 move_iterator comparisons [move.iter.op.comp]

template <class Iterator1, class Iterator2>
bool operator==(const move_iterator<Iterator1>& x, const move_iterator<Iterator2>& y);

1 Returns: x.base() == y.base().

template <class Iterator1, class Iterator2>
bool operator!=(const move_iterator<Iterator1>& x, const move_iterator<Iterator2>& y);

2 Returns: !(x == y).

template <class Iterator1, class Iterator2>
bool operator<(const move_iterator<Iterator1>& x, const move_iterator<Iterator2>& y);

3 Returns: x.base() < y.base().

template <class Iterator1, class Iterator2>
bool operator<=(const move_iterator<Iterator1>& x, const move_iterator<Iterator2>& y);

4 Returns: !(y < x).

§ 24.5.3.3.13 835

c© ISO/IEC N3092

template <class Iterator1, class Iterator2>
bool operator>(const move_iterator<Iterator1>& x, const move_iterator<Iterator2>& y);

5 Returns: y < x.

template <class Iterator1, class Iterator2>
bool operator>=(const move_iterator<Iterator1>& x, const move_iterator<Iterator2>& y);

6 Returns: !(x < y).

24.5.3.3.14 move_iterator non-member functions [move.iter.nonmember]

template <class Iterator1, class Iterator2>
auto operator-(
const move_iterator<Iterator1>& x,
const move_iterator<Iterator2>& y) -> decltype(x.base() - y.base());

1 Returns: x.base() - y.base().

template <class Iterator>
move_iterator<Iterator> operator+(

typename move_iterator<Iterator>::difference_type n, const move_iterator<Iterator>& x);

2 Returns: x + n.

template <class Iterator>
move_iterator<Iterator> make_move_iterator(const Iterator& i);

3 Returns: move_iterator<Iterator>(i).

24.6 Stream iterators [stream.iterators]

1 To make it possible for algorithmic templates to work directly with input/output streams, appropriate
iterator-like class templates are provided.

[Example:
partial_sum_copy(istream_iterator<double, char>(cin),

istream_iterator<double, char>(),
ostream_iterator<double, char>(cout, "\n"));

reads a file containing floating point numbers from cin, and prints the partial sums onto cout. — end
example]

24.6.1 Class template istream_iterator [istream.iterator]

1 The class template istream_iterator is an input iterator (24.2.3) that reads (using operator>>) successive
elements from the input stream for which it was constructed. After it is constructed, and every time ++ is
used, the iterator reads and stores a value of T. If the iterator fails to read and store a value of T (fail() on
the stream returns true), the iterator becomes equal to the end-of-stream iterator value. The constructor
with no arguments istream_iterator() always constructs an end-of-stream input iterator object, which is
the only legitimate iterator to be used for the end condition. The result of operator* on an end-of-stream
iterator is not defined. For any other iterator value a const T& is returned. The result of operator-> on
an end-of-stream iterator is not defined. For any other iterator value a const T* is returned. The behavior
of a program that applies operator++() to an end-of-stream iterator is undefined. It is impossible to store
things into istream iterators.

§ 24.6.1 836

c© ISO/IEC N3092

2 Two end-of-stream iterators are always equal. An end-of-stream iterator is not equal to a non-end-of-stream
iterator. Two non-end-of-stream iterators are equal when they are constructed from the same stream.

namespace std {
template <class T, class charT = char, class traits = char_traits<charT>,

class Distance = ptrdiff_t>
class istream_iterator:

public iterator<input_iterator_tag, T, Distance, const T*, const T&> {
public:

typedef charT char_type;
typedef traits traits_type;
typedef basic_istream<charT,traits> istream_type;
see below istream_iterator();
istream_iterator(istream_type& s);
istream_iterator(const istream_iterator& x) = default;

~istream_iterator() = default;

const T& operator*() const;
const T* operator->() const;
istream_iterator<T,charT,traits,Distance>& operator++();
istream_iterator<T,charT,traits,Distance> operator++(int);

private:
basic_istream<charT,traits>* in_stream; // exposition only
T value; // exposition only

};

template <class T, class charT, class traits, class Distance>
bool operator==(const istream_iterator<T,charT,traits,Distance>& x,

const istream_iterator<T,charT,traits,Distance>& y);
template <class T, class charT, class traits, class Distance>

bool operator!=(const istream_iterator<T,charT,traits,Distance>& x,
const istream_iterator<T,charT,traits,Distance>& y);

}

24.6.1.1 istream_iterator constructors and destructor [istream.iterator.cons]

see below istream_iterator();

1 Effects: Constructs the end-of-stream iterator. If T is a literal type, then this constructor shall be a
constexpr constructor.

2 Postcondition: in_stream == 0.

istream_iterator(istream_type& s);

3 Effects: Initializes in_stream with &s. value may be initialized during construction or the first time it
is referenced.

4 Postcondition: in_stream == &s.

istream_iterator(const istream_iterator& x) = default;

5 Effects: Constructs a copy of x. If T is a literal type, then this constructor shall be a trivial copy
constructor.

6 Postcondition: in_stream == x.in_stream.

~istream_iterator() = default;

§ 24.6.1.1 837

c© ISO/IEC N3092

7 Effects: The iterator is destroyed. If T is a literal type, then this destructor shall be a trivial destructor.

24.6.1.2 istream_iterator operations [istream.iterator.ops]

const T& operator*() const;

1 Returns: value.

const T* operator->() const;

2 Returns: &(operator*()).

istream_iterator<T,charT,traits,Distance>& operator++();

3 Requires: in_stream != 0.

4 Effects: *in_stream >> value.

5 Returns: *this.

istream_iterator<T,charT,traits,Distance> operator++(int);

6 Requires: in_stream != 0.

7 Effects:
istream_iterator<T,charT,traits,Distance> tmp = *this;
*in_stream >> value;
return (tmp);

template <class T, class charT, class traits, class Distance>
bool operator==(const istream_iterator<T,charT,traits,Distance> &x,

const istream_iterator<T,charT,traits,Distance> &y);

8 Returns: x.in_stream == y.in_stream.

template <class T, class charT, class traits, class Distance>
bool operator!=(const istream_iterator<T,charT,traits,Distance> &x,

const istream_iterator<T,charT,traits,Distance> &y);

9 Returns: !(x == y)

24.6.2 Class template ostream_iterator [ostream.iterator]

1 ostream_iterator writes (using operator<<) successive elements onto the output stream from which it
was constructed. If it was constructed with charT* as a constructor argument, this string, called a delimiter
string, is written to the stream after every T is written. It is not possible to get a value out of the output
iterator. Its only use is as an output iterator in situations like

while (first != last)
*result++ = *first++;

2 ostream_iterator is defined as:
namespace std {

template <class T, class charT = char, class traits = char_traits<charT> >
class ostream_iterator:

public iterator<output_iterator_tag, void, void, void, void> {
public:

§ 24.6.2 838

c© ISO/IEC N3092

typedef charT char_type;
typedef traits traits_type;
typedef basic_ostream<charT,traits> ostream_type;
ostream_iterator(ostream_type& s);
ostream_iterator(ostream_type& s, const charT* delimiter);
ostream_iterator(const ostream_iterator<T,charT,traits>& x);

~ostream_iterator();
ostream_iterator<T,charT,traits>& operator=(const T& value);

ostream_iterator<T,charT,traits>& operator*();
ostream_iterator<T,charT,traits>& operator++();
ostream_iterator<T,charT,traits>& operator++(int);

private:
basic_ostream<charT,traits>* out_stream; // exposition only
const charT* delim; // exposition only

};
}

24.6.2.1 ostream_iterator constructors and destructor [ostream.iterator.cons.des]

ostream_iterator(ostream_type& s);

1 Effects: Initializes out_stream with &s and delim with null.

ostream_iterator(ostream_type& s, const charT* delimiter);

2 Effects: Initializes out_stream with &s and delim with delimiter.

ostream_iterator(const ostream_iterator& x);

3 Effects: Constructs a copy of x.

~ostream_iterator();

4 Effects: The iterator is destroyed.

24.6.2.2 ostream_iterator operations [ostream.iterator.ops]

ostream_iterator& operator=(const T& value);

1 Effects:
*out_stream << value;
if(delim != 0)

*out_stream << delim;
return (*this);

ostream_iterator& operator*();

2 Returns: *this.

ostream_iterator& operator++();
ostream_iterator& operator++(int);

3 Returns: *this.

§ 24.6.2.2 839

c© ISO/IEC N3092

24.6.3 Class template istreambuf_iterator [istreambuf.iterator]

1 The class template istreambuf_iterator defines an input iterator (24.2.3) that reads successive characters
from the streambuf for which it was constructed. operator* provides access to the current input character, if
any. [Note: operator-> may return a proxy. — end note] Each time operator++ is evaluated, the iterator
advances to the next input character. If the end of stream is reached (streambuf_type::sgetc() returns
traits::eof()), the iterator becomes equal to the end-of-stream iterator value. The default constructor
istreambuf_iterator() and the constructor istreambuf_iterator(0) both construct an end-of-stream
iterator object suitable for use as an end-of-range. All specializations of istreambuf_iterator shall have
a trivial copy constructor, a constexpr default constructor, and a trivial destructor.

2 The result of operator*() on an end-of-stream iterator is undefined. For any other iterator value a char_-
type value is returned. It is impossible to assign a character via an input iterator.

namespace std {
template<class charT, class traits = char_traits<charT> >
class istreambuf_iterator

: public iterator<input_iterator_tag, charT,
typename traits::off_type, unspecified , charT> {

public:
typedef charT char_type;
typedef traits traits_type;
typedef typename traits::int_type int_type;
typedef basic_streambuf<charT,traits> streambuf_type;
typedef basic_istream<charT,traits> istream_type;

class proxy; // exposition only

constexpr istreambuf_iterator() throw();
istreambuf_iterator(const istreambuf_iterator&) throw() = default;
~istreambuf_iterator() throw() = default;
istreambuf_iterator(istream_type& s) throw();
istreambuf_iterator(streambuf_type* s) throw();
istreambuf_iterator(const proxy& p) throw();
charT operator*() const;
pointer operator->() const;
istreambuf_iterator<charT,traits>& operator++();
proxy operator++(int);
bool equal(const istreambuf_iterator& b) const;

private:
streambuf_type* sbuf_; // exposition only

};

template <class charT, class traits>
bool operator==(const istreambuf_iterator<charT,traits>& a,

const istreambuf_iterator<charT,traits>& b);
template <class charT, class traits>

bool operator!=(const istreambuf_iterator<charT,traits>& a,
const istreambuf_iterator<charT,traits>& b);

}

24.6.3.1 Class template istreambuf_iterator::proxy [istreambuf.iterator::proxy]

namespace std {
template <class charT, class traits = char_traits<charT> >
class istreambuf_iterator<charT, traits>::proxy {

§ 24.6.3.1 840

c© ISO/IEC N3092

charT keep_;
basic_streambuf<charT,traits>* sbuf_;
proxy(charT c,

basic_streambuf<charT,traits>* sbuf)
: keep_(c), sbuf_(sbuf) { }

public:
charT operator*() { return keep_; }

};
}

1 Class istreambuf_iterator<charT,traits>::proxy is for exposition only. An implementation is permit-
ted to provide equivalent functionality without providing a class with this name. Class istreambuf_-
iterator<charT, traits>::proxy provides a temporary placeholder as the return value of the post-
increment operator (operator++). It keeps the character pointed to by the previous value of the iterator for
some possible future access to get the character.

24.6.3.2 istreambuf_iterator constructors [istreambuf.iterator.cons]

constexpr istreambuf_iterator() throw();

1 Effects: Constructs the end-of-stream iterator.

istreambuf_iterator(basic_istream<charT,traits>& s) throw();
istreambuf_iterator(basic_streambuf<charT,traits>* s) throw();

2 Effects: Constructs an istreambuf_iterator<> that uses the basic_streambuf<> object *(s.rdbuf()),
or *s, respectively. Constructs an end-of-stream iterator if s.rdbuf() is null.

istreambuf_iterator(const proxy& p) throw();

3 Effects: Constructs a istreambuf_iterator<> that uses the basic_streambuf<> object pointed to
by the proxy object’s constructor argument p.

24.6.3.3 istreambuf_iterator::operator* [istreambuf.iterator::op*]

charT operator*() const

1 Returns: The character obtained via the streambuf member sbuf_->sgetc().

24.6.3.4 istreambuf_iterator::operator++ [istreambuf.iterator::op++]

istreambuf_iterator<charT,traits>&
istreambuf_iterator<charT,traits>::operator++();

1 Effects: sbuf_->sbumpc().

2 Returns: *this.

proxy istreambuf_iterator<charT,traits>::operator++(int);

3 Returns: proxy(sbuf_->sbumpc(), sbuf_).

24.6.3.5 istreambuf_iterator::equal [istreambuf.iterator::equal]

bool equal(const istreambuf_iterator<charT,traits>& b) const;

§ 24.6.3.5 841

c© ISO/IEC N3092

1 Returns: true if and only if both iterators are at end-of-stream, or neither is at end-of-stream, regard-
less of what streambuf object they use.

24.6.3.6 operator== [istreambuf.iterator::op==]

template <class charT, class traits>
bool operator==(const istreambuf_iterator<charT,traits>& a,

const istreambuf_iterator<charT,traits>& b);

1 Returns: a.equal(b).

24.6.3.7 operator!= [istreambuf.iterator::op!=]

template <class charT, class traits>
bool operator!=(const istreambuf_iterator<charT,traits>& a,

const istreambuf_iterator<charT,traits>& b);

1 Returns: !a.equal(b).

24.6.4 Class template ostreambuf_iterator [ostreambuf.iterator]

namespace std {
template <class charT, class traits = char_traits<charT> >
class ostreambuf_iterator :

public iterator<output_iterator_tag, void, void, void, void> {
public:

typedef charT char_type;
typedef traits traits_type;
typedef basic_streambuf<charT,traits> streambuf_type;
typedef basic_ostream<charT,traits> ostream_type;

public:
ostreambuf_iterator(ostream_type& s) throw();
ostreambuf_iterator(streambuf_type* s) throw();
ostreambuf_iterator& operator=(charT c);

ostreambuf_iterator& operator*();
ostreambuf_iterator& operator++();
ostreambuf_iterator& operator++(int);
bool failed() const throw();

private:
streambuf_type* sbuf_; // exposition only

};
}

1 The class template ostreambuf_iterator writes successive characters onto the output stream from which
it was constructed. It is not possible to get a character value out of the output iterator.

24.6.4.1 ostreambuf_iterator constructors [ostreambuf.iter.cons]

ostreambuf_iterator(ostream_type& s) throw();

1 Requires: s.rdbuf() shall not null pointer.

§ 24.6.4.1 842

c© ISO/IEC N3092

2 Effects: :sbuf_(s.rdbuf()) {}.

ostreambuf_iterator(streambuf_type* s) throw();

3 Requires: s shall not be a null pointer.

4 Effects: : sbuf_(s) {}.

24.6.4.2 ostreambuf_iterator operations [ostreambuf.iter.ops]

ostreambuf_iterator<charT,traits>&
operator=(charT c);

1 Effects: If failed() yields false, calls sbuf_->sputc(c); otherwise has no effect.

2 Returns: *this.

ostreambuf_iterator<charT,traits>& operator*();

3 Returns: *this.

ostreambuf_iterator<charT,traits>& operator++();
ostreambuf_iterator<charT,traits>& operator++(int);

4 Returns: *this.

bool failed() const throw();

5 Returns: true if in any prior use of member operator=, the call to sbuf_->sputc() returned
traits::eof(); or false otherwise.

24.6.5 range access [iterator.range]

1 In addition to being available via inclusion of the <iterator> header, the function templates in 24.6.5 are
available when any of the following headers are included: <array>, <deque>, <forward_list>, <list>,
<map>, <regex>, <set>, <string>, <unordered_map>, <unordered_set>, and <vector>.

template <class C> auto begin(C& c) -> decltype(c.begin());
template <class C> auto begin(const C& c) -> decltype(c.begin());

2 Returns: c.begin().

template <class C> auto end(C& c) -> decltype(c.end());
template <class C> auto end(const C& c) -> decltype(c.end());

3 Returns: c.end().

template <class T, size_t N> T* begin(T (&array)[N]);

4 Returns: array.

template <class T, size_t N> T* end(T (&array)[N]);

5 Returns: array + N.

§ 24.6.5 843

c© ISO/IEC N3092

25 Algorithms library [algorithms]
25.1 General [algorithms.general]

1 This Clause describes components that C++ programs may use to perform algorithmic operations on con-
tainers (Clause 23) and other sequences.

2 The following subclauses describe components for non-modifying sequence operation, modifying sequence
operations, sorting and related operations, and algorithms from the ISO C library, as summarized in Ta-
ble 109.

Table 109 — Algorithms library summary

Subclause Header(s)
25.2 Non-modifying sequence operations
25.3 Mutating sequence operations <algorithm>
25.4 Sorting and related operations
25.5 C library algorithms <cstdlib>

Header <algorithm> synopsis
namespace std {

#include <initializer_list>

// 25.2, non-modifying sequence operations:
template <class InputIterator, class Predicate>

bool all_of(InputIterator first, InputIterator last, Predicate pred);
template <class InputIterator, class Predicate>

bool any_of(InputIterator first, InputIterator last, Predicate pred);
template <class InputIterator, class Predicate>

bool none_of(InputIterator first, InputIterator last, Predicate pred);

template<class InputIterator, class Function>
Function for_each(InputIterator first, InputIterator last, Function f);

template<class InputIterator, class T>
InputIterator find(InputIterator first, InputIterator last,

const T& value);
template<class InputIterator, class Predicate>

InputIterator find_if(InputIterator first, InputIterator last,
Predicate pred);

template<class InputIterator, class Predicate>
InputIterator find_if_not(InputIterator first, InputIterator last,

Predicate pred);
template<class ForwardIterator1, class ForwardIterator2>

ForwardIterator1
find_end(ForwardIterator1 first1, ForwardIterator1 last1,

ForwardIterator2 first2, ForwardIterator2 last2);
template<class ForwardIterator1, class ForwardIterator2,

class BinaryPredicate>
ForwardIterator1

§ 25.1 844

c© ISO/IEC N3092

find_end(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
BinaryPredicate pred);

template<class InputIterator, class ForwardIterator>
InputIterator

find_first_of(InputIterator first1, InputIterator last1,
ForwardIterator first2, ForwardIterator last2);

template<class InputIterator, class ForwardIterator,
class BinaryPredicate>

InputIterator
find_first_of(InputIterator first1, InputIterator last1,

ForwardIterator first2, ForwardIterator last2,
BinaryPredicate pred);

template<class ForwardIterator>
ForwardIterator adjacent_find(ForwardIterator first,

ForwardIterator last);
template<class ForwardIterator, class BinaryPredicate>

ForwardIterator adjacent_find(ForwardIterator first,
ForwardIterator last,
BinaryPredicate pred);

template<class InputIterator, class T>
typename iterator_traits<InputIterator>::difference_type

count(InputIterator first, InputIterator last, const T& value);
template<class InputIterator, class Predicate>

typename iterator_traits<InputIterator>::difference_type
count_if(InputIterator first, InputIterator last, Predicate pred);

template<class InputIterator1, class InputIterator2>
pair<InputIterator1, InputIterator2>

mismatch(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2);

template
<class InputIterator1, class InputIterator2, class BinaryPredicate>
pair<InputIterator1, InputIterator2>

mismatch(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, BinaryPredicate pred);

template<class InputIterator1, class InputIterator2>
bool equal(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2);
template
<class InputIterator1, class InputIterator2, class BinaryPredicate>
bool equal(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, BinaryPredicate pred);

template<class ForwardIterator1, class ForwardIterator2>
bool is_permutation(ForwardIterator1 first1, ForwardIterator1 last1,

ForwardIterator2 first2);
template<class ForwardIterator1, class ForwardIterator2,

class BinaryPredicate>
bool is_permutation(ForwardIterator1 first1, ForwardIterator1 last1,

ForwardIterator2 first2, BinaryPredicate pred);

§ 25.1 845

c© ISO/IEC N3092

template<class ForwardIterator1, class ForwardIterator2>
ForwardIterator1 search(

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2);

template<class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>

ForwardIterator1 search(
ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
BinaryPredicate pred);

template<class ForwardIterator, class Size, class T>
ForwardIterator search_n(ForwardIterator first, ForwardIterator last,

Size count, const T& value);
template
<class ForwardIterator, class Size, class T, class BinaryPredicate>
ForwardIterator1 search_n(ForwardIterator first, ForwardIterator last,

Size count, const T& value,
BinaryPredicate pred);

// 25.3, modifying sequence operations:
// 25.3.1, copy:
template<class InputIterator, class OutputIterator>

OutputIterator copy(InputIterator first, InputIterator last,
OutputIterator result);

template<class InputIterator, class Size, class OutputIterator>
OutputIterator copy_n(InputIterator first, Size n,

OutputIterator result);
template<class InputIterator, class OutputIterator, class Predicate>

OutputIterator copy_if(InputIterator first, InputIterator last,
OutputIterator result, Predicate pred);

template<class BidirectionalIterator1, class BidirectionalIterator2>
BidirectionalIterator2 copy_backward(

BidirectionalIterator1 first, BidirectionalIterator1 last,
BidirectionalIterator2 result);

// 25.3.2, move:
template<class InputIterator, class OutputIterator>

OutputIterator move(InputIterator first, InputIterator last,
OutputIterator result);

template<class BidirectionalIterator1, class BidirectionalIterator2>
BidirectionalIterator2 move_backward(

BidirectionalIterator1 first, BidirectionalIterator1 last,
BidirectionalIterator2 result);

// 25.3.3, swap:
template<class ForwardIterator1, class ForwardIterator2>

ForwardIterator2 swap_ranges(ForwardIterator1 first1,
ForwardIterator1 last1, ForwardIterator2 first2);

template<class ForwardIterator1, class ForwardIterator2>
void iter_swap(ForwardIterator1 a, ForwardIterator2 b);

template<class InputIterator, class OutputIterator, class UnaryOperation>
OutputIterator transform(InputIterator first, InputIterator last,

OutputIterator result, UnaryOperation op);

§ 25.1 846

c© ISO/IEC N3092

template<class InputIterator1, class InputIterator2, class OutputIterator,
class BinaryOperation>

OutputIterator transform(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, OutputIterator result,
BinaryOperation binary_op);

template<class ForwardIterator, class T>
void replace(ForwardIterator first, ForwardIterator last,

const T& old_value, const T& new_value);
template<class ForwardIterator, class Predicate, class T>

void replace_if(ForwardIterator first, ForwardIterator last,
Predicate pred, const T& new_value);

template<class InputIterator, class OutputIterator, class T>
OutputIterator replace_copy(InputIterator first, InputIterator last,

OutputIterator result,
const T& old_value, const T& new_value);

template<class InputIterator, class OutputIterator, class Predicate, class T>
OutputIterator replace_copy_if(InputIterator first, InputIterator last,

OutputIterator result,
Predicate pred, const T& new_value);

template<class ForwardIterator, class T>
void fill(ForwardIterator first, ForwardIterator last, const T& value);

template<class OutputIterator, class Size, class T>
OutputIterator fill_n(OutputIterator first, Size n, const T& value);

template<class ForwardIterator, class Generator>
void generate(ForwardIterator first, ForwardIterator last,

Generator gen);
template<class OutputIterator, class Size, class Generator>

OutputIterator generate_n(OutputIterator first, Size n, Generator gen);

template<class ForwardIterator, class T>
ForwardIterator remove(ForwardIterator first, ForwardIterator last,

const T& value);
template<class ForwardIterator, class Predicate>

ForwardIterator remove_if(ForwardIterator first, ForwardIterator last,
Predicate pred);

template<class InputIterator, class OutputIterator, class T>
OutputIterator remove_copy(InputIterator first, InputIterator last,

OutputIterator result, const T& value);
template<class InputIterator, class OutputIterator, class Predicate>

OutputIterator remove_copy_if(InputIterator first, InputIterator last,
OutputIterator result, Predicate pred);

template<class ForwardIterator>
ForwardIterator unique(ForwardIterator first, ForwardIterator last);

template<class ForwardIterator, class BinaryPredicate>
ForwardIterator unique(ForwardIterator first, ForwardIterator last,

BinaryPredicate pred);
template<class InputIterator, class OutputIterator>

OutputIterator unique_copy(InputIterator first, InputIterator last,
OutputIterator result);

template<class InputIterator, class OutputIterator, class BinaryPredicate>
OutputIterator unique_copy(InputIterator first, InputIterator last,

§ 25.1 847

c© ISO/IEC N3092

OutputIterator result, BinaryPredicate pred);

template<class BidirectionalIterator>
void reverse(BidirectionalIterator first, BidirectionalIterator last);

template<class BidirectionalIterator, class OutputIterator>
OutputIterator reverse_copy(BidirectionalIterator first,

BidirectionalIterator last,
OutputIterator result);

template<class ForwardIterator>
ForwardIterator rotate(ForwardIterator first, ForwardIterator middle,

ForwardIterator last);
template<class ForwardIterator, class OutputIterator>

OutputIterator rotate_copy(
ForwardIterator first, ForwardIterator middle,
ForwardIterator last, OutputIterator result);

template<class RandomAccessIterator>
void random_shuffle(RandomAccessIterator first,

RandomAccessIterator last);
template<class RandomAccessIterator, class RandomNumberGenerator>

void random_shuffle(RandomAccessIterator first,
RandomAccessIterator last,
RandomNumberGenerator&& rand);

template<class RandomAccessIterator, class UniformRandomNumberGenerator>
void shuffle(RandomAccessIterator first,

RandomAccessIterator last,
UniformRandomNumberGenerator& rand);

// 25.3.13, partitions:
template <class InputIterator, class Predicate>

bool is_partitioned(InputIterator first, InputIterator last, Predicate pred);

template<class ForwardIterator, class Predicate>
ForwardIterator partition(ForwardIterator first,

ForwardIterator last,
Predicate pred);

template<class BidirectionalIterator, class Predicate>
BidirectionalIterator stable_partition(BidirectionalIterator first,

BidirectionalIterator last,
Predicate pred);

template <class InputIterator, class OutputIterator1,
class OutputIterator2, class Predicate>

pair<OutputIterator1, OutputIterator2>
partition_copy(InputIterator first, InputIterator last,

OutputIterator1 out_true, OutputIterator2 out_false,
Predicate pred);

template<class ForwardIterator, class Predicate>
ForwardIterator partition_point(ForwardIterator first,

ForwardIterator last,
Predicate pred);

// 25.4, sorting and related operations:
// 25.4.1, sorting:
template<class RandomAccessIterator>

§ 25.1 848

c© ISO/IEC N3092

void sort(RandomAccessIterator first, RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>

void sort(RandomAccessIterator first, RandomAccessIterator last,
Compare comp);

template<class RandomAccessIterator>
void stable_sort(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void stable_sort(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);

template<class RandomAccessIterator>
void partial_sort(RandomAccessIterator first,

RandomAccessIterator middle,
RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void partial_sort(RandomAccessIterator first,

RandomAccessIterator middle,
RandomAccessIterator last, Compare comp);

template<class InputIterator, class RandomAccessIterator>
RandomAccessIterator partial_sort_copy(

InputIterator first, InputIterator last,
RandomAccessIterator result_first,
RandomAccessIterator result_last);

template<class InputIterator, class RandomAccessIterator, class Compare>
RandomAccessIterator partial_sort_copy(

InputIterator first, InputIterator last,
RandomAccessIterator result_first,
RandomAccessIterator result_last,
Compare comp);

template<class ForwardIterator>
bool is_sorted(ForwardIterator first, ForwardIterator last);

template<class ForwardIterator, class Compare>
bool is_sorted(ForwardIterator first, ForwardIterator last,

Compare comp);
template<class ForwardIterator>

ForwardIterator is_sorted_until(ForwardIterator first, ForwardIterator last);
template<class ForwardIterator, class Compare>

ForwardIterator is_sorted_until(ForwardIterator first, ForwardIterator last,
Compare comp);

template<class RandomAccessIterator>
void nth_element(RandomAccessIterator first, RandomAccessIterator nth,

RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>

void nth_element(RandomAccessIterator first, RandomAccessIterator nth,
RandomAccessIterator last, Compare comp);

// 25.4.3, binary search:
template<class ForwardIterator, class T>

ForwardIterator lower_bound(ForwardIterator first, ForwardIterator last,
const T& value);

template<class ForwardIterator, class T, class Compare>
ForwardIterator lower_bound(ForwardIterator first, ForwardIterator last,

const T& value, Compare comp);

§ 25.1 849

c© ISO/IEC N3092

template<class ForwardIterator, class T>
ForwardIterator upper_bound(ForwardIterator first, ForwardIterator last,

const T& value);
template<class ForwardIterator, class T, class Compare>

ForwardIterator upper_bound(ForwardIterator first, ForwardIterator last,
const T& value, Compare comp);

template<class ForwardIterator, class T>
pair<ForwardIterator, ForwardIterator>

equal_range(ForwardIterator first, ForwardIterator last,
const T& value);

template<class ForwardIterator, class T, class Compare>
pair<ForwardIterator, ForwardIterator>

equal_range(ForwardIterator first, ForwardIterator last,
const T& value, Compare comp);

template<class ForwardIterator, class T>
bool binary_search(ForwardIterator first, ForwardIterator last,

const T& value);
template<class ForwardIterator, class T, class Compare>

bool binary_search(ForwardIterator first, ForwardIterator last,
const T& value, Compare comp);

// 25.4.4, merge:
template<class InputIterator1, class InputIterator2, class OutputIterator>

OutputIterator merge(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result);

template<class InputIterator1, class InputIterator2, class OutputIterator,
class Compare>

OutputIterator merge(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);

template<class BidirectionalIterator>
void inplace_merge(BidirectionalIterator first,

BidirectionalIterator middle,
BidirectionalIterator last);

template<class BidirectionalIterator, class Compare>
void inplace_merge(BidirectionalIterator first,

BidirectionalIterator middle,
BidirectionalIterator last, Compare comp);

// 25.4.5, set operations:
template<class InputIterator1, class InputIterator2>

bool includes(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2);

template<class InputIterator1, class InputIterator2, class Compare>
bool includes(

InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2, Compare comp);

template<class InputIterator1, class InputIterator2, class OutputIterator>
OutputIterator set_union(InputIterator1 first1, InputIterator1 last1,

§ 25.1 850

c© ISO/IEC N3092

InputIterator2 first2, InputIterator2 last2,
OutputIterator result);

template<class InputIterator1, class InputIterator2, class OutputIterator,
class Compare>

OutputIterator set_union(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);

template<class InputIterator1, class InputIterator2, class OutputIterator>
OutputIterator set_intersection(

InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result);

template<class InputIterator1, class InputIterator2, class OutputIterator,
class Compare>

OutputIterator set_intersection(
InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);

template<class InputIterator1, class InputIterator2, class OutputIterator>
OutputIterator set_difference(

InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result);

template<class InputIterator1, class InputIterator2, class OutputIterator,
class Compare>

OutputIterator set_difference(
InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);

template<class InputIterator1, class InputIterator2, class OutputIterator>
OutputIterator set_symmetric_difference(

InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result);

template<class InputIterator1, class InputIterator2, class OutputIterator,
class Compare>

OutputIterator set_symmetric_difference(
InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);

// 25.4.6, heap operations:
template<class RandomAccessIterator>

void push_heap(RandomAccessIterator first, RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>

void push_heap(RandomAccessIterator first, RandomAccessIterator last,
Compare comp);

template<class RandomAccessIterator>
void pop_heap(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void pop_heap(RandomAccessIterator first, RandomAccessIterator last,

§ 25.1 851

c© ISO/IEC N3092

Compare comp);

template<class RandomAccessIterator>
void make_heap(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void make_heap(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);

template<class RandomAccessIterator>
void sort_heap(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void sort_heap(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);

template<class RandomAccessIterator>
bool is_heap(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
bool is_heap(RandomAccessIterator first, RandomAccessIterator last, Compare comp);

template<class RandomAccessIterator>
RandomAccessIterator is_heap_until(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
RandomAccessIterator is_heap_until(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);

// 25.4.7, minimum and maximum:
template<class T> const T& min(const T& a, const T& b);
template<class T> const T& min(const T& a, const T& b, const T& c);
template<class T, class... Args>

const T& min(const T& a, const Args&... args);
template<class T, class Compare>

const T& min(const T& a, const T& b, Compare comp);
template<class T, class U, class... Args>

const T& min(const T& a, const U& b, const Args&... args);

template<class T> const T& max(const T& a, const T& b);
template<class T> const T& max(const T& a, const T& b, const T& c);
template<class T, class... Args>

const T& max(const T& a, const Args&... args);
template<class T, class Compare>

const T& max(const T& a, const T& b, Compare comp);
template<class T, class U, class... Args>

const T& max(const T& a, const U& b, const Args&... args);

template<class T> pair<const T&, const T&> minmax(const T& a, const T& b);
template<class T> pair<const T&, const T&> minmax(const T& a, const T& b, const T& c);
template<class T, class... Args>

pair<const T&, const T&> minmax(const T& a, const Args&... args);
template<class T, class Compare>

pair<const T&, const T&> minmax(const T& a, const T& b, Compare comp);
template<class T, class U, class... Args>

pair<const T&, const T&> minmax(const T& a, const U& b, const Args&... args);

template<class ForwardIterator>
ForwardIterator min_element(ForwardIterator first, ForwardIterator last);

template<class ForwardIterator, class Compare>

§ 25.1 852

c© ISO/IEC N3092

ForwardIterator min_element(ForwardIterator first, ForwardIterator last,
Compare comp);

template<class ForwardIterator>
ForwardIterator max_element(ForwardIterator first, ForwardIterator last);

template<class ForwardIterator, class Compare>
ForwardIterator max_element(ForwardIterator first, ForwardIterator last,

Compare comp);
template<class ForwardIterator>

pair<ForwardIterator, ForwardIterator>
minmax_element(ForwardIterator first, ForwardIterator last);

template<class ForwardIterator, class Compare>
pair<ForwardIterator, ForwardIterator>

minmax_element(ForwardIterator first, ForwardIterator last, Compare comp);

template<class InputIterator1, class InputIterator2>
bool lexicographical_compare(

InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2);

template<class InputIterator1, class InputIterator2, class Compare>
bool lexicographical_compare(

InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
Compare comp);

// 25.4.9, permutations:
template<class BidirectionalIterator>

bool next_permutation(BidirectionalIterator first,
BidirectionalIterator last);

template<class BidirectionalIterator, class Compare>
bool next_permutation(BidirectionalIterator first,

BidirectionalIterator last, Compare comp);
template<class BidirectionalIterator>

bool prev_permutation(BidirectionalIterator first,
BidirectionalIterator last);

template<class BidirectionalIterator, class Compare>
bool prev_permutation(BidirectionalIterator first,

BidirectionalIterator last, Compare comp);
}

3 All of the algorithms are separated from the particular implementations of data structures and are param-
eterized by iterator types. Because of this, they can work with program-defined data structures, as long as
these data structures have iterator types satisfying the assumptions on the algorithms.

4 For purposes of determining the existence of data races, algorithms shall not modify objects referenced
through an iterator argument unless the specification requires such modification.

5 Throughout this Clause, the names of template parameters are used to express type requirements. If an al-
gorithm’s template parameter is InputIterator, InputIterator1, or InputIterator2, the actual template
argument shall satisfy the requirements of an input iterator (24.2.3). If an algorithm’s template parameter
is OutputIterator, OutputIterator1, or OutputIterator2, the actual template argument shall satisfy
the requirements of an output iterator (24.2.4). If an algorithm’s template parameter is ForwardIterator,
ForwardIterator1, or ForwardIterator2, the actual template argument shall satisfy the requirements of a
forward iterator (24.2.5). If an algorithm’s template parameter is BidirectionalIterator, BidirectionalIterator1,
or BidirectionalIterator2, the actual template argument shall satisfy the requirements of a bidirectional
iterator (24.2.6). If an algorithm’s template parameter is RandomAccessIterator, RandomAccessIterator1,

§ 25.1 853

c© ISO/IEC N3092

or RandomAccessIterator2, the actual template argument shall satisfy the requirements of a random-access
iterator (24.2.7).

6 If an algorithm’s Effects section says that a value pointed to by any iterator passed as an argument is
modified, then that algorithm has an additional type requirement: The type of that argument shall satisfy
the requirements of a mutable iterator (24.2). [Note: this requirement does not affect arguments that are
declared as OutputIterator, OutputIterator1, or OutputIterator2, because output iterators must always
be mutable. — end note]

7 Both in-place and copying versions are provided for certain algorithms.273 When such a version is provided
for algorithm it is called algorithm_copy. Algorithms that take predicates end with the suffix _if (which
follows the suffix _copy).

8 The Predicate parameter is used whenever an algorithm expects a function object (20.8) that, when applied
to the result of dereferencing the corresponding iterator, returns a value testable as true. In other words,
if an algorithm takes Predicate pred as its argument and first as its iterator argument, it should work
correctly in the construct pred(*first) contextually converted to bool (4). The function object pred shall
not apply any non-constant function through the dereferenced iterator.

9 The BinaryPredicate parameter is used whenever an algorithm expects a function object that when applied
to the result of dereferencing two corresponding iterators or to dereferencing an iterator and type T when T is
part of the signature returns a value testable as true. In other words, if an algorithm takes BinaryPredicate
binary_pred as its argument and first1 and first2 as its iterator arguments, it should work correctly
in the construct binary_pred(*first1, *first2) contextually converted to bool (4). BinaryPredicate
always takes the first iterator type as its first argument, that is, in those cases when T value is part of the
signature, it should work correctly in the construct binary_pred(*first1, value) contextually converted
to bool (4). binary_pred shall not apply any non-constant function through the dereferenced iterators.

10 [Note: Unless otherwise specified, algorithms that take function objects as arguments are permitted to copy
those function objects freely. Programmers for whom object identity is important should consider using a
wrapper class that points to a noncopied implementation object such as reference_wrapper<T> (20.8.4),
or some equivalent solution. — end note]

11 When the description of an algorithm gives an expression such as *first == value for a condition, the
expression shall evaluate to either true or false in boolean contexts.

12 In the description of the algorithms operators + and - are used for some of the iterator categories for which
they do not have to be defined. In these cases the semantics of a+n is the same as that of

X tmp = a;
advance(tmp, n);
return tmp;

and that of b-a is the same as of
return distance(a, b);

25.2 Non-modifying sequence operations [alg.nonmodifying]

25.2.1 All of [alg.all_of]

273) The decision whether to include a copying version was usually based on complexity considerations. When the cost of doing
the operation dominates the cost of copy, the copying version is not included. For example, sort_copy is not included because
the cost of sorting is much more significant, and users might as well do copy followed by sort.

§ 25.2.1 854

c© ISO/IEC N3092

template <class InputIterator, class Predicate>
bool all_of(InputIterator first, InputIterator last, Predicate pred);

1 Returns: true if [first,last) is empty or if pred(*i) is true for every iterator i in the range
[first,last), and false otherwise.

2 Complexity: At most last - first applications of the predicate.

25.2.2 Any of [alg.any_of]

template <class InputIterator, class Predicate>
bool any_of(InputIterator first, InputIterator last, Predicate pred);

1 Returns: false if [first,last) is empty or if there is no iterator i in the range [first,last) such
that pred(*i) is true, and true otherwise.

2 Complexity: At most last - first applications of the predicate.

25.2.3 None of [alg.none_of]

template <class InputIterator, class Predicate>
bool none_of(InputIterator first, InputIterator last, Predicate pred);

1 Returns: true if [first,last) is empty or if pred(*i) is false for every iterator i in the range
[first,last), and false otherwise.

2 Complexity: At most last - first applications of the predicate.

25.2.4 For each [alg.foreach]

template<class InputIterator, class Function>
Function for_each(InputIterator first, InputIterator last, Function f);

1 Requires: Function shall meet the requirements of MoveConstructible (Table 34). [Note: Function
need not meet the requirements of CopyConstructible (Table 35). — end note]

2 Effects: Applies f to the result of dereferencing every iterator in the range [first,last), starting
from first and proceeding to last - 1. [Note: If the type of first satisfies the requirements of a
mutable iterator, f may apply nonconstant functions through the dereferenced iterator. — end note]

3 Returns: std::move(f).

4 Complexity: Applies f exactly last - first times.

5 Remarks: If f returns a result, the result is ignored.

25.2.5 Find [alg.find]

template<class InputIterator, class T>
InputIterator find(InputIterator first, InputIterator last,

const T& value);

template<class InputIterator, class Predicate>
InputIterator find_if(InputIterator first, InputIterator last,

Predicate pred);
template<class InputIterator, class Predicate>

§ 25.2.5 855

c© ISO/IEC N3092

InputIterator find_if_not(InputIterator first, InputIterator last,
Predicate pred);

1 Returns: The first iterator i in the range [first,last) for which the following corresponding condi-
tions hold: *i == value, pred(*i) != false, pred(*i) == false. Returns last if no such iterator
is found.

2 Complexity: At most last - first applications of the corresponding predicate.

25.2.6 Find End [alg.find.end]

template<class ForwardIterator1, class ForwardIterator2>
ForwardIterator1

find_end(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2);

template<class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>

ForwardIterator1
find_end(ForwardIterator1 first1, ForwardIterator1 last1,

ForwardIterator2 first2, ForwardIterator2 last2,
BinaryPredicate pred);

1 Effects: Finds a subsequence of equal values in a sequence.

2 Returns: The last iterator i in the range [first1,last1 - (last2 - first2)) such that for any non-
negative integer n < (last2 - first2), the following corresponding conditions hold: *(i + n) ==
(first2 + n), pred((i + n), *(first2 + n)) != false. Returns last1 if [first2,last2) is
empty or if no such iterator is found.

3 Complexity: At most (last2 - first2) * (last1 - first1 - (last2 - first2) + 1) applica-
tions of the corresponding predicate.

25.2.7 Find First [alg.find.first.of]

template<class InputIterator, class ForwardIterator>
InputIterator

find_first_of(InputIterator first1, InputIterator last1,
ForwardIterator first2, ForwardIterator last2);

template<class InputIterator, class ForwardIterator,
class BinaryPredicate>

InputIterator
find_first_of(InputIterator first1, InputIterator last1,

ForwardIterator first2, ForwardIterator last2,
BinaryPredicate pred);

1 Effects: Finds an element that matches one of a set of values.

2 Returns: The first iterator i in the range [first1,last1) such that for some iterator j in the range
[first2,last2) the following conditions hold: *i == *j, pred(*i,*j) != false. Returns last1
if [first2,last2) is empty or if no such iterator is found.

3 Complexity: At most (last1-first1) * (last2-first2) applications of the corresponding predi-
cate.

§ 25.2.7 856

c© ISO/IEC N3092

25.2.8 Adjacent find [alg.adjacent.find]

template<class ForwardIterator>
ForwardIterator adjacent_find(ForwardIterator first, ForwardIterator last);

template<class ForwardIterator, class BinaryPredicate>
ForwardIterator adjacent_find(ForwardIterator first, ForwardIterator last,

BinaryPredicate pred);

1 Returns: The first iterator i such that both i and i + 1 are in the range [first,last) for which the
following corresponding conditions hold: *i == *(i + 1), pred(*i, *(i + 1)) != false. Returns
last if no such iterator is found.

2 Complexity: For a nonempty range, exactly min((i - first) + 1, (last - first) - 1) applica-
tions of the corresponding predicate, where i is adjacent_find’s return value.

25.2.9 Count [alg.count]

template<class InputIterator, class T>
typename iterator_traits<InputIterator>::difference_type

count(InputIterator first, InputIterator last, const T& value);

template<class InputIterator, class Predicate>
typename iterator_traits<InputIterator>::difference_type

count_if(InputIterator first, InputIterator last, Predicate pred);

1 Effects: Returns the number of iterators i in the range [first,last) for which the following corre-
sponding conditions hold: *i == value, pred(*i) != false.

2 Complexity: Exactly last - first applications of the corresponding predicate.

25.2.10 Mismatch [mismatch]

template<class InputIterator1, class InputIterator2>
pair<InputIterator1, InputIterator2>

mismatch(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2);

template<class InputIterator1, class InputIterator2,
class BinaryPredicate>

pair<InputIterator1, InputIterator2>
mismatch(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, BinaryPredicate pred);

1 Returns: A pair of iterators i and j such that j == first2 + (i - first1) and i is the first iterator
in the range [first1,last1) for which the following corresponding conditions hold:

!(*i == *(first2 + (i - first1)))
pred(*i, *(first2 + (i - first1))) == false

Returns the pair last1 and first2 + (last1 - first1) if such an iterator i is not found.

2 Complexity: At most last1 - first1 applications of the corresponding predicate.

§ 25.2.10 857

c© ISO/IEC N3092

25.2.11 Equal [alg.equal]

template<class InputIterator1, class InputIterator2>
bool equal(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2);

template<class InputIterator1, class InputIterator2,
class BinaryPredicate>

bool equal(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, BinaryPredicate pred);

1 Returns: true if for every iterator i in the range [first1,last1) the following corresponding condi-
tions hold: *i == *(first2 + (i - first1)), pred(*i, *(first2 + (i - first1))) != false.
Otherwise, returns false.

2 Complexity: At most last1 - first1 applications of the corresponding predicate.

25.2.12 Is permutation [alg.is_permutation]

template<class ForwardIterator1, class ForwardIterator2>
bool is_permutation(ForwardIterator1 first1, ForwardIterator1 last1,

ForwardIterator2 first2);
template<class ForwardIterator1, class ForwardIterator2,

class BinaryPredicate>
bool is_permutation(ForwardIterator1 first1, ForwardIterator1 last1,

ForwardIterator2 first2, BinaryPredicate pred);

1 Returns: true if there exists a permutation of the elements in the range [first2,first2 + (last1
- first1)), beginning with ForwardIterator2 begin, such that equal(first1, last1, begin)
returns true or equal(first1, last1, begin, pred) returns true; otherwise, returns false.

2 Complexity: Exactly distance(first1, last1) applications of the corresponding predicate if equal(first1,
last1, first2) would return true or equal(first1, last1, first2, pred) would return true;
otherwise, at worst O(N2), where N has the value distance(first1, last1).

25.2.13 Search [alg.search]

template<class ForwardIterator1, class ForwardIterator2>
ForwardIterator1

search(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2);

template<class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>

ForwardIterator1
search(ForwardIterator1 first1, ForwardIterator1 last1,

ForwardIterator2 first2, ForwardIterator2 last2,
BinaryPredicate pred);

1 Effects: Finds a subsequence of equal values in a sequence.

2 Returns: The first iterator i in the range [first1,last1 - (last2-first2)) such that for any non-
negative integer n less than last2 - first2 the following corresponding conditions hold: *(i + n) ==
(first2 + n), pred((i + n), *(first2 + n)) != false. Returns first1 if [first2,last2)
is empty or if no such iterator is found.

§ 25.2.13 858

c© ISO/IEC N3092

3 Complexity: At most (last1 - first1) * (last2 - first2) applications of the corresponding
predicate.

template<class ForwardIterator, class Size, class T>
ForwardIterator

search_n(ForwardIterator first, ForwardIterator last, Size count,
const T& value);

template<class ForwardIterator, class Size, class T,
class BinaryPredicate>

ForwardIterator
search_n(ForwardIterator first, ForwardIterator last, Size count,

const T& value, BinaryPredicate pred);

4 Requires: The type Size shall be convertible to integral type (4.7, 12.3).

5 Effects: Finds a subsequence of equal values in a sequence.

6 Returns: The first iterator i in the range [first,last-count) such that for any non-negative integer
n less than count the following corresponding conditions hold: *(i + n) == value, pred(*(i +
n),value) != false. Returns last if no such iterator is found.

7 Complexity: At most last - first applications of the corresponding predicate.

25.3 Mutating sequence operations [alg.modifying.operations]

25.3.1 Copy [alg.copy]

template<class InputIterator, class OutputIterator>
OutputIterator copy(InputIterator first, InputIterator last,

OutputIterator result);

1 Effects: Copies elements in the range [first,last) into the range [result,result + (last -
first)) starting from first and proceeding to last. For each non-negative integer n < (last -
first), performs *(result + n) = *(first + n).

2 Returns: result + (last - first).

3 Requires: result shall not be in the range [first,last).

4 Complexity: Exactly last - first assignments.

template<class InputIterator, class Size, class OutputIterator>
OutputIterator copy_n(InputIterator first, Size n,

OutputIterator result);

5 Effects: For each non-negative integer i < n, performs *(result + i) = *(first + i).

6 Returns: result + n.

7 Complexity: Exactly n assignments.

template<class InputIterator, class OutputIterator, class Predicate>
OutputIterator copy_if(InputIterator first, InputIterator last,

OutputIterator result, Predicate pred);

8 Requires: The ranges [first,last) and [result,result + (last - first)) shall not overlap.

§ 25.3.1 859

c© ISO/IEC N3092

9 Effects: Copies all of the elements referred to by the iterator i in the range [first,last) for which
pred(*i) is true.

10 Complexity: Exactly last - first applications of the corresponding predicate.

11 Remarks: Stable.

template<class BidirectionalIterator1, class BidirectionalIterator2>
BidirectionalIterator2

copy_backward(BidirectionalIterator1 first,
BidirectionalIterator1 last,
BidirectionalIterator2 result);

12 Effects: Copies elements in the range [first,last) into the range [result - (last-first),result
) starting from last - 1 and proceeding to first.274 For each positive integer n <= (last - first),
performs *(result - n) = *(last - n).

13 Requires: result shall not be in the range [first,last).

14 Returns: result - (last - first).

15 Complexity: Exactly last - first assignments.

25.3.2 Move [alg.move]

template<class InputIterator, class OutputIterator>
OutputIterator move(InputIterator first, InputIterator last,

OutputIterator result);

1 Effects: Moves elements in the range [first,last) into the range [result,result + (last -
first)) starting from first and proceeding to last. For each non-negative integer n < (last-first),
performs *(result + n) = std::move(*(first + n)).

2 Returns: result + (last - first).

3 Requires: result shall not be in the range [first,last).

4 Complexity: Exactly last - first move assignments.

template<class BidirectionalIterator1, class BidirectionalIterator2>
BidirectionalIterator2

move_backward(BidirectionalIterator1 first,
BidirectionalIterator1 last,
BidirectionalIterator2 result);

5 Effects: Moves elements in the range [first,last) into the range [result - (last-first),result)
starting from last - 1 and proceeding to first.275 For each positive integer n <= (last - first),
performs *(result - n) = std::move(*(last - n)).

6 Requires: result shall not be in the range [first,last).

7 Returns: result - (last - first).

8 Complexity: Exactly last - first assignments.

274) copy_backward should be used instead of copy when last is in the range [result - (last - first),result).
275) move_backward should be used instead of move when last is in the range [result - (last - first),result).

§ 25.3.2 860

c© ISO/IEC N3092

25.3.3 swap [alg.swap]

template<class ForwardIterator1, class ForwardIterator2>
ForwardIterator2

swap_ranges(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2);

1 Effects: For each non-negative integer n < (last1 - first1) performs: swap(*(first1 + n), *(first2
+ n)).

2 Requires: The two ranges [first1,last1) and [first2,first2 + (last1 - first1)) shall not
overlap. *(first1 + n) shall be swappable with (20.2.2) *(first2 + n).

3 Returns: first2 + (last1 - first1).

4 Complexity: Exactly last1 - first1 swaps.

template<class ForwardIterator1, class ForwardIterator2>
void iter_swap(ForwardIterator1 a, ForwardIterator2 b);

5 Effects: swap(*a, *b).

6 Requires: a and b shall be dereferenceable. *a shall be swappable with (20.2.2) *b.

25.3.4 Transform [alg.transform]

template<class InputIterator, class OutputIterator,
class UnaryOperation>

OutputIterator
transform(InputIterator first, InputIterator last,

OutputIterator result, UnaryOperation op);

template<class InputIterator1, class InputIterator2,
class OutputIterator, class BinaryOperation>

OutputIterator
transform(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, OutputIterator result,
BinaryOperation binary_op);

1 Effects: Assigns through every iterator i in the range [result,result + (last1 - first1)) a
new corresponding value equal to op(*(first1 + (i - result)) or binary_op(*(first1 + (i -
result)), *(first2 + (i - result))).

2 Requires: op and binary_op shall not invalidate iterators or subranges, or modify elements in the
ranges [first1,last1], [first2,first2 + (last1 - first1)], and [result,result + (last1 -
first1)].276

3 Returns: result + (last1 - first1).

4 Complexity: Exactly last1 - first1 applications of op or binary_op.

5 Remarks: result may be equal to first in case of unary transform, or to first1 or first2 in case
of binary transform.

276) The use of fully closed ranges is intentional.

§ 25.3.4 861

c© ISO/IEC N3092

25.3.5 Replace [alg.replace]

template<class ForwardIterator, class T>
void replace(ForwardIterator first, ForwardIterator last,

const T& old_value, const T& new_value);

template<class ForwardIterator, class Predicate, class T>
void replace_if(ForwardIterator first, ForwardIterator last,

Predicate pred, const T& new_value);

1 Requires: The expression *first = new_value shall be valid.

2 Effects: Substitutes elements referred by the iterator i in the range [first,last) with new_value,
when the following corresponding conditions hold: *i == old_value, pred(*i) != false.

3 Complexity: Exactly last - first applications of the corresponding predicate.

template<class InputIterator, class OutputIterator, class T>
OutputIterator

replace_copy(InputIterator first, InputIterator last,
OutputIterator result,
const T& old_value, const T& new_value);

template<class InputIterator, class OutputIterator, class Predicate, class T>
OutputIterator

replace_copy_if(InputIterator first, InputIterator last,
OutputIterator result,
Predicate pred, const T& new_value);

4 Requires: The results of the expressions *first and new_value shall be writable to the result output
iterator. The ranges [first,last) and [result,result + (last - first)) shall not overlap.

5 Effects: Assigns to every iterator i in the range [result,result + (last - first)) either new_-
value or *(first + (i - result)) depending on whether the following corresponding conditions
hold:

*(first + (i - result)) == old_value
pred(*(first + (i - result))) != false

6 Returns: result + (last - first).

7 Complexity: Exactly last - first applications of the corresponding predicate.

25.3.6 Fill [alg.fill]

template<class ForwardIterator, class T>
void fill(ForwardIterator first, ForwardIterator last, const T& value);

template<class OutputIterator, class Size, class T>
OutputIterator fill_n(OutputIterator first, Size n, const T& value);

1 Requires: The expression value shall be writable to the output iterator. The type Size shall be
convertible to an integral type (4.7, 12.3).

2 Effects: The first algorithm assigns value through all the iterators in the range [first,last). The
second algorithm assigns value through all the iterators in the range [first,first + n) if n is
positive, otherwise it does nothing.

§ 25.3.6 862

c© ISO/IEC N3092

3 Returns: fill_n returns first + n for non-negative values of n and first for negative values.

4 Complexity: Exactly last - first, n, or 0 assignments, respectively.

25.3.7 Generate [alg.generate]

template<class ForwardIterator, class Generator>
void generate(ForwardIterator first, ForwardIterator last,

Generator gen);

template<class OutputIterator, class Size, class Generator>
OutputIterator generate_n(OutputIterator first, Size n, Generator gen);

1 Effects: The first algorithm invokes the function object gen and assigns the return value of gen through
all the iterators in the range [first,last). The second algorithm invokes the function object gen
and assigns the return value of gen through all the iterators in the range [first,first + n) if n is
positive, otherwise it does nothing.

2 Requires: gen takes no arguments, Size shall be convertible to an integral type (4.7, 12.3).

3 Returns: generate_n returns first + n for non-negative values of n and first for negative values.

4 Complexity: Exactly last - first, n, or 0 invocations of gen and assignments, respectively.

25.3.8 Remove [alg.remove]

template<class ForwardIterator, class T>
ForwardIterator remove(ForwardIterator first, ForwardIterator last,

const T& value);

template<class ForwardIterator, class Predicate>
ForwardIterator remove_if(ForwardIterator first, ForwardIterator last,

Predicate pred);

1 Requires: The type of *first shall satisfy the MoveAssignable requirements (Table 36).

2 Effects: Eliminates all the elements referred to by iterator i in the range [first,last) for which the
following corresponding conditions hold: *i == value, pred(*i) != false.

3 Returns: The end of the resulting range.

4 Remarks: Stable.

5 Complexity: Exactly last - first applications of the corresponding predicate.

template<class InputIterator, class OutputIterator, class T>
OutputIterator

remove_copy(InputIterator first, InputIterator last,
OutputIterator result, const T& value);

template<class InputIterator, class OutputIterator, class Predicate>
OutputIterator

remove_copy_if(InputIterator first, InputIterator last,
OutputIterator result, Predicate pred);

6 Requires: The ranges [first,last) and [result,result + (last - first)) shall not overlap. The
expression *result = *first shall ve valid.

§ 25.3.8 863

c© ISO/IEC N3092

7 Effects: Copies all the elements referred to by the iterator i in the range [first,last) for which the
following corresponding conditions do not hold: *i == value, pred(*i) != false.

8 Returns: The end of the resulting range.

9 Complexity: Exactly last - first applications of the corresponding predicate.

10 Remarks: Stable.

25.3.9 Unique [alg.unique]

template<class ForwardIterator>
ForwardIterator unique(ForwardIterator first, ForwardIterator last);

template<class ForwardIterator, class BinaryPredicate>
ForwardIterator unique(ForwardIterator first, ForwardIterator last,

BinaryPredicate pred);

1 Effects: For a nonempty range, eliminates all but the first element from every consecutive group of
equivalent elements referred to by the iterator i in the range [first + 1,last) for which the following
conditions hold: *(i - 1) == *i or pred(*(i - 1), *i) != false.

2 Requires: The comparison function shall be an equivalence relation. The type of *first shall satisfy
the MoveAssignable requirements (Table 36).

3 Returns: The end of the resulting range.

4 Complexity: For nonempty ranges, exactly (last - first) - 1 applications of the corresponding
predicate.

template<class InputIterator, class OutputIterator>
OutputIterator

unique_copy(InputIterator first, InputIterator last,
OutputIterator result);

template<class InputIterator, class OutputIterator,
class BinaryPredicate>

OutputIterator
unique_copy(InputIterator first, InputIterator last,

OutputIterator result, BinaryPredicate pred);

5 Requires: The comparison function shall be an equivalence relation. The ranges [first,last) and [
result,result+(last-first)) shall not overlap. The expression *result = *first shall be valid. If
neither InputIterator nor OutputIterator meets the requirements of forward iterator then the value
type of InputIterator shall be CopyConstructible (35) and CopyAssignable (table 37). Otherwise
CopyConstructible is not required.

6 Effects: Copies only the first element from every consecutive group of equal elements referred to by
the iterator i in the range [first,last) for which the following corresponding conditions hold: *i
== *(i - 1) or pred(*i, *(i - 1)) != false.

7 Returns: The end of the resulting range.

8 Complexity: For nonempty ranges, exactly last - first - 1 applications of the corresponding pred-
icate.

§ 25.3.9 864

c© ISO/IEC N3092

25.3.10 Reverse [alg.reverse]

template<class BidirectionalIterator>
void reverse(BidirectionalIterator first, BidirectionalIterator last);

1 Effects: For each non-negative integer i <= (last - first)/2, applies iter_swap to all pairs of
iterators first + i, (last - i) - 1.

2 Requires: *first shall be swappable (20.2.2).

3 Complexity: Exactly (last - first)/2 swaps.

template<class BidirectionalIterator, class OutputIterator>
OutputIterator

reverse_copy(BidirectionalIterator first,
BidirectionalIterator last, OutputIterator result);

4 Effects: Copies the range [first,last) to the range [result,result+(last-first)) such that
for any non-negative integer i < (last - first) the following assignment takes place: *(result +
(last - first) - i) = *(first + i).

5 Requires: The ranges [first,last) and [result,result+(last-first)) shall not overlap.

6 Returns: result + (last - first).

7 Complexity: Exactly last - first assignments.

25.3.11 Rotate [alg.rotate]

template<class ForwardIterator>
ForwardIterator rotate(ForwardIterator first, ForwardIterator middle,

ForwardIterator last);

1 Effects: For each non-negative integer i < (last - first), places the element from the position
first + i into position first + (i + (last - middle)) % (last - first).

2 Returns: first + (last - middle).

3 Remarks: This is a left rotate.

4 Requires: [first,middle) and [middle,last) shall be valid ranges. ForwardIterator shall satisfy
the requirements of ValueSwappable (20.2.2). The type of *first shall satisfy the requirements of
MoveConstructible (Table 34) and the requirements of MoveAssignable (Table 36).

5 Complexity: At most last - first swaps.

template<class ForwardIterator, class OutputIterator>
OutputIterator

rotate_copy(ForwardIterator first, ForwardIterator middle,
ForwardIterator last, OutputIterator result);

6 Effects: Copies the range [first,last) to the range [result,result + (last - first)) such that
for each non-negative integer i < (last - first) the following assignment takes place: *(result +
i) = *(first + (i + (middle - first)) % (last - first)).

7 Returns: result + (last - first).

8 Requires: The ranges [first,last) and [result,result + (last - first)) shall not overlap.

9 Complexity: Exactly last - first assignments.

§ 25.3.11 865

c© ISO/IEC N3092

25.3.12 Random shuffle [alg.random.shuffle]

template<class RandomAccessIterator>
void random_shuffle(RandomAccessIterator first,

RandomAccessIterator last);

template<class RandomAccessIterator, class RandomNumberGenerator>
void random_shuffle(RandomAccessIterator first,

RandomAccessIterator last,
RandomNumberGenerator&& rand);

template<class RandomAccessIterator, class UniformRandomNumberGenerator>
void shuffle(RandomAccessIterator first,

RandomAccessIterator last,
UniformRandomNumberGenerator& g);

1 Effects: Permutes the elements in the range [first,last) such that each possible permutation of
those elements has equal probability of appearance.

2 Requires: RandomAccessIterator shall satisfy the requirements of ValueSwappable (20.2.2). The ran-
dom number generating function object rand shall have a return type that is convertible to iterator_-
traits<RandomAccessIterator>::difference_type, and the call rand(n) shall return a randomly
chosen value in the interval [0,n), for n > 0 of type iterator_traits<RandomAccessIterator>::difference_-
type. The type UniformRandomNumberGenerator shall meet the requirements of a uniform random
number generator (26.5.1.3) type whose return type is convertible to iterator_traits<Random-
AccessIterator>::difference_type.

3 Complexity: Exactly (last - first) - 1 swaps.

4 Remarks: To the extent that the implementation of these functions makes use of random numbers, the
implementation shall use the following sources of randomness:

The underlying source of random numbers for the first form of the function is implementation-defined.
An implementation may use the rand function from the standard C library.

In the second form of the function, the function object rand shall serve as the implementation’s source
of randomness.

In the third shuffle form of the function, the object g shall serve as the implementation’s source of
randomness.

25.3.13 Partitions [alg.partitions]

template <class InputIterator, class Predicate>
bool is_partitioned(InputIterator first, InputIterator last, Predicate pred);

1 Requires: InputIterator’s value type shall be convertible to Predicate’s argument type.

2 Returns: true if [first,last) is empty or if [first,last) is partitioned by pred, i.e. if all elements
that satisfy pred appear before those that do not.

3 Complexity: Linear. At most last - first applications of pred.

template<class ForwardIterator, class Predicate>
ForwardIterator

partition(ForwardIterator first,
ForwardIterator last, Predicate pred);

§ 25.3.13 866

c© ISO/IEC N3092

4 Effects: Places all the elements in the range [first,last) that satisfy pred before all the elements
that do not satisfy it.

5 Returns: An iterator i such that for any iterator j in the range [first,i) pred(*j) != false, and
for any iterator k in the range [i,last), pred(*k) == false.

6 Requires: ForwardIterator shall satisfy the requirements of ValueSwappable (20.2.2).

7 Complexity: If ForwardIterator meets the requirements for a BidirectionalIterator, at most (last -
first) / 2 swaps are done; otherwise at most last - first swaps are done. Exactly last - first
applications of the predicate are done.

template<class BidirectionalIterator, class Predicate>
BidirectionalIterator

stable_partition(BidirectionalIterator first,
BidirectionalIterator last, Predicate pred);

8 Effects: Places all the elements in the range [first,last) that satisfy pred before all the elements
that do not satisfy it.

9 Returns: An iterator i such that for any iterator j in the range [first,i), pred(*j) != false, and
for any iterator k in the range [i,last), pred(*k) == false. The relative order of the elements in
both groups is preserved.

10 Requires: BidirectionalIterator shall satisfy the requirements of ValueSwappable (20.2.2). The
type of *first shall satisfy the requirements of MoveConstructible (Table 34) and of MoveAssignable
(Table 36).

11 Complexity: At most (last - first) * log(last - first) swaps, but only linear number of swaps
if there is enough extra memory. Exactly last - first applications of the predicate.

template <class InputIterator, class OutputIterator1,
class OutputIterator2, class Predicate>

pair<OutputIterator1, OutputIterator2>
partition_copy(InputIterator first, InputIterator last,

OutputIterator1 out_true, OutputIterator2 out_false,
Predicate pred);

12 Requires: InputIterator’s value type shall be Assignable, and shall be writable to the out_true
and out_false OutputIterators, and shall be convertible to Predicate’s argument type. The input
range shall not overlap with either of the output ranges.

13 Effects: For each iterator i in [first,last), copies *i to the output range beginning with out_true
if pred(*i) is true, or to the output range beginning with out_false otherwise.

14 Returns: A pair p such that p.first is the end of the output range beginning at out_true and
p.second is the end of the output range beginning at out_false.

15 Complexity: Exactly last - first applications of pred.

template<class ForwardIterator, class Predicate>
ForwardIterator partition_point(ForwardIterator first,

ForwardIterator last,
Predicate pred);

16 Requires: ForwardIterator’s value type shall be convertible to Predicate’s argument type. [first,
last) shall be partitioned by pred, i.e. all elements that satisfy pred shall appear before those that
do not.

§ 25.3.13 867

c© ISO/IEC N3092

17 Returns: An iterator mid such that all_of(first, mid, pred) and none_of(mid, last, pred) are
both true.

18 Complexity: O(log(last− first)) applications of pred.

25.4 Sorting and related operations [alg.sorting]

1 All the operations in 25.4 have two versions: one that takes a function object of type Compare and one that
uses an operator<.

2 Compare is a function object type (20.8). The return value of the function call operation applied to an object
of type Compare, when contextually converted to bool (4), yields true if the first argument of the call is
less than the second, and false otherwise. Compare comp is used throughout for algorithms assuming an
ordering relation. It is assumed that comp will not apply any non-constant function through the dereferenced
iterator.

3 For all algorithms that take Compare, there is a version that uses operator< instead. That is, comp(*i,
*j) != false defaults to *i < *j != false. For algorithms other than those described in 25.4.3 to work
correctly, comp has to induce a strict weak ordering on the values.

4 The term strict refers to the requirement of an irreflexive relation (!comp(x, x) for all x), and the term weak
to requirements that are not as strong as those for a total ordering, but stronger than those for a partial
ordering. If we define equiv(a, b) as !comp(a, b) && !comp(b, a), then the requirements are that comp
and equiv both be transitive relations:

— comp(a, b) && comp(b, c) implies comp(a, c)

— equiv(a, b) && equiv(b, c) implies equiv(a, c) [Note: Under these conditions, it can be shown
that

— equiv is an equivalence relation

— comp induces a well-defined relation on the equivalence classes determined by equiv

— The induced relation is a strict total ordering. — end note]

5 A sequence is sorted with respect to a comparator comp if for any iterator i pointing to the sequence and any
non-negative integer n such that i + n is a valid iterator pointing to an element of the sequence, comp(*(i
+ n), *i) == false.

6 A sequence [start,finish) is partitioned with respect to an expression f(e) if there exists an integer n
such that for all 0 <= i < distance(start, finish), f(*(start + i)) is true if and only if i < n.

7 In the descriptions of the functions that deal with ordering relationships we frequently use a notion of
equivalence to describe concepts such as stability. The equivalence to which we refer is not necessarily an
operator==, but an equivalence relation induced by the strict weak ordering. That is, two elements a and
b are considered equivalent if and only if !(a < b) && !(b < a).

25.4.1 Sorting [alg.sort]

25.4.1.1 sort [sort]

template<class RandomAccessIterator>
void sort(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void sort(RandomAccessIterator first, RandomAccessIterator last,

§ 25.4.1.1 868

c© ISO/IEC N3092

Compare comp);

1 Effects: Sorts the elements in the range [first,last).

2 Requires: RandomAccessIterator shall satisfy the requirements of ValueSwappable (20.2.2). The type
of *first shall satisfy the requirements of MoveConstructible (Table 34) and of MoveAssignable
(Table 36).

3 Complexity: O(N log(N)) (where N == last - first) comparisons.

25.4.1.2 stable_sort [stable.sort]

template<class RandomAccessIterator>
void stable_sort(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void stable_sort(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);

1 Effects: Sorts the elements in the range [first,last).

2 Requires: RandomAccessIterator shall satisfy the requirements of ValueSwappable (20.2.2). The type
of *first shall satisfy the requirements of MoveConstructible (Table 34) and of MoveAssignable
(Table 36).

3 Complexity: It does at most N log2(N) (where N == last - first) comparisons; if enough extra
memory is available, it is N log(N).

4 Remarks: Stable.

25.4.1.3 partial_sort [partial.sort]

template<class RandomAccessIterator>
void partial_sort(RandomAccessIterator first,

RandomAccessIterator middle,
RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void partial_sort(RandomAccessIterator first,

RandomAccessIterator middle,
RandomAccessIterator last,
Compare comp);

1 Effects: Places the first middle - first sorted elements from the range [first,last) into the range
[first,middle). The rest of the elements in the range [middle,last) are placed in an unspecified
order.

2 Requires: RandomAccessIterator shall satisfy the requirements of ValueSwappable (20.2.2). The type
of *first shall satisfy the requirements of MoveConstructible (Table 34) and of MoveAssignable
(Table 36).

3 Complexity: It takes approximately (last - first) * log(middle - first) comparisons.

25.4.1.4 partial_sort_copy [partial.sort.copy]

§ 25.4.1.4 869

c© ISO/IEC N3092

template<class InputIterator, class RandomAccessIterator>
RandomAccessIterator

partial_sort_copy(InputIterator first, InputIterator last,
RandomAccessIterator result_first,
RandomAccessIterator result_last);

template<class InputIterator, class RandomAccessIterator,
class Compare>

RandomAccessIterator
partial_sort_copy(InputIterator first, InputIterator last,

RandomAccessIterator result_first,
RandomAccessIterator result_last,
Compare comp);

1 Effects: Places the first min(last - first, result_last - result_first) sorted elements into the
range [result_first,result_first + min(last - first, result_last - result_first)).

2 Returns: The smaller of: result_last or result_first + (last - first).

3 Requires: RandomAccessIterator shall satisfy the requirements of ValueSwappable (20.2.2). The type
of *result_first shall satisfy the requirements of MoveConstructible (Table 34) and of MoveAssignable
(Table 36).

4 Complexity: Approximately (last - first) * log(min(last - first, result_last - result_-
first)) comparisons.

25.4.1.5 is_sorted [is.sorted]

template<class ForwardIterator>
bool is_sorted(ForwardIterator first, ForwardIterator last);

1 Returns: is_sorted_until(first, last) == last

template<class ForwardIterator, class Compare>
bool is_sorted(ForwardIterator first, ForwardIterator last,

Compare comp);

2 Returns: is_sorted_until(first, last, comp) == last

template<class ForwardIterator>
ForwardIterator is_sorted_until(ForwardIterator first, ForwardIterator last);

template<class ForwardIterator, class Compare>
ForwardIterator is_sorted_until(ForwardIterator first, ForwardIterator last,

Compare comp);

3 Returns: If distance(first, last) < 2, returns last. Otherwise, returns the last iterator i in
[first,last] for which the range [first,i) is sorted.

4 Complexity: Linear.

25.4.2 Nth element [alg.nth.element]

template<class RandomAccessIterator>
void nth_element(RandomAccessIterator first, RandomAccessIterator nth,

RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>

§ 25.4.2 870

c© ISO/IEC N3092

void nth_element(RandomAccessIterator first, RandomAccessIterator nth,
RandomAccessIterator last, Compare comp);

1 After nth_element the element in the position pointed to by nth is the element that would be in that
position if the whole range were sorted. Also for any iterator i in the range [first,nth) and any
iterator j in the range [nth,last) it holds that: !(*i > *j) or comp(*j, *i) == false.

2 Requires: RandomAccessIterator shall satisfy the requirements of ValueSwappable (20.2.2). The type
of *first shall satisfy the requirements of MoveConstructible (Table 34) and of MoveAssignable
(Table 36).

3 Complexity: Linear on average.

25.4.3 Binary search [alg.binary.search]

1 All of the algorithms in this section are versions of binary search and assume that the sequence being
searched is partitioned with respect to an expression formed by binding the search key to an argument of
the implied or explicit comparison function. They work on non-random access iterators minimizing the
number of comparisons, which will be logarithmic for all types of iterators. They are especially appropriate
for random access iterators, because these algorithms do a logarithmic number of steps through the data
structure. For non-random access iterators they execute a linear number of steps.

25.4.3.1 lower_bound [lower.bound]

template<class ForwardIterator, class T>
ForwardIterator

lower_bound(ForwardIterator first, ForwardIterator last,
const T& value);

template<class ForwardIterator, class T, class Compare>
ForwardIterator

lower_bound(ForwardIterator first, ForwardIterator last,
const T& value, Compare comp);

1 Requires: The elements e of [first,last) shall be partitioned with respect to the expression e <
value or comp(e, value).

2 Returns: The furthermost iterator i in the range [first,last] such that for any iterator j in the
range [first,i) the following corresponding conditions hold: *j < value or comp(*j, value) !=
false.

3 Complexity: At most log2(last− first) + O(1) comparisons.

25.4.3.2 upper_bound [upper.bound]

template<class ForwardIterator, class T>
ForwardIterator

upper_bound(ForwardIterator first, ForwardIterator last,
const T& value);

template<class ForwardIterator, class T, class Compare>
ForwardIterator

upper_bound(ForwardIterator first, ForwardIterator last,
const T& value, Compare comp);

§ 25.4.3.2 871

c© ISO/IEC N3092

1 Requires: The elements e of [first,last) shall be partitioned with respect to the expression !(value
< e) or !comp(value, e).

2 Returns: The furthermost iterator i in the range [first,last] such that for any iterator j in the
range [first,i) the following corresponding conditions hold: !(value < *j) or comp(value, *j)
== false.

3 Complexity: At most log2(last− first) + O(1) comparisons.

25.4.3.3 equal_range [equal.range]

template<class ForwardIterator, class T>
pair<ForwardIterator, ForwardIterator>

equal_range(ForwardIterator first,
ForwardIterator last, const T& value);

template<class ForwardIterator, class T, class Compare>
pair<ForwardIterator, ForwardIterator>

equal_range(ForwardIterator first,
ForwardIterator last, const T& value,
Compare comp);

1 Requires: The elements e of [first,last) shall be partitioned with respect to the expressions e
< value and !(value < e) or comp(e, value) and !comp(value, e). Also, for all elements e of
[first, last), e < value shall imply !(value < e) or comp(e, value) shall imply !comp(value,
e).

2 Returns:
make_pair(lower_bound(first, last, value),

upper_bound(first, last, value))

or
make_pair(lower_bound(first, last, value, comp),

upper_bound(first, last, value, comp))

3 Complexity: At most 2 ∗ log2(last− first) + O(1) comparisons.

25.4.3.4 binary_search [binary.search]

template<class ForwardIterator, class T>
bool binary_search(ForwardIterator first, ForwardIterator last,

const T& value);

template<class ForwardIterator, class T, class Compare>
bool binary_search(ForwardIterator first, ForwardIterator last,

const T& value, Compare comp);

1 Requires: The elements e of [first,last) are partitioned with respect to the expressions e < value
and !(value < e) or comp(e, value) and !comp(value, e). Also, for all elements e of [first,
last), e < value implies !(value < e) or comp(e, value) implies !comp(value, e).

2 Returns: true if there is an iterator i in the range [first,last) that satisfies the corresponding condi-
tions: !(*i < value) && !(value < *i) or comp(*i, value) == false && comp(value, *i) ==
false.

§ 25.4.3.4 872

c© ISO/IEC N3092

3 Complexity: At most log2(last - first) + O(1) comparisons.

25.4.4 Merge [alg.merge]

template<class InputIterator1, class InputIterator2,
class OutputIterator>

OutputIterator
merge(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
OutputIterator result);

template<class InputIterator1, class InputIterator2,
class OutputIterator, class Compare>

OutputIterator
merge(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);

1 Effects: Copies all the elements of the two ranges [first1,last1) and [first2,last2) into the range
[result,result_last), where result_last is result + (last1 - first1) + (last2 - first2),
such that the resulting range satisfies is_sorted(result, result_last) or is_sorted(result,
result_last, comp), respectively.

2 Requires: The ranges [first1,last1) and [first2,last2) shall be sorted with respect to operator<
or comp. The resulting range shall not overlap with either of the original ranges.

3 Returns: result + (last1 - first1) + (last2 - first2).

4 Complexity: At most (last1 - first1) + (last2 - first2) - 1 comparisons.

5 Remarks: Stable.

template<class BidirectionalIterator>
void inplace_merge(BidirectionalIterator first,

BidirectionalIterator middle,
BidirectionalIterator last);

template<class BidirectionalIterator, class Compare>
void inplace_merge(BidirectionalIterator first,

BidirectionalIterator middle,
BidirectionalIterator last, Compare comp);

6 Effects: Merges two sorted consecutive ranges [first,middle) and [middle,last), putting the result
of the merge into the range [first,last). The resulting range will be in non-decreasing order; that is,
for every iterator i in [first,last) other than first, the condition *i < *(i - 1) or, respectively,
comp(*i, *(i - 1)) will be false.

7 Requires: The ranges [first,middle) and [middle,last) shall be sorted with respect to operator<
or comp. BidirectionalIterator shall satisfy the requirements of ValueSwappable (20.2.2). The type
of *first shall satisfy the requirements of MoveConstructible (Table 34) and of MoveAssignable
(Table 36).

8 Complexity: When enough additional memory is available, (last - first) - 1 comparisons. If no
additional memory is available, an algorithm with complexity N log(N) (where N is equal to last -
first) may be used.

9 Remarks: Stable.

§ 25.4.4 873

c© ISO/IEC N3092

25.4.5 Set operations on sorted structures [alg.set.operations]

1 This section defines all the basic set operations on sorted structures. They also work with multisets (23.4.4)
containing multiple copies of equivalent elements. The semantics of the set operations are generalized to
multisets in a standard way by defining set_union() to contain the maximum number of occurrences of
every element, set_intersection() to contain the minimum, and so on.

25.4.5.1 includes [includes]

template<class InputIterator1, class InputIterator2>
bool includes(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2);

template<class InputIterator1, class InputIterator2, class Compare>
bool includes(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
Compare comp);

1 Returns: true if [first2,last2) is empty or if every element in the range [first2,last2) is con-
tained in the range [first1,last1). Returns false otherwise.

2 Complexity: At most 2 * ((last1 - first1) + (last2 - first2)) - 1 comparisons.

25.4.5.2 set_union [set.union]

template<class InputIterator1, class InputIterator2,
class OutputIterator>

OutputIterator
set_union(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
OutputIterator result);

template<class InputIterator1, class InputIterator2,
class OutputIterator, class Compare>

OutputIterator
set_union(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);

1 Effects: Constructs a sorted union of the elements from the two ranges; that is, the set of elements
that are present in one or both of the ranges.

2 Requires: The resulting range shall not overlap with either of the original ranges.

3 Returns: The end of the constructed range.

4 Complexity: At most 2 * ((last1 - first1) + (last2 - first2)) - 1 comparisons.

5 Remarks: If [first1,last1) contains m elements that are equivalent to each other and [first2,
last2) contains n elements that are equivalent to them, then all m elements from the first range shall
be copied to the output range, in order, and then max(n−m, 0) elements from the second range shall
be copied to the output range, in order.

25.4.5.3 set_intersection [set.intersection]

§ 25.4.5.3 874

c© ISO/IEC N3092

template<class InputIterator1, class InputIterator2,
class OutputIterator>

OutputIterator
set_intersection(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
OutputIterator result);

template<class InputIterator1, class InputIterator2,
class OutputIterator, class Compare>

OutputIterator
set_intersection(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);

1 Effects: Constructs a sorted intersection of the elements from the two ranges; that is, the set of elements
that are present in both of the ranges.

2 Requires: The resulting range shall not overlap with either of the original ranges.

3 Returns: The end of the constructed range.

4 Complexity: At most 2 * ((last1 - first1) + (last2 - first2)) - 1 comparisons.

5 Remarks: If [first1,last1) contains m elements that are equivalent to each other and [first2,
last2) contains n elements that are equivalent to them, the first min(m,n) elements shall be copied
from the first range to the output range, in order.

25.4.5.4 set_difference [set.difference]

template<class InputIterator1, class InputIterator2,
class OutputIterator>

OutputIterator
set_difference(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
OutputIterator result);

template<class InputIterator1, class InputIterator2,
class OutputIterator, class Compare>

OutputIterator
set_difference(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);

1 Effects: Copies the elements of the range [first1,last1) which are not present in the range [first2,
last2) to the range beginning at result. The elements in the constructed range are sorted.

2 Requires: The resulting range shall not overlap with either of the original ranges.

3 Returns: The end of the constructed range.

4 Complexity: At most 2 * ((last1 - first1) + (last2 - first2)) - 1 comparisons.

5 Remarks: If [first1,last1) contains m elements that are equivalent to each other and [first2,
last2) contains n elements that are equivalent to them, the last max(m−n, 0) elements from [first1,
last1) shall be copied to the output range.

§ 25.4.5.4 875

c© ISO/IEC N3092

25.4.5.5 set_symmetric_difference [set.symmetric.difference]

template<class InputIterator1, class InputIterator2,
class OutputIterator>

OutputIterator
set_symmetric_difference(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
OutputIterator result);

template<class InputIterator1, class InputIterator2,
class OutputIterator, class Compare>

OutputIterator
set_symmetric_difference(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);

1 Effects: Copies the elements of the range [first1,last1) which are not present in the range [
first2,last2), and the elements of the range [first2,last2) which are not present in the range
[first1,last1) to the range beginning at result. The elements in the constructed range are sorted.

2 Requires: The resulting range shall not overlap with either of the original ranges.

3 Returns: The end of the constructed range.

4 Complexity: At most 2 * ((last1 - first1) + (last2 - first2)) - 1 comparisons.

5 Remarks: If [first1,last1) contains m elements that are equivalent to each other and [first2,
last2) contains n elements that are equivalent to them, then |m−n| of those elements shall be copied
to the output range: the last m − n of these elements from [first1,last1) if m > n, and the last
n−m of these elements from [first2,last2) if m < n.

25.4.6 Heap operations [alg.heap.operations]

1 A heap is a particular organization of elements in a range between two random access iterators [a,b). Its
two key properties are:

(1) There is no element greater than *a in the range and

(2) *a may be removed by pop_heap(), or a new element added by push_heap(), in O(log(N)) time.

2 These properties make heaps useful as priority queues.

3 make_heap() converts a range into a heap and sort_heap() turns a heap into a sorted sequence.

25.4.6.1 push_heap [push.heap]

template<class RandomAccessIterator>
void push_heap(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void push_heap(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);

1 Effects: Places the value in the location last - 1 into the resulting heap [first,last).

2 Requires: The range [first,last - 1) shall be a valid heap. The type of *first shall satisfy the
MoveConstructible requirements (Table 34) and the the MoveAssignable requirements (Table 36).

§ 25.4.6.1 876

c© ISO/IEC N3092

3 Complexity: At most log(last - first) comparisons.

25.4.6.2 pop_heap [pop.heap]

template<class RandomAccessIterator>
void pop_heap(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void pop_heap(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);

1 Requires: The range [first,last) shall be a valid non-empty heap. RandomAccessIterator shall
satisfy the requirements of ValueSwappable (20.2.2). The type of *first shall satisfy the requirements
of MoveConstructible (Table 34) and of MoveAssignable (Table 36).

2 Effects: Swaps the value in the location first with the value in the location last - 1 and makes
[first,last - 1) into a heap.

3 Complexity: At most 2 * log(last - first) comparisons.

25.4.6.3 make_heap [make.heap]

template<class RandomAccessIterator>
void make_heap(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void make_heap(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);

1 Effects: Constructs a heap out of the range [first,last).

2 Requires: The type of *first shall satisfy the MoveConstructible requirements (Table 34) and the
the MoveAssignable requirements (Table 36).

3 Complexity: At most 3 * (last - first) comparisons.

25.4.6.4 sort_heap [sort.heap]

template<class RandomAccessIterator>
void sort_heap(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void sort_heap(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);

1 Effects: Sorts elements in the heap [first,last).

2 Requires: The range [first,last) shall be a valid heap. RandomAccessIterator shall satisfy the
requirements of ValueSwappable (20.2.2). The type of *first shall satisfy the requirements of
MoveConstructible (Table 34) and of MoveAssignable (Table 36).

3 Complexity: At most N log(N) comparisons (where N == last - first).

§ 25.4.6.4 877

c© ISO/IEC N3092

25.4.6.5 is_heap [is.heap]

template<class RandomAccessIterator>
bool is_heap(RandomAccessIterator first, RandomAccessIterator last);

1 Returns: is_heap_until(first, last) == last

template<class RandomAccessIterator, class Compare>
bool is_heap(RandomAccessIterator first, RandomAccessIterator last, Compare comp);

2 Returns: is_heap_until(first, last, comp) == last

template<class RandomAccessIterator>
RandomAccessIterator is_heap_until(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
RandomAccessIterator is_heap_until(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);

3 Returns: If distance(first, last) < 2, returns last. Otherwise, returns the last iterator i in
[first,last] for which the range [first,i) is a heap.

4 Complexity: Linear.

25.4.7 Minimum and maximum [alg.min.max]

template<class T> const T& min(const T& a, const T& b);
template<class T, class Compare>

const T& min(const T& a, const T& b, Compare comp);

1 Requires: Type T is LessThanComparable (32).

2 Returns: The smaller value.

3 Remarks: Returns the first argument when the arguments are equivalent.

{template<class T> const T& min(const T& a, const T& b, const T& c);
template<class T, class... Args>

const T& min(const T& a, const Args&... args);

4 Requires: T is LessThanComparable, and all types forming Args... are the same as T.

5 Returns: The smallest value in the set of all the arguments.

6 Remarks: Returns the leftmost argument when several arguments are equivalent to the smallest.
Returns a if sizeof...(Args) is 0.

template<class T, class U, class... Args>
const T& min(const T& a, const U& b, const Args&... args);

7 Requires: The types of all the arguments except the last one are the same as T. The last argument is
a binary predicate over T.

8 Returns: The first element in a partial ordering of all the arguments except the last one, where the
ordering is defined by the predicate.

9 Remarks: Returns the leftmost argument when several arguments are equivalent to the first element
in the ordering. Returns a if sizeof...(Args) is 0.

template<class T> const T& max(const T& a, const T& b);
template<class T, class Compare>

§ 25.4.7 878

c© ISO/IEC N3092

const T& max(const T& a, const T& b, Compare comp);

10 Requires: Type T is LessThanComparable (32).

11 Returns: The larger value.

12 Remarks: Returns the first argument when the arguments are equivalent.

template<class T> const T& max(const T& a, const T& b, const T& c);
template<class T, class... Args>

const T& max(const T& a, const Args&... args);

13 Requires: T is LessThanComparable, and all types forming Args... are the same as T.

14 Returns: The largest value in the set of all the arguments.

15 Remarks: Returns the leftmost argument when several arguments are equivalent to the largest. Returns
a if sizeof...(Args) is 0.

template<class T, class U, class... Args>
const T& max(const T& a, const U& b, const Args&... args);

16 Requires: The types of all the arguments except the last one are the same as T. The last argument is
a binary predicate over T.

17 Returns: The last element in a partial ordering of all the arguments except the last one, where the
ordering is defined by the predicate.

18 Remarks: Returns the leftmost argument when several arguments are equivalent to the first element
in the ordering. Returns a if sizeof...(Args) is 0.

template<class T> pair<const T&, const T&> minmax(const T& a, const T& b);
template<class T, class Compare>

pair<const T&, const T&> minmax(const T& a, const T& b, Compare comp);

19 Requires: Type T shall be LessThanComparable (32).

20 Returns: pair<const T&, const T&>(b, a) if b is smaller than a, and pair<const T&, const
T&>(a, b) otherwise.

21 Remarks: Returns pair<const T&, const T&>(a, b) when the arguments are equivalent.

22 Complexity: Exactly one comparison.

template<class T> pair<const T&, const T&> minmax(const T& a, const T& b, const T& c);
template<class T, class... Args>

pair<const T&, const T&> minmax(const T& a, const Args&... args);

23 Requires: T is LessThanComparable, and all types forming Args... are the same as T.

24 Returns: pair<const T&, const T&>(x, y) where x is the first element and y is the last element in a
partial ordering of all the arguments.

25 Remarks: x is the leftmost argument when several arguments are equivalent to the smallest. y is the
rightmost argument when several arguments are equivalent to the largest. Returns pair<const T&,
const T&>(a, a) if sizeof...(Args) is 0.

26 Complexity: At most (3/2) sizeof...(Args) applications of the corresponding predicate.

template<class T, class U, class... Args>
pair<const T&, const T&> minmax(const T& a, const U& b, const Args&... args);

§ 25.4.7 879

c© ISO/IEC N3092

27 Requires: The types of all the arguments except the last one are the same as T. The last argument is
a binary predicate over T.

28 Returns: pair<const T&, const T&>(x, y) where x is the first element and y is the last element
in a partial ordering of all the arguments except the last one, where the ordering is defined by the
predicate.

29 Remarks: x is the leftmost argument when several arguments would order equivalent as first in the
ordering. y is the rightmost argument when several arguments would order equivalent as last in the
ordering. Returns pair<const T&, const T&>(a, a) if sizeof...(Args) is 0.

30 Complexity: At most (3/2) sizeof...(Args) applications of the corresponding predicate.

template<class ForwardIterator>
ForwardIterator min_element(ForwardIterator first, ForwardIterator last);

template<class ForwardIterator, class Compare>
ForwardIterator min_element(ForwardIterator first, ForwardIterator last,

Compare comp);

31 Returns: The first iterator i in the range [first,last) such that for any iterator j in the range
[first,last) the following corresponding conditions hold: !(*j < *i) or comp(*j, *i) == false.
Returns last if first == last.

32 Complexity: Exactly max((last - first) - 1, 0) applications of the corresponding comparisons.

template<class ForwardIterator>
ForwardIterator max_element(ForwardIterator first, ForwardIterator last);

template<class ForwardIterator, class Compare>
ForwardIterator max_element(ForwardIterator first, ForwardIterator last,

Compare comp);

33 Returns: The first iterator i in the range [first,last) such that for any iterator j in the range
[first,last) the following corresponding conditions hold: !(*i < *j) or comp(*i, *j) == false.
Returns last if first == last.

34 Complexity: Exactly max((last - first) - 1, 0) applications of the corresponding comparisons.

template<class ForwardIterator>
pair<ForwardIterator, ForwardIterator>

minmax_element(ForwardIterator first, ForwardIterator last);
template<class ForwardIterator, class Compare>

pair<ForwardIterator, ForwardIterator>
minmax_element(ForwardIterator first, ForwardIterator last, Compare comp);

35 Returns: make_pair(first, first) if [first,last) is empty, otherwise make_pair(m, M), where
m is the first iterator in [first,last) such that no iterator in the range refers to a smaller element,
and where M is the last iterator in [first,last) such that no iterator in the range refers to a larger
element.

36 Complexity: At most max(b 3
2 (N − 1)c, 0) applications of the corresponding predicate, where N is

distance(first, last).

25.4.8 Lexicographical comparison [alg.lex.comparison]

template<class InputIterator1, class InputIterator2>
bool

§ 25.4.8 880

c© ISO/IEC N3092

lexicographical_compare(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2);

template<class InputIterator1, class InputIterator2, class Compare>
bool

lexicographical_compare(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
Compare comp);

1 Returns: true if the sequence of elements defined by the range [first1,last1) is lexicographically
less than the sequence of elements defined by the range [first2,last2) and false otherwise.

2 Complexity: At most 2*min((last1 - first1), (last2 - first2)) applications of the correspond-
ing comparison.

3 Remarks: If two sequences have the same number of elements and their corresponding elements are
equivalent, then neither sequence is lexicographically less than the other. If one sequence is a prefix
of the other, then the shorter sequence is lexicographically less than the longer sequence. Otherwise,
the lexicographical comparison of the sequences yields the same result as the comparison of the first
corresponding pair of elements that are not equivalent.

for (; first1 != last1 && first2 != last2 ; ++first1, ++first2) {
if (*first1 < *first2) return true;
if (*first2 < *first1) return false;

}
return first1 == last1 && first2 != last2;

4 Remarks: An empty sequence is lexicographically less than any non-empty sequence, but not less than
any empty sequence.

25.4.9 Permutation generators [alg.permutation.generators]

template<class BidirectionalIterator>
bool next_permutation(BidirectionalIterator first,

BidirectionalIterator last);

template<class BidirectionalIterator, class Compare>
bool next_permutation(BidirectionalIterator first,

BidirectionalIterator last, Compare comp);

1 Effects: Takes a sequence defined by the range [first,last) and transforms it into the next permu-
tation. The next permutation is found by assuming that the set of all permutations is lexicographically
sorted with respect to operator< or comp. If such a permutation exists, it returns true. Otherwise, it
transforms the sequence into the smallest permutation, that is, the ascendingly sorted one, and returns
false.

2 Requires: BidirectionalIterator shall satisfy the requirements of ValueSwappable (20.2.2).

3 Complexity: At most (last - first)/2 swaps.

template<class BidirectionalIterator>
bool prev_permutation(BidirectionalIterator first,

BidirectionalIterator last);

template<class BidirectionalIterator, class Compare>
bool prev_permutation(BidirectionalIterator first,

§ 25.4.9 881

c© ISO/IEC N3092

BidirectionalIterator last, Compare comp);

4 Effects: Takes a sequence defined by the range [first,last) and transforms it into the previous
permutation. The previous permutation is found by assuming that the set of all permutations is
lexicographically sorted with respect to operator< or comp.

5 Returns: true if such a permutation exists. Otherwise, it transforms the sequence into the largest
permutation, that is, the descendingly sorted one, and returns false.

6 Requires: BidirectionalIterator shall satisfy the requirements of ValueSwappable (20.2.2).

7 Complexity: At most (last - first)/2 swaps.

25.5 C library algorithms [alg.c.library]

1 Table 110 describes some of the contents of the header <cstdlib>.

Table 110 — Header <cstdlib> synopsis

Type Name(s)
Type: size_t
Functions: bsearch qsort

2 The contents are the same as the Standard C library header <stdlib.h> with the following exceptions:

3 The function signature:
bsearch(const void *, const void *, size_t, size_t,

int (*)(const void *, const void *));

is replaced by the two declarations:
extern "C" void *bsearch(const void *key, const void *base,

size_t nmemb, size_t size,
int (*compar)(const void *, const void *));

extern "C++" void *bsearch(const void *key, const void *base,
size_t nmemb, size_t size,
int (*compar)(const void *, const void *));

both of which have the same behavior as the original declaration.

4 The function signature:
qsort(void *, size_t, size_t,

int (*)(const void *, const void *));

is replaced by the two declarations:
extern "C" void qsort(void* base, size_t nmemb, size_t size,

int (*compar)(const void*, const void*));
extern "C++" void qsort(void* base, size_t nmemb, size_t size,

int (*compar)(const void*, const void*));

both of which have the same behavior as the original declaration. The behavior is undefined unless the
objects in the array pointed to by base are of trivial type.

[Note: Because the function argument compar() may throw an exception, bsearch() and qsort() are
allowed to propagate the exception (17.6.4.11). — end note]

§ 25.5 882

c© ISO/IEC N3092

See also: ISO C 7.10.5.

§ 25.5 883

c© ISO/IEC N3092

26 Numerics library [numerics]
26.1 General [numerics.general]

1 This Clause describes components that C++ programs may use to perform seminumerical operations.

2 The following subclauses describe components for complex number types, random number generation, nu-
meric (n-at-a-time) arrays, generalized numeric algorithms, and facilities included from the ISO C library,
as summarized in Table 111.

Table 111 — Numerics library summary

Subclause Header(s)
26.2 Requirements
26.4 Complex Numbers <complex>
26.5 Random number generation <random>
26.6 Numeric arrays <valarray>
26.7 Generalized numeric operations <numeric>
26.8 C library <cmath>

<ctgmath>
<tgmath.h>
<cstdlib>

26.2 Numeric type requirements [numeric.requirements]

1 The complex and valarray components are parameterized by the type of information they contain and
manipulate. A C++ program shall instantiate these components only with a type T that satisfies the following
requirements:277

— T is not an abstract class (it has no pure virtual member functions);

— T is not a reference type;

— T is not cv-qualified;

— If T is a class, it has a public default constructor;

— If T is a class, it has a public copy constructor with the signature T::T(const T&)

— If T is a class, it has a public destructor;

— If T is a class, it has a public assignment operator whose signature is either T& T::operator=(const
T&) or T& T::operator=(T)

— If T is a class, its assignment operator, copy and default constructors, and destructor shall correspond
to each other in the following sense: Initialization of raw storage using the default constructor, followed
by assignment, is semantically equivalent to initialization of raw storage using the copy constructor.

277) In other words, value types. These include arithmetic types, pointers, the library class complex, and instantiations of
valarray for value types.

§ 26.2 884

c© ISO/IEC N3092

Destruction of an object, followed by initialization of its raw storage using the copy constructor, is
semantically equivalent to assignment to the original object.

[Note: This rule states that there shall not be any subtle differences in the semantics of initialization
versus assignment. This gives an implementation considerable flexibility in how arrays are initialized.

[Example: An implementation is allowed to initialize a valarray by allocating storage using the new
operator (which implies a call to the default constructor for each element) and then assigning each
element its value. Or the implementation can allocate raw storage and use the copy constructor to
initialize each element. — end example]

If the distinction between initialization and assignment is important for a class, or if it fails to satisfy any
of the other conditions listed above, the programmer should use vector (23.3.6) instead of valarray
for that class; — end note]

— If T is a class, it does not overload unary operator&.

2 If any operation on T throws an exception the effects are undefined.

3 In addition, many member and related functions of valarray<T> can be successfully instantiated and will
exhibit well-defined behavior if and only if T satisfies additional requirements specified for each such member
or related function.

4 [Example: It is valid to instantiate valarray<complex>, but operator>() will not be successfully in-
stantiated for valarray<complex> operands, since complex does not have any ordering operators. — end
example]

26.3 The floating-point environment [cfenv]

26.3.1 Header <cfenv> synopsis [cfenv.syn]

namespace std {
// types
typedef object type fenv_t;
typedef integer type fexcept_t;

// functions
int feclearexcept(int except);
int fegetexceptflag(fexcept_t *pflag, int except);
int feraiseexcept(int except);
int fesetexceptflag(const fexcept_t *pflag, int except);
int fetestexcept(int except);

int fegetround(void);
int fesetround(int mode);

int fegetenv(fenv_t *penv);
int feholdexcept(fenv_t *penv);
int fesetenv(const fenv_t *penv);
int feupdateenv(const fenv_t *penv);

}

1 The header also defines the macros:
FE_ALL_EXCEPT
FE_DIVBYZERO
FE_INEXACT

§ 26.3.1 885

c© ISO/IEC N3092

FE_INVALID
FE_OVERFLOW
FE_UNDERFLOW

FE_DOWNWARD
FE_TONEAREST
FE_TOWARDZERO
FE_UPWARD

FE_DFL_ENV

2 The header defines all functions, types, and macros the same as Clause 7.6 of the C standard.

3 The floating-point environmnet has thread storage duration (3.7.2). The initial state for a thread’s floating-
point environment is the state of the floating-point environment of the thread that constructs the corre-
sponding std::thread object (30.3.1) at the time it constructed the object. [Note: that is, the child thread
gets the floating-point state of the parent thread at the time of the child’s creation. — end note]

4 A separate floating-point environment shall be maintained for each thread. Each function accesses the
environment corresponding to its calling thread.

26.4 Complex numbers [complex.numbers]

1 The header <complex> defines a class template, and numerous functions for representing and manipulating
complex numbers.

2 The effect of instantiating the template complex for any type other than float, double, or long double
is unspecified. The specializations complex<float>, complex<double>, and complex<long double> are
literal types (3.9).

3 If the result of a function is not mathematically defined or not in the range of representable values for its
type, the behavior is undefined.

4 If z is an lvalue expression of type cv std::complex<T> then:

— the expression reinterpret_cast<cv T(&)[2]>(z) shall be well-formed,

— reinterpret_cast<cv T(&)[2]>(z)[0] shall designate the real part of z, and

— reinterpret_cast<cv T(&)[2]>(z)[1] shall designate the imaginary part of z.

Moreover, if a is an expression of type cv std::complex<T>* and the expression a[i] is well-defined for an
integer expression i, then:

— reinterpret_cast<cv T*>(a)[2*i] shall designate the real part of a[i], and

— reinterpret_cast<cv T*>(a)[2*i + 1] shall designate the imaginary part of a[i].

26.4.1 Header <complex> synopsis [complex.syn]

namespace std {
template<class T> class complex;
template<> class complex<float>;
template<> class complex<double>;
template<> class complex<long double>;

// 26.4.6 operators:
template<class T>

§ 26.4.1 886

c© ISO/IEC N3092

complex<T> operator+(const complex<T>&, const complex<T>&);
template<class T> complex<T> operator+(const complex<T>&, const T&);
template<class T> complex<T> operator+(const T&, const complex<T>&);

template<class T> complex<T> operator-(
const complex<T>&, const complex<T>&);

template<class T> complex<T> operator-(const complex<T>&, const T&);
template<class T> complex<T> operator-(const T&, const complex<T>&);

template<class T> complex<T> operator*(
const complex<T>&, const complex<T>&);

template<class T> complex<T> operator*(const complex<T>&, const T&);
template<class T> complex<T> operator*(const T&, const complex<T>&);

template<class T> complex<T> operator/(
const complex<T>&, const complex<T>&);

template<class T> complex<T> operator/(const complex<T>&, const T&);
template<class T> complex<T> operator/(const T&, const complex<T>&);

template<class T> complex<T> operator+(const complex<T>&);
template<class T> complex<T> operator-(const complex<T>&);

template<class T> bool operator==(
const complex<T>&, const complex<T>&);

template<class T> bool operator==(const complex<T>&, const T&);
template<class T> bool operator==(const T&, const complex<T>&);

template<class T> bool operator!=(const complex<T>&, const complex<T>&);
template<class T> bool operator!=(const complex<T>&, const T&);
template<class T> bool operator!=(const T&, const complex<T>&);

template<class T, class charT, class traits>
basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>&, complex<T>&);

template<class T, class charT, class traits>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>&, const complex<T>&);

// 26.4.7 values:
template<class T> T real(const complex<T>&);
template<class T> T imag(const complex<T>&);

template<class T> T abs(const complex<T>&);
template<class T> T arg(const complex<T>&);
template<class T> T norm(const complex<T>&);

template<class T> complex<T> conj(const complex<T>&);
template <class T> complex<T> proj(const complex<T>&);
template<class T> complex<T> polar(const T&, const T& = 0);

// 26.4.8 transcendentals:
template<class T> complex<T> acos(const complex<T>&);
template<class T> complex<T> asin(const complex<T>&);
template<class T> complex<T> atan(const complex<T>&);

§ 26.4.1 887

c© ISO/IEC N3092

template<class T> complex<T> acosh(const complex<T>&);
template<class T> complex<T> asinh(const complex<T>&);
template<class T> complex<T> atanh(const complex<T>&);

template<class T> complex<T> cos (const complex<T>&);
template<class T> complex<T> cosh (const complex<T>&);
template<class T> complex<T> exp (const complex<T>&);
template<class T> complex<T> log (const complex<T>&);
template<class T> complex<T> log10(const complex<T>&);

template<class T> complex<T> pow(const complex<T>&, const T&);
template<class T> complex<T> pow(const complex<T>&, const complex<T>&);
template<class T> complex<T> pow(const T&, const complex<T>&);

template<class T> complex<T> sin (const complex<T>&);
template<class T> complex<T> sinh (const complex<T>&);
template<class T> complex<T> sqrt (const complex<T>&);
template<class T> complex<T> tan (const complex<T>&);
template<class T> complex<T> tanh (const complex<T>&);

}

26.4.2 Class template complex [complex]

namespace std {
template<class T>
class complex {
public:

typedef T value_type;

complex(const T& re = T(), const T& im = T());
complex(const complex&);
template<class X> complex(const complex<X>&);

T real() const;
void real(T);
T imag() const;
void imag(T);

complex<T>& operator= (const T&);
complex<T>& operator+=(const T&);
complex<T>& operator-=(const T&);
complex<T>& operator*=(const T&);
complex<T>& operator/=(const T&);

complex& operator=(const complex&);
template<class X> complex<T>& operator= (const complex<X>&);
template<class X> complex<T>& operator+=(const complex<X>&);
template<class X> complex<T>& operator-=(const complex<X>&);
template<class X> complex<T>& operator*=(const complex<X>&);
template<class X> complex<T>& operator/=(const complex<X>&);

};
}

§ 26.4.2 888

c© ISO/IEC N3092

1 The class complex describes an object that can store the Cartesian components, real() and imag(), of a
complex number.

26.4.3 complex specializations [complex.special]
namespace std {

template<> class complex<float> {
public:

typedef float value_type;

constexpr complex(float re = 0.0f, float im = 0.0f);
explicit constexpr complex(const complex<double>&);
explicit constexpr complex(const complex<long double>&);

constexpr float real();
void real(float);
constexpr float imag();
void imag(float);

complex<float>& operator= (float);
complex<float>& operator+=(float);
complex<float>& operator-=(float);
complex<float>& operator*=(float);
complex<float>& operator/=(float);

complex<float>& operator=(const complex<float>&);
template<class X> complex<float>& operator= (const complex<X>&);
template<class X> complex<float>& operator+=(const complex<X>&);
template<class X> complex<float>& operator-=(const complex<X>&);
template<class X> complex<float>& operator*=(const complex<X>&);
template<class X> complex<float>& operator/=(const complex<X>&);

};

template<> class complex<double> {
public:

typedef double value_type;

constexpr complex(double re = 0.0, double im = 0.0);
constexpr complex(const complex<float>&);
explicit constexpr complex(const complex<long double>&);

constexpr double real();
void real(double);
constexpr double imag();
void imag(double);

complex<double>& operator= (double);
complex<double>& operator+=(double);
complex<double>& operator-=(double);
complex<double>& operator*=(double);
complex<double>& operator/=(double);

complex<double>& operator=(const complex<double>&);
template<class X> complex<double>& operator= (const complex<X>&);
template<class X> complex<double>& operator+=(const complex<X>&);
template<class X> complex<double>& operator-=(const complex<X>&);

§ 26.4.3 889

c© ISO/IEC N3092

template<class X> complex<double>& operator*=(const complex<X>&);
template<class X> complex<double>& operator/=(const complex<X>&);

};

template<> class complex<long double> {
public:

typedef long double value_type;

constexpr complex(long double re = 0.0L, long double im = 0.0L);
constexpr complex(const complex<float>&);
constexpr complex(const complex<double>&);

constexpr long double real();
void real(long double);
constexpr long double imag();
void imag(long double);

complex<long double>& operator=(const complex<long double>&);
complex<long double>& operator= (long double);
complex<long double>& operator+=(long double);
complex<long double>& operator-=(long double);
complex<long double>& operator*=(long double);
complex<long double>& operator/=(long double);

template<class X> complex<long double>& operator= (const complex<X>&);
template<class X> complex<long double>& operator+=(const complex<X>&);
template<class X> complex<long double>& operator-=(const complex<X>&);
template<class X> complex<long double>& operator*=(const complex<X>&);
template<class X> complex<long double>& operator/=(const complex<X>&);

};
}

26.4.4 complex member functions [complex.members]

template<class T> complex(const T& re = T(), const T& im = T());

1 Effects: Constructs an object of class complex.

2 Postcondition: real() == re && imag() == im.

T real() const;

Returns: the value of the real component.

void real(T val);

Effects: Assigns val to the real component.

T imag() const;

Returns: the value of the imaginary component.

void imag(T val);

Effects: Assigns val to the imaginary component.

26.4.5 complex member operators [complex.member.ops]

§ 26.4.5 890

c© ISO/IEC N3092

complex<T>& operator+=(const T& rhs);

1 Effects: Adds the scalar value rhs to the real part of the complex value *this and stores the result in
the real part of *this, leaving the imaginary part unchanged.

2 Returns: *this.

complex<T>& operator-=(const T& rhs);

3 Effects: Subtracts the scalar value rhs from the real part of the complex value *this and stores the
result in the real part of *this, leaving the imaginary part unchanged.

4 Returns: *this.

complex<T>& operator*=(const T& rhs);

5 Effects: Multiplies the scalar value rhs by the complex value *this and stores the result in *this.

6 Returns: *this.

complex<T>& operator/=(const T& rhs);

7 Effects: Divides the scalar value rhs into the complex value *this and stores the result in *this.

8 Returns: *this.

complex<T>& operator+=(const complex<T>& rhs);

9 Effects: Adds the complex value rhs to the complex value *this and stores the sum in *this.

10 Returns: *this.

complex<T>& operator-=(const complex<T>& rhs);

11 Effects: Subtracts the complex value rhs from the complex value *this and stores the difference in
*this.

12 Returns: *this.

complex<T>& operator*=(const complex<T>& rhs);

13 Effects: Multiplies the complex value rhs by the complex value *this and stores the product in *this.

Returns: *this.

complex<T>& operator/=(const complex<T>& rhs);

14 Effects: Divides the complex value rhs into the complex value *this and stores the quotient in *this.

15 Returns: *this.

26.4.6 complex non-member operations [complex.ops]

template<class T> complex<T> operator+(const complex<T>& lhs);

1 Remarks: unary operator.

2 Returns: complex<T>(lhs).
template<class T>

complex<T> operator+(const complex<T>& lhs, const complex<T>& rhs);
template<class T> complex<T> operator+(const complex<T>& lhs, const T& rhs);
template<class T> complex<T> operator+(const T& lhs, const complex<T>& rhs);

§ 26.4.6 891

c© ISO/IEC N3092

3 Returns: complex<T>(lhs) += rhs.

template<class T> complex<T> operator-(const complex<T>& lhs);

4 Remarks: unary operator.

5 Returns: complex<T>(-lhs.real(),-lhs.imag()).

template<class T>
complex<T> operator-(const complex<T>& lhs, const complex<T>& rhs);

template<class T> complex<T> operator-(const complex<T>& lhs, const T& rhs);
template<class T> complex<T> operator-(const T& lhs, const complex<T>& rhs);

6 Returns: complex<T>(lhs) -= rhs.

template<class T>
complex<T> operator*(const complex<T>& lhs, const complex<T>& rhs);

template<class T> complex<T> operator*(const complex<T>& lhs, const T& rhs);
template<class T> complex<T> operator*(const T& lhs, const complex<T>& rhs);

7 Returns: complex<T>(lhs) *= rhs.

template<class T>
complex<T> operator/(const complex<T>& lhs, const complex<T>& rhs);

template<class T> complex<T> operator/(const complex<T>& lhs, const T& rhs);
template<class T> complex<T> operator/(const T& lhs, const complex<T>& rhs);

8 Returns: complex<T>(lhs) /= rhs.

template<class T>
bool operator==(const complex<T>& lhs, const complex<T>& rhs);

template<class T> bool operator==(const complex<T>& lhs, const T& rhs);
template<class T> bool operator==(const T& lhs, const complex<T>& rhs);

9 Returns: lhs.real() == rhs.real() && lhs.imag() == rhs.imag().

10 Remarks: The imaginary part is assumed to be T(), or 0.0, for the T arguments.

template<class T>
bool operator!=(const complex<T>& lhs, const complex<T>& rhs);

template<class T> bool operator!=(const complex<T>& lhs, const T& rhs);
template<class T> bool operator!=(const T& lhs, const complex<T>& rhs);

11 Returns: rhs.real() != lhs.real() || rhs.imag() != lhs.imag().

template<class T, class charT, class traits>
basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>& is, complex<T>& x);

12 Effects: Extracts a complex number x of the form: u, (u), or (u,v), where u is the real part and v is
the imaginary part (27.7.1.2).

13 Requires: The input values shall be convertible to T.

If bad input is encountered, calls is.setstate(ios_base::failbit) (which may throw ios::failure (27.5.4.3).

14 Returns: is.

15 Remarks: This extraction is performed as a series of simpler extractions. Therefore, the skipping of
whitespace is specified to be the same for each of the simpler extractions.

§ 26.4.6 892

c© ISO/IEC N3092

template<class T, class charT, class traits>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& o, const complex<T>& x);

16 Effects: inserts the complex number x onto the stream o as if it were implemented as follows:
template<class T, class charT, class traits>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& o, const complex<T>& x) {

basic_ostringstream<charT, traits> s;
s.flags(o.flags());
s.imbue(o.getloc());
s.precision(o.precision());
s << ’(’ << x.real() << "," << x.imag() << ’)’;
return o << s.str();

}

17 Note: In a locale in which comma is used as a decimal point character, the use of comma as a field
separator can be ambiguous. Inserting std::ios_base::showpoint into the output stream forces all
outputs to show an explicit decimal point character; as a result, all inserted sequences of complex
numbers can be extracted unambiguously.

26.4.7 complex value operations [complex.value.ops]

template<class T> T real(const complex<T>& x);

1 Returns: x.real().

template<class T> T imag(const complex<T>& x);

2 Returns: x.imag().

template<class T> T abs(const complex<T>& x);

3 Returns: the magnitude of x.

template<class T> T arg(const complex<T>& x);

4 Returns: the phase angle of x, or atan2(imag(x), real(x)).

template<class T> T norm(const complex<T>& x);

5 Returns: the squared magnitude of x.

template<class T> complex<T> conj(const complex<T>& x);

6 Returns: the complex conjugate of x.

template<class T> complex<T> proj(const complex<T>& x);

7 Effects: Behaves the same as the C function cproj, defined in 7.3.9.4.

template<class T> complex<T> polar(const T& rho, const T& theta = 0);

8 Returns: the complex value corresponding to a complex number whose magnitude is rho and whose
phase angle is theta.

§ 26.4.7 893

c© ISO/IEC N3092

26.4.8 complex transcendentals [complex.transcendentals]

template<class T> complex<T> acos(const complex<T>& x);

1 Effects: Behaves the same as C function cacos, defined in 7.3.5.1.

template<class T> complex<T> asin(const complex<T>& x);

2 Effects: Behaves the same as C function casin, defined in 7.3.5.2.

template<class T> complex<T> atan(const complex<T>& x);

3 Effects: Behaves the same as C function catan, defined in 7.3.5.3.

template<class T> complex<T> acosh(const complex<T>& x);

4 Effects: Behaves the same as C function cacosh, defined in 7.3.6.1.

template<class T> complex<T> asinh(const complex<T>& x);

5 Effects: Behaves the same as C function casinh, defined in 7.3.6.2.

template<class T> complex<T> atanh(const complex<T>& x);

6 Effects: Behaves the same as C function catanh, defined in 7.3.6.3.

template<class T> complex<T> cos(const complex<T>& x);

7 Returns: the complex cosine of x.

template<class T> complex<T> cosh(const complex<T>& x);

8 Returns: the complex hyperbolic cosine of x.

template<class T> complex<T> exp(const complex<T>& x);

9 Returns: the complex base e exponential of x.

template<class T> complex<T> log(const complex<T>& x);

10 Remarks: the branch cuts are along the negative real axis.

11 Returns: the complex natural (base e) logarithm of x, in the range of a strip mathematically unbounded
along the real axis and in the interval [-i times pi,i times pi] along the imaginary axis. When x
is a negative real number, imag(log(x)) is pi.

template<class T> complex<T> log10(const complex<T>& x);

12 Remarks: the branch cuts are along the negative real axis.

13 Returns: the complex common (base 10) logarithm of x, defined as log(x)/log(10).

template<class T>
complex<T> pow(const complex<T>& x, const complex<T>& y);

template<class T> complex<T> pow (const complex<T>& x, const T& y);
template<class T> complex<T> pow (const T& x, const complex<T>& y);

14 Remarks: the branch cuts are along the negative real axis.

15 Returns: the complex power of base x raised to the y-th power, defined as exp(y*log(x)). The value
returned for pow(0,0) is implementation-defined.

template<class T> complex<T> sin (const complex<T>& x);

§ 26.4.8 894

c© ISO/IEC N3092

16 Returns: the complex sine of x.

template<class T> complex<T> sinh (const complex<T>& x);

17 Returns: the complex hyperbolic sine of x.

template<class T> complex<T> sqrt (const complex<T>& x);

18 Remarks: the branch cuts are along the negative real axis.

19 Returns: the complex square root of x, in the range of the right half-plane. If the argument is a
negative real number, the value returned lies on the positive imaginary axis.

template<class T> complex<T> tan (const complex<T>& x);

20 Returns: the complex tangent of x.

template<class T> complex<T> tanh (const complex<T>& x);

21 Returns: the complex hyperbolic tangent of x.

26.4.9 Additional Overloads [cmplx.over]

1 The following function templates shall have additional overloads:
arg norm
conj proj
imag real

2 The additional overloads shall be sufficient to ensure:

1. If the argument has type long double, then it is effectively cast to complex<long double>.

2. Otherwise, if the argument has type double or an integer type, then it is effectively cast to complex<double>.

3. Otherwise, if the argument has type float, then it is effectively cast to complex<float>.

3 All the specified overloads shall have a return type which is the nested value_type of the effectively cast
arguments.

4 Function template pow shall have additional overloads sufficient to ensure, for a call with at least one
argument of type complex<T>:

1. If either argument has type complex<long double> or type long double, then both arguments are
effectively cast to complex<long double>.

2. Otherwise, if either argument has type complex<double>, double, or an integer type, then both
arguments are effectively cast to complex<double>.

3. Otherwise, if either argument has type complex<float> or float, then both arguments are effectively
cast to complex<float>.

26.4.10 Header <ccomplex> [ccmplx]

1 The header behaves as if it simply includes the header <complex>.

26.5 Random number generation [rand]

1 This subclause defines a facility for generating (pseudo-)random numbers.

§ 26.5 895

c© ISO/IEC N3092

2 In addition to a few utilities, four categories of entities are described: uniform random number generators,
random number engines, random number engine adaptors, and random number distributions. These catego-
rizations are applicable to types that satisfy the corresponding requirements, to objects instantiated from
such types, and to templates producing such types when instantiated. [Note: These entities are specified in
such a way as to permit the binding of any uniform random number generator object e as the argument to
any random number distribution object d, thus producing a zero-argument function object such as given by
bind(d,e). — end note]

3 Each of the entities specified via this subclause has an associated arithmetic type (3.9.1) identified as
result_type. With T as the result_type thus associated with such an entity, that entity is character-
ized:

a) as boolean or equivalently as boolean-valued, if T is bool;

b) otherwise as integral or equivalently as integer-valued, if numeric_limits<T>::is_integer is true;

c) otherwise as floating or equivalently as real-valued.

If integer-valued, an entity may optionally be further characterized as signed or unsigned, according to
numeric_limits<T>::is_signed.

4 Unless otherwise specified, all descriptions of calculations in this subclause use mathematical real numbers.

5 Throughout this subclause, the operators bitand , bitor , and xor denote the respective conventional bitwise
operations. Further:

a) the operator rshift denotes a bitwise right shift with zero-valued bits appearing in the high bits of the
result, and

b) the operator lshift w denotes a bitwise left shift with zero-valued bits appearing in the low bits of the
result, and whose result is always taken modulo 2w.

26.5.1 Requirements [rand.req]

26.5.1.1 General requirements [rand.req.genl]

1 Throughout this subclause 26.5, the effect of instantiating a template:

a) that has a template type parameter named Sseq is undefined unless the corresponding template argu-
ment is cv-unqualified and satisfies the requirements of seed sequence (26.5.1.2).

b) that has a template type parameter named URNG is undefined unless the corresponding template argu-
ment is cv-unqualified and satisfies the requirements of uniform random number generator (26.5.1.3).

c) that has a template type parameter named Engine is undefined unless the corresponding template
argument is cv-unqualified and satisfies the requirements of random number engine (26.5.1.4).

d) that has a template type parameter named RealType is undefined unless the corresponding template
argument is cv-unqualified and is one of float, double, or long double.

e) that has a template type parameter named IntType is undefined unless the corresponding template
argument is cv-unqualified and is one of short, int, long, long long, unsigned short, unsigned
int, unsigned long, or unsigned long long.

f) that has a template type parameter named UIntType is undefined unless the corresponding template
argument is cv-unqualified and is one of unsigned short, unsigned int, unsigned long, or unsigned
long long.

§ 26.5.1.1 896

c© ISO/IEC N3092

2 Throughout this subclause 26.5, phrases of the form “x is an iterator of a specific kind” shall be interpreted
as equivalent to the more formal requirement that “x is a value of a type satisfying the requirements of the
specified iterator type.”

3 Throughout this subclause 26.5, any constructor that can be called with a single argument and that satisfies
a requirement specified in this subclause shall be declared explicit.

26.5.1.2 Seed sequence requirements [rand.req.seedseq]

1 A seed sequence is an object that consumes a sequence of integer-valued data and produces a requested
number of unsigned integer values i, 0 ≤ i < 232, based on the consumed data. [Note: Such an object
provides a mechanism to avoid replication of streams of random variates. This can be useful, for example,
in applications requiring large numbers of random number engines. — end note]

2 A class S satisfies the requirements of a seed sequence if the expressions shown in Table 112 are valid and
have the indicated semantics, and if S also satisfies all other requirements of this section 26.5.1.2. In that
Table and throughout this section:

a) T is the type named by S’s associated result_type;

b) q is a value of S and r is a possibly const value of S;

c) ib and ie are input iterators with an unsigned integer value_type of at least 32 bits;

d) rb and re are mutable random access iterators with an unsigned integer value_type of at least 32
bits;

e) ob is an output iterator; and

f) il is a value of initializer_list<T>.

Table 112 — Seed sequence requirements

Expression Return type Pre/post-condition Complexity
S::result_type T T is an unsigned integer

type (3.9.1) of at least 32 bits.
compile-time

S() — Creates a seed sequence with
the same initial state as all
other default-constructed seed
sequences of type S.

constant

S(ib,ie) — Creates a seed sequence having
internal state that depends on
some or all of the bits of the
supplied sequence [ib, ie).

O(ie− ib)

S(il) — Same as S(il.begin(),
il.end()).

same as
S(il.begin(),
il.end())

§ 26.5.1.2 897

c© ISO/IEC N3092

Table 112 — Seed sequence requirements (continued)

Expression Return type Pre/post-condition Complexity
q.generate(rb,re) void Does nothing if rb == re.

Otherwise, fills the supplied
sequence [rb, re) with 32-bit
quantities that depend on the
sequence supplied to the
constructor and possibly also
depend on the history of
generate’s previous
invocations.

O(re− rb)

r.size() size_t The number of 32-bit units that
would be copied by a call to
r.param.

constant

r.param(ob) void Copies to the given destination
a sequence of 32-bit units that
can be provided to the
constructor of a second object
of type S, and that would
reproduce in that second object
a state indistinguishable from
the state of the first object.

O(r.size())

26.5.1.3 Uniform random number generator requirements [rand.req.urng]

1 A uniform random number generator g of type G is a function object returning unsigned integral values such
that each value in the range of possible results has (ideally) equal probability of being returned. [Note: The
degree to which g’s results approximate the ideal is often determined statistically. — end note]

2 A class G satisfies the requirements of a uniform random number generator if the expressions shown in
Table 113 are valid and have the indicated semantics, and if G also satisfies all other requirements of this
section 26.5.1.3. In that Table and throughout this section:

a) T is the type named by G’s associated result_type, and

b) g is a value of G.

Table 113 — Uniform random number generator requirements

Expression Return type Pre/post-condition Complexity
G::result_type T T is an unsigned integer

type (3.9.1).
compile-time

g() T Returns a value in the closed
interval [G::min(), G::max()].

amortized
constant

G::min() T Denotes the least value
potentially returned by
operator().

compile-time

G::max() T Denotes the greatest value
potentially returned by
operator().

compile-time

§ 26.5.1.3 898

c© ISO/IEC N3092

3 The following relation shall hold: G::min() < G::max().

26.5.1.4 Random number engine requirements [rand.req.eng]

1 A random number engine (commonly shortened to engine) e of type E is a uniform random number generator
that additionally meets the requirements (e.g., for seeding and for input/output) specified in this section.

2 At any given time, e has a state ei for some integer i ≥ 0. Upon construction, e has an initial state e0. An
engine’s state may be established via a constructor, a seed function, assignment, or a suitable operator>>.

3 E’s specification shall define:

a) the size of E’s state in multiples of the size of result_type, given as an integral constant expression;

b) the transition algorithm TA by which e’s state ei is advanced to its successor state ei+1; and

c) the generation algorithm GA by which an engine’s state is mapped to a value of type result_type.

4 A class E that satisfies the requirements of a uniform random number generator (26.5.1.3) also satisfies
the requirements of a random number engine if the expressions shown in Table 114 are valid and have the
indicated semantics, and if E also satisfies all other requirements of this section 26.5.1.4. In that Table and
throughout this section:

a) T is the type named by E’s associated result_type;

b) e is a value of E, v is an lvalue of E, x and y are (possibly const) values of E;

c) s is a value of T;

d) q is an lvalue satisfying the requirements of a seed sequence (26.5.1.2);

e) z is a value of type unsigned long long;

f) os is an lvalue of the type of some class template specialization basic_ostream<charT, traits>; and

g) is is an lvalue of the type of some class template specialization basic_istream<charT, traits>;

where charT and traits are constrained according to Clause 21 and Clause 27.

Table 114 — Random number engine requirements

Expression Return type Pre/post-condition Complexity
E() — Creates an engine with the

same initial state as all other
default-constructed engines of
type E.

O(size of state)

E(x) — Creates an engine that
compares equal to x.

O(size of state)

E(s) — Creates an engine with initial
state determined by s.

O(size of state)

§ 26.5.1.4 899

c© ISO/IEC N3092

Expression Return type Pre/post-condition Complexity
E(q)278 — Creates an engine with an

initial state that depends on a
sequence produced by one call
to q.generate.

same as
complexity of
q.generate
called on a
sequence whose
length is size of
state

e.seed() void post: e == E(). same as E()
e.seed(s) void post: e == E(s). same as E(s)
e.seed(q) void post: e == E(q). same as E(q)
e() T Advances e’s state ei to ei+1

= TA(ei) and returns GA(ei).
per Table 113

e.discard(z) 279 void Advances e’s state ei to ei+z by
any means equivalent to z
consecutive calls e().

no worse than
the complexity
of z consecutive
calls e()

x == y bool This operator is an equivalence
relation. With Sx and Sy as the
infinite sequences of values that
would be generated by repeated
future calls to x() and y(),
respectively, returns true if
Sx = Sy; else returns false.

O(size of state)

x != y bool !(x == y). O(size of state)
os << x reference to the type of

os
With os.fmtflags set to ios_-
base::dec|ios_base::left
and the fill character set to the
space character, writes to os
the textual representation of x’s
current state. In the output,
adjacent numbers are separated
by one or more space
characters.
post: The os.fmtflags and fill
character are unchanged.

O(size of state)

278) This constructor (as well as the subsequent corresponding seed() function) may be particularly useful to applications
requiring a large number of independent random sequences.
279) This operation is common in user code, and can often be implemented in an engine-specific manner so as to provide
significant performance improvements over an equivalent naive loop that makes z consecutive calls e().

§ 26.5.1.4 900

c© ISO/IEC N3092

Expression Return type Pre/post-condition Complexity
is >> v reference to the type of

is
With is.fmtflags set to
ios_base::dec, sets v’s state
as determined by reading its
textual representation from is.
If bad input is encountered,
ensures that v’s state is
unchanged by the operation
and calls
is.setstate(ios::failbit)
(which may throw
ios::failure [27.5.4.3]). If a
textual representation written
via os << x was subsequently
read via is >> v, then x == v
provided that there have been
no intervening invocations of x
or of v.
pre: is provides a textual
representation that was
previously written using an
output stream whose imbued
locale was the same as that of
is, and whose type’s template
specialization arguments charT
and traits were respectively
the same as those of is.
post: The is.fmtflags are
unchanged.

O(size of state)

5 E shall meet the requirements of CopyConstructible (Table 35) and CopyAssignable (Table 37) types. These
operations shall each be of complexity no worse than O(size of state).

26.5.1.5 Random number engine adaptor requirements [rand.req.adapt]

1 A random number engine adaptor (commonly shortened to adaptor) a of type A is a random number engine
that takes values produced by some other random number engine, and applies an algorithm to those values
in order to deliver a sequence of values with different randomness properties. An engine b of type B adapted
in this way is termed a base engine in this context.

2 The requirements of a random number engine type shall be interpreted as follows with respect to a random
number engine adaptor type.

A::A();

3 Effects: The base engine is initialized as if by its default constructor.

bool operator==(const A& a1, const A& a2);

4 Returns: true if a1’s base engine is equal to a2’s base engine. Otherwise returns false.

§ 26.5.1.5 901

c© ISO/IEC N3092

A::A(result_type s);

5 Effects: The base engine is initialized with s.

template<class Sseq> void A::A(Sseq& q);

6 Effects: The base engine is initialized with q.

void seed();

7 Effects: With b as the base engine, invokes b.seed().

void seed(result_type s);

8 Effects: With b as the base engine, invokes b.seed(s).

template<class Sseq> void seed(Sseq& q);

9 Effects: With b as the base engine, invokes b.seed(q).

10 A shall also satisfy the following additional requirements:

a) The complexity of each function shall not exceed the complexity of the corresponding function applied
to the base engine.

b) The state of A shall include the state of its base engine. The size of A’s state shall be no less than the
size of the base engine.

c) Copying A’s state (e.g., during copy construction or copy assignment) shall include copying the state
of the base engine of A.

d) The textual representation of A shall include the textual representation of its base engine.

26.5.1.6 Random number distribution requirements [rand.req.dist]

1 A random number distribution (commonly shortened to distribution) d of type D is a function object returning
values that are distributed according to an associated mathematical probability density function p(z) or
according to an associated discrete probability function P (zi). A distribution’s specification identifies its
associated probability function p(z) or P (zi).

2 An associated probability function is typically expressed using certain externally-supplied quantities known
as the parameters of the distribution. Such distribution parameters are identified in this context by writing,
for example, p(z | a, b) or P (zi | a, b), to name specific parameters, or by writing, for example, p(z | {p}) or
P (zi | {p}), to denote a distribution’s parameters p taken as a whole.

3 A class D satisfies the requirements of a random number distribution if the expressions shown in Table 115 are
valid and have the indicated semantics, and if D and its associated types also satisfy all other requirements
of this section 26.5.1.6. In that Table and throughout this section,

a) T is the type named by D’s associated result_type;

b) P is the type named by D’s associated param_type;

c) d is a value of D, and x and y are (possibly const) values of D;

§ 26.5.1.6 902

c© ISO/IEC N3092

d) glb and lub are values of T respectively corresponding to the greatest lower bound and the least upper
bound on the values potentially returned by d’s operator(), as determined by the current values of
d’s parameters;

e) p is a (possibly const) value of P;

f) g, g1, and g2 are lvalues of a type satisfing the requirements of a uniform random number generator
[26.5.1.3];

g) os is an lvalue of the type of some class template specialization basic_ostream<charT, traits>; and

h) is is an lvalue of the type of some class template specialization basic_istream<charT, traits>;

where charT and traits are constrained according to Clause 21 and 27.

Table 115 — Random number distribution requirements

Expression Return type Pre/post-condition Complexity
D::result_type T T is an arithmetic type (3.9.1). compile-time
D::param_type P — compile-time
D() — Creates a distribution whose

behavior is indistinguishable
from that of any other newly
default-constructed distribution
of type D.

constant

D(p) — Creates a distribution whose
behavior is indistinguishable
from that of a distribution
newly constructed directly from
the values used to construct p.

same as p’s
construction

d.reset() void Subsequent uses of d do not
depend on values produced by
any engine prior to invoking
reset.

constant

x.param() P Returns a value p such that
D(p).param() == p.

no worse than
the complexity
of D(p)

d.param(p) void post: d.param() == p. no worse than
the complexity
of D(p)

d(g) T With p = d.param(), the
sequence of numbers returned
by successive invocations with
the same object g is randomly
distributed according to the
associated p(z | {p}) or
P (zi | {p}) function.

amortized
constant
number of
invocations of g

§ 26.5.1.6 903

c© ISO/IEC N3092

Expression Return type Pre/post-condition Complexity
d(g,p) T The sequence of numbers

returned by successive
invocations with the same
objects g and p is randomly
distributed according to the
associated p(z | {p}) or
P (zi | {p}) function.

amortized
constant
number of
invocations of g

x.min() T Returns glb. constant
x.max() T Returns lub. constant
x == y bool This operator is an equivalence

relation. Returns true if
x.param() == y.param() and
S1 = S2, where S1 and S2 are
the infinite sequences of values
that would be generated,
respectively, by repeated future
calls to x(g1) and y(g2)
whenever g1 == g2. Otherwise
returns false.

constant

x != y bool !(x == y). same as x ==
y.

os << x reference to the type of
os

Writes to os a textual
representation for the
parameters and the additional
internal data of x.
post: The os.fmtflags and fill
character are unchanged.

—

is >> d reference to the type of
is

Restores from is the
parameters and additional
internal data of the lvalue d. If
bad input is encountered,
ensures that d is unchanged by
the operation and calls
is.setstate(ios::failbit)
(which may throw
ios::failure [27.5.4.3]).
pre: is provides a textual
representation that was
previously written using an os
whose imbued locale and whose
type’s template specialization
arguments charT and traits
were the same as those of is.
post: The is.fmtflags are
unchanged.

—

4 D shall satisfy the requirements of CopyConstructible (Table 35) and CopyAssignable (Table 37) types.

5 The sequence of numbers produced by repeated invocations of d(g) shall be independent of any invocation

§ 26.5.1.6 904

c© ISO/IEC N3092

of os << d or of any const member function of D between any of the invocations d(g).

6 If a textual representation is written using os << x and that representation is restored into the same or
a different object y of the same type using is >> y, repeated invocations of y(g) shall produce the same
sequence of numbers as would repeated invocations of x(g).

7 It is unspecified whether D::param_type is declared as a (nested) class or via a typedef. In this subclause
26.5, declarations of D::param_type are in the form of typedefs for convenience of exposition only.

8 P shall satisfy the requirements of CopyConstructible (Table 35), CopyAssignable (Table 37), and Equality-
Comparable (Table 31) types.

9 For each of the constructors of D taking arguments corresponding to parameters of the distribution, P
shall have a corresponding constructor subject to the same requirements and taking arguments identical
in number, type, and default values. Moreover, for each of the member functions of D that return values
corresponding to parameters of the distribution, P shall have a corresponding member function with the
identical name, type, and semantics.

10 P shall have a declaration of the form
typedef D distribution_type;

26.5.2 Header <random> synopsis [rand.synopsis]

namespace std {
#include <initializer_list>

// 26.5.3.1 Class template linear_congruential_engine
template<class UIntType, UIntType a, UIntType c, UIntType m>

class linear_congruential_engine;

// 26.5.3.2 Class template mersenne_twister_engine
template<class UIntType, size_t w, size_t n, size_t m, size_t r,

UIntType a, size_t u, UintType d, size_t s,
UIntType b, size_t t,
UIntType c, size_t l, UintType f>

class mersenne_twister_engine;

// 26.5.3.3 Class template subtract_with_carry_engine
template<class UIntType, size_t w, size_t s, size_t r>

class subtract_with_carry_engine;

// 26.5.4.1 Class template discard_block_engine
template<class Engine, size_t p, size_t r>

class discard_block_engine;

// 26.5.4.2 Class template independent_bits_engine
template<class Engine, size_t w, class UIntType>

class independent_bits_engine;

// 26.5.4.3 Class template shuffle_order_engine
template<class Engine, size_t k>

class shuffle_order_engine;

// 26.5.5 Engines and engine adaptors with predefined parameters
typedef see below minstd_rand0;

§ 26.5.2 905

c© ISO/IEC N3092

typedef see below minstd_rand;
typedef see below mt19937;
typedef see below mt19937_64;
typedef see below ranlux24_base;
typedef see below ranlux48_base;
typedef see below ranlux24;
typedef see below ranlux48;
typedef see below knuth_b;
typedef see below default_random_engine;

// 26.5.6 Class random_device
class random_device;

// 26.5.7.1 Class seed_seq
class seed_seq;

// 26.5.7.2 Function template generate_canonical
template<class RealType, size_t bits, class URNG>

RealType generate_canonical(URNG& g);

// 26.5.8.1.1 Class template uniform_int_distribution
template<class IntType = int>

class uniform_int_distribution;

// 26.5.8.1.2 Class template uniform_real_distribution
template<class RealType = double>

class uniform_real_distribution;

// 26.5.8.2.1 Class bernoulli_distribution
class bernoulli_distribution;

// 26.5.8.2.2 Class template binomial_distribution
template<class IntType = int>

class binomial_distribution;

// 26.5.8.2.3 Class template geometric_distribution
template<class IntType = int>

class geometric_distribution;

// 26.5.8.2.4 Class template negative_binomial_distribution
template<class IntType = int>

class negative_binomial_distribution;

// 26.5.8.3.1 Class template poisson_distribution
template<class IntType = int>

class poisson_distribution;

// 26.5.8.3.2 Class template exponential_distribution
template<class RealType = double>

class exponential_distribution;

// 26.5.8.3.3 Class template gamma_distribution
template<class RealType = double>

class gamma_distribution;

§ 26.5.2 906

c© ISO/IEC N3092

// 26.5.8.3.4 Class template weibull_distribution
template<class RealType = double>

class weibull_distribution;

// 26.5.8.3.5 Class template extreme_value_distribution
template<class RealType = double>

class extreme_value_distribution;

// 26.5.8.4.1 Class template normal_distribution
template<class RealType = double>

class normal_distribution;

// 26.5.8.4.2 Class template lognormal_distribution
template<class RealType = double>

class lognormal_distribution;

// 26.5.8.4.3 Class template chi_squared_distribution
template<class RealType = double>

class chi_squared_distribution;

// 26.5.8.4.4 Class template cauchy_distribution
template<class RealType = double>

class cauchy_distribution;

// 26.5.8.4.5 Class template fisher_f_distribution
template<class RealType = double>

class fisher_f_distribution;

// 26.5.8.4.6 Class template student_t_distribution
template<class RealType = double>

class student_t_distribution;

// 26.5.8.5.1 Class template discrete_distribution
template<class IntType = int>

class discrete_distribution;

// 26.5.8.5.2 Class template piecewise_constant_distribution
template<class RealType = double>

class piecewise_constant_distribution;

// 26.5.8.5.3 Class template piecewise_linear_distribution
template<class RealType = double>

class piecewise_linear_distribution;

} // namespace std

26.5.3 Random number engine class templates [rand.eng]

1 Each type instantiated from a class template specified in this section 26.5.3 satisfies the requirements of a
random number engine (26.5.1.4) type.

2 Except where specified otherwise, the complexity of each function specified in this section 26.5.3 is constant.

3 Except where specified otherwise, no function described in this section 26.5.3 throws an exception.

§ 26.5.3 907

c© ISO/IEC N3092

4 Descriptions are provided in this section 26.5.3 only for engine operations that are not described in 26.5.1.4
or for operations where there is additional semantic information. In particular, declarations for copy con-
structors, for copy assignment operators, for streaming operators, and for equality and inequality operators
are not shown in the synopses.

5 Each template specified in this section 26.5.3 requires one or more relationships, involving the value(s) of
its non-type template parameter(s), to hold. A program instantiating any of these templates is ill-formed if
any such required relationship fails to hold.

26.5.3.1 Class template linear_congruential_engine [rand.eng.lcong]

1 A linear_congruential_engine random number engine produces unsigned integer random numbers. The
state xi of a linear_congruential_engine object x is of size 1 and consists of a single integer. The
transition algorithm is a modular linear function of the form TA(xi) = (a · xi + c) mod m; the generation
algorithm is GA(xi) = xi+1.

template<class UIntType, UIntType a, UIntType c, UIntType m>
class linear_congruential_engine

{
public:
// types
typedef UIntType result_type;

// engine characteristics
static constexpr result_type multiplier = a;
static constexpr result_type increment = c;
static constexpr result_type modulus = m;
static constexpr result_type min() { return c == 0u ? 1u: 0u };
static constexpr result_type max() { return m - 1u };
static constexpr result_type default_seed = 1u;

// constructors and seeding functions
explicit linear_congruential_engine(result_type s = default_seed);
template<class Sseq> explicit linear_congruential_engine(Sseq& q);
void seed(result_type s = default_seed);
template<class Sseq> void seed(Sseq& q);

// generating functions
result_type operator()();
void discard(unsigned long long z);

};

2 If the template parameter m is 0, the modulus m used throughout this section 26.5.3.1 is numeric_-
limits<result_type>::max() plus 1. [Note: m need not be representable as a value of type result_type.
— end note]

3 If the template parameter m is not 0, the following relations shall hold: a < m and c < m.

4 The textual representation consists of the value of xi.

explicit linear_congruential_engine(result_type s = default_seed);

5 Effects: Constructs a linear_congruential_engine object. If c mod m is 0 and s mod m is 0, sets
the engine’s state to 1, otherwise sets the engine’s state to s mod m.

template<class Sseq> explicit linear_congruential_engine(Sseq& q);

§ 26.5.3.1 908

c© ISO/IEC N3092

6 Effects: Constructs a linear_congruential_engine object. With k =
⌈

log2 m
32

⌉
and a an array

(or equivalent) of length k + 3, invokes q.generate(a + 0, a + k + 3) and then computes S =(∑k−1
j=0 aj+3 · 232j

)
mod m. If c mod m is 0 and S is 0, sets the engine’s state to 1, else sets the

engine’s state to S.

26.5.3.2 Class template mersenne_twister_engine [rand.eng.mers]

1 A mersenne_twister_engine random number engine280 produces unsigned integer random numbers in the
closed interval [0, 2w − 1]. The state xi of a mersenne_twister_engine object x is of size n and consists of
a sequence X of n values of the type delivered by x; all subscripts applied to X are to be taken modulo n.

2 The transition algorithm employs a twisted generalized feedback shift register defined by shift values n and
m, a twist value r, and a conditional xor-mask a. To improve the uniformity of the result, the bits of the
raw shift register are additionally tempered (i.e., scrambled) according to a bit-scrambling matrix defined
by values u, d, s, b, t, c, and `.

The state transition is performed as follows:

a) Concatenate the upper w−r bits of Xi−n with the lower r bits of Xi+1−n to obtain an unsigned integer
value Y .

b) With α = a · (Y bitand 1), set Xi to Xi+m−n xor (Y rshift 1) xor α.

The sequence X is initialized with the help of an initialization multiplier f .

3 The generation algorithm determines the unsigned integer values z1, z2, z3, z4 as follows, then delivers z4 as
its result:

a) Let z1 = Xi xor
(
(Xi rshift u) bitand d

)
.

b) Let z2 = z1 xor
(
(z1 lshift w s) bitand b

)
.

c) Let z3 = z2 xor
(
(z2 lshift w t) bitand c

)
.

d) Let z4 = z3 xor (z3 rshift `).
template<class UIntType, size_t w, size_t n, size_t m, size_t r,

UIntType a, size_t u, UIntType d, size_t s,
UIntType b, size_t t,
UIntType c, size_t l, UIntType f>

class mersenne_twister_engine
{
public:
// types
typedef UIntType result_type;

// engine characteristics
static constexpr size_t word_size = w;
static constexpr size_t state_size = n;
static constexpr size_t shift_size = m;
static constexpr size_t mask_bits = r;
static constexpr UIntType xor_mask = a;
static constexpr size_t tempering_u = u;
static constexpr UIntType tempering_d = d;

280) The name of this engine refers, in part, to a property of its period: For properly-selected values of the parameters, the
period is closely related to a large Mersenne prime number.

§ 26.5.3.2 909

c© ISO/IEC N3092

static constexpr size_t tempering_s = s;
static constexpr UIntType tempering_b = b;
static constexpr size_t tempering_t = t;
static constexpr UIntType tempering_c = c;
static constexpr size_t tempering_l = l;
static constexpr UIntType initialization_multiplier = f;
static constexpr result_type min () { return 0; }
static constexpr result_type max() { return 2w − 1; }
static constexpr result_type default_seed = 5489u;

// constructors and seeding functions
explicit mersenne_twister_engine(result_type value = default_seed);
template<class Sseq> explicit mersenne_twister_engine(Sseq& q);
void seed(result_type value = default_seed);
template<class Sseq> void seed(Sseq& q);

// generating functions
result_type operator()();
void discard(unsigned long long z);

};

4 The following relations shall hold: 0 < m, m <= n, r <= w, u <= w, s <= w, t <= w, l <= w, w <= numeric_-
limits<UIntType>::digits, a <= (1u<<w) - 1u, b <= (1u<<w) - 1u, c <= (1u<<w) - 1u, d <= (1u<<w)
- 1u, and f <= (1u<<w) - 1u.

5 The textual representation of xi consists of the values of Xi−n, . . . , Xi−1, in that order.

explicit mersenne_twister_engine(result_type value = default_seed);

6 Effects: Constructs a mersenne_twister_engine object. Sets X−n to value mod 2w. Then, itera-
tively for i = 1−n, . . . ,−1, sets Xi to[

f ·
(
Xi−1 xor

(
Xi−1 rshift (w − 2)

))
+ i mod n

]
mod 2w .

7 Complexity: O(n).

template<class Sseq> explicit mersenne_twister_engine(Sseq& q);

8 Effects: Constructs a mersenne_twister_engine object. With k = dw/32e and a an array (or equiv-
alent) of length n · k, invokes q.generate(a + 0, a + n · k) and then, iteratively for i = −n, . . . ,−1,
sets Xi to

(∑k−1
j=0 ak(i+n)+j · 232j

)
mod 2w. Finally, if the most significant w− r bits of X−n are zero,

and if each of the other resulting Xi is 0, changes X−n to 2w−1.

26.5.3.3 Class template subtract_with_carry_engine [rand.eng.sub]

1 A subtract_with_carry_engine random number engine produces unsigned integer random numbers.

2 The state xi of a subtract_with_carry_engine object x is of size O(r), and consists of a sequence X of
r integer values 0 ≤ Xi < m = 2w; all subscripts applied to X are to be taken modulo r. The state xi

additionally consists of an integer c (known as the carry) whose value is either 0 or 1.

3 The state transition is performed as follows:

a) Let Y = Xi−s −Xi−r − c.

§ 26.5.3.3 910

c© ISO/IEC N3092

b) Set Xi to y = Y mod m. Set c to 1 if Y < 0, otherwise set c to 0.

[Note: This algorithm corresponds to a modular linear function of the form TA(xi) = (a · xi) mod b, where
b is of the form mr −ms + 1 and a = b− (b− 1)/m. — end note]

4 The generation algorithm is given by GA(xi) = y, where y is the value produced as a result of advancing the
engine’s state as described above.

template<class UIntType, size_t w, size_t s, size_t r>
class subtract_with_carry_engine

{
public:
// types
typedef UIntType result_type;

// engine characteristics
static constexpr size_t word_size = w;
static constexpr size_t short_lag = s;
static constexpr size_t long_lag = r;
static constexpr result_type min() { return 0; }
static constexpr result_type max() { return m− 1; }
static constexpr result_type default_seed = 19780503u;

// constructors and seeding functions
explicit subtract_with_carry_engine(result_type value = default_seed);
template<class Sseq> explicit subtract_with_carry_engine(Sseq& q);
void seed(result_type value = default_seed);
template<class Sseq> void seed(Sseq& q);

// generating functions
result_type operator()();
void discard(unsigned long long z);

};

5 The following relations shall hold: 0u < s, s < r, 0 < w, and w <= numeric_limits<UIntType>::digits.

6 The textual representation consists of the values of Xi−r, . . . , Xi−1, in that order, followed by c.

explicit subtract_with_carry_engine(result_type value = default_seed);

7 Effects: Constructs a subtract_with_carry_engine object. Sets the values of X−r, . . . , X−1, in that
order, as specified below. If X−1 is then 0, sets c to 1; otherwise sets c to 0.

To set the values Xk, first construct e, a linear_congruential_engine object, as if by the following
definition:

linear_congruential_engine<result_type,
40014u,0u,2147483563u> e(value == 0u ? default_seed : value);

Then, to set each Xk, obtain new values z0, . . . , zn−1 from n = dw/32e successive invocations of e

taken modulo 232. Set Xk to
(∑n−1

j=0 zj · 232j
)

mod m.

8 Complexity: Exactly n · r invocations of e.

template<class Sseq> explicit subtract_with_carry_engine(Sseq& q);

§ 26.5.3.3 911

c© ISO/IEC N3092

9 Effects: Constructs a subtract_with_carry_engine object. With k = dw/32e and a an array (or
equivalent) of length r ·k, invokes q.generate(a+0, a+r ·k) and then, iteratively for i = −r, . . . ,−1,
sets Xi to

(∑k−1
j=0 ak(i+r)+j · 232j

)
mod m. If X−1 is then 0, sets c to 1; otherwise sets c to 0.

26.5.4 Random number engine adaptor class templates [rand.adapt]

1 Each type instantiated from a class template specified in this section 26.5.3 satisfies the requirements of a
random number engine adaptor (26.5.1.5) type.

2 Except where specified otherwise, the complexity of each function specified in this section 26.5.4 is constant.

3 Except where specified otherwise, no function described in this section 26.5.4 throws an exception.

4 Descriptions are provided in this section 26.5.4 only for adaptor operations that are not described in sec-
tion 26.5.1.5 or for operations where there is additional semantic information. In particular, declarations for
copy constructors, for copy assignment operators, for streaming operators, and for equality and inequality
operators are not shown in the synopses.

5 Each template specified in this section 26.5.4 requires one or more relationships, involving the value(s) of
its non-type template parameter(s), to hold. A program instantiating any of these templates is ill-formed if
any such required relationship fails to hold.

26.5.4.1 Class template discard_block_engine [rand.adapt.disc]

1 A discard_block_engine random number engine adaptor produces random numbers selected from those
produced by some base engine e. The state xi of a discard_block_engine engine adaptor object x consists
of the state ei of its base engine e and an additional integer n. The size of the state is the size of e’s state
plus 1.

2 The transition algorithm discards all but r > 0 values from each block of p ≥ r values delivered by e. The
state transition is performed as follows: If n ≥ r, advance the state of e from ei to ei+p−r and set n to 0.
In any case, then increment n and advance e’s then-current state ej to ej+1.

3 The generation algorithm yields the value returned by the last invocation of e() while advancing e’s state
as described above.

template<class Engine, size_t p, size_t r>
class discard_block_engine

{
public:
// types
typedef typename Engine::result_type result_type;

// engine characteristics
static constexpr size_t block_size = p;
static constexpr size_t used_block = r;
static constexpr result_type min() { return Engine::min; }
static constexpr result_type max() { return Engine::max; }

// constructors and seeding functions
discard_block_engine();
explicit discard_block_engine(const Engine& e);
explicit discard_block_engine(Engine&& e);
explicit discard_block_engine(result_type s);
template<class Sseq> explicit discard_block_engine(Sseq& q);
void seed();

§ 26.5.4.1 912

c© ISO/IEC N3092

void seed(result_type s);
template<class Sseq> void seed(Sseq& q);

// generating functions
result_type operator()();
void discard(unsigned long long z);

// property functions
const Engine& base() const;

private:
Engine e; // exposition only
int n; // exposition only

};

4 The following relations shall hold: 0 < r and r <= p.

5 The textual representation consists of the textual representation of e followed by the value of n.

6 In addition to its behavior pursuant to section 26.5.1.5, each constructor that is not a copy constructor sets
n to 0.

26.5.4.2 Class template independent_bits_engine [rand.adapt.ibits]

1 An independent_bits_engine random number engine adaptor combines random numbers that are produced
by some base engine e, so as to produce random numbers with a specified number of bits w. The state xi of
an independent_bits_engine engine adaptor object x consists of the state ei of its base engine e; the size
of the state is the size of e’s state.

2 The transition and generation algorithms are described in terms of the following integral constants:

a) Let R = e.max() - e.min() + 1 and m = blog2 Rc.

b) With n as determined below, let w0 = bw/nc, n0 = n − w mod n, y0 = 2w0 bR/2w0c, and y1 =
2w0+1

⌊
R/2w0+1

⌋
.

c) Let n = dw/me if and only if the relation R − y0 ≤ by0/nc holds as a result. Otherwise let n =
1 + dw/me.

[Note: The relation w = n0w0 + (n− n0)(w0 + 1) always holds. — end note]

3 The transition algorithm is carried out by invoking e() as often as needed to obtain n0 values less than y0

+e.min() and n− n0 values less than y1 + e.min().

4 The generation algorithm uses the values produced while advancing the state as described above to yield a
quantity S obtained as if by the following algorithm:

S = 0;
for (k = 0; k 6= n0; k += 1) {
do u = e() - e.min(); while (u ≥ y0);
S = 2w0 · S + u mod 2w0;

}
for (k = n0; k 6= n; k += 1) {
do u = e() - e.min(); while (u ≥ y1);
S = 2w0+1 · S + u mod 2w0+1;

}

§ 26.5.4.2 913

c© ISO/IEC N3092

template<class Engine, size_t w, class UIntType>
class independent_bits_engine
{
public:
// types
typedef UIntType result_type;

// engine characteristics
static constexpr result_type min() { return 0; }
static constexpr result_type max() { return 2w − 1; }

// constructors and seeding functions
independent_bits_engine();
explicit independent_bits_engine(const Engine& e);
explicit independent_bits_engine(Engine&& e);
explicit independent_bits_engine(result_type s);
template<class Sseq> explicit independent_bits_engine(Sseq& q);
void seed();
void seed(result_type s);
template<class Sseq> void seed(Sseq& q);

// generating functions
result_type operator()();
void discard(unsigned long long z);

// property functions
const Engine& base() const;

private:
Engine e; // exposition only

};

5 The following relations shall hold: 0 < w and w <= numeric_limits<result_type>::digits.

6 The textual representation consists of the textual representation of e.

26.5.4.3 Class template shuffle_order_engine [rand.adapt.shuf]

1 A shuffle_order_engine random number engine adaptor produces the same random numbers that are
produced by some base engine e, but delivers them in a different sequence. The state xi of a shuffle_-
order_engine engine adaptor object x consists of the state ei of its base engine e, an additional value Y of
the type delivered by e, and an additional sequence V of k values also of the type delivered by e. The size
of the state is the size of e’s state plus k + 1.

2 The transition algorithm permutes the values produced by e. The state transition is performed as follows:

a) Calculate an integer j =
⌊

k·(Y −emin)
emax−emin+1

⌋
.

b) Set Y to Vj and then set Vj to e().

3 The generation algorithm yields the last value of Y produced while advancing e’s state as described above.
template<class Engine, size_t k>
class shuffle_order_engine

{
public:

§ 26.5.4.3 914

c© ISO/IEC N3092

// types
typedef typename Engine::result_type result_type;

// engine characteristics
static constexpr size_t table_size = k;
static constexpr result_type min() { return Engine::min; }
static constexpr result_type max() { return Engine::max; }

// constructors and seeding functions
shuffle_order_engine();
explicit shuffle_order_engine(const Engine& e);
explicit shuffle_order_engine(Engine&& e);
explicit shuffle_order_engine(result_type s);
template<class Sseq> explicit shuffle_order_engine(Sseq& q);
void seed();
void seed(result_type s);
template<class Sseq> void seed(Sseq& q);

// generating functions
result_type operator()();
void discard(unsigned long long z);

// property functions
const Engine& base() const;

private:
Engine e; // exposition only
result_type Y; // exposition only
result_type V[k]; // exposition only

};

4 The following relation shall hold: 0 < k.

5 The textual representation consists of the textual representation of e, followed by the k values of V , followed
by the value of Y .

6 In addition to its behavior pursuant to section 26.5.1.5, each constructor that is not a copy constructor
initializes V[0], . . . , V[k-1] and Y , in that order, with values returned by successive invocations of e().

26.5.5 Engines and engine adaptors with predefined parameters [rand.predef]

typedef linear_congruential_engine<uint_fast32_t, 16807, 0, 2147483647>
minstd_rand0;

1 Required behavior: The 10000 th consecutive invocation of a default-constructed object of type minstd_-
rand0 shall produce the value 1043618065.

typedef linear_congruential_engine<uint_fast32_t, 48271, 0, 2147483647>
minstd_rand;

2 Required behavior: The 10000 th consecutive invocation of a default-constructed object of type minstd_-
rand shall produce the value 399268537.

typedef mersenne_twister_engine<uint_fast32_t,

§ 26.5.5 915

c© ISO/IEC N3092

32,624,397,31,0x9908b0df,11,0xffffffff,7,0x9d2c5680,15,0xefc60000,18,1812433253>
mt19937;

3 Required behavior: The 10000 th consecutive invocation of a default-constructed object of type mt19937
shall produce the value 4123659995.

typedef mersenne_twister_engine<uint_fast64_t,
64,312,156,31,0xb5026f5aa96619e9,29,
0x5555555555555555,17,
0x71d67fffeda60000,37,
0xfff7eee000000000,43,
6364136223846793005>
mt19937_64;

4 Required behavior: The 10000 th consecutive invocation of a default-constructed object of type mt19937_-
64 shall produce the value 9981545732273789042.

typedef subtract_with_carry_engine<uint_fast32_t, 24, 10, 24>
ranlux24_base;

5 Required behavior: The 10000 th consecutive invocation of a default-constructed object of type ranlux24_-
base shall produce the value 7937952.

typedef subtract_with_carry_engine<uint_fast64_t, 48, 5, 12>
ranlux48_base;

6 Required behavior: The 10000 th consecutive invocation of a default-constructed object of type ranlux48_-
base shall produce the value 61839128582725.

typedef discard_block_engine<ranlux24_base, 223, 23>
ranlux24;

7 Required behavior: The 10000 th consecutive invocation of a default-constructed object of type ranlux24
shall produce the value 9901578.

typedef discard_block_engine<ranlux48_base, 389, 11>
ranlux48

8 Required behavior: The 10000 th consecutive invocation of a default-constructed object of type ranlux48
shall produce the value 249142670248501.

typedef shuffle_order_engine<minstd_rand0,256>
knuth_b;

9 Required behavior: The 10000 th consecutive invocation of a default-constructed object of type knuth_b
shall produce the value 1112339016.

typedef implementation-defined
default_random_engine;

§ 26.5.5 916

c© ISO/IEC N3092

10 Remark: The choice of engine type named by this typedef is implementation-defined. [Note: The
implementation may select this type on the basis of performance, size, quality, or any combination of
such factors, so as to provide at least acceptable engine behavior for relatively casual, inexpert, and/or
lightweight use. Because different implementations may select different underlying engine types, code
that uses this typedef need not generate identical sequences across implementations. — end note]

26.5.6 Class random_device [rand.device]

1 A random_device uniform random number generator produces non-deterministic random numbers.

2 If implementation limitations prevent generating non-deterministic random numbers, the implementation
may employ a random number engine.

class random_device
{
public:
// types
typedef unsigned int result_type;

// generator characteristics
static constexpr result_type min() { return numeric_limits<result_type>::min(); }
static constexpr result_type max() { return numeric_limits<result_type>::max(); }

// constructors
explicit random_device(const string& token = implementation-defined);

// generating functions
result_type operator()();

// property functions
double entropy() const;

// no copy functions
random_device(const random_device&) = delete;
void operator=(const random_device&) = delete;

};

explicit random_device(const string& token = implementation-defined);

3 Effects: Constructs a random_device non-deterministic uniform random number generator object.
The semantics and default value of the token parameter are implementation-defined.281

4 Throws: A value of an implementation-defined type derived from exception if the random_device
could not be initialized.

double entropy() const;

5 Returns: If the implementation employs a random number engine, returns 0.0. Otherwise, returns
an entropy estimate282 for the random numbers returned by operator(), in the range min() to
log2(max() + 1).

281) The parameter is intended to allow an implementation to differentiate between different sources of randomness.
282) If a device has n states whose respective probabilities are P0, . . . , Pn−1, the device entropy S is defined as
S = −

Pn−1
i=0 Pi · log Pi.

§ 26.5.6 917

c© ISO/IEC N3092

6 Throws: Nothing.

result_type operator()();

7 Returns: A non-deterministic random value, uniformly distributed between min() and max(), inclusive.
It is implementation-defined how these values are generated.

8 Throws: A value of an implementation-defined type derived from exception if a random number could
not be obtained.

26.5.7 Utilities [rand.util]

26.5.7.1 Class seed_seq [rand.util.seedseq]

1 No function described in this section 26.5.7.1 throws an exception.
class seed_seq
{
public:
// types
typedef uint_least32_t result_type;

// constructors
seed_seq();
template<class T>

seed_seq(initializer_list<T> il);
template<class InputIterator>

seed_seq(InputIterator begin, InputIterator end);

// generating functions
template<class RandomAccessIterator>

void generate(RandomAccessIterator begin, RandomAccessIterator end);

// property functions
size_t size() const;
template<class OutputIterator>

void param(OutputIterator dest) const;

// no copy functions
seed_seq(const seed_seq&) = delete;
void operator=(const seed_seq&) = delete;

private:
vector<result_type> v; // exposition only

};

seed_seq();

2 Effects: Constructs a seed_seq object as if by default-constructing its member v.

template<class T>
seed_seq(initializer_list<T> il);

3 Requires: T shall be an integer type.

§ 26.5.7.1 918

c© ISO/IEC N3092

4 Effects: Same as seed_seq(il.begin(), il.end()).

template<class InputIterator>
seed_seq(InputIterator begin, InputIterator end);

5 Requires: InputIterator shall satisfy the requirements of an input iterator (Table 104) type. More-
over, iterator_traits<InputIterator>::value_type shall denote an integer type.

6 Effects: Constructs a seed_seq object by the following algorithm:
for(InputIterator s = begin; s != end; ++s)
v.push_back((*s)mod232);

template<class RandomAccessIterator>
void generate(RandomAccessIterator begin, RandomAccessIterator end);

7 Requires: RandomAccessIterator shall meet the requirements of a mutable random access iterator
(Table 108) type. Moreover, iterator_traits<RandomAccessIterator>::value_type shall denote
an unsigned integer type capable of accommodating 32-bit quantities.

8 Effects: Does nothing if begin == end. Otherwise, with s = v.size() and n = end − begin, fills
the supplied range [begin, end) according to the following algorithm in which each operation is to be
carried out modulo 232, each indexing operator applied to begin is to be taken modulo n, and T (x) is
defined as x xor (x rshift 27):

a) By way of initialization, set each element of the range to the value 0x8b8b8b8b. Additionally, for
use in subsequent steps, let p = (n− t)/2 and let q = p + t, where

t = (n ≥ 623) ? 11 : (n ≥ 68) ? 7 : (n ≥ 39) ? 5 : (n ≥ 7) ? 3 : (n− 1)/2;

b) With m as the larger of s + 1 and n, transform the elements of the range: iteratively for k =
0, . . . ,m− 1, calculate values

r1 = 1664525 · T (begin[k] xor begin[k + p] xor begin[k − 1])

r2 = r1 +

 s , k = 0
k mod n + v[k − 1] , 0 < k ≤ s

k mod n , s < k

and, in order, increment begin[k + p] by r1, increment begin[x + q] by r2, and set begin[k]
to r2.

c) Transform the elements of the range three more times, beginning where the previous step ended:
iteratively for k = m, . . . ,m+n−1, calculate values

r3 = 1566083941 · T (begin[k] + begin[k + p] + begin[k − 1])
r4 = r3 − (k mod n)

and, in order, update begin[k + p] by xoring it with r4, update begin[k + q] by xoring it with
r3, and set begin[k] to r4.

size_t size() const;

§ 26.5.7.1 919

c© ISO/IEC N3092

9 Returns: The number of 32-bit units that would be returned by a call to param().

10 Complexity: constant time.

template<class OutputIterator>
void param(OutputIterator dest) const;

11 Requires: OutputIterator shall satisfy the requirements of an output iterator (Table 105) type. More-
over, the expression *dest = rt shall be valid for a value rt of type result_type.

12 Effects: Copies the sequence of prepared 32-bit units to the given destination, as if by executing the
following statement:

copy(v.begin(), v.end(), dest);

26.5.7.2 Function template generate_canonical [rand.util.canonical]

1 Each function instantiated from the template described in this section 26.5.7.2 maps the result of one or
more invocations of a supplied uniform random number generator g to one member of the specified RealType
such that, if the values gi produced by g are uniformly distributed, the instantiation’s results tj , 0 ≤ tj < 1,
are distributed as uniformly as possible as specified below.

2 [Note: Obtaining a value in this way can be a useful step in the process of transforming a value generated
by a uniform random number generator into a value that can be delivered by a random number distribution.
— end note]

template<class RealType, size_t bits, class URNG>
RealType generate_canonical(URNG& g);

3 Complexity: Exactly k = max(1, db/ log2 Re) invocations of g, where b283 is the lesser of numeric_-
limits<RealType>::digits and bits, and R is the value of g.max()− g.min() + 1.

4 Effects: Invokes g() k times to obtain values g0, . . . , gk−1, respectively. Calculates a quantity

S =
k−1∑
i=0

(gi − g.min()) ·Ri

using arithmetic of type RealType.

5 Returns: S/Rk.

6 Throws: What and when g throws.

26.5.8 Random number distribution class templates [rand.dist]

1 Each type instantiated from a class template specified in this section 26.5.8 satisfies the requirements of a
random number distribution (26.5.1.6) type.

2 Descriptions are provided in this section 26.5.8 only for distribution operations that are not described in
26.5.1.6 or for operations where there is additional semantic information. In particular, declarations for
copy constructors, for copy assignment operators, for streaming operators, and for equality and inequality
operators are not shown in the synopses.

283) b is introduced to avoid any attempt to produce more bits of randomness than can be held in RealType.

§ 26.5.8 920

c© ISO/IEC N3092

3 The algorithms for producing each of the specified distributions are implementation-defined.

4 The value of each probability density function p(z) and of each discrete probability function P (zi) specified
in this section is 0 everywhere outside its stated domain.

26.5.8.1 Uniform distributions [rand.dist.uni]

26.5.8.1.1 Class template uniform_int_distribution [rand.dist.uni.int]

1 A uniform_int_distribution random number distribution produces random integers i, a ≤ i ≤ b, dis-
tributed according to the constant discrete probability function

P (i | a, b) = 1/(b− a + 1) .

template<class IntType = int>
class uniform_int_distribution

{
public:
// types
typedef IntType result_type;
typedef unspecified param_type;

// constructors and reset functions
explicit uniform_int_distribution(IntType a = 0, IntType b = numeric_limits<IntType>::max());
explicit uniform_int_distribution(const param_type& parm);
void reset();

// generating functions
template<class URNG>

result_type operator()(URNG& g);
template<class URNG>

result_type operator()(URNG& g, const param_type& parm);

// property functions
result_type a() const;
result_type b() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

};

explicit uniform_int_distribution(IntType a = 0, IntType b = numeric_limits<IntType>::max());

2 Requires: a ≤ b.

3 Effects: Constructs a uniform_int_distribution object; a and b correspond to the respective pa-
rameters of the distribution.

result_type a() const;

4 Returns: The value of the a parameter with which the object was constructed.

result_type b() const;

5 Returns: The value of the b parameter with which the object was constructed.

§ 26.5.8.1.1 921

c© ISO/IEC N3092

26.5.8.1.2 Class template uniform_real_distribution [rand.dist.uni.real]

1 A uniform_real_distribution random number distribution produces random numbers x, a ≤ x < b,
distributed according to the constant probability density function

p(x | a, b) = 1/(b− a) .

template<class RealType = double>
class uniform_real_distribution

{
public:
// types
typedef RealType result_type;
typedef unspecified param_type;

// constructors and reset functions
explicit uniform_real_distribution(RealType a = 0.0, RealType b = 1.0);
explicit uniform_real_distribution(const param_type& parm);
void reset();

// generating functions
template<class URNG>

result_type operator()(URNG& g);
template<class URNG>

result_type operator()(URNG& g, const param_type& parm);

// property functions
result_type a() const;
result_type b() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

};

explicit uniform_real_distribution(RealType a = 0.0, RealType b = 1.0);

2 Requires: a ≤ b and b− a ≤ numeric_limits<RealType>::max().

3 Effects: Constructs a uniform_real_distribution object; a and b correspond to the respective
parameters of the distribution.

result_type a() const;

4 Returns: The value of the a parameter with which the object was constructed.

result_type b() const;

5 Returns: The value of the b parameter with which the object was constructed.

§ 26.5.8.1.2 922

c© ISO/IEC N3092

26.5.8.2 Bernoulli distributions [rand.dist.bern]

26.5.8.2.1 Class bernoulli_distribution [rand.dist.bern.bernoulli]

1 A bernoulli_distribution random number distribution produces bool values b distributed according to
the discrete probability function

P (b | p) =
{

p if b = true
1− p if b = false .

class bernoulli_distribution
{
public:
// types
typedef bool result_type;
typedef unspecified param_type;

// constructors and reset functions
explicit bernoulli_distribution(double p = 0.5);
explicit bernoulli_distribution(const param_type& parm);
void reset();

// generating functions
template<class URNG>

result_type operator()(URNG& g);
template<class URNG>

result_type operator()(URNG& g, const param_type& parm);

// property functions
double p() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

};

explicit bernoulli_distribution(double p = 0.5);

2 Requires: 0 ≤ p ≤ 1.

3 Effects: Constructs a bernoulli_distribution object; p corresponds to the parameter of the distri-
bution.

double p() const;

4 Returns: The value of the p parameter with which the object was constructed.

26.5.8.2.2 Class template binomial_distribution [rand.dist.bern.bin]

1 A binomial_distribution random number distribution produces integer values i ≥ 0 distributed according
to the discrete probability function

P (i | t, p) =
(

t

i

)
· pi · (1− p)t−i .

§ 26.5.8.2.2 923

c© ISO/IEC N3092

template<class IntType = int>
class binomial_distribution

{
public:
// types
typedef IntType result_type;
typedef unspecified param_type;

// constructors and reset functions
explicit binomial_distribution(IntType t = 1, double p = 0.5);
explicit binomial_distribution(const param_type& parm);
void reset();

// generating functions
template<class URNG>

result_type operator()(URNG& g);
template<class URNG>

result_type operator()(URNG& g, const param_type& parm);

// property functions
IntType t() const;
double p() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

};

explicit binomial_distribution(IntType t = 1, double p = 0.5);

2 Requires: 0 ≤ p ≤ 1 and 0 ≤ t.

3 Effects: Constructs a binomial_distribution object; t and p correspond to the respective parameters
of the distribution.

IntType t() const;

4 Returns: The value of the t parameter with which the object was constructed.

double p() const;

5 Returns: The value of the p parameter with which the object was constructed.

26.5.8.2.3 Class template geometric_distribution [rand.dist.bern.geo]

1 A geometric_distribution random number distribution produces integer values i ≥ 0 distributed accord-
ing to the discrete probability function

P (i | p) = p · (1− p)i .

template<class IntType = int>
class geometric_distribution

{
public:

§ 26.5.8.2.3 924

c© ISO/IEC N3092

// types
typedef IntType result_type;
typedef unspecified param_type;

// constructors and reset functions
explicit geometric_distribution(double p = 0.5);
explicit geometric_distribution(const param_type& parm);
void reset();

// generating functions
template<class URNG>

result_type operator()(URNG& g);
template<class URNG>

result_type operator()(URNG& g, const param_type& parm);

// property functions
double p() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
};

explicit geometric_distribution(double p = 0.5);

2 Requires: 0 < p < 1.

3 Effects: Constructs a geometric_distribution object; p corresponds to the parameter of the distri-
bution.

double p() const;

4 Returns: The value of the p parameter with which the object was constructed.

26.5.8.2.4 Class template negative_binomial_distribution [rand.dist.bern.negbin]

1 A negative_binomial_distribution random number distribution produces random integers i ≥ 0 dis-
tributed according to the discrete probability function

P (i | k, p) =
(

k + i− 1
i

)
· pk · (1− p)i .

template<class IntType = int>
class negative_binomial_distribution

{
public:
// types
typedef IntType result_type;
typedef unspecified param_type;

// constructor and reset functions
explicit negative_binomial_distribution(IntType k = 1, double p = 0.5);
explicit negative_binomial_distribution(const param_type& parm);
void reset();

§ 26.5.8.2.4 925

c© ISO/IEC N3092

// generating functions
template<class URNG>

result_type operator()(URNG& g);
template<class URNG>

result_type operator()(URNG& g, const param_type& parm);

// property functions
IntType k() const;
double p() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

};

explicit negative_binomial_distribution(IntType k = 1, double p = 0.5);

2 Requires: 0 < p ≤ 1 and 0 < k.

3 Effects: Constructs a negative_binomial_distribution object; k and p correspond to the respective
parameters of the distribution.

IntType k() const;

4 Returns: The value of the k parameter with which the object was constructed.

double p() const;

5 Returns: The value of the p parameter with which the object was constructed.

26.5.8.3 Poisson distributions [rand.dist.pois]

26.5.8.3.1 Class template poisson_distribution [rand.dist.pois.poisson]

1 A poisson_distribution random number distribution produces integer values i ≥ 0 distributed according
to the discrete probability function

P (i |µ) =
e−µµi

i !
.

The distribution parameter µ is also known as this distribution’s mean .
template<class IntType = int>
class poisson_distribution

{
public:
// types
typedef IntType result_type;
typedef unspecified param_type;

// constructors and reset functions
explicit poisson_distribution(double mean = 1.0);
explicit poisson_distribution(const param_type& parm);
void reset();

§ 26.5.8.3.1 926

c© ISO/IEC N3092

// generating functions
template<class URNG>

result_type operator()(URNG& g);
template<class URNG>

result_type operator()(URNG& g, const param_type& parm);

// property functions
double mean() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

};

explicit poisson_distribution(double mean = 1.0);

2 Requires: 0 < mean.

3 Effects: Constructs a poisson_distribution object; mean corresponds to the parameter of the dis-
tribution.

double mean() const;

4 Returns: The value of the mean parameter with which the object was constructed.

26.5.8.3.2 Class template exponential_distribution [rand.dist.pois.exp]

1 An exponential_distribution random number distribution produces random numbers x > 0 distributed
according to the probability density function

p(x |λ) = λe−λx .

template<class RealType = double>
class exponential_distribution

{
public:
// types
typedef RealType result_type;
typedef unspecified param_type;

// constructors and reset functions
explicit exponential_distribution(RealType lambda = 1.0);
explicit exponential_distribution(const param_type& parm);
void reset();

// generating functions
template<class URNG>

result_type operator()(URNG& g);
template<class URNG>

result_type operator()(URNG& g, const param_type& parm);

// property functions
RealType lambda() const;
param_type param() const;

§ 26.5.8.3.2 927

c© ISO/IEC N3092

void param(const param_type& parm);
result_type min() const;
result_type max() const;

};

explicit exponential_distribution(RealType lambda = 1.0);

2 Requires: 0 < lambda.

3 Effects: Constructs a exponential_distribution object; lambda corresponds to the parameter of
the distribution.

RealType lambda() const;

4 Returns: The value of the lambda parameter with which the object was constructed.

26.5.8.3.3 Class template gamma_distribution [rand.dist.pois.gamma]

1 A gamma_distribution random number distribution produces random numbers x > 0 distributed according
to the probability density function

p(x |α, β) =
e−x/β

βα · Γ(α)
· xα−1 .

template<class RealType = double>
class gamma_distribution

{
public:
// types
typedef RealType result_type;
typedef unspecified param_type;

// constructors and reset functions
explicit gamma_distribution(RealType alpha = 1.0, RealType beta = 1.0);
explicit gamma_distribution(const param_type& parm);
void reset();

// generating functions
template<class URNG>

result_type operator()(URNG& g);
template<class URNG>

result_type operator()(URNG& g, const param_type& parm);

// property functions
RealType alpha() const;
RealType beta() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

};

explicit gamma_distribution(RealType alpha = 1.0, RealType beta = 1.0);

§ 26.5.8.3.3 928

c© ISO/IEC N3092

2 Requires: 0 < alpha and 0 < beta.

3 Effects: Constructs a gamma_distribution object; alpha and beta correspond to the parameters of
the distribution.

RealType alpha() const;

4 Returns: The value of the alpha parameter with which the object was constructed.

RealType beta() const;

5 Returns: The value of the beta parameter with which the object was constructed.

26.5.8.3.4 Class template weibull_distribution [rand.dist.pois.weibull]

1 A weibull_distribution random number distribution produces random numbers x ≥ 0 distributed ac-
cording to the probability density function

p(x | a, b) =
a

b
·
(x

b

)a−1

· exp
(
−
(x

b

)a)
.

template<class RealType = double>
class weibull_distribution

{
public:
// types
typedef RealType result_type;
typedef unspecified param_type;

// constructor and reset functions
explicit weibull_distribution(RealType a = 1.0, RealType b = 1.0)
explicit weibull_distribution(const param_type& parm);
void reset();

// generating functions
template<class URNG>

result_type operator()(URNG& g);
template<class URNG>

result_type operator()(URNG& g, const param_type& parm);

// property functions
RealType a() const;
RealType b() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

};

explicit weibull_distribution(RealType a = 1.0, RealType b = 1.0);

2 Requires: 0 < a and 0 < b.

3 Effects: Constructs a weibull_distribution object; a and b correspond to the respective parameters
of the distribution.

§ 26.5.8.3.4 929

c© ISO/IEC N3092

RealType a() const;

4 Returns: The value of the a parameter with which the object was constructed.

RealType b() const;

5 Returns: The value of the b parameter with which the object was constructed.

26.5.8.3.5 Class template extreme_value_distribution [rand.dist.pois.extreme]

1 An extreme_value_distribution random number distribution produces random numbers x distributed
according to the probability density function284

p(x | a, b) =
1
b
· exp

(
a− x

b
− exp

(
a− x

b

))
.

template<class RealType = double>
class extreme_value_distribution

{
public:
// types
typedef RealType result_type;
typedef unspecified param_type;

// constructor and reset functions
explicit extreme_value_distribution(RealType a = 0.0, RealType b = 1.0);
explicit extreme_value_distribution(const param_type& parm);
void reset();

// generating functions
template<class URNG>

result_type operator()(URNG& g);
template<class URNG>

result_type operator()(URNG& g, const param_type& parm);

// property functions
RealType a() const;
RealType b() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

};

explicit extreme_value_distribution(RealType a = 0.0, RealType b = 1.0);

2 Requires: 0 < b.

3 Effects: Constructs an extreme_value_distribution object; a and b correspond to the respective
parameters of the distribution.

284) The distribution corresponding to this probability density function is also known (with a possible change of variable) as
the Gumbel Type I, the log-Weibull, or the Fisher-Tippett Type I distribution.

§ 26.5.8.3.5 930

c© ISO/IEC N3092

RealType a() const;

4 Returns: The value of the a parameter with which the object was constructed.

RealType b() const;

5 Returns: The value of the b parameter with which the object was constructed.

26.5.8.4 Normal distributions [rand.dist.norm]

26.5.8.4.1 Class template normal_distribution [rand.dist.norm.normal]

1 A normal_distribution random number distribution produces random numbers x distributed according
to the probability density function

p(x |µ, σ) =
1

σ
√

2π
· exp

(
− (x− µ)2

2σ2

)
.

The distribution parameters µ and σ are also known as this distribution’s mean and standard deviation .
template<class RealType = double>
class normal_distribution

{
public:
// types
typedef RealType result_type;
typedef unspecified param_type;

// constructors and reset functions
explicit normal_distribution(RealType mean = 0.0, RealType stddev = 1.0);
explicit normal_distribution(const param_type& parm);
void reset();

// generating functions
template<class URNG>

result_type operator()(URNG& g);
template<class URNG>

result_type operator()(URNG& g, const param_type& parm);

// property functions
RealType mean() const;
RealType stddev() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

};

explicit normal_distribution(RealType mean = 0.0, RealType stddev = 1.0);

2 Requires: 0 < stddev.

3 Effects: Constructs a normal_distribution object; mean and stddev correspond to the respective
parameters of the distribution.

§ 26.5.8.4.1 931

c© ISO/IEC N3092

RealType mean() const;

4 Returns: The value of the mean parameter with which the object was constructed.

RealType stddev() const;

5 Returns: The value of the stddev parameter with which the object was constructed.

26.5.8.4.2 Class template lognormal_distribution [rand.dist.norm.lognormal]

1 A lognormal_distribution random number distribution produces random numbers x > 0 distributed
according to the probability density function

p(x |m, s) =
1

sx
√

2π
· exp

(
− (lnx−m)2

2s2

)
.

template<class RealType = double>
class lognormal_distribution

{
public:
// types
typedef RealType result_type;
typedef unspecified param_type;

// constructor and reset functions
explicit lognormal_distribution(RealType m = 0.0, RealType s = 1.0);
explicit lognormal_distribution(const param_type& parm);
void reset();

// generating functions
template<class URNG>

result_type operator()(URNG& g);
template<class URNG>

result_type operator()(URNG& g, const param_type& parm);

// property functions
RealType m() const;
RealType s() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

};

explicit lognormal_distribution(RealType m = 0.0, RealType s = 1.0);

2 Requires: 0 < s.

3 Effects: Constructs a lognormal_distribution object; m and s correspond to the respective param-
eters of the distribution.

RealType m() const;

4 Returns: The value of the m parameter with which the object was constructed.

§ 26.5.8.4.2 932

c© ISO/IEC N3092

RealType s() const;

5 Returns: The value of the s parameter with which the object was constructed.

26.5.8.4.3 Class template chi_squared_distribution [rand.dist.norm.chisq]

1 A chi_squared_distribution random number distribution produces random numbers x > 0 distributed
according to the probability density function

p(x |n) =
x(n/2)−1 · e−x/2

Γ(n/2) · 2n/2
.

template<class RealType = double>
class chi_squared_distribution

{
public:
// types
typedef RealType result_type;
typedef unspecified param_type;

// constructor and reset functions
explicit chi_squared_distribution(RealType n = 1);
explicit chi_squared_distribution(const param_type& parm);
void reset();

// generating functions
template<class URNG>

result_type operator()(URNG& g);
template<class URNG>

result_type operator()(URNG& g, const param_type& parm);

// property functions
RealType n() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

};

explicit chi_squared_distribution(RealType n = 1);

2 Requires: 0 < n.

3 Effects: Constructs a chi_squared_distribution object; n corresponds to the parameter of the
distribution.

RealType n() const;

4 Returns: The value of the n parameter with which the object was constructed.

§ 26.5.8.4.3 933

c© ISO/IEC N3092

26.5.8.4.4 Class template cauchy_distribution [rand.dist.norm.cauchy]

1 A cauchy_distribution random number distribution produces random numbers x distributed according
to the probability density function

p(x | a, b) =

(
πb

(
1 +

(
x− a

b

)2
))−1

.

template<class RealType = double>
class cauchy_distribution

{
public:
// types
typedef RealType result_type;
typedef unspecified param_type;

// constructor and reset functions
explicit cauchy_distribution(RealType a = 0.0, RealType b = 1.0);
explicit cauchy_distribution(const param_type& parm);
void reset();

// generating functions
template<class URNG>

result_type operator()(URNG& g);
template<class URNG>

result_type operator()(URNG& g, const param_type& parm);

// property functions
RealType a() const;
RealType b() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

};

explicit cauchy_distribution(RealType a = 0.0, RealType b = 1.0);

2 Requires: 0 < b.

3 Effects: Constructs a cauchy_distribution object; a and b correspond to the respective parameters
of the distribution.

RealType a() const;

4 Returns: The value of the a parameter with which the object was constructed.

RealType b() const;

5 Returns: The value of the b parameter with which the object was constructed.

§ 26.5.8.4.4 934

c© ISO/IEC N3092

26.5.8.4.5 Class template fisher_f_distribution [rand.dist.norm.f]

1 A fisher_f_distribution random number distribution produces random numbers x ≥ 0 distributed ac-
cording to the probability density function

p(x |m,n) =
Γ
(
(m + n)/2

)
Γ(m/2) Γ(n/2)

·
(m

n

)m/2

· x(m/2)−1 ·
(
1 +

mx

n

)−(m+n)/2

.

template<class RealType = double>
class fisher_f_distribution

{
public:
// types
typedef RealType result_type;
typedef unspecified param_type;

// constructor and reset functions
explicit fisher_f_distribution(RealType m = 1, RealType n = 1);
explicit fisher_f_distribution(const param_type& parm);
void reset();

// generating functions
template<class URNG>

result_type operator()(URNG& g);
template<class URNG>

result_type operator()(URNG& g, const param_type& parm);

// property functions
RealType m() const;
RealType n() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

};

explicit fisher_f_distribution(RealType m = 1, RealType n = 1);

2 Requires: 0 < m and 0 < n.

3 Effects: Constructs a fisher_f_distribution object; m and n correspond to the respective parameters
of the distribution.

RealType m() const;

4 Returns: The value of the m parameter with which the object was constructed.

RealType n() const;

5 Returns: The value of the n parameter with which the object was constructed.

§ 26.5.8.4.5 935

c© ISO/IEC N3092

26.5.8.4.6 Class template student_t_distribution [rand.dist.norm.t]

1 A student_t_distribution random number distribution produces random numbers x distributed according
to the probability density function

p(x |n) =
1√
nπ

·
Γ
(
(n + 1)/2

)
Γ(n/2)

·
(

1 +
x2

n

)−(n+1)/2

.

template<class RealType = double>
class student_t_distribution

{
public:
// types
typedef RealType result_type;
typedef unspecified param_type;

// constructor and reset functions
explicit student_t_distribution(RealType n = 1);
explicit student_t_distribution(const param_type& parm);
void reset();

// generating functions
template<class URNG>

result_type operator()(URNG& g);
template<class URNG>

result_type operator()(URNG& g, const param_type& parm);

// property functions
RealType n() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

};

explicit student_t_distribution(RealType n = 1);

2 Requires: 0 < n.

3 Effects: Constructs a student_t_distribution object; n corresponds to the parameter of the distri-
bution.

RealType n() const;

4 Returns: The value of the n parameter with which the object was constructed.

26.5.8.5 Sampling distributions [rand.dist.samp]

26.5.8.5.1 Class template discrete_distribution [rand.dist.samp.discrete]

1 A discrete_distribution random number distribution produces random integers i, 0 ≤ i < n, distributed
according to the discrete probability function

P (i | p0, . . . , pn−1) = pi .

§ 26.5.8.5.1 936

c© ISO/IEC N3092

2 Unless specified otherwise, the distribution parameters are calculated as: pk = wk/S for k = 0, . . . , n−1 ,
in which the values wk, commonly known as the weights , shall be non-negative, non-NaN, and non-infinity.
Moreover, the following relation shall hold: 0 < S = w0 + · · ·+ wn−1.

template<class IntType = int>
class discrete_distribution

{
public:
// types
typedef IntType result_type;
typedef unspecified param_type;

// constructor and reset functions
discrete_distribution();
template<class InputIterator>

discrete_distribution(InputIterator firstW, InputIterator lastW);
discrete_distribution(initializer_list<double> wl);
template<class UnaryOperation>

discrete_distribution(size_t nw, double xmin, double xmax, UnaryOperation fw);
explicit discrete_distribution(const param_type& parm);
void reset();

// generating functions
template<class URNG>

result_type operator()(URNG& g);
template<class URNG>

result_type operator()(URNG& g, const param_type& parm);

// property functions
vector<double> probabilities() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

};

discrete_distribution();

3 Effects: Constructs a discrete_distribution object with n = 1 and p0 = 1. [Note: Such an object
will always deliver the value 0. — end note]

template<class InputIterator>
discrete_distribution(InputIterator firstW, InputIterator lastW);

4 Requires: InputIterator shall satisfy the requirements of an input iterator (Table 104) type. More-
over, iterator_traits<InputIterator>::value_type shall denote a type that is convertible to
double. If firstW == lastW, let n = 1 and w0 = 1. Otherwise,

[
firstW, lastW

)
shall form a se-

quence w of length n > 0.

5 Effects: Constructs a discrete_distribution object with probabilities given by the formula above.

discrete_distribution(initializer_list<double> wl);

6 Effects: Same as discrete_distribution(wl.begin(), wl.end()).

§ 26.5.8.5.1 937

c© ISO/IEC N3092

template<class UnaryOperation>
discrete_distribution(size_t nw, double xmin, double xmax, UnaryOperation fw);

7 Requires: Each instance of type UnaryOperation shall be a function object (20.8) whose return type
shall be convertible to double. Moreover, double shall be convertible to the type of UnaryOperation’s
sole parameter. If nw = 0, let n = 1, otherwise let n = nw. The relation 0 < δ = (xmax− xmin)/n shall
hold.

8 Effects: Constructs a discrete_distribution object with probabilities given by the formula above,
using the following values: If nw = 0, let w0 = 1. Otherwise, let wk = fw(xmin + k · δ + δ/2) for
k = 0, . . . , n−1.

9 Complexity: The number of invocations of fw shall not exceed n.

vector<double> probabilities() const;

10 Returns: A vector<double> whose size member returns n and whose operator[] member returns
pk when invoked with argument k for k = 0, . . . , n−1.

26.5.8.5.2 Class template piecewise_constant_distribution [rand.dist.samp.pconst]

1 A piecewise_constant_distribution random number distribution produces random numbers x, b0 ≤ x <
bn, uniformly distributed over each subinterval [bi, bi+1) according to the probability density function

p(x | b0, . . . , bn, ρ0, . . . , ρn−1) = ρi , for bi ≤ x < bi+1 .

2 The n + 1 distribution parameters bi, also known as this distribution’s interval boundaries , shall satisfy the
relation bi < bi+1 for i = 0, . . . , n−1. Unless specified otherwise, the remaining n distribution parameters
are calculated as:

ρk =
wk

S · (bk+1 − bk)
for k = 0, . . . , n−1,

in which the values wk, commonly known as the weights , shall be non-negative, non-NaN, and non-infinity.
Moreover, the following relation shall hold: 0 < S = w0 + · · ·+ wn−1.

template<class RealType = double>
class piecewise_constant_distribution

{
public:
// types
typedef RealType result_type;
typedef unspecified param_type;

// constructor and reset functions
piecewise_constant_distribution();
template<class InputIteratorB, class InputIteratorW>

piecewise_constant_distribution(InputIteratorB firstB, InputIteratorB lastB,
InputIteratorW firstW);

template<class UnaryOperation>
piecewise_constant_distribution(initializer_list<RealType> bl, UnaryOperation fw);

template<class UnaryOperation>
piecewise_constant_distribution(size_t nw, RealType xmin, RealType xmax, UnaryOperation fw);

explicit piecewise_constant_distribution(const param_type& parm);
void reset();

§ 26.5.8.5.2 938

c© ISO/IEC N3092

// generating functions
template<class URNG>

result_type operator()(URNG& g);
template<class URNG>

result_type operator()(URNG& g, const param_type& parm);

// property functions
vector<result_type> intervals() const;
vector<double> densities() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

};

piecewise_constant_distribution();

3 Effects: Constructs a piecewise_constant_distribution object with n = 1, ρ0 = 1, b0 = 0, and
b1 = 1.

template<class InputIteratorB, class InputIteratorW>
piecewise_constant_distribution(InputIteratorB firstB, InputIteratorB lastB,

InputIteratorW firstW);

4 Requires: InputIteratorB and InputIteratorW shall each satisfy the requirements of an input itera-
tor (Table 104) type. Moreover, iterator_traits<InputIteratorB>::value_type and iterator_-
traits<InputIteratorW>::value_type shall each denote a type that is convertible to double. If
firstB == lastB or ++firstB == lastB, let n = 1, w0 = 1, b0 = 0, and b1 = 1. Otherwise,[
firstB, lastB

)
shall form a sequence b of length n + 1, the length of the sequence w starting from

firstW shall be at least n, and any wk for k ≥ n shall be ignored by the distribution.

5 Effects: Constructs a piecewise_constant_distribution object with parameters as specified above.

template<class UnaryOperation>
piecewise_constant_distribution(initializer_list<RealType> bl, UnaryOperation fw);

6 Requires: Each instance of type UnaryOperation shall be a function object (20.8) whose return type
shall be convertible to double. Moreover, double shall be convertible to the type of UnaryOperation’s
sole parameter.

7 Effects: Constructs a piecewise_constant_distribution object with parameters taken or calculated
from the following values: If bl.size() < 2, let n = 1, w0 = 1, b0 = 0, and b1 = 1. Otherwise, let[
bl.begin(), bl.end()

)
form a sequence b0, . . . , bn, and let wk = fw

((
bk+1+bk

)
/2
)

for k = 0, . . . , n−1.

8 Complexity: The number of invocations of fw shall not exceed n.

template<class UnaryOperation>
piecewise_constant_distribution(size_t nw, RealType xmin, RealType xmax, UnaryOperation fw);

9 Requires: Each instance of type UnaryOperation shall be a function object (20.8) whose return type
shall be convertible to double. Moreover, double shall be convertible to the type of UnaryOperation’s
sole parameter. If nw = 0, let n = 1, otherwise let n = nw. The relation 0 < δ = (xmax− xmin)/n shall
hold.

§ 26.5.8.5.2 939

c© ISO/IEC N3092

10 Effects: Constructs a piecewise_constant_distribution object with parameters taken or calculated
from the following values: Let bk = xmin+k·δ for k = 0, . . . , n, and wk = fw(bk+δ/2) for k = 0, . . . , n−1.

11 Complexity: The number of invocations of fw shall not exceed n.

vector<result_type> intervals() const;

12 Returns: A vector<result_type> whose size member returns n+1 and whose operator[] member
returns bk when invoked with argument k for k = 0, . . . , n.

vector<double> densities() const;

13 Returns: A vector<result_type> whose size member returns n and whose operator[] member
returns ρk when invoked with argument k for k = 0, . . . , n−1.

26.5.8.5.3 Class template piecewise_linear_distribution [rand.dist.samp.plinear]

1 A piecewise_linear_distribution random number distribution produces random numbers x, b0 ≤ x <
bn, distributed over each subinterval [bi, bi+1) according to the probability density function

p(x | b0, . . . , bn, ρ0, . . . , ρn) = ρi ·
bi+1 − x

bi+1 − bi
+ ρi+1 ·

x− bi

bi+1 − bi
, for bi ≤ x < bi+1 .

2 The n + 1 distribution parameters bi, also known as this distribution’s interval boundaries , shall satisfy the
relation bi < bi+1 for i = 0, . . . , n−1. Unless specified otherwise, the remaining n+1 distribution parameters
are calculated as ρk = wk/S for k = 0, . . . , n, in which the values wk, commonly known as the weights at
boundaries , shall be non-negative, non-NaN, and non-infinity. Moreover, the following relation shall hold:

0 < S =
1
2
·

n−1∑
k=0

(wk + wk+1) · (bk+1 − bk) .

template<class RealType = double>
class piecewise_linear_distribution

{
public:
// types
typedef RealType result_type;
typedef unspecified param_type;

// constructor and reset functions
piecewise_linear_distribution();
template<class InputIteratorB, class InputIteratorW>

piecewise_linear_distribution(InputIteratorB firstB, InputIteratorB lastB,
InputIteratorW firstW);

template<class UnaryOperation>
piecewise_linear_distribution(initializer_list<RealType> bl, UnaryOperation fw);

template<class UnaryOperation>
piecewise_linear_distribution(size_t nw, RealType xmin, RealType xmax, UnaryOperation fw);

explicit piecewise_linear_distribution(const param_type& parm);
void reset();

// generating functions

§ 26.5.8.5.3 940

c© ISO/IEC N3092

template<class URNG>
result_type operator()(URNG& g);

template<class URNG>
result_type operator()(URNG& g, const param_type& parm);

// property functions
vector<result_type> intervals() const;
vector<double> densities() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

};

piecewise_linear_distribution();

3 Effects: Constructs a piecewise_linear_distribution object with n = 1, ρ0 = ρ1 = 1, b0 = 0, and
b1 = 1.

template<class InputIteratorB, class InputIteratorW>
piecewise_linear_distribution(InputIteratorB firstB, InputIteratorB lastB,

InputIteratorW firstW);

4 Requires: InputIteratorB and InputIteratorW shall each satisfy the requirements of an input itera-
tor (Table 104) type. Moreover, iterator_traits<InputIteratorB>::value_type and iterator_-
traits<InputIteratorW>::value_type shall each denote a type that is convertible to double. If
firstB == lastB or ++firstB == lastB, let n = 1, ρ0 = ρ1 = 1, b0 = 0, and b1 = 1. Otherwise,[
firstB, lastB

)
shall form a sequence b of length n + 1, the length of the sequence w starting from

firstW shall be at least n + 1, and any wk for k ≥ n + 1 shall be ignored by the distribution.

5 Effects: Constructs a piecewise_linear_distribution object with parameters as specified above.

template<class UnaryOperation>
piecewise_linear_distribution(initializer_list<RealType> bl, UnaryOperation fw);

6 Requires: Each instance of type UnaryOperation shall be a function object (20.8) whose return type
shall be convertible to double. Moreover, double shall be convertible to the type of UnaryOperation’s
sole parameter.

7 Effects: Constructs a piecewise_linear_distribution object with parameters taken or calculated
from the following values: If bl.size() < 2, let n = 1, ρ0 = ρ1 = 1, b0 = 0, and b1 = 1. Otherwise,
let
[
bl.begin(),bl.end()

)
form a sequence b0, . . . , bn, and let wk = fw(bk) for k = 0, . . . , n.

8 Complexity: The number of invocations of fw shall not exceed n + 1.

template<class UnaryOperation>
piecewise_linear_distribution(size_t nw, RealType xmin, RealType xmax, UnaryOperation fw);

9 Requires: Each instance of type UnaryOperation shall be a function object (20.8) whose return type
shall be convertible to double. Moreover, double shall be convertible to the type of UnaryOperation’s
sole parameter. If nw = 0, let n = 1, otherwise let n = nw. The relation 0 < δ = (xmax− xmin)/n shall
hold.

§ 26.5.8.5.3 941

c© ISO/IEC N3092

10 Effects: Constructs a piecewise_linear_distribution object with parameters taken or calculated
from the following values: Let bk = xmin + k · δ for k = 0, . . . , n, and wk = fw(bk + δ) for k = 0, . . . , n.

11 Complexity: The number of invocations of fw shall not exceed n + 1.

vector<result_type> intervals() const;

12 Returns: A vector<result_type> whose size member returns n+1 and whose operator[] member
returns bk when invoked with argument k for k = 0, . . . , n.

vector<double> densities() const;

13 Returns: A vector<result_type> whose size member returns n and whose operator[] member
returns ρk when invoked with argument k for k = 0, . . . , n.

26.6 Numeric arrays [numarray]

26.6.1 Header <valarray> synopsis [valarray.syn]

namespace std {
#include <initializer_list>

template<class T> class valarray; // An array of type T
class slice; // a BLAS-like slice out of an array
template<class T> class slice_array;
class gslice; // a generalized slice out of an array
template<class T> class gslice_array;
template<class T> class mask_array; // a masked array
template<class T> class indirect_array; // an indirected array

template<class T> void swap(valarray<T>&, valarray<T>&);

template<class T> valarray<T> operator* (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator* (const valarray<T>&, const T&);
template<class T> valarray<T> operator* (const T&, const valarray<T>&);

template<class T> valarray<T> operator/ (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator/ (const valarray<T>&, const T&);
template<class T> valarray<T> operator/ (const T&, const valarray<T>&);

template<class T> valarray<T> operator% (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator% (const valarray<T>&, const T&);
template<class T> valarray<T> operator% (const T&, const valarray<T>&);

template<class T> valarray<T> operator+ (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator+ (const valarray<T>&, const T&);
template<class T> valarray<T> operator+ (const T&, const valarray<T>&);

template<class T> valarray<T> operator- (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator- (const valarray<T>&, const T&);
template<class T> valarray<T> operator- (const T&, const valarray<T>&);

template<class T> valarray<T> operator^ (const valarray<T>&, const valarray<T>&);

§ 26.6.1 942

c© ISO/IEC N3092

template<class T> valarray<T> operator^ (const valarray<T>&, const T&);
template<class T> valarray<T> operator^ (const T&, const valarray<T>&);

template<class T> valarray<T> operator& (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator& (const valarray<T>&, const T&);
template<class T> valarray<T> operator& (const T&, const valarray<T>&);

template<class T> valarray<T> operator| (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator| (const valarray<T>&, const T&);
template<class T> valarray<T> operator| (const T&, const valarray<T>&);

template<class T> valarray<T> operator<<(const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator<<(const valarray<T>&, const T&);
template<class T> valarray<T> operator<<(const T&, const valarray<T>&);

template<class T> valarray<T> operator>>(const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator>>(const valarray<T>&, const T&);
template<class T> valarray<T> operator>>(const T&, const valarray<T>&);

template<class T> valarray<bool> operator&&(const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator&&(const valarray<T>&, const T&);
template<class T> valarray<bool> operator&&(const T&, const valarray<T>&);

template<class T> valarray<bool> operator||(const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator||(const valarray<T>&, const T&);
template<class T> valarray<bool> operator||(const T&, const valarray<T>&);

template<class T>
valarray<bool> operator==(const valarray<T>&, const valarray<T>&);

template<class T> valarray<bool> operator==(const valarray<T>&, const T&);
template<class T> valarray<bool> operator==(const T&, const valarray<T>&);
template<class T>

valarray<bool> operator!=(const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator!=(const valarray<T>&, const T&);
template<class T> valarray<bool> operator!=(const T&, const valarray<T>&);

template<class T>
valarray<bool> operator< (const valarray<T>&, const valarray<T>&);

template<class T> valarray<bool> operator< (const valarray<T>&, const T&);
template<class T> valarray<bool> operator< (const T&, const valarray<T>&);
template<class T>

valarray<bool> operator> (const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator> (const valarray<T>&, const T&);
template<class T> valarray<bool> operator> (const T&, const valarray<T>&);
template<class T>

valarray<bool> operator<=(const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator<=(const valarray<T>&, const T&);
template<class T> valarray<bool> operator<=(const T&, const valarray<T>&);
template<class T>

valarray<bool> operator>=(const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator>=(const valarray<T>&, const T&);
template<class T> valarray<bool> operator>=(const T&, const valarray<T>&);

template<class T> valarray<T> abs (const valarray<T>&);
template<class T> valarray<T> acos (const valarray<T>&);

§ 26.6.1 943

c© ISO/IEC N3092

template<class T> valarray<T> asin (const valarray<T>&);
template<class T> valarray<T> atan (const valarray<T>&);

template<class T> valarray<T> atan2(const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> atan2(const valarray<T>&, const T&);
template<class T> valarray<T> atan2(const T&, const valarray<T>&);

template<class T> valarray<T> cos (const valarray<T>&);
template<class T> valarray<T> cosh (const valarray<T>&);
template<class T> valarray<T> exp (const valarray<T>&);
template<class T> valarray<T> log (const valarray<T>&);
template<class T> valarray<T> log10(const valarray<T>&);

template<class T> valarray<T> pow(const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> pow(const valarray<T>&, const T&);
template<class T> valarray<T> pow(const T&, const valarray<T>&);

template<class T> valarray<T> sin (const valarray<T>&);
template<class T> valarray<T> sinh (const valarray<T>&);
template<class T> valarray<T> sqrt (const valarray<T>&);
template<class T> valarray<T> tan (const valarray<T>&);
template<class T> valarray<T> tanh (const valarray<T>&);

template <class T> unspecified1 begin(valarray<T>& v);
template <class T> unspecified2 begin(const valarray<T>& v);
template <class T> unspecified1 end(valarray<T>& v);
template <class T> unspecified2 end(const valarray<T>& v);

}

1 The header <valarray> defines five class templates (valarray, slice_array, gslice_array, mask_array,
and indirect_array), two classes (slice and gslice), and a series of related function templates for rep-
resenting and manipulating arrays of values.

2 The valarray array classes are defined to be free of certain forms of aliasing, thus allowing operations on
these classes to be optimized.

3 Any function returning a valarray<T> is permitted to return an object of another type, provided all the
const member functions of valarray<T> are also applicable to this type. This return type shall not add
more than two levels of template nesting over the most deeply nested argument type.285

4 Implementations introducing such replacement types shall provide additional functions and operators as
follows:

— for every function taking a const valarray<T>&, identical functions taking the replacement types
shall be added;

— for every function taking two const valarray<T>& arguments, identical functions taking every com-
bination of const valarray<T>& and replacement types shall be added.

5 In particular, an implementation shall allow a valarray<T> to be constructed from such replacement types
and shall allow assignments and computed assignments of such types to valarray<T>, slice_array<T>,
gslice_array<T>, mask_array<T> and indirect_array<T> objects.

285) Clause 18.3.1 recommends a minimum number of recursively nested template instantiations. This requirement thus
indirectly suggests a minimum allowable complexity for valarray expressions.

§ 26.6.1 944

c© ISO/IEC N3092

6 These library functions are permitted to throw a bad_alloc (18.6.2.1) exception if there are not sufficient
resources available to carry out the operation. Note that the exception is not mandated.

26.6.2 Class template valarray [template.valarray]

namespace std {
template<class T> class valarray {
public:

typedef T value_type;

// 26.6.2.1 construct/destroy:
valarray();
explicit valarray(size_t);
valarray(const T&, size_t);
valarray(const T*, size_t);
valarray(const valarray&);
valarray(valarray&&);
valarray(const slice_array<T>&);
valarray(const gslice_array<T>&);
valarray(const mask_array<T>&);
valarray(const indirect_array<T>&);
valarray(initializer_list<T>);
~valarray();

// 26.6.2.2 assignment:
valarray<T>& operator=(const valarray<T>&);
valarray<T>& operator=(valarray<T>&&);
valarray& operator=(initializer_list<T>);
valarray<T>& operator=(const T&);
valarray<T>& operator=(const slice_array<T>&);
valarray<T>& operator=(const gslice_array<T>&);
valarray<T>& operator=(const mask_array<T>&);
valarray<T>& operator=(const indirect_array<T>&);

// 26.6.2.3 element access:
const T& operator[](size_t) const;
T& operator[](size_t);

// 26.6.2.4 subset operations:
valarray<T> operator[](slice) const;
slice_array<T> operator[](slice);
valarray<T> operator[](const gslice&) const;
gslice_array<T> operator[](const gslice&);
valarray<T> operator[](const valarray<bool>&) const;
mask_array<T> operator[](const valarray<bool>&);
valarray<T> operator[](const valarray<size_t>&) const;
indirect_array<T> operator[](const valarray<size_t>&);

// 26.6.2.5 unary operators:
valarray<T> operator+() const;
valarray<T> operator-() const;
valarray<T> operator~() const;
valarray<bool> operator!() const;

// 26.6.2.6 computed assignment:

§ 26.6.2 945

c© ISO/IEC N3092

valarray<T>& operator*= (const T&);
valarray<T>& operator/= (const T&);
valarray<T>& operator%= (const T&);
valarray<T>& operator+= (const T&);
valarray<T>& operator-= (const T&);
valarray<T>& operator^= (const T&);
valarray<T>& operator&= (const T&);
valarray<T>& operator|= (const T&);
valarray<T>& operator<<=(const T&);
valarray<T>& operator>>=(const T&);

valarray<T>& operator*= (const valarray<T>&);
valarray<T>& operator/= (const valarray<T>&);
valarray<T>& operator%= (const valarray<T>&);
valarray<T>& operator+= (const valarray<T>&);
valarray<T>& operator-= (const valarray<T>&);
valarray<T>& operator^= (const valarray<T>&);
valarray<T>& operator|= (const valarray<T>&);
valarray<T>& operator&= (const valarray<T>&);
valarray<T>& operator<<=(const valarray<T>&);
valarray<T>& operator>>=(const valarray<T>&);

// 26.6.2.7 member functions:
void swap(valarray&);

size_t size() const;

T sum() const;
T min() const;
T max() const;

valarray<T> shift (int) const;
valarray<T> cshift(int) const;
valarray<T> apply(T func(T)) const;
valarray<T> apply(T func(const T&)) const;
void resize(size_t sz, T c = T());

};
}

1 The class template valarray<T> is a one-dimensional smart array, with elements numbered sequentially
from zero. It is a representation of the mathematical concept of an ordered set of values. The illusion
of higher dimensionality may be produced by the familiar idiom of computed indices, together with the
powerful subsetting capabilities provided by the generalized subscript operators.286

2 An implementation is permitted to qualify any of the functions declared in <valarray> as inline.

26.6.2.1 valarray constructors [valarray.cons]

valarray();

286) The intent is to specify an array template that has the minimum functionality necessary to address aliasing ambiguities
and the proliferation of temporaries. Thus, the valarray template is neither a matrix class nor a field class. However, it is a
very useful building block for designing such classes.

§ 26.6.2.1 946

c© ISO/IEC N3092

1 Effects: Constructs an object of class valarray<T>287 which has zero length.288

explicit valarray(size_t);

2 The array created by this constructor has a length equal to the value of the argument. The elements
of the array are value-initialized (8.5).

valarray(const T&, size_t);

3 The array created by this constructor has a length equal to the second argument. The elements of the
array are initialized with the value of the first argument.

valarray(const T*, size_t);

4 The array created by this constructor has a length equal to the second argument n. The values of the
elements of the array are initialized with the first n values pointed to by the first argument.289 If the
value of the second argument is greater than the number of values pointed to by the first argument,
the behavior is undefined.

valarray(const valarray<T>&);

5 The array created by this constructor has the same length as the argument array. The elements are
initialized with the values of the corresponding elements of the argument array.290

valarray(valarray<T>&& v);

6 The array created by this constructor has the same length as the argument array. The elements are
initialized with the values of the corresponding elements of the argument array. After construction, v
is in a valid but unspecified state.

7 Complexity: Constant.

8 Throws: Nothing.

valarray(initializer_list<T> il);

9 Effects: Same as valarray(il.begin(), il.size()).

valarray(const slice_array<T>&);
valarray(const gslice_array<T>&);
valarray(const mask_array<T>&);
valarray(const indirect_array<T>&);

10 These conversion constructors convert one of the four reference templates to a valarray.

~valarray();

11 The destructor is applied to every element of *this; an implementation may return all allocated
memory.

287) For convenience, such objects are referred to as “arrays” throughout the remainder of 26.6.
288) This default constructor is essential, since arrays of valarray may be useful. After initialization, the length of an empty
array can be increased with the resize member function.
289) This constructor is the preferred method for converting a C array to a valarray object.
290) This copy constructor creates a distinct array rather than an alias. Implementations in which arrays share storage are
permitted, but they shall implement a copy-on-reference mechanism to ensure that arrays are conceptually distinct.

§ 26.6.2.1 947

c© ISO/IEC N3092

26.6.2.2 valarray assignment [valarray.assign]

valarray<T>& operator=(const valarray<T>& v);

1 Each element of the *this array is assigned the value of the corresponding element of the argument
array. If the length of v is not equal to the length of *this , resizes *this to make the two arrays the
same length, as if by calling resize(v.size()), before performing the assignment.

2 Postcondition: size() == v.size().

valarray<T>& operator=(valarray<T>&& v);

3 Effects: *this obtains the value of v. After the assignment, v is in a valid but unspecified state. If
the length of v is not equal to the length of *this, resizes *this to make the two arrays the same
length, as if by calling resize(v.size()), before performing the assignment.

4 Complexity: Constant.

5 Throws: Nothing.

valarray& operator=(initializer_list<T> il);

6 Effects: *this = valarray(il).

7 Returns: *this.

valarray<T>& operator=(const T&);

8 The scalar assignment operator causes each element of the *this array to be assigned the value of the
argument.

valarray<T>& operator=(const slice_array<T>&);
valarray<T>& operator=(const gslice_array<T>&);
valarray<T>& operator=(const mask_array<T>&);
valarray<T>& operator=(const indirect_array<T>&);

9 Requires: The length of the array to which the argument refers equals size().

10 These operators allow the results of a generalized subscripting operation to be assigned directly to a
valarray.

11 If the value of an element in the left-hand side of a valarray assignment operator depends on the value
of another element in that left-hand side, the resulting behavior is undefined.

26.6.2.3 valarray element access [valarray.access]

const T& operator[](size_t) const;
T& operator[](size_t);

1 The subscript operator returns a reference to the corresponding element of the array.

2 Thus, the expression (a[i] = q, a[i]) == q evaluates as true for any non-constant valarray<T> a,
any T q, and for any size_t i such that the value of i is less than the length of a.

3 The expression &a[i+j] == &a[i] + j evaluates as true for all size_t i and size_t j such that
i+j is less than the length of the array a.

§ 26.6.2.3 948

c© ISO/IEC N3092

4 Likewise, the expression &a[i] != &b[j] evaluates as true for any two arrays a and b and for any
size_t i and size_t j such that i is less than the length of a and j is less than the length of b. This
property indicates an absence of aliasing and may be used to advantage by optimizing compilers.291

5 The reference returned by the subscript operator for an array is guaranteed to be valid until the
member function resize(size_t, T) (26.6.2.7) is called for that array or until the lifetime of that
array ends, whichever happens first.

6 If the subscript operator is invoked with a size_t argument whose value is not less than the length of
the array, the behavior is undefined.

26.6.2.4 valarray subset operations [valarray.sub]

1 The member operator[] is overloaded to provide several ways to select sequences of elements from among
those controlled by *this. Each of these operations returns a subset of the array. The const-qualified versions
return this subset as a new valarray object. The non-const versions return a class template object which
has reference semantics to the orginal array, working in conjunction with various overloads of operator=
and other assigning operators to allow selective replacement (slicing) of the controlled sequence. In each
case the selected element(s) must exist.

valarray<T> operator[](slice slicearr) const;

2 Returns: an object of class valarray<T> containing those elements of the controlled sequence desig-
nated by slicearr. [Example:

const valarray<char> v0("abcdefghijklmnop", 16);
// v0[slice(2, 5, 3)] returns valarray<char>("cfilo", 5)

— end example]

slice_array<T> operator[](slice);

3 Returns: an object that holds references to elements of the controlled sequence selected by slicearr.
[Example:

valarray<char> v0("abcdefghijklmnop", 16);
valarray<char> v1("ABCDE", 5);
v0[slice(2, 5, 3)] = v1;
// v0 == valarray<char>("abAdeBghCjkDmnEp", 16);

— end example]

valarray<T> operator[](const gslice& gslicearr) const;

4 Returns: an object of class valarray<T> containing those elements of the controlled sequence desig-
nated by gslicearr. [Example:

const valarray<char> v0("abcdefghijklmnop", 16);
const size_t lv[] = { 2, 3 };
const size_t dv[] = { 7, 2 };
const valarray<size_t> len(lv, 2), str(dv, 2);
// v0[gslice(3, len, str)] returns
// valarray<char>("dfhkmo", 6)

291) Compilers may take advantage of inlining, constant propagation, loop fusion, tracking of pointers obtained from operator
new, and other techniques to generate efficient valarrays.

§ 26.6.2.4 949

c© ISO/IEC N3092

— end example]

gslice_array<T> operator[](const gslice& gslice_array);

5 Returns: an object that holds references to elements of the controlled sequence selected by gslicearr.
[Example:

valarray<char> v0("abcdefghijklmnop", 16);
valarray<char> v1("ABCDE", 5);
const size_t lv[] = { 2, 3 };
const size_t dv[] = { 7, 2 };
const valarray<size_t> len(lv, 2), str(dv, 2);
v0[gslice(3, len, str)] = v1;
// v0 == valarray<char>("abcAeBgCijDlEnFp", 16)

— end example]

valarray<T> operator[](const valarray<bool>& boolarr) const;

6 Returns: an object of class valarray<T> containing those elements of the controlled sequence desig-
nated by boolarr. [Example:

const valarray<char> v0("abcdefghijklmnop", 16);
const bool vb[] = { false, false, true, true, false, true };
// v0[valarray<bool>(vb, 6)] returns
// valarray<char>("cdf", 3)

— end example]

mask_array<T> operator[](const valarray<bool>& boolarr);

7 Returns: an object that holds references to elements of the controlled sequence selected by boolarr.
[Example:

valarray<char> v0("abcdefghijklmnop", 16);
valarray<char> v1("ABC", 3);
const bool vb[] = { false, false, true, true, false, true };
v0[valarray<bool>(vb, 6)] = v1;
// v0 == valarray<char>("abABeCghijklmnop", 16)

— end example]

valarray<T> operator[](const valarray<size_t>& indarr) const;

8 Returns: an object of class valarray<T> containing those elements of the controlled sequence desig-
nated by indarr. [Example:

const valarray<char> v0("abcdefghijklmnop", 16);
const size_t vi[] = { 7, 5, 2, 3, 8 };
// v0[valarray<size_t>(vi, 5)] returns
// valarray<char>("hfcdi", 5)

— end example]

indirect_array<T> operator[](const valarray<size_t>& indarr);

9 Returns: an object that holds references to elements of the controlled sequence selected by indarr.
[Example:

§ 26.6.2.4 950

c© ISO/IEC N3092

valarray<char> v0("abcdefghijklmnop", 16);
valarray<char> v1("ABCDE", 5);
const size_t vi[] = { 7, 5, 2, 3, 8 };
v0[valarray<size_t>(vi, 5)] = v1;
// v0 == valarray<char>("abCDeBgAEjklmnop", 16)

— end example]

26.6.2.5 valarray unary operators [valarray.unary]

valarray<T> operator+() const;
valarray<T> operator-() const;
valarray<T> operator~() const;
valarray<bool> operator!() const;

1 Each of these operators may only be instantiated for a type T to which the indicated operator can be
applied and for which the indicated operator returns a value which is of type T (bool for operator!)
or which may be unambiguously implicitly converted to type T (bool for operator!).

2 Each of these operators returns an array whose length is equal to the length of the array. Each
element of the returned array is initialized with the result of applying the indicated operator to the
corresponding element of the array.

26.6.2.6 valarray computed assignment [valarray.cassign]

valarray<T>& operator*= (const valarray<T>&);
valarray<T>& operator/= (const valarray<T>&);
valarray<T>& operator%= (const valarray<T>&);
valarray<T>& operator+= (const valarray<T>&);
valarray<T>& operator-= (const valarray<T>&);
valarray<T>& operator^= (const valarray<T>&);
valarray<T>& operator&= (const valarray<T>&);
valarray<T>& operator|= (const valarray<T>&);
valarray<T>& operator<<=(const valarray<T>&);
valarray<T>& operator>>=(const valarray<T>&);

1 Each of these operators may only be instantiated for a type T to which the indicated operator can
be applied. Each of these operators performs the indicated operation on each of its elements and the
corresponding element of the argument array.

2 The array is then returned by reference.

3 If the array and the argument array do not have the same length, the behavior is undefined. The
appearance of an array on the left-hand side of a computed assignment does not invalidate references
or pointers.

4 If the value of an element in the left-hand side of a valarray computed assignment operator depends
on the value of another element in that left hand side, the resulting behavior is undefined.

valarray<T>& operator*= (const T&);
valarray<T>& operator/= (const T&);
valarray<T>& operator%= (const T&);
valarray<T>& operator+= (const T&);
valarray<T>& operator-= (const T&);
valarray<T>& operator^= (const T&);

§ 26.6.2.6 951

c© ISO/IEC N3092

valarray<T>& operator&= (const T&);
valarray<T>& operator|= (const T&);
valarray<T>& operator<<=(const T&);
valarray<T>& operator>>=(const T&);

5 Each of these operators may only be instantiated for a type T to which the indicated operator can be
applied.

6 Each of these operators applies the indicated operation to each element of the array and the non-array
argument.

7 The array is then returned by reference.

8 The appearance of an array on the left-hand side of a computed assignment does not invalidate refer-
ences or pointers to the elements of the array.

26.6.2.7 valarray member functions [valarray.members]

void swap(valarray& v);

1 Effects: *this obtains the value of v. v obtains the value of *this.

2 Complexity: Constant.

3 Throws: Nothing.

size_t size() const;

4 Returns: the number of elements in the array.

5 Complexity: constant time.

T sum() const;

This function may only be instantiated for a type T to which operator+= can be applied. This function
returns the sum of all the elements of the array.

6 If the array has length 0, the behavior is undefined. If the array has length 1, sum() returns the value
of element 0. Otherwise, the returned value is calculated by applying operator+= to a copy of an
element of the array and all other elements of the array in an unspecified order.

T min() const;

7 This function returns the minimum value contained in *this. The value returned for an array of
length 0 is undefined. For an array of length 1, the value of element 0 is returned. For all other array
lengths, the determination is made using operator<.

T max() const;

8 This function returns the maximum value contained in *this. The value returned for an array of
length 0 is undefined. For an array of length 1, the value of element 0 is returned. For all other array
lengths, the determination is made using operator<.

valarray<T> shift(int n) const;

9 This function returns an object of class valarray<T> of length size(), each of whose elements I is
(*this)[I + n] if I + n is non-negative and less than size(), otherwise T(). Thus if element zero
is taken as the leftmost element, a positive value of n shifts the elements left n places, with zero fill.

§ 26.6.2.7 952

c© ISO/IEC N3092

10 [Example: If the argument has the value -2, the first two elements of the result will be value-
initialized (8.5); the third element of the result will be assigned the value of the first element of
the argument; etc. — end example]

valarray<T> cshift(int n) const;

11 This function returns an object of class valarray<T> of length size() that is a circular shift of *this.
If element zero is taken as the leftmost element, a non-negative value of n shifts the elements circularly
left n places and a negative value of n shifts the elements circularly right -n places.

valarray<T> apply(T func(T)) const;
valarray<T> apply(T func(const T&)) const;

12 These functions return an array whose length is equal to the array. Each element of the returned array
is assigned the value returned by applying the argument function to the corresponding element of the
array.

void resize(size_t sz, T c = T());

13 This member function changes the length of the *this array to sz and then assigns to each element
the value of the second argument. Resizing invalidates all pointers and references to elements in the
array.

26.6.3 valarray non-member operations [valarray.nonmembers]

26.6.3.1 valarray binary operators [valarray.binary]

template<class T> valarray<T> operator*
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator/
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator%
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator+
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator-
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator^
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator&
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator|
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator<<
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator>>
(const valarray<T>&, const valarray<T>&);

1 Each of these operators may only be instantiated for a type T to which the indicated operator can
be applied and for which the indicated operator returns a value which is of type T or which can be
unambiguously implicitly converted to type T.

2 Each of these operators returns an array whose length is equal to the lengths of the argument arrays.
Each element of the returned array is initialized with the result of applying the indicated operator to
the corresponding elements of the argument arrays.

§ 26.6.3.1 953

c© ISO/IEC N3092

3 If the argument arrays do not have the same length, the behavior is undefined.

template<class T> valarray<T> operator* (const valarray<T>&, const T&);
template<class T> valarray<T> operator* (const T&, const valarray<T>&);
template<class T> valarray<T> operator/ (const valarray<T>&, const T&);
template<class T> valarray<T> operator/ (const T&, const valarray<T>&);
template<class T> valarray<T> operator% (const valarray<T>&, const T&);
template<class T> valarray<T> operator% (const T&, const valarray<T>&);
template<class T> valarray<T> operator+ (const valarray<T>&, const T&);
template<class T> valarray<T> operator+ (const T&, const valarray<T>&);
template<class T> valarray<T> operator- (const valarray<T>&, const T&);
template<class T> valarray<T> operator- (const T&, const valarray<T>&);
template<class T> valarray<T> operator^ (const valarray<T>&, const T&);
template<class T> valarray<T> operator^ (const T&, const valarray<T>&);
template<class T> valarray<T> operator& (const valarray<T>&, const T&);
template<class T> valarray<T> operator& (const T&, const valarray<T>&);
template<class T> valarray<T> operator| (const valarray<T>&, const T&);
template<class T> valarray<T> operator| (const T&, const valarray<T>&);
template<class T> valarray<T> operator<<(const valarray<T>&, const T&);
template<class T> valarray<T> operator<<(const T&, const valarray<T>&);
template<class T> valarray<T> operator>>(const valarray<T>&, const T&);
template<class T> valarray<T> operator>>(const T&, const valarray<T>&);

4 Each of these operators may only be instantiated for a type T to which the indicated operator can
be applied and for which the indicated operator returns a value which is of type T or which can be
unambiguously implicitly converted to type T.

5 Each of these operators returns an array whose length is equal to the length of the array argument.
Each element of the returned array is initialized with the result of applying the indicated operator to
the corresponding element of the array argument and the non-array argument.

26.6.3.2 valarray logical operators [valarray.comparison]

template<class T> valarray<bool> operator==
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<bool> operator!=
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<bool> operator<
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<bool> operator>
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<bool> operator<=
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<bool> operator>=
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<bool> operator&&
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<bool> operator||
(const valarray<T>&, const valarray<T>&);

1 Each of these operators may only be instantiated for a type T to which the indicated operator can be
applied and for which the indicated operator returns a value which is of type bool or which can be
unambiguously implicitly converted to type bool.

§ 26.6.3.2 954

c© ISO/IEC N3092

2 Each of these operators returns a bool array whose length is equal to the length of the array arguments.
Each element of the returned array is initialized with the result of applying the indicated operator to
the corresponding elements of the argument arrays.

3 If the two array arguments do not have the same length, the behavior is undefined.

template<class T> valarray<bool> operator==(const valarray<T>&, const T&);
template<class T> valarray<bool> operator==(const T&, const valarray<T>&);
template<class T> valarray<bool> operator!=(const valarray<T>&, const T&);
template<class T> valarray<bool> operator!=(const T&, const valarray<T>&);
template<class T> valarray<bool> operator< (const valarray<T>&, const T&);
template<class T> valarray<bool> operator< (const T&, const valarray<T>&);
template<class T> valarray<bool> operator> (const valarray<T>&, const T&);
template<class T> valarray<bool> operator> (const T&, const valarray<T>&);
template<class T> valarray<bool> operator<=(const valarray<T>&, const T&);
template<class T> valarray<bool> operator<=(const T&, const valarray<T>&);
template<class T> valarray<bool> operator>=(const valarray<T>&, const T&);
template<class T> valarray<bool> operator>=(const T&, const valarray<T>&);
template<class T> valarray<bool> operator&&(const valarray<T>&, const T&);
template<class T> valarray<bool> operator&&(const T&, const valarray<T>&);
template<class T> valarray<bool> operator||(const valarray<T>&, const T&);
template<class T> valarray<bool> operator||(const T&, const valarray<T>&);

4 Each of these operators may only be instantiated for a type T to which the indicated operator can be
applied and for which the indicated operator returns a value which is of type bool or which can be
unambiguously implicitly converted to type bool.

5 Each of these operators returns a bool array whose length is equal to the length of the array argument.
Each element of the returned array is initialized with the result of applying the indicated operator to
the corresponding element of the array and the non-array argument.

26.6.3.3 valarray transcendentals [valarray.transcend]

template<class T> valarray<T> abs (const valarray<T>&);
template<class T> valarray<T> acos (const valarray<T>&);
template<class T> valarray<T> asin (const valarray<T>&);
template<class T> valarray<T> atan (const valarray<T>&);
template<class T> valarray<T> atan2

(const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> atan2(const valarray<T>&, const T&);
template<class T> valarray<T> atan2(const T&, const valarray<T>&);
template<class T> valarray<T> cos (const valarray<T>&);
template<class T> valarray<T> cosh (const valarray<T>&);
template<class T> valarray<T> exp (const valarray<T>&);
template<class T> valarray<T> log (const valarray<T>&);
template<class T> valarray<T> log10(const valarray<T>&);
template<class T> valarray<T> pow

(const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> pow (const valarray<T>&, const T&);
template<class T> valarray<T> pow (const T&, const valarray<T>&);
template<class T> valarray<T> sin (const valarray<T>&);
template<class T> valarray<T> sinh (const valarray<T>&);
template<class T> valarray<T> sqrt (const valarray<T>&);
template<class T> valarray<T> tan (const valarray<T>&);
template<class T> valarray<T> tanh (const valarray<T>&);

§ 26.6.3.3 955

c© ISO/IEC N3092

1 Each of these functions may only be instantiated for a type T to which a unique function with the
indicated name can be applied (unqualified). This function shall return a value which is of type T or
which can be unambiguously implicitly converted to type T.

26.6.3.4 valarray specialized algorithms [valarray.special]

template <class T> void swap(valarray<T>& x, valarray<T>& y);

1 Effects: x.swap(y).

26.6.4 Class slice [class.slice]

namespace std {
class slice {
public:

slice();
slice(size_t, size_t, size_t);

size_t start() const;
size_t size() const;
size_t stride() const;

};
}

1 The slice class represents a BLAS-like slice from an array. Such a slice is specified by a starting index, a
length, and a stride.292

26.6.4.1 slice constructors [cons.slice]

slice();
slice(size_t start, size_t length, size_t stride);
slice(const slice&);

1 The default constructor is equivalent to slice(0, 0, 0). A default constructor is provided only to
permit the declaration of arrays of slices. The constructor with arguments for a slice takes a start,
length, and stride parameter.

2 [Example: slice(3, 8, 2) constructs a slice which selects elements 3, 5, 7, ... 17 from an array.
— end example]

26.6.4.2 slice access functions [slice.access]

size_t start() const;
size_t size() const;
size_t stride() const;

1 Returns: the start, length, or stride specified by a slice object.

2 Complexity: constant time.

292) BLAS stands for Basic Linear Algebra Subprograms. C++ programs may instantiate this class. See, for example, Dongarra,
Du Croz, Duff, and Hammerling: A set of Level 3 Basic Linear Algebra Subprograms; Technical Report MCS-P1-0888, Argonne
National Laboratory (USA), Mathematics and Computer Science Division, August, 1988.

§ 26.6.4.2 956

c© ISO/IEC N3092

26.6.5 Class template slice_array [template.slice.array]

namespace std {
template <class T> class slice_array {
public:

typedef T value_type;

void operator= (const valarray<T>&) const;
void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operator^= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;

slice_array(const slice_array&);
~slice_array();
const slice_array& operator=(const slice_array&) const;

void operator=(const T&) const;

slice_array() = delete; // as implied by declaring copy constructor above
};

}

1 The slice_array template is a helper template used by the slice subscript operator
slice_array<T> valarray<T>::operator[](slice);

It has reference semantics to a subset of an array specified by a slice object.

2 [Example: The expression a[slice(1, 5, 3)] = b; has the effect of assigning the elements of b to a slice
of the elements in a. For the slice shown, the elements selected from a are 1, 4, ..., 13. — end example]

26.6.5.1 slice_array assignment [slice.arr.assign]

void operator=(const valarray<T>&) const;
const slice_array& operator=(const slice_array&) const;

1 These assignment operators have reference semantics, assigning the values of the argument array
elements to selected elements of the valarray<T> object to which the slice_array object refers.

26.6.5.2 slice_array computed assignment [slice.arr.comp.assign]

void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operator^= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;

§ 26.6.5.2 957

c© ISO/IEC N3092

void operator>>=(const valarray<T>&) const;

1 These computed assignments have reference semantics, applying the indicated operation to the elements
of the argument array and selected elements of the valarray<T> object to which the slice_array
object refers.

26.6.5.3 slice_array fill function [slice.arr.fill]

void operator=(const T&) const;

1 This function has reference semantics, assigning the value of its argument to the elements of the
valarray<T> object to which the slice_array object refers.

26.6.6 The gslice class [class.gslice]

namespace std {
class gslice {
public:

gslice();
gslice(size_t s, const valarray<size_t>& l, const valarray<size_t>& d);

size_t start() const;
valarray<size_t> size() const;
valarray<size_t> stride() const;

};
}

1 This class represents a generalized slice out of an array. A gslice is defined by a starting offset (s), a set
of lengths (lj), and a set of strides (dj). The number of lengths shall equal the number of strides.

2 A gslice represents a mapping from a set of indices (ij), equal in number to the number of strides, to a
single index k. It is useful for building multidimensional array classes using the valarray template, which
is one-dimensional. The set of one-dimensional index values specified by a gslice are

k = s +
∑

j

ijdj

where the multidimensional indices ij range in value from 0 to lij − 1.

3 [Example: The gslice specification
start = 3
length = {2, 4, 3}
stride = {19, 4, 1}

yields the sequence of one-dimensional indices

k = 3 + (0, 1)× 19 + (0, 1, 2, 3)× 4 + (0, 1, 2)× 1

which are ordered as shown in the following table:

(i0, i1, i2, k) =
(0, 0, 0, 3),
(0, 0, 1, 4),
(0, 0, 2, 5),

§ 26.6.6 958

c© ISO/IEC N3092

(0, 1, 0, 7),
(0, 1, 1, 8),
(0, 1, 2, 9),
(0, 2, 0, 11),
(0, 2, 1, 12),
(0, 2, 2, 13),
(0, 3, 0, 15),
(0, 3, 1, 16),
(0, 3, 2, 17),
(1, 0, 0, 22),
(1, 0, 1, 23),
. . .
(1, 3, 2, 36)

That is, the highest-ordered index turns fastest. — end example]

4 It is possible to have degenerate generalized slices in which an address is repeated.

5 [Example: If the stride parameters in the previous example are changed to {1, 1, 1}, the first few elements
of the resulting sequence of indices will be

(0, 0, 0, 3),
(0, 0, 1, 4),
(0, 0, 2, 5),
(0, 1, 0, 4),
(0, 1, 1, 5),
(0, 1, 2, 6),
. . .

— end example]

6 If a degenerate slice is used as the argument to the non-const version of operator[](const gslice&), the
resulting behavior is undefined.

26.6.6.1 gslice constructors [gslice.cons]

gslice();
gslice(size_t start, const valarray<size_t>& lengths,

const valarray<size_t>& strides);
gslice(const gslice&);

1 The default constructor is equivalent to gslice(0, valarray<size_t>(), valarray<size_t>()).
The constructor with arguments builds a gslice based on a specification of start, lengths, and strides,
as explained in the previous section.

26.6.6.2 gslice access functions [gslice.access]

size_t start() const;
valarray<size_t> size() const;
valarray<size_t> stride() const;

1 Returns: the representation of the start, lengths, or strides specified for the gslice.

2 Complexity: start() is constant time. size() and stride() are linear in the number of strides.

§ 26.6.6.2 959

c© ISO/IEC N3092

26.6.7 Class template gslice_array [template.gslice.array]

namespace std {
template <class T> class gslice_array {
public:

typedef T value_type;

void operator= (const valarray<T>&) const;
void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operator^= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;

gslice_array(const gslice_array&);
~gslice_array();
const gslice_array& operator=(const gslice_array&) const;
void operator=(const T&) const;

gslice_array() = delete; // as implied by declaring copy constructor above
};

}

1 This template is a helper template used by the slice subscript operator

gslice_array<T> valarray<T>::operator[](const gslice&);

2 It has reference semantics to a subset of an array specified by a gslice object.

3 Thus, the expression a[gslice(1, length, stride)] = b has the effect of assigning the elements of
b to a generalized slice of the elements in a.

26.6.7.1 gslice_array assignment [gslice.array.assign]

void operator=(const valarray<T>&) const;
const gslice_array& operator=(const gslice_array&) const;

1 These assignment operators have reference semantics, assigning the values of the argument array
elements to selected elements of the valarray<T> object to which the gslice_array refers.

26.6.7.2 gslice_array [gslice.array.comp.assign]

void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operator^= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;

§ 26.6.7.2 960

c© ISO/IEC N3092

void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;

1 These computed assignments have reference semantics, applying the indicated operation to the elements
of the argument array and selected elements of the valarray<T> object to which the gslice_array
object refers.

26.6.7.3 gslice_array fill function [gslice.array.fill]

void operator=(const T&) const;

1 This function has reference semantics, assigning the value of its argument to the elements of the
valarray<T> object to which the gslice_array object refers.

26.6.8 Class template mask_array [template.mask.array]

namespace std {
template <class T> class mask_array {
public:

typedef T value_type;

void operator= (const valarray<T>&) const;
void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operator^= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;

mask_array(const mask_array&);
~mask_array();
const mask_array& operator=(const mask_array&) const;
void operator=(const T&) const;

mask_array() = delete; // as implied by declaring copy constructor above
};

}

1 This template is a helper template used by the mask subscript operator:

mask_array<T> valarray<T>::operator[](const valarray<bool>&).

2 It has reference semantics to a subset of an array specified by a boolean mask. Thus, the expression
a[mask] = b; has the effect of assigning the elements of b to the masked elements in a (those for
which the corresponding element in mask is true.)

26.6.8.1 mask_array assignment [mask.array.assign]

void operator=(const valarray<T>&) const;
const mask_array& operator=(const mask_array&) const;

§ 26.6.8.1 961

c© ISO/IEC N3092

1 These assignment operators have reference semantics, assigning the values of the argument array
elements to selected elements of the valarray<T> object to which it refers.

26.6.8.2 mask_array computed assignment [mask.array.comp.assign]

void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operator^= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;

1 These computed assignments have reference semantics, applying the indicated operation to the elements
of the argument array and selected elements of the valarray<T> object to which the mask object refers.

26.6.8.3 mask_array fill function [mask.array.fill]

void operator=(const T&) const;

1 This function has reference semantics, assigning the value of its argument to the elements of the
valarray<T> object to which the mask_array object refers.

26.6.9 Class template indirect_array [template.indirect.array]

namespace std {
template <class T> class indirect_array {
public:

typedef T value_type;

void operator= (const valarray<T>&) const;
void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operator^= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;

indirect_array(const indirect_array&);
~indirect_array();
const indirect_array& operator=(const indirect_array&) const;
void operator=(const T&) const;

indirect_array() = delete; // as implied by declaring copy constructor above
};

}

§ 26.6.9 962

c© ISO/IEC N3092

1 This template is a helper template used by the indirect subscript operator

indirect_array<T> valarray<T>::operator[](const valarray<size_t>&).

2 It has reference semantics to a subset of an array specified by an indirect_array. Thus the expression
a[indirect] = b; has the effect of assigning the elements of b to the elements in a whose indices
appear in indirect.

26.6.9.1 indirect_array assignment [indirect.array.assign]

void operator=(const valarray<T>&) const;
const indirect_array& operator=(const indirect_array&) const;

1 These assignment operators have reference semantics, assigning the values of the argument array
elements to selected elements of the valarray<T> object to which it refers.

2 If the indirect_array specifies an element in the valarray<T> object to which it refers more than
once, the behavior is undefined.

3 [Example:
int addr[] = {2, 3, 1, 4, 4};
valarray<size_t> indirect(addr, 5);
valarray<double> a(0., 10), b(1., 5);
a[indirect] = b;

results in undefined behavior since element 4 is specified twice in the indirection. — end example]

26.6.9.2 indirect_array computed assignment [indirect.array.comp.assign]

void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operator^= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;

1 These computed assignments have reference semantics, applying the indicated operation to the elements
of the argument array and selected elements of the valarray<T> object to which the indirect_array
object refers.

2 If the indirect_array specifies an element in the valarray<T> object to which it refers more than
once, the behavior is undefined.

26.6.9.3 indirect_array fill function [indirect.array.fill]

void operator=(const T&) const;

1 This function has reference semantics, assigning the value of its argument to the elements of the
valarray<T> object to which the indirect_array object refers.

§ 26.6.9.3 963

c© ISO/IEC N3092

26.6.10 valarray range access [valarray.range]

1 In the begin and end function templates that follow, unspecified1 is a type that meets the requirements
of a mutable random access iterator (24.2.7) whose value_type is the template parameter T and whose
reference type is T&. unspecified2 is a type that meets the requirements of a constant random access
iterator (24.2.7) whose value_type is the template parameter T and whose reference type is const T&.

template <class T> unspecified1 begin(valarray<T>& v);
template <class T> unspecified2 begin(const valarray<T>& v);

2 Returns: an iterator referencing the first value in the numeric array.

template <class T> unspecified1 end(valarray<T>& v);
template <class T> unspecified2 end(const valarray<T>& v);

3 Returns: an iterator referencing one past the last value in the numeric array.

26.7 Generalized numeric operations [numeric.ops]

Header <numeric> synopsis
namespace std {

template <class InputIterator, class T>
T accumulate(InputIterator first, InputIterator last, T init);

template <class InputIterator, class T, class BinaryOperation>
T accumulate(InputIterator first, InputIterator last, T init,

BinaryOperation binary_op);

template <class InputIterator1, class InputIterator2, class T>
T inner_product(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, T init);
template <class InputIterator1, class InputIterator2, class T,

class BinaryOperation1, class BinaryOperation2>
T inner_product(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, T init,
BinaryOperation1 binary_op1,
BinaryOperation2 binary_op2);

template <class InputIterator, class OutputIterator>
OutputIterator partial_sum(InputIterator first,

InputIterator last,
OutputIterator result);

template <class InputIterator, class OutputIterator,
class BinaryOperation>

OutputIterator partial_sum(InputIterator first,
InputIterator last,
OutputIterator result,
BinaryOperation binary_op);

template <class InputIterator, class OutputIterator>
OutputIterator adjacent_difference(InputIterator first,

InputIterator last,
OutputIterator result);

template <class InputIterator, class OutputIterator,
class BinaryOperation>

OutputIterator adjacent_difference(InputIterator first,

§ 26.7 964

c© ISO/IEC N3092

InputIterator last,
OutputIterator result,
BinaryOperation binary_op);

template <class ForwardIterator, class T>
void iota(ForwardIterator first, ForwardIterator last, T value);

}

1 The requirements on the types of algorithms’ arguments that are described in the introduction to Clause 25
also apply to the following algorithms.

26.7.1 Accumulate [accumulate]

template <class InputIterator, class T>
T accumulate(InputIterator first, InputIterator last, T init);

template <class InputIterator, class T, class BinaryOperation>
T accumulate(InputIterator first, InputIterator last, T init,

BinaryOperation binary_op);

1 Effects: Computes its result by initializing the accumulator acc with the initial value init and then
modifies it with acc = acc + *i or acc = binary_op(acc, *i) for every iterator i in the range
[first,last) in order.293

2 Requires: T shall meet the requirements of CopyConstructible (35) and Assignable (23.2) types. In the
range [first,last], binary_op shall neither modify elements nor invalidate iterators or subranges.294

26.7.2 Inner product [inner.product]

template <class InputIterator1, class InputIterator2, class T>
T inner_product(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, T init);
template <class InputIterator1, class InputIterator2, class T,

class BinaryOperation1, class BinaryOperation2>
T inner_product(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, T init,
BinaryOperation1 binary_op1,
BinaryOperation2 binary_op2);

1 Effects: Computes its result by initializing the accumulator acc with the initial value init and
then modifying it with acc = acc + (*i1) * (*i2) or acc = binary_op1(acc, binary_op2(*i1,
*i2)) for every iterator i1 in the range [first,last) and iterator i2 in the range [first2,first2
+ (last - first)) in order.

2 Requires: T shall meet the requirements of CopyConstructible (35) and Assignable (23.2) types. In the
ranges [first,last] and [first2,first2 + (last - first)] binary_op1 and binary_op2 shall
neither modify elements nor invalidate iterators or subranges.295

26.7.3 Partial sum [partial.sum]

293) accumulate is similar to the APL reduction operator and Common Lisp reduce function, but it avoids the difficulty of
defining the result of reduction on an empty sequence by always requiring an initial value.
294) The use of fully closed ranges is intentional
295) The use of fully closed ranges is intentional

§ 26.7.3 965

c© ISO/IEC N3092

template <class InputIterator, class OutputIterator>
OutputIterator partial_sum(

InputIterator first, InputIterator last,
OutputIterator result);

template
<class InputIterator, class OutputIterator, class BinaryOperation>

OutputIterator partial_sum(
InputIterator first, InputIterator last,
OutputIterator result, BinaryOperation binary_op);

1 Effects: For a non-empty range, the function creates an accumulator acc whose type is InputIterator’s
value type, initializes it with *first, and assigns the result to *result. For every iterator i in [first
+ 1,last) in order, acc is then modified by acc = acc + *i or acc = binary_op(acc, *i) and the
result is assigned to *(result + (i - first)).

2 Returns: result + (last - first).

3 Complexity: Exactly (last - first) - 1 applications of the binary operation.

4 Requires: InputIterator’s value type shall be constructible from the type of *first. The result of
the expression acc + *i or binary_op(acc, *i) shall be implicitly convertible to InputIterator’s
value type. acc shall be writable to the result output iterator. In the ranges [first,last] and [
result,result + (last - first)] binary_op shall neither modify elements nor invalidate iterators
or subranges.296

5 Remarks: result may be equal to first.

26.7.4 Adjacent difference [adjacent.difference]

template <class InputIterator, class OutputIterator>
OutputIterator adjacent_difference(

InputIterator first, InputIterator last,
OutputIterator result);

template <class InputIterator, class OutputIterator, class BinaryOperation>
OutputIterator adjacent_difference(

InputIterator first, InputIterator last,
OutputIterator result,
BinaryOperation binary_op);

Effects: For a non-empty range, the function creates an accumulator acc whose type is InputIterator’s
value type, initializes it with *first, and assigns the result to *result. For every iterator i in [first
+ 1,last) in order, creates an object val whose type is InputIterator’s value type, initializes it with
*i, computes val - acc or binary_op(val, acc), assigns the result to *(result + (i - first)),
and move assigns from val to acc.

1 Requires: InputIterator’s value type shall be MoveAssignable (36) and shall be constructible from
the type of *first. acc shall be writable to the result output iterator. The result of the expression
val - acc or binary_op(val, acc) shall be writable to the result output iterator. In the ranges
[first,last] and [result,result + (last - first)], binary_op shall neither modify elements
nor invalidate iterators or subranges.297

2 Remarks: result may be equal to first.

3 Returns: result + (last - first).

296) The use of fully closed ranges is intentional.
297) The use of fully closed rangs is intentional.

§ 26.7.4 966

c© ISO/IEC N3092

4 Complexity: Exactly (last - first) - 1 applications of the binary operation.

26.7.5 Iota [numeric.iota]

template <class ForwardIterator, class T>
void iota(ForwardIterator first, ForwardIterator last, T value);

1 Requires: T shall be convertible to ForwardIterator’s value type. The expression ++val, where val
has type T, shall be well formed.

2 Effects: For each element referred to by the iterator i in the range [first,last), assigns *i = value
and increments value as if by ++value.

3 Complexity: Exactly last - first increments and assignments.

26.8 C Library [c.math]

1 The header <ctgmath> simply includes the headers <ccomplex> and <cmath>.

2 [Note: The overloads provided in C by magic macros are already provided in <ccomplex> and <cmath> by
“sufficient” additional overloads. — end note]

3 Tables 116 and 117 describe headers <cmath> and <cstdlib>, respectively.

Table 116 — Header <cmath> synopsis

Type Name(s)
Macros:
FP_FAST_FMA FP_ILOGBNAN FP_SUBNORMAL HUGE_VALL MATH_ERRNO
FP_FAST_FMAF FP_INFINITE FP_ZERO INFINITY MATH_ERREXCEPT
FP_FAST_FMAL FP_NAN HUGE_VAL NAN math_errhandling
FP_ILOGB0 FP_NORMAL HUGE_VALF
Types: double_t float_t
Functions:
abs cosh fmod logb remquo
acos erf frexp lrint rint
acosh erfc hypot lround round
asin exp2 ilogb modf scalbln
asinh exp ldexp nan scalbn
atan expm1 lgamma nanf sin
atan2 fabs llrint nanl sinh
atanh fdim llround nearbyint sqrt
cbrt floor log nextafter tan
ceil fma log10 nexttoward tanh
copysign fmax log1p pow tgamma
cos fmin log2 remainder trunc
Templates:
fpclassify isgreaterequal islessequal isnan isunordered
isfinite isinf islessgreater isnormal signbit
isgreater isless

4 The contents of these headers are the same as the Standard C library headers <math.h> and <stdlib.h>
respectively, with the following changes:

§ 26.8 967

c© ISO/IEC N3092

Table 117 — Header <cstdlib> synopsis

Type Name(s)
Macro: RAND_MAX
Types:
div_t ldiv_t lldiv_t
Functions:
abs ldiv rand
div llabs srand
labs lldiv

5 The rand function has the semantics specified in the C standard, except that the implementation may specify
that particular library functions may call rand. It is implementation-defined whether the rand function may
introduce data races (17.6.4.8). [Note: The random number generation (26.5) facilities in this standard are
often preferable to rand. — end note]

6 In addition to the int versions of certain math functions in <cstdlib>, C++ adds long and long long
overloaded versions of these functions, with the same semantics.

7 The added signatures are:
long abs(long); // labs()
long long abs(long long); // llabs()
ldiv_t div(long, long); // ldiv()
lldiv_t div(long long, long long); // lldiv()

8 In addition to the double versions of the math functions in <cmath>, C++ adds float and long double
overloaded versions of these functions, with the same semantics.

9 The added signatures are:
float abs(float);
float acos(float);
float acosh(float);
float asin(float);
float asinh(float);
float atan(float);
float atan2(float, float);
float atanh(float);
float cbrt(float);
float ceil(float);
float copysign(float, float);
float cos(float);
float cosh(float);
float erf(float);
float erfc(float);
float exp(float);
float exp2(float);
float expm1(float);
float fabs(float);
float fdim(float, float);
float floor(float);
float fma(float, float, float);
float fmax(float, float);
float fmin(float, float);

§ 26.8 968

c© ISO/IEC N3092

float fmod(float, float);
float frexp(float, int*);
float hypot(float, float);
int ilogb(float);
float ldexp(float, int);
float lgamma(float);
long long llrint(float);
long long llround(float);
float log(float);
float log10(float);
float log1p(float);
float log2(float);
float logb(float);
long lrint(float);
long lround(float);
float modf(float, float*);
float nearbyint(float);
float nextafter(float, float);
float nexttoward(float, long double);
float pow(float, float);
float remainder(float, float);
float remquo(float, float, int *);
float rint(float);
float round(float);
float scalbln(float, long);
float scalbn(float, int);
float sin(float);
float sinh(float);
float sqrt(float);
float tan(float);
float tanh(float);
float tgamma(float);
float trunc(float);

double abs(double); // fabs()

long double abs(long double);
long double acos(long double);
long double acosh(long double);
long double asin(long double);
long double asinh(long double);
long double atan(long double);
long double atan2(long double, long double);
long double atanh(long double);
long double cbrt(long double);
long double ceil(long double);
long double copysign(long double, long double);
long double cos(long double);
long double cosh(long double);
long double erf(long double);
long double erfc(long double);
long double exp(long double);
long double exp2(long double);
long double expm1(long double);
long double fabs(long double);

§ 26.8 969

c© ISO/IEC N3092

long double fdim(long double, long double);
long double floor(long double);
long double fma(long double, long double, long double);
long double fmax(long double, long double);
long double fmin(long double, long double);
long double fmod(long double, long double);
long double frexp(long double, int*);
long double hypot(long double, long double);
int ilogb(long double);
long double ldexp(long double, int);
long double lgamma(long double);
long long llrint(long double);
long long llround(long double);
long double log(long double);
long double log10(long double);
long double log1p(long double);
long double log2(long double);
long double logb(long double);
long lrint(long double);
long lround(long double);
long double modf(long double, long double*);
long double nearbyint(long double);
long double nextafter(long double, long double);
long double nexttoward(long double, long double);
long double pow(long double, long double);
long double remainder(long double, long double);
long double remquo(long double, long double, int *);
long double rint(long double);
long double round(long double);
long double scalbln(long double, long);
long double scalbn(long double, int);
long double sin(long double);
long double sinh(long double);
long double sqrt(long double);
long double tan(long double);
long double tanh(long double);
long double tgamma(long double);
long double trunc(long double);

10 Moreover, there shall be additional overloads sufficient to ensure:

1. If any argument corresponding to a double parameter has type long double, then all arguments
corresponding to double parameters are effectively cast to long double.

2. Otherwise, if any argument corresponding to a double parameter has type double or an integer type,
then all arguments corresponding to double parameters are effectively cast to double.

3. Otherwise, all arguments corresponding to double parameters are effectively cast to float.

11 The templates defined in <cmath> replace the C macros with the same names. The templates have the
following declarations:

namespace std {
template <class T> bool signbit(T x);

template <class T> int fpclassify(T x);

§ 26.8 970

c© ISO/IEC N3092

template <class T> bool isfinite(T x);
template <class T> bool isinf(T x);
template <class T> bool isnan(T x);
template <class T> bool isnormal(T x);

template <class T> bool isgreater(T x, T y);
template <class T> bool isgreaterequal(T x, T y);
template <class T> bool isless(T x, T y);
template <class T> bool islessequal(T x, T y);
template <class T> bool islessgreater(T x, T y);
template <class T> bool isunordered(T x, T y);

}

12 The templates behave the same as the C macros with corresponding names defined in 7.12.3, Classification
macros, and 7.12.14, Comparison macros in the C standard.

See also: ISO C 7.5, 7.10.2, 7.10.6.

§ 26.8 971

c© ISO/IEC N3092

27 Input/output library [input.output]
27.1 General [input.output.general]

1 This Clause describes components that C++ programs may use to perform input/output operations.

2 The following subclauses describe requirements for stream parameters, and components for forward declara-
tions of iostreams, predefined iostreams objects, base iostreams classes, stream buffering, stream formatting
and manipulators, string streams, and file streams, as summarized in Table 118.

Table 118 — Input/output library summary

Subclause Header(s)
27.2 Requirements
27.3 Forward declarations <iosfwd>
27.4 Standard iostream objects <iostream>
27.5 Iostreams base classes <ios>
27.6 Stream buffers <streambuf>
27.7 Formatting and manipulators <istream>

<ostream>
<iomanip>

27.8 String streams <sstream>
27.9 File streams <fstream>

<cstdio>
<cinttypes>

3 Figure 7 illustrates relationships among various types described in ths clause. A line from A to B indicates
that A is an alias (e.g. a typedef) for B or that A is defined in terms of B.

char_traits<char>
::pos_type

streampos

 iostreams.limits.pos

char_traits<wchar_t>
::pos_type

wstreampos

 iostreams.limits.pos

fpos<mbstate_t>

 iostream.forward iostream.forward

char_traits<char>
::off_type

streamoff

 iostreams.limits.pos

char_traits<wchar_t>
::off_type

 iostreams.limits.pos

signed integer type
sufficient for

 O/S maximum file size

 stream.types

streamsize

signed integer type
represents characters xfered

or buffer sizes

 stream.types

Figure 7 — Stream position, offset, and size types [non-normative]

§ 27.1 972

c© ISO/IEC N3092

27.2 Iostreams requirements [iostreams.requirements]

27.2.1 Imbue Limitations [iostream.limits.imbue]

1 No function described in Clause 27 except for ios_base::imbue and basic_filebuf::pubimbue causes any
instance of basic_ios::imbue or basic_streambuf::imbue to be called. If any user function called from
a function declared in Clause 27 or as an overriding virtual function of any class declared in Clause 27 calls
imbue, the behavior is undefined.

27.2.2 Positioning Type Limitations [iostreams.limits.pos]

1 The classes of Clause 27 with template arguments charT and traits behave as described if traits::pos_-
type and traits::off_type are streampos and streamoff respectively. Except as noted explicitly below,
their behavior when traits::pos_type and traits::off_type are other types is implementation-defined.

2 In the classes of Clause 27, a template formal parameter with name charT represents a member of the set
of types containing char, wchar_t, and any other implementation-defined character types that satisfy the
requirements for a character on which any of the iostream components can be instantiated.

27.2.3 Thread safety [iostreams.threadsafety]

1 Concurrent access to a stream object (27.8, 27.9), stream buffer object (27.6), or C Library stream (27.9.2)
by multiple threads may result in a data race (1.10) unless otherwise specified (27.4). [Note: data races
result in undefined behavior (1.10). — end note]

2 If one thread makes a library call a that writes a value to a stream and, as a result, another thread reads this
value from the stream through a library call b such that this does not result in a data race, then a happens
before b.

27.3 Forward declarations [iostream.forward]

Header <iosfwd> synopsis
namespace std {

template<class charT> class char_traits;
template<> class char_traits<char>;
template<> class char_traits<char16_t>;
template<> class char_traits<char32_t>;
template<> class char_traits<wchar_t>;

template<class T> class allocator;

template <class charT, class traits = char_traits<charT> >
class basic_ios;

template <class charT, class traits = char_traits<charT> >
class basic_streambuf;

template <class charT, class traits = char_traits<charT> >
class basic_istream;

template <class charT, class traits = char_traits<charT> >
class basic_ostream;

template <class charT, class traits = char_traits<charT> >
class basic_iostream;

template <class charT, class traits = char_traits<charT>,
class Allocator = allocator<charT> >

class basic_stringbuf;

§ 27.3 973

c© ISO/IEC N3092

template <class charT, class traits = char_traits<charT>,
class Allocator = allocator<charT> >

class basic_istringstream;
template <class charT, class traits = char_traits<charT>,

class Allocator = allocator<charT> >
class basic_ostringstream;

template <class charT, class traits = char_traits<charT>,
class Allocator = allocator<charT> >

class basic_stringstream;

template <class charT, class traits = char_traits<charT> >
class basic_filebuf;

template <class charT, class traits = char_traits<charT> >
class basic_ifstream;

template <class charT, class traits = char_traits<charT> >
class basic_ofstream;

template <class charT, class traits = char_traits<charT> >
class basic_fstream;

template <class charT, class traits = char_traits<charT> >
class istreambuf_iterator;

template <class charT, class traits = char_traits<charT> >
class ostreambuf_iterator;

typedef basic_ios<char> ios;
typedef basic_ios<wchar_t> wios;

typedef basic_streambuf<char> streambuf;
typedef basic_istream<char> istream;
typedef basic_ostream<char> ostream;
typedef basic_iostream<char> iostream;

typedef basic_stringbuf<char> stringbuf;
typedef basic_istringstream<char> istringstream;
typedef basic_ostringstream<char> ostringstream;
typedef basic_stringstream<char> stringstream;

typedef basic_filebuf<char> filebuf;
typedef basic_ifstream<char> ifstream;
typedef basic_ofstream<char> ofstream;
typedef basic_fstream<char> fstream;

typedef basic_streambuf<wchar_t> wstreambuf;
typedef basic_istream<wchar_t> wistream;
typedef basic_ostream<wchar_t> wostream;
typedef basic_iostream<wchar_t> wiostream;

typedef basic_stringbuf<wchar_t> wstringbuf;
typedef basic_istringstream<wchar_t> wistringstream;
typedef basic_ostringstream<wchar_t> wostringstream;
typedef basic_stringstream<wchar_t> wstringstream;

typedef basic_filebuf<wchar_t> wfilebuf;
typedef basic_ifstream<wchar_t> wifstream;
typedef basic_ofstream<wchar_t> wofstream;

§ 27.3 974

c© ISO/IEC N3092

typedef basic_fstream<wchar_t> wfstream;

template <class state> class fpos;
typedef fpos<char_traits<char>::state_type> streampos;
typedef fpos<char_traits<wchar_t>::state_type> wstreampos;

}

1 Default template arguments are described as appearing both in <iosfwd> and in the synopsis of other
headers but it is well-formed to include both <iosfwd> and one or more of the other headers.298

2 [Note: The class template specialization basic_ios<charT,traits> serves as a virtual base class for the
class templates basic_istream, basic_ostream, and class templates derived from them. basic_iostream
is a class template derived from both basic_istream<charT,traits> and basic_ostream<charT,traits>.

3 The class template specialization basic_streambuf<charT,traits> serves as a base class for template
classes basic_stringbuf and basic_filebuf.

4 The class template specialization basic_istream<charT,traits> serves as a base class for template classes
basic_istringstream and basic_ifstream.

5 The class template specialization basic_ostream<charT,traits> serves as a base class for template classes
basic_ostringstream and basic_ofstream.

6 The class template specialization basic_iostream<charT,traits> serves as a base class for template classes
basic_stringstream and basic_fstream.

7 Other typedefs define instances of class templates specialized for char or wchar_t types.

8 Specializations of the class template fpos are used for specifying file position information.

9 The types streampos and wstreampos are used for positioning streams specialized on char and wchar_t
respectively.

10 This synopsis suggests a circularity between streampos and char_traits<char>. An implementation can
avoid this circularity by substituting equivalent types. One way to do this might be

template<class stateT> class fpos { ... }; // depends on nothing
typedef ... _STATE; // implementation private declaration of stateT

typedef fpos<_STATE> streampos;

template<> struct char_traits<char> {
typedef streampos
pos_type;

}

— end note]

27.4 Standard iostream objects [iostream.objects]

Header <iostream> synopsis
#include <ios>
#include <streambuf>
#include <istream>
#include <ostream>

298) It is the implementation’s responsibility to implement headers so that including <iosfwd> and other headers does not
violate the rules about multiple occurences of default arguments.

§ 27.4 975

c© ISO/IEC N3092

namespace std {
extern istream cin;
extern ostream cout;
extern ostream cerr;
extern ostream clog;

extern wistream wcin;
extern wostream wcout;
extern wostream wcerr;
extern wostream wclog;

}

1 The header <iostream> declares objects that associate objects with the standard C streams provided for by
the functions declared in <cstdio> (27.9.2), and includes all the headers necessary to use these objects.

2 The objects are constructed and the associations are established at some time prior to or during the first
time an object of class ios_base::Init is constructed, and in any case before the body of main begins exe-
cution.299 The objects are not destroyed during program execution.300 The results of including <iostream>
in a translation unit shall be as if <iostream> defined an instance of ios_base::Init with static storage
duration. Similarly, the entire program shall behave as if there were at least one instance of ios_base::Init
with static storage duration.

3 Mixing operations on corresponding wide- and narrow-character streams follows the same semantics as
mixing such operations on FILEs, as specified in Amendment 1 of the ISO C standard.

4 Concurrent access to a synchronized (27.5.2.4) standard iostream object’s formatted and unformatted in-
put (27.7.1.1) and output (27.7.2.1) functions or a standard C stream by multiple threads shall not result
in a data race (1.10). [Note: users must still synchronize concurrent use of these objects and streams by
multiple threads if they wish to avoid interleaved characters. — end note]

27.4.1 Narrow stream objects [narrow.stream.objects]

istream cin;

1 The object cin controls input from a stream buffer associated with the object stdin, declared in
<cstdio>.

2 After the object cin is initialized, cin.tie() returns &cout. Its state is otherwise the same as required
for basic_ios<char>::init (27.5.4.1).

ostream cout;

3 The object cout controls output to a stream buffer associated with the object stdout, declared in
<cstdio> (27.9.2).

ostream cerr;

4 The object cerr controls output to a stream buffer associated with the object stderr, declared in
<cstdio> (27.9.2).

5 After the object cerr is initialized, cerr.flags() & unitbuf is nonzero and cerr.tie() returns
&cout. Its state is otherwise the same as required for basic_ios<char>::init (27.5.4.1).

299) If it is possible for them to do so, implementations are encouraged to initialize the objects earlier than required.
300) Constructors and destructors for static objects can access these objects to read input from stdin or write output to stdout
or stderr.

§ 27.4.1 976

c© ISO/IEC N3092

ostream clog;

6 The object clog controls output to a stream buffer associated with the object stderr, declared in
<cstdio> (27.9.2).

27.4.2 Wide stream objects [wide.stream.objects]

wistream wcin;

1 The object wcin controls input from a stream buffer associated with the object stdin, declared in
<cstdio>.

2 After the object wcin is initialized, wcin.tie() returns &wcout. Its state is otherwise the same as
required for basic_ios<wchar_t>::init (27.5.4.1).

wostream wcout;

3 The object wcout controls output to a stream buffer associated with the object stdout, declared in
<cstdio> (27.9.2).

wostream wcerr;

4 The object wcerr controls output to a stream buffer associated with the object stderr, declared in
<cstdio> (27.9.2).

5 After the object wcerr is initialized, wcerr.flags() & unitbuf is nonzero and wcerr.tie() returns
&wcout. Its state is otherwise the same as required for basic_ios<wchar_t>::init (27.5.4.1).

wostream wclog;

6 The object wclog controls output to a stream buffer associated with the object stderr, declared in
<cstdio> (27.9.2).

27.5 Iostreams base classes [iostreams.base]

Header <ios> synopsis
#include <iosfwd>

namespace std {
typedef implementation-defined streamoff;
typedef implementation-defined streamsize;
template <class stateT> class fpos;

class ios_base;
template <class charT, class traits = char_traits<charT> >

class basic_ios;

// 27.5.5, manipulators:
ios_base& boolalpha (ios_base& str);
ios_base& noboolalpha(ios_base& str);

ios_base& showbase (ios_base& str);
ios_base& noshowbase (ios_base& str);

ios_base& showpoint (ios_base& str);

§ 27.5 977

c© ISO/IEC N3092

ios_base& noshowpoint(ios_base& str);

ios_base& showpos (ios_base& str);
ios_base& noshowpos (ios_base& str);

ios_base& skipws (ios_base& str);
ios_base& noskipws (ios_base& str);

ios_base& uppercase (ios_base& str);
ios_base& nouppercase(ios_base& str);

ios_base& unitbuf (ios_base& str);
ios_base& nounitbuf (ios_base& str);

// 27.5.5.2 adjustfield:
ios_base& internal (ios_base& str);
ios_base& left (ios_base& str);
ios_base& right (ios_base& str);

// 27.5.5.3 basefield:
ios_base& dec (ios_base& str);
ios_base& hex (ios_base& str);
ios_base& oct (ios_base& str);

// 27.5.5.4 floatfield:
ios_base& fixed (ios_base& str);
ios_base& scientific (ios_base& str);
ios_base& hexfloat (ios_base& str);
ios_base& defaultfloat(ios_base& str);

// 27.5.5.5 error reporting:
enum class io_errc {

stream = 1
};

template <> struct is_error_code_enum<io_errc> : public true_type { };
error_code make_error_code(io_errc e);
error_condition make_error_condition(io_errc e);
const error_category& iostream_category();

}

27.5.1 Types [stream.types]

typedef implementation-defined streamoff;

1 The type streamoff is a synonym for one of the signed basic integral types of sufficient size to represent
the maximum possible file size for the operating system.301

typedef implementation-defined streamsize;

2 The type streamsize is a synonym for one of the signed basic integral types. It is used to represent
the number of characters transferred in an I/O operation, or the size of I/O buffers.302

301) Typically long long.
302) streamsize is used in most places where ISO C would use size_t. Most of the uses of streamsize could use size_t,

§ 27.5.1 978

c© ISO/IEC N3092

27.5.2 Class ios_base [ios.base]

namespace std {
class ios_base {
public:

class failure;

// 27.5.2.1.2 fmtflags
enum fmtflags {

boolalpha = unspecified,
dec = unspecified,
fixed = unspecified,
hex = unspecified,
internal = unspecified,
left = unspecified,
oct = unspecified,
right = unspecified,
scientific = unspecified,
showbase = unspecified,
showpoint = unspecified,
showpos = unspecified,
skipws = unspecified,
unitbuf = unspecified,
uppercase = unspecified,
adjustfield = unspecified,
basefield = unspecified,
floatfield = unspecified,

};

constexpr fmtflags operator~(fmtflags f);
constexpr fmtflags operator&(fmtflags lhs, fmtflags rhs);
constexpr fmtflags operator|(fmtflags lhs, fmtflags rhs);

// 27.5.2.1.3 iostate
enum iostate {

badbit = unspecified,
eofbit = unspecified,
failbit = unspecified,
goodbit = unspecified,

};

constexpr iostate operator~(iostate f);
constexpr iostate operator&(iostate lhs, iostate rhs);
constexpr iostate operator|(iostate lhs, iostate rhs);

// 27.5.2.1.4 openmode
enum openmode {

app = unspecified,
ate = unspecified,
binary = unspecified,
in = unspecified,
out = unspecified,
trunc = unspecified,

except for the strstreambuf constructors, which require negative values. It should probably be the signed type corresponding
to size_t (which is what Posix.2 calls ssize_t).

§ 27.5.2 979

c© ISO/IEC N3092

};

constexpr openmode operator~(openmode f);
constexpr openmode operator&(openmode lhs, openmode rhs);
constexpr openmode operator|(openmode lhs, openmode rhs);

// 27.5.2.1.5 seekdir
enum seekdir {

beg = unspecified,
cur = unspecified,
end = unspecified,

};

constexpr seekdir operator~(seekdir f);
constexpr seekdir operator&(seekdir lhs, seekdir rhs);
constexpr seekdir operator|(seekdir lhs, seekdir rhs);

class Init;

// 27.5.2.2 fmtflags state:
fmtflags flags() const;
fmtflags flags(fmtflags fmtfl);
fmtflags setf(fmtflags fmtfl);
fmtflags setf(fmtflags fmtfl, fmtflags mask);
void unsetf(fmtflags mask);

streamsize precision() const;
streamsize precision(streamsize prec);
streamsize width() const;
streamsize width(streamsize wide);

// 27.5.2.3 locales:
locale imbue(const locale& loc);
locale getloc() const;

// 27.5.2.5 storage:
static int xalloc();
long& iword(int index);
void*& pword(int index);

// destructor
virtual ~ios_base();

// 27.5.2.6 callbacks;
enum event { erase_event, imbue_event, copyfmt_event };
typedef void (*event_callback)(event, ios_base&, int index);
void register_callback(event_callback fn, int index);

ios_base(const ios_base&) = delete;
ios_base& operator=(const ios_base&) = delete;

static bool sync_with_stdio(bool sync = true);

protected:
ios_base();

§ 27.5.2 980

c© ISO/IEC N3092

private:
static int index; // exposition only
long* iarray; // exposition only
void** parray; // exposition only

};
}

1 ios_base defines several member types:

— a class failure derived from system_error;

— a class Init;

— three bitmask types, fmtflags, iostate, and openmode;

— an enumerated type, seekdir.

2 It maintains several kinds of data:

— state information that reflects the integrity of the stream buffer;

— control information that influences how to interpret (format) input sequences and how to generate
(format) output sequences;

— additional information that is stored by the program for its private use.

3 [Note: For the sake of exposition, the maintained data is presented here as:

— static int index, specifies the next available unique index for the integer or pointer arrays main-
tained for the private use of the program, initialized to an unspecified value;

— long* iarray, points to the first element of an arbitrary-length long array maintained for the private
use of the program;

— void** parray, points to the first element of an arbitrary-length pointer array maintained for the
private use of the program. — end note]

27.5.2.1 Types [ios.types]

27.5.2.1.1 Class ios_base::failure [ios::failure]

namespace std {
class ios_base::failure : public system_error {
public:

explicit failure(const string& msg, const error_code& ec = io_errc::stream);
explicit failure(const char* msg, const error_code& ec = io_errc::stream);

};
}

1 The class failure defines the base class for the types of all objects thrown as exceptions, by functions in
the iostreams library, to report errors detected during stream buffer operations.

2 When throwing ios_base::failure exceptions, implementations should provide values of ec that identify
the specific reason for the failure. [Note: Errors arising from the operating system would typically be
reported as system_category() errors with an error value of the error number reported by the operating
system. Errors arising from within the stream library would typically be reported as error_code(io_-
errc::stream, iostream_category()). — end note]

§ 27.5.2.1.1 981

c© ISO/IEC N3092

explicit failure(const string& msg, , const error_code& ec = io_errc::stream);

3 Effects: Constructs an object of class failure by constructing the base class with msg and ec.

explicit failure(const char* msg, const error_code& ec = io_errc::stream);

4 Effects: Constructs an object of class failure by constructing the base class with msg and ec.

27.5.2.1.2 Type ios_base::fmtflags [ios::fmtflags]

enum fmtflags;

1 The type fmtflags is a bitmask type (17.5.2.1.3). Setting its elements has the effects indicated in
Table 119.

Table 119 — fmtflags effects

Element Effect(s) if set
boolalpha insert and extract bool type in alphabetic format
dec converts integer input or generates integer output in decimal base
fixed generate floating-point output in fixed-point notation
hex converts integer input or generates integer output in hexadecimal base
internal adds fill characters at a designated internal point in certain generated out-

put, or identical to right if no such point is designated
left adds fill characters on the right (final positions) of certain generated output
oct converts integer input or generates integer output in octal base
right adds fill characters on the left (initial positions) of certain generated output
scientific generates floating-point output in scientific notation
showbase generates a prefix indicating the numeric base of generated integer output
showpoint generates a decimal-point character unconditionally in generated floating-

point output
showpos generates a + sign in non-negative generated numeric output
skipws skips leading whitespace before certain input operations
unitbuf flushes output after each output operation
uppercase replaces certain lowercase letters with their uppercase equivalents in gen-

erated output

2 Type fmtflags also defines the constants indicated in Table 120.

Table 120 — fmtflags constants

Constant Allowable values
adjustfield left | right | internal
basefield dec | oct | hex
floatfield scientific | fixed

constexpr fmtflags ios_base::operator~(fmtflags f);

3 Returns: fmtflags(f).

constexpr fmtflags ios_base::operator&(fmtflags lhs, fmtflags rhs);

4 Returns: fmtflags(int(lhs) & int(rhs)).

§ 27.5.2.1.2 982

c© ISO/IEC N3092

constexpr fmtflags ios_base::operator|(fmtflags lhs, fmtflags rhs);

5 Returns: fmtflags(int(lhs) | int(rhs)).

27.5.2.1.3 Type ios_base::iostate [ios::iostate]

enum iostate;

1 The type iostate is a bitmask type (17.5.2.1.3) that contains the elements indicated in Table 121.

Table 121 — iostate effects
Element Effect(s) if set
badbit indicates a loss of integrity in an input or output sequence (such as an

irrecoverable read error from a file);
eofbit indicates that an input operation reached the end of an input sequence;
failbit indicates that an input operation failed to read the expected characters, or

that an output operation failed to generate the desired characters.

2 Type iostate also defines the constant:

— goodbit, the value zero.

constexpr iostate ios_base::operator~(iostate f);

3 Returns: iostate(f).

constexpr iostate ios_base::operator&(iostate lhs, iostate rhs);

4 Returns: iostate(int(lhs) & int(rhs)).

constexpr iostate ios_base::operator|(iostate lhs, iostate rhs);

5 Returns: iostate(int(lhs) | int(rhs)).

27.5.2.1.4 Type ios_base::openmode [ios::openmode]

enum openmode;

1 The type openmode is a bitmask type (17.5.2.1.3). It contains the elements indicated in Table 122.

Table 122 — openmode effects

Element Effect(s) if set
app seek to end before each write
ate open and seek to end immediately after opening
binary perform input and output in binary mode (as opposed to text mode)
in open for input
out open for output
trunc truncate an existing stream when opening

constexpr openmode ios_base::operator~(openmode f);

2 Returns: openmode(f).

§ 27.5.2.1.4 983

c© ISO/IEC N3092

constexpr openmode ios_base::operator&(openmode lhs, openmode rhs);

3 Returns: openmode(int(lhs) & int(rhs)).

constexpr openmode ios_base::operator|(openmode lhs, openmode rhs);

4 Returns: openmode(int(lhs) | int(rhs)).

27.5.2.1.5 Type ios_base::seekdir [ios::seekdir]

enum seekdir;

1 The type seekdir is an enumerated type (17.5.2.1.2) that contains the elements indicated in Table 123.

Table 123 — seekdir effects
Element Meaning
beg request a seek (for subsequent input or output) relative to the beginning of

the stream
cur request a seek relative to the current position within the sequence
end request a seek relative to the current end of the sequence

constexpr seekdir ios_base::operator~(seekdir f);

2 Returns: seekdir(f).

constexpr seekdir ios_base::operator&(seekdir lhs, seekdir rhs);

3 Returns: seekdir(int(lhs) & int(rhs)).

constexpr seekdir ios_base::operator|(seekdir lhs, seekdir rhs);

4 Returns: seekdir(int(lhs) | int(rhs)).

27.5.2.1.6 Class ios_base::Init [ios::Init]

namespace std {
class ios_base::Init {
public:

Init();
~Init();

private:
static int init_cnt; // exposition only

};
}

1 The class Init describes an object whose construction ensures the construction of the eight objects declared
in <iostream> (27.4) that associate file stream buffers with the standard C streams provided for by the
functions declared in <cstdio> (27.9.2).

2 For the sake of exposition, the maintained data is presented here as:

— static int init_cnt, counts the number of constructor and destructor calls for class Init, initialized
to zero.

Init();

§ 27.5.2.1.6 984

c© ISO/IEC N3092

3 Effects: Constructs an object of class Init. Constructs and initializes the objects cin, cout, cerr,
clog, wcin, wcout, wcerr, and wclog if they have not already been constructed and initialized.

~Init();

4 Effects: Destroys an object of class Init. If there are no other instances of the class still in existence,
calls cout.flush(), cerr.flush(), clog.flush(), wcout.flush(), wcerr.flush(), wclog.flush().

27.5.2.2 ios_base state functions [fmtflags.state]

fmtflags flags() const;

1 Returns: The format control information for both input and output.

fmtflags flags(fmtflags fmtfl);

2 Postcondition: fmtfl == flags().

3 Returns: The previous value of flags().

fmtflags setf(fmtflags fmtfl);

4 Effects: Sets fmtfl in flags().

5 Returns: The previous value of flags().

fmtflags setf(fmtflags fmtfl, fmtflags mask);

6 Effects: Clears mask in flags(), sets fmtfl & mask in flags().

7 Returns: The previous value of flags().

void unsetf(fmtflags mask);

8 Effects: Clears mask in flags().

streamsize precision() const;

9 Returns: The precision to generate on certain output conversions.

streamsize precision(streamsize prec);

10 Postcondition: prec == precision().

11 Returns: The previous value of precision().

streamsize width() const;

12 Returns: The minimum field width (number of characters) to generate on certain output conversions.

streamsize width(streamsize wide);

13 Postcondition: wide == width().

14 Returns: The previous value of width().

§ 27.5.2.2 985

c© ISO/IEC N3092

27.5.2.3 ios_base functions [ios.base.locales]

locale imbue(const locale& loc);

1 Effects: Calls each registered callback pair (fn,index) (27.5.2.6) as (*fn)(imbue_event,*this,index)
at such a time that a call to ios_base::getloc() from within fn returns the new locale value loc.

2 Returns: The previous value of getloc().

3 Postcondition: loc == getloc().

locale getloc() const;

4 Returns: If no locale has been imbued, a copy of the global C++ locale, locale(), in effect at the time
of construction. Otherwise, returns the imbued locale, to be used to perform locale-dependent input
and output operations.

27.5.2.4 ios_base static members [ios.members.static]

bool sync_with_stdio(bool sync = true);

1 Returns: true if the previous state of the standard iostream objects (27.4) was synchronized and
otherwise returns false. The first time it is called, the function returns true.

2 Effects: If any input or output operation has occurred using the standard streams prior to the call,
the effect is implementation-defined. Otherwise, called with a false argument, it allows the standard
streams to operate independently of the standard C streams.

3 When a standard iostream object str is synchronized with a standard stdio stream f, the effect of
inserting a character c by

fputc(f, c);

is the same as the effect of
str.rdbuf()->sputc(c);

for any sequences of characters; the effect of extracting a character c by
c = fgetc(f);

is the same as the effect of
c = str.rdbuf()->sbumpc(c);

for any sequences of characters; and the effect of pushing back a character c by
ungetc(c, f);

is the same as the effect of
str.rdbuf()->sputbackc(c);

for any sequence of characters.303

303) This implies that operations on a standard iostream object can be mixed arbitrarily with operations on the corresponding
stdio stream. In practical terms, synchronization usually means that a standard iostream object and a standard stdio object
share a buffer.

§ 27.5.2.4 986

c© ISO/IEC N3092

27.5.2.5 ios_base storage functions [ios.base.storage]

static int xalloc();

1 Returns: index ++.

long& iword(int idx);

2 Effects: If iarray is a null pointer, allocates an array of long of unspecified size and stores a pointer
to its first element in iarray. The function then extends the array pointed at by iarray as necessary
to include the element iarray[idx]. Each newly allocated element of the array is initialized to zero.
The reference returned is invalid after any other operations on the object.304 However, the value of the
storage referred to is retained, so that until the next call to copyfmt, calling iword with the same index
yields another reference to the same value. If the function fails305 and *this is a base subobject of a
basic_ios<> object or subobject, the effect is equivalent to calling basic_ios<>::setstate(badbit)
on the derived object (which may throw failure).

3 Returns: On success iarray[idx]. On failure, a valid long& initialized to 0.

void*& pword(int idx);

4 Effects: If parray is a null pointer, allocates an array of pointers to void of unspecified size and
stores a pointer to its first element in parray. The function then extends the array pointed at by
parray as necessary to include the element parray[idx]. Each newly allocated element of the array
is initialized to a null pointer. The reference returned is invalid after any other operations on the
object. However, the value of the storage referred to is retained, so that until the next call to copyfmt,
calling pword with the same index yields another reference to the same value. If the function fails306

and *this is a base subobject of a basic_ios<> object or subobject, the effect is equivalent to calling
basic_ios<>::setstate(badbit) on the derived object (which may throw failure).

5 Returns: On success parray[idx]. On failure a valid void*& initialized to 0.

6 Remarks: After a subsequent call to pword(int) for the same object, the earlier return value may no
longer be valid.

27.5.2.6 ios_base callbacks [ios.base.callback]

void register_callback(event_callback fn, int index);

1 Effects: Registers the pair (fn,index) such that during calls to imbue() (27.5.2.3), copyfmt(), or
˜ios_base() (27.5.2.7), the function fn is called with argument index. Functions registered are called
when an event occurs, in opposite order of registration. Functions registered while a callback function
is active are not called until the next event.

2 Requires: The function fn shall not throw exceptions.

Remarks: Identical pairs are not merged. A function registered twice will be called twice.

27.5.2.7 ios_base constructors/destructor [ios.base.cons]

ios_base();

304) An implementation is free to implement both the integer array pointed at by iarray and the pointer array pointed at by
parray as sparse data structures, possibly with a one-element cache for each.
305) for example, because it cannot allocate space.
306) for example, because it cannot allocate space.

§ 27.5.2.7 987

c© ISO/IEC N3092

1 Effects: Each ios_base member has an indeterminate value after construction. These members shall be
initialized by calling basic_ios::init. If an ios_base object is destroyed before these initializations
have taken place, the behavior is undefined.

~ios_base()

2 Effects: Destroys an object of class ios_base. Calls each registered callback pair (fn, index) (27.5.2.6)
as (*fn)(erase_event, *this, index) at such time that any ios_base member function called from
within fn has well defined results.

27.5.3 Class template fpos [fpos]

namespace std {
template <class stateT> class fpos {
public:

// 27.5.3.1 Members
stateT state() const;
void state(stateT);

private;
stateT st; // exposition only

};
}

27.5.3.1 fpos Members [fpos.members]

void state(stateT s);

1 Effects: Assign s to st.

stateT state() const;

2 Returns: Current value of st.

27.5.3.2 fpos requirements [fpos.operations]

1 Operations specified in Table 124 are permitted. In that table,

— P refers to an instance of fpos,

— p and q refer to values of type P,

— O refers to type streamoff,

— o refers to a value of type streamoff,

— sz refers to a value of type streamsize and

— i refers to a value of type int.

Table 124 — Position type requirements

Expression Return type Operational Assertion/note
semantics pre-/post-condition

P(i) p == P(i)
note: a destructor is assumed.

§ 27.5.3.2 988

c© ISO/IEC N3092

Table 124 — Position type requirements (continued)

Expression Return type Operational Assertion/note
semantics pre-/post-condition

P p(i);
P p = i;

post: p == P(i).

P(o) fpos converts from offset
O(p) OFF_T converts to offset P(O(p)) == p
p == q convertible to bool == is an equivalence relation
p != q convertible to bool !(p == q)
q = p + o
p += o

fpos + offset q - o == p

q = p - o
p -= o

fpos - offset q + o == p

o = p - q OFF_T distance q + o == p
streamsize(o)
O(sz)

streamsize
OFF_T

converts
converts

streamsize(O(sz)) == sz
streamsize(O(sz)) == sz

2 [Note: Every implementation is required to supply overloaded operators on fpos objects to satisfy the
requirements of 27.5.3.2. It is unspecified whether these operators are members of fpos, global operators,
or provided in some other way. — end note]

3 Stream operations that return a value of type traits::pos_type return P(O(-1)) as an invalid value to
signal an error. If this value is used as an argument to any istream, ostream, or streambuf member that
accepts a value of type traits::pos_type then the behavior of that function is undefined.

27.5.4 Class template basic_ios [ios]

namespace std {
template <class charT, class traits = char_traits<charT> >
class basic_ios : public ios_base {
public:

// types:
typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;
typedef traits traits_type;

explicit operator bool() const;
bool operator!() const;
iostate rdstate() const;
void clear(iostate state = goodbit);
void setstate(iostate state);
bool good() const;
bool eof() const;
bool fail() const;
bool bad() const;

iostate exceptions() const;
void exceptions(iostate except);

§ 27.5.4 989

c© ISO/IEC N3092

// 27.5.4.1 Constructor/destructor:
explicit basic_ios(basic_streambuf<charT,traits>* sb);
virtual ~basic_ios();

// 27.5.4.2 Members:
basic_ostream<charT,traits>* tie() const;
basic_ostream<charT,traits>* tie(basic_ostream<charT,traits>* tiestr);

basic_streambuf<charT,traits>* rdbuf() const;
basic_streambuf<charT,traits>* rdbuf(basic_streambuf<charT,traits>* sb);

basic_ios& copyfmt(const basic_ios& rhs);

char_type fill() const;
char_type fill(char_type ch);

locale imbue(const locale& loc);

char narrow(char_type c, char dfault) const;
char_type widen(char c) const;

basic_ios(const basic_ios&) = delete;
basic_ios& operator=(const basic_ios&) = delete;

protected:
basic_ios();
void init(basic_streambuf<charT,traits>* sb);
void move(basic_ios& rhs);
void move(basic_ios&& rhs);
void swap(basic_ios& rhs);
void set_rdbuf(basic_streambuf<charT, traits>* sb);

};
}

27.5.4.1 basic_ios constructors [basic.ios.cons]

explicit basic_ios(basic_streambuf<charT,traits>* sb);

1 Effects: Constructs an object of class basic_ios, assigning initial values to its member objects by
calling init(sb).

basic_ios();

2 Effects: Constructs an object of class basic_ios (27.5.2.7) leaving its member objects uninitialized.
The object shall be initialized by calling its init member function. If it is destroyed before it has been
initialized the behavior is undefined.

~basic_ios();

3 Remarks: The destructor does not destroy rdbuf().

void init(basic_streambuf<charT,traits>* sb);

Postconditions: The postconditions of this function are indicated in Table 125.

§ 27.5.4.1 990

c© ISO/IEC N3092

Table 125 — basic_ios::init() effects

Element Value
rdbuf() sb
tie() 0
rdstate() goodbit if sb is not a null pointer, otherwise

badbit.
exceptions() goodbit
flags() skipws | dec
width() 0
precision() 6
fill() widen(’ ’);
getloc() a copy of the value returned by locale()
iarray a null pointer
parray a null pointer

27.5.4.2 Member functions [basic.ios.members]

basic_ostream<charT,traits>* tie() const;

1 Returns: An output sequence that is tied to (synchronized with) the sequence controlled by the stream
buffer.

basic_ostream<charT,traits>* tie(basic_ostream<charT,traits>* tiestr);

2 Requires: If tiestr is not null, tiestr must not be reachable by traversiong the linked lit of tied
stream objects starting from tiestr->tie().

3 Postcondition: tiestr == tie().

4 Returns: The previous value of tie().

basic_streambuf<charT,traits>* rdbuf() const;

5 Returns: A pointer to the streambuf associated with the stream.

basic_streambuf<charT,traits>* rdbuf(basic_streambuf<charT,traits>* sb);

6 Postcondition: sb == rdbuf().

7 Effects: Calls clear().

8 Returns: The previous value of rdbuf().

locale imbue(const locale& loc);

9 Effects: Calls ios_base::imbue(loc) (27.5.2.3) and if rdbuf()!=0 then rdbuf()->pubimbue(loc) (27.6.2.2.1).

10 Returns: The prior value of ios_base::imbue().

char narrow(char_type c, char dfault) const;

11 Returns: use_facet< ctype<char_type> >(getloc()).narrow(c,dfault)

char_type widen(char c) const;

§ 27.5.4.2 991

c© ISO/IEC N3092

12 Returns: use_facet< ctype<char_type> >(getloc()).widen(c)

char_type fill() const;

13 Returns: The character used to pad (fill) an output conversion to the specified field width.

char_type fill(char_type fillch);

14 Postcondition: traits::eq(fillch, fill())

15 Returns: The previous value of fill().

basic_ios& copyfmt(const basic_ios& rhs);

16 Effects: If (this == &rhs) does nothing. Otherwise assigns to the member objects of *this the
corresponding member objects of rhs as follows:

1. calls each registered callback pair (fn, index) as (*fn)(erase_event, *this, index);

2. assigns to the member objects of *this the corresponding member objects of rhs, except that

— rdstate(), rdbuf(), and exceptions() are left unchanged;

— the contents of arrays pointed at by pword and iword are copied, not the pointers them-
selves;307 and

— if any newly stored pointer values in *this point at objects stored outside the object rhs
and those objects are destroyed when rhs is destroyed, the newly stored pointer values are
altered to point at newly constructed copies of the objects;

3. calls each callback pair that was copied from rhs as (*fn)(copyfmt_event, *this, index);

4. calls exceptions(rhs.except()).

17 Note: The second pass through the callback pairs permits a copied pword value to be zeroed, or to
have its referent deep copied or reference counted, or to have other special action taken.

18 Postconditions: The postconditions of this function are indicated in Table 126.

Table 126 — basic_ios::copyfmt() effects

Element Value
rdbuf() unchanged
tie() rhs.tie()
rdstate() unchanged
exceptions() rhs.exceptions()
flags() rhs.flags()
width() rhs.width()
precision() rhs.precision()
fill() rhs.fill()
getloc() rhs.getloc()

19 Returns: *this.

307) This suggests an infinite amount of copying, but the implementation can keep track of the maximum element of the arrays
that is non-zero.

§ 27.5.4.2 992

c© ISO/IEC N3092

void move(basic_ios& rhs);
void move(basic_ios&& rhs);

20 Postconditions: *this shall have the state that rhs had before the function call, except that rdbuf()
shall return 0. rhs shall be in a valid but unspecified state, except that rhs.rdbuf() shall return the
same value as it returned before the function call, and rhs.tie() shall return 0.

void swap(basic_ios& rhs);

21 Effects: The states of *this and rhs shall be exchanged, except that rdbuf() shall return the same
value as it returned before the function call, and rhs.rdbuf() shall return the same value as it returned
before the function call.

22 Throws: Nothing.

void set_rdbuf(basic_streambuf<charT, traits>* sb);

23 Effects: Associates the basic_streambuf object pointed to by sb with this stream without calling
clear().

24 Postconditions: rdbuf() == sb.

25 Throws: Nothing.

27.5.4.3 basic_ios flags functions [iostate.flags]

explicit operator bool() const;

1 Returns: !fail().

bool operator!() const;

2 Returns: fail().

iostate rdstate() const;

3 Returns: The error state of the stream buffer.

void clear(iostate state = goodbit);

4 Postcondition: If rdbuf()!=0 then state == rdstate(); otherwise rdstate()==(state | ios_base
::badbit).

5 Effects: If ((state | (rdbuf() ? goodbit : badbit)) & exceptions()) == 0, returns. Oth-
erwise, the function throws an object fail of class basic_ios::failure (27.5.2.1.1), constructed with
implementation-defined argument values.

void setstate(iostate state);

6 Effects: Calls clear(rdstate() | state) (which may throw basic_ios::failure (27.5.2.1.1)).

bool good() const;

7 Returns: rdstate() == 0

bool eof() const;

8 Returns: true if eofbit is set in rdstate().

§ 27.5.4.3 993

c© ISO/IEC N3092

bool fail() const;

9 Returns: true if failbit or badbit is set in rdstate().308

bool bad() const;

10 Returns: true if badbit is set in rdstate().

iostate exceptions() const;

11 Returns: A mask that determines what elements set in rdstate() cause exceptions to be thrown.

void exceptions(iostate except);

12 Postcondition: except == exceptions().

13 Effects: Calls clear(rdstate()).

27.5.5 ios_base manipulators [std.ios.manip]

27.5.5.1 fmtflags manipulators [fmtflags.manip]

ios_base& boolalpha(ios_base& str);

1 Effects: Calls str.setf(ios_base::boolalpha).

2 Returns: str.

ios_base& noboolalpha(ios_base& str);

3 Effects: Calls str.unsetf(ios_base::boolalpha).

4 Returns: str.

ios_base& showbase(ios_base& str);

5 Effects: Calls str.setf(ios_base::showbase).

6 Returns: str.

ios_base& noshowbase(ios_base& str);

7 Effects: Calls str.unsetf(ios_base::showbase).

8 Returns: str.

ios_base& showpoint(ios_base& str);

9 Effects: Calls str.setf(ios_base::showpoint).

10 Returns: str.

ios_base& noshowpoint(ios_base& str);

11 Effects: Calls str.unsetf(ios_base::showpoint).

12 Returns: str.

308) Checking badbit also for fail() is historical practice.

§ 27.5.5.1 994

c© ISO/IEC N3092

ios_base& showpos(ios_base& str);

13 Effects: Calls str.setf(ios_base::showpos).

14 Returns: str.

ios_base& noshowpos(ios_base& str);

15 Effects: Calls str.unsetf(ios_base::showpos).

16 Returns: str.

ios_base& skipws(ios_base& str);

17 Effects: Calls str.setf(ios_base::skipws).

18 Returns: str.

ios_base& noskipws(ios_base& str);

19 Effects: Calls str.unsetf(ios_base::skipws).

20 Returns: str.

ios_base& uppercase(ios_base& str);

21 Effects: Calls str.setf(ios_base::uppercase).

22 Returns: str.

ios_base& nouppercase(ios_base& str);

23 Effects: Calls str.unsetf(ios_base::uppercase).

24 Returns: str.

ios_base& unitbuf(ios_base& str);

25 Effects: Calls str.setf(ios_base::unitbuf).

26 Returns: str.

ios_base& nounitbuf(ios_base& str);

27 Effects: Calls str.unsetf(ios_base::unitbuf).

28 Returns: str.

27.5.5.2 adjustfield manipulators [adjustfield.manip]

ios_base& internal(ios_base& str);

1 Effects: Calls str.setf(ios_base::internal, ios_base::adjustfield).

2 Returns: str.

ios_base& left(ios_base& str);

3 Effects: Calls str.setf(ios_base::left, ios_base::adjustfield).

4 Returns: str.

§ 27.5.5.2 995

c© ISO/IEC N3092

ios_base& right(ios_base& str);

5 Effects: Calls str.setf(ios_base::right, ios_base::adjustfield).

6 Returns: str.

27.5.5.3 basefield manipulators [basefield.manip]

ios_base& dec(ios_base& str);

1 Effects: Calls str.setf(ios_base::dec, ios_base::basefield).

2 Returns: str309.

ios_base& hex(ios_base& str);

3 Effects: Calls str.setf(ios_base::hex, ios_base::basefield).

4 Returns: str.

ios_base& oct(ios_base& str);

5 Effects: Calls str.setf(ios_base::oct, ios_base::basefield).

6 Returns: str.

27.5.5.4 floatfield manipulators [floatfield.manip]

ios_base& fixed(ios_base& str);

1 Effects: Calls str.setf(ios_base::fixed, ios_base::floatfield).

2 Returns: str.

ios_base& scientific(ios_base& str);

3 Effects: Calls str.setf(ios_base::scientific, ios_base::floatfield).

4 Returns: str.

ios_base& hexfloat(ios_base& str);

5 Effects: Calls str.setf(ios_base::fixed | ios_base::scientific, ios_base::floatfield).

6 Returns: str.

7 [Note: The more obvious use of ios_base::hex to specify hexadecimal floating-point format would change
the meaning of existing well defined programs. C++2003 gives no meaning to the combination of fixed
and scientific. — end note]

ios_base& defaultfloat(ios_base& str);

8 Effects: Calls str.unsetf(ios_base::floatfield).

9 Returns: str.

309) The function signature dec(ios_base&) can be called by the function signature basic_ostream&
stream::operator<<(ios_base& (*)(ios_base&)) to permit expressions of the form cout <<dec to change the format
flags stored in cout.

§ 27.5.5.4 996

c© ISO/IEC N3092

27.5.5.5 Error reporting [error.reporting]

error_code make_error_code(io_errc e);

1 Returns: error_code(static_cast<int>(e), iostream_category()).

error_condition make_error_condition(io_errc e);

2 Returns: error_condition(static_cast<int>(e), iostream_category()).

const error_category& iostream_category();

3 Returns: a reference to an object of a type derived from class error_category.

4 The object’s default_error_condition and equivalent virtual functions shall behave as specified
for the class error_category. The object’s name virtual function shall return a pointer to the string
"iostream".

27.6 Stream buffers [stream.buffers]

Header <streambuf> synopsis
namespace std {

template <class charT, class traits = char_traits<charT> >
class basic_streambuf;

typedef basic_streambuf<char> streambuf;
typedef basic_streambuf<wchar_t> wstreambuf;

}

1 The header <streambuf> defines types that control input from and output to character sequences.

27.6.1 Stream buffer requirements [streambuf.reqts]

1 Stream buffers can impose various constraints on the sequences they control. Some constraints are:

— The controlled input sequence can be not readable.

— The controlled output sequence can be not writable.

— The controlled sequences can be associated with the contents of other representations for character
sequences, such as external files.

— The controlled sequences can support operations directly to or from associated sequences.

— The controlled sequences can impose limitations on how the program can read characters from a
sequence, write characters to a sequence, put characters back into an input sequence, or alter the
stream position.

2 Each sequence is characterized by three pointers which, if non-null, all point into the same charT array
object. The array object represents, at any moment, a (sub)sequence of characters from the sequence.
Operations performed on a sequence alter the values stored in these pointers, perform reads and writes
directly to or from associated sequences, and alter “the stream position” and conversion state as needed to
maintain this subsequence relationship. The three pointers are:

— the beginning pointer , or lowest element address in the array (called xbeg here);

— the next pointer , or next element address that is a current candidate for reading or writing (called
xnext here);

§ 27.6.1 997

c© ISO/IEC N3092

— the end pointer , or first element address beyond the end of the array (called xend here).

3 The following semantic constraints shall always apply for any set of three pointers for a sequence, using the
pointer names given immediately above:

— If xnext is not a null pointer, then xbeg and xend shall also be non-null pointers into the same charT
array, as described above; otherwise, xbeg and xend shall also be null.

— If xnext is not a null pointer and xnext < xend for an output sequence, then a write position is
available. In this case, *xnext shall be assignable as the next element to write (to put, or to store a
character value, into the sequence).

— If xnext is not a null pointer and xbeg < xnext for an input sequence, then a putback position is
available. In this case, xnext[-1] shall have a defined value and is the next (preceding) element to
store a character that is put back into the input sequence.

— If xnext is not a null pointer and xnext < xend for an input sequence, then a read position is available.
In this case, *xnext shall have a defined value and is the next element to read (to get, or to obtain a
character value, from the sequence).

27.6.2 Class template basic_streambuf<charT,traits> [streambuf]

namespace std {
template <class charT, class traits = char_traits<charT> >
class basic_streambuf {
public:

// types:
typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;
typedef traits traits_type;

virtual ~basic_streambuf();

// 27.6.2.2.1 locales:
locale pubimbue(const locale& loc);
locale getloc() const;

// 27.6.2.2.2 buffer and positioning:
basic_streambuf<char_type,traits>*

pubsetbuf(char_type* s, streamsize n);
pos_type pubseekoff(off_type off, ios_base::seekdir way,

ios_base::openmode which =
ios_base::in | ios_base::out);

pos_type pubseekpos(pos_type sp,
ios_base::openmode which =

ios_base::in | ios_base::out);
int pubsync();

// Get and put areas:
// 27.6.2.2.3 Get area:
streamsize in_avail();
int_type snextc();
int_type sbumpc();

§ 27.6.2 998

c© ISO/IEC N3092

int_type sgetc();
streamsize sgetn(char_type* s, streamsize n);

// 27.6.2.2.4 Putback:
int_type sputbackc(char_type c);
int_type sungetc();

// 27.6.2.2.5 Put area:
int_type sputc(char_type c);
streamsize sputn(const char_type* s, streamsize n);

protected:
basic_streambuf();
basic_streambuf(const basic_streambuf& rhs);
basic_streambuf& operator=(const basic_streambuf& rhs);

void swap(basic_streambuf& rhs);

// 27.6.2.3.2 Get area:
char_type* eback() const;
char_type* gptr() const;
char_type* egptr() const;
void gbump(int n);
void setg(char_type* gbeg, char_type* gnext, char_type* gend);

// 27.6.2.3.3 Put area:
char_type* pbase() const;
char_type* pptr() const;
char_type* epptr() const;
void pbump(int n);
void setp(char_type* pbeg, char_type* pend);

// 27.6.2.4 virtual functions:
// 27.6.2.4.1 Locales:
virtual void imbue(const locale& loc);

// 27.6.2.4.2 Buffer management and positioning:
virtual basic_streambuf<char_type,traits>*

setbuf(char_type* s, streamsize n);
virtual pos_type seekoff(off_type off, ios_base::seekdir way,

ios_base::openmode which = ios_base::in | ios_base::out);
virtual pos_type seekpos(pos_type sp,

ios_base::openmode which = ios_base::in | ios_base::out);
virtual int sync();

// 27.6.2.4.3 Get area:
virtual streamsize showmanyc();
virtual streamsize xsgetn(char_type* s, streamsize n);
virtual int_type underflow();
virtual int_type uflow();

// 27.6.2.4.4 Putback:
virtual int_type pbackfail(int_type c = traits::eof());

// 27.6.2.4.5 Put area:

§ 27.6.2 999

c© ISO/IEC N3092

virtual streamsize xsputn(const char_type* s, streamsize n);
virtual int_type overflow (int_type c = traits::eof());

};
}

1 The class template basic_streambuf<charT,traits> serves as an abstract base class for deriving various
stream buffers whose objects each control two character sequences:

— a character input sequence;

— a character output sequence.

27.6.2.1 basic_streambuf constructors [streambuf.cons]

basic_streambuf();

1 Effects: Constructs an object of class basic_streambuf<charT,traits> and initializes:310

— all its pointer member objects to null pointers,

— the getloc() member to a copy the global locale, locale(), at the time of construction.

2 Remarks: Once the getloc() member is initialized, results of calling locale member functions, and of
members of facets so obtained, can safely be cached until the next time the member imbue is called.

basic_streambuf(const basic_streambuf& rhs);

3 Effects: Constructs a copy of rhs.

4 Postconditions:

— eback() == rhs.eback()

— gptr() == rhs.gptr()

— egptr() == rhs.egptr()

— pbase() == rhs.pbase()

— pptr() == rhs.pptr()

— epptr() == rhs.epptr()

— getloc() == rhs.getloc()

~basic_streambuf();

5 Effects: None.

27.6.2.2 basic_streambuf public member functions [streambuf.members]

27.6.2.2.1 Locales [streambuf.locales]

locale pubimbue(const locale& loc);

310) The default constructor is protected for class basic_streambuf to assure that only objects for classes derived from this
class may be constructed.

§ 27.6.2.2.1 1000

c© ISO/IEC N3092

1 Postcondition: loc == getloc().

2 Effects: Calls imbue(loc).

3 Returns: Previous value of getloc().

locale getloc() const;

4 Returns: If pubimbue() has ever been called, then the last value of loc supplied, otherwise the current
global locale, locale(), in effect at the time of construction. If called after pubimbue() has been called
but before pubimbue has returned (i.e., from within the call of imbue()) then it returns the previous
value.

27.6.2.2.2 Buffer management and positioning [streambuf.buffer]

basic_streambuf<char_type,traits>* pubsetbuf(char_type* s, streamsize n);

1 Returns: setbuf(s, n).

pos_type pubseekoff(off_type off, ios_base::seekdir way,
ios_base::openmode which = ios_base::in | ios_base::out);

2 Returns: seekoff(off, way, which).

pos_type pubseekpos(pos_type sp,
ios_base::openmode which = ios_base::in | ios_base::out);

3 Returns: seekpos(sp, which).

int pubsync();

4 Returns: sync().

27.6.2.2.3 Get area [streambuf.pub.get]

streamsize in_avail();

1 Returns: If a read position is available, returns egptr() - gptr(). Otherwise returns showmanyc() (27.6.2.4.3).

int_type snextc();

2 Effects: Calls sbumpc().

3 Returns: if that function returns traits::eof(), returns traits::eof(). Otherwise, returns sgetc().

int_type sbumpc();

4 Returns: If the input sequence read position is not available, returns uflow(). Otherwise, returns
traits::to_int_type(*gptr()) and increments the next pointer for the input sequence.

int_type sgetc();

5 Returns: If the input sequence read position is not available, returns underflow(). Otherwise, returns
traits::to_int_type(*gptr()).

streamsize sgetn(char_type* s, streamsize n);

6 Returns: xsgetn(s, n).

§ 27.6.2.2.3 1001

c© ISO/IEC N3092

27.6.2.2.4 Putback [streambuf.pub.pback]

int_type sputbackc(char_type c);

1 Returns: If the input sequence putback position is not available, or if traits::eq(c,gptr()[-1]) is
false, returns pbackfail(traits::to_int_type(c)). Otherwise, decrements the next pointer for the
input sequence and returns traits::to_int_type(*gptr()).

int_type sungetc();

2 Returns: If the input sequence putback position is not available, returns pbackfail(). Otherwise,
decrements the next pointer for the input sequence and returns traits::to_int_type(*gptr()).

27.6.2.2.5 Put area [streambuf.pub.put]

int_type sputc(char_type c);

1 Returns: If the output sequence write position is not available, returns overflow(traits::to_int_-
type(c)). Otherwise, stores c at the next pointer for the output sequence, increments the pointer,
and returns traits::to_int_type(c).

streamsize sputn(const char_type* s, streamsize n);

2 Returns: xsputn(s,n).

27.6.2.3 basic_streambuf protected member functions [streambuf.protected]

27.6.2.3.1 Assignment [streambuf.assign]

basic_streambuf& operator=(const basic_streambuf& rhs);

1 Effects: Assigns the data members of rhs to *this.

2 Postconditions:

— eback() == rhs.eback()

— gptr() == rhs.gptr()

— egptr() == rhs.egptr()

— pbase() == rhs.pbase()

— pptr() == rhs.pptr()

— epptr() == rhs.epptr()

— getloc() == rhs.getloc()

3 Returns: *this.

void swap(basic_streambuf& rhs);

4 Effects: Swaps the data members of rhs and *this.

§ 27.6.2.3.1 1002

c© ISO/IEC N3092

27.6.2.3.2 Get area access [streambuf.get.area]

char_type* eback() const;

1 Returns: The beginning pointer for the input sequence.

char_type* gptr() const;

2 Returns: The next pointer for the input sequence.

char_type* egptr() const;

3 Returns: The end pointer for the input sequence.

void gbump(int n);

4 Effects: Adds n to the next pointer for the input sequence.

void setg(char_type* gbeg, char_type* gnext, char_type* gend);

5 Postconditions: gbeg == eback(), gnext == gptr(), and gend == egptr().

27.6.2.3.3 Put area access [streambuf.put.area]

char_type* pbase() const;

1 Returns: The beginning pointer for the output sequence.

char_type* pptr() const;

2 Returns: The next pointer for the output sequence.

char_type* epptr() const;

3 Returns: The end pointer for the output sequence.

void pbump(int n);

4 Effects: Adds n to the next pointer for the output sequence.

void setp(char_type* pbeg, char_type* pend);

5 Postconditions: pbeg == pbase(), pbeg == pptr(), and pend == epptr().

27.6.2.4 basic_streambuf virtual functions [streambuf.virtuals]

27.6.2.4.1 Locales [streambuf.virt.locales]

void imbue(const locale&)

1 Effects: Change any translations based on locale.

2 Remarks: Allows the derived class to be informed of changes in locale at the time they occur. Between
invocations of this function a class derived from streambuf can safely cache results of calls to locale
functions and to members of facets so obtained.

3 Default behavior: Does nothing.

§ 27.6.2.4.1 1003

c© ISO/IEC N3092

27.6.2.4.2 Buffer management and positioning [streambuf.virt.buffer]

basic_streambuf* setbuf(char_type* s, streamsize n);

1 Effects: Influences stream buffering in a way that is defined separately for each class derived from
basic_streambuf in this Clause (27.8.1.4, 27.9.1.5).

2 Default behavior: Does nothing. Returns this.

pos_type seekoff(off_type off, ios_base::seekdir way,
ios_base::openmode which
= ios_base::in | ios_base::out);

3 Effects: Alters the stream positions within one or more of the controlled sequences in a way that is
defined separately for each class derived from basic_streambuf in this Clause (27.8.1.4, 27.9.1.5).

4 Default behavior: Returns pos_type(off_type(-1)).

pos_type seekpos(pos_type sp,
ios_base::openmode which
= ios_base::in | ios_base::out);

5 Effects: Alters the stream positions within one or more of the controlled sequences in a way that is
defined separately for each class derived from basic_streambuf in this Clause (27.8.1, 27.9.1.1).

6 Default behavior: Returns pos_type(off_type(-1)).

int sync();

7 Effects: Synchronizes the controlled sequences with the arrays. That is, if pbase() is non-null the
characters between pbase() and pptr() are written to the controlled sequence. The pointers may
then be reset as appropriate.

8 Returns:-1 on failure. What constitutes failure is determined by each derived class (27.9.1.5).

9 Default behavior: Returns zero.

27.6.2.4.3 Get area [streambuf.virt.get]

streamsize showmanyc();311

1 Returns: an estimate of the number of characters available in the sequence, or -1. If it returns a
positive value, then successive calls to underflow() will not return traits::eof() until at least that
number of characters have been extracted from the stream. If showmanyc() returns -1, then calls to
underflow() or uflow() will fail.312

2 Default behavior: Returns zero.

3 Remarks: Uses traits::eof().

streamsize xsgetn(char_type* s, streamsize n);

4 Effects: Assigns up to n characters to successive elements of the array whose first element is designated
by s. The characters assigned are read from the input sequence as if by repeated calls to sbumpc().

311) The morphemes of showmanycare ‘‘es-how-many-see’’, not ‘‘show-manic’’.
312) underflow or uflow might fail by throwing an exception prematurely. The intention is not only that the calls will not
return eof() but that they will return “immediately.”

§ 27.6.2.4.3 1004

c© ISO/IEC N3092

Assigning stops when either n characters have been assigned or a call to sbumpc() would return
traits::eof().

5 Returns: The number of characters assigned.313

6 Remarks: Uses traits::eof().

int_type underflow();

7 Remarks: The public members of basic_streambuf call this virtual function only if gptr() is null or
gptr() >= egptr()

8 Returns: traits::to_int_type(c), where c is the first character of the pending sequence, without
moving the input sequence position past it. If the pending sequence is null then the function returns
traits::eof() to indicate failure.

9 The pending sequence of characters is defined as the concatenation of:

a) If gptr() is non- NULL, then the egptr() - gptr() characters starting at gptr(), otherwise the
empty sequence.

b) Some sequence (possibly empty) of characters read from the input sequence.

10 The result character is

a) If the pending sequence is non-empty, the first character of the sequence.

b) If the pending sequence is empty then the next character that would be read from the input
sequence.

11 The backup sequence is defined as the concatenation of:

a) If eback() is null then empty,

b) Otherwise the gptr() - eback() characters beginning at eback().

12 Effects: The function sets up the gptr() and egptr() satisfying one of:

a) If the pending sequence is non-empty, egptr() is non-null and egptr() - gptr() characters
starting at gptr() are the characters in the pending sequence

b) If the pending sequence is empty, either gptr() is null or gptr() and egptr() are set to the
same non-NULL pointer.

13 If eback() and gptr() are non-null then the function is not constrained as to their contents, but the
“usual backup condition” is that either:

a) If the backup sequence contains at least gptr() - eback() characters, then the gptr() - eback()
characters starting at eback() agree with the last gptr() - eback() characters of the backup
sequence.

b) Or the n characters starting at gptr() - n agree with the backup sequence (where n is the length
of the backup sequence)

14 Default behavior: Returns traits::eof().

int_type uflow();

313) Classes derived from basic_streambuf can provide more efficient ways to implement xsgetn() and xsputn() by overriding
these definitions from the base class.

§ 27.6.2.4.3 1005

c© ISO/IEC N3092

15 Requires: The constraints are the same as for underflow(), except that the result character shall be
transferred from the pending sequence to the backup sequence, and the pending sequence shall not be
empty before the transfer.

16 Default behavior: Calls underflow(). If underflow() returns traits::eof(), returns traits::eof().
Otherwise, returns the value of traits::to_int_type(*gptr()) and increment the value of the next
pointer for the input sequence.

17 Returns: traits::eof() to indicate failure.

27.6.2.4.4 Putback [streambuf.virt.pback]

int_type pbackfail(int_type c = traits::eof());

1 Remarks: The public functions of basic_streambuf call this virtual function only when gptr() is
null, gptr() == eback(), or traits::eq(traits::to_char_type(c),gptr()[-1]) returns false.
Other calls shall also satisfy that constraint.

The pending sequence is defined as for underflow(), with the modifications that

— If traits::eq_int_type(c,traits::eof()) returns true, then the input sequence is backed up
one character before the pending sequence is determined.

— If traits::eq_int_type(c,traits::eof()) return false, then c is prepended. Whether the
input sequence is backed up or modified in any other way is unspecified.

2 Postcondition: On return, the constraints of gptr(), eback(), and pptr() are the same as for
underflow().

3 Returns: traits::eof() to indicate failure. Failure may occur because the input sequence could not
be backed up, or if for some other reason the pointers could not be set consistent with the constraints.
pbackfail() is called only when put back has really failed.

4 Returns some value other than traits::eof() to indicate success.

5 Default behavior: Returns traits::eof().

27.6.2.4.5 Put area [streambuf.virt.put]

streamsize xsputn(const char_type* s, streamsize n);

1 Effects: Writes up to n characters to the output sequence as if by repeated calls to sputc(c). The
characters written are obtained from successive elements of the array whose first element is designated
by s. Writing stops when either n characters have been written or a call to sputc(c) would return
traits::eof(). Is is unspecified whether the function calls overflow() when pptr() == epptr()
becomes true or whether it achieves the same effects by other means.

2 Returns: The number of characters written.

int_type overflow(int_type c = traits::eof());

3 Effects: Consumes some initial subsequence of the characters of the pending sequence. The pending
sequence is defined as the concatenation of

a) if pbase() is NULL then the empty sequence otherwise, pptr() - pbase() characters beginning
at pbase().

§ 27.6.2.4.5 1006

c© ISO/IEC N3092

b) if traits::eq_int_type(c,traits::eof()) returns true, then the empty sequence otherwise,
the sequence consisting of c.

4 Remarks: The member functions sputc() and sputn() call this function in case that no room can be
found in the put buffer enough to accomodate the argument character sequence.

5 Requires: Every overriding definition of this virtual function shall obey the following constraints:

1) The effect of consuming a character on the associated output sequence is specified314

2) Let r be the number of characters in the pending sequence not consumed. If r is non-zero then
pbase() and pptr() shall be set so that: pptr() - pbase() == r and the r characters starting
at pbase() are the associated output stream. In case r is zero (all characters of the pending
sequence have been consumed) then either pbase() is set to NULL, or pbase() and pptr() are
both set to the same NULL non-value.

3) The function may fail if either appending some character to the associated output stream fails or
if it is unable to establish pbase() and pptr() according to the above rules.

6 Returns: traits::eof() or throws an exception if the function fails.

Otherwise, returns some value other than traits::eof() to indicate success.315

7 Default behavior: Returns traits::eof().

27.7 Formatting and manipulators [iostream.format]

Header <istream> synopsis
namespace std {

template <class charT, class traits = char_traits<charT> >
class basic_istream;

typedef basic_istream<char> istream;
typedef basic_istream<wchar_t> wistream;

template <class charT, class traits = char_traits<charT> >
class basic_iostream;

typedef basic_iostream<char> iostream;
typedef basic_iostream<wchar_t> wiostream;

template <class charT, class traits>
basic_istream<charT,traits>& ws(basic_istream<charT,traits>& is);

template <class charT, class traits, class T>
basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>&& is, T& x);

}

Header <ostream> synopsis
namespace std {

template <class charT, class traits = char_traits<charT> >
class basic_ostream;

314) That is, for each class derived from an instance of basic_streambuf in this Clause (27.8.1, 27.9.1.1), a specification of
how consuming a character effects the associated output sequence is given. There is no requirement on a program-defined class.
315) Typically, overflow returns c to indicate success, except when traits::eq_int_type(c,traits::eof()) returns true, in
which case it returns traits::not_eof(c).

§ 27.7 1007

c© ISO/IEC N3092

typedef basic_ostream<char> ostream;
typedef basic_ostream<wchar_t> wostream;

template <class charT, class traits>
basic_ostream<charT,traits>& endl(basic_ostream<charT,traits>& os);

template <class charT, class traits>
basic_ostream<charT,traits>& ends(basic_ostream<charT,traits>& os);

template <class charT, class traits>
basic_ostream<charT,traits>& flush(basic_ostream<charT,traits>& os);

template <class charT, class traits, class T>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>&& os, const T& x);

}

Header <iomanip> synopsis
namespace std {

// types T1, T2, ... are unspecified implementation types
T1 resetiosflags(ios_base::fmtflags mask);
T2 setiosflags (ios_base::fmtflags mask);
T3 setbase(int base);
template<charT> T4 setfill(charT c);
T5 setprecision(int n);
T6 setw(int n);
template <class moneyT> T7 get_money(moneyT& mon, bool intl = false);
template <class moneyT> T8 put_money(const moneyT& mon, bool intl = false);
template <class charT> T9 get_time(struct tm* tmb, const charT* fmt);
template <class charT> T10 put_time(const struct tm* tmb, const charT* fmt);

}

27.7.1 Input streams [input.streams]

1 The header <istream> defines two types and a function signature that control input from a stream buffer
along with a function template that extracts from stream rvalues.

27.7.1.1 Class template basic_istream [istream]

namespace std {
template <class charT, class traits = char_traits<charT> >
class basic_istream : virtual public basic_ios<charT,traits> {
public:

// types (inherited from basic_ios (27.5.4)):
typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;
typedef traits traits_type;

// 27.7.1.1.1 Constructor/destructor:
explicit basic_istream(basic_streambuf<charT,traits>* sb);
virtual ~basic_istream();

// 27.7.1.1.3 Prefix/suffix:
class sentry;

§ 27.7.1.1 1008

c© ISO/IEC N3092

// 27.7.1.2 Formatted input:
basic_istream<charT,traits>& operator>>(

basic_istream<charT,traits>& (*pf)(basic_istream<charT,traits>&));
basic_istream<charT,traits>& operator>>(

basic_ios<charT,traits>& (*pf)(basic_ios<charT,traits>&));
basic_istream<charT,traits>& operator>>(

ios_base& (*pf)(ios_base&));

basic_istream<charT,traits>& operator>>(bool& n);
basic_istream<charT,traits>& operator>>(short& n);
basic_istream<charT,traits>& operator>>(unsigned short& n);
basic_istream<charT,traits>& operator>>(int& n);
basic_istream<charT,traits>& operator>>(unsigned int& n);
basic_istream<charT,traits>& operator>>(long& n);
basic_istream<charT,traits>& operator>>(unsigned long& n);
basic_istream<charT,traits>& operator>>(long long& n);
basic_istream<charT,traits>& operator>>(unsigned long long& n);
basic_istream<charT,traits>& operator>>(float& f);
basic_istream<charT,traits>& operator>>(double& f);
basic_istream<charT,traits>& operator>>(long double& f);

basic_istream<charT,traits>& operator>>(void*& p);
basic_istream<charT,traits>& operator>>(

basic_streambuf<char_type,traits>* sb);

// 27.7.1.3 Unformatted input:
streamsize gcount() const;
int_type get();
basic_istream<charT,traits>& get(char_type& c);
basic_istream<charT,traits>& get(char_type* s, streamsize n);
basic_istream<charT,traits>& get(char_type* s, streamsize n,

char_type delim);
basic_istream<charT,traits>& get(basic_streambuf<char_type,traits>& sb);
basic_istream<charT,traits>& get(basic_streambuf<char_type,traits>& sb,

char_type delim);

basic_istream<charT,traits>& getline(char_type* s, streamsize n);
basic_istream<charT,traits>& getline(char_type* s, streamsize n,

char_type delim);

basic_istream<charT,traits>& ignore(
streamsize n = 1, int_type delim = traits::eof());

int_type peek();
basic_istream<charT,traits>& read (char_type* s, streamsize n);
streamsize readsome(char_type* s, streamsize n);

basic_istream<charT,traits>& putback(char_type c);
basic_istream<charT,traits>& unget();
int sync();

pos_type tellg();
basic_istream<charT,traits>& seekg(pos_type);
basic_istream<charT,traits>& seekg(off_type, ios_base::seekdir);

protected:

§ 27.7.1.1 1009

c© ISO/IEC N3092

basic_istream(basic_istream&& rhs);

// 27.7.1.1.2 Assign/swap:
basic_istream& operator=(basic_istream&& rhs);
void swap(basic_istream& rhs);

};

// 27.7.1.2.3 character extraction templates:
template<class charT, class traits>

basic_istream<charT,traits>& operator>>(basic_istream<charT,traits>&,
charT&);

template<class traits>
basic_istream<char,traits>& operator>>(basic_istream<char,traits>&,

unsigned char&);
template<class traits>

basic_istream<char,traits>& operator>>(basic_istream<char,traits>&,
signed char&);

template<class charT, class traits>
basic_istream<charT,traits>& operator>>(basic_istream<charT,traits>&,

charT*);
template<class traits>

basic_istream<char,traits>& operator>>(basic_istream<char,traits>&,
unsigned char*);

template<class traits>
basic_istream<char,traits>& operator>>(basic_istream<char,traits>&,

signed char*);
}

1 The class basic_istream defines a number of member function signatures that assist in reading and inter-
preting input from sequences controlled by a stream buffer.

2 Two groups of member function signatures share common properties: the formatted input functions (or
extractors) and the unformatted input functions. Both groups of input functions are described as if they
obtain (or extract) input characters by calling rdbuf()->sbumpc() or rdbuf()->sgetc(). They may use
other public members of istream.

3 If rdbuf()->sbumpc() or rdbuf()->sgetc() returns traits::eof(), then the input function, except as
explicitly noted otherwise, completes its actions and does setstate(eofbit), which may throw ios_-
base::failure (27.5.4.3), before returning.

4 If one of these called functions throws an exception, then unless explicitly noted otherwise, the input function
sets badbit in error state. If badbit is on in exceptions(), the input function rethrows the exception
without completing its actions, otherwise it does not throw anything and proceeds as if the called function
had returned a failure indication.

27.7.1.1.1 basic_istream constructors [istream.cons]

explicit basic_istream(basic_streambuf<charT,traits>* sb);

1 Effects: Constructs an object of class basic_istream, assigning initial values to the base class by
calling basic_ios::init(sb) (27.5.4.1).

2 Postcondition: gcount() == 0

basic_istream(basic_istream&& rhs);

§ 27.7.1.1.1 1010

c© ISO/IEC N3092

3 Effects: Move constructs from the rvalue rhs. This is accomplished by default constructing the base
class, copying the gcount() from rhs, calling basic_ios<charT, traits>::move(rhs) to initialize
the base class, and setting the gcount() for rhs to 0.

virtual ~basic_istream();

4 Effects: Destroys an object of class basic_istream.

5 Remarks: Does not perform any operations of rdbuf().

27.7.1.1.2 Class basic_istream assign and swap [istream.assign]

basic_istream& operator=(basic_istream&& rhs);

1 Effects: swap(rhs);.

2 Returns: *this.

void swap(basic_istream& rhs);

3 Effects: Calls basic_ios<charT, traits>::swap(rhs). Exchanges the values returned by gcount()
and rhs.gcount().

27.7.1.1.3 Class basic_istream::sentry [istream::sentry]

namespace std {
template <class charT,class traits = char_traits<charT> >
class basic_istream<charT,traits>::sentry {

typedef traits traits_type;
bool ok_; // exposition only

public:
explicit sentry(basic_istream<charT,traits>& is, bool noskipws = false);
~sentry();
explicit operator bool() const { return ok_; }
sentry(const sentry&) = delete;
sentry& operator=(const sentry&) = delete;

};
}

1 The class sentry defines a class that is responsible for doing exception safe prefix and suffix operations.

explicit sentry(basic_istream<charT,traits>& is, bool noskipws = false);

2 Effects: If is.good() is false, calls is.setstate(failbit). Otherwise, prepares for formatted or un-
formatted input. First, if is.tie() is not a null pointer, the function calls is.tie()->flush() to
synchronize the output sequence with any associated external C stream. Except that this call can
be suppressed if the put area of is.tie() is empty. Further an implementation is allowed to defer
the call to flush until a call of is.rdbuf()->underflow() occurs. If no such call occurs before the
sentry object is destroyed, the call to flush may be eliminated entirely.316 If noskipws is zero and
is.flags() & ios_base::skipws is nonzero, the function extracts and discards each character as
long as the next available input character c is a whitespace character. If is.rdbuf()->sbumpc()
or is.rdbuf()->sgetc() returns traits::eof(), the function calls setstate(failbit | eofbit)
(which may throw ios_base::failure).

316) This will be possible only in functions that are part of the library. The semantics of the constructor used in user code is
as specified.

§ 27.7.1.1.3 1011

c© ISO/IEC N3092

3 Remarks: The constructor explicit sentry(basic_istream<charT,traits>& is, bool noskipws
= false) uses the currently imbued locale in is, to determine whether the next input character is
whitespace or not.

4 To decide if the character c is a whitespace character, the constructor performs as if it executes the
following code fragment:

const ctype<charT>& ctype = use_facet<ctype<charT> >(is.getloc());
if (ctype.is(ctype.space,c)!=0)

// c is a whitespace character.

5 If, after any preparation is completed, is.good() is true, ok_ != false otherwise, ok_ == false.
During preparation, the constructor may call setstate(failbit) (which may throw ios_base::failure (27.5.4.3))317

~sentry();

6 Effects: None.

explicit operator bool() const;

7 Effects: Returns ok_.

27.7.1.2 Formatted input functions [istream.formatted]

27.7.1.2.1 Common requirements [istream.formatted.reqmts]

1 Each formatted input function begins execution by constructing an object of class sentry with the noskipws
(second) argument false. If the sentry object returns true, when converted to a value of type bool, the
function endeavors to obtain the requested input. If an exception is thrown during input then ios::badbit
is turned on318 in *this’s error state. If (exceptions()&badbit) != 0 then the exception is rethrown.
In any case, the formatted input function destroys the sentry object. If no exception has been thrown, it
returns *this.

27.7.1.2.2 Arithmetic Extractors [istream.formatted.arithmetic]

operator>>(unsigned short& val);
operator>>(unsigned int& val);
operator>>(long& val);
operator>>(unsigned long& val);
operator>>(long long& val);
operator>>(unsigned long long& val);
operator>>(float& val);
operator>>(double& val);
operator>>(long double& val);
operator>>(bool& val);
operator>>(void*& val);

1 As in the case of the inserters, these extractors depend on the locale’s num_get<> (22.4.2.1) object
to perform parsing the input stream data. These extractors behave as formatted input functions (as
described in 27.7.1.2.1). After a sentry object is constructed, the conversion occurs as if performed by
the following code fragment:

317) The sentry constructor and destructor can also perform additional implementation-dependent operations.
318) This is done without causing an ios::failure to be thrown.

§ 27.7.1.2.2 1012

c© ISO/IEC N3092

typedef num_get< charT,istreambuf_iterator<charT,traits> > numget;
iostate err = iostate::goodbit;
use_facet< numget >(loc).get(*this, 0, *this, err, val);
setstate(err);

In the above fragment, loc stands for the private member of the basic_ios class. [Note: The first
argument provides an object of the istreambuf_iterator class which is an iterator pointed to an
input stream. It bypasses istreams and uses streambufs directly. — end note] Class locale relies on
this type as its interface to istream, so that it does not need to depend directly on istream.

operator>>(short& val);

2 The conversion occurs as if performed by the following code fragment (using the same notation as for
the preceding code fragment):

typedef num_get<charT,istreambuf_iterator<charT,traits> > numget;
iostate err = ios_base::goodbit;
long lval;
use_facet<numget>(loc).get(*this, 0, *this, err, lval);
if (lval < numeric_limits<short>::min()) {

err |= ios_base::failbit;
val = numeric_limits<short>::min();

} else if (numeric_limits<short>::max() < lval) {
err |= ios_base::failbit;
val = numeric_limits<short>::max();

} else
val = static_cast<short>(lval);

setstate(err);

operator>>(int& val);

3 The conversion occurs as if performed by the following code fragment (using the same notation as for
the preceding code fragment):

typedef num_get<charT,istreambuf_iterator<charT,traits> > numget;
iostate err = ios_base::goodbit;
long lval;
use_facet<numget>(loc).get(*this, 0, *this, err, lval);
if (lval < numeric_limits<int>::min()) {

err |= ios_base::failbit;
val = numeric_limits<int>::min();

} else if (numeric_limits<int>::max() < lval) {
err |= ios_base::failbit;
val = numeric_limits<int>::max();

} else
val = static_cast<int>(lval);

setstate(err);

27.7.1.2.3 basic_istream::operator>> [istream::extractors]

basic_istream<charT,traits>& operator>>
(basic_istream<charT,traits>& (*pf)(basic_istream<charT,traits>&))

1 Effects: None. This extractor does not behave as a formatted input function (as described in 27.7.1.2.1.)

§ 27.7.1.2.3 1013

c© ISO/IEC N3092

2 Returns: pf(*this).319

basic_istream<charT,traits>& operator>>
(basic_ios<charT,traits>& (*pf)(basic_ios<charT,traits>&));

3 Effects: Calls pf(*this). This extractor does not behave as a formatted input function (as described
in 27.7.1.2.1).

4 Returns: *this.

basic_istream<charT,traits>& operator>>
(ios_base& (*pf)(ios_base&));

5 Effects: Calls pf(*this).320 This extractor does not behave as a formatted input function (as de-
scribed in 27.7.1.2.1).

6 Returns: *this.

template<class charT, class traits>
basic_istream<charT,traits>& operator>>(basic_istream<charT,traits>& in,

charT* s);
template<class traits>

basic_istream<char,traits>& operator>>(basic_istream<char,traits>& in,
unsigned char* s);

template<class traits>
basic_istream<char,traits>& operator>>(basic_istream<char,traits>& in,

signed char* s);

7 Effects: Behaves like a formatted input member (as described in 27.7.1.2.1) of in. After a sentry
object is constructed, operator>> extracts characters and stores them into successive locations of an
array whose first element is designated by s. If width() is greater than zero, n is width(). Otherwise n
is the the number of elements of the largest array of char_type that can store a terminating charT().
n is the maximum number of characters stored.

8 Characters are extracted and stored until any of the following occurs:

— n-1 characters are stored;

— end of file occurs on the input sequence;

— ct.is(ct.space,c) is true for the next available input character c, where ct is use_facet<ctype<
charT> >(in.getloc()).

9 operator>> then stores a null byte (charT()) in the next position, which may be the first position if
no characters were extracted. operator>> then calls width(0).

10 If the function extracted no characters, it calls setstate(failbit), which may throw ios_base::failure (27.5.4.3).

11 Returns: in.

template<class charT, class traits>
basic_istream<charT,traits>& operator>>(basic_istream<charT,traits>& in,

charT& c);
template<class traits>

basic_istream<char,traits>& operator>>(basic_istream<char,traits>& in,
unsigned char& c);

319) See, for example, the function signature ws(basic_istream&) (27.7.1.4).
320) See, for example, the function signature dec(ios_base&) (27.5.5.3).

§ 27.7.1.2.3 1014

c© ISO/IEC N3092

template<class traits>
basic_istream<char,traits>& operator>>(basic_istream<char,traits>& in,

signed char& c);

12 Effects: Behaves like a formatted input member (as described in 27.7.1.2.1) of in. After a sentry
object is constructed a character is extracted from in, if one is available, and stored in c. Otherwise,
the function calls in.setstate(failbit).

13 Returns: in.

basic_istream<charT,traits>& operator>>
(basic_streambuf<charT,traits>* sb);

14 Effects: Behaves as an unformatted input function (as described in 27.7.1.3, paragraph 1). If sb is null,
calls setstate(failbit), which may throw ios_base::failure (27.5.4.3). After a sentry object is
constructed, extracts characters from *this and inserts them in the output sequence controlled by sb.
Characters are extracted and inserted until any of the following occurs:

— end-of-file occurs on the input sequence;

— inserting in the output sequence fails (in which case the character to be inserted is not extracted);

— an exception occurs (in which case the exception is caught).

15 If the function inserts no characters, it calls setstate(failbit), which may throw ios_base::failure (27.5.4.3).
If it inserted no characters because it caught an exception thrown while extracting characters from
*this and failbit is on in exceptions() (27.5.4.3), then the caught exception is rethrown.

16 Returns: *this.

27.7.1.3 Unformatted input functions [istream.unformatted]

1 Each unformatted input function begins execution by constructing an object of class sentry with the default
argument noskipws (second) argument true. If the sentry object returns true, when converted to a value
of type bool, the function endeavors to obtain the requested input. Otherwise, if the sentry constructor exits
by throwing an exception or if the sentry object returns false, when converted to a value of type bool, the
function returns without attempting to obtain any input. In either case the number of extracted characters
is set to 0; unformatted input functions taking a character array of non-zero size as an argument shall also
store a null character (using charT()) in the first location of the array. If an exception is thrown during input
then ios::badbit is turned on321 in *this’s error state. (Exceptions thrown from basic_ios<>::clear()
are not caught or rethrown.) If (exceptions()&badbit) != 0 then the exception is rethrown. It also
counts the number of characters extracted. If no exception has been thrown it ends by storing the count
in a member object and returning the value specified. In any event the sentry object is destroyed before
leaving the unformatted input function.

streamsize gcount() const;

2 Effects: None. This member function does not behave as an unformatted input function (as described
in 27.7.1.3, paragraph 1).

3 Returns: The number of characters extracted by the last unformatted input member function called
for the object.

int_type get();

321) This is done without causing an ios::failure to be thrown.

§ 27.7.1.3 1015

c© ISO/IEC N3092

4 Effects: Behaves as an unformatted input function (as described in 27.7.1.3, paragraph 1). After
constructing a sentry object, extracts a character c, if one is available. Otherwise, the function calls
setstate(failbit), which may throw ios_base::failure (27.5.4.3),

5 Returns: c if available, otherwise traits::eof().

basic_istream<charT,traits>& get(char_type& c);

6 Effects: Behaves as an unformatted input function (as described in 27.7.1.3, paragraph 1). After
constructing a sentry object, extracts a character, if one is available, and assigns it to c.322 Otherwise,
the function calls setstate(failbit) (which may throw ios_base::failure (27.5.4.3)).

7 Returns: *this.

basic_istream<charT,traits>& get(char_type* s, streamsize n,
char_type delim);

8 Effects: Behaves as an unformatted input function (as described in 27.7.1.3, paragraph 1). After
constructing a sentry object, extracts characters and stores them into successive locations of an array
whose first element is designated by s.323 Characters are extracted and stored until any of the following
occurs:

— n is less than one or n - 1 characters are stored;

— end-of-file occurs on the input sequence (in which case the function calls setstate(eofbit));

— traits::eq(c, delim) for the next available input character c (in which case c is not extracted).

9 If the function stores no characters, it calls setstate(failbit) (which may throw ios_base::failure (27.5.4.3)).
In any case, if n is greater than zero it then stores a null character into the next successive location of
the array.

10 Returns: *this.

basic_istream<charT,traits>& get(char_type* s, streamsize n)

11 Effects: Calls get(s,n,widen(’\n’))

12 Returns: Value returned by the call.

basic_istream<charT,traits>& get(basic_streambuf<char_type,traits>& sb,
char_type delim);

13 Effects: Behaves as an unformatted input function (as described in 27.7.1.3, paragraph 1). After
constructing a sentry object, extracts characters and inserts them in the output sequence controlled
by sb. Characters are extracted and inserted until any of the following occurs:

— end-of-file occurs on the input sequence;

— inserting in the output sequence fails (in which case the character to be inserted is not extracted);

— traits::eq(c, delim) for the next available input character c (in which case c is not extracted);

— an exception occurs (in which case, the exception is caught but not rethrown).

14 If the function inserts no characters, it calls setstate(failbit), which may throw ios_base::failure (27.5.4.3).

15 Returns: *this.

322) Note that this function is not overloaded on types signed char and unsigned char.
323) Note that this function is not overloaded on types signed char and unsigned char.

§ 27.7.1.3 1016

c© ISO/IEC N3092

basic_istream<charT,traits>& get(basic_streambuf<char_type,traits>& sb);

16 Effects: Calls get(sb, widen(’\n’))

17 Returns: Value returned by the call.

basic_istream<charT,traits>& getline(char_type* s, streamsize n,
char_type delim);

18 Effects: Behaves as an unformatted input function (as described in 27.7.1.3, paragraph 1). After
constructing a sentry object, extracts characters and stores them into successive locations of an array
whose first element is designated by s.324 Characters are extracted and stored until one of the following
occurs:

1. end-of-file occurs on the input sequence (in which case the function calls setstate(eofbit));

2. traits::eq(c, delim) for the next available input character c (in which case the input character
is extracted but not stored);325

3. n is less than one or n - 1 characters are stored (in which case the function calls setstate(failbit)).

19 These conditions are tested in the order shown.326

20 If the function extracts no characters, it calls setstate(failbit) (which may throw ios_base::failure (27.5.4.3)).327

21 In any case, if n is greater than zero, it then stores a null character (using charT()) into the next
successive location of the array.

22 Returns: *this.

23 [Example:
#include <iostream>

int main() {
using namespace std;
const int line_buffer_size = 100;

char buffer[line_buffer_size];
int line_number = 0;
while (cin.getline(buffer, line_buffer_size, ’\n’) || cin.gcount()) {

int count = cin.gcount();
if (cin.eof())

cout << "Partial final line"; // cin.fail() is false
else if (cin.fail()) {

cout << "Partial long line";
cin.clear(cin.rdstate() & ~ios_base::failbit);

} else {
count--; // Don’t include newline in count
cout << "Line " << ++line_number;

}
cout << " (" << count << " chars): " << buffer << endl;

}
}

324) Note that this function is not overloaded on types signed char and unsigned char.
325) Since the final input character is “extracted,” it is counted in the gcount(), even though it is not stored.
326) This allows an input line which exactly fills the buffer, without setting failbit. This is different behavior than the
historical AT&T implementation.
327) This implies an empty input line will not cause failbit to be set.

§ 27.7.1.3 1017

c© ISO/IEC N3092

— end example]

basic_istream<charT,traits>& getline(char_type* s, streamsize n);

24 Returns: getline(s,n,widen(’\n’))

basic_istream<charT,traits>&
ignore(streamsize n = 1, int_type delim = traits::eof());

25 Effects: Behaves as an unformatted input function (as described in 27.7.1.3, paragraph 1). After
constructing a sentry object, extracts characters and discards them. Characters are extracted until
any of the following occurs:

— if n != numeric_limits<streamsize>::max() (18.3.1), n characters are extracted

— end-of-file occurs on the input sequence (in which case the function calls setstate(eofbit),
which may throw ios_base::failure (27.5.4.3));

— traits::eq_int_type(traits::to_int_type(c), delim) for the next available input charac-
ter c (in which case c is extracted).

26 Remarks: The last condition will never occur if traits::eq_int_type(delim, traits::eof()).

27 Returns: *this.

int_type peek();

28 Effects: Behaves as an unformatted input function (as described in 27.7.1.3, paragraph 1). After
constructing a sentry object, reads but does not extract the current input character.

29 Returns: traits::eof() if good() is false. Otherwise, returns rdbuf()->sgetc().

basic_istream<charT,traits>& read(char_type* s, streamsize n);

30 Effects: Behaves as an unformatted input function (as described in 27.7.1.3, paragraph 1). After
constructing a sentry object, if !good() calls setstate(failbit) which may throw an exception, and
return. Otherwise extracts characters and stores them into successive locations of an array whose first
element is designated by s.328 Characters are extracted and stored until either of the following occurs:

— n characters are stored;

— end-of-file occurs on the input sequence (in which case the function calls setstate(failbit|eofbit),
which may throw ios_base::failure (27.5.4.3)).

31 Returns: *this.

streamsize readsome(char_type* s, streamsize n);

32 Effects: Behaves as an unformatted input function (as described in 27.7.1.3, paragraph 1). After
constructing a sentry object, if !good() calls setstate(failbit) which may throw an exception, and
return. Otherwise extracts characters and stores them into successive locations of an array whose first
element is designated by s. If rdbuf()->in_avail() == -1, calls setstate(eofbit) (which may
throw ios_base::failure (27.5.4.3)), and extracts no characters;

— If rdbuf()->in_avail() == 0, extracts no characters

— If rdbuf()->in_avail() > 0, extracts min(rdbuf()->in_avail(),n)).

328) Note that this function is not overloaded on types signed char and unsigned char.

§ 27.7.1.3 1018

c© ISO/IEC N3092

33 Returns: The number of characters extracted.

basic_istream<charT,traits>& putback(char_type c);

34 Effects: Behaves as an unformatted input function (as described in 27.7.1.3, paragraph 1). After
constructing a sentry object, if !good() calls setstate(failbit) which may throw an exception,
and return. If rdbuf() is not null, calls rdbuf->sputbackc(). If rdbuf() is null, or if sputbackc()
returns traits::eof(), calls setstate(badbit) (which may throw ios_base::failure (27.5.4.3)).
[Note: this function extracts no characters, so the value returned by the next call to gcount() is 0.
— end note]

35 Returns: *this.

basic_istream<charT,traits>& unget();

36 Effects: Behaves as an unformatted input function (as described in 27.7.1.3, paragraph 1). After
constructing a sentry object, if !good() calls setstate(failbit) which may throw an exception, and
return. If rdbuf() is not null, calls rdbuf()->sungetc(). If rdbuf() is null, or if sungetc() returns
traits::eof(), calls setstate(badbit) (which may throw ios_base::failure (27.5.4.3)). [Note:
this function extracts no characters, so the value returned by the next call to gcount() is 0. — end
note]

37 Returns: *this.

int sync();

38 Effects: Behaves as an unformatted input function (as described in 27.7.1.3, paragraph 1), except
that it does not count the number of characters extracted and does not affect the value returned by
subsequent calls to gcount(). After constructing a sentry object, if rdbuf() is a null pointer, returns
-1 . Otherwise, calls rdbuf()->pubsync() and, if that function returns -1 calls setstate(badbit)
(which may throw ios_base::failure (27.5.4.3), and returns -1. Otherwise, returns zero.

pos_type tellg();

39 Effects: Behaves as an unformatted input function (as described in 27.7.1.3, paragraph 1), except
that it does not count the number of characters extracted and does not affect the value returned by
subsequent calls to gcount().

40 Returns: After constructing a sentry object, if fail() != false, returns pos_type(-1) to indicate
failure. Otherwise, returns rdbuf()->pubseekoff(0, cur, in).

basic_istream<charT,traits>& seekg(pos_type pos);

41 Effects: Behaves as an unformatted input function (as described in 27.7.1.3, paragraph 1), except
that it does not count the number of characters extracted and does not affect the value returned
by subsequent calls to gcount(). After constructing a sentry object, if fail() != true, executes
rdbuf()->pubseekpos(pos, ios_base::in). In case of failure, the function calls setstate(failbit)
(which may throw ios_basefailure).

42 Returns: *this.

basic_istream<charT,traits>& seekg(off_type off, ios_base::seekdir dir);

43 Effects: Behaves as an unformatted input function (as described in 27.7.1.3, paragraph 1), except
that it does not count the number of characters extracted and does not affect the value returned

§ 27.7.1.3 1019

c© ISO/IEC N3092

by subsequent calls to gcount(). After constructing a sentry object, if fail() != true, executes
rdbuf()->pubseekoff(off, dir, ios_base::in).

44 Returns: *this.

27.7.1.4 Standard basic_istream manipulators [istream.manip]

namespace std {
template <class charT, class traits>

basic_istream<charT,traits>& ws(basic_istream<charT,traits>& is);
}

1 Effects: Behaves as an unformatted input function (as described in 27.7.1.3, paragraph 1), except
that it does not count the number of characters extracted and does not affect the value returned by
subsequent calls to is.gcount(). After constructing a sentry object extracts characters as long as the next
available character c is whitespace or until there are no more characters in the sequence. Whitespace
characters are distinguished with the same criterion as used by sentry::sentry (27.7.1.1.3). If ws
stops extracting characters because there are no more available it sets eofbit, but not failbit.

2 Returns: is.

27.7.1.5 Class template basic_iostream [iostreamclass]

namespace std {
template <class charT, class traits = char_traits<charT> >
class basic_iostream :

public basic_istream<charT,traits>,
public basic_ostream<charT,traits> {

public:
// types:
typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;
typedef traits traits_type;

// constructor/destructor
explicit basic_iostream(basic_streambuf<charT,traits>* sb);
virtual ~basic_iostream();

protected:
basic_iostream(basic_iostream&& rhs);

// assign/swap
basic_iostream& operator=(basic_iostream&& rhs);
void swap(basic_iostream& rhs);

};
}

1 The class basic_iostream inherits a number of functions that allow reading input and writing output to
sequences controlled by a stream buffer.

27.7.1.5.1 basic_iostream constructors [iostream.cons]

explicit basic_iostream(basic_streambuf<charT,traits>* sb);

§ 27.7.1.5.1 1020

c© ISO/IEC N3092

1 Effects: Constructs an object of class basic_iostream, assigning initial values to the base classes by
calling basic_istream<charT,traits>(sb) (27.7.1.1) and basic_ostream<charT,traits>(sb) (27.7.2.1)

2 Postcondition: rdbuf()==sb and gcount()==0.

basic_iostream(basic_iostream&& rhs);

3 Effects: Move constructs from the rvalue rhs by constructing the basic_istream base class with
move(rhs).

27.7.1.5.2 basic_iostream destructor [iostream.dest]

virtual ~basic_iostream();

1 Effects: Destroys an object of class basic_iostream.

2 Remarks: Does not perform any operations on rdbuf().

27.7.1.5.3 basic_iostream assign and swap [iostream.assign]

basic_iostream& operator=(basic_iostream&& rhs);

1 Effects: swap(rhs).

void swap(basic_iostream& rhs);

2 Effects: Calls basic_istream<charT, traits>::swap(rhs).

27.7.1.6 Rvalue stream extraction [istream.rvalue]

template <class charT, class traits, class T>
basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>&& is, T& x);

1 Effects: is >> x

2 Returns: is

27.7.2 Output streams [output.streams]

1 The header <ostream> defines a type and several function signatures that control output to a stream buffer
along with a function template that inserts into stream rvalues.

27.7.2.1 Class template basic_ostream [ostream]

namespace std {
template <class charT, class traits = char_traits<charT> >
class basic_ostream : virtual public basic_ios<charT,traits> {
public:

// types (inherited from basic_ios (27.5.4)):
typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;
typedef traits traits_type;

§ 27.7.2.1 1021

c© ISO/IEC N3092

// 27.7.2.2 Constructor/destructor:
explicit basic_ostream(basic_streambuf<char_type,traits>* sb);
virtual ~basic_ostream();

// 27.7.2.4 Prefix/suffix:
class sentry;

// 27.7.2.6 Formatted output:
basic_ostream<charT,traits>& operator<<(

basic_ostream<charT,traits>& (*pf)(basic_ostream<charT,traits>&));
basic_ostream<charT,traits>& operator<<(

basic_ios<charT,traits>& (*pf)(basic_ios<charT,traits>&));
basic_ostream<charT,traits>& operator<<(

ios_base& (*pf)(ios_base&));

basic_ostream<charT,traits>& operator<<(bool n);
basic_ostream<charT,traits>& operator<<(short n);
basic_ostream<charT,traits>& operator<<(unsigned short n);
basic_ostream<charT,traits>& operator<<(int n);
basic_ostream<charT,traits>& operator<<(unsigned int n);
basic_ostream<charT,traits>& operator<<(long n);
basic_ostream<charT,traits>& operator<<(unsigned long n);
basic_ostream<charT,traits>& operator<<(long long n);
basic_ostream<charT,traits>& operator<<(unsigned long long n);
basic_ostream<charT,traits>& operator<<(float f);
basic_ostream<charT,traits>& operator<<(double f);
basic_ostream<charT,traits>& operator<<(long double f);

basic_ostream<charT,traits>& operator<<(const void* p);
basic_ostream<charT,traits>& operator<<(

basic_streambuf<char_type,traits>* sb);

// 27.7.2.7 Unformatted output:
basic_ostream<charT,traits>& put(char_type c);
basic_ostream<charT,traits>& write(const char_type* s, streamsize n);

basic_ostream<charT,traits>& flush();

// 27.7.2.5 seeks:
pos_type tellp();
basic_ostream<charT,traits>& seekp(pos_type);
basic_ostream<charT,traits>& seekp(off_type, ios_base::seekdir);

protected:
basic_ostream(basic_ostream&& rhs);

// 27.7.2.3 Assign/swap
basic_ostream& operator=(basic_ostream&& rhs);
void swap(basic_ostream& rhs);

};

// 27.7.2.6.4 character inserters
template<class charT, class traits>

basic_ostream<charT,traits>& operator<<(basic_ostream<charT,traits>&,
charT);

template<class charT, class traits>

§ 27.7.2.1 1022

c© ISO/IEC N3092

basic_ostream<charT,traits>& operator<<(basic_ostream<charT,traits>&,
char);

template<class traits>
basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>&,

char);

// signed and unsigned
template<class traits>

basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>&,
signed char);

template<class traits>
basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>&,

unsigned char);

template<class charT, class traits>
basic_ostream<charT,traits>& operator<<(basic_ostream<charT,traits>&,

const charT*);
template<class charT, class traits>

basic_ostream<charT,traits>& operator<<(basic_ostream<charT,traits>&,
const char*);

template<class traits>
basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>&,

const char*);

// signed and unsigned
template<class traits>

basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>&,
const signed char*);

template<class traits>
basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>&,

const unsigned char*);
}

1 The class basic_ostream defines a number of member function signatures that assist in formatting and
writing output to output sequences controlled by a stream buffer.

2 Two groups of member function signatures share common properties: the formatted output functions (or
inserters) and the unformatted output functions. Both groups of output functions generate (or insert)
output characters by actions equivalent to calling rdbuf()->sputc(int_type). They may use other public
members of basic_ostream except that they shall not invoke any virtual members of rdbuf() except
overflow(), xsputn(), and sync().

3 If one of these called functions throws an exception, then unless explicitly noted otherwise the output function
sets badbit in error state. If badbit is on in exceptions(), the output function rethrows the exception
without completing its actions, otherwise it does not throw anything and treat as an error.

27.7.2.2 basic_ostream constructors [ostream.cons]

explicit basic_ostream(basic_streambuf<charT,traits>* sb);

1 Effects: Constructs an object of class basic_ostream, assigning initial values to the base class by
calling basic_ios<charT,traits>::init(sb) (27.5.4.1).

2 Postcondition: rdbuf() == sb.

virtual ~basic_ostream();

§ 27.7.2.2 1023

c© ISO/IEC N3092

3 Effects: Destroys an object of class basic_ostream.

4 Remarks: Does not perform any operations on rdbuf().

basic_ostream(basic_ostream&& rhs);

5 Effects: Move constructs from the rvalue rhs. This is accomplished by default constructing the base
class and calling basic_ios<charT, traits>::move(rhs) to initialize the base class.

27.7.2.3 Class basic_ostream assign and swap [ostream.assign]

basic_ostream& operator=(basic_ostream&& rhs);

1 Effects: swap(rhs).

2 Returns: *this.

void swap(basic_ostream& rhs);

3 Effects: Calls basic_ios<charT, traits>::swap(rhs).

27.7.2.4 Class basic_ostream::sentry [ostream::sentry]

namespace std {
template <class charT,class traits = char_traits<charT> >
class basic_ostream<charT,traits>::sentry {

bool ok_; // exposition only
public:

explicit sentry(basic_ostream<charT,traits>& os);
~sentry();
explicit operator bool() const { return ok_; }

sentry(const sentry&) = delete;
sentry& operator=(const sentry&) = delete;

};
}

1 The class sentry defines a class that is responsible for doing exception safe prefix and suffix operations.

explicit sentry(basic_ostream<charT,traits>& os);

2 If os.good() is nonzero, prepares for formatted or unformatted output. If os.tie() is not a null
pointer, calls os.tie()->flush().329

3 If, after any preparation is completed, os.good() is true, ok_ == true otherwise, ok_ == false.
During preparation, the constructor may call setstate(failbit) (which may throw ios_base::failure (27.5.4.3))330

~sentry();

4 If ((os.flags() & ios_base::unitbuf) && !uncaught_exception() && os.good()) is true, calls
os.rdbuf()->pubsync(). If that function returns -1, sets badbit in os.rdstate() without propa-
gating an exception.

Throws: Nothing.

329) The call os.tie()->flush() does not necessarily occur if the function can determine that no synchronization is necessary.
330) The sentry constructor and destructor can also perform additional implementation-dependent operations.

§ 27.7.2.4 1024

c© ISO/IEC N3092

explicit operator bool() const;

5 Effects: Returns ok_.

27.7.2.5 basic_ostream seek members [ostream.seeks]

pos_type tellp();

1 Returns: if fail() != false, returns pos_type(-1) to indicate failure. Otherwise, returns rdbuf()->pub-
seekoff(0, cur, out).

basic_ostream<charT,traits>& seekp(pos_type pos);

2 Effects: If fail() != true, executes rdbuf()->pubseekpos(pos, ios_base::out). In case of fail-
ure, the function calls setstate(failbit) (which may throw ios_base::failure).

3 Returns: *this.

basic_ostream<charT,traits>& seekp(off_type off, ios_base::seekdir dir);

4 Effects: If fail() != true, executes rdbuf()->pubseekoff(off, dir, ios_base::out).

5 Returns: *this.

27.7.2.6 Formatted output functions [ostream.formatted]

27.7.2.6.1 Common requirements [ostream.formatted.reqmts]

1 Each formatted output function begins execution by constructing an object of class sentry. If this object
returns true when converted to a value of type bool, the function endeavors to generate the requested
output. If the generation fails, then the formatted output function does setstate(ios_base::failbit),
which might throw an exception. If an exception is thrown during output, then ios::badbit is turned on331

in *this’s error state. If (exceptions()&badbit) != 0 then the exception is rethrown. Whether or not
an exception is thrown, the sentry object is destroyed before leaving the formatted output function. If no
exception is thrown, the result of the formatted output function is *this.

2 The descriptions of the individual formatted output operations describe how they perform output and do
not mention the sentry object.

27.7.2.6.2 Arithmetic Inserters [ostream.inserters.arithmetic]

operator<<(bool val);
operator<<(short val);
operator<<(unsigned short val);
operator<<(int val);
operator<<(unsigned int val);
operator<<(long val);
operator<<(unsigned long val);
operator<<(long long val);
operator<<(unsigned long long val);
operator<<(float val);
operator<<(double val);
operator<<(long double val);
operator<<(const void* val);

331) without causing an ios::failure to be thrown.

§ 27.7.2.6.2 1025

c© ISO/IEC N3092

1 Effects: The classes num_get<> and num_put<> handle locale-dependent numeric formatting and pars-
ing. These inserter functions use the imbued locale value to perform numeric formatting. When val
is of type bool, long, unsigned long, long long, unsigned long long, double, long double, or
const void*, the formatting conversion occurs as if it performed the following code fragment:

bool failed = use_facet<
num_put<charT,ostreambuf_iterator<charT,traits> >

>(getloc()).put(*this, *this, fill(), val).failed();

When val is of type short the formatting conversion occurs as if it performed the following code
fragment:

ios_base::fmtflags baseflags = ios_base::flags() & ios_base::basefield;
bool failed = use_facet<

num_put<charT,ostreambuf_iterator<charT,traits> >
>(getloc()).put(*this, *this, fill(),
baseflags == ios_base::oct || baseflags == ios_base::hex

? static_cast<long>(static_cast<unsigned short>(val))
: static_cast<long>(val)).failed();

When val is of type int the formatting conversion occurs as if it performed the following code frag-
ment:

ios_base::fmtflags baseflags = ios_base::flags() & ios_base::basefield;
bool failed = use_facet<

num_put<charT,ostreambuf_iterator<charT,traits> >
>(getloc()).put(*this, *this, fill(),
baseflags == ios_base::oct || baseflags == ios_base::hex

? static_cast<long>(static_cast<unsigned int>(val))
: static_cast<long>(val)).failed();

When val is of type unsigned short or unsigned int the formatting conversion occurs as if it
performed the following code fragment:

bool failed = use_facet<
num_put<charT,ostreambuf_iterator<charT,traits> >

>(getloc()).put(*this, *this, fill(),
static_cast<unsigned long>(val)).failed();

When val is of type float the formatting conversion occurs as if it performed the following code
fragment:

bool failed = use_facet<
num_put<charT,ostreambuf_iterator<charT,traits> >

>(getloc()).put(*this, *this, fill(),
static_cast<double>(val)).failed();

2 The first argument provides an object of the ostreambuf_iterator<> class which is an iterator for
class basic_ostream<>. It bypasses ostreams and uses streambufs directly. Class locale relies on
these types as its interface to iostreams, since for flexibility it has been abstracted away from direct
dependence on ostream. The second parameter is a reference to the base subobject of type ios_base.
It provides formatting specifications such as field width, and a locale from which to obtain other facets.
If failed is true then does setstate(badbit), which may throw an exception, and returns.

3 Returns: *this.

§ 27.7.2.6.2 1026

c© ISO/IEC N3092

27.7.2.6.3 basic_ostream::operator<< [ostream.inserters]

basic_ostream<charT,traits>& operator<<
(basic_ostream<charT,traits>& (*pf)(basic_ostream<charT,traits>&))

1 Effects: None. Does not behave as a formatted output function (as described in 27.7.2.6.1).

2 Returns: pf(*this).332

basic_ostream<charT,traits>& operator<<
(basic_ios<charT,traits>& (*pf)(basic_ios<charT,traits>&))

3 Effects: Calls pf(*this). This inserter does not behave as a formatted output function (as described
in 27.7.2.6.1).

4 Returns: *this.333

basic_ostream<charT,traits>& operator<<
(ios_base& (*pf)(ios_base&))

5 Effects: Calls pf(*this). This inserter does not behave as a formatted output function (as described
in 27.7.2.6.1).

6 Returns: *this.

basic_ostream<charT,traits>& operator<<
(basic_streambuf<charT,traits>* sb);

7 Effects: Behaves as an unformatted output function (as described in 27.7.2.7, paragraph 1). Af-
ter the sentry object is constructed, if sb is null calls setstate(badbit) (which may throw ios_-
base::failure).

8 Gets characters from sb and inserts them in *this. Characters are read from sb and inserted until
any of the following occurs:

— end-of-file occurs on the input sequence;

— inserting in the output sequence fails (in which case the character to be inserted is not extracted);

— an exception occurs while getting a character from sb.

9 If the function inserts no characters, it calls setstate(failbit) (which may throw ios_base::failure (27.5.4.3)).
If an exception was thrown while extracting a character, the function sets failbit in error state, and
if failbit is on in exceptions() the caught exception is rethrown.

10 Returns: *this.

27.7.2.6.4 Character inserter function templates [ostream.inserters.character]

template<class charT, class traits>
basic_ostream<charT,traits>& operator<<(basic_ostream<charT,traits>& out,

charT c};
template<class charT, class traits>

basic_ostream<charT,traits>& operator<<(basic_ostream<charT,traits>& out,
char c);

// specialization

332) See, for example, the function signature endl(basic_ostream&) (27.7.2.8) .
333) See, for example, the function signature dec(ios_base&) (27.5.5.3).

§ 27.7.2.6.4 1027

c© ISO/IEC N3092

template<class traits>
basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>& out,

char c);
// signed and unsigned

template<class traits>
basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>& out,

signed char c);
template<class traits>

basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>& out,
unsigned char c);

1 Effects: Behaves like a formatted inserter (as described in 27.7.2.6.1) of out. After a sentry object
is constructed it inserts characters. In case c has type char and the character type of the stream is
not char, then the character to be inserted is out.widen(c); otherwise the character is c.Padding is
determined as described in 22.4.2.2.2. width(0) is called. The insertion character and any required
padding are inserted into out.

2 Returns: out.

template<class charT, class traits>
basic_ostream<charT,traits>& operator<<(basic_ostream<charT,traits>& out,

const charT* s);
template<class charT, class traits>

basic_ostream<charT,traits>& operator<<(basic_ostream<charT,traits>& out,
const char* s);

template<class traits>
basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>& out,

const char* s);
template<class traits>

basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>& out,
const signed char* s);

template<class traits>
basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>& out,

const unsigned char* s);

3 Requires: s shall not be a null pointer.

4 Effects: Behaves like a formatted inserter (as described in 27.7.2.6.1) of out. After a sentry object is
constructed it inserts n characters starting at s, where n is the number that would be computed as if
by:

— traits::length(s) for the overload where the first argument is of type basic_ostream<charT,
traits>& and the second is of type const charT*, and also for the overload where the first
argument is of type basic_ostream<char, traits>& and the second is of type const char*,

— std::char_traits<char>::length(s) for the overload where the first argument is of type
basic_ostream<charT, traits>& and the second is of type const char*,

— traits::length(reinterpret_cast<const char*>(s)) for the other two overloads.

5 Padding is determined as described in 22.4.2.2.2. The n characters starting at s are widened using
out.widen (27.5.4.2). The widened characters and any required padding are inserted into out. Calls
width(0).

6 Returns: out.

§ 27.7.2.6.4 1028

c© ISO/IEC N3092

27.7.2.7 Unformatted output functions [ostream.unformatted]

1 Each unformatted output function begins execution by constructing an object of class sentry. If this object
returns true, while converting to a value of type bool, the function endeavors to generate the requested
output. If an exception is thrown during output, then ios::badbit is turned on334 in *this’s error state.
If (exceptions() & badbit) != 0 then the exception is rethrown. In any case, the unformatted output
function ends by destroying the sentry object, then, if no exception was thrown, returning the value specified
for the unformatted output function.

basic_ostream<charT,traits>& put(char_type c);

2 Effects: Behaves as an unformatted output function (as described in 27.7.2.7, paragraph 1). After
constructing a sentry object, inserts the character c, if possible.335

3 Otherwise, calls setstate(badbit) (which may throw ios_base::failure (27.5.4.3)).

4 Returns: *this.

basic_ostream& write(const char_type* s, streamsize n);

5 Effects: Behaves as an unformatted output function (as described in 27.7.2.7, paragraph 1). After
constructing a sentry object, obtains characters to insert from successive locations of an array whose
first element is designated by s.336 Characters are inserted until either of the following occurs:

— n characters are inserted;

— inserting in the output sequence fails (in which case the function calls setstate(badbit), which
may throw ios_base::failure (27.5.4.3)).

6 Returns: *this.

basic_ostream& flush();

7 Effects: Behaves as an unformatted output function (as described in 27.7.2.6.1, paragraph 1). If
rdbuf() is not a null pointer, constructs a sentry object. If this object returns true when converted
to a value of type bool the function calls rdbuf()->pubsync(). If that function returns -1 calls
setstate(badbit) (which may throw ios_base::failure (27.5.4.3)). Otherwise, if the sentry object
returns false, does nothing.

8 Returns: *this.

27.7.2.8 Standard basic_ostream manipulators [ostream.manip]

namespace std {
template <class charT, class traits>

basic_ostream<charT,traits>& endl(basic_ostream<charT,traits>& os);
}

1 Effects: Calls os.put(os.widen(’\n’)), then os.flush().

2 Returns: os.

namespace std {
template <class charT, class traits>

334) without causing an ios::failure to be thrown.
335) Note that this function is not overloaded on types signed char and unsigned char.
336) Note that this function is not overloaded on types signed char and unsigned char.

§ 27.7.2.8 1029

c© ISO/IEC N3092

basic_ostream<charT,traits>& ends(basic_ostream<charT,traits>& os);
}

3 Effects: Inserts a null character into the output sequence: calls os.put(charT()).

4 Returns: os.

namespace std {
template <class charT, class traits>

basic_ostream<charT,traits>& flush(basic_ostream<charT,traits>& os);
}

5 Effects: Calls os.flush().

6 Returns: os.

27.7.2.9 Rvalue stream insertion [ostream.rvalue]

template <class charT, class traits, class T>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>&& os, const T& x);

1 Effects: os << x

2 Returns: os

27.7.3 Standard manipulators [std.manip]

1 The header <iomanip> defines several functions that support extractors and inserters that alter information
maintained by class ios_base and its derived classes.

unspecified resetiosflags(ios_base::fmtflags mask);

2 Returns: An object of unspecified type such that if out is an object of type basic_ostream<charT,traits>
then the expression out <<resetiosflags(mask) behaves as if it called f(out, mask), or if in is an
object of type basic_istream<charT, traits> then the expression in >>resetiosflags(mask) be-
haves as if it called f(in, mask), where the function f is defined as:337

void f(ios_base& str, ios_base::fmtflags mask) {
// reset specified flags
str.setf(ios_base::fmtflags(0), mask);

}

The expression out <<resetiosflags(mask) shall have type basic_ostream<charT,traits>& and
value out. The expression in >>resetiosflags(mask) shall have type basic_istream<charT,traits>&
and value in.

unspecified setiosflags(ios_base::fmtflags mask);

3 Returns: An object of unspecified type such that if out is an object of type basic_ostream<charT,traits>
then the expression out <<setiosflags(mask) behaves as if it called f(out, mask), or if in is an ob-
ject of type basic_istream<charT, traits> then the expression in >>setiosflags(mask) behaves
as if it called f(in, mask), where the function f is defined as:

337) The expression cin >>resetiosflags(ios_base::skipws) clears ios_base::skipws in the format flags stored in the
basic_istream<charT,traits> object cin (the same as cin >>noskipws), and the expression cout <<resetiosflags(ios_-
base::showbase) clears ios_base::showbase in the format flags stored in the basic_ostream<charT,traits> object cout (the
same as cout <<noshowbase).

§ 27.7.3 1030

c© ISO/IEC N3092

void f(ios_base& str, ios_base::fmtflags mask) {
// set specified flags
str.setf(mask);

}

The expression out <<setiosflags(mask) shall have type basic_ostream<charT, traits>& and
value out. The expression in >>setiosflags(mask) shall have type basic_istream<charT, traits>&
and value in.

unspecified setbase(int base);

4 Returns: An object of unspecified type such that if out is an object of type basic_ostream<charT,
traits> then the expression out <<setbase(base) behaves as if it called f(out, base), or if in is
an object of type basic_istream<charT, traits> then the expression in >>setbase(base) behaves
as if it called f(in, base), where the function f is defined as:

void f(ios_base& str, int base) {
// set basefield
str.setf(base == 8 ? ios_base::oct :

base == 10 ? ios_base::dec :
base == 16 ? ios_base::hex :
ios_base::fmtflags(0), ios_base::basefield);

}

The expression out <<setbase(base) shall have type basic_ostream<charT, traits>& and value
out. The expression in >>setbase(base) shall have type basic_istream<charT, traits>& and
value in.

unspecified setfill(char_type c);

5 Returns: An object of unspecified type such that if out is an object of type basic_ostream<charT,traits>
and c has type charT then the expression out <<setfill(c) behaves as if it called f(out, c), where
the function f is defined as:

template<class charT, class traits>
void f(basic_ios<charT,traits>& str, charT c) {

// set fill character
str.fill(c);

}

The expression out <<setfill(c) shall have type basic_ostream<charT, traits>& and value out.

unspecified setprecision(int n);

6 Returns: An object of unspecified type such that if out is an object of type basic_ostream<charT,
traits> then the expression out <<setprecision(n) behaves as if it called f(out, n), or if in is an
object of type basic_istream<charT, traits> then the expression in >>setprecision(n) behaves
as if it called f(in, n), where the function f is defined as:

void f(ios_base& str, int n) {
// set precision
str.precision(n);

}

The expression out <<setprecision(n) shall have type basic_ostream<charT, traits>& and value
out. The expression in >>setprecision(n) shall have type basic_istream<charT, traits>& and
value in.

§ 27.7.3 1031

c© ISO/IEC N3092

unspecified setw(int n);

7 Returns: An object of unspecified type such that if out is an instance of basic_ostream<charT,
traits> then the expression out <<setw(n) behaves as if it called f(out, n), or if in is an object of
type basic_istream<charT, traits> then the expression in >>setw(n) behaves as if it called f(in,
n) , where the function f is defined as:

void f(ios_base& str, int n) {
// set width
str.width(n);

}

The expression out <<setw(n) shall have type basic_ostream<charT, traits>& and value out. The
expression in >>setw(n) shall have type basic_istream<charT, traits>& and value in.

27.7.4 Extended Manipulators [ext.manip]

1 The header <iomanip> defines several functions that support extractors and inserters that allow for the
parsing and formatting of sequences and values for money and time.

template <class moneyT> unspecified get_money(moneyT& mon, bool intl = false);

2 Requires: The type moneyT shall be either long double or a specialization of the basic_string
template (Clause 21).

3 Effects: The expression in >> get_money(mon, intl) described below behaves as a formatted input
function (27.7.1.2.1).

4 Returns: An object of unspecified type such that if in is an object of type basic_istream<charT,
traits> then the expression in >>get_money(mon, intl) behaves as if it called f(in, mon, intl),
where the function f is defined as:

template <class charT, class traits, class moneyT>
void f(basic_ios<charT, traits>& str, moneyT& mon, bool intl) {

typedef istreambuf_iterator<charT, traits> Iter;
typedef money_get<charT, Iter> MoneyGet;

ios_base::iostate err = ios_base::goodbit;
const MoneyGet &mg = use_facet<MoneyGet>(str.getloc());

mg.get(Iter(str.rdbuf()), Iter(), intl, str, err, mon);

if (ios_base::goodbit != err)
str.setstate(err);

}

The expression in >>get_money(mon, intl) shall have type basic_istream<charT, traits>& and
value in.

template <class moneyT> unspecified put_money(const moneyT& mon, bool intl = false);

5 Requires: The type moneyT shall be either long double or a specialization of the basic_string
template (Clause 21).

6 Returns: An object of unspecified type such that if out is an object of type basic_ostream<charT,
traits> then the expression out <<put_money(mon, intl) behaves as a formatted input function
that calls f(out, mon, intl), where the function f is defined as:

§ 27.7.4 1032

c© ISO/IEC N3092

template <class charT, class traits, class moneyT>
void f(basic_ios<charT, traits>& str, const moneyT& mon, bool intl) {

typedef ostreambuf_iterator<charT, traits> Iter;
typedef money_put<charT, Iter> MoneyPut;

const MoneyPut& mp = use_facet<MoneyPut>(str.getloc());
const Iter end = mp.put(Iter(str.rdbuf()), intl, str, str.fill(), mon);

if (end.failed())
str.setstate(ios::badbit);

}

The expression out <<put_money(mon, intl) shall have type basic_ostream<charT, traits>& and
value out.

template <class charT> unspecified get_time(struct tm* tmb, const charT* fmt);

7 Requires: The argument tmb shall be a valid pointer to an object of type struct tm, and the argument
fmt shall be a valid pointer to an array of objects of type charT with char_traits<charT>::length(fmt)
elements.

8 Returns: An object of unspecified type such that if in is an object of type basic_istream<charT,
traits> then the expression in >>get_time(tmb, fmt) behaves as if it called f(in, tmb, fmt),
where the function f is defined as:

template <class charT, class traits>
void f(basic_ios<charT, traits>& str, struct tm* tmb, const charT* fmt) {

typedef istreambuf_iterator<charT, traits> Iter;
typedef time_get<charT, Iter> TimeGet;

ios_base::iostate err = ios_base::goodbit;
const TimeGet& tg = use_facet<TimeGet>(str.getloc());

tg.get(Iter(str.rdbuf()), Iter(), str, err, tmb,
fmt, fmt + traits::length(fmt));

if (err != ios_base::goodbit)
str.setstate(err):

}

The expression in >>get_time(tmb, fmt) shall have type basic_istream<charT, traits>& and
value in.

template <class charT> unspecified put_time(const struct tm* tmb, const charT* fmt);

9 Requires: The argument tmb shall be a valid pointer to an object of type struct tm, and the argument
fmt shall be a valid pointer to an array of objects of type charT with char_traits<charT>::length(fmt)
elements.

10 Returns: An object of unspecified type such that if out is an object of type basic_ostream<charT,
traits> then the expression out <<put_time(tmb, fmt) behaves as if it called f(out, tmb, fmt),
where the function f is defined as:

template <class charT, class traits>
void f(basic_ios<charT, traits>& str, const struct tm* tmb, const charT* fmt) {

typedef ostreambuf_iterator<charT, traits> Iter;

§ 27.7.4 1033

c© ISO/IEC N3092

typedef time_put<charT, Iter> TimePut;

const TimePut& tp = use_facet<TimePut>(str.getloc());
const Iter end = tp.put(Iter(str.rdbuf()), str, str.fill(), tmb,

fmt, fmt + traits::length(fmt));

if (end.failed())
str.setstate(ios_base::badbit);

}

The expression out <<put_time(tmb, fmt) shall have type basic_istream<charT, traits>& and
value out.

27.8 String-based streams [string.streams]

1 The header <sstream> defines four class templates and eight types that associate stream buffers with objects
of class basic_string, as described in 21.3.

Header <sstream> synopsis
namespace std {

template <class charT, class traits = char_traits<charT>,
class Allocator = allocator<charT> >

class basic_stringbuf;

typedef basic_stringbuf<char> stringbuf;
typedef basic_stringbuf<wchar_t> wstringbuf;

template <class charT, class traits = char_traits<charT>,
class Allocator = allocator<charT> >

class basic_istringstream;

typedef basic_istringstream<char> istringstream;
typedef basic_istringstream<wchar_t> wistringstream;

template <class charT, class traits = char_traits<charT>,
class Allocator = allocator<charT> >

class basic_ostringstream;
typedef basic_ostringstream<char> ostringstream;
typedef basic_ostringstream<wchar_t> wostringstream;

template <class charT, class traits = char_traits<charT>,
class Allocator = allocator<charT> >

class basic_stringstream;
typedef basic_stringstream<char> stringstream;
typedef basic_stringstream<wchar_t> wstringstream;

}

27.8.1 Class template basic_stringbuf [stringbuf]

namespace std {
template <class charT, class traits = char_traits<charT>,

class Allocator = allocator<charT> >
class basic_stringbuf : public basic_streambuf<charT,traits> {
public:

§ 27.8.1 1034

c© ISO/IEC N3092

typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;
typedef traits traits_type;
typedef Allocator allocator_type;

// 27.8.1.1 Constructors:
explicit basic_stringbuf(ios_base::openmode which

= ios_base::in | ios_base::out);
explicit basic_stringbuf
(const basic_string<charT,traits,Allocator>& str,
ios_base::openmode which = ios_base::in | ios_base::out);

basic_stringbuf(basic_stringbuf&& rhs);

// 27.8.1.2 Assign and swap:
basic_stringbuf& operator=(basic_stringbuf&& rhs);
void swap(basic_stringbuf& rhs);

// 27.8.1.3 Get and set:
basic_string<charT,traits,Allocator> str() const;
void str(const basic_string<charT,traits,Allocator>& s);

protected:
// 27.8.1.4 Overridden virtual functions:
virtual int_type underflow();
virtual int_type pbackfail(int_type c = traits::eof());
virtual int_type overflow (int_type c = traits::eof());
virtual basic_streambuf<charT,traits>* setbuf(charT*, streamsize);

virtual pos_type seekoff(off_type off, ios_base::seekdir way,
ios_base::openmode which

= ios_base::in | ios_base::out);
virtual pos_type seekpos(pos_type sp,

ios_base::openmode which
= ios_base::in | ios_base::out);

private:
ios_base::openmode mode; // exposition only

};

template <class charT, class traits, class Allocator>
void swap(basic_stringbuf<charT, traits, Allocator>& x,

basic_stringbuf<charT, traits, Allocator>& y);
}

1 The class basic_stringbuf is derived from basic_streambuf to associate possibly the input sequence and
possibly the output sequence with a sequence of arbitrary characters. The sequence can be initialized from,
or made available as, an object of class basic_string.

2 For the sake of exposition, the maintained data is presented here as:

— ios_base::openmode mode, has in set if the input sequence can be read, and out set if the output
sequence can be written.

§ 27.8.1 1035

c© ISO/IEC N3092

27.8.1.1 basic_stringbuf constructors [stringbuf.cons]

explicit basic_stringbuf(ios_base::openmode which =
ios_base::in | ios_base::out);

1 Effects: Constructs an object of class basic_stringbuf, initializing the base class with basic_-
streambuf() (27.6.2.1), and initializing mode with which.

2 Postcondition: str() == "".

explicit basic_stringbuf(const basic_string<charT,traits,Allocator>& s,
ios_base::openmode which = ios_base::in | ios_base::out);

3 Effects: Constructs an object of class basic_stringbuf, initializing the base class with basic_-
streambuf() (27.6.2.1), and initializing mode with which. Then calls str(s).

basic_stringbuf(basic_stringbuf&& rhs);

4 Effects: Move constructs from the rvalue rhs. It is implementation-defined whether the sequence
pointers in *this (eback(), gptr(), egptr(), pbase(), pptr(), epptr()) obtain the values which
rhs had. Whether they do or not, *this and rhs reference separate buffers (if any at all) after the
construction. The openmode, locale and any other state of rhs is also copied.

5 Postconditions: Let rhs_p refer to the state of rhs just prior to this construction and let rhs_a refer
to the state of rhs just after this construction.

— str() == rhs_p.str()

— gptr() - eback() == rhs_p.gptr() - rhs_p.eback()

— egptr() - eback() == rhs_p.egptr() - rhs_p.eback()

— pptr() - pbase() == rhs_p.pptr() - rhs_p.pbase()

— epptr() - pbase() == rhs_p.epptr() - rhs_p.pbase()

— if (eback()) eback() != rhs_a.eback()

— if (gptr()) gptr() != rhs_a.gptr()

— if (egptr()) egptr() != rhs_a.egptr()

— if (pbase()) pbase() != rhs_a.pbase()

— if (pptr()) pptr() != rhs_a.pptr()

— if (epptr()) epptr() != rhs_a.epptr()

27.8.1.2 Assign and swap [stringbuf.assign]

basic_stringbuf& operator=(basic_stringbuf&& rhs);

1 Effects: After the move assignment *this has the observable state it would have had if it had been
move constructed from rhs (see 27.8.1.1).

2 Returns: *this.

void swap(basic_stringbuf& rhs);

3 Effects: Exchanges the state of *this and rhs.

§ 27.8.1.2 1036

c© ISO/IEC N3092

template <class charT, class traits, class Allocator>
void swap(basic_stringbuf<charT, traits, Allocator>& x,

basic_stringbuf<charT, traits, Allocator>& y);

4 Effects: x.swap(y).

27.8.1.3 Member functions [stringbuf.members]

basic_string<charT,traits,Allocator> str() const;

1 Returns: A basic_string object whose content is equal to the basic_stringbuf underlying character
sequence. If the basic_stringbuf was created only in input mode, the resultant basic_string
contains the character sequence in the range [eback(),egptr()). If the basic_stringbuf was created
with which & ios_base::out being true then the resultant basic_string contains the character
sequence in the range [pbase(),high_mark), where high_mark represents the position one past the
highest initialized character in the buffer. Characters can be initialized by writing to the stream,
by constructing the basic_stringbuf with a basic_string, or by calling the str(basic_string)
member function. In the case of calling the str(basic_string) member function, all characters
initialized prior to the call are now considered uninitialized (except for those characters re-initialized
by the new basic_string). Otherwise the basic_stringbuf has been created in neither input nor
output mode and a zero length basic_string is returned.

void str(const basic_string<charT,traits,Allocator>& s);

2 Effects: Copies the content of s into the basic_stringbuf underlying character sequence and initializes
the input and output sequences according to mode.

3 Postconditions: If mode & ios_base::out is true, pbase() points to the first underlying character
and epptr() >= pbase() + s.size() holds; in addition, if mode & ios_base::in is true, pptr()
== pbase() + s.data() holds, otherwise pptr() == pbase() is true. If mode & ios_base::in is
true, eback() points to the first underlying character, and both gptr() == eback() and egptr() ==
eback() + s.size() hold.

27.8.1.4 Overridden virtual functions [stringbuf.virtuals]

int_type underflow();

1 Returns: If the input sequence has a read position available, returns traits::to_int_type(*gptr()).
Otherwise, returns traits::eof(). Any character in the underlying buffer which has been initialized
is considered to be part of the input sequence.

int_type pbackfail(int_type c = traits::eof());

2 Effects: Puts back the character designated by c to the input sequence, if possible, in one of three
ways:

— If traits::eq_int_type(c,traits::eof()) returns false and if the input sequence has a put-
back position available, and if traits::eq(to_char_type(c),gptr()[-1]) returns true, assigns
gptr() - 1 to gptr().

Returns: c.

— If traits::eq_int_type(c,traits::eof()) returns false and if the input sequence has a put-
back position available, and if mode & ios_base::out is nonzero, assigns c to *--gptr().

Returns: c.

§ 27.8.1.4 1037

c© ISO/IEC N3092

— If traits::eq_int_type(c,traits::eof()) returns true and if the input sequence has a put-
back position available, assigns gptr() - 1 to gptr().

Returns: traits::not_eof(c).

3 Returns: traits::eof() to indicate failure.

4 Remarks: If the function can succeed in more than one of these ways, it is unspecified which way is
chosen.

int_type overflow(int_type c = traits::eof());

5 Effects: Appends the character designated by c to the output sequence, if possible, in one of two ways:

— If traits::eq_int_type(c,traits::eof()) returns false and if either the output sequence has
a write position available or the function makes a write position available (as described below),
the function calls sputc(c).

Signals success by returning c.

— If traits::eq_int_type(c,traits::eof()) returns true, there is no character to append.

Signals success by returning a value other than traits::eof().

6 Remarks: The function can alter the number of write positions available as a result of any call.

7 Returns: traits::eof() to indicate failure.

8 The function can make a write position available only if (mode & ios_base::out) != 0. To make a
write position available, the function reallocates (or initially allocates) an array object with a sufficient
number of elements to hold the current array object (if any), plus at least one additional write position.
If (mode & ios_base::in) != 0, the function alters the read end pointer egptr() to point just past
the new write position.

pos_type seekoff(off_type off, ios_base::seekdir way,
ios_base::openmode which

= ios_base::in | ios_base::out);

9 Effects: Alters the stream position within one of the controlled sequences, if possible, as indicated in
Table 127.

Table 127 — seekoff positioning

Conditions Result
(which & ios_base::in) == ios_-
base::in

positions the input sequence

(which & ios_base::out) == ios_-
base::out

positions the output sequence

(which & (ios_base::in |
ios_base::out)) ==
(ios_base::in) |
ios_base::out))
and way == either
ios_base::beg or
ios_base::end

positions both the input and the output sequences

Otherwise the positioning operation fails.

§ 27.8.1.4 1038

c© ISO/IEC N3092

10 For a sequence to be positioned, if its next pointer (either gptr() or pptr()) is a null pointer and
the new offset newoff is nonzero, the positioning operation fails. Otherwise, the function determines
newoff as indicated in Table 128.

Table 128 — newoff values
Condition newoff Value

way == ios_base::beg 0
way == ios_base::cur the next pointer minus the begin-

ning pointer (xnext - xbeg).
way == ios_base::end the high mark pointer minus the

beginning pointer (high_mark -
xbeg).

11 If (newoff + off) < 0, or if newoff + off refers to an uninitialized character (as defined in 27.8.1.3
paragraph 1), the positioning operation fails. Otherwise, the function assigns xbeg + newoff + off
to the next pointer xnext.

12 Returns: pos_type(newoff), constructed from the resultant offset newoff (of type off_type), that
stores the resultant stream position, if possible. If the positioning operation fails, or if the constructed
object cannot represent the resultant stream position, the return value is pos_type(off_type(-1)).

pos_type seekpos(pos_type sp, ios_base::openmode which
= ios_base::in | ios_base::out);

13 Effects: Equivalent to seekoff(off_type(sp), ios_base::beg, which).

14 Returns: sp to indicate success, or pos_type(off_type(-1)) to indicate failure.

basic_streambuf<charT,traits>* setbuf(charT* s, streamsize n);

15 Effects: implementation-defined, except that setbuf(0,0) has no effect.

16 Returns: this.

27.8.2 Class template basic_istringstream [istringstream]

namespace std {
template <class charT, class traits = char_traits<charT>,

class Allocator = allocator<charT> >
class basic_istringstream : public basic_istream<charT,traits> {
public:

typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;
typedef traits traits_type;
typedef Allocator allocator_type;

// 27.8.2.1 Constructors:
explicit basic_istringstream(ios_base::openmode which = ios_base::in);
explicit basic_istringstream(

const basic_string<charT,traits,Allocator>& str,
ios_base::openmode which = ios_base::in);

basic_istringstream(basic_istringstream&& rhs);

§ 27.8.2 1039

c© ISO/IEC N3092

// 27.8.2.2 Assign and swap:
basic_istringstream& operator=(basic_istringstream&& rhs);
void swap(basic_istringstream& rhs);

// 27.8.2.3 Members:
basic_stringbuf<charT,traits,Allocator>* rdbuf() const;

basic_string<charT,traits,Allocator> str() const;
void str(const basic_string<charT,traits,Allocator>& s);

private:
basic_stringbuf<charT,traits,Allocator> sb; // exposition only

};

template <class charT, class traits, class Allocator>
void swap(basic_istringstream<charT, traits, Allocator>& x,

basic_istringstream<charT, traits, Allocator>& y);
}

1 The class basic_istringstream<charT, traits, Allocator> supports reading objects of class basic_-
string<charT, traits, Allocator>. It uses a basic_stringbuf<charT, traits, Allocator> object
to control the associated storage. For the sake of exposition, the maintained data is presented here as:

— sb, the stringbuf object.

27.8.2.1 basic_istringstream constructors [istringstream.cons]

explicit basic_istringstream(ios_base::openmode which = ios_base::in);

1 Effects: Constructs an object of class basic_istringstream<charT, traits>, initializing the base
class with basic_istream(&sb) and initializing sb with basic_stringbuf<charT, traits, Allocator>(which
| ios_base::in)) (27.8.1.1).

explicit basic_istringstream(
const basic_string<charT,traits,allocator>& str,
ios_base::openmode which = ios_base::in);

2 Effects: Constructs an object of class basic_istringstream<charT, traits>, initializing the base
class with basic_istream(&sb) and initializing sb with basic_stringbuf<charT, traits, Allocator>(str,
which | ios_base::in)) (27.8.1.1).

basic_istringstream(basic_istringstream&& rhs);

3 Effects: Move constructs from the rvalue rhs. This is accomplished by move constructing the base
class, and the contained basic_stringbuf. Next basic_istream<charT,traits>::set_rdbuf(&sb)
is called to install the contained basic_stringbuf.

27.8.2.2 Assign and swap [istringstream.assign]

basic_istringstream& operator=(basic_istringstream&& rhs);

1 Effects: Move assigns the base and members of *this from the base and corresponding members of
rhs.

2 Returns: *this.

§ 27.8.2.2 1040

c© ISO/IEC N3092

void swap(basic_istringstream& rhs);

3 Effects: Exchanges the state of *this and rhs by calling basic_istream<charT,traits>::swap(rhs)
and sb.swap(rhs.sb).

template <class charT, class traits, class Allocator>
void swap(basic_istringstream<charT, traits, Allocator>& x,

basic_istringstream<charT, traits, Allocator>& y);

4 Effects: x.swap(y).

27.8.2.3 Member functions [istringstream.members]

basic_stringbuf<charT,traits,Allocator>* rdbuf() const;

1 Returns: const_cast<basic_stringbuf<charT,traits,Allocator>*>(&sb).

basic_string<charT,traits,Allocator> str() const;

2 Returns: rdbuf()->str().

void str(const basic_string<charT,traits,Allocator>& s);

3 Effects: Calls rdbuf()->str(s).

27.8.3 Class template basic_ostringstream [ostringstream]

namespace std {
template <class charT, class traits = char_traits<charT>,

class Allocator = allocator<charT> >
class basic_ostringstream : public basic_ostream<charT,traits> {
public:

// types:
typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;
typedef traits traits_type;
typedef Allocator allocator_type;

// 27.8.3.1 Constructors/destructor:
explicit basic_ostringstream(ios_base::openmode which = ios_base::out);
explicit basic_ostringstream(

const basic_string<charT,traits,Allocator>& str,
ios_base::openmode which = ios_base::out);

basic_ostringstream(basic_ostringstream&& rhs);

// 27.8.3.2 Assign/swap:
basic_ostringstream& operator=(basic_ostringstream&& rhs);
void swap(basic_ostringstream& rhs);

// 27.8.3.3 Members:
basic_stringbuf<charT,traits,Allocator>* rdbuf() const;

basic_string<charT,traits,Allocator> str() const;

§ 27.8.3 1041

c© ISO/IEC N3092

void str(const basic_string<charT,traits,Allocator>& s);
private:
basic_stringbuf<charT,traits,Allocator> sb; // exposition only

};

template <class charT, class traits, class Allocator>
void swap(basic_ostringstream<charT, traits, Allocator>& x,

basic_ostringstream<charT, traits, Allocator>& y);
}

1 The class basic_ostringstream<charT, traits, Allocator> supports writing objects of class basic_-
string<charT, traits, Allocator>. It uses a basic_stringbuf object to control the associated storage.
For the sake of exposition, the maintained data is presented here as:

— sb, the stringbuf object.

27.8.3.1 basic_ostringstream constructors [ostringstream.cons]

explicit basic_ostringstream(ios_base::openmode which = ios_base::out);

1 Effects: Constructs an object of class basic_ostringstream, initializing the base class with basic_-
ostream(&sb) and initializing sb with basic_stringbuf<charT, traits, Allocator>(which | ios_-
base::out)) (27.8.1.1).

explicit basic_ostringstream(
const basic_string<charT,traits,Allocator>& str,
ios_base::openmode which = ios_base::out);

2 Effects: Constructs an object of class basic_ostringstream<charT, traits>, initializing the base
class with basic_ostream(&sb) and initializing sb with basic_stringbuf<charT, traits, Allocator>(str,
which | ios_base::out)) (27.8.1.1).

basic_ostringstream(basic_ostringstream&& rhs);

3 Effects: Move constructs from the rvalue rhs. This is accomplished by move constructing the base
class, and the contained basic_stringbuf. Next basic_ostream<charT,traits>::set_rdbuf(&sb)
is called to install the contained basic_stringbuf.

27.8.3.2 Assign and swap [ostringstream.assign]

basic_ostringstream& operator=(basic_ostringstream&& rhs);

1 Effects: Move assigns the base and members of *this from the base and corresponding members of
rhs.

2 Returns: *this.

void swap(basic_ostringstream& rhs);

3 Effects: Exchanges the state of *this and rhs by calling basic_ostream<charT,traits>::swap(rhs)
and sb.swap(rhs.sb).

template <class charT, class traits, class Allocator>
void swap(basic_ostringstream<charT, traits, Allocator>& x,

basic_ostringstream<charT, traits, Allocator>& y);

§ 27.8.3.2 1042

c© ISO/IEC N3092

4 Effects: x.swap(y).

27.8.3.3 Member functions [ostringstream.members]

basic_stringbuf<charT,traits,Allocator>* rdbuf() const;

1 Returns: const_cast<basic_stringbuf<charT,traits,Allocator>*>(&sb).

basic_string<charT,traits,Allocator> str() const;

2 Returns: rdbuf()->str().

void str(const basic_string<charT,traits,Allocator>& s);

3 Effects: Calls rdbuf()->str(s).

27.8.4 Class template basic_stringstream [stringstream]

namespace std {
template <class charT, class traits = char_traits<charT>,

class Allocator = allocator<charT> >
class basic_stringstream

: public basic_iostream<charT,traits> {
public:

// types:
typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;
typedef traits traits_type;
typedef Allocator allocator_type;

// constructors/destructor
explicit basic_stringstream(
ios_base::openmode which = ios_base::out|ios_base::in);
explicit basic_stringstream(
const basic_string<charT,traits,Allocator>& str,
ios_base::openmode which = ios_base::out|ios_base::in);
basic_stringstream(basic_stringstream&& rhs);

// 27.8.5.1 Assign/swap:
basic_stringstream& operator=(basic_stringstream&& rhs);
void swap(basic_stringstream& rhs);

// Members:
basic_stringbuf<charT,traits,Allocator>* rdbuf() const;
basic_string<charT,traits,Allocator> str() const;
void str(const basic_string<charT,traits,Allocator>& str);

private:
basic_stringbuf<charT, traits> sb; // exposition only

};

template <class charT, class traits, class Allocator>

§ 27.8.4 1043

c© ISO/IEC N3092

void swap(basic_stringstream<charT, traits, Allocator>& x,
basic_stringstream<charT, traits, Allocator>& y);

}

1 The class template basic_stringstream<charT, traits> supports reading and writing from objects of
class basic_string<charT, traits, Allocator>. It uses a basic_stringbuf<charT, traits, Allocator>
object to control the associated sequence. For the sake of exposition, the maintained data is presented here
as

— sb, the stringbuf object.

27.8.5 basic_stringstream constructors [stringstream.cons]

explicit basic_stringstream(
ios_base::openmode which = ios_base::out|ios_base::in);

1 Effects: Constructs an object of class basic_stringstream<charT,traits>, initializing the base class
with basic_iostream(&sb) and initializing sb with basic_stringbuf<charT,traits,Allocator>(which).

explicit basic_stringstream(
const basic_string<charT,traits,Allocator>& str,
ios_base::openmode which = ios_base::out|ios_base::in);

2 Effects: Constructs an object of class basic_stringstream<charT, traits>, initializing the base
class with basic_iostream(&sb) and initializing sb with basic_stringbuf<charT, traits, Allo-
cator>(str, which).

basic_stringstream(basic_stringstream&& rhs);

3 Effects: Move constructs from the rvalue rhs. This is accomplished by move constructing the base
class, and the contained basic_stringbuf. Next basic_istream<charT,traits>::set_rdbuf(&sb)
is called to install the contained basic_stringbuf.

27.8.5.1 Assign and swap [stringstream.assign]

basic_stringstream& operator=(basic_stringstream&& rhs);

1 Effects: Move assigns the base and members of *this from the base and corresponding members of
rhs.

2 Returns: *this.

void swap(basic_stringstream& rhs);

3 Effects: Exchanges the state of *this and rhs by calling basic_iostream<charT,traits>::swap(rhs)
and sb.swap(rhs.sb).

template <class charT, class traits, class Allocator>
void swap(basic_stringstream<charT, traits, Allocator>& x,

basic_stringstream<charT, traits, Allocator>& y);

4 Effects: x.swap(y).

§ 27.8.5.1 1044

c© ISO/IEC N3092

27.8.6 Member functions [stringstream.members]

basic_stringbuf<charT,traits,Allocator>* rdbuf() const;

1 Returns: const_cast<basic_stringbuf<charT,traits,Allocator>*>(&sb)

basic_string<charT,traits,Allocator> str() const;

2 Returns: rdbuf()->str().

void str(const basic_string<charT,traits,Allocator>& str);

3 Effects: Calls rdbuf()->str(str).

27.9 File-based streams [file.streams]

27.9.1 File streams [fstreams]

1 The header <fstream> defines four class templates and eight types that associate stream buffers with files
and assist reading and writing files.

Header <fstream> synopsis
namespace std {

template <class charT, class traits = char_traits<charT> >
class basic_filebuf;

typedef basic_filebuf<char> filebuf;
typedef basic_filebuf<wchar_t> wfilebuf;

template <class charT, class traits = char_traits<charT> >
class basic_ifstream;

typedef basic_ifstream<char> ifstream;
typedef basic_ifstream<wchar_t> wifstream;

template <class charT, class traits = char_traits<charT> >
class basic_ofstream;

typedef basic_ofstream<char> ofstream;
typedef basic_ofstream<wchar_t> wofstream;

template <class charT, class traits = char_traits<charT> >
class basic_fstream;

typedef basic_fstream<char> fstream;
typedef basic_fstream<wchar_t> wfstream;

}

2 In this subclause, the type name FILE refers to the type FILE declared in <cstdio> (27.9.2).

3 [Note: The class template basic_filebuf treats a file as a source or sink of bytes. In an environment that
uses a large character set, the file typically holds multibyte character sequences and the basic_filebuf
object converts those multibyte sequences into wide character sequences. — end note]

27.9.1.1 Class template basic_filebuf [filebuf]

namespace std {
template <class charT, class traits = char_traits<charT> >
class basic_filebuf : public basic_streambuf<charT,traits> {
public:

§ 27.9.1.1 1045

c© ISO/IEC N3092

typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;
typedef traits traits_type;

// 27.9.1.2 Constructors/destructor:
basic_filebuf();
basic_filebuf(basic_filebuf&& rhs);
virtual ~basic_filebuf();

// 27.9.1.3 Assign/swap:
basic_filebuf& operator=(basic_filebuf&& rhs);
void swap(basic_filebuf& rhs);

// 27.9.1.4 Members:
bool is_open() const;
basic_filebuf<charT,traits>* open(const char* s,

ios_base::openmode mode);
basic_filebuf<charT,traits>* open(const string& s,

ios_base::openmode mode);
basic_filebuf<charT,traits>* close();

protected:
// 27.9.1.5 Overridden virtual functions:
virtual streamsize showmanyc();
virtual int_type underflow();
virtual int_type uflow();
virtual int_type pbackfail(int_type c = traits::eof());
virtual int_type overflow (int_type c = traits::eof());

virtual basic_streambuf<charT,traits>*
setbuf(char_type* s, streamsize n);

virtual pos_type seekoff(off_type off, ios_base::seekdir way,
ios_base::openmode which = ios_base::in | ios_base::out);

virtual pos_type seekpos(pos_type sp,
ios_base::openmode which = ios_base::in | ios_base::out);

virtual int sync();
virtual void imbue(const locale& loc);

};

template <class charT, class traits>
void swap(basic_filebuf<charT, traits>& x,

basic_filebuf<charT, traits>& y);
}

1 The class basic_filebuf<charT,traits> associates both the input sequence and the output sequence with
a file.

2 The restrictions on reading and writing a sequence controlled by an object of class basic_filebuf<charT,traits>
are the same as for reading and writing with the Standard C library FILEs.

3 In particular:

— If the file is not open for reading the input sequence cannot be read.

§ 27.9.1.1 1046

c© ISO/IEC N3092

— If the file is not open for writing the output sequence cannot be written.

— A joint file position is maintained for both the input sequence and the output sequence.

4 An instance of basic_filebuf behaves as described in 27.9.1.1 provided traits::pos_type is fpos<traits
::state_type>. Otherwise the behavior is undefined.

5 In order to support file I/O and multibyte/wide character conversion, conversions are performed using
members of a facet, referred to as a_codecvt in following sections, obtained as if by

const codecvt<charT,char,typename traits::state_type>& a_codecvt =
use_facet<codecvt<charT,char,typename traits::state_type> >(getloc());

27.9.1.2 basic_filebuf constructors [filebuf.cons]

basic_filebuf();

1 Effects: Constructs an object of class basic_filebuf<charT,traits>, initializing the base class with
basic_streambuf<charT,traits>() (27.6.2.1).

2 Postcondition: is_open() == false.

basic_filebuf(basic_filebuf&& rhs);

3 Effects: Move constructs from the rvalue rhs. It is implementation-defined whether the sequence
pointers in *this (eback(), gptr(), egptr(), pbase(), pptr(), epptr()) obtain the values which
rhs had. Whether they do or not, *this and rhs reference separate buffers (if any at all) after the
construction. Additionally *this references the file which rhs did before the construction, and rhs
references no file after the construction. The openmode, locale and any other state of rhs is also
copied.

4 Postconditions: Let rhs_p refer to the state of rhs just prior to this construction and let rhs_a refer
to the state of rhs just after this construction.

— is_open() == rhs_p.is_open()

— rhs_a.is_open() == false

— gptr() - eback() == rhs_p.gptr() - rhs_p.eback()

— egptr() - eback() == rhs_p.egptr() - rhs_p.eback()

— pptr() - pbase() == rhs_p.pptr() - rhs_p.pbase()

— epptr() - pbase() == rhs_p.epptr() - rhs_p.pbase()

— if (eback()) eback() != rhs_a.eback()

— if (gptr()) gptr() != rhs_a.gptr()

— if (egptr()) egptr() != rhs_a.egptr()

— if (pbase()) pbase() != rhs_a.pbase()

— if (pptr()) pptr() != rhs_a.pptr()

— if (epptr()) epptr() != rhs_a.epptr()

virtual ~basic_filebuf();

§ 27.9.1.2 1047

c© ISO/IEC N3092

5 Effects: Destroys an object of class basic_filebuf<charT,traits>. Calls close(). If an exception
occurs during the destruction of the object, including the call to close(), the exception is caught but
not rethrown (see 17.6.4.11).

27.9.1.3 Assign and swap [filebuf.assign]

basic_filebuf& operator=(basic_filebuf&& rhs);

1 Effects: Calls this->close() then move assigns from rhs. After the move assignment *this has the
observable state it would have had if it had been move constructed from rhs (see 27.9.1.2).

2 Returns: *this.

void swap(basic_filebuf& rhs);

3 Effects: Exchanges the state of *this and rhs.

template <class charT, class traits>
void swap(basic_filebuf<charT, traits>& x,

basic_filebuf<charT, traits>& y);

4 Effects: x.swap(y).

27.9.1.4 Member functions [filebuf.members]

bool is_open() const;

1 Returns: true if a previous call to open succeeded (returned a non-null value) and there has been no
intervening call to close.

basic_filebuf<charT,traits>* open(const char* s,
ios_base::openmode mode);

2 Effects: If is_open() != false, returns a null pointer. Otherwise, initializes the filebuf as required.
It then opens a file, if possible, whose name is the ntbs s (as if by calling std::fopen(s,modstr)).
The ntbs modstr is determined from mode & ∼ios_base::ate as indicated in Table 129. If mode is
not some combination of flags shown in the table then the open fails.

3 If the open operation succeeds and (mode & ios_base::ate) != 0, positions the file to the end (as
if by calling std::fseek(file,0,SEEK_END)).338

4 If the repositioning operation fails, calls close() and returns a null pointer to indicate failure.

5 Returns: this if successful, a null pointer otherwise.

basic_filebuf<charT,traits>* open(const string& s,
ios_base::openmode mode);

Returns: open(s.c_str(), mode);

basic_filebuf<charT,traits>* close();

338) The macro SEEK_END is defined, and the function signatures fopen(const char*, const char*) and fseek(FILE*, long,
int) are declared, in <cstdio> (27.9.2).

§ 27.9.1.4 1048

c© ISO/IEC N3092

Table 129 — File open modes

ios_base flag combination stdio equivalent
binary in out trunc app

+ "w"
+ + "a"

+ "a"
+ + "w"

+ "r"
+ + "r+"
+ + + "w+"
+ + + "a+"
+ + "a+"

+ + "wb"
+ + + "ab"
+ + "ab"
+ + + "wb"
+ + "rb"
+ + + "r+b"
+ + + + "w+b"
+ + + + "a+b"
+ + + "a+b"

6 Effects: If is_open() == false, returns a null pointer. If a put area exists, calls overflow(traits::eof())
to flush characters. If the last virtual member function called on *this (between underflow, overflow,
seekoff, and seekpos) was overflow then calls a_codecvt.unshift (possibly several times) to de-
termine a termination sequence, inserts those characters and calls overflow(traits::eof()) again.
Finally, regardless of whether any of the preceding calls fails or throws an exception, the function closes
the file (as if by calling std::fclose(file)).339 If any of the calls made by the function, including
std::fclose, fails, close fails by returning a null pointer. If one of these calls throws an exception,
the exception is caught and rethrown after closing the file.

7 Returns: this on success, a null pointer otherwise.

8 Postcondition: is_open() == false.

27.9.1.5 Overridden virtual functions [filebuf.virtuals]

streamsize showmanyc();

1 Effects: Behaves the same as basic_streambuf::showmanyc() (27.6.2.4).

2 Remarks: An implementation might well provide an overriding definition for this function signature if
it can determine that more characters can be read from the input sequence.

int_type underflow();

3 Effects: Behaves according to the description of basic_streambuf<charT,traits>::underflow(),
with the specialization that a sequence of characters is read from the input sequence as if by reading
from the associated file into an internal buffer (extern_buf) and then as if by doing

339) The function signature fclose(FILE*) is declared in <cstdio> (27.9.2).

§ 27.9.1.5 1049

c© ISO/IEC N3092

char extern_buf[XSIZE];
char* extern_end;
charT intern_buf[ISIZE];
charT* intern_end;
codecvt_base::result r =

a_codecvt.in(state, extern_buf, extern_buf+XSIZE, extern_end,
intern_buf, intern_buf+ISIZE, intern_end);

This shall be done in such a way that the class can recover the position (fpos_t) corresponding to
each character between intern_buf and intern_end. If the value of r indicates that a_codecvt.in()
ran out of space in intern_buf, retry with a larger intern_buf.

int_type uflow();

4 Effects: Behaves according to the description of basic_streambuf<charT,traits>::uflow(), with
the specialization that a sequence of characters is read from the input with the same method as used
by underflow.

int_type pbackfail(int_type c = traits::eof());

5 Effects: Puts back the character designated by c to the input sequence, if possible, in one of three
ways:

— If traits::eq_int_type(c,traits::eof()) returns false and if the function makes a putback
position available and if traits::eq(to_char_type(c),gptr()[-1]) returns true, decrements
the next pointer for the input sequence, gptr().

Returns: c.

— If traits::eq_int_type(c,traits::eof()) returns false and if the function makes a putback
position available and if the function is permitted to assign to the putback position, decrements
the next pointer for the input sequence, and stores c there.

Returns: c.

— If traits::eq_int_type(c,traits::eof()) returns true, and if either the input sequence has
a putback position available or the function makes a putback position available, decrements the
next pointer for the input sequence, gptr().

Returns: traits::not_eof(c).

6 Returns: traits::eof() to indicate failure.

7 Remarks: If is_open() == false, the function always fails.

8 The function does not put back a character directly to the input sequence.

9 If the function can succeed in more than one of these ways, it is unspecified which way is chosen. The
function can alter the number of putback positions available as a result of any call.

int_type overflow(int_type c = traits::eof());

10 Effects: Behaves according to the description of basic_streambuf<charT,traits>::overflow(c),
except that the behavior of “consuming characters” is performed by first coverting as if by:

charT* b = pbase();
charT* p = pptr();
charT* end;
char xbuf[XSIZE];

§ 27.9.1.5 1050

c© ISO/IEC N3092

char* xbuf_end;
codecvt_base::result r =

a_codecvt.out(state, b, p, end, xbuf, xbuf+XSIZE, xbuf_end);

and then

— If r == codecvt_base::error then fail.

— If r == codecvt_base::noconv then output characters from b up to (and not including) p.

— If r == codecvt_base::partial then output to the file characters from xbuf up to xbuf_end,
and repeat using characters from end to p. If output fails, fail (without repeating).

— Otherwise output from xbuf to xbuf_end, and fail if output fails. At this point if b != p and b
== end (xbuf isn’t large enough) then increase XSIZE and repeat from the beginning.

11 Returns: traits::not_eof(c) to indicate success, and traits::eof() to indicate failure. If is_-
open() == false, the function always fails.

basic_streambuf* setbuf(char_type* s, streamsize n);

12 Effects: If setbuf(0,0) is called on a stream before any I/O has occurred on that stream, the stream
becomes unbuffered. Otherwise the results are implementation-defined. “Unbuffered” means that
pbase() and pptr() always return null and output to the file should appear as soon as possible.

pos_type seekoff(off_type off, ios_base::seekdir way,
ios_base::openmode which = ios_base::in | ios_base::out);

13 Effects: Let width denote a_codecvt.encoding(). If is_open() == false, or off != 0 && width
<= 0, then the positioning operation fails. Otherwise, if way != basic_ios::cur or off != 0, and if
the last operation was output, then update the output sequence and write any unshift sequence. Next,
seek to the new position: if width > 0, call std::fseek(file, width * off, whence), otherwise
call std::fseek(file, 0, whence).

14 Remarks: “The last operation was output” means either the last virtual operation was overflow or
the put buffer is non-empty. “Write any unshift sequence” means, if width if less than zero then
call a_codecvt.unshift(state, xbuf, xbuf+XSIZE, xbuf_end) and output the resulting unshift
sequence. The function determines one of three values for the argument whence, of type int, as
indicated in Table 130.

Table 130 — seekoff effects
way Value stdio Equivalent

basic_ios::beg SEEK_SET
basic_ios::cur SEEK_CUR
basic_ios::end SEEK_END

15 Returns: a newly constructed pos_type object that stores the resultant stream position, if possible. If
the positioning operation fails, or if the object cannot represent the resultant stream position, returns
pos_type(off_type(-1)).

pos_type seekpos(pos_type sp,
ios_base::openmode which = ios_base::in | ios_base::out);

16 Alters the file position, if possible, to correspond to the position stored in sp (as described below).
Altering the file position performs as follows:

§ 27.9.1.5 1051

c© ISO/IEC N3092

1. if (om & ios_base::out) != 0, then update the output sequence and write any unshift sequence;

2. set the file position to sp;

3. if (om & ios_base::in) != 0, then update the input sequence;

where om is the open mode passed to the last call to open(). The operation fails if is_open() returns
false.

17 If sp is an invalid stream position, or if the function positions neither sequence, the positioning opera-
tion fails. If sp has not been obtained by a previous successful call to one of the positioning functions
(seekoff or seekpos) on the same file the effects are undefined.

18 Returns: sp on success. Otherwise returns pos_type(off_type(-1)).

int sync();

19 Effects: If a put area exists, calls filebuf::overflow to write the characters to the file. If a get area
exists, the effect is implementation-defined.

void imbue(const locale& loc);

20 Requires: If the file is not positioned at its beginning and the encoding of the current locale as
determined by a_codecvt.encoding() is state-dependent (22.4.1.4.2) then that facet is the same as
the corresponding facet of loc.

21 Effects: Causes characters inserted or extracted after this call to be converted according to loc until
another call of imbue.

22 Remark: This may require reconversion of previously converted characters. This in turn may require
the implementation to be able to reconstruct the original contents of the file.

27.9.1.6 Class template basic_ifstream [ifstream]

namespace std {
template <class charT, class traits = char_traits<charT> >
class basic_ifstream : public basic_istream<charT,traits> {
public:

typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;
typedef traits traits_type;

// 27.9.1.7 Constructors:
basic_ifstream();
explicit basic_ifstream(const char* s,

ios_base::openmode mode = ios_base::in);
explicit basic_ifstream(const string& s,

ios_base::openmode mode = ios_base::in);
basic_ifstream(basic_ifstream&& rhs);

// 27.9.1.8 Assign/swap:
basic_ifstream& operator=(basic_ifstream&& rhs);
void swap(basic_ifstream& rhs);

// 27.9.1.9 Members:

§ 27.9.1.6 1052

c© ISO/IEC N3092

basic_filebuf<charT,traits>* rdbuf() const;

bool is_open() const;
void open(const char* s, ios_base::openmode mode = ios_base::in);
void open(const string& s, ios_base::openmode mode = ios_base::in);
void close();

private:
basic_filebuf<charT,traits> sb; // exposition only

};

template <class charT, class traits>
void swap(basic_ifstream<charT, traits>& x,

basic_ifstream<charT, traits>& y);
}

1 The class basic_ifstream<charT, traits> supports reading from named files. It uses a basic_filebuf<charT,
traits> object to control the associated sequence. For the sake of exposition, the maintained data is pre-
sented here as:

— sb, the filebuf object.

27.9.1.7 basic_ifstream constructors [ifstream.cons]

basic_ifstream();

1 Effects: Constructs an object of class basic_ifstream<charT,traits>, initializing the base class
with basic_istream(&sb) and initializing sb with basic_filebuf<charT,traits>()) (27.7.1.1.1,
27.9.1.2).

explicit basic_ifstream(const char* s,
ios_base::openmode mode = ios_base::in);

2 Effects: Constructs an object of class basic_ifstream, initializing the base class with basic_-
istream(&sb) and initializing sb with basic_filebuf<charT, traits>()) (27.7.1.1.1, 27.9.1.2),
then calls rdbuf()->open(s, mode | ios_base::in). If that function returns a null pointer, calls
setstate(failbit).

explicit basic_ifstream(const string& s,
ios_base::openmode mode = ios_base::in);

3 Effects: the same as basic_ifstream(s.c_str(), mode).

basic_ifstream(basic_ifstream&& rhs);

4 Effects: Move constructs from the rvalue rhs. This is accomplished by move constructing the base
class, and the contained basic_filebuf. Next basic_istream<charT,traits>::set_rdbuf(&sb) is
called to install the contained basic_filebuf.

27.9.1.8 Assign and swap [ifstream.assign]

basic_ifstream& operator=(basic_ifstream&& rhs);

1 Effects: Move assigns the base and members of *this from the base and corresponding members of
rhs.

2 Returns: *this.

§ 27.9.1.8 1053

c© ISO/IEC N3092

void swap(basic_ifstream& rhs);

3 Effects: Exchanges the state of *this and rhs by calling basic_istream<charT,traits>::swap(rhs)
and sb.swap(rhs.sb).

template <class charT, class traits>
void swap(basic_ifstream<charT, traits>& x,

basic_ifstream<charT, traits>& y);

4 Effects: x.swap(y).

27.9.1.9 Member functions [ifstream.members]

basic_filebuf<charT,traits>* rdbuf() const;

1 Returns: const_cast<basic_filebuf<charT,traits>*>(&sb).

bool is_open() const;

2 Returns: rdbuf()->is_open().

void open(const char* s, ios_base::openmode mode = ios_base::in);

3 Effects: Calls rdbuf()->open(s, mode | ios_base::in). If that function does not return a null
pointer calls clear(), otherwise calls setstate(failbit) (which may throw ios_base::failure (27.5.4.3)).

void open(const string& s, ios_base::openmode mode = ios_base::in);

4 Effects: calls open(s.c_str(), mode).

void close();

5 Effects: Calls rdbuf()->close() and, if that function returns a null pointer, calls setstate(failbit)
(which may throw ios_base::failure (27.5.4.3)).

27.9.1.10 Class template basic_ofstream [ofstream]

namespace std {
template <class charT, class traits = char_traits<charT> >
class basic_ofstream : public basic_ostream<charT,traits> {
public:

typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;
typedef traits traits_type;

// 27.9.1.11 Constructors:
basic_ofstream();
explicit basic_ofstream(const char* s,

ios_base::openmode mode = ios_base::out);
explicit basic_ofstream(const string& s,

ios_base::openmode mode = ios_base::out);
basic_ofstream(basic_ofstream&& rhs);

// 27.9.1.12 Assign/swap:

§ 27.9.1.10 1054

c© ISO/IEC N3092

basic_ofstream& operator=(basic_ofstream&& rhs);
void swap(basic_ofstream& rhs);

// 27.9.1.13 Members:
basic_filebuf<charT,traits>* rdbuf() const;

bool is_open() const;
void open(const char* s, ios_base::openmode mode = ios_base::out);
void open(const string& s, ios_base::openmode mode = ios_base::out);
void close();

private:
basic_filebuf<charT,traits> sb; // exposition only

};

template <class charT, class traits>
void swap(basic_ofstream<charT, traits>& x,

basic_ofstream<charT, traits>& y);
}

1 The class basic_ofstream<charT, traits> supports writing to named files. It uses a basic_filebuf<charT,
traits> object to control the associated sequence. For the sake of exposition, the maintained data is pre-
sented here as:

— sb, the filebuf object.

27.9.1.11 basic_ofstream constructors [ofstream.cons]

basic_ofstream();

1 Effects: Constructs an object of class basic_ofstream<charT,traits>, initializing the base class with
basic_ostream(&sb) and initializing sb with basic_filebuf<charT,traits>()) (27.7.2.2, 27.9.1.2).

explicit basic_ofstream(const char* s,
ios_base::openmode mode = ios_base::out);

2 Effects: Constructs an object of class basic_ofstream<charT,traits>, initializing the base class with
basic_ostream(&sb) and initializing sb with basic_filebuf<charT,traits>()) (27.7.2.2, 27.9.1.2),
then calls rdbuf()->open(s, mode|ios_base::out). If that function returns a null pointer, calls
setstate(failbit).

explicit basic_ofstream(const string& s,
ios_base::openmode mode = ios_base::out);

3 Effects: the same as basic_ofstream(s.c_str(), mode);

basic_ofstream(basic_ofstream&& rhs);

4 Effects: Move constructs from the rvalue rhs. This is accomplished by move constructing the base
class, and the contained basic_filebuf. Next basic_ostream<charT,traits>::set_rdbuf(&sb) is
called to install the contained basic_filebuf.

27.9.1.12 Assign and swap [ofstream.assign]

basic_ofstream& operator=(basic_ofstream&& rhs);

§ 27.9.1.12 1055

c© ISO/IEC N3092

1 Effects: Move assigns the base and members of *this from the base and corresponding members of
rhs.

2 Returns: *this.

void swap(basic_ofstream& rhs);

3 Effects: Exchanges the state of *this and rhs by calling basic_ostream<charT,traits>::swap(rhs)
and sb.swap(rhs.sb).

template <class charT, class traits>
void swap(basic_ofstream<charT, traits>& x,

basic_ofstream<charT, traits>& y);

4 Effects: x.swap(y).

27.9.1.13 Member functions [ofstream.members]

basic_filebuf<charT,traits>* rdbuf() const;

1 Returns: const_cast<basic_filebuf<charT,traits>*>(&sb).

bool is_open() const;

2 Returns: rdbuf()->is_open().

void open(const char* s, ios_base::openmode mode = ios_base::out);

3 Effects: Calls rdbuf()->open(s, mode | ios_base::out). If that function does not return a null
pointer calls clear(), otherwise calls setstate(failbit) (which may throw ios_base::failure (27.5.4.3)).

void close();

4 Effects: Calls rdbuf()->close() and, if that function fails (returns a null pointer), calls setstate(failbit)
(which may throw ios_base::failure (27.5.4.3)).

void open(const string& s, ios_base::openmode mode = ios_base::out);

5 Effects: calls open(s.c_str(), mode);

27.9.1.14 Class template basic_fstream [fstream]

namespace std {
template <class charT, class traits=char_traits<charT> >
class basic_fstream

: public basic_iostream<charT,traits> {

public:
typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;
typedef traits traits_type;

// constructors/destructor
basic_fstream();

§ 27.9.1.14 1056

c© ISO/IEC N3092

explicit basic_fstream(const char* s,
ios_base::openmode mode = ios_base::in|ios_base::out);

explicit basic_fstream(const string& s,
ios_base::openmode mode = ios_base::in|ios_base::out);

basic_fstream(basic_fstream&& rhs);

// 27.9.1.16 Assign/swap:
basic_fstream& operator=(basic_fstream&& rhs);
void swap(basic_fstream& rhs);

// Members:
basic_filebuf<charT,traits>* rdbuf() const;
bool is_open() const;
void open(const char* s,

ios_base::openmode mode = ios_base::in|ios_base::out);
void open(const string& s,

ios_base::openmode mode = ios_base::in|ios_base::out);
void close();

private:
basic_filebuf<charT,traits> sb; // exposition only

};

template <class charT, class traits>
void swap(basic_fstream<charT, traits>& x,

basic_fstream<charT, traits>& y);
}

1 The class template basic_fstream<charT,traits> supports reading and writing from named files. It uses
a basic_filebuf<charT,traits> object to control the associated sequences. For the sake of exposition,
the maintained data is presented here as:

— sb, the basic_filebuf object.

27.9.1.15 basic_fstream constructors [fstream.cons]

basic_fstream();

1 Effects: Constructs an object of class basic_fstream<charT,traits>, initializing the base class with
basic_iostream(&sb) and initializing sb with basic_filebuf<charT,traits>().

explicit basic_fstream(const char* s,
ios_base::openmode mode = ios_base::in|ios_base::out);

2 Effects: Constructs an object of class basic_fstream<charT, traits>, initializing the base class
with basic_iostream(&sb) and initializing sb with basic_filebuf<charT, traits>(). Then calls
rdbuf()->open(s, mode). If that function returns a null pointer, calls setstate(failbit).

explicit basic_fstream(const string& s,
ios_base::openmode mode = ios_base::in|ios_base::out);

3 Effects: the same as basic_fstream(s.c_str(), mode);

basic_fstream(basic_fstream&& rhs);

§ 27.9.1.15 1057

c© ISO/IEC N3092

4 Effects: Move constructs from the rvalue rhs. This is accomplished by move constructing the base
class, and the contained basic_filebuf. Next basic_istream<charT,traits>::set_rdbuf(&sb) is
called to install the contained basic_filebuf.

27.9.1.16 Assign and swap [fstream.assign]

basic_fstream& operator=(basic_fstream&& rhs);

1 Effects: Move assigns the base and members of *this from the base and corresponding members of
rhs.

2 Returns: *this.

void swap(basic_fstream& rhs);

3 Effects: Exchanges the state of *this and rhs by calling basic_iostream<charT,traits>::swap(rhs)
and sb.swap(rhs.sb).

template <class charT, class traits>
void swap(basic_fstream<charT, traits>& x,

basic_fstream<charT, traits>& y);

4 Effects: x.swap(y).

27.9.1.17 Member functions [fstream.members]

basic_filebuf<charT,traits>* rdbuf() const;

1 Returns: const_cast<basic_filebuf<charT,traits>*>(&sb).

bool is_open() const;

2 Returns: rdbuf()->is_open().

void open(const char* s,
ios_base::openmode mode = ios_base::in|ios_base::out);

3 Effects: Calls rdbuf()->open(s,mode). If that function does not return a null pointer calls clear(),
otherwise calls setstate(failbit), (which may throw ios_base::failure) (27.5.4.3).

void open(const string& s,
ios_base::openmode mode = ios_base::in|ios_base::out);

4 Effects: calls open(s.c_str(), mode);

void close();

5 Effects: Calls rdbuf()->close() and, if that function returns returns a null pointer, calls setstate(failbit) (27.5.4.3)
(which may throw ios_base::failure).

27.9.2 C Library files [c.files]

Table 131 describes header <cstdio>.

1 Calls to the function tmpnam with an argument of NULL may introduce a data race (17.6.4.8) with other calls
to tmpnam with an argument of NULL.

§ 27.9.2 1058

c© ISO/IEC N3092

Table 131 — Header <cstdio> synopsis

Type Name(s)
Macros:
BUFSIZ FOPEN_MAX SEEK_CUR TMP_MAX _IONBF stdout
EOF L_tmpnam SEEK_END _IOFBF stderr
FILENAME_MAX NULL <cstdio> SEEK_SET _IOLBF stdin
Types: FILE fpos_t size_t <cstdio>
Functions:
clearerr fopen fsetpos putc setbuf vprintf
fclose fprintf ftell putchar setvbuf vscanf
feof fputc fwrite puts snprintf vsnprintf
ferror fputs getc rename sprintf vsprintf
fflush fread getchar remove tmpfile vsscanf
fgetc freopen gets rewind tmpnam
fgetpos fscanf perror scanf ungetc
fgets fseek printf sscanf vfprintf

See also: ISO C 7.9, Amendment 1 4.6.2.

Table 132 describes header <cinttypes>. [Note: The macros defined by <cinttypes> are provided uncon-
ditionally. In particular, the symbol __STDC_FORMAT_MACROS, mentioned in footnote 182 of the C standard,
plays no role in C++. — end note]

Table 132 — Header <cinttypes> synopsis

Type Name(s)
Macros:
PRI{d i o u x X}[FAST LEAST]{8 16 32 64}
PRI{d i o u x X}{MAX PTR}
SCN{d i o u x X}[FAST LEAST]{8 16 32 64}
SCN{d i o u x X}{MAX PTR}
Types: imaxdiv_t
Functions:
abs imaxabs strtoimax wcstoimax
div imaxdiv strtoumax wcstoumax

§ 27.9.2 1059

c© ISO/IEC N3092

28 Regular expressions library [re]
28.1 General [re.general]

1 This Clause describes components that C++ programs may use to perform operations involving regular
expression matching and searching.

2 The following subclauses describe a basic regular expression class template and its traits that can handle
char-like template arguments, two specificializations of this template class that handle sequences of char
and wchar_t, a class template that holds the result of a regular expression match, a series of algorithms
that allow a character sequence to be operated upon by a regular expression, and two iterator types for
enumerating regular expression matches, as described in Table 133.

Table 133 — Regular expressions library summary

Subclause Header(s)
28.2 Definitions
28.3 Requirements
28.5 Constants
28.6 Exception type
28.7 Traits
28.8 Regular expression template <regex>
28.9 Submatches
28.10 Match results
28.11 Algorithms
28.12 Iterators
28.13 Grammar

28.2 Definitions [re.def]

1 The following definitions shall apply to this Clause:

28.2.1 [defns.regex.collating.element]
collating element
a sequence of one or more characters within the current locale that collate as if they were a single character.

28.2.2 [defns.regex.finite.state.machine]
finite state machine
an unspecified data structure that is used to represent a regular expression, and which permits efficient
matches against the regular expression to be obtained.

28.2.3 [defns.regex.format.specifier]
format specifier
a sequence of one or more characters that is to be replaced with some part of a regular expression match.

§ 28.2 1060

c© ISO/IEC N3092

28.2.4 [defns.regex.matched]
matched
a sequence of zero or more characters is matched by a regular expression when the characters in the sequence
correspond to a sequence of characters defined by the pattern.

28.2.5 [defns.regex.primary.equivalence.class]
primary equivalence class
a set of one or more characters which share the same primary sort key: that is the sort key weighting that
depends only upon character shape, and not accentation, case, or locale specific tailorings.

28.2.6 [defns.regex.regular.expression]
regular expression
a pattern that selects specific strings from a set of character strings.

28.2.7 [defns.regex.subexpression]
sub-expression
a subset of a regular expression that has been marked by parenthesis.

28.3 Requirements [re.req]

1 This subclause defines requirements on classes representing regular expression traits. [Note: The class
template regex_traits, defined in Clause 28.7, satisfies these requirements. — end note]

2 The class template basic_regex, defined in Clause 28.8, needs a set of related types and functions to
complete the definition of its semantics. These types and functions are provided as a set of member typedefs
and functions in the template parameter traits used by the basic_regex class template. This subclause
defines the semantics guaranteed by these members.

3 To specialize class template basic_regex for a character container CharT and its related regular expression
traits class Traits, use basic_regex<CharT, Traits>.

4 In Table 134 X denotes a traits class defining types and functions for the character container type charT;
u is an object of type X; v is an object of type const X; p is a value of type const charT*; I1 and I2 are
Input Iterators; F1 and F2 are forward iterators; c is a value of type const charT; s is an object of type
X::string_type; cs is an object of type const X::string_type; b is a value of type bool; I is a value of
type int; cl is an object of type X::char_class_type, and loc is an object of type X::locale_type.

Table 134 — Regular expression traits class requirements

Expression Return type Assertion/note pre-/post-condition
X::char_type charT The character container type used in the

implementation of class template
basic_regex.

X::string_type std::basic_-
string<charT>

X::locale_type A copy
constructible type

A type that represents the locale used by the
traits class.

X::char_class_type A bitmask
type (17.5.2.1.3).

A bitmask type representing a particular
character classification.

X::length(p) std::size_t Yields the smallest i such that p[i] == 0.
Complexity is linear in i .

§ 28.3 1061

c© ISO/IEC N3092

Table 134 — Regular expression traits class requirements (contin-
ued)

Expression Return type Assertion/note pre-/post-condition
v.translate(c) X::char_type Returns a character such that for any

character d that is to be considered
equivalent to c then v.translate(c) ==
v.translate(d).

v.translate_nocase(c) X::char_type For all characters C that are to be considered
equivalent to c when comparisons are to be
performed without regard to case, then
v.translate_nocase(c) ==
v.translate_nocase(C).

v.transform(F1, F2) X::string_type Returns a sort key for the character sequence
designated by the iterator range [F1,F2)
such that if the character sequence [G1,G2)
sorts before the character sequence [H1,H2)
then v.transform(G1, G2) <
v.transform(H1, H2).

v.transform_primary(F1,
F2)

X::string_type Returns a sort key for the character sequence
designated by the iterator range [F1,F2)
such that if the character sequence [G1,G2)
sorts before the character sequence [H1,H2)
when character case is not considered then
v.transform_primary(G1, G2) <
v.transform_primary(H1, H2).

v.lookup_collatename(F1,
F2)

X::string_type Returns a sequence of characters that
represents the collating element consisting of
the character sequence designated by the
iterator range [F1,F2). Returns an empty
string if the character sequence is not a valid
collating element.

v.lookup_classname(F1,
F2, b)

X::char_class_-
type

Converts the character sequence designated
by the iterator range [F1,F2) into a value of
a bitmask type that can subsequently be
passed to isctype. Values returned from
lookup_classname can be bitwise or’ed
together; the resulting value represents
membership in either of the corresponding
character classes. If b is true, the returned
bitmask is suitable for matching characters
without regard to their case. Returns 0 if the
character sequence is not the name of a
character class recognized by X. The value
returned shall be independent of the case of
the characters in the sequence.

v.isctype(c, cl) bool Returns true if character c is a member of
one of the character classes designated by cl,
false otherwise.

§ 28.3 1062

c© ISO/IEC N3092

Table 134 — Regular expression traits class requirements (contin-
ued)

Expression Return type Assertion/note pre-/post-condition
v.value(c, I) int Returns the value represented by the digit c

in base I if the character c is a valid digit in
base I ; otherwise returns -1. [Note: the value
of I will only be 8, 10, or 16. — end note]

u.imbue(loc) X::locale_type Imbues u with the locale loc and returns the
previous locale used by u if any.

v.getloc() X::locale_type Returns the current locale used by v, if any.

5 [Note: Class template regex_traits satisfies the requirements for a regular expression traits class when it
is specialized for char or wchar_t. This Class template is described in the header <regex>, and is described
in Clause 28.7. — end note]

28.4 Header <regex> synopsis [re.syn]

namespace std {
#include <initializer_list>

// 28.5, regex constants:
namespace regex_constants {

enum error_type;
} // namespace regex_constants

// 28.6, class regex_error:
class regex_error;

// 28.7, class template regex_traits:
template <class charT> struct regex_traits;

// 28.8, class template basic_regex:
template <class charT, class traits = regex_traits<charT> > class basic_regex;

typedef basic_regex<char> regex;
typedef basic_regex<wchar_t> wregex;

// 28.8.6, basic_regex swap:
template <class charT, class traits>

void swap(basic_regex<charT, traits>& e1, basic_regex<charT, traits>& e2);

// 28.9, class template sub_match:
template <class BidirectionalIterator>

class sub_match;

typedef sub_match<const char*> csub_match;
typedef sub_match<const wchar_t*> wcsub_match;
typedef sub_match<string::const_iterator> ssub_match;
typedef sub_match<wstring::const_iterator> wssub_match;

// 28.9.2, sub_match non-member operators:
template <class BiIter>

§ 28.4 1063

c© ISO/IEC N3092

bool operator==(const sub_match<BiIter>& lhs, const sub_match<BiIter>& rhs);
template <class BiIter>

bool operator!=(const sub_match<BiIter>& lhs, const sub_match<BiIter>& rhs);
template <class BiIter>

bool operator<(const sub_match<BiIter>& lhs, const sub_match<BiIter>& rhs);
template <class BiIter>

bool operator<=(const sub_match<BiIter>& lhs, const sub_match<BiIter>& rhs);
template <class BiIter>

bool operator>=(const sub_match<BiIter>& lhs, const sub_match<BiIter>& rhs);
template <class BiIter>

bool operator>(const sub_match<BiIter>& lhs, const sub_match<BiIter>& rhs);

template <class BiIter, class ST, class SA>
bool operator==(

const basic_string<
typename iterator_traits<BiIter>::value_type, ST, SA>& lhs,

const sub_match<BiIter>& rhs);
template <class BiIter, class ST, class SA>

bool operator!=(
const basic_string<

typename iterator_traits<BiIter>::value_type, ST, SA>& lhs,
const sub_match<BiIter>& rhs);

template <class BiIter, class ST, class SA>
bool operator<(

const basic_string<
typename iterator_traits<BiIter>::value_type, ST, SA>& lhs,

const sub_match<BiIter>& rhs);
template <class BiIter, class ST, class SA>

bool operator>(
const basic_string<

typename iterator_traits<BiIter>::value_type, ST, SA>& lhs,
const sub_match<BiIter>& rhs);

template <class BiIter, class ST, class SA>
bool operator>=(

const basic_string<
typename iterator_traits<BiIter>::value_type, ST, SA>& lhs,

const sub_match<BiIter>& rhs);
template <class BiIter, class ST, class SA>

bool operator<=(
const basic_string<

typename iterator_traits<BiIter>::value_type, ST, SA>& lhs,
const sub_match<BiIter>& rhs);

template <class BiIter, class ST, class SA>
bool operator==(

const sub_match<BiIter>& lhs,
const basic_string<

typename iterator_traits<BiIter>::value_type, ST, SA>& rhs);
template <class BiIter, class ST, class SA>

bool operator!=(
const sub_match<BiIter>& lhs,
const basic_string<

typename iterator_traits<BiIter>::value_type, ST, SA>& rhs);
template <class BiIter, class ST, class SA>

§ 28.4 1064

c© ISO/IEC N3092

bool operator<(
const sub_match<BiIter>& lhs,
const basic_string<

typename iterator_traits<BiIter>::value_type, ST, SA>& rhs);
template <class BiIter, class ST, class SA>

bool operator>(
const sub_match<BiIter>& lhs,
const basic_string<

typename iterator_traits<BiIter>::value_type, ST, SA>& rhs);
template <class BiIter, class ST, class SA>

bool operator>=(
const sub_match<BiIter>& lhs,
const basic_string<

typename iterator_traits<BiIter>::value_type, ST, SA>& rhs);
template <class BiIter, class ST, class SA>

bool operator<=(
const sub_match<BiIter>& lhs,
const basic_string<

typename iterator_traits<BiIter>::value_type, ST, SA>& rhs);

template <class BiIter>
bool operator==(typename iterator_traits<BiIter>::value_type const* lhs,

const sub_match<BiIter>& rhs);
template <class BiIter>

bool operator!=(typename iterator_traits<BiIter>::value_type const* lhs,
const sub_match<BiIter>& rhs);

template <class BiIter>
bool operator<(typename iterator_traits<BiIter>::value_type const* lhs,

const sub_match<BiIter>& rhs);
template <class BiIter>

bool operator>(typename iterator_traits<BiIter>::value_type const* lhs,
const sub_match<BiIter>& rhs);

template <class BiIter>
bool operator>=(typename iterator_traits<BiIter>::value_type const* lhs,

const sub_match<BiIter>& rhs);
template <class BiIter>

bool operator<=(typename iterator_traits<BiIter>::value_type const* lhs,
const sub_match<BiIter>& rhs);

template <class BiIter>
bool operator==(const sub_match<BiIter>& lhs,

typename iterator_traits<BiIter>::value_type const* rhs);
template <class BiIter>

bool operator!=(const sub_match<BiIter>& lhs,
typename iterator_traits<BiIter>::value_type const* rhs);

template <class BiIter>
bool operator<(const sub_match<BiIter>& lhs,

typename iterator_traits<BiIter>::value_type const* rhs);
template <class BiIter>

bool operator>(const sub_match<BiIter>& lhs,
typename iterator_traits<BiIter>::value_type const* rhs);

template <class BiIter>
bool operator>=(const sub_match<BiIter>& lhs,

typename iterator_traits<BiIter>::value_type const* rhs);
template <class BiIter>

§ 28.4 1065

c© ISO/IEC N3092

bool operator<=(const sub_match<BiIter>& lhs,
typename iterator_traits<BiIter>::value_type const* rhs);

template <class BiIter>
bool operator==(typename iterator_traits<BiIter>::value_type const& lhs,

const sub_match<BiIter>& rhs);
template <class BiIter>

bool operator!=(typename iterator_traits<BiIter>::value_type const& lhs,
const sub_match<BiIter>& rhs);

template <class BiIter>
bool operator<(typename iterator_traits<BiIter>::value_type const& lhs,

const sub_match<BiIter>& rhs);
template <class BiIter>

bool operator>(typename iterator_traits<BiIter>::value_type const& lhs,
const sub_match<BiIter>& rhs);

template <class BiIter>
bool operator>=(typename iterator_traits<BiIter>::value_type const& lhs,

const sub_match<BiIter>& rhs);
template <class BiIter>

bool operator<=(typename iterator_traits<BiIter>::value_type const& lhs,
const sub_match<BiIter>& rhs);

template <class BiIter>
bool operator==(const sub_match<BiIter>& lhs,

typename iterator_traits<BiIter>::value_type const& rhs);
template <class BiIter>

bool operator!=(const sub_match<BiIter>& lhs,
typename iterator_traits<BiIter>::value_type const& rhs);

template <class BiIter>
bool operator<(const sub_match<BiIter>& lhs,

typename iterator_traits<BiIter>::value_type const& rhs);
template <class BiIter>

bool operator>(const sub_match<BiIter>& lhs,
typename iterator_traits<BiIter>::value_type const& rhs);

template <class BiIter>
bool operator>=(const sub_match<BiIter>& lhs,

typename iterator_traits<BiIter>::value_type const& rhs);
template <class BiIter>

bool operator<=(const sub_match<BiIter>& lhs,
typename iterator_traits<BiIter>::value_type const& rhs);

template <class charT, class ST, class BiIter>
basic_ostream<charT, ST>&
operator<<(basic_ostream<charT, ST>& os, const sub_match<BiIter>& m);

// 28.10, class template match_results:
template <class BidirectionalIterator,

class Allocator = allocator<sub_match<BidirectionalIterator> > >
class match_results;

typedef match_results<const char*> cmatch;
typedef match_results<const wchar_t*> wcmatch;
typedef match_results<string::const_iterator> smatch;
typedef match_results<wstring::const_iterator> wsmatch;

§ 28.4 1066

c© ISO/IEC N3092

// match_results comparisons
template <class BidirectionalIterator, class Allocator>

bool operator== (const match_results<BidirectionalIterator, Allocator>& m1,
const match_results<BidirectionalIterator, Allocator>& m2);

template <class BidirectionalIterator, class Allocator>
bool operator!= (const match_results<BidirectionalIterator, Allocator>& m1,

const match_results<BidirectionalIterator, Allocator>& m2);

// 28.10.6, match_results swap:
template <class BidirectionalIterator, class Allocator>

void swap(match_results<BidirectionalIterator, Allocator>& m1,
match_results<BidirectionalIterator, Allocator>& m2);

// 28.11.2, function template regex_match:
template <class BidirectionalIterator, class Allocator,

class charT, class traits>
bool regex_match(BidirectionalIterator first, BidirectionalIterator last,

match_results<BidirectionalIterator, Allocator>& m,
const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags =

regex_constants::match_default);
template <class BidirectionalIterator, class charT, class traits>
bool regex_match(BidirectionalIterator first, BidirectionalIterator last,

const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags =

regex_constants::match_default);
template <class charT, class Allocator, class traits>

bool regex_match(const charT* str, match_results<const charT*, Allocator>& m,
const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags =

regex_constants::match_default);
template <class ST, class SA, class Allocator, class charT, class traits>

bool regex_match(const basic_string<charT, ST, SA>& s,
match_results<

typename basic_string<charT, ST, SA>::const_iterator,
Allocator>& m,

const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags =

regex_constants::match_default);
template <class charT, class traits>

bool regex_match(const charT* str,
const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags =

regex_constants::match_default);
template <class ST, class SA, class charT, class traits>

bool regex_match(const basic_string<charT, ST, SA>& s,
const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags =

regex_constants::match_default);

// 28.11.3, function template regex_search:
template <class BidirectionalIterator, class Allocator,

class charT, class traits>
bool regex_search(BidirectionalIterator first, BidirectionalIterator last,

match_results<BidirectionalIterator, Allocator>& m,

§ 28.4 1067

c© ISO/IEC N3092

const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags =

regex_constants::match_default);
template <class BidirectionalIterator, class charT, class traits>

bool regex_search(BidirectionalIterator first, BidirectionalIterator last,
const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags =

regex_constants::match_default);
template <class charT, class Allocator, class traits>

bool regex_search(const charT* str,
match_results<const charT*, Allocator>& m,
const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags =

regex_constants::match_default);
template <class charT, class traits>

bool regex_search(const charT* str,
const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags =

regex_constants::match_default);
template <class ST, class SA, class charT, class traits>

bool regex_search(const basic_string<charT, ST, SA>& s,
const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags =

regex_constants::match_default);
template <class ST, class SA, class Allocator, class charT, class traits>

bool regex_search(const basic_string<charT, ST, SA>& s,
match_results<

typename basic_string<charT, ST, SA>::const_iterator,
Allocator>& m,

const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags =

regex_constants::match_default);

// 28.11.4, function template regex_replace:
template <class OutputIterator, class BidirectionalIterator,

class traits, class charT, class ST, class SA>
OutputIterator
regex_replace(OutputIterator out,

BidirectionalIterator first, BidirectionalIterator last,
const basic_regex<charT, traits>& e,
const basic_string<charT, ST, SA>& fmt,
regex_constants::match_flag_type flags =

regex_constants::match_default);
template <class OutputIterator, class BidirectionalIterator,

class traits, class charT>
OutputIterator
regex_replace(OutputIterator out,

BidirectionalIterator first, BidirectionalIterator last,
const basic_regex<charT, traits>& e,
const charT* fmt,
regex_constants::match_flag_type flags =

regex_constants::match_default);
template <class traits, class charT, class ST, class SA,

class FST, class FSA>>
basic_string<charT, ST, SA>

§ 28.4 1068

c© ISO/IEC N3092

regex_replace(const basic_string<charT, ST, SA>& s,
const basic_regex<charT, traits>& e,
const basic_string<charT, FST, FSA>& fmt,
regex_constants::match_flag_type flags =

regex_constants::match_default);
template <class traits, class charT, class ST, class SA>

basic_string<charT, ST, SA>
regex_replace(const basic_string<charT, ST, SA>& s,

const basic_regex<charT, traits>& e,
const charT* fmt,
regex_constants::match_flag_type flags =

regex_constants::match_default);
template <class traits, class charT, class ST, class SA>

basic_string<charT>
regex_replace(const charT* s,

const basic_regex<charT, traits>& e,
const basic_string<charT, ST, SA>& fmt,
regex_constants::match_flag_type flags =

regex_constants::match_default);
template <class traits, class charT>

basic_string<charT>
regex_replace(const charT* s,

const basic_regex<charT, traits>& e,
const charT* fmt,
regex_constants::match_flag_type flags =

regex_constants::match_default);

// 28.12.1, class template regex_iterator:
template <class BidirectionalIterator,

class charT = typename iterator_traits<
BidirectionalIterator>::value_type,

class traits = regex_traits<charT> >
class regex_iterator;

typedef regex_iterator<const char*> cregex_iterator;
typedef regex_iterator<const wchar_t*> wcregex_iterator;
typedef regex_iterator<string::const_iterator> sregex_iterator;
typedef regex_iterator<wstring::const_iterator> wsregex_iterator;

// 28.12.2, class template regex_token_iterator:
template <class BidirectionalIterator,

class charT = typename iterator_traits<
BidirectionalIterator>::value_type,

class traits = regex_traits<charT> >
class regex_token_iterator;

typedef regex_token_iterator<const char*> cregex_token_iterator;
typedef regex_token_iterator<const wchar_t*> wcregex_token_iterator;
typedef regex_token_iterator<string::const_iterator> sregex_token_iterator;
typedef regex_token_iterator<wstring::const_iterator> wsregex_token_iterator;

}

28.5 Namespace std::regex_constants [re.const]

1 The namespace std::regex_constants holds symbolic constants used by the regular expression library.

§ 28.5 1069

c© ISO/IEC N3092

This namespace provides three types, syntax_option_type, match_flag_type, and error_type, along
with several constants of these types.

28.5.1 Bitmask Type syntax_option_type [re.synopt]

namespace std {
namespace regex_constants {

emum syntax_option_type {
icase = unspecified,
nosubs = unspecified,
optimize = unspecified,
collate = unspecified,
ECMAScript = unspecified,
basic = unspecified,
extended = unspecified,
awk = unspecified,
grep = unspecified,
egrep = unspecified,

};

constexpr syntax_option_type operator~(syntax_option_type f);
constexpr syntax_option_type operator&(syntax_option_type lhs, syntax_option_type rhs);
constexpr syntax_option_type operator|(syntax_option_type lhs, syntax_option_type rhs);

}
}

1 The type syntax_option_type is an implementation-defined bitmask type (17.5.2.1.3). Setting its elements
has the effects listed in table 135. A valid value of type syntax_option_type shall have exactly one of the
elements ECMAScript, basic, extended, awk, grep, egrep, set.

constexpr syntax_option_type operator~(syntax_option_type f);

2 Returns: syntax_option_type(f).

constexpr syntax_option_type operator&(syntax_option_type lhs, syntax_option_type rhs);

3 Returns: syntax_option_type(int(lhs) & int(rhs)).

constexpr syntax_option_type operator|(syntax_option_type lhs, syntax_option_type rhs);

4 Returns: syntax_option_type(int(lhs) | int(rhs)).

28.5.2 Bitmask Type regex_constants::match_flag_type [re.matchflag]

namespace std {
namespace regex_constants{

enum match_flag_type {
match_default = 0,
match_not_bol = unspecified,
match_not_eol = unspecified,
match_not_bow = unspecified,
match_not_eow = unspecified,
match_any = unspecified,
match_not_null = unspecified,
match_continuous = unspecified,
match_prev_avail = unspecified,

§ 28.5.2 1070

c© ISO/IEC N3092

Table 135 — syntax_option_type effects

Element Effect(s) if set
icase Specifies that matching of regular expressions against a character container

sequence shall be performed without regard to case.
nosubs Specifies that when a regular expression is matched against a character con-

tainer sequence, no sub-expression matches shall be stored in the supplied
match_results structure.

optimize Specifies that the regular expression engine should pay more attention to
the speed with which regular expressions are matched, and less to the speed
with which regular expression objects are constructed. Otherwise it has no
detectable effect on the program output.

collate Specifies that character ranges of the form "[a-b]" shall be locale sensitive.

ECMAScript Specifies that the grammar recognized by the regular expression engine
shall be that used by ECMAScript in ECMA-262, as modified in 28.13.

basic Specifies that the grammar recognized by the regular expression engine
shall be that used by basic regular expressions in POSIX, Base Definitions
and Headers, Section 9, Regular Expressions.

extended Specifies that the grammar recognized by the regular expression engine shall
be that used by extended regular expressions in POSIX, Base Definitions
and Headers, Section 9, Regular Expressions.

awk Specifies that the grammar recognized by the regular expression engine
shall be that used by the utility awk in POSIX.

grep Specifies that the grammar recognized by the regular expression engine
shall be that used by the utility grep in POSIX.

egrep Specifies that the grammar recognized by the regular expression engine
shall be that used by the utility grep when given the -E option in POSIX.

format_default = 0,
format_sed = unspecified,
format_no_copy = unspecified,
format_first_only = unspecified,

};

constexpr match_flag_type operator~(match_flag_type f);
constexpr match_flag_type operator&(match_flag_type lhs, match_flag_type rhs);
constexpr match_flag_type operator|(match_flag_type lhs, match_flag_type rhs);

}
}

1 The type regex_constants::match_flag_type is an implementation-defined bitmask type (17.5.2.1.3).
Matching a regular expression against a sequence of characters [first,last) proceeds according to the
rules of the grammar specified for the regular expression object, modified according to the effects listed in
table 136 for any bitmask elements set.

§ 28.5.2 1071

c© ISO/IEC N3092

Table 136 — regex_constants::match_flag_type effects when
obtaining a match against a character container sequence [first,
last).

Element Effect(s) if set
match_not_bol The first character in the sequence [first,last) shall be treated as though

it is not at the beginning of a line, so the character ^ in the regular expres-
sion shall not match [first,first).

match_not_eol The last character in the sequence [first,last) shall be treated as though
it is not at the end of a line, so the character "$" in the regular expression
shall not match [last,last).

match_not_bow The expression "\b" shall not match the sub-sequence [first,first).
match_not_eow The expression "\b" shall not match the sub-sequence [last,last).
match_any If more than one match is possible then any match is an acceptable result.
match_not_null The expression shall not match an empty sequence.
match_continuous The expression shall only match a sub-sequence that begins at first.
match_prev_avail --first is a valid iterator position. When this flag is set the flags match_-

not_bol and match_not_bow shall be ignored by the regular expression
algorithms 28.11 and iterators 28.12.

format_default When a regular expression match is to be replaced by a new string, the new
string shall be constructed using the rules used by the ECMAScript replace
function in ECMA-262, part 15.4.11 String.prototype.replace. In addition,
during search and replace operations all non-overlapping occurrences of the
regular expression shall be located and replaced, and sections of the input
that did not match the expression shall be copied unchanged to the output
string.

format_sed When a regular expression match is to be replaced by a new string, the
new string shall be constructed using the rules used by the sed utility in
POSIX.

format_no_copy During a search and replace operation, sections of the character container
sequence being searched that do not match the regular expression shall not
be copied to the output string.

format_first_only When specified during a search and replace operation, only the first occur-
rence of the regular expression shall be replaced.

constexpr match_flag_type operator~(match_flag_type f);

2 Returns: match_flag_type(f).

constexpr match_flag_type operator&(match_flag_type lhs, match_flag_type rhs);

3 Returns: match_flag_type(int(lhs) & int(rhs)).

constexpr match_flag_type operator|(match_flag_type lhs, match_flag_type rhs);

4 Returns: match_flag_type(int(lhs) | int(rhs)).

28.5.3 Implementation-defined error_type [re.err]

namespace std {
namespace regex_constants {

§ 28.5.3 1072

c© ISO/IEC N3092

enum error_type {
error_collate = unspecified,
error_ctype = unspecified,
error_escape = unspecified,
error_backref = unspecified,
error_brack = unspecified,
error_paren = unspecified,
error_brace = unspecified,
error_badbrace = unspecified,
error_range = unspecified,
error_space = unspecified,
error_badrepeat = unspecified,
error_complexity = unspecified,
error_stack = unspecified,

};

constexpr error_type operator~(error_type f);
constexpr error_type operator&(error_type lhs, error_type rhs);
constexpr error_type operator|(error_type lhs, error_type rhs);

}
}

1 The type error_type is an implementation-defined enumeration type (17.5.2.1.2). Values of type error_-
type represent the error conditions described in table 137:

Table 137 — error_type values in the C locale

Value Error condition
error_collate The expression contained an invalid collating element name.
error_ctype The expression contained an invalid character class name.
error_escape The expression contained an invalid escaped character, or a trailing escape.
error_backref The expression contained an invalid back reference.
error_brack The expression contained mismatched [and].
error_paren The expression contained mismatched (and).
error_brace The expression contained mismatched { and }
error_badbrace The expression contained an invalid range in a {} expression.
error_range The expression contained an invalid character range, such as [b-a] in most

encodings.
error_space There was insufficient memory to convert the expression into a finite state

machine.
error_badrepeat One of *?+{ was not preceded by a valid regular expression.
error_complexity The complexity of an attempted match against a regular expression ex-

ceeded a pre-set level.
error_stack There was insufficient memory to determine whether the regular expression

could match the specified character sequence.

constexpr error_type operator~(error_type f);

2 Returns: error_type(f).

constexpr error_type operator&(error_type lhs, error_type rhs);

§ 28.5.3 1073

c© ISO/IEC N3092

3 Returns: error_type(int(lhs) & int(rhs)).

constexpr error_type operator|(error_type lhs, error_type rhs);

4 Returns: error_type(int(lhs) | int(rhs)).

28.6 Class regex_error [re.badexp]

class regex_error : public std::runtime_error {
public:

explicit regex_error(regex_constants::error_type ecode);
regex_constants::error_type code() const;

};

1 The class regex_error defines the type of objects thrown as exceptions to report errors from the regular
expression library.

regex_error(regex_constants::error_type ecode);

2 Effects: Constructs an object of class regex_error.

3 Postcondition:: ecode == code()

regex_constants::error_type code() const;

4 Returns: The error code that was passed to the constructor.

28.7 Class template regex_traits [re.traits]

namespace std {
template <class charT>
struct regex_traits {
public:

typedef charT char_type;
typedef std::basic_string<char_type> string_type;
typedef std::locale locale_type;
typedef bitmask_type char_class_type;

regex_traits();
static std::size_t length(const char_type* p);
charT translate(charT c) const;
charT translate_nocase(charT c) const;
template <class ForwardIterator>

string_type transform(ForwardIterator first, ForwardIterator last) const;
template <class ForwardIterator>

string_type transform_primary(
ForwardIterator first, ForwardIterator last) const;

template <class ForwardIterator>
string_type lookup_collatename(

ForwardIterator first, ForwardIterator last) const;
template <class ForwardIterator>

char_class_type lookup_classname(
ForwardIterator first, ForwardIterator last, bool icase = false) const;

bool isctype(charT c, char_class_type f) const;
int value(charT ch, int radix) const;
locale_type imbue(locale_type l);

§ 28.7 1074

c© ISO/IEC N3092

locale_type getloc()const;
};

}

1 The specializations regex_traits<char> and regex_traits<wchar_t> shall be valid and shall satisfy the
requirements for a regular expression traits class (28.3).

typedef bitmask_type char_class_type;

2 The type char_class_type is used to represent a character classification and is capable of holding an
implementation specific set returned by lookup_classname.

static std::size_t length(const char_type* p);

3 Returns: char_traits<charT>::length(p);

charT translate(charT c) const;

4 Returns: (c).

charT translate_nocase(charT c) const;

5 Returns: use_facet<ctype<charT> >(getloc()).tolower(c).

template <class ForwardIterator>
string_type transform(ForwardIterator first, ForwardIterator last) const;

6 Effects:
string_type str(first, last);
return use_facet<collate<charT> >(

getloc()).transform(&*str.begin(), &*str.begin() + str.length());

template <class ForwardIterator>
string_type transform_primary(ForwardIterator first, ForwardIterator last) const;

7 Effects: if typeid(use_facet<collate<charT> >) == typeid(collate_byname<charT>) and the
form of the sort key returned by collate_byname<charT> ::transform(first, last) is known and
can be converted into a primary sort key then returns that key, otherwise returns an empty string.

template <class ForwardIterator>
string_type lookup_collatename(ForwardIterator first, ForwardIterator last) const;

8 Returns: a sequence of one or more characters that represents the collating element consisting of the
character sequence designated by the iterator range [first,last). Returns an empty string if the
character sequence is not a valid collating element.

template <class ForwardIterator>
char_class_type lookup_classname(

ForwardIterator first, ForwardIterator last, bool icase = false) const;

9 Returns: an unspecified value that represents the character classification named by the character
sequence designated by the iterator range [first,last). If the parameter icase is true then the
returned mask identifies the character classification without regard to the case of the characters being
matched, otherwise it does honor the case of the characters being matched.340 The value returned shall

340) For example, if the parameter icase is true then [[:lower:]] is the same as [[:alpha:]].

§ 28.7 1075

c© ISO/IEC N3092

be independent of the case of the characters in the character sequence. If the name is not recognized
then returns a value that compares equal to 0.

10 Remarks: For regex_traits<char>, at least the names "d", "w", "s", "alnum", "alpha", "blank",
"cntrl", "digit", "graph", "lower", "print", "punct", "space", "upper" and "xdigit" shall be
recognized. For regex_traits<wchar_t>, at least the names L"d", L"w", L"s", L"alnum", L"alpha",
L"blank", L"cntrl", L"digit", L"graph", L"lower", L"print", L"punct", L"space", L"upper" and
L"xdigit" shall be recognized.

bool isctype(charT c, char_class_type f) const;

11 Effects: Determines if the character c is a member of the character classification represented by f.

12 Returns: Converts f into a value m of type std::ctype_base::mask in an unspecified manner, and
returns true if use_facet<ctype<charT> >(getloc()).is(c, m) is true. Otherwise returns true
if f bitwise or’ed with the result of calling lookup_classname with an iterator pair that designates
the character sequence "w" is not equal to 0 and c == ’_’, or if f bitwise or’ed with the result of
calling lookup_classname with an iterator pair that designates the character sequence "blank" is not
equal to 0 and c is one of an implementation-defined subset of the characters for which isspace(c,
getloc()) returns true, otherwise returns false.

int value(charT ch, int radix) const;

13 Requires: The value of radix shall be 8, 10, or 16.

14 Returns: the value represented by the digit ch in base radix if the character ch is a valid digit in base
radix; otherwise returns -1.

locale_type imbue(locale_type loc);

15 Effects: Imbues this with a copy of the locale loc. [Note: calling imbue with a different locale than
the one currently in use invalidates all cached data held by *this. — end note]

16 Returns: if no locale has been previously imbued then a copy of the global locale in effect at the time
of construction of *this, otherwise a copy of the last argument passed to imbue.

17 Postcondition: getloc() == loc.

locale_type getloc()const;

18 Returns: if no locale has been imbued then a copy of the global locale in effect at the time of construc-
tion of *this, otherwise a copy of the last argument passed to imbue.

28.8 Class template basic_regex [re.regex]

1 For a char-like type charT, specializations of class template basic_regex represent regular expressions
constructed from character sequences of charT characters. In the rest of 28.8, charT denotes a given char-
like type. Storage for a regular expression is allocated and freed as necessary by the member functions of
class basic_regex.

2 Objects of type specialization of basic_regex are responsible for converting the sequence of charT objects
to an internal representation. It is not specified what form this representation takes, nor how it is accessed by
algorithms that operate on regular expressions. [Note: implementations will typically declare some function
templates as friends of basic_regex to achieve this — end note]

3 The functions described in this Clause report errors by throwing exceptions of type regex_error.

§ 28.8 1076

c© ISO/IEC N3092

namespace std {
template <class charT,

class traits = regex_traits<charT> >
class basic_regex {
public:

// types:
typedef charT value_type;
typedef regex_constants::syntax_option_type flag_type;
typedef typename traits::locale_type locale_type;

// 28.8.1, constants:
static constexpr regex_constants::syntax_option_type

icase = regex_constants::icase;
static constexpr regex_constants::syntax_option_type

nosubs = regex_constants::nosubs;
static constexpr regex_constants::syntax_option_type

optimize = regex_constants::optimize;
static constexpr regex_constants::syntax_option_type

collate = regex_constants::collate;
static constexpr regex_constants::syntax_option_type

ECMAScript = regex_constants::ECMAScript;
static constexpr regex_constants::syntax_option_type

basic = regex_constants::basic;
static constexpr regex_constants::syntax_option_type

extended = regex_constants::extended;
static constexpr regex_constants::syntax_option_type

awk = regex_constants::awk;
static constexpr regex_constants::syntax_option_type

grep = regex_constants::grep;
static constexpr regex_constants::syntax_option_type

egrep = regex_constants::egrep;

// 28.8.2, construct/copy/destroy:
basic_regex();
explicit basic_regex(const charT* p,

flag_type f = regex_constants::ECMAScript);
basic_regex(const charT* p, size_t len, flag_type f);
basic_regex(const basic_regex&);
basic_regex(basic_regex&&);
template <class ST, class SA>

explicit basic_regex(const basic_string<charT, ST, SA>& p,
flag_type f = regex_constants::ECMAScript);

template <class ForwardIterator>
basic_regex(ForwardIterator first, ForwardIterator last,

flag_type f = regex_constants::ECMAScript);
basic_regex(initializer_list<charT>,

flag_type = regex_constants::ECMAScript);

~basic_regex();

basic_regex& operator=(const basic_regex&);
basic_regex& operator=(basic_regex&&);
basic_regex& operator=(const charT* ptr);
basic_regex& operator=(initializer_list<charT> il);
template <class ST, class SA>

§ 28.8 1077

c© ISO/IEC N3092

basic_regex& operator=(const basic_string<charT, ST, SA>& p);

// 28.8.3, assign:
basic_regex& assign(const basic_regex& that);
basic_regex& assign(basic_regex&& that);
basic_regex& assign(const charT* ptr,

flag_type f = regex_constants::ECMAScript);
basic_regex& assign(const charT* p, size_t len, flag_type f);
template <class string_traits, class A>

basic_regex& assign(const basic_string<charT, string_traits, A>& s,
flag_type f = regex_constants::ECMAScript);

template <class InputIterator>
basic_regex& assign(InputIterator first, InputIterator last,

flag_type f = regex_constants::ECMAScript);
basic_regex& assign(initializer_list<charT>,

flag_type = regex_constants::ECMAScript);

// 28.8.4, const operations:
unsigned mark_count() const;
flag_type flags() const;

// 28.8.5, locale:
locale_type imbue(locale_type loc);
locale_type getloc() const;

// 28.8.6, swap:
void swap(basic_regex&);

};
}

28.8.1 basic_regex constants [re.regex.const]

static constexpr regex_constants::syntax_option_type
icase = regex_constants::icase;

static constexpr regex_constants::syntax_option_type
nosubs = regex_constants::nosubs;

static constexpr regex_constants::syntax_option_type
optimize = regex_constants::optimize;

static constexpr regex_constants::syntax_option_type
collate = regex_constants::collate;

static constexpr regex_constants::syntax_option_type
ECMAScript = regex_constants::ECMAScript;

static constexpr regex_constants::syntax_option_type
basic = regex_constants::basic;

static constexpr regex_constants::syntax_option_type
extended = regex_constants::extended;

static constexpr regex_constants::syntax_option_type
awk = regex_constants::awk;

static constexpr regex_constants::syntax_option_type
grep = regex_constants::grep;

static constexpr regex_constants::syntax_option_type
egrep = regex_constants::egrep;

1 The static constant members are provided as synonyms for the constants declared in namespace regex_-

§ 28.8.1 1078

c© ISO/IEC N3092

constants.

28.8.2 basic_regex constructors [re.regex.construct]

basic_regex();

1 Effects: Constructs an object of class basic_regex that does not match any character sequence.

basic_regex(const charT* p, flag_type f = regex_constants::ECMAScript);

2 Requires: p shall not be a null pointer.

3 Throws: regex_error if p is not a valid regular expression.

4 Effects: Constructs an object of class basic_regex; the object’s internal finite state machine is con-
structed from the regular expression contained in the array of charT of length char_traits<charT>::length(p)
whose first element is designated by p, and interpreted according to the flags f.

5 Postconditions: flags() returns f. mark_count() returns the number of marked sub-expressions
within the expression.

basic_regex(const charT* p, size_t len, flag_type f);

6 Requires: p shall not be a null pointer.

7 Throws: regex_error if p is not a valid regular expression.

8 Effects: Constructs an object of class basic_regex; the object’s internal finite state machine is con-
structed from the regular expression contained in the sequence of characters [p,p+len), and interpreted
according the flags specified in f.

9 Postconditions: flags() returns f. mark_count() returns the number of marked sub-expressions
within the expression.

basic_regex(const basic_regex& e);

10 Effects: Constructs an object of class basic_regex as a copy of the object e.

11 Postconditions: flags() and mark_count() return e.flags() and e.mark_count(), respectively.

basic_regex(basic_regex&& e);

12 Effects: Move constructs an object of class basic_regex from e.

13 Postconditions: flags() and mark_count() return the values that e.flags() and e.mark_count(),
respectively, had before construction. e is in a valid state with unspecified value.

14 Throws: nothing.

template <class ST, class SA>
basic_regex(const basic_string<charT, ST, SA>& s,

flag_type f = regex_constants::ECMAScript);

15 Throws: regex_error if s is not a valid regular expression.

16 Effects: Constructs an object of class basic_regex; the object’s internal finite state machine is con-
structed from the regular expression contained in the string s, and interpreted according to the flags
specified in f.

17 Postconditions: flags() returns f. mark_count() returns the number of marked sub-expressions
within the expression.

§ 28.8.2 1079

c© ISO/IEC N3092

template <class ForwardIterator>
basic_regex(ForwardIterator first, ForwardIterator last,

flag_type f = regex_constants::ECMAScript);

18 Throws: regex_error if the sequence [first,last) is not a valid regular expression.

19 Effects: Constructs an object of class basic_regex; the object’s internal finite state machine is con-
structed from the regular expression contained in the sequence of characters [first,last), and in-
terpreted according to the flags specified in f.

20 Postconditions: flags() returns f. mark_count() returns the number of marked sub-expressions
within the expression.

basic_regex(initializer_list<charT> il,
flag_type f = regex_constants::ECMAScript);

21 Effects: Same as basic_regex(il.begin(), il.end(), f).

28.8.3 basic_regex assign [re.regex.assign]

basic_regex& operator=(const basic_regex& e);

1 Effects: returns assign(e).

basic_regex& operator=(basic_regex&& e);

2 Effects: returns assign(std::move(e)).

basic_regex& operator=(const charT* ptr);

3 Requires: ptr shall not be a null pointer.

4 Effects: returns assign(ptr).

basic_regex& operator=(initializer_list<charT> il);

5 Effects: returns assign(il.begin(), il.end()).

template <class ST, class SA>
basic_regex& operator=(const basic_string<charT, ST, SA>& p);

6 Effects: returns assign(p).

basic_regex& assign(const basic_regex& that);

7 Effects: copies that into *this and returns *this.

8 Postconditions: flags() and mark_count() return that.flags() and that.mark_count(), respec-
tively.

basic_regex& assign(basic_regex&& that);

9 Effects: move assigns from that into *this and returns *this.

10 Postconditions: flags() and mark_count() return the values that that.flags() and that.mark_-
count(), respectively, had before assignment. that is in a valid state with unspecified value.

11 Throws: nothing.

§ 28.8.3 1080

c© ISO/IEC N3092

basic_regex& assign(const charT* ptr, flag_type f = regex_constants::ECMAScript);

12 Returns: assign(string_type(ptr), f).

basic_regex& assign(const charT* ptr, size_t len,
flag_type f = regex_constants::ECMAScript);

13 Returns: assign(string_type(ptr, len), f).

template <class string_traits, class A>
basic_regex& assign(const basic_string<charT, string_traits, A>& s,

flag_type f = regex_constants::ECMAScript);

14 Throws: regex_error if s is not a valid regular expression.

15 Returns: *this.

16 Effects: Assigns the regular expression contained in the string s, interpreted according the flags spec-
ified in f. If an exception is thrown, *this is unchanged.

17 Postconditions: If no exception is thrown, flags() returns f and mark_count() returns the number
of marked sub-expressions within the expression.

template <class InputIterator>
basic_regex& assign(InputIterator first, InputIterator last,

flag_type f = regex_constants::ECMAScript);

18 Requires: The type InputIterator shall satisfy the requirements for an Input Iterator (24.2.3).

19 Returns: assign(string_type(first, last), f).

basic_regex& assign(initializer_list<charT> il,
flag_type f = regex_constants::ECMAScript);

20 Effects: Same as assign(il.begin(), il.end(), f).

21 Returns: *this.

28.8.4 basic_regex constant operations [re.regex.operations]

unsigned mark_count() const;

1 Effects: Returns the number of marked sub-expressions within the regular expression.

flag_type flags() const;

2 Effects: Returns a copy of the regular expression syntax flags that were passed to the object’s con-
structor or to the last call to assign.

28.8.5 basic_regex locale [re.regex.locale]

locale_type imbue(locale_type loc);

1 Effects: Returns the result of traits_inst.imbue(loc) where traits_inst is a (default initialized)
instance of the template type argument traits stored within the object. After a call to imbue the
basic_regex object does not match any character sequence.

§ 28.8.5 1081

c© ISO/IEC N3092

locale_type getloc() const;

2 Effects: Returns the result of traits_inst.getloc() where traits_inst is a (default initialized)
instance of the template parameter traits stored within the object.

28.8.6 basic_regex swap [re.regex.swap]

void swap(basic_regex& e);

1 Effects: Swaps the contents of the two regular expressions.

2 Postcondition: *this contains the regular expression that was in e, e contains the regular expression
that was in *this.

3 Complexity: constant time.

28.8.7 basic_regex non-member functions [re.regex.nonmemb]

28.8.7.1 basic_regex non-member swap [re.regex.nmswap]

template <class charT, class traits>
void swap(basic_regex<charT, traits>& lhs, basic_regex<charT, traits>& rhs);

1 Effects: Calls lhs.swap(rhs).

28.9 Class template sub_match [re.submatch]

1 Class template sub_match denotes the sequence of characters matched by a particular marked sub-expression.
namespace std {

template <class BidirectionalIterator>
class sub_match : public std::pair<BidirectionalIterator, BidirectionalIterator> {
public:

typedef typename iterator_traits<BidirectionalIterator>::
value_type value_type;

typedef typename iterator_traits<BidirectionalIterator>::
difference_type difference_type;

typedef BidirectionalIterator iterator;
typedef basic_string<value_type> string_type;

bool matched;

difference_type length() const;
operator string_type() const;
string_type str() const;

int compare(const sub_match& s) const;
int compare(const string_type& s) const;
int compare(const value_type* s) const;

};
}

28.9.1 sub_match members [re.submatch.members]

difference_type length() const;

§ 28.9.1 1082

c© ISO/IEC N3092

1 Returns: (matched ? distance(first, second) : 0).

operator string_type() const;

2 Returns: matched ? string_type(first, second) : string_type().

string_type str() const;

3 Returns: matched ? string_type(first, second) : string_type().

int compare(const sub_match& s) const;

4 Returns: str().compare(s.str()).

int compare(const string_type& s) const;

5 Returns: str().compare(s).

int compare(const value_type* s) const;

6 Returns: str().compare(s).

28.9.2 sub_match non-member operators [re.submatch.op]

template <class BiIter>
bool operator==(const sub_match<BiIter>& lhs, const sub_match<BiIter>& rhs);

1 Returns: lhs.compare(rhs) == 0.

template <class BiIter>
bool operator!=(const sub_match<BiIter>& lhs, const sub_match<BiIter>& rhs);

2 Returns: lhs.compare(rhs) != 0.

template <class BiIter>
bool operator<(const sub_match<BiIter>& lhs, const sub_match<BiIter>& rhs);

3 Returns: lhs.compare(rhs) < 0.

template <class BiIter>
bool operator<=(const sub_match<BiIter>& lhs, const sub_match<BiIter>& rhs);

4 Returns: lhs.compare(rhs) <= 0.

template <class BiIter>
bool operator>=(const sub_match<BiIter>& lhs, const sub_match<BiIter>& rhs);

5 Returns: lhs.compare(rhs) >= 0.

template <class BiIter>
bool operator>(const sub_match<BiIter>& lhs, const sub_match<BiIter>& rhs);

6 Returns: lhs.compare(rhs) > 0.

template <class BiIter, class ST, class SA>
bool operator==(

const basic_string<
typename iterator_traits<BiIter>::value_type, ST, SA>& lhs,

const sub_match<BiIter>& rhs);

§ 28.9.2 1083

c© ISO/IEC N3092

7 Returns: lhs == rhs.str().

template <class BiIter, class ST, class SA>
bool operator!=(

const basic_string<
typename iterator_traits<BiIter>::value_type, ST, SA>& lhs,

const sub_match<BiIter>& rhs);

8 Returns: lhs != rhs.str().

template <class BiIter, class ST, class SA>
bool operator<(

const basic_string<
typename iterator_traits<BiIter>::value_type, ST, SA>& lhs,

const sub_match<BiIter>& rhs);

9 Returns: lhs < rhs.str().

template <class BiIter, class ST, class SA>
bool operator>(

const basic_string<
typename iterator_traits<BiIter>::value_type, ST, SA>& lhs,

const sub_match<BiIter>& rhs);

10 Returns: lhs > rhs.str().

template <class BiIter, class ST, class SA>
bool operator>=(

const basic_string<
typename iterator_traits<BiIter>::value_type, ST, SA>& lhs,

const sub_match<BiIter>& rhs);

11 Returns: lhs >= rhs.str().

template <class BiIter, class ST, class SA>
bool operator<=(

const basic_string<
typename iterator_traits<BiIter>::value_type, ST, SA>& lhs,

const sub_match<BiIter>& rhs);

12 Returns: lhs <= rhs.str().

template <class BiIter, class ST, class SA>
bool operator==(const sub_match<BiIter>& lhs,

const basic_string<
typename iterator_traits<BiIter>::value_type, ST, SA>& rhs);

13 Returns: lhs.str() == rhs.

template <class BiIter, class ST, class SA>
bool operator!=(const sub_match<BiIter>& lhs,

const basic_string<
typename iterator_traits<BiIter>::value_type, ST, SA>& rhs);

14 Returns: lhs.str() != rhs.

§ 28.9.2 1084

c© ISO/IEC N3092

template <class BiIter, class ST, class SA>
bool operator<(const sub_match<BiIter>& lhs,

const basic_string<
typename iterator_traits<BiIter>::value_type, ST, SA>& rhs);

15 Returns: lhs.str() < rhs.

template <class BiIter, class ST, class SA>
bool operator>(const sub_match<BiIter>& lhs,

const basic_string<
typename iterator_traits<BiIter>::value_type, ST, SA>& rhs);

16 Returns: lhs.str() > rhs.

template <class BiIter, class ST, class SA>
bool operator>=(const sub_match<BiIter>& lhs,

const basic_string<
typename iterator_traits<BiIter>::value_type, ST, SA>& rhs);

17 Returns: lhs.str() >= rhs.

template <class BiIter, class ST, class SA>
bool operator<=(const sub_match<BiIter>& lhs,

const basic_string<
typename iterator_traits<BiIter>::value_type, ST, SA>& rhs);

18 Returns: lhs.str() <= rhs.

template <class BiIter>
bool operator==(typename iterator_traits<BiIter>::value_type const* lhs,

const sub_match<BiIter>& rhs);

19 Returns: lhs == rhs.str().

template <class BiIter>
bool operator!=(typename iterator_traits<BiIter>::value_type const* lhs,

const sub_match<BiIter>& rhs);

20 Returns: lhs != rhs.str().

template <class BiIter>
bool operator<(typename iterator_traits<BiIter>::value_type const* lhs,

const sub_match<BiIter>& rhs);

21 Returns: lhs < rhs.str().

template <class BiIter>
bool operator>(typename iterator_traits<BiIter>::value_type const* lhs,

const sub_match<BiIter>& rhs);

22 Returns: lhs > rhs.str().

template <class BiIter>
bool operator>=(typename iterator_traits<BiIter>::value_type const* lhs,

const sub_match<BiIter>& rhs);

23 Returns: lhs >= rhs.str().

§ 28.9.2 1085

c© ISO/IEC N3092

template <class BiIter>
bool operator<=(typename iterator_traits<BiIter>::value_type const* lhs,

const sub_match<BiIter>& rhs);

24 Returns: lhs <= rhs.str().

template <class BiIter>
bool operator==(const sub_match<BiIter>& lhs,

typename iterator_traits<BiIter>::value_type const* rhs);

25 Returns: lhs.str() == rhs.

template <class BiIter>
bool operator!=(const sub_match<BiIter>& lhs,

typename iterator_traits<BiIter>::value_type const* rhs);

26 Returns: lhs.str() != rhs.

template <class BiIter>
bool operator<(const sub_match<BiIter>& lhs,

typename iterator_traits<BiIter>::value_type const* rhs);

27 Returns: lhs.str() < rhs.

template <class BiIter>
bool operator>(const sub_match<BiIter>& lhs,

typename iterator_traits<BiIter>::value_type const* rhs);

28 Returns: lhs.str() > rhs.

template <class BiIter>
bool operator>=(const sub_match<BiIter>& lhs,

typename iterator_traits<BiIter>::value_type const* rhs);

29 Returns: lhs.str() >= rhs.

template <class BiIter>
bool operator<=(const sub_match<BiIter>& lhs,

typename iterator_traits<BiIter>::value_type const* rhs);

30 Returns: lhs.str() <= rhs.

template <class BiIter>
bool operator==(typename iterator_traits<BiIter>::value_type const& lhs,

const sub_match<BiIter>& rhs);

31 Returns: basic_string<typename iterator_traits<BiIter>::value_type>(1, lhs) == rhs.str().

template <class BiIter>
bool operator!=(typename iterator_traits<BiIter>::value_type const& lhs,

const sub_match<BiIter>& rhs);

32 Returns: basic_string<typename iterator_traits<BiIter>::value_type>(1, lhs) != rhs.str().

template <class BiIter>
bool operator<(typename iterator_traits<BiIter>::value_type const& lhs,

const sub_match<BiIter>& rhs);

§ 28.9.2 1086

c© ISO/IEC N3092

33 Returns: basic_string<typename iterator_traits<BiIter>::value_type>(1, lhs) < rhs.str().

template <class BiIter>
bool operator>(typename iterator_traits<BiIter>::value_type const& lhs,

const sub_match<BiIter>& rhs);

34 Returns: basic_string<typename iterator_traits<BiIter>::value_type>(1, lhs) > rhs.str().

template <class BiIter>
bool operator>=(typename iterator_traits<BiIter>::value_type const& lhs,

const sub_match<BiIter>& rhs);

35 Returns: basic_string<typename iterator_traits<BiIter>::value_type>(1, lhs) >= rhs.str().

template <class BiIter>
bool operator<=(typename iterator_traits<BiIter>::value_type const& lhs,

const sub_match<BiIter>& rhs);

36 Returns: basic_string<typename iterator_traits<BiIter>::value_type>(1, lhs) <= rhs.str().

template <class BiIter>
bool operator==(const sub_match<BiIter>& lhs,

typename iterator_traits<BiIter>::value_type const& rhs);

37 Returns: lhs.str() == basic_string<typename iterator_traits<BiIter>::value_type>(1, rhs).

template <class BiIter>
bool operator!=(const sub_match<BiIter>& lhs,

typename iterator_traits<BiIter>::value_type const& rhs);

38 Returns: lhs.str() != basic_string<typename iterator_traits<BiIter>::value_type>(1, rhs).

template <class BiIter>
bool operator<(const sub_match<BiIter>& lhs,

typename iterator_traits<BiIter>::value_type const& rhs);

39 Returns: lhs.str() < basic_string<typename iterator_traits<BiIter>::value_type>(1, rhs).

template <class BiIter>
bool operator>(const sub_match<BiIter>& lhs,

typename iterator_traits<BiIter>::value_type const& rhs);

40 Returns: lhs.str() > basic_string<typename iterator_traits<BiIter>::value_type>(1, rhs).

template <class BiIter>
bool operator>=(const sub_match<BiIter>& lhs,

typename iterator_traits<BiIter>::value_type const& rhs);

41 Returns: lhs.str() >= basic_string<typename iterator_traits<BiIter>::value_type>(1, rhs).

template <class BiIter>
bool operator<=(const sub_match<BiIter>& lhs,

typename iterator_traits<BiIter>::value_type const& rhs);

42 Returns: lhs.str() <= basic_string<typename iterator_traits<BiIter>::value_type>(1, rhs).

§ 28.9.2 1087

c© ISO/IEC N3092

template <class charT, class ST, class BiIter>
basic_ostream<charT, ST>&
operator<<(basic_ostream<charT, ST>& os, const sub_match<BiIter>& m);

43 Returns: (os << m.str()).

28.10 Class template match_results [re.results]

1 Class template match_results denotes a collection of character sequences representing the result of a regular
expression match. Storage for the collection is allocated and freed as necessary by the member functions of
class template match_results.

2 The class template match_results shall satisfy the requirements of an allocator-aware container and of a
sequence container, as specified in 23.2.3, except that only operations defined for const-qualified sequence
containers are supported.

3 The sub_match object stored at index 0 represents sub-expression 0, i.e., the whole match. In this case the
sub_match member matched is always true. The sub_match object stored at index n denotes what matched
the marked sub-expression n within the matched expression. If the sub-expression n participated in a regular
expression match then the sub_match member matched evaluates to true, and members first and second
denote the range of characters [first,second) which formed that match. Otherwise matched is false, and
members first and second point to the end of the sequence that was searched. [Note: The sub_match
objects representing different sub-expressions that did not participate in a regular expression match need
not be distinct. — end note]

namespace std {
template <class BidirectionalIterator,

class Allocator = allocator<sub_match<BidirectionalIterator> >
class match_results {
public:

typedef sub_match<BidirectionalIterator> value_type;
typedef const value_type& const_reference;
typedef const_reference reference;
typedef implementation-defined const_iterator;
typedef const_iterator iterator;
typedef typename
iterator_traits<BidirectionalIterator>::difference_type difference_type;

typedef typename allocator_traits<Allocator>::size_type size_type;
typedef Allocator allocator_type;
typedef typename iterator_traits<BidirectionalIterator>::

value_type char_type;
typedef basic_string<char_type> string_type;

// 28.10.1, construct/copy/destroy:
explicit match_results(const Allocator& a = Allocator());
match_results(const match_results& m);
match_results(match_results&& m);
match_results& operator=(const match_results& m);
match_results& operator=(match_results&& m);
~match_results();

// 28.10.2, size:
size_type size() const;
size_type max_size() const;
bool empty() const;

§ 28.10 1088

c© ISO/IEC N3092

// 28.10.3 element access:
difference_type length(size_type sub = 0) const;
difference_type position(size_type sub = 0) const;
string_type str(size_type sub = 0) const;
const_reference operator[](size_type n) const;

const_reference prefix() const;
const_reference suffix() const;
const_iterator begin() const;
const_iterator end() const;
const_iterator cbegin() const;
const_iterator cend() const;

// 28.10.4, format:
template <class OutputIter>
OutputIter
format(OutputIter out,

const char_type* fmt_first, const char_type* fmt_last,
regex_constants::match_flag_type flags =
regex_constants::format_default) const;

template <class OutputIter, class ST, class SA>
OutputIter
format(OutputIter out,

const basic_string<char_type, ST, SA>& fmt,
regex_constants::match_flag_type flags =

regex_constants::format_default) const;
template <class ST, class SA>
basic_string<char_type, ST, SA>
format(const basic_string<char_type, ST, SA>& fmt,

regex_constants::match_flag_type flags =
regex_constants::format_default) const;

string_type
format(const char_type* fmt,

regex_constants::match_flag_type flags =
regex_constants::format_default) const;

// 28.10.5, allocator:
allocator_type get_allocator() const;

// 28.10.6, swap:
void swap(match_results& that);

};
}

28.10.1 match_results constructors [re.results.const]

1 In all match_results constructors, a copy of the Allocator argument shall be used for any memory allocation
performed by the constructor or member functions during the lifetime of the object.

match_results(const Allocator& a = Allocator());

2 Effects: Constructs an object of class match_results.

3 Postconditions: size() returns 0. str() returns basic_string<char_type>().

§ 28.10.1 1089

c© ISO/IEC N3092

match_results(const match_results& m);

4 Effects: Constructs an object of class match_results, as a copy of m.

match_results(match_results&& m);

5 Effects: Move-constructs an object of class match_results from m satisfying the same postconditions
as Table 138. Additionally, the stored Allocator value is move constructed from m.get_allocator().
After the initialization of *this, sets m to an unspecified but valid state.

6 Throws: Nothing if the allocator’s move constructor throws nothing.

match_results& operator=(const match_results& m);

7 Effects: Assigns m to *this. The postconditions of this function are indicated in Table 138.

match_results& operator=(match_results&& m);

8 Effects: Move-assigns m to *this. The postconditions of this function are indicated in Table 138. After
the assignment, m is in a valid but unspecified state.

9 Throws: Nothing.

Table 138 — match_results assignment operator effects

Element Value
size() m.size()
str(n) m.str(n) for all integers n < m.size()
prefix() m.prefix()
suffix() m.suffix()
(*this)[n] m[n] for all integers n < m.size()
length(n) m.length(n) for all integers n < m.size()
position(n) m.position(n) for all integers n < m.size()

28.10.2 match_results size [re.results.size]

size_type size() const;

1 Returns: One plus the number of marked sub-expressions in the regular expression that was matched
if *this represents the result of a successful match. Otherwise returns 0. [Note: The state of a
match_results object can be modified only by passing that object to regex_match or regex_search.
Sections 28.11.2 and 28.11.3 specify the effects of those algorithms on their match_results arguments.
— end note]

size_type max_size() const;

2 Returns: The maximum number of sub_match elements that can be stored in *this.

bool empty() const;

3 Returns: size() == 0.

§ 28.10.2 1090

c© ISO/IEC N3092

28.10.3 match_results element access [re.results.acc]

difference_type length(size_type sub = 0) const;

1 Returns: (*this)[sub].length().

difference_type position(size_type sub = 0) const;

2 Returns: The distance from the start of the target sequence to (*this)[sub].first.

string_type str(size_type sub = 0) const;

3 Returns: string_type((*this)[sub]).

const_reference operator[](size_type n) const;

4 Returns: A reference to the sub_match object representing the character sequence that matched
marked sub-expression n. If n == 0 then returns a reference to a sub_match object representing
the character sequence that matched the whole regular expression. If n >= size() then returns a
sub_match object representing an unmatched sub-expression.

const_reference prefix() const;

5 Returns: A reference to the sub_match object representing the character sequence from the start of
the string being matched/searched to the start of the match found.

const_reference suffix() const;

6 Returns: A reference to the sub_match object representing the character sequence from the end of the
match found to the end of the string being matched/searched.

const_iterator begin() const;
const_iterator cbegin() const;

7 Returns: A starting iterator that enumerates over all the sub-expressions stored in *this.

const_iterator end() const;
const_iterator cend() const;

8 Returns: A terminating iterator that enumerates over all the sub-expressions stored in *this.

28.10.4 match_results formatting [re.results.form]

template <class OutputIter>
OutputIter format(OutputIter out,

const char_type* fmt_first, const char_type* fmt_last,
regex_constants::match_flag_type flags =

regex_constants::format_default) const;

1 Requires: OutputIter shall satisfy the requirements for an Output Iterator (24.2.4).

2 Effects: Copies the character sequence [fmt_first,fmt_last) to OutputIter out. Replaces each
format specifier or escape sequence in the copied range with either the character(s) it represents or
the sequence of characters within *this to which it refers. The bitmasks specified in flags determine
which format specifiers and escape sequences are recognized.

3 Returns: out.

§ 28.10.4 1091

c© ISO/IEC N3092

template <class OutputIter, class ST, class SA>
OutputIter format(OutputIter out,

const basic_string<char_type, ST, SA>& fmt,
regex_constants::match_flag_type flags =

regex_constants::format_default) const;

4 Effects: Equivalent to return format(out, fmt.data(), fmt.data() + fmt.size(), flags).

template <class ST, class SA>
basic_string<char_type, ST, SA>
format(const basic_string<char_type, ST, SA>& fmt,

regex_constants::match_flag_type flags =
regex_constants::format_default) const;

5 Effects: Constructs an empty string result of type basic_string<char_type, ST, SA> and calls
format(back_inserter(result), fmt, flags).

6 Returns: result.

string_type
format(const char_type* fmt,

regex_constants::match_flag_type flags =
regex_constants::format_default) const;

7 Effects: Constructs an empty string result of type string_type and calls
format(back_inserter(result), fmt, fmt + char_traits<char_type>::length(fmt), flags).

8 Returns: result.

28.10.5 match_results allocator [re.results.all]

allocator_type get_allocator() const;

1 Returns: a copy of the Allocator that was passed to the object’s constructor or, if that allocator has
been replaced, a copy of the most recent replacement.

28.10.6 match_results swap [re.results.swap]

void swap(match_results& that);

1 Effects: Swaps the contents of the two sequences.

2 Postcondition: *this contains the sequence of matched sub-expressions that were in that, that con-
tains the sequence of matched sub-expressions that were in *this.

3 Complexity: constant time.

template <class BidirectionalIterator, class Allocator>
void swap(match_results<BidirectionalIterator, Allocator>& m1,

match_results<BidirectionalIterator, Allocator>& m2);

4 Effects: m1.swap(m2).

28.10.7 match-results non-member functions [re.results.nonmember]

§ 28.10.7 1092

c© ISO/IEC N3092

template <class BidirectionalIterator, class Allocator>
bool operator==(const match_results<BidirectionalIterator, Allocator>& m1,

const match_results<BidirectionalIterator, Allocator>& m2);

1 Returns: true only if the two objects refer to the same match.

template <class BidirectionalIterator, class Allocator>
bool operator!=(const match_results<BidirectionalIterator, Allocator>& m1,

const match_results<BidirectionalIterator, Allocator>& m2);

2 Returns: !(m1 == m2).

28.11 Regular expression algorithms [re.alg]

28.11.1 exceptions [re.except]

1 The algorithms described in this subclause may throw an exception of type regex_error. If such an
exception e is thrown, e.code() shall return either regex_constants::error_complexity or regex_-
constants::error_stack.

28.11.2 regex_match [re.alg.match]

template <class BidirectionalIterator, class Allocator, class charT, class traits>
bool regex_match(BidirectionalIterator first, BidirectionalIterator last,

match_results<BidirectionalIterator, Allocator>& m,
const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags =

regex_constants::match_default);

1 Requires: The type BidirectionalIterator shall satisfy the requirements of a Bidirectional Iterator
(24.2.6).

2 Effects: Determines whether there is a match between the regular expression e, and all of the character
sequence [first,last). The parameter flags is used to control how the expression is matched against
the character sequence. Returns true if such a match exists, false otherwise.

3 Postconditions: If the function returns false, then the effect on parameter m is unspecified except
that m.size() returns 0 and m.empty() returns true. Otherwise the effects on parameter m are given
in table 139.

Table 139 — Effects of regex_match algorithm

Element Value
m.size() 1 + e.mark_count()
m.empty() false
m.prefix().first first
m.prefix().second first
m.prefix().matched false
m.suffix().first last
m.suffix().second last
m.suffix().matched false
m[0].first first
m[0].second last
m[0].matched true if a full match was found.

§ 28.11.2 1093

c© ISO/IEC N3092

Table 139 — Effects of regex_match algorithm (continued)

Element Value
m[n].first For all integers n < m.size(), the start of the sequence

that matched sub-expression n. Alternatively, if sub-
expression n did not participate in the match, then last.

m[n].second For all integers n < m.size(), the end of the sequence that
matched sub-expression n. Alternatively, if sub-expression
n did not participate in the match, then last.

m[n].matched For all integers n < m.size(), true if sub-expression n
participated in the match, false otherwise.

template <class BidirectionalIterator, class charT, class traits>
bool regex_match(BidirectionalIterator first, BidirectionalIterator last,

const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags =

regex_constants::match_default);

4 Effects: Behaves “as if” by constructing an instance of match_results<BidirectionalIterator>
what, and then returning the result of regex_match(first, last, what, e, flags).

template <class charT, class Allocator, class traits>
bool regex_match(const charT* str,

match_results<const charT*, Allocator>& m,
const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags =

regex_constants::match_default);

5 Returns: regex_match(str, str + char_traits<charT>::length(str), m, e, flags).

template <class ST, class SA, class Allocator, class charT, class traits>
bool regex_match(const basic_string<charT, ST, SA>& s,

match_results<
typename basic_string<charT, ST, SA>::const_iterator,
Allocator>& m,

const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags =

regex_constants::match_default);

6 Returns: regex_match(s.begin(), s.end(), m, e, flags).

template <class charT, class traits>
bool regex_match(const charT* str,

const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags =

regex_constants::match_default);

7 Returns: regex_match(str, str + char_traits<charT>::length(str), e, flags)

template <class ST, class SA, class charT, class traits>
bool regex_match(const basic_string<charT, ST, SA>& s,

const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags =

regex_constants::match_default);

§ 28.11.2 1094

c© ISO/IEC N3092

8 Returns: regex_match(s.begin(), s.end(), e, flags).

28.11.3 regex_search [re.alg.search]

template <class BidirectionalIterator, class Allocator, class charT, class traits>
bool regex_search(BidirectionalIterator first, BidirectionalIterator last,

match_results<BidirectionalIterator, Allocator>& m,
const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags =

regex_constants::match_default);

1 Requires: Type BidirectionalIterator shall satisfy the requirements of a Bidirectional Iterator
(24.1.4).

2 Effects: Determines whether there is some sub-sequence within [first,last) that matches the regular
expression e. The parameter flags is used to control how the expression is matched against the
character sequence. Returns true if such a sequence exists, false otherwise.

3 Postconditions: If the function returns false, then the effect on parameter m is unspecified except
that m.size() returns 0 and m.empty() returns true. Otherwise the effects on parameter m are given
in table 140.

Table 140 — Effects of regex_search algorithm

Element Value
m.size() 1 + e.mark_count()
m.empty() false
m.prefix().first first
m.prefix().second m[0].first
m.prefix().matched m.prefix().first != m.prefix().second
m.suffix().first m[0].second
m.suffix().second last
m.suffix().matched m.suffix().first != m.suffix().second
m[0].first The start of the sequence of characters that matched the

regular expression
m[0].second The end of the sequence of characters that matched the

regular expression
m[0].matched true if a match was found, and false otherwise.
m[n].first For all integers n < m.size(), the start of the sequence

that matched sub-expression n. Alternatively, if sub-
expression n did not participate in the match, then last.

m[n].second For all integers n < m.size(), the end of the sequence that
matched sub-expression n. Alternatively, if sub-expression
n did not participate in the match, then last .

m[n].matched For all integers n < m.size(), true if sub-expression n
participated in the match, false otherwise.

template <class charT, class Allocator, class traits>
bool regex_search(const charT* str, match_results<const charT*, Allocator>& m,

const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags =

§ 28.11.3 1095

c© ISO/IEC N3092

regex_constants::match_default);

4 Returns: The result of regex_search(str, str + char_traits<charT>::length(str), m, e, flags).

template <class ST, class SA, class Allocator, class charT, class traits>
bool regex_search(const basic_string<charT, ST, SA>& s,

match_results<
typename basic_string<charT, ST, SA>::const_iterator,
Allocator>& m,

const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags =

regex_constants::match_default);

5 Returns: The result of regex_search(s.begin(), s.end(), m, e, flags).

template <class BidirectionalIterator, class charT, class traits>
bool regex_search(BidirectionalIterator first, BidirectionalIterator last,

const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags =

regex_constants::match_default);

6 Effects: Behaves “as if” by constructing an object what of type match_results<BidirectionalIterator>
and then returning the result of regex_search(first, last, what, e, flags).

template <class charT, class traits>
bool regex_search(const charT* str,

const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags =

regex_constants::match_default);

7 Returns: regex_search(str, str + char_traits<charT>::length(str), e, flags)

template <class ST, class SA, class charT, class traits>
bool regex_search(const basic_string<charT, ST, SA>& s,

const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags =

regex_constants::match_default);

8 Returns: regex_search(s.begin(), s.end(), e, flags).

28.11.4 regex_replace [re.alg.replace]

template <class OutputIterator, class BidirectionalIterator,
class traits, class charT, class ST, class SA>

OutputIterator
regex_replace(OutputIterator out,

BidirectionalIterator first, BidirectionalIterator last,
const basic_regex<charT, traits>& e,
const basic_string<charT, ST, SA>& fmt,
regex_constants::match_flag_type flags =

regex_constants::match_default);
template <class OutputIterator, class BidirectionalIterator,

class traits, class charT>
OutputIterator
regex_replace(OutputIterator out,

BidirectionalIterator first, BidirectionalIterator last,

§ 28.11.4 1096

c© ISO/IEC N3092

const basic_regex<charT, traits>& e,
const charT* fmt,
regex_constants::match_flag_type flags =

regex_constants::match_default);

1 Effects: Constructs a regex_iterator object i as if by regex_iterator<BidirectionalIterator,
charT, traits> i(first, last, e, flags), and uses i to enumerate through all of the matches
m of type match_results<BidirectionalIterator> that occur within the sequence [first,last
). If no such matches are found and !(flags & regex_constants ::format_no_copy) then calls
std::copy(first, last, out). If any matches are found then, for each such match, if !(flags &
regex_constants::format_no_copy) calls std ::copy(m.prefix().first, m.prefix().second,
out), and then calls m.format(out, fmt, flags) for the first form of the function and m.format(out,
fmt, fmt + char_traits<charT>::length(fmt), flags) for the second.

Finally, if such a match is found and !(flags & regex_constants ::format_no_copy), calls std::copy(last_-
m.suffix().first, last_m.suffix().second, out) where last_m is a copy of the last match found.
If flags & regex_constants::format_first_only is non-zero then only the first match found is re-
placed.

2 Returns: out.

template <class traits, class charT, class ST, class SA, class FST, class FSA>
basic_string<charT, ST, SA>
regex_replace(const basic_string<charT, ST, SA>& s,

const basic_regex<charT, traits>& e,
const basic_string<charT, FST, FSA>& fmt,
regex_constants::match_flag_type flags =

regex_constants::match_default);
template <class traits, class charT, class ST, class SA>

basic_string<charT, ST, SA>
regex_replace(const basic_string<charT, ST, SA>& s,

const basic_regex<charT, traits>& e,
const charT* fmt,
regex_constants::match_flag_type flags =

regex_constants::match_default);

3 Effects: Constructs an empty string result of type basic_string<charT, ST, SA> and calls regex_-
replace(back_inserter(result), s.begin(), s.end(), e, fmt, flags).

4 Returns: result.

template <class traits, class charT, class ST, class SA>
basic_string<charT>}
regex_replace(const charT* s,

const basic_regex<charT, traits>& e,
const basic_string<charT, ST, SA>& fmt,
regex_constants::match_flag_type flags =

regex_constants::match_default);
template <class traits, class charT>

basic_string<charT>
regex_replace(const charT* s,

const basic_regex<charT, traits>& e,
const charT* fmt,
regex_constants::match_flag_type flags =

regex_constants::match_default);

§ 28.11.4 1097

c© ISO/IEC N3092

5 Effects: Constructs an empty string result of type basic_string<charT> and calls regex_replace(
back_inserter(result), s, s + char_traits<charT>::length(s), e, fmt, flags).

6 Returns: result.

28.12 Regular expression Iterators [re.iter]

28.12.1 Class template regex_iterator [re.regiter]

1 The class template regex_iterator is an iterator adaptor. It represents a new view of an existing iterator
sequence, by enumerating all the occurrences of a regular expression within that sequence. A regex_-
iterator uses regex_search to find successive regular expression matches within the sequence from which
it was constructed. After the iterator is constructed, and every time operator++ is used, the iterator finds
and stores a value of match_results<BidirectionalIterator>. If the end of the sequence is reached
(regex_search returns false), the iterator becomes equal to the end-of-sequence iterator value. The de-
fault constructor constructs an end-of-sequence iterator object, which is the only legitimate iterator to be
used for the end condition. The result of operator* on an end-of-sequence iterator is not defined. For
any other iterator value a const match_results<BidirectionalIterator>& is returned. The result of
operator-> on an end-of-sequence iterator is not defined. For any other iterator value a const match_-
results<BidirectionalIterator>* is returned. It is impossible to store things into regex_iterators.
Two end-of-sequence iterators are always equal. An end-of-sequence iterator is not equal to a non-end-of-
sequence iterator. Two non-end-of-sequence iterators are equal when they are constructed from the same
arguments.

namespace std {
template <class BidirectionalIterator,

class charT = typename iterator_traits<
BidirectionalIterator>::value_type,
class traits = regex_traits<charT> >

class regex_iterator {
public:

typedef basic_regex<charT, traits> regex_type;
typedef match_results<BidirectionalIterator> value_type;
typedef std::ptrdiff_t difference_type;
typedef const value_type* pointer;
typedef const value_type& reference;
typedef std::forward_iterator_tag iterator_category;

regex_iterator();
regex_iterator(BidirectionalIterator a, BidirectionalIterator b,

const regex_type& re,
regex_constants::match_flag_type m =

regex_constants::match_default);
regex_iterator(const regex_iterator&);
regex_iterator& operator=(const regex_iterator&);
bool operator==(const regex_iterator&) const;
bool operator!=(const regex_iterator&) const;
const value_type& operator*() const;
const value_type* operator->() const;
regex_iterator& operator++();
regex_iterator operator++(int);

private:
// these members are shown for exposition only:
BidirectionalIterator begin;

§ 28.12.1 1098

c© ISO/IEC N3092

BidirectionalIterator end;
const regex_type* pregex;
regex_constants::match_flag_type flags;
match_results<BidirectionalIterator> match;

};
}

2 A regex_iterator object that is not an end-of-sequence iterator holds a zero-length match if match[0].matched
== true and match[0].first == match[0].second. [Note: for example, this can occur when the part of
the regular expression that matched consists only of an assertion (such as ’^’, ’$’, ’\b’, ’\B’). — end
note]

28.12.1.1 regex_iterator constructors [re.regiter.cnstr]

regex_iterator();

1 Effects: Constructs an end-of-sequence iterator.

regex_iterator(BidirectionalIterator a, BidirectionalIterator b,
const regex_type& re,
regex_constants::match_flag_type m = regex_constants::match_default);

2 Effects: Initializes begin and end to a and b, respectively, sets pregex to &re, sets flags to m, then calls
regex_search(begin, end, match, *pregex, flags). If this call returns false the constructor
sets *this to the end-of-sequence iterator.

28.12.1.2 regex_iterator comparisons [re.regiter.comp]

bool operator==(const regex_iterator& right) const;

1 Returns: true if *this and right are both end-of-sequence iterators or if begin == right.begin, end
== right.end, pregex == right.pregex, flags == right.flags, and match[0] == right.match[0],
otherwise false.

bool operator!=(const regex_iterator& right) const;

2 Returns: !(*this == right).

28.12.1.3 regex_iterator dereference [re.regiter.deref]

const value_type& operator*() const;

1 Returns: match.

const value_type* operator->() const;

2 Returns: &match.

28.12.1.4 regex_iterator increment [re.regiter.incr]

regex_iterator& operator++();

1 Effects: Constructs a local variable start of type BidirectionalIterator and initializes it with the
value of match[0].second.

§ 28.12.1.4 1099

c© ISO/IEC N3092

2 If the iterator holds a zero-length match and start == end the operator sets *this to the end-of-
sequence iterator and returns *this.

3 Otherwise, if the iterator holds a zero-length match the operator calls regex_search(start, end,
match, *pregex, flags | regex_constants::match_not_null | regex_constants::match_continuous).
If the call returns true the operator returns *this. Otherwise the operator increments start and
continues as if the most recent match was not a zero-length match.

4 If the most recent match was not a zero-length match, the operator sets flags to flags | regex_-
constants ::match_prev_avail and calls regex_search(start, end, match, *pregex, flags).
If the call returns false the iterator sets *this to the end-of-sequence iterator. The iterator then
returns *this.

5 In all cases in which the call to regex_search returns true, match.prefix().first shall be equal to
the previous value of match[0].second, and for each index i in the half-open range [0, match.size())
for which match[i].matched is true, match[i].position() shall return distance(begin, match[i].first).

6 [Note: this means that match[i].position() gives the offset from the beginning of the target se-
quence, which is often not the same as the offset from the sequence passed in the call to regex_search.
— end note]

7 It is unspecified how the implementation makes these adjustments.

8 [Note: this means that a compiler may call an implementation-specific search function, in which case
a user-defined specialization of regex_search will not be called. — end note]

regex_iterator operator++(int);

9 Effects:
regex_iterator tmp = *this;
++(*this);
return tmp;

28.12.2 Class template regex_token_iterator [re.tokiter]

1 The class template regex_token_iterator is an iterator adaptor; that is to say it represents a new view
of an existing iterator sequence, by enumerating all the occurrences of a regular expression within that
sequence, and presenting one or more sub-expressions for each match found. Each position enumerated by
the iterator is a sub_match class template instance that represents what matched a particular sub-expression
within the regular expression.

2 When class regex_token_iterator is used to enumerate a single sub-expression with index -1 the iterator
performs field splitting: that is to say it enumerates one sub-expression for each section of the character
container sequence that does not match the regular expression specified.

3 After it is constructed, the iterator finds and stores a value regex_iterator<BidirectionalIterator>
position and sets the internal count N to zero. It also maintains a sequence subs which contains a list of
the sub-expressions which will be enumerated. Every time operator++ is used the count N is incremented; if
N exceeds or equals subs.size(), then the iterator increments member position and sets count N to zero.

4 If the end of sequence is reached (position is equal to the end of sequence iterator), the iterator becomes
equal to the end-of-sequence iterator value, unless the sub-expression being enumerated has index -1, in
which case the iterator enumerates one last sub-expression that contains all the characters from the end of
the last regular expression match to the end of the input sequence being enumerated, provided that this
would not be an empty sub-expression.

§ 28.12.2 1100

c© ISO/IEC N3092

5 The default constructor constructs an end-of-sequence iterator object, which is the only legitimate iterator
to be used for the end condition. The result of operator* on an end-of-sequence iterator is not defined.
For any other iterator value a const sub_match<BidirectionalIterator>& is returned. The result of
operator-> on an end-of-sequence iterator is not defined. For any other iterator value a const sub_-
match<BidirectionalIterator>* is returned.

6 It is impossible to store things into regex_token_iterators. Two end-of-sequence iterators are always
equal. An end-of-sequence iterator is not equal to a non-end-of-sequence iterator. Two non-end-of-sequence
iterators are equal when they are constructed from the same arguments.

namespace std {
template <class BidirectionalIterator,

class charT = typename iterator_traits<
BidirectionalIterator>::value_type,
class traits = regex_traits<charT> >

class regex_token_iterator {
public:

typedef basic_regex<charT, traits> regex_type;
typedef sub_match<BidirectionalIterator> value_type;
typedef std::ptrdiff_t difference_type;
typedef const value_type* pointer;
typedef const value_type& reference;
typedef std::forward_iterator_tag iterator_category;

regex_token_iterator();
regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b,

const regex_type& re,
int submatch = 0,
regex_constants::match_flag_type m =

regex_constants::match_default);
regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b,

const regex_type& re,
const std::vector<int>& submatches,
regex_constants::match_flag_type m =

regex_constants::match_default);
regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b,

const regex_type& re,
initializer_list<int> submatches,
regex_constants::match_flag_type m =

regex_constants::match_default);
template <std::size_t N>

regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b,
const regex_type& re,
const int (&submatches)[N],
regex_constants::match_flag_type m =

regex_constants::match_default);
regex_token_iterator(const regex_token_iterator&);
regex_token_iterator& operator=(const regex_token_iterator&);
bool operator==(const regex_token_iterator&) const;
bool operator!=(const regex_token_iterator&) const;
const value_type& operator*() const;
const value_type* operator->() const;
regex_token_iterator& operator++();
regex_token_iterator operator++(int);

private: // data members for exposition only:
typedef regex_iterator<BidirectionalIterator, charT, traits> position_iterator;

§ 28.12.2 1101

c© ISO/IEC N3092

position_iterator position;
const value_type *result;
value_type suffix;
std::size_t N;
std::vector<int> subs;

};
}

7 A suffix iterator is a regex_token_iterator object that points to a final sequence of characters at the end
of the target sequence. In a suffix iterator the member result holds a pointer to the data member suffix,
the value of the member suffix.match is true, suffix.first points to the beginning of the final sequence,
and suffix.second points to the end of the final sequence.

8 [Note: for a suffix iterator, data member suffix.first is the same as the end of the last match found, and
suffix.second is the same as the end of the target sequence — end note]

9 The current match is (*position).prefix() if subs[N] == -1, or (*position)[subs[N]] for any other
value of subs[N].

28.12.2.1 regex_token_iterator constructors [re.tokiter.cnstr]

regex_token_iterator();

1 Effects: Constructs the end-of-sequence iterator.

regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b,
const regex_type& re,
int submatch = 0,
regex_constants::match_flag_type m =
regex_constants::match_default);

regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b,
const regex_type& re,
const std::vector<int>& submatches,
regex_constants::match_flag_type m =
regex_constants::match_default);

regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b,
const regex_type& re,
initializer_list<int> submatches,
regex_constants::match_flag_type m =

regex_constants::match_default);

template <std::size_t N>
regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b,

const regex_type& re,
const int (&submatches)[N],
regex_constants::match_flag_type m =
regex_constants::match_default);

2 Requires: Each of the initialization values of submatches shall be >= -1.

3 Effects: The first constructor initializes the member subs to hold the single value submatch. The second
constructor initializes the member subs to hold a copy of the argument submatches. The third and
fourth constructors initialize the member subs to hold a copy of the sequence of integer values pointed

§ 28.12.2.1 1102

c© ISO/IEC N3092

to by the iterator range [submatches.begin(),submatches.end()) and [&submatches,&submatches
+ N), respectively.

4 Each constructor then sets N to 0, and position to position_iterator(a, b, re, m). If position
is not an end-of-sequence iterator the constructor sets result to the address of the current match.
Otherwise if any of the values stored in subs is equal to -1 the constructor sets *this to a suffix
iterator that points to the range [a,b), otherwise the constructor sets *this to an end-of-sequence
iterator.

28.12.2.2 regex_token_iterator comparisons [re.tokiter.comp]

bool operator==(const regex_token_iterator& right) const;

1 Returns: true if *this and right are both end-of-sequence iterators, or if *this and right are both
suffix iterators and suffix == right.suffix; otherwise returns false if *this or right is an end-
of-sequence iterator or a suffix iterator. Otherwise returns true if position == right.position, N
== right.N, and subs == right.subs. Otherwise returns false.

bool operator!=(const regex_token_iterator& right) const;

2 Returns: !(*this == right).

28.12.2.3 regex_token_iterator dereference [re.tokiter.deref]

const value_type& operator*() const;

1 Returns: *result.

const value_type* operator->() const;

2 Returns: result.

28.12.2.4 regex_token_iterator increment [re.tokiter.incr]

regex_token_iterator& operator++();

1 Effects: Constructs a local variable prev of type position_iterator, initialized with the value of
position.

2 If *this is a suffix iterator, sets *this to an end-of-sequence iterator.

3 Otherwise, if N + 1 < subs.size(), increments N and sets result to the address of the current match.

4 Otherwise, sets N to 0 and increments position. If position is not an end-of-sequence iterator the
operator sets result to the address of the current match.

5 Otherwise, if any of the values stored in subs is equal to -1 and prev->suffix().length() is not
0 the operator sets *this to a suffix iterator that points to the range [prev->suffix().first,
prev->suffix().second).

6 Otherwise, sets *this to an end-of-sequence iterator.

Returns: *this

regex_token_iterator& operator++(int);

§ 28.12.2.4 1103

c© ISO/IEC N3092

7 Effects: Constructs a copy tmp of *this, then calls ++(*this).

8 Returns: tmp.

28.13 Modified ECMAScript regular expression grammar [re.grammar]

1 The regular expression grammar recognized by basic_regex objects constructed with the ECMAScript flag
is that specified by ECMA-262, except as specified below.

2 Objects of type specialization of basic_regex store within themselves a default-constructed instance of
their traits template parameter, henceforth referred to as traits_inst. This traits_inst object is used
to support localization of the regular expression; basic_regex object member functions shall not call any
locale dependent C or C++ API, including the formatted string input functions. Instead they shall call the
appropriate traits member function to achieve the required effect.

3 The following productions within the ECMAScript grammar are modified as follows:
ClassAtom ::

-
ClassAtomNoDash
ClassAtomExClass
ClassAtomCollatingElement
ClassAtomEquivalence

4 The following new productions are then added:
ClassAtomExClass ::

[: ClassName :]

ClassAtomCollatingElement ::
[. ClassName .]

ClassAtomEquivalence ::
[= ClassName =]

ClassName ::
ClassNameCharacter
ClassNameCharacter ClassName

ClassNameCharacter ::
SourceCharacter but not one of "." "=" ":"

5 The productions ClassAtomExClass, ClassAtomCollatingElement and ClassAtomEquivalence provide
functionality equivalent to that of the same features in regular expressions in POSIX.

6 The regular expression grammar may be modified by any regex_constants::syntax_option_type flags
specified when constructing an object of type specialization of basic_regex according to the rules in ta-
ble 135.

7 A ClassName production, when used in ClassAtomExClass, is not valid if traits_inst.lookup_classname
returns zero for that name. The names recognized as valid ClassNames are determined by the type of
the traits class, but at least the following names shall be recognized: alnum, alpha, blank, cntrl, digit,
graph, lower, print, punct, space, upper, xdigit, d, s, w. In addition the following expressions shall be
equivalent:

\d and [[:digit:]]

§ 28.13 1104

c© ISO/IEC N3092

\D and [^[:digit:]]

\s and [[:space:]]

\S and [^[:space:]]

\w and [_[:alnum:]]

\W and [^_[:alnum:]]

8 A ClassName production when used in a ClassAtomCollatingElement production is not valid if the value
returned by traits_inst.lookup_collatename for that name is an empty string.

9 The results from multiple calls to traits_inst.lookup_classname can be bitwise OR’ed together and
subsequently passed to traits_inst.isctype.

10 A ClassName production when used in a ClassAtomEquivalence production is not valid if the value returned
by traits_inst.lookup_collatename for that name is an empty string or if the value returned by traits_-
inst.transform_primary for the result of the call to traits_inst.lookup_collatename is an empty string.

11 When the sequence of characters being transformed to a finite state machine contains an invalid class name
the translator shall throw an exception object of type regex_error.

12 If the CV of a UnicodeEscapeSequence is greater than the largest value that can be held in an object of type
charT the translator shall throw an exception object of type regex_error. [Note: this means that values
of the form "uxxxx" that do not fit in a character are invalid. — end note]

13 Where the regular expression grammar requires the conversion of a sequence of characters to an integral
value, this is accomplished by calling traits_inst.value.

14 The behavior of the internal finite state machine representation when used to match a sequence of characters
is as described in ECMA-262. The behavior is modified according to any match_flag_type flags 28.5.2
specified when using the regular expression object in one of the regular expression algorithms 28.11. The
behavior is also localized by interaction with the traits class template parameter as follows:

— During matching of a regular expression finite state machine against a sequence of characters, two
characters c and d are compared using the following rules:

1. if (flags() & regex_constants::icase) the two characters are equal if traits_inst.translate_-
nocase(c) == traits_inst.translate_nocase(d);

2. otherwise, if flags() & regex_constants::collate the two characters are equal if traits_-
inst.translate(c) == traits_inst.translate(d);

3. otherwise, the two characters are equal if c == d.

— During matching of a regular expression finite state machine against a sequence of characters, com-
parison of a collating element range c1-c2 against a character c is conducted as follows: if flags() &
regex_constants ::collate is false then the character c is matched if c1 <= c && c <= c2, other-
wise c is matched in accordance with the following algorithm:

string_type str1 = string_type(1,
flags() & icase ?

traits_inst.translate_nocase(c1) : traits_inst.translate(c1);
string_type str2 = string_type(1,

flags() & icase ?
traits_inst.translate_nocase(c2) : traits_inst.translate(c2);

string_type str = string_type(1,

§ 28.13 1105

c© ISO/IEC N3092

flags() & icase ?
traits_inst.translate_nocase(c) : traits_inst.translate(c);

return traits_inst.transform(str1.begin(), str1.end())
<= traits_inst.transform(str.begin(), str.end())

&& traits_inst.transform(str.begin(), str.end())
<= traits_inst.transform(str2.begin(), str2.end());

— During matching of a regular expression finite state machine against a sequence of characters, testing
whether a collating element is a member of a primary equivalence class is conducted by first converting
the collating element and the equivalence class to sort keys using traits::transform_primary, and
then comparing the sort keys for equality.

— During matching of a regular expression finite state machine against a sequence of characters, a char-
acter c is a member of a character class designated by an iterator range [first,last) if traits_-
inst.isctype(c, traits_inst.lookup_classname(first, last, flags() & icase)) is true.

§ 28.13 1106

c© ISO/IEC N3092

29 Atomic operations library [atomics]
29.1 General [atomics.general]

1 This Clause describes components for fine-grained atomic access. This access is provided via operations on
atomic objects.341

2 The following subclauses describe atomics requirements and components for types and operations, as sum-
marized below.

Table 141 — Atomics library summary

Subclause Header(s)
29.3 Order and Consistency
29.4 Lock-free Property
29.5 Atomic Types <atomic>
29.6 Operations on Atomic Types
29.7 Flag Type and Operations

29.2 Header <atomic> synopsis [atomics.syn]

namespace std {
// 29.3, order and consistency
enum memory_order;
template <class T>

T kill_dependency(T y);

// 29.4, lock-free property
#define ATOMIC_INTEGRAL_LOCK_FREE unspecified
#define ATOMIC_ADDRESS_LOCK_FREE unspecified

// 29.7, flag type and operations
struct atomic_flag;
bool atomic_flag_test_and_set(volatile atomic_flag*);
bool atomic_flag_test_and_set(atomic_flag*);
bool atomic_flag_test_and_set_explicit(volatile atomic_flag*, memory_order);
bool atomic_flag_test_and_set_explicit(atomic_flag*, memory_order);
void atomic_flag_clear(volatile atomic_flag*);
void atomic_flag_clear(atomic_flag*);
void atomic_flag_clear_explicit(volatile atomic_flag*, memory_order);
void atomic_flag_clear_explicit(atomic_flag*, memory_order);

#define ATOMIC_VAR_INIT(value) see below

// 29.5.1, integral types
struct atomic_bool;
bool atomic_is_lock_free(const volatile atomic_bool*);

341) Atomic objects are neither active nor radioactive.

§ 29.2 1107

c© ISO/IEC N3092

bool atomic_is_lock_free(const atomic_bool*);
void atomic_store(volatile atomic_bool*, bool);
void atomic_store(atomic_bool*, bool);
void atomic_store_explicit(volatile atomic_bool*, bool, memory_order);
void atomic_store_explicit(atomic_bool*, bool, memory_order);
bool atomic_load(const volatile atomic_bool*);
bool atomic_load(const atomic_bool*);
bool atomic_load_explicit(const volatile atomic_bool*, memory_order);
bool atomic_load_explicit(const atomic_bool*, memory_order);
bool atomic_exchange(volatile atomic_bool*, bool);
bool atomic_exchange(atomic_bool*, bool);
bool atomic_exchange_explicit(volatile atomic_bool*, bool, memory_order);
bool atomic_exchange_explicit(atomic_bool*, bool, memory_order);
bool atomic_compare_exchange_weak(volatile atomic_bool*, bool*, bool);
bool atomic_compare_exchange_weak(atomic_bool*, bool*, bool);
bool atomic_compare_exchange_strong(volatile atomic_bool*, bool*, bool);
bool atomic_compare_exchange_strong(atomic_bool*, bool*, bool);
bool atomic_compare_exchange_weak_explicit(volatile atomic_bool*, bool*, bool,

memory_order, memory_order);
bool atomic_compare_exchange_weak_explicit(atomic_bool*, bool*, bool,

memory_order, memory_order);
bool atomic_compare_exchange_strong_explicit(volatile atomic_bool*, bool*, bool,

memory_order, memory_order);
bool atomic_compare_exchange_strong_explicit(atomic_bool*, bool*, bool,

memory_order, memory_order);

// For each of the integral types:
struct atomic_itype;
bool atomic_is_lock_free(const volatile atomic_itype*);
bool atomic_is_lock_free(const atomic_itype*);
void atomic_store(volatile atomic_itype*, integral);
void atomic_store(atomic_itype*, integral);
void atomic_store_explicit(volatile atomic_itype*, integral,

memory_order);
void atomic_store_explicit(atomic_itype*, integral,

memory_order);
integral atomic_load(const volatile atomic_itype*);
integral atomic_load(const atomic_itype*);
integral atomic_load_explicit(const volatile atomic_itype*, memory_order);
integral atomic_load_explicit(const atomic_itype*, memory_order);
integral atomic_exchange(volatile atomic_itype*, integral);
integral atomic_exchange(atomic_itype*, integral);
integral atomic_exchange_explicit(volatile atomic_itype*, integral,

memory_order);
integral atomic_exchange_explicit(atomic_itype*, integral,

memory_order);
bool atomic_compare_exchange_weak(volatile atomic_itype*, integral*, integral);
bool atomic_compare_exchange_weak(atomic_itype*, integral*, integral);
bool atomic_compare_exchange_strong(atomic_itype*, integral*, integral);
bool atomic_compare_exchange_weak_explicit(volatile atomic_itype*, integral*,

integral, memory_order, memory_order);
bool atomic_compare_exchange_weak_explicit(atomic_itype*, integral*,

integral, memory_order, memory_order);
bool atomic_compare_exchange_strong_explicit(volatile atomic_itype*, integral*,

integral, memory_order, memory_order);

§ 29.2 1108

c© ISO/IEC N3092

bool atomic_compare_exchange_strong_explicit(atomic_itype*, integral*,
integral, memory_order, memory_order);

integral atomic_fetch_add(atomic_itype*, integral);
integral atomic_fetch_add_explicit(volatile atomic_itype*, integral,

memory_order);
integral atomic_fetch_add_explicit(atomic_itype*, integral,

memory_order);
integral atomic_fetch_sub(volatile atomic_itype*, integral);
integral atomic_fetch_sub(atomic_itype*, integral);
integral atomic_fetch_sub_explicit(volatile atomic_itype*, integral,

memory_order);
integral atomic_fetch_sub_explicit(atomic_itype*, integral,

memory_order);
integral atomic_fetch_and(volatile atomic_itype*, integral);
integral atomic_fetch_and(atomic_itype*, integral);
integral atomic_fetch_and_explicit(volatile atomic_itype*, integral,

memory_order);
integral atomic_fetch_and_explicit(atomic_itype*, integral,

memory_order);
integral atomic_fetch_or(volatile atomic_itype*, integral);
integral atomic_fetch_or(volatile atomic_itype*, integral);
integral atomic_fetch_or_explicit(volatile atomic_itype*, integral,

memory_order);
integral atomic_fetch_or_explicit(atomic_itype*, integral,

memory_order);
integral atomic_fetch_xor(volatile atomic_itype*, integral);
integral atomic_fetch_xor(atomic_itype*, integral);
integral atomic_fetch_xor_explicit(volatile atomic_itype*, integral,

memory_order);
integral atomic_fetch_xor_explicit(atomic_itype*, integral,

memory_order);

// 29.5.2, address types
struct atomic_address;
bool atomic_is_lock_free(const volatile atomic_address*);
bool atomic_is_lock_free(const atomic_address*);
void atomic_store(volatile atomic_address*, void*);
void atomic_store(atomic_address*, void*);
void atomic_store_explicit(volatile atomic_address*, void*, memory_order);
void atomic_store_explicit(atomic_address*, void*, memory_order);
void* atomic_load(const volatile atomic_address*);
void* atomic_load(const atomic_address*);
void* atomic_load_explicit(const volatile atomic_address*, memory_order);
void* atomic_load_explicit(const atomic_address*, memory_order);
void* atomic_exchange(volatile atomic_address*, void*);
void* atomic_exchange(atomic_address*, void*);
void* atomic_exchange_explicit(volatile atomic_address*, void*, memory_order);
void* atomic_exchange_explicit(atomic_address*, void*, memory_order);
bool atomic_compare_exchange_weak(volatile atomic_address*, void**, void*);
bool atomic_compare_exchange_weak(atomic_address*, void**, void*);
bool atomic_compare_exchange_strong(volatile atomic_address*, void**, void*);
bool atomic_compare_exchange_strong(atomic_address*, void**, void*);
bool atomic_compare_exchange_weak_explicit(volatile atomic_address*, void**, void*,

memory_order, memory_order);
bool atomic_compare_exchange_weak_explicit(atomic_address*, void**, void*,

§ 29.2 1109

c© ISO/IEC N3092

memory_order, memory_order);
bool atomic_compare_exchange_strong_explicit(volatile atomic_address*, void**, void*,

memory_order, memory_order);
bool atomic_compare_exchange_strong_explicit(atomic_address*, void**, void*,

memory_order, memory_order);
void* atomic_fetch_add(volatile atomic_address*, ptrdiff_t);
void* atomic_fetch_add(atomic_address*, ptrdiff_t);
void* atomic_fetch_add_explicit(volatile atomic_address*, ptrdiff_t,

memory_order);
void* atomic_fetch_add_explicit(atomic_address*, ptrdiff_t,

memory_order);
void* atomic_fetch_sub(volatile atomic_address*, ptrdiff_t);
void* atomic_fetch_sub(atomic_address*, ptrdiff_t);
void* atomic_fetch_sub_explicit(volatile atomic_address*, ptrdiff_t,

memory_order);
void* atomic_fetch_sub_explicit(atomic_address*, ptrdiff_t,

memory_order);

// 29.5.3, generic types
template<class T> struct atomic;
template<class T> struct atomic<T*>;
template<> struct atomic<integral>;

// 29.8, fences
void atomic_thread_fence(memory_order);
void atomic_signal_fence(memory_order);

}

29.3 Order and Consistency [atomics.order]

namespace std {
typedef enum memory_order {

memory_order_relaxed, memory_order_consume, memory_order_acquire,
memory_order_release, memory_order_acq_rel, memory_order_seq_cst

} memory_order;
}

1 The enumeration memory_order specifies the detailed regular (non-atomic) memory synchronization order
as defined in 1.10 and may provide for operation ordering. Its enumerated values and their meanings are as
follows:

— memory_order_relaxed: no operation orders memory.

— memory_order_release, memory_order_acq_rel, and memory_order_seq_cst: a store operation per-
forms a release operation on the affected memory location.

— memory_order_consume: a load operation performs a consume operation on the affected memory
location.

— memory_order_acquire, memory_order_acq_rel, and memory_order_seq_cst: a load operation per-
forms an acquire operation on the affected memory location.

[Note: Atomic operations specifying memory_order_relaxed are relaxed with respect to memory ordering.
Implementations must still guarantee that any given atomic access to a particular atomic object be indivisible
with respect to all other atomic accesses to that object. — end note]

§ 29.3 1110

c© ISO/IEC N3092

2 There shall be a single total order S on all memory_order_seq_cst operations, consistent with the “happens
before” order and modification orders for all affected locations, such that each memory_order_seq_cst
operation that loads a value observes either the last preceding modification according to this order S, or the
result of an operation that is not memory_order_seq_cst. [Note: Although it is not explicitly required that
S include locks, it can always be extended to an order that does include lock and unlock operations, since
the ordering between those is already included in the “happens before” ordering. — end note]

3 For an atomic operation B that reads the value of an atomic object M, if there is a memory_order_seq_-
cst fence X sequenced before B, then B observes either the last memory_order_seq_cst modification of M
preceding X in the total order S or a later modification of M in its modification order.

4 For atomic operations A and B on an atomic object M, where A modifies M and B takes its value, if there is
a memory_order_seq_cst fence X such that A is sequenced before X and B follows X in S, then B observes
either the effects of A or a later modification of M in its modification order.

5 For atomic operations A and B on an atomic object M, where A modifies M and B takes its value, if there
are memory_order_seq_cst fences X and Y such that A is sequenced before X, Y is sequenced before B,
and X precedes Y in S, then B observes either the effects of A or a later modification of M in its modification
order.

6 For atomic operations A and B on an atomic object M, if there are memory_order_seq_cst fences X and Y
such that A is sequenced before X, Y is sequenced before B, and X precedes Y in S, then B occurs later
than A in the modeification order of M.

7 [Note: memory_order_seq_cst ensures sequential consistency only for a program that is free of data races
and uses exclusively memory_order_seq_cst operations. Any use of weaker ordering will invalidate this
guarantee unless extreme care is used. In particular, memory_order_seq_cst fences ensure a total order
only for the fences themselves. Fences cannot, in general, be used to restore sequential consistency for atomic
operations with weaker ordering specifications. — end note]

8 An atomic store shall only store a value that has been computed from constants and program input values
by a finite sequence of program evaluations, such that each evaluation observes the values of variables as
computed by the last prior assignment in the sequence.342 The ordering of evaluations in this sequence shall
be such that:

— if an evaluation B observes a value computed by A in a different thread, then B does not happen
before A, and

— if an evaluation A is included in the sequence, then every evaluation that assigns to the same variable
and happens before A is included.

9 [Note: The second requirement disallows “out-of-thin-air” or “speculative” stores of atomics when relaxed
atomics are used. Since unordered operations are involved, evaluations may appear in this sequence out of
thread order. For example, with x and y initially zero,

// Thread 1:
r1 = y.load(memory_order_relaxed);
x.store(r1, memory_order_relaxed);

// Thread 2:
r2 = x.load(memory_order_relaxed);
y.store(42, memory_order_relaxed);

is allowed to produce r1 = r2 = 42. The sequence of evaluations justifying this consists of:

342) Among other implications, atomic variables shall not decay.

§ 29.3 1111

c© ISO/IEC N3092

y.store(42, memory_order_relaxed);
r1 = y.load(memory_order_relaxed);
x.store(r1, memory_order_relaxed);
r2 = x.load(memory_order_relaxed);

On the other hand,
// Thread 1:
r1 = y.load(memory_order_relaxed);
x.store(r1, memory_order_relaxed);

// Thread 2:
r2 = x.load(memory_order_relaxed);
y.store(r2, memory_order_relaxed);

may not produce r1 = r2 = 42, since there is no sequence of evaluations that results in the computation
of 42. In the absence of “relaxed” operations and read-modify-write operations with weaker than memory_-
order_acq_rel ordering, the second requirement has no impact. — end note]

10 [Note: The requirements do allow r1 == r2 == 42 in the following example, with x and y initially zero:
// Thread 1:
r1 = x.load(memory_order_relaxed);
if (r1 == 42) y.store(r1, memory_order_relaxed);

// Thread 2:
r2 = y.load(memory_order_relaxed);
if (r2 == 42) x.store(42, memory_order_relaxed);

However, implementations should not allow such behavior. — end note]

11 Atomic read-modify-write operations shall always read the last value (in the modification order) written
before the write associated with the read-modify-write operation.

12 Implementations should make atomic stores visible to atomic loads within a reasonable amount of time.

template <class T>
T kill_dependency(T y);

13 Effects: The argument does not carry a dependency to the return value (1.10).

14 Returns: y.

29.4 Lock-free Property [atomics.lockfree]

#define ATOMIC_CHAR_LOCK_FREE implementation-defined
#define ATOMIC_CHAR16_T_LOCK_FREE implementation-defined
#define ATOMIC_CHAR32_T_LOCK_FREE implementation-defined
#define ATOMIC_WCHAR_T_LOCK_FREE implementation-defined
#define ATOMIC_SHORT_LOCK_FREE implementation-defined
#define ATOMIC_INT_LOCK_FREE implementation-defined
#define ATOMIC_LONG_LOCK_FREE implementation-defined
#define ATOMIC_LLONG_LOCK_FREE implementation-defined
#define ATOMIC_ADDRESS_LOCK_FREE implementation-defined

§ 29.4 1112

c© ISO/IEC N3092

1 The ATOMIC_..._LOCK_FREE macros indicate the lock-free property of the corresponding atomic types, with
the signed and unsigned variants grouped together. The properties also apply to the corresponding spe-
cializations of the atomic template. A value of 0 indicates that the types are never lock-free. A value of 1
indicates that the types are sometimes lock-free. A value of 2 indicates that the types are always lock-free.

2 The function atomic_is_lock_free (29.6) indicates whether the object is lock-free. In any given program
execution, the result of the lock-free query shall be consistent for all pointers of the same type.

3 [Note: Operations that are lock-free should also be address-free. That is, atomic operations on the same
memory location via two different addresses will communicate atomically. The implementation should not
depend on any per-process state. This restriction enables communication via memory that is mapped into
a process more than once and by memory that is shared between two processes. — end note]

29.5 Atomic Types [atomics.types]

29.5.1 Integral Types [atomics.types.integral]

namespace std {
typedef struct atomic_bool {

bool is_lock_free() const volatile;
bool is_lock_free() const;
void store(bool, memory_order = memory_order_seq_cst) volatile;
void store(bool, memory_order = memory_order_seq_cst);
bool load(memory_order = memory_order_seq_cst) const volatile;
bool load(memory_order = memory_order_seq_cst) const;
operator bool() const volatile;
operator bool() const;
bool exchange(bool, memory_order = memory_order_seq_cst) volatile;
bool exchange(bool, memory_order = memory_order_seq_cst);
bool compare_exchange_weak(bool&, bool, memory_order, memory_order) volatile;
bool compare_exchange_weak(bool&, bool, memory_order, memory_order);
bool compare_exchange_strong(bool&, bool, memory_order, memory_order) volatile;
bool compare_exchange_strong(bool&, bool, memory_order, memory_order);
bool compare_exchange_weak(bool&, bool, memory_order = memory_order_seq_cst) volatile;
bool compare_exchange_weak(bool&, bool, memory_order = memory_order_seq_cst);
bool compare_exchange_weak(bool&, bool, memory_order = memory_order_seq_cst) volatile;
bool compare_exchange_weak(bool&, bool, memory_order = memory_order_seq_cst);

atomic_bool() = default;
constexpr atomic_bool(bool);
atomic_bool(const atomic_bool&) = delete;
atomic_bool& operator=(const atomic_bool&) = delete;
atomic_bool& operator=(const atomic_bool&) volatile = delete;
bool operator=(bool) volatile;

} atomic_bool;

bool atomic_is_lock_free(const volatile atomic_bool*);
bool atomic_is_lock_free(const atomic_bool*);
void atomic_init(volatile atomic_bool*, bool);
void atomic_init(atomic_bool*, bool);
void atomic_store(volatile atomic_bool*, bool);
void atomic_store(atomic_bool*, bool);
void atomic_store_explicit(volatile atomic_bool*, bool, memory_order);
void atomic_store_explicit(atomic_bool*, bool, memory_order);
bool atomic_load(const volatile atomic_bool*);
bool atomic_load(const atomic_bool*);

§ 29.5.1 1113

c© ISO/IEC N3092

bool atomic_load_explicit(const volatile atomic_bool*, memory_order);
bool atomic_load_explicit(const atomic_bool*, memory_order);
bool atomic_exchange(volatile atomic_bool*, bool);
bool atomic_exchange(atomic_bool*, bool);
bool atomic_exchange_explicit(volatile atomic_bool*, bool, memory_order);
bool atomic_exchange_explicit(atomic_bool*, bool, memory_order);
bool atomic_compare_exchange_weak(volatile atomic_bool*, bool*, bool);
bool atomic_compare_exchange_weak(atomic_bool*, bool*, bool);
bool atomic_compare_exchange_strong(volatile atomic_bool*, bool*, bool);
bool atomic_compare_exchange_strong(atomic_bool*, bool*, bool);
bool atomic_compare_exchange_weak_explicit(volatile atomic_bool*, bool*, bool,

memory_order, memory_order);
bool atomic_compare_exchange_weak_explicit(atomic_bool*, bool*, bool,

memory_order, memory_order);
bool atomic_compare_exchange_strong_explicit(volatile atomic_bool*, bool*, bool,

memory_order, memory_order);
bool atomic_compare_exchange_strong_explicit(atomic_bool*, bool*, bool,

memory_order, memory_order);

// For each of the integral types listed below:
typedef struct atomic_itype {

bool is_lock_free() const volatile;
bool is_lock_free() const;
void store(integral, memory_order = memory_order_seq_cst) volatile;
void store(integral, memory_order = memory_order_seq_cst);
integral load(memory_order = memory_order_seq_cst) const volatile;
integral load(memory_order = memory_order_seq_cst) const;
operator integral() const volatile;
operator integral() const;
integral exchange(integral,

memory_order = memory_order_seq_cst) volatile;
integral exchange(integral,

memory_order = memory_order_seq_cst);
bool compare_exchange_weak(integral&, integral,

memory_order, memory_order) volatile;
bool compare_exchange_weak(integral&, integral,

memory_order, memory_order);
bool compare_exchange_strong(integral&, integral,

memory_order, memory_order) volatile;
bool compare_exchange_strong(integral&, integral,

memory_order, memory_order);
bool compare_exchange_weak(integral&, integral,

memory_order = memory_order_seq_cst) volatile;
bool compare_exchange_weak(integral&, integral,

memory_order = memory_order_seq_cst);
bool compare_exchange_strong(integral&, integral,

memory_order = memory_order_seq_cst) volatile;
bool compare_exchange_strong(integral&, integral,

memory_order = memory_order_seq_cst);
integral fetch_add(integral,

memory_order = memory_order_seq_cst) volatile;
integral fetch_add(integral,

memory_order = memory_order_seq_cst);
integral fetch_sub(integral,

memory_order = memory_order_seq_cst) volatile;

§ 29.5.1 1114

c© ISO/IEC N3092

integral fetch_sub(integral,
memory_order = memory_order_seq_cst);

integral fetch_and(integral,
memory_order = memory_order_seq_cst) volatile;

integral fetch_and(integral,
memory_order = memory_order_seq_cst);

integral fetch_or(integral,
memory_order = memory_order_seq_cst) volatile;

integral fetch_or(integral,
memory_order = memory_order_seq_cst);

integral fetch_xor(integral,
memory_order = memory_order_seq_cst) volatile;

integral fetch_xor(integral,
memory_order = memory_order_seq_cst);

atomic_itype() = default;
constexpr atomic_itype(integral);
atomic_itype(const atomic_itype&) = delete;
atomic_itype& operator=(const atomic_itype &) = delete;
atomic_itype& operator=(const atomic_itype&) volatile = delete;
integral operator=(integral) volatile;
integral operator=(integral);
integral operator++(int) volatile;
integral operator++(int);
integral operator--(int) volatile;
integral operator--(int);
integral operator++() volatile;
integral operator++();
integral operator--() volatile;
integral operator--();
integral operator+=(integral) volatile;
integral operator+=(integral);
integral operator-=(integral) volatile;
integral operator-=(integral);
integral operator&=(integral) volatile;
integral operator&=(integral);
integral operator|=(integral) volatile;
integral operator|=(integral);
integral operator^=(integral) volatile;
integral operator^=(integral);

} atomic_itype;

bool atomic_is_lock_free(const volatile atomic_itype*);
bool atomic_is_lock_free(const atomic_itype*);
void atomic_init(volatile atomic_itype*, itype);
void atomic_init(atomic_itype*, itype);
void atomic_store(volatile atomic_itype*, integral);
void atomic_store(atomic_itype*, integral);
void atomic_store_explicit(volatile atomic_itype*, integral,

memory_order);
void atomic_store_explicit(atomic_itype*, integral,

memory_order);
integral atomic_load(const volatile atomic_itype*);
integral atomic_load(const atomic_itype*);
integral atomic_load_explicit(const volatile atomic_itype*, memory_order);

§ 29.5.1 1115

c© ISO/IEC N3092

integral atomic_load_explicit(const atomic_itype*, memory_order);
integral atomic_exchange(volatile atomic_itype*, integral);
integral atomic_exchange(atomic_itype*, integral);
integral atomic_exchange_explicit(volatile atomic_itype*, integral,

memory_order);
integral atomic_exchange_explicit(atomic_itype*, integral,

memory_order);
bool atomic_compare_exchange_weak(volatile atomic_itype*, integral*, integral);
bool atomic_compare_exchange_weak(atomic_itype*, integral*, integral);
bool atomic_compare_exchange_strong(volatile atomic_itype*, integral*, integral);
bool atomic_compare_exchange_strong(atomic_itype*, integral*, integral);
bool atomic_compare_exchange_weak_explicit(volatile atomic_itype*, integral*,

integral, memory_order, memory_order);
bool atomic_compare_exchange_weak_explicit(atomic_itype*, integral*,

integral, memory_order, memory_order);
bool atomic_compare_exchange_strong_explicit(volatile atomic_itype*, integral*,

integral, memory_order, memory_order);
bool atomic_compare_exchange_strong_explicit(atomic_itype*, integral*,

integral, memory_order, memory_order);
integral atomic_fetch_add(volatile atomic_itype*, integral);
integral atomic_fetch_add(atomic_itype*, integral);
integral atomic_fetch_add_explicit(volatile atomic_itype*, integral,

memory_order);
integral atomic_fetch_add_explicit(atomic_itype*, integral,

memory_order);
integral atomic_fetch_sub(volatile atomic_itype*, integral);
integral atomic_fetch_sub(atomic_itype*, integral);
integral atomic_fetch_sub_explicit(volatile atomic_itype*, integral,

memory_order);
integral atomic_fetch_sub_explicit(atomic_itype*, integral,

memory_order);
integral atomic_fetch_and(volatile atomic_itype*, integral);
integral atomic_fetch_and(atomic_itype*, integral);
integral atomic_fetch_and_explicit(volatile atomic_itype*, integral,

memory_order);
integral atomic_fetch_and_explicit(atomic_itype*, integral,

memory_order);
integral atomic_fetch_or(volatile atomic_itype*, integral);
integral atomic_fetch_or(atomic_itype*, integral);
integral atomic_fetch_or_explicit(volatile atomic_itype*, integral,

memory_order);
integral atomic_fetch_or_explicit(atomic_itype*, integral,

memory_order);
integral atomic_fetch_xor(volatile atomic_itype*, integral);
integral atomic_fetch_xor(atomic_itype*, integral);
integral atomic_fetch_xor_explicit(volatile atomic_itype*, integral,

memory_order);
integral atomic_fetch_xor_explicit(atomic_itype*, integral,

memory_order);
}

1 The name atomic_itype and the functions operating on it in the preceding synopsis are placeholders for a
set of classes and functions. Throughout the preceding synopsis, atomic_itype should be replaced by each
of the class names in table 142 and integral should be replaced by the integral type corresponding to the

§ 29.5.1 1116

c© ISO/IEC N3092

Table 142 — Atomics for built-in types

Class name Integral type
atomic_char char
atomic_schar signed char
atomic_uchar unsigned char
atomic_short short
atomic_ushort unsigned short
atomic_int int
atomic_uint unsigned int
atomic_long long
atomic_ulong unsigned long
atomic_llong long long
atomic_ullong unsigned long long
atomic_char16_t char16_t
atomic_char32_t char32_t
atomic_wchar_t wchar_t

class name. Table 143 shows typedefs to atomic integral classes and the corresponding <cstdint> typedefs.

2 The atomic integral types shall have standard layout. They shall each have a trivial default constructor, a
constexpr value constructor, a deleted copy constructor, a deleted copy assignment operator, and a trivial
destructor. They shall each support aggregate initialization syntax.

3 The semantics of the operations on these types are defined in 29.6.

4 The atomic_bool type provides an atomic boolean.

5 [Note: The representation of atomic integral types need not have the same size as their corresponding
regular types. They should have the same size whenever possible, as it eases effort required to port existing
code. — end note]

29.5.2 Address Type [atomics.types.address]

namespace std {
typedef struct atomic_address {

bool is_lock_free() const volatile;
bool is_lock_free() const;
void store(void*, memory_order = memory_order_seq_cst) volatile;
void store(void*, memory_order = memory_order_seq_cst);
void* load(memory_order = memory_order_seq_cst) const volatile;
void* load(memory_order = memory_order_seq_cst) const;
operator void*() const volatile;
operator void*() const;
void* exchange(void*, memory_order = memory_order_seq_cst) volatile;
void* exchange(void*, memory_order = memory_order_seq_cst);
bool compare_exchange_weak(void*&, void*,

memory_order, memory_order) volatile;
bool compare_exchange_weak(void*&, void*,

memory_order, memory_order);
bool compare_exchange_strong(void*&, void*,

memory_order, memory_order) volatile;
bool compare_exchange_strong(void*&, void*,

memory_order, memory_order);

§ 29.5.2 1117

c© ISO/IEC N3092

Table 143 — Atomics for standard typedef types

atomic typedef name <cstdint> typedef name
atomic_int_least8_t int_least8_t
atomic_uint_least8_t uint_least8_t
atomic_int_least16_t int_least16_t
atomic_uint_least16_t uint_least16_t
atomic_int_least32_t int_least32_t
atomic_uint_least32_t uint_least32_t
atomic_int_least64_t int_least64_t
atomic_uint_least64_t uint_least64_t
atomic_int_fast8_t int_fast8_t
atomic_uint_fast8_t uint_fast8_t
atomic_int_fast16_t int_fast16_t
atomic_uint_fast16_t uint_fast16_t
atomic_int_fast32_t int_fast32_t
atomic_uint_fast32_t uint_fast32_t
atomic_int_fast64_t int_fast64_t
atomic_uint_fast64_t uint_fast64_t
atomic_intptr_t intptr_t
atomic_uintptr_t uintptr_t
atomic_size_t size_t
atomic_ptrdiff_t ptrdiff_t
atomic_intmax_t intmax_t
atomic_uintmax_t uintmax_t

bool compare_exchange_weak(void*&, void*,
memory_order = memory_order_seq_cst) volatile;

bool compare_exchange_weak(void*&, void*,
memory_order = memory_order_seq_cst);

bool compare_exchange_strong(void*&, void*,
memory_order = memory_order_seq_cst) volatile;

bool compare_exchange_strong(void*&, void*,
memory_order = memory_order_seq_cst);

bool compare_exchange_weak(const void*&, const void*,
memory_order, memory_order) volatile;

bool compare_exchange_weak(const void*&, const void*,
memory_order, memory_order);

bool compare_exchange_strong(const void*&, const void*,
memory_order, memory_order) volatile;

bool compare_exchange_strong(const void*&, const void*,
memory_order, memory_order);

bool compare_exchange_weak(const void*&, const void*,
memory_order = memory_order_seq_cst) volatile;

bool compare_exchange_weak(const void*&, const void*,
memory_order = memory_order_seq_cst);

bool compare_exchange_strong(const void*&, const void*,
memory_order = memory_order_seq_cst) volatile;

bool compare_exchange_strong(const void*&, const void*,
memory_order = memory_order_seq_cst);

void* fetch_add(ptrdiff_t, memory_order = memory_order_seq_cst) volatile;
void* fetch_add(ptrdiff_t, memory_order = memory_order_seq_cst);

§ 29.5.2 1118

c© ISO/IEC N3092

void* fetch_sub(ptrdiff_t, memory_order = memory_order_seq_cst) volatile;
void* fetch_sub(ptrdiff_t, memory_order = memory_order_seq_cst);

atomic_address() = default;
constexpr atomic_address(void*);
atomic_address(const atomic_address&) = delete;
atomic_address& operator=(const atomic_address&) = delete;
atomic_address& operator=(const atomic_address&) volatile = delete;
void* operator=(const void*) volatile;
void* operator=(const void*);
void* operator+=(ptrdiff_t) volatile;
void* operator+=(ptrdiff_t);
void* operator-=(ptrdiff_t) volatile;
void* operator-=(ptrdiff_t);

} atomic_address;

bool atomic_is_lock_free(const volatile atomic_address*);
bool atomic_is_lock_free(const atomic_address*);
void atomic_init(volatile atomic_address*, void*);
void atomic_init(atomic_address*, void*);
void atomic_store(volatile atomic_address*, void*);
void atomic_store(atomic_address*, void*);
void atomic_store_explicit(volatile atomic_address*, void*, memory_order);
void atomic_store_explicit(atomic_address*, void*, memory_order);
void* atomic_load(const volatile atomic_address*);
void* atomic_load(const atomic_address*);
void* atomic_load_explicit(const volatile atomic_address*, memory_order);
void* atomic_load_explicit(const atomic_address*, memory_order);
void* atomic_exchange(volatile atomic_address*, void*);
void* atomic_exchange(atomic_address*, void*);
void* atomic_exchange_explicit(volatile atomic_address*, void*, memory_order);
void* atomic_exchange_explicit(atomic_address*, void*, memory_order);
bool atomic_compare_exchange_weak(volatile atomic_address*, void**, void*);
bool atomic_compare_exchange_weak(atomic_address*, void**, void*);
bool atomic_compare_exchange_strong(volatile atomic_address*, void**, void*);
bool atomic_compare_exchange_strong(atomic_address*, void**, void*);
bool atomic_compare_exchange_weak_explicit(volatile atomic_address*, void**, void*,

memory_order, memory_order);
bool atomic_compare_exchange_weak_explicit(atomic_address*, void**, void*,

memory_order, memory_order);
bool atomic_compare_exchange_strong_explicit(volatile atomic_address*, void**, void*,

memory_order, memory_order);
bool atomic_compare_exchange_strong_explicit(atomic_address*, void**, void*,

memory_order, memory_order);
void* atomic_fetch_add(volatile atomic_address*, ptrdiff_t);
void* atomic_fetch_add(atomic_address*, ptrdiff_t);
void* atomic_fetch_add_explicit(volatile atomic_address*, ptrdiff_t,

memory_order);
void* atomic_fetch_add_explicit(atomic_address*, ptrdiff_t,

memory_order);
void* atomic_fetch_sub(volatile atomic_address*, ptrdiff_t);
void* atomic_fetch_sub(atomic_address*, ptrdiff_t);
void* atomic_fetch_sub_explicit(volatile atomic_address*, ptrdiff_t,

memory_order);
void* atomic_fetch_sub_explicit(atomic_address*, ptrdiff_t,

§ 29.5.2 1119

c© ISO/IEC N3092

memory_order);
}

1 The type atomic_address shall have standard layout. It shall have a trivial default constructor, a constexpr
value constructor, a deleted copy constructor, a deleted copy assignment operator, and a trivial destructor.
It shall support aggregate initialization syntax.

2 The semantics of the operations on this type are defined in 29.6.

3 The atomic_address type provides atomic void* operations. The unit of addition/subtraction shall be one
byte.

4 [Note: The representation of the atomic address type need not have the same size as its corresponding
regular type. It should have the same size whenever possible, as it eases effort required to port existing
code. — end note]

29.5.3 Generic Types [atomics.types.generic]

namespace std {
template <class T> struct atomic {

bool is_lock_free() const volatile;
bool is_lock_free() const;
void store(T, memory_order = memory_order_seq_cst) volatile;
void store(T, memory_order = memory_order_seq_cst);
T load(memory_order = memory_order_seq_cst) const volatile;
T load(memory_order = memory_order_seq_cst) const;
operator T() const volatile;
operator T() const;
T exchange(T, memory_order = memory_order_seq_cst) volatile;
T exchange(T, memory_order = memory_order_seq_cst);
bool compare_exchange_weak(T&, T, memory_order, memory_order) volatile;
bool compare_exchange_weak(T&, T, memory_order, memory_order);
bool compare_exchange_strong(T&, T, memory_order, memory_order) volatile;
bool compare_exchange_strong(T&, T, memory_order, memory_order);
bool compare_exchange_weak(T&, T, memory_order = memory_order_seq_cst) volatile;
bool compare_exchange_weak(T&, T, memory_order = memory_order_seq_cst);
bool compare_exchange_strong(T&, T, memory_order = memory_order_seq_cst) volatile;
bool compare_exchange_strong(T&, T, memory_order = memory_order_seq_cst);

atomic() = default;
constexpr atomic(T);
atomic(const atomic&) = delete;
atomic& operator=(const atomic&) = delete;
atomic& operator=(const atomic&) volatile = delete;
T operator=(T) volatile;
T operator=(T);

};

template <> struct atomic<integral> : atomic_itype {
atomic() = default;
constexpr atomic(integral);
atomic(const atomic&) = delete;
atomic& operator=(const atomic&) = delete;
atomic& operator=(const atomic&) volatile = delete;
integral operator=(integral) volatile;
integral operator=(integral);

§ 29.5.3 1120

c© ISO/IEC N3092

operator integral() const volatile;
operator integral() const;

};

template <class T> struct atomic<T*> : atomic_address {
void store(T*, memory_order = memory_order_seq_cst) volatile;
void store(T*, memory_order = memory_order_seq_cst);
T* load(memory_order = memory_order_seq_cst) const volatile;
T* load(memory_order = memory_order_seq_cst) const;
operator T*() const volatile;
operator T*() const;
T* exchange(T*, memory_order = memory_order_seq_cst) volatile;
T* exchange(T*, memory_order = memory_order_seq_cst);
bool compare_exchange_weak(T*&, T*, memory_order, memory_order) volatile;
bool compare_exchange_weak(T*&, T*, memory_order, memory_order);
bool compare_exchange_strong(T*&, T*, memory_order, memory_order) volatile;
bool compare_exchange_strong(T*&, T*, memory_order, memory_order);
bool compare_exchange_weak(T*&, T*, memory_order = memory_order_seq_cst) volatile;
bool compare_exchange_weak(T*&, T*, memory_order = memory_order_seq_cst);
bool compare_exchange_strong(T*&, T*, memory_order = memory_order_seq_cst) volatile;
bool compare_exchange_strong(T*&, T*, memory_order = memory_order_seq_cst);
T* fetch_add(ptrdiff_t, memory_order = memory_order_seq_cst) volatile;
T* fetch_add(ptrdiff_t, memory_order = memory_order_seq_cst);
T* fetch_sub(ptrdiff_t, memory_order = memory_order_seq_cst) volatile;
T* fetch_sub(ptrdiff_t, memory_order = memory_order_seq_cst);

atomic() = default;
constexpr atomic(T*);
atomic(const atomic&) = delete;
atomic& operator=(const atomic&) = delete;
atomic& operator=(const atomic&) volatile = delete;

T* operator=(T*) volatile;
T* operator=(T*);
T* operator++(int) volatile;
T* operator++(int);
T* operator--(int) volatile;
T* operator--(int);
T* operator++() volatile;
T* operator++();
T* operator--() volatile;
T* operator--();
T* operator+=(ptrdiff_t) volatile;
T* operator+=(ptrdiff_t);
T* operator-=(ptrdiff_t) volatile;
T* operator-=(ptrdiff_t);

};
}

1 There is a generic class template atomic<T>. The type of the template argument T shall be trivially
copyable (3.9). [Note: Type arguments that are not also statically initializable may be difficult to use.
— end note]

2 Specializations of the atomic template shall have a deleted copy constructor, a deleted copy assignment
operator, and a constexpr value constructor.

§ 29.5.3 1121

c© ISO/IEC N3092

3 There are full specializations over the integral types on the atomic class template. For each integral type
integral in the second column of table 142 or table 143, the specialization atomic<integral> shall be
publicly derived from the corresponding atomic integral type in the first column of the table. In addition,
the specialization atomic<bool> shall be publicly derived from atomic_bool. These specializations shall
have trivial default constructors and trivial destructors.

4 There are pointer partial specializations on the atomic class template. These specializations shall be publicly
derived from atomic_address. The unit of addition/subtraction for these specializations shall be the size
of the referenced type. These specializations shall have trivial default constructors and trivial destructors.

29.6 Operations on Atomic Types [atomics.types.operations]

1 There are only a few kinds of operations on atomic types, though there are many instances on those kinds.
This section specifies each general kind. The specific instances are defined in 29.5.1, 29.5.2, and 29.5.3.

2 In the following operation definitions:

— an A refers to one of the atomic types

— a C refers to its corresponding non-atomic type. The atomic_address atomic type corresponds to the
void* non-atomic type

— an M refers to type of the other argument for arithmetic operations. For integral atomic types, M is
C. For atomic address types, M is std::ptrdiff_t

— the free functions not ending in _explicit have the semantics of their corresponding _explicit with
memory_order arguments of memory_order_seq_cst.

3 [Note: Many operations are volatile-qualified. The “volatile as device register” semantics have not changed
in the standard. This qualification means that volatility is preserved when applying these operations to
volatile objects. It does not mean that operations on non-volatile objects become volatile. Thus, volatile
qualified operations on non-volatile objects may be merged under some conditions. — end note]

constexpr A::A(C desired);

4 Effects: Initializes the object with the value desired. [Note: Construction is not atomic. — end
note]

#define ATOMIC_VAR_INIT(value) see below

5 Remarks: A macro that expands to a token sequence suitable for initializing an atomic variable of
a type that is initializion-compatible with value. Concurrent access to the variable being initialized,
even via an atomic operation, constitutes a data race. [Example:

atomic_int v = ATOMIC_VAR_INIT(5);

— end example]

bool atomic_is_lock_free(const volatile A *object);
bool atomic_is_lock_free(const A *object);
A::is_lock_free() const volatile;
A::is_lock_free() const;

6 Returns: True if the object’s operations are lock-free, false otherwise.

void atomic_init(volatile A *object, C desired);
void atomic_init(A *object, C desired);

§ 29.6 1122

c© ISO/IEC N3092

7 Effects: Non-atomically assigns the value desired to *object. Concurrent access from another thread,
even via an atomic operation, constitutes a data race.

void atomic_store(volatile A* object, C desired);
void atomic_store(A* object, C desired);
void atomic_store_explicit(volatile A *object, C desired, memory_order order);
void atomic_store_explicit(A* object, C desired, memory_order order);
void A::store(C desired, memory_order order = memory_order_seq_cst) volatile;
void A::store(C desired, memory_order order = memory_order_seq_cst);

8 Requires: The order argument shall not be memory_order_consume, memory_order_acquire, nor
memory_order_acq_rel.

9 Effects: Atomically replaces the value pointed to by object or by this with the value of desired.
Memory is affected according to the value of order.

C A::operator=(C desired) volatile;
C A::operator=(C desired);

10 Effects: store(desired)

11 Returns: desired

C atomic_load(const volatile A* object);
C atomic_load(const A* object);
C atomic_load_explicit(const volatile A* object, memory_order);
C atomic_load_explicit(const A* object, memory_order);
C A::load(memory_order order = memory_order_seq_cst) const volatile;
C A::load(memory_order order = memory_order_seq_cst) const;

12 Requires: The order argument shall not be memory_order_release nor memory_order_acq_rel.

13 Effects: Memory is affected according to the value of order.

14 Returns: Atomically returns the value pointed to by object or by this.

A::operator C() const volatile;
A::operator C() const;

15 Effects: load()

16 Returns: the result of load().

C atomic_exchange(volatile A* object, C desired);
C atomic_exchange(A* object, C desired);
C atomic_exchange_explicit(volatile A* object, C desired, memory_order);
C atomic_exchange_explicit(A* object, C desired, memory_order);
C A::exchange(C desired, memory_order order = memory_order_seq_cst) volatile;
C A::exchange(C desired, memory_order order = memory_order_seq_cst);

17 Effects: Atomically replaces the value pointed to by object or by this with desired. Memory
is affected according to the value of order. These operations are atomic read-modify-write opera-
tions (1.10).

18 Returns: Atomically returns the value pointed to by object or by this immediately before the effects.

bool atomic_compare_exchange_weak(volatile A* object, C* expected, C desired);
bool atomic_compare_exchange_weak(A* object, C* expected, C desired);

§ 29.6 1123

c© ISO/IEC N3092

bool atomic_compare_exchange_strong(volatile A* object, C* expected, C desired);
bool atomic_compare_exchange_strong(A* object, C* expected, C desired);
bool atomic_compare_exchange_weak_explicit(volatile A* object, C* expected, C desired,

memory_order success, memory_order failure);
bool atomic_compare_exchange_weak_explicit(A* object, C* expected, C desired,

memory_order success, memory_order failure);
bool atomic_compare_exchange_strong_explicit(volatile A* object, C* expected, C desired,

memory_order success, memory_order failure);
bool atomic_compare_exchange_strong_explicit(A* object, C* expected, C desired,

memory_order success, memory_order failure);
bool A::compare_exchange_weak(C& expected, C desired,

memory_order success, memory_order failure) volatile;
bool A::compare_exchange_weak(C& expected, C desired,

memory_order success, memory_order failure);
bool A::compare_exchange_strong(C& expected, C desired,

memory_order success, memory_order failure) volatile;
bool A::compare_exchange_strong(C& expected, C desired,

memory_order success, memory_order failure);
bool A::compare_exchange_weak(C& expected, C desired,

memory_order order = memory_order_seq_cst) volatile;
bool A::compare_exchange_weak(C& expected, C desired,

memory_order order = memory_order_seq_cst);
bool A::compare_exchange_strong(C& expected, C desired,

memory_order order = memory_order_seq_cst) volatile;
bool A::compare_exchange_strong(C& expected, C desired,

memory_order order = memory_order_seq_cst);

19 Requires: The failure argument shall not be memory_order_release nor memory_order_acq_rel.
The failure argument shall be no stronger than the success argument.

20 Effects: Atomically, compares the contents of the memory pointed to by object or by this for equality
with that in expected, and if true, replaces the contents of the memory pointed to by object or by
this with that in desired, and if false, updates the contents of the memory in expected with the
contents of the memory pointed to by object or by this. Further, if the comparison is true, memory
is affected according to the value of success, and if the comparison is false, memory is affected
according to the value of failure. When only one memory_order argument is supplied, the value of
success is order, and the value of failure is order except that a value of memory_order_acq_rel
shall be replaced by the value memory_order_acquire and a value of memory_order_release shall
be replaced by the value memory_order_relaxed. If the operation returns true, these operations are
atomic read-modify-write operations (1.10). Otherwise, these operations ate atomic load operations.

21 Returns: The result of the comparison.

22 [Note: The effect of the compare-and-exchange operations is
if (memcmp(object, expected, sizeof(*object)) == 0)

memcpy(object, &desired, sizeof(*object));
else

memcpy(expected, object, sizeof(*object));

— end note] [Example: the expected use of the compare-and-exchange operations is as follows.
The compare-and-exchange operations will update expected when another iteration of the loop is
needed.

expected = current.load();
do {

§ 29.6 1124

c© ISO/IEC N3092

desired = function(expected);
} while (!current.compare_exchange_weak(expected, desired));

— end example]

23 Remark: The weak compare-and-exchange operations may fail spuriously, that is, return false while
leaving the contents of memory pointed to by expected before the operation is the same that same
as that of the object and the same as that of expected after the operation. [Note: This spurious
failure enables implementation of compare-and-exchange on a broader class of machines, e.g., load-
locked store-conditional machines. A consequence of spurious failure is that nearly all uses of weak
compare-and-exchange will be in a loop.

When a compare-and-exchange is in a loop, the weak version will yield better performance on some
platforms. When a weak compare-and-exchange would require a loop and a strong one would not, the
strong one is preferable. — end note]

24 [Note: The memcpy and memcmp semantics of the compare-and-exchange operations may result in failed
comparisons for values that compare equal with operator== if the underlying type has padding bits,
trap bits, or alternate representations of the same value. Thus, compare_exchange_strong should be
used with extreme care. On the other hand, compare_exchange_weak should converge rapidly. — end
note]

25 The following operations perform arithmetic computations. The key, operator, and computation correspon-
dence is:

Table 144 — Atomic arithmetic computations

Key Op Computation Key Op Computation
add + addition sub - subtraction
or | bitwise inclusive or xor ˆ bitwise exclusive or
and & bitwise and

C atomic_fetch_key(volatile A *object, M operand);
C atomic_fetch_key(A* object, M operand);
C atomic_fetch_key_explicit(volatile A *object, M operand, memory_order order);
C atomic_fetch_key_explicit(A* object, M operand, memory_order order);
C A::fetch_key(M operand, memory_order order = memory_order_seq_cst) volatile;
C A::fetch_key(M operand, memory_order order = memory_order_seq_cst);

26 Effects: Atomically replaces the value pointed to by object or by this with the result of the computa-
tion applied to the value pointed to by object or by this and the given operand. Memory is affected
according to the value of order. These operations are atomic read-modify-write operations (1.10).

27 Returns: Atomically, the value pointed to by object or by this immediately before the effects.

28 Remark: For signed integral types, arithmetic is defined to use two’s complement representation. There
are no undefined results. For address types, the result may be an undefined address, but the operations
otherwise have no undefined behavior.

C A::operator op=(M operand) volatile;
C A::operator op=(M operand);

29 Effects: fetch_key(operand)

30 Returns: fetch_key(operand) op operand

§ 29.6 1125

c© ISO/IEC N3092

C A::operator++(int) volatile;
C A::operator++(int);

31 Returns: fetch_add(1)

C A::operator--(int) volatile;
C A::operator--(int);

32 Returns: fetch_sub(1)

C A::operator++() volatile;
C A::operator++();

33 Effects: fetch_add(1)

34 Returns: fetch_add(1) + 1

C A::operator--() volatile;
C A::operator--();

35 Effects: fetch_sub(1)

36 Returns: fetch_sub(1) - 1

29.7 Flag Type and Operations [atomics.flag]

namespace std {
typedef struct atomic_flag {

bool test_and_set(memory_order = memory_order_seq_cst) volatile;
bool test_and_set(memory_order = memory_order_seq_cst);
void clear(memory_order = memory_order_seq_cst) volatile;
void clear(memory_order = memory_order_seq_cst);

atomic_flag() = default;
atomic_flag(const atomic_flag&) = delete;
atomic_flag& operator=(const atomic_flag&) = delete;
atomic_flag& operator=(const atomic_flag&) volatile = delete;

} atomic_flag;

bool atomic_flag_test_and_set(volatile atomic_flag*);
bool atomic_flag_test_and_set(atomic_flag*);
bool atomic_flag_test_and_set_explicit(volatile atomic_flag*, memory_order);
bool atomic_flag_test_and_set_explicit(atomic_flag*, memory_order);
void atomic_flag_clear(volatile atomic_flag*);
void atomic_flag_clear(atomic_flag*);
void atomic_flag_clear_explicit(volatile atomic_flag*, memory_order);
void atomic_flag_clear_explicit(atomic_flag*, memory_order);

#define ATOMIC_FLAG_INIT see below
}

1 The atomic_flag type provides the classic test-and-set functionality. It has two states, set and clear.

2 Operations on an object of type atomic_flag shall be lock-free. [Note: Hence the operations should also
be address-free. No other type requires lock-free operations, so the atomic_flag type is the minimum
hardware-implemented type needed to conform to this International standard. The remaining types can be
emulated with atomic_flag, though with less than ideal properties. — end note]

§ 29.7 1126

c© ISO/IEC N3092

3 The atomic_flag type shall have standard layout. It shall have a trivial default constructor, a deleted copy
constructor, a deleted copy assignment operator, and a trivial destructor.

4 The macro ATOMIC_FLAG_INIT shall be defined in such a way that it can be used to initialize an object of
type atomic_flag to the clear state. For a static-duration object, that initialization shall be static. It is
unspecified whether an unitialized atomic_flag object has an initial state of set or clear.[Example:

atomic_flag guard = ATOMIC_FLAG_INIT;

— end example]

bool atomic_flag_test_and_set(volatile atomic_flag *object);
bool atomic_flag_test_and_set(atomic_flag *object);
bool atomic_flag_test_and_set_explicit(volatile atomic_flag *object, memory_order order);
bool atomic_flag_test_and_set_explicit(atomic_flag *object, memory_order order);
bool atomic_flag::test_and_set(memory_order order = memory_order_seq_cst) volatile;
bool atomic_flag::test_and_set(memory_order order = memory_order_seq_cst);

5 Effects: Atomically sets the value pointed to by object or by this to true. Memory is affected
according to the value of order. These operations are atomic read-modify-write operations (1.10).

6 Returns: Atomically, the value of the object immediately before the effects.

void atomic_flag_clear(volatile atomic_flag *object);
void atomic_flag_clear(atomic_flag *object);
void atomic_flag_clear_explicit(volatile atomic_flag *object, memory_order order);
void atomic_flag_clear_explicit(atomic_flag *object, memory_order order);
void atomic_flag::clear(memory_order order = memory_order_seq_cst) volatile;
void atomic_flag::clear(memory_order order = memory_order_seq_cst);

7 Requires: The order argument shall not be memory_order_acquire nor memory_order_acq_rel.

8 Effects: Atomically sets the value pointed to by object or by this to false. Memory is affected
according to the value of order.

29.8 Fences [atomics.fences]

1 This section introduces synchronization primitives called fences. Fences can have acquire semantics, release
semantics, or both. A fence with acquire semantics is called an acquire fence. A fence with release semantics
is called a release fence.

2 A release fence A synchronizes with an acquire fence B if there exist atomic operations X and Y, both
operating on some atomic object M, such that A is sequenced before X, X modifies M, Y is sequenced
before B, and Y reads the value written by X or a value written by any side effect in the hypothetical
release sequence X would head if it were a release operation.

3 A release fence A synchronizes with an atomic operation B that performs an acquire operation on an atomic
object M if there exists an atomic operation X such that A is sequenced before X, X modifies M, and B
reads the value written by X or a value written by any side effect in the hypothetical release sequence X
would head if it were a release operation.

4 An atomic operation A that is a release operation on an atomic object M synchronizes with an acquire fence
B if there exists some atomic operation X on M such that X is sequenced before B and reads the value
written by A or a value written by any side effect in the release sequence headed by A.

void atomic_thread_fence(memory_order order);

§ 29.8 1127

c© ISO/IEC N3092

5 Effects: depending on the value of order, this operation:

— has no effects, if order == memory_order_relaxed;

— is an acquire fence, if order == memory_order_acquire || order == memory_order_consume;

— is a release fence, if order == memory_order_release;

— is both an acquire fence and a release fence, if order == memory_order_acq_rel;

— is a sequentially consistent acquire and release fence, if order == memory_order_seq_cst.

void atomic_signal_fence(memory_order order);

6 Effects: equivalent to atomic_thread_fence(order), except that synchronizes with relationships are
established only between a thread and a signal handler executed in the same thread.

7 Note: atomic_signal_fence can be used to specify the order in which actions performed by the thread
become visible to the signal handler.

8 Note: compiler optimizations and reorderings of loads and stores are inhibited in the same way as with
atomic_thread_fence, but the hardware fence instructions that atomic_thread_fence would have
inserted are not emitted.

§ 29.8 1128

c© ISO/IEC N3092

30 Thread support library [thread]
30.1 General [thread.general]

1 The following subclauses describe components to create and manage threads (1.10), perform mutual exclu-
sion, and communicate conditions between threads, as summarized in Table 145.

Table 145 — Thread support library summary

Subclause Header(s)
30.3 Threads <thread>
30.4 Mutual exclusion <mutex>
30.5 Condition variables <condition_variable>
30.6 Futures <future>

30.2 Requirements [thread.req]

30.2.1 Template parameter names [thread.req.paramname]

1 Throughout this Clause, the names of template parameters are used to express type requirements.

2 If a parameter is Predicate, operator() applied to the actual template argument shall return a value that
is convertible to bool.

30.2.2 Exceptions [thread.req.exception]

1 Some functions described in this Clause are specified to throw exceptions of type system_error (19.5.6).
Such exceptions shall be thrown if any of the function’s error conditions is detected or a call to an operating
system or other underlying API results in an error that prevents the library function from meeting its
specifications. Failure to allocate storage shall be reported as described in 17.6.4.11.

[Example: Consider a function in this clause that is specified to throw exceptions of type system_error
and specifies error conditions that include operation_not_permitted for a thread that does not have the
privilege to perform the operation. Assume that, during the execution of this function, an errno of EPERM is
reported by a POSIX API call used by the implementation. Since POSIX specifies an errno of EPERM when
“the caller does not have the privilege to perform the operation”, the implementation maps EPERM to an
error_condition of operation_not_permitted (19.5) and an exception of type system_error is thrown.
— end example]

2 The error_code reported by such an exception’s code() member function shall compare equal to one of
the conditions specified in the function’s error condition element.

30.2.3 Native handles [thread.req.native]

1 Several classes described in this Clause have members native_handle_type and native_handle. The
presence of these members and their semantics is implementation-defined. [Note: These members allow

§ 30.2.3 1129

c© ISO/IEC N3092

implementations to provide access to implementation details. Their names are specified to facilitate portable
compile-time detection. Actual use of these members is inherently non-portable. — end note]

30.2.4 Timing specifications [thread.req.timing]

1 Several functions described in this Clause take an argument to specify a timeout. These timeouts are
specified as either a duration or a time_point type as specified in (20.10).

2 The member functions whose names end in _for take an argument that specifies a relative time. Implemen-
tations should use a monotonic clock to measure time for these functions. [Note: Implementations are not
required to use a monotonic clock because such a clock may not be available. — end note]

3 The resolution of timing provided by an implementation depends on both operating system and hardware.
The finest resolution provided by an implementation is called the native resolution.

30.3 Threads [thread.threads]

1 30.3 describes components that can be used to create and manage threads. [Note: These threads are
intended to map one-to-one with operating system threads. — end note]

Header <thread> synopsis
namespace std {

#define __STDCPP_THREADS __cplusplus

class thread;

void swap(thread& x, thread& y);

namespace this_thread {
thread::id get_id();

void yield();
template <class Clock, class Duration>

void sleep_until(const chrono::time_point<Clock, Duration>& abs_time);
template <class Rep, class Period>

void sleep_for(const chrono::duration<Rep, Period>& rel_time);
}

}

30.3.1 Class thread [thread.thread.class]

1 The class thread provides a mechanism to create a new thread of execution, to join with a thread (i.e., wait
for a thread to complete), and to perform other operations that manage and query the state of a thread. A
thread object uniquely represents a particular thread of execution. That representation may be transferred
to other thread objects in such a way that no two thread objects simultaneously represent the same thread
of execution. A thread of execution is detached when no thread object represents that thread. Objects of
class thread can be in a state that does not represent a thread of execution. [Note: A thread object does
not represent a thread of execution after default construction, after being moved from, or after a successful
call to detach or join. — end note]

namespace std {
class thread {
public:

// types:
class id;

§ 30.3.1 1130

c© ISO/IEC N3092

typedef implementation-defined native_handle_type; // See 30.2.3

// construct/copy/destroy:
thread();
template <class F, class ...Args> explicit thread(F&& f, Args&&... args);
~thread();
thread(const thread&) = delete;
thread(thread&&);
thread& operator=(const thread&) = delete;
thread& operator=(thread&&);

// members:
void swap(thread&);
bool joinable() const;
void join();
void detach();
id get_id() const;
native_handle_type native_handle(); // See 30.2.3

// static members:
static unsigned hardware_concurrency();

};
}

30.3.1.1 Class thread::id [thread.thread.id]

namespace std {
class thread::id {
public:

id();
};

bool operator==(thread::id x, thread::id y);
bool operator!=(thread::id x, thread::id y);
bool operator<(thread::id x, thread::id y);
bool operator<=(thread::id x, thread::id y);
bool operator>(thread::id x, thread::id y);
bool operator>=(thread::id x, thread::id y);

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<< (basic_ostream<charT, traits>& out, thread::id id);

// Hash support
template <class T> struct hash;
template <> struct hash<thread::id>;

}

1 An object of type thread::id provides a unique identifier for each thread of execution and a single distinct
value for all thread objects that do not represent a thread of execution (30.3.1). Each thread of execution has
an associated thread::id object that is not equal to the thread::id object of any other thread of execution
and that is not equal to the thread::id object of any std::thread object that does not represent threads
of execution.

§ 30.3.1.1 1131

c© ISO/IEC N3092

2 thread::id shall be a trivially copyable class (Clause 9). The library may reuse the value of a thread::id
of a terminated thread that can no longer be joined.

3 [Note: Relational operators allow thread::id objects to be used as keys in associative containers. — end
note]

id();

4 Effects: Constructs an object of type id.

5 Throws: Nothing.

6 Postconditions: The constructed object does not represent a thread of execution.

bool operator==(thread::id x, thread::id y).

7 Returns: true only if x and y represent the same thread of execution or neither x nor y represents a
thread of execution.

8 Throws: Nothing.

bool operator!=(thread::id x, thread::id y);

9 Returns: !(x == y)

10 Throws: Nothing.

bool operator<(thread::id x, thread::id y);

11 Returns: A value such that operator< is a total ordering as described in 25.4.

12 Throws: Nothing.

bool operator<=(thread::id x, thread::id y);

13 Returns: !(y < x)

14 Throws: Nothing.

bool operator>(thread::id x, thread::id y);

15 Returns: y < x

16 Throws: Nothing.

bool operator>=(thread::id x, thread::id y);

17 Returns: !(x < y)

18 Throws: Nothing.

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<< (basic_ostream<charT, traits>&& out, thread::id id);

19 Effects: Inserts an unspecified text representation of id into out. For two objects of type thread::id
x and y, if x == y the thread::id objects shall have the same text representation and if x != y the
thread::id objects shall have distinct text representations.

20 Returns: out

§ 30.3.1.1 1132

c© ISO/IEC N3092

template <> struct hash<thread::id>;

21 Requires: the template specialization shall meet the requirements of class template hash (20.8.15).

30.3.1.2 thread constructors [thread.thread.constr]

thread();

1 Effects: Constructs a thread object that does not represent a thread of execution.

2 Postcondition: get_id() == id()

3 Throws: Nothing.

template <class F, class ...Args> explicit thread(F&& f, Args&&... args);

Given a function as follows:
template <class T> typename decay<T>::type decay_copy(T&& v)

{ return std::forward<T>(v); }

4 Requires: F and each Ti in Args shall satisfy the MoveConstructible requirements. INVOKE(decay_-
copy(std::forward<F>(f)), decay_copy(std::forward<Args>(args))...) (20.8.2) shall be a valid
expression.

5 Effects: Constructs an object of type thread. The new thread of execution executes INVOKE(decay_-
copy(std::forward<F>(f)), decay_copy(std::forward<Args>(args))...) with the calls to decay_-
copy being evaluated in the constructing thread. Any return value from this invocation is ignored.
[Note: this implies that any exceptions not thrown from the invocation of the copy of f will be thrown
in the constructing thread, not the new thread. — end note] If the invocation of INVOKE(decay_-
copy(std::forward<F>(f)), decay_copy(std::forward<Args>(args))...) terminates with an
uncaught exception, std::terminate shall be called.

6 Synchronization: The invocation of the constructor happens before the invocation of the copy of f.

7 Postconditions: get_id() != id(). *this represents the newly started thread.

8 Throws: std::system_error if unable to start the new thread.

9 Error conditions:

— resource_unavailable_try_again — the system lacked the necessary resources to create an-
other thread, or the system-imposed limit on the number of threads in a process would be ex-
ceeded.

thread(thread&& x);

10 Effects: Constructs an object of type thread from x, and sets x to a default constructed state.

11 Postconditions: x.get_id() == id() and get_id() returns the value of x.get_id() prior to the
start of construction.

12 Throws: Nothing.

30.3.1.3 thread destructor [thread.thread.destr]

~thread();

§ 30.3.1.3 1133

c© ISO/IEC N3092

If joinable() then terminate(), otherwise no effects. [Note: Either implicitly detaching or joining
a joinable() thread in its destructor could result in difficult to debug correctness (for detach) or
performance (for join) bugs encountered only when an exception is raised. Thus the programmer must
ensure that the destructor is never executed while the thread is still joinable. — end note]

1 Throws: Nothing.

30.3.1.4 thread assignment [thread.thread.assign]

thread& operator=(thread&& x);

1 Effects: If joinable(), calls terminate(). Otherwise, assigns the state of x to *this and sets x to a
default constructed state.

2 Postconditions: x.get_id() == id() and get_id() returns the value of x.get_id() prior to the
assignment.

3 Throws: Nothing.

30.3.1.5 thread members [thread.thread.member]

void swap(thread& x);

1 Effects: Swaps the state of *this and x.

2 Throws: Nothing.

bool joinable() const;

3 Returns: get_id() != id()

4 Throws: Nothing.

void join();

5 Requires: joinable() is true.

6 Effects: Blocks until the thread represented by *this has completed.

7 Synchronization: The completion of the thread represented by *this happens before (1.10) join()
returns. [Note: Operations on *this are not synchronized. — end note]

8 Postconditions: The thread represented by *this has completed. get_id() == id().

9 Throws: std::system_error when an exception is required (30.2.2).

10 Error conditions:

— resource_deadlock_would_occur — if deadlock is detected or this->get_id() == std::this_-
thread::get_id().

— no_such_process — if the thread is not valid.

— invalid_argument — if the thread is not joinable.

void detach();

§ 30.3.1.5 1134

c© ISO/IEC N3092

11 Requires: joinable() is true.

12 Effects: The thread represented by *this continues execution without the calling thread blocking.
When detach() returns, *this no longer represents the possibly continuing thread of execution.
When the thread previously represented by *this ends execution, the implementation shall release
any owned resources.

13 Postcondition: get_id() == id().

14 Throws: std::system_error when an exception is required (30.2.2).

15 Error conditions:

— no_such_process — if the thread is not valid.

— invalid_argument — if the thread is not joinable.

id get_id() const;

16 Returns: A default constructed id object if *this does not represent a thread, otherwise this_-
thread::get_id() for the thread of execution represented by *this.

17 Throws: Nothing.

30.3.1.6 thread static members [thread.thread.static]

unsigned hardware_concurrency();

1 Returns: The number of hardware thread contexts. [Note: This value should only be considered to be
a hint. — end note] If this value is not computable or well defined an implementation should return
0.

2 Throws: Nothing.

30.3.1.7 thread specialized algorithms [thread.thread.algorithm]

void swap(thread& x, thread& y);

1 Effects: x.swap(y)

30.3.2 Namespace this_thread [thread.thread.this]

namespace std {
namespace this_thread {

thread::id get_id();

void yield();
template <class Clock, class Duration>

void sleep_until(const chrono::time_point<Clock, Duration>& abs_time);
template <class Rep, class Period>

void sleep_for(const chrono::duration<Rep, Period>& rel_time);
}

}

thread::id this_thread::get_id();

§ 30.3.2 1135

c© ISO/IEC N3092

1 Returns: An object of type thread::id that uniquely identifies the current thread of execution. No
other thread of execution shall have this id and this thread of execution shall always have this id. The
object returned shall not compare equal to a default constructed thread::id.

2 Throws: Nothing.

void this_thread::yield();

3 Effects: Offers the implementation the opportunity to reschedule.

4 Synchronization: None.

5 Throws: Nothing.

template <class Clock, class Duration>
void sleep_until(const chrono::time_point<Clock, Duration>& abs_time);

6 Effects: Blocks the calling thread at least until the time specified by abs_time.

7 Synchronization: None.

8 Throws: Nothing.

template <class Rep, class Period>
void sleep_for(const chrono::duration<Rep, Period>& rel_time);

9 Effects: Blocks the calling thread for at least the time specified by rel_time.

10 Synchronization: None.

11 Throws: Nothing.

30.4 Mutual exclusion [thread.mutex]

1 This section provides mechanisms for mutual exclusion: mutexes, locks, and call once. These mechanisms
ease the production of race-free programs (1.10).

Header <mutex> synopsis
namespace std {

class mutex;
class recursive_mutex;
class timed_mutex;
class recursive_timed_mutex;

struct defer_lock_t { };
struct try_to_lock_t { };
struct adopt_lock_t { };

constexpr defer_lock_t defer_lock { };
constexpr try_to_lock_t try_to_lock { };
constexpr adopt_lock_t adopt_lock { };

template <class Mutex> class lock_guard;
template <class Mutex> class unique_lock;

template <class Mutex>
void swap(unique_lock<Mutex>& x, unique_lock<Mutex>& y);

§ 30.4 1136

c© ISO/IEC N3092

template <class L1, class L2, class... L3> int try_lock(L1&, L2&, L3&...);
template <class L1, class L2, class... L3> void lock(L1&, L2&, L3&...);

struct once_flag {
constexpr once_flag();

once_flag(const once_flag&) = delete;
once_flag& operator=(const once_flag&) = delete;

};

template<class Callable, class ...Args>
void call_once(once_flag& flag, Callable func, Args&&... args);

}

30.4.1 Mutex requirements [thread.mutex.requirements]

1 A mutex object facilitates protection against data races and allows thread-safe synchronization of data
between threads. A thread owns a mutex from the time it successfully calls one of the lock functions until
it calls unlock. Mutexes may be either recursive or non-recursive, and may grant simultaneous ownership
to one or many threads. The mutex types supplied by the standard library provide exclusive ownership
semantics: only one thread may own the mutex at a time. Both recursive and non-recursive mutexes are
supplied.

2 This section describes requirements on template argument types used to instantiate templates defined in
the C++ standard library. The template definitions in the C++ standard library refer to the named Mutex
requirements whose details are set out below. In this description, m is an object of a Mutex type.

3 A Mutex type shall be DefaultConstructible and Destructible. If initialization of an object of a Mutex
type fails, an exception of type std::system_error shall be thrown. A Mutex type shall not be copyable
nor movable.

4 The error conditions for error codes, if any, reported by member functions of a Mutex type shall be:

— resource_unavailable_try_again — if any native handle type manipulated is not available.

— operation_not_permitted — if the thread does not have the privilege to perform the operation.

— device_or_resource_busy — if any native handle type manipulated is already locked.

— invalid_argument — if any native handle type manipulated as part of mutex construction is incorrect.

5 The implementation shall provide lock and unlock operations, as described below. The implementation shall
serialize those operations. [Note: Construction and destruction of an object of a Mutex type need not be
thread-safe; other synchronization should be used to ensure that Mutex objects are initialized and visible to
other threads. — end note]

6 The expression m.lock() shall be well-formed and have the following semantics:

7 Effects: Blocks the calling thread until ownership of the mutex can be obtained for the calling thread.

8 Postcondition: The calling thread owns the mutex.

9 Return type: void

10 Synchronization: Prior unlock() operations on the same object shall synchronize with (1.10) this
operation.

11 Throws: std::system_error when an exception is required (30.2.2).

§ 30.4.1 1137

c© ISO/IEC N3092

12 Error conditions:

— operation_not_permitted — if the thread does not have the privilege to perform the operation.

— resource_deadlock_would_occur — if the implementation detects that a deadlock would occur.

— device_or_resource_busy — if the mutex is already locked and blocking is not possible.

13 The expression m.try_lock() shall be well-formed and have the following semantics:

14 Effects: Attempts to obtain ownership of the mutex for the calling thread without blocking. If owner-
ship is not obtained, there is no effect and try_lock() immediately returns. An implementation may
fail to obtain the lock even if it is not held by any other thread. [Note: This spurious failure is normally
uncommon, but allows interesting implementations based on a simple compare_exchange (29). — end
note]

15 Return type: bool

16 Returns: true if ownership of the mutex was obtained for the calling thread, otherwise false.

17 Synchronization: If try_lock() returns true, prior unlock() operations on the same object synchro-
nize with (1.10) this operation. [Note: Since lock() does not synchronize with a failed subsequent
try_lock(), the visibility rules are weak enough that little would be known about the state after a
failure, even in the absence of spurious failures. — end note]

18 Throws: Nothing.

19 The expression m.unlock() shall be well-formed and have the following semantics:

20 Requires: The calling thread shall own the mutex.

21 Effects: Releases the calling thread’s ownership of the mutex.

22 Return type: void

23 Synchronization: This operation synchronizes with (1.10) subsequent lock operations that obtain own-
ership on the same object.

24 Throws: Nothing.

30.4.1.1 Class mutex [thread.mutex.class]

namespace std {
class mutex {
public:

constexpr mutex();
~mutex();

mutex(const mutex&) = delete;
mutex& operator=(const mutex&) = delete;

void lock();
bool try_lock();
void unlock();

typedef implementation-defined native_handle_type; // See 30.2.3
native_handle_type native_handle(); // See 30.2.3

};
}

§ 30.4.1.1 1138

c© ISO/IEC N3092

1 The class mutex provides a non-recursive mutex with exclusive ownership semantics. If one thread owns a
mutex object, attempts by another thread to acquire ownership of that object will fail (for try_lock()) or
block (for lock()) until the owning thread has released ownership with a call to unlock().

2 [Note: After a thread A has called unlock(), releasing a mutex, it is possible for another thread B to lock
the same mutex, observe that it is no longer in use, unlock it, and destroy it, before thread A appears to
have returned from its unlock call. Implementations are required to handle such scenarios correctly, as long
as thread A doesn’t access the mutex after the unlock call returns. These cases typically occur when a
reference-counted object contains a mutex that is used to protect the reference count. — end note]

3 The class mutex shall satisfy all the Mutex requirements (30.4.1). It shall be a standard-layout class (9).

4 [Note: A program may deadlock if the thread that owns a mutex object calls lock() on that object. If
the implementation can detect the deadlock, a resource_deadlock_would_occur error condition may be
observed. — end note]

5 The behavior of a program is undefined if it destroys a mutex object owned by any thread or a thread
terminates while owning a mutex object.

30.4.1.2 Class recursive_mutex [thread.mutex.recursive]

namespace std {
class recursive_mutex {
public:

recursive_mutex();
~recursive_mutex();

recursive_mutex(const recursive_mutex&) = delete;
recursive_mutex& operator=(const recursive_mutex&) = delete;

void lock();
bool try_lock();
void unlock();

typedef implementation-defined native_handle_type; // See 30.2.3
native_handle_type native_handle(); // See 30.2.3

};
}

1 The class recursive_mutex provides a recursive mutex with exclusive ownership semantics. If one thread
owns a recursive_mutex object, attempts by another thread to acquire ownership of that object will fail
(for try_lock()) or block (for lock()) until the first thread has completely released ownership.

2 The class recursive_mutex shall satisfy all the Mutex requirements (30.4.1). It shall be a standard-layout
class (9).

3 A thread that owns a recursive_mutex object may acquire additional levels of ownership by calling lock()
or try_lock() on that object. It is unspecified how many levels of ownership may be acquired by a single
thread. If a thread has already acquired the maximum level of ownership for a recursive_mutex object,
additional calls to try_lock() shall fail, and additional calls to lock() shall throw an exception of type
std::system_error. A thread shall call unlock() once for each level of ownership acquired by calls to
lock() and try_lock(). Only when all levels of ownership have been released may ownership be acquired
by another thread.

4 The behavior of a program is undefined if:

— it destroys a recursive_mutex object owned by any thread or

§ 30.4.1.2 1139

c© ISO/IEC N3092

— a thread terminates while owning a recursive_mutex object.

30.4.2 TimedMutex requirements [thread.timedmutex.requirements]

1 A TimedMutex type shall meet the requirements for a Mutex type. In addition, it shall meet the requirements
set out in this Clause 30.4.2, where rel_time denotes an instantiation of duration (20.10.3) and abs_time
denotes an instantiation of time_point (20.10.4).

2 The expression m.try_lock_for(rel_time) shall be well-formed and have the following semantics:

3 Requires: If the tick period of rel_time is not exactly convertible to the native tick period, the
duration shall be rounded up to the nearest native tick period.

4 Effects: The function attempts to obtain ownership of the mutex within the time specified by rel_time.
If the time specified by rel_time is less than or equal to 0, the function attempts to obtain ownership
without blocking (as if by calling try_lock()). The function shall return within the time specified by
rel_time only if it has obtained ownership of the mutex object. [Note: As with try_lock(), there is
no guarantee that ownership will be obtained if the lock is available, but implementations are expected
to make a strong effort to do so. — end note]

5 Return type: bool

6 Returns: true if ownership was obtained, otherwise false.

7 Synchronization: If try_lock_for() returns true, prior unlock() operations on the same object
synchronize with (1.10) this operation.

8 Throws: Nothing.

9 The expression m.try_lock_until(abs_time) shall be well-formed and have the following semantics:

10 Effects: The function attempts to obtain ownership of the mutex by the time specified by abs_time.
If abs_time has already passed, the function attempts to obtain ownership without blocking (as if
by calling try_lock()). The function shall return before the time specified by abs_time only if it
has obtained ownership of the mutex object. [Note: As with try_lock(), there is no guarantee that
ownership will be obtained if the lock is available, but implementations are expected to make a strong
effort to do so. — end note]

11 Return type: bool

12 Returns: true if ownership was obtained, otherwise false.

13 Synchronization: If try_lock_until() returns true, prior unlock() operations on the same object
synchronize with (1.10) this operation.

14 Throws: Nothing.

30.4.2.1 Class timed_mutex [thread.timedmutex.class]

namespace std {
class timed_mutex {
public:

timed_mutex();
~timed_mutex();

timed_mutex(const timed_mutex&) = delete;
timed_mutex& operator=(const timed_mutex&) = delete;

§ 30.4.2.1 1140

c© ISO/IEC N3092

void lock();
bool try_lock();
template <class Rep, class Period>

bool try_lock_for(const chrono::duration<Rep, Period>& rel_time);
template <class Clock, class Duration>

bool try_lock_until(const chrono::time_point<Clock, Duration>& abs_time);
void unlock();

typedef implementation-defined native_handle_type; // See 30.2.3
native_handle_type native_handle(); // See 30.2.3

};
}

1 The class timed_mutex provides a non-recursive mutex with exclusive ownership semantics. If one thread
owns a timed_mutex object, attempts by another thread to acquire ownership of that object will fail (for
try_lock()) or block (for lock(), try_lock_for(), and try_lock_until()) until the owning thread has
released ownership with a call to unlock() or the call to try_lock_for() or try_lock_until() times out
(having failed to obtain ownership).

2 The class timed_mutex shall satisfy all of the TimedMutex requirements (30.4.2). It shall be a standard-layout
class (9).

3 The behavior of a program is undefined if:

— it destroys a timed_mutex object owned by any thread,

— a thread that owns a timed_mutex object calls lock(), try_lock(), try_lock_for(), or try_lock_-
until() on that object, or

— a thread terminates while owning a timed_mutex object.

30.4.2.2 Class recursive_timed_mutex [thread.timedmutex.recursive]

namespace std {
class recursive_timed_mutex {
public:

recursive_timed_mutex();
~recursive_timed_mutex();

recursive_timed_mutex(const recursive_timed_mutex&) = delete;
recursive_timed_mutex& operator=(const recursive_timed_mutex&) = delete;

void lock();
bool try_lock();
template <class Rep, class Period>

bool try_lock_for(const chrono::duration<Rep, Period>& rel_time);
template <class Clock, class Duration>

bool try_lock_until(const chrono::time_point<Clock, Duration>& abs_time);
void unlock();

typedef implementation-defined native_handle_type; // See 30.2.3
native_handle_type native_handle(); // See 30.2.3

};
}

§ 30.4.2.2 1141

c© ISO/IEC N3092

1 The class recursive_timed_mutex provides a recursive mutex with exclusive ownership semantics. If one
thread owns a recursive_timed_mutex object, attempts by another thread to acquire ownership of that
object will fail (for try_lock()) or block (for lock(), try_lock_for(), and try_lock_until()) until the
owning thread has completely released ownership or the call to try_lock_for() or try_lock_until() times
out (having failed to obtain ownership).

2 The class recursive_timed_mutex shall satisfy all of the TimedMutex requirements (30.4.2). It shall be a
standard-layout class (9).

3 A thread that owns a recursive_timed_mutex object may acquire additional levels of ownership by calling
lock(), try_lock(), try_lock_for(), or try_lock_until() on that object. It is unspecified how many
levels of ownership may be acquired by a single thread. If a thread has already acquired the maximum level of
ownership for a recursive_timed_mutex object, additional calls to try_lock(), try_lock_for(), or try_-
lock_until() shall fail, and additional calls to lock() shall throw an exception of type std::system_error.
A thread shall call unlock() once for each level of ownership acquired by calls to lock(), try_lock(), try_-
lock_for(), and try_lock_until(). Only when all levels of ownership have been released may ownership
of the object be acquired by another thread.

4 The behavior of a program is undefined if:

— it destroys a recursive_timed_mutex object owned by any thread, or

— a thread terminates while owning a recursive_timed_mutex object.

30.4.3 Locks [thread.lock]

1 A lock is an object that holds a reference to a mutex and may unlock the mutex during the lock’s destruction
(such as when leaving block scope). A thread of execution may use a lock to aid in managing mutex ownership
in an exception safe manner. A lock is said to own a mutex if it is currently managing the ownership of
that mutex for a thread of execution. A lock does not manage the lifetime of the mutex it references.
[Note: Locks are intended to ease the burden of unlocking the mutex under both normal and exceptional
circumstances. — end note]

2 Some lock constructors take tag types which describe what should be done with the mutex object during
the lock’s construction.

namespace std {
struct defer_lock_t { }; // do not acquire ownership of the mutex
struct try_to_lock_t { }; // try to acquire ownership of the mutex

// without blocking
struct adopt_lock_t { }; // assume the calling thread has already

// obtained mutex ownership and manage it

extern const defer_lock_t defer_lock { };
extern const try_to_lock_t try_to_lock { };
extern const adopt_lock_t adopt_lock { };

}

30.4.3.1 Class template lock_guard [thread.lock.guard]

namespace std {
template <class Mutex>
class lock_guard {
public:

typedef Mutex mutex_type;

§ 30.4.3.1 1142

c© ISO/IEC N3092

explicit lock_guard(mutex_type& m);
lock_guard(mutex_type& m, adopt_lock_t);
~lock_guard();

lock_guard(lock_guard const&) = delete;
lock_guard& operator=(lock_guard const&) = delete;

private:
mutex_type& pm; // exposition only

};
}

1 An object of type lock_guard controls the ownership of a mutex object within a scope. A lock_guard
object maintains ownership of a mutex object throughout the lock_guard object’s lifetime. The behavior
of a program is undefined if the mutex referenced by pm does not exist for the entire lifetime (3.8) of the
lock_guard object.

explicit lock_guard(mutex_type& m);

2 Requires: If mutex_type is not a recursive mutex, the calling thread does not own the mutex m.

3 Effects: m.lock()

4 Postcondition: &pm == &m

lock_guard(mutex_type& m, adopt_lock_t);

5 Requires: The calling thread owns the mutex m.

6 Postcondition: &pm == &m

7 Throws: Nothing.

~lock_guard();

8 Effects: pm.unlock()

9 Throws: Nothing.

30.4.3.2 Class template unique_lock [thread.lock.unique]

namespace std {
template <class Mutex>
class unique_lock {
public:

typedef Mutex mutex_type;

// 30.4.3.2.1 construct/copy/destroy
unique_lock();
explicit unique_lock(mutex_type& m);
unique_lock(mutex_type& m, defer_lock_t);
unique_lock(mutex_type& m, try_to_lock_t);
unique_lock(mutex_type& m, adopt_lock_t);
template <class Clock, class Duration>

unique_lock(mutex_type& m, const chrono::time_point<Clock, Duration>& abs_time);
template <class Rep, class Period>

unique_lock(mutex_type& m, const chrono::duration<Rep, Period>& rel_time);

§ 30.4.3.2 1143

c© ISO/IEC N3092

~unique_lock();

unique_lock(unique_lock const&) = delete;
unique_lock& operator=(unique_lock const&) = delete;

unique_lock(unique_lock&& u);
unique_lock& operator=(unique_lock&& u);

// 30.4.3.2.2 locking
void lock();
bool try_lock();

template <class Rep, class Period>
bool try_lock_for(const chrono::duration<Rep, Period>& rel_time);

template <class Clock, class Duration>
bool try_lock_until(const chrono::time_point<Clock, Duration>& abs_time);

void unlock();

// 30.4.3.2.3 modifiers
void swap(unique_lock& u);
mutex_type *release();

// 30.4.3.2.4 observers
bool owns_lock() const;
explicit operator bool () const;
mutex_type* mutex() const;

private:
mutex_type *pm; // exposition only
bool owns; // exposition only

};

template <class Mutex>
void swap(unique_lock<Mutex>& x, unique_lock<Mutex>& y);

}

1 An object of type unique_lock controls the ownership of a mutex within a scope. Mutex ownership may
be acquired at construction or after construction, and may be transferred, after acquisition, to another
unique_lock object. Objects of type unique_lock are not copyable but are movable. The behavior of a
program is undefined if the contained pointer pm is not null and the mutex pointed to by pm does not exist
for the entire remaining lifetime (3.8) of the unique_lock object.

30.4.3.2.1 unique_lock constructors, destructor, and assignment [thread.lock.unique.cons]

unique_lock();

1 Effects: Constructs an object of type unique_lock.

2 Postconditions: pm == 0 and owns == false.

3 Throws: Nothing.

explicit unique_lock(mutex_type& m);

4 Requires: If mutex_type is not a recursive mutex the calling thread does not own the mutex.

§ 30.4.3.2.1 1144

c© ISO/IEC N3092

5 Effects: Constructs an object of type unique_lock and calls m.lock().

6 Postconditions: pm == &m and owns == true.

unique_lock(mutex_type& m, defer_lock_t);

7 Effects: Constructs an object of type unique_lock.

8 Postconditions: pm == &m and owns == false.

9 Throws: Nothing.

unique_lock(mutex_type& m, try_to_lock_t);

10 Requires: If mutex_type is not a recursive mutex the calling thread does not own the mutex.

11 Effects: Constructs an object of type unique_lock and calls m.try_lock().

12 Postconditions: pm == &m and owns == res, where res is the value returned by the call to m.try_-
lock().

13 Throws: Nothing.

unique_lock(mutex_type& m, adopt_lock_t);

14 Requires: The calling thread own the mutex.

15 Effects: Constructs an object of type unique_lock.

16 Postconditions: pm == &m and owns == true.

17 Throws: Nothing.

template <class Clock, class Duration>
unique_lock(mutex_type& m, const chrono::time_point<Clock, Duration>& abs_time);

18 Requires: If mutex_type is not a recursive mutex the calling thread does not own the mutex.

19 Effects: Constructs an object of type unique_lock and calls m.try_lock_until(abs_time).

20 Postconditions: pm == &m and owns == res, where res is the value returned by the call to m.try_-
lock_until(abs_time).

21 Throws: Nothing.

template <class Rep, class Period>
unique_lock(mutex_type& m, const chrono::duration<Rep, Period>& rel_time);

22 Requires: If mutex_type is not a recursive mutex the calling thread does not own the mutex.

23 Effects: Constructs an object of type unique_lock and calls m.try_lock_for(rel_time).

24 Postconditions: pm == &m and owns == res, where res is the value returned by the call to m.try_-
lock_for(rel_time).

25 Throws: Nothing.

unique_lock(unique_lock&& u);

26 Postconditions: pm == u_p.pm and owns == u_p.owns (where u_p is the state of u just prior to this
construction), u.pm == 0 and u.owns == false.

27 Throws: Nothing.

§ 30.4.3.2.1 1145

c© ISO/IEC N3092

unique_lock& operator=(unique_lock&& u);

28 Effects: If owns calls pm->unlock().

29 Postconditions: pm == u_p.pm and owns == u_p.owns (where u_p is the state of u just prior to this
construction), u.pm == 0 and u.owns == false.

30 Throws: Nothing.

31 [Note: With a recursive mutex it is possible for both *this and u to own the same mutex before the
assignment. In this case, *this will own the mutex after the assignment and u will not. — end note]

~unique_lock();

32 Effects: If owns calls pm->unlock().

33 Throws: Nothing.

30.4.3.2.2 unique_lock locking [thread.lock.unique.locking]

void lock();

1 Effects: pm->lock()

2 Postcondition: owns == true

3 Throws: Any exception thrown by pm->lock(). std::system_error if an exception is required (30.2.2).
std::system_error with an error condition of operation_not_permitted if pm is 0. std::system_-
error with an error condition of resource_deadlock_would_occur if on entry owns is true.

bool try_lock();

4 Effects: pm->try_lock()

5 Returns: The value returned by the call to try_lock().

6 Postcondition: owns == res, where res is the value returned by the call to try_lock().

7 Throws: Any exception thrown by pm->try_lock(). std::system_error if an exception is re-
quired (30.2.2). std::system_error with an error condition of operation_not_permitted if pm
is 0. std::system_error with an error condition of resource_deadlock_would_occur if on entry
owns is true.

template <class Clock, class Duration>
bool try_lock_until(const chrono::time_point<Clock, Duration>& abs_time);

8 Effects: pm->try_lock_until(abs_time)

9 Returns: The value returned by the call to try_lock_until(abs_time).

10 Postcondition: owns == res, where res is the value returned by the call to try_lock_until(abs_-
time).

11 Throws: Any exception thrown by pm->try_lock_until(). std::system_error if an exception is
required (30.2.2). std::system_error with an error condition of operation_not_permitted if pm is
0. std::system_error with an error condition of resource_deadlock_would_occur if on entry owns
is true.

template <class Rep, class Period>
bool try_lock_for(const chrono::duration<Rep, Period>& rel_time);

§ 30.4.3.2.2 1146

c© ISO/IEC N3092

12 Effects: pm->try_lock_for(rel_time).

13 Returns: The value returned by the call to try_lock_until(rel_time).

14 Postcondition: owns == res, where res is the value returned by the call to try_lock_for(rel_time).

15 Throws: Any exception thrown by pm->try_lock_for(). std::system_error if an exception is
required (30.2.2). std::system_error with an error condition of operation_not_permitted if pm is
0. std::system_error with an error condition of resource_deadlock_would_occur if on entry owns
is true.

void unlock();

16 Effects: pm->unlock()

17 Postcondition: owns == false

18 Throws: std::system_error when an exception is required (30.2.2).

19 Error conditions:

— operation_not_permitted — if on entry owns is false.

30.4.3.2.3 unique_lock modifiers [thread.lock.unique.mod]

void swap(unique_lock& u);

1 Effects: Swaps the data members of *this and u.

2 Throws: Nothing.

mutex_type *release();

3 Returns: The previous value of pm.

4 Postconditions: pm == 0 and owns == false.

5 Throws: Nothing.

template <class Mutex>
void swap(unique_lock<Mutex>& x, unique_lock<Mutex>& y);

6 Effects: x.swap(y)

7 Throws: Nothing.

30.4.3.2.4 unique_lock observers [thread.lock.unique.obs]

bool owns_lock() const;

1 Returns: owns

2 Throws: Nothing.

explicit operator bool() const;

3 Returns: owns

4 Throws: Nothing.

§ 30.4.3.2.4 1147

c© ISO/IEC N3092

mutex_type *mutex() const;

5 Returns: pm

6 Throws: Nothing.

30.4.4 Generic locking algorithms [thread.lock.algorithm]

template <class L1, class L2, class... L3> int try_lock(L1&, L2&, L3&...);

1 Requires: Each template parameter type shall meet the Mutex requirements, except that a call to try_-
lock() may throw an exception. [Note: The unique_lock class template meets these requirements
when suitably instantiated. — end note]

2 Effects: Calls try_lock() for each argument in order beginning with the first until all arguments have
been processed or a call to try_lock() fails, either by returning false or by throwing an exception.
If a call to try_lock() fails, unlock() shall be called for all prior arguments and there shall be no
further calls to try_lock().

3 Returns: -1 if all calls to try_lock() returned true, otherwise a 0-based index value that indicates
the argument for which try_lock() returned false.

template <class L1, class L2, class... L3> void lock(L1&, L2&, L3&...);

4 Requires: Each template parameter type shall meet the Mutex requirements, except that a call to try_-
lock() may throw an exception. [Note: The unique_lock class template meets these requirements
when suitably instantiated. — end note]

5 Effects: All arguments are locked via a sequence of calls to lock(), try_lock(), or unlock() on each
argument. The sequence of calls shall not result in deadlock, but is otherwise unspecified. [Note: A
deadlock avoidance algorithm such as try-and-back-off must be used, but the specific algorithm is not
specified to avoid over-constraining implementations. — end note] If a call to lock() or try_lock()
throws an exception, unlock() shall be called for any argument that had been locked by a call to
lock() or try_lock().

30.4.5 Call once [thread.once]

The class once_flag is an opaque data structure that call_once uses to initialize data without causing a
data race or deadlock.

30.4.5.1 Struct once_flag [thread.once.onceflag]

constexpr once_flag();

1 Effects: Constructs an object of type once_flag.

2 Synchronization: The construction of a once_flag object is not synchronized.

3 Postcondition: The object’s internal state is set to indicate to an invocation of call_once with the
object as its initial argument that no function has been called.

4 Throws: nothing.

§ 30.4.5.1 1148

c© ISO/IEC N3092

30.4.5.2 Function call_once [thread.once.callonce]

template<class Callable, class ...Args>
void call_once(once_flag& flag, Callable&& func, Args&&... args);

Given a function as follows:
template <class T> typename decay<T>::type decay_copy(T&& v)

{ return std::forward<T>(v); }

1 Requires: Callable and each Ti in Args shall satisfy the MoveConstructible requirements. INVOKE(decay_-
copy(std::forward<Callable>(func)), decay_copy(std::forward<Args>(args))...) (20.8.2) shall
be a valid expression.

2 Effects: Calls to call_once on the same once_flag object are serialized. If there has been a prior
effective call to call_once on the same once_flag object, the call to call_once returns without
invoking func. If there has been no prior effective call to call_once on the same once_flag object,
INVOKE(decay_copy(std::forward<Callable>(func)), decay_copy(std::forward<Args>(args))...)
is executed. The call to call_once is effective if and only if INVOKE(decay_copy(std::forward<Callable>(
func)), decay_copy(std::forward<Args>(args))...) returns without throwing an exception. If
an exception is thrown it is propagated to the caller.

3 Synchronization: The completion of an effective call to call_once on a once_flag object synchronizes
with (1.10) all subsequent calls to call_once on the same once_flag object.

4 Throws: std::system_error when an exception is required (30.2.2), or any exception thrown by func.

5 Error conditions:

— invalid_argument — if the once_flag object is no longer valid.

[Example:
// global flag, regular function
void init();
std::once_flag flag;

void f() {
std::call_once(flag,init);

}

// function static flag, function object
struct initializer {

void operator()();
};

void g() {
static std::once_flag flag2;
std::call_once(flag2,initializer);

}

// object flag, member function
class information {

std::once_flag verified;
void verifier();

public:
void verify() { std::call_once(verified,verifier); }

};

§ 30.4.5.2 1149

c© ISO/IEC N3092

— end example]

30.5 Condition variables [thread.condition]

1 Condition variables provide synchronization primitives used to block a thread until notified by some other
thread that some condition is met or until a system time is reached. Class condition_variable provides
a condition variable that can only wait on an object of type unique_lock<mutex>, allowing maximum
efficiency on some platforms. Class condition_variable_any provides a general condition variable that
can wait on objects of user-supplied lock types.

2 Condition variables permit concurrent invocation of the wait, wait_for, wait_until, notify_one and
notify_all member functions.

3 The execution of notify_one and notify_all shall be atomic. The execution of wait, wait_for, and
wait_until shall be performed in three atomic parts:

1. the release of the mutex, and entry into the waiting state;

2. the unblocking of the wait; and

3. the reacquisition of the lock.

4 The implementation shall behave as if notify_one, notify_all, and each part of the wait, wait_for, and
wait_until executions are executed in some unspecified total order.

5 Condition variable construction and destruction need not be synchronized.

Header condition_variable synopsis
namespace std {

class condition_variable;
class condition_variable_any;

void notify_all_at_thread_exit(condition_variable& cond, unique_lock<mutex> lk);

enum class cv_status { no_timeout, timeout };
}

void notify_all_at_thread_exit(condition_variable& cond, unique_lock<mutex> lk);

6 Requires: lk is locked by the calling thread and either

— no other thread is waiting on cond, or

— lk.mutex() returns the same value for each of the lock arguments supplied by all concurrently
waiting (via wait, wait_for, or wait_until) threads.

7 Effects: transfers ownership of the lock associated with lk into internal storage and schedules cond to
be notified when the current thred exits, after all objects of thread storage duration associated with
the current thread have been destroyed. This notification shall be as if

lk.unlock();
cond.notify_all();

8 Note: The supplied lock will be held until the thread exits, and care must be taken to ensure that
this does not cause deadlock due to lock ordering issues. After calling notify_all_at_thread_exit
it is recommended that the thread should be exited as soon as possible, and that no blocking or
time-consuming tasks are run on that thread.

§ 30.5 1150

c© ISO/IEC N3092

9 Note: It is the user’s responsibility to ensure that waiting threds do not erroneously assume that the
thread has finished if they experience spurious wakeups. This typically requires that the condition
being waited for is satisfied while holding the lock on lk, and that this lock is not released and
reacquired prior to calling notify_all_at_thread_exit.

30.5.1 Class condition_variable [thread.condition.condvar]

namespace std {
class condition_variable {
public:

condition_variable();
~condition_variable();

condition_variable(const condition_variable&) = delete;
condition_variable& operator=(const condition_variable&) = delete;

void notify_one();
void notify_all();
void wait(unique_lock<mutex>& lock);
template <class Predicate>

void wait(unique_lock<mutex>& lock, Predicate pred);
template <class Clock, class Duration>

cv_status wait_until(unique_lock<mutex>& lock,
const chrono::time_point<Clock, Duration>& abs_time);

template <class Clock, class Duration, class Predicate>
bool wait_until(unique_lock<mutex>& lock,

const chrono::time_point<Clock, Duration>& abs_time,
Predicate pred);

template <class Rep, class Period>
cv_status wait_for(unique_lock<mutex>& lock,

const chrono::duration<Rep, Period>& rel_time);
template <class Rep, class Period, class Predicate>

bool wait_for(unique_lock<mutex>& lock,
const chrono::duration<Rep, Period>& rel_time,
Predicate pred);

typedef implementation-defined native_handle_type; // See 30.2.3
native_handle_type native_handle(); // See 30.2.3

};
}

1 The class condition_variable shall be a standard-layout class (9).

condition_variable();

2 Effects: Constructs an object of type condition_variable.

3 Throws: std::system_error when an exception is required (30.2.2).

4 Error conditions:

— resource_unavailable_try_again — if some non-memory resource limitation prevents initial-
ization.

§ 30.5.1 1151

c© ISO/IEC N3092

~condition_variable();

5 Requires: There shall be no thread blocked on *this. [Note: That is, all threads shall have been
notified; they may subsequently block on the lock specified in the wait. This relaxes the usual rules,
which would have required all wait calls to happen before destruction. Only the notification to unblock
the wait must happen before destruction. The user must take care to ensure that no threads wait on
*this once the destructor has been started, especially when the waiting threads are calling the wait
functions in a loop or using the overloads of wait, wait_for, or wait_until that take a predicate.
— end note]

6 Effects: Destroys the object.

7 Throws: Nothing.

void notify_one();

8 Effects: If any threads are blocked waiting for *this, unblocks one of those theads.

9 Throws: Nothing.

void notify_all();

10 Effects: Unblocks all threads that are blocked waiting for *this.

11 Throws: Nothing.

void wait(unique_lock<mutex>& lock);

12 Requires: lock is locked by the calling thread, and either

— no other thread is waiting on this condition_variable object or

— lock.mutex() returns the same value for each of the lock arguments supplied by all concurrently
waiting (via wait or timed_wait) threads.

13 Effects:

— Atomically calls lock.unlock() and blocks on *this.

— When unblocked, calls lock.lock() (possibly blocking on the lock), then returns.

— The function will unblock when signaled by a call to notify_one() or a call to notify_all(),
or spuriously.

— If the function exits via an exception, lock.lock() shall be called prior to exiting the function
scope.

14 Postcondition: lock is locked by the calling thread.

15 Throws: std::system_error when an exception is required (30.2.2).

16 Error conditions:

— equivalent error condition from lock.lock() or lock.unlock().

template <class Predicate>
void wait(unique_lock<mutex>& lock, Predicate pred);

17 Effects:
while (!pred())

wait(lock);

§ 30.5.1 1152

c© ISO/IEC N3092

template <class Clock, class Duration>
cv_status wait_until(unique_lock<mutex>& lock,

const chrono::time_point<Clock, Duration>& abs_time);

18 Requires: lock is locked by the calling thread, and either

— no other thread is waiting on this condition_variable object or

— lock.mutex() returns the same value for each of the lock arguments supplied by all concurrently
waiting (via wait, wait_for, or wait_until) threads.

19 Effects:

— Atomically calls lock.unlock() and blocks on *this.

— When unblocked, calls lock.lock() (possibly blocking on the lock), then returns.

— The function will unblock when signaled by a call to notify_one() or a call to notify_all(), if
abs_time <= Clock::now(), or spuriously.

— If the function exits via an exception, lock.lock() shall be called prior to exiting the function
scope.

20 Postcondition: lock is locked by the calling thread.

21 Returns: cv_status::timeout if the function unblocked because abs_time was reached, otherwise
cv_status::no_timeout.

22 Throws: std::system_error when an exception is required (30.2.2).

23 Error conditions:

— operation_not_permitted — if the thread does not own the lock.

— equivalent error condition from lock.lock() or lock.unlock().

template <class Rep, class Period>
cv_status wait_for(unique_lock<mutex>& lock,

const chrono::duration<Rep, Period>& rel_time);

24 Requires: lock is locked by the calling thread, and either

— no other thread is waiting on this condition_variable object or

— lock.mutex() returns the same value for each of the lock arguments supplied by all concurrently
waiting (via wait, wait_for, or wait_until) threads.

25 Effects:

— Atomically calls lock.unlock() and blocks on *this.

— When unblocked, calls lock.lock() (possibly blocking on the lock), then returns.

— The function will unblock when signaled by a call to notify_one() or a call to notify_all(),
by the elapsed time rel_time passing (30.2.4), or spuriously.

— If the function exits via an exception, lock.lock() shall be called prior to exiting the function
scope.

26 Returns: cv_status::timeout if the function unblocked because rel_time elapsed, otherwise cv_-
status::no_timeout.

27 Postcondition: lock is locked by the calling thread.

§ 30.5.1 1153

c© ISO/IEC N3092

28 Throws: system_error when an exception is required (30.2.2).

29 Error conditions:

— operation_not_permitted — if the thread does not own the lock.

— equivalent error condition from lock.lock() or lock.unlock().

template <class Clock, class Duration, class Predicate>
bool wait_until(unique_lock<mutex>& lock,

const chrono::time_point<Clock, Duration>& abs_time,
Predicate pred);

30 Effects:
while (!pred())

if (wait_until(lock, abs_time) == cv_status::timeout)
return pred();

return true;

31 Returns: pred()

32 [Note: The returned value indicates whether the predicate evaluates to true regardless of whether the
timeout was triggered. — end note]

template <class Rep, class Period, class Predicate>
bool wait_for(unique_lock<mutex>& lock,

const chrono::duration<Rep, Period>& rel_time,
Predicate pred);

33 Requires: lock is locked by the calling thread, and either

— no other thread is waiting on this condition_variable object or

— lock.mutex() returns the same value for each of the lock arguments supplied by all concurrently
waiting (via wait, wait_for, or wait_until) threads.

34 Effects:

— Executes a loop: Within the loop the function first evaluates pred() and exits the loop if the
result is true.

— Atomically calls lock.unlock() and blocks on *this.

— When unblocked, calls lock.lock() (possibly blocking on the lock).

— The function will unblock when signaled by a call to notify_one() or a call to notify_all(),
by the elapsed time rel_time passing (30.2.4), or spuriously.

— If the function exits via an exception, lock.lock() shall be called prior to exiting the function
scope.

— The loop terminates when pred() returns true or when the time duration specified by rel_time
has elapsed.

35 [Note: There is no blocking if pred() is initially true, even if the timeout has already expired. — end
note]

36 Postcondition: lock is locked by the calling thread.

37 Returns: pred()

§ 30.5.1 1154

c© ISO/IEC N3092

38 [Note: The returned value indicates whether the predicate evaluates to true regardless of whether the
timeout was triggered. — end note]

39 Throws: system_error when an exception is required (30.2.2).

40 Error conditions:

— operation_not_permitted — if the thread does not own the lock.

— equivalent error condition from lock.lock() or lock.unlock().

30.5.2 Class condition_variable_any [thread.condition.condvarany]

1 A Lock type shall meet the requirements for a Mutex type, except that try_lock is not required. [Note:
All of the standard mutex types meet this requirement. — end note]

namespace std {
class condition_variable_any {
public:

condition_variable_any();
~condition_variable_any();

condition_variable_any(const condition_variable_any&) = delete;
condition_variable_any& operator=(const condition_variable_any&) = delete;

void notify_one();
void notify_all();
template <class Lock>

void wait(Lock& lock);
template <class Lock, class Predicate>

void wait(Lock& lock, Predicate pred);

template <class Lock, class Clock, class Duration>
cv_status wait_until(Lock& lock, const chrono::time_point<Clock, Duration>& abs_time);

template <class Lock, class Clock, class Duration, class Predicate>
bool wait_until(Lock& lock, const chrono::time_point<Clock, Duration>& abs_time, Predicate pred);

template <class Lock, class Rep, class Period>
cv_status wait_for(Lock& lock, const chrono::duration<Rep, Period>& rel_time);

template <class Lock, class Rep, class Period, class Predicate>
bool wait_for(Lock& lock, const chrono::duration<Rep, Period>& rel_time, Predicate pred);

typedef implementation-defined native_handle_type; // See 30.2.3
native_handle_type native_handle(); // See 30.2.3

};
}

condition_variable_any();

2 Effects: Constructs an object of type condition_variable_any.

~condition_variable_any();

3 Requires: There shall be no thread blocked on *this. [Note: That is, all threads shall have been
notified; they may subsequently block on the lock specified in the wait. This relaxes the usual rules,
which would have required all wait calls to happen before destruction. Only the notification to unblock
the wait must happen before destruction. The user must take care to ensure that no threads wait on

§ 30.5.2 1155

c© ISO/IEC N3092

*this once the destructor has been started, especially when the waiting threads are calling the wait
functions in a loop or using the overloads of wait, wait_for, or wait_until that take a predicate.
— end note]

4 Effects: Destroys the object.

5 Throws: Nothing.

void notify_one();

6 Effects: If any threads are blocked waiting for *this, unblocks one of those theads.

7 Throws: Nothing.

void notify_all();

8 Effects: Unblocks all threads that are blocked waiting for *this.

9 Throws: Nothing.

template <class Lock>
void wait(Lock& lock);

10 Effects:

— Atomically calls lock.unlock() and blocks on *this.

— When unblocked, calls lock.lock() (possibly blocking on the lock) and returns.

— The function will unblock when signaled by a call to notify_one(), a call to notify_all(), or
spuriously.

— If the function exits via an exception, lock.lock() shall be called prior to exiting the function
scope.

11 Postcondition: lock is locked by the calling thread.

12 Throws: std::system_error when an exception is required (30.2.2).

13 Error conditions:

— equivalent error condition from lock.lock() or lock.unlock().

template <class Lock, class Predicate>
void wait(Lock& lock, Predicate pred);

14 Effects:
while (!pred())

wait(lock);

template <class Lock, class Clock, class Duration>
cv_status wait_until(Lock& lock, const chrono::time_point<Clock, Duration>& abs_time);

15 Effects:

— Atomically calls lock.unlock() and blocks on *this.

— When unblocked, calls lock.lock() (possibly blocking on the lock) and returns.

— The function will unblock when signaled by a call to notify_one() or a call to notify_all(), if
abs_time <= Clock::now(), or spuriously.

§ 30.5.2 1156

c© ISO/IEC N3092

— If the function exits via an exception, lock.lock() shall be called prior to exiting the function
scope.

16 Postcondition: lock is locked by the calling thread.

17 Returns: cv_status::timeout if the function unblocked because abs_time was reached, otherwise
cv_status::no_timeout.

18 Throws: std::system_error when an exception is required (30.2.2).

19 Error conditions:

— equivalent error condition from lock.lock() or lock.unlock().

template <class Lock, class Rep, class Period>
cv_status wait_for(Lock& lock, const chrono::duration<Rep, Period>& rel_time);

20 Effects:

— Atomically calls lock.unlock() and blocks on *this.

— When unblocked, calls lock.lock() (possibly blocking on the lock), then returns.

— The function will unblock when signaled by a call to notify_one() or a call to notify_all(),
by the elapsed time rel_time passing (30.2.4), or spuriously.

— If the function exits via an exception, lock.unlock() shall be called prior to exiting the function
scope.

21 Returns: cv_status::timeout if the function unblocked because rel_time elapsed, otherwise cv_-
status::no_timeout.

22 Postcondition: lock is locked by the calling thread.

23 Throws: system_error when an exception is required (30.2.2).

24 Error conditions:

— equivalent error condition from lock.lock() or lock.unlock().

template <class Lock, class Duration, class Predicate>
bool wait_until(Lock& lock, const chrono::time_point<Clock, Duration>& abs_time, Predicate pred);

25 Effects:
while (!pred())

if (wait_until(lock, abs_time) == cv_status::timeout)
return pred();

return true;

26 Returns: pred()

27 [Note: The returned value indicates whether the predicate evaluates to true regardless of whether the
timeout was triggered. — end note]

template <class Lock, class Rep, class Period, class Predicate>
bool wait_for(Lock& lock, const chrono::duration<Rep, Period>& rel_time, Predicate pred);

28 Effects:

— Executes a loop: Within the loop the function first evaluates pred() and exits the loop if the
result is true.

§ 30.5.2 1157

c© ISO/IEC N3092

— Atomically calls lock.unlock() and blocks on *this.

— When unblocked, calls lock.lock() (possibly blocking on the lock).

— The function will unblock when signaled by a call to notify_one() or a call to notify_all(),
by the elapsed time rel_time passing (30.2.4), or spuriously.

— If the function exits via an exception, lock.unlock() shall be called prior to exiting the function
scope.

— The loop terminates when pred() returns true or when the time duration specified by rel_time
has elapsed.

29 [Note: There is no blocking if pred() is initially true, even if the timeout has already expired. — end
note]

30 Postcondition: lock is locked by the calling thread.

31 Returns: pred()

32 [Note: The returned value indicates whether the predicate evaluates to true regardless of whether the
timeout was triggered. — end note]

33 Throws: system_error when an exception is required (30.2.2).

34 Error conditions:

— operation_not_permitted — if the thread does not own the lock.

— equivalent error condition from lock.lock() or lock.unlock().

30.6 Futures [futures]

30.6.1 Overview [futures.overview]

1 30.6 describes components that a C++ program can use to retrieve in one thread the result (value or
exception) from a function that has run in another thread. [Note: these components are not restricted to
multi-threaded programs but can be useful in single-threaded programs as well. — end note]

Header <future> synopsis
namespace std {

enum class future_errc {
broken_promise,
future_already_retrieved,
promise_already_satisfied,
no_state

};

enum class launch {
any,
async,
sync

};

enum class future_status {
ready,
timeout,
deferred

§ 30.6.1 1158

c© ISO/IEC N3092

};

template <> struct is_error_code_enum<future_errc> : public true_type { };
error_code make_error_code(future_errc e);
error_condition make_error_condition(future_errc e);

const error_category& future_category();

class future_error;

template <class R> class promise;
template <class R> class promise<R&>;
template <> class promise<void>;

template <class R>
void swap(promise<R>& x, promise<R>& y);

template <class R, class Alloc>
struct uses_allocator<promise<R>, Alloc>;

template <class R> class future;
template <class R> class future<R&>;
template <> class future<void>;

template <class R> class shared_future;
template <class R> class shared_future<R&>;
template <> class shared_future<void>;

template <class R> class atomic_future;
template <class R> class atomic_future<R&>;
template <> class atomic_future<void>;

template <class> class packaged_task; // undefined
template <class R, class... ArgTypes>

class packaged_task<R(ArgTypes...)>;

template <class R>
void swap(packaged_task<R(ArgTypes...)&, packaged_task<R(ArgTypes...)>&);

template <class R, class Alloc>
struct uses_allocator<packaged_task<R>, Alloc>;

template <class F, class... Args>
future<typename result_of<F(Args...)>::type>
async(F&& f, Args&&... args);

template <class F, class... Args>
future<typename result_of<F(Args...)>::type>
async(launch policy, F&& f, Args&&... args);

}

30.6.2 Error handling [futures.errors]

const error_category& future_category();

1 Returns: A reference to an object of a type derived from class error_category.

§ 30.6.2 1159

c© ISO/IEC N3092

2 The object’s default_error_condition and equivalent virtual functions shall behave as specified for
the class error_category. The object’s name virtual function shall return a pointer to the string
"future".

error_code make_error_code(future_errc e);

3 Returns: error_code(static_cast<int>(e), future_category()).

error_condition make_error_condition(future_errc e);

4 Returns: error_condition(static_cast<int>(e), future_category()).

30.6.3 Class future_error [futures.future_error]

namespace std {
class future_error : public logic_error {
public:

future_error(error_code ec); // exposition only

const error_code& code() const throw();
const char* what() const throw();

};
}

const error_code& code() const throw();

1 Returns: the value of ec that was passed to the object’s constructor.

const char *what() const throw();

2 Returns: an ntbs incorporating code().message().

30.6.4 Associated asynchronous state [futures.state]

1 Many of the classes introduced in this sub-clause use some state to communicate results. This associated
asynchronous state consists of some state information and some (possibly not yet evaluated) result, which
can be a (possibly void) value or an exception. [Note: Futures, promises, and tasks defined in this clause
reference such associated asynchronous state. — end note]

2 [Note: The result can be any kind of object including a function to compute that result, as used by async
when policy is launch::sync. — end note]

3 An asynchronous return object is an object that reads results from an associated asynchronous state.

4 An asynchronous provider is an object that provides a result to an associated asynchronous state. The result
of an associated asynchronous state is set by respective functions on the asynchronous provider. [Note: Such
as promises or tasks. — end note] The means of setting the result of an associated asynchronous state is
specified in the description of those classes and functions that create such a state object.

5 When the last reference to an associated asynchronous state is given up, any resources held by that associated
asynchronous state are released.

6 An associated asynchronous state is ready only if it holds a value or an exception ready for retrieval. Waiting
for an associated asynchronous state to become ready may invoke code to compute the result on the waiting
thread if so specified in the description of the class or function that creates the state object.

§ 30.6.4 1160

c© ISO/IEC N3092

7 Calls to functions that successfully set the stored result of an associated asynchronous state synchronize
with (1.10) calls to functions successfully detecting the ready state resulting from that setting. The storage
of the result (whether normal or exceptional) into the associated asynchronous state happens before (1.10)
that state is set to ready.

8 Accesses to the same associated asynchronous state conflict (1.10).

30.6.5 Class template promise [futures.promise]

namespace std {
template <class R>
class promise {
public:

promise();
template <class Allocator>

promise(allocator_arg_t, const Allocator& a);
promise(promise&& rhs);
promise(const promise& rhs) = delete;
~promise();

// assignment
promise& operator=(promise&& rhs);
promise& operator=(const promise& rhs) = delete;
void swap(promise& other);

// retrieving the result
future<R> get_future();

// setting the result
void set_value(see below);
void set_exception(exception_ptr p);

// setting the result with deferred notification
void set_value_at_thread_exit(const R& r);
void set_value_at_thread_exit(see below);
void set_exception_at_thread_exit(exception_ptr p);

};
template <class R>

void swap(promise<R>& x, promise<R>& y);
template <class R, class Alloc>

struct uses_allocator<promise<R>, Alloc>;
}

1 The implementation shall provide the template promise and two specializations, promise<R&> and promise<void>.
These differ only in the argument type of the member function set_value, as set out in its description, below.

template <class R, class Alloc>
struct uses_allocator<promise<R>, Alloc>

: true_type { };

2 Requires: Alloc shall be an Allocator (20.2.5).

promise();
template <class Allocator>

promise(allocator_arg_t, const Allocator& a);

§ 30.6.5 1161

c© ISO/IEC N3092

3 Effects: constructs a promise object and an associated asynchronous state. The second constructor
uses the allocator a to allocate memory for the associated asynchronous state.

promise(promise&& rhs);

4 Effects: constructs a new promise object and transfers ownership of the associated asynchronous state
of rhs (if any) to the newly-constructed object.

5 Postcondition: rhs has no associated asynchronous state.

6 Throws: nothing.

~promise();

7 Effects: if the associated asynchronous state of *this is not ready, stores an exception object of type
future_error with an error condition of broken_promise Any threads blocked in a function waiting
for the asynchronous state associated with *this to become ready are unblocked. Destroys *this and
releases its reference to its associated asynchronous state if any. If this is the last reference to that
associated asynchronous state, destroys that state.

promise& operator=(promise&& rhs);

8 Effects: promise<R>(std::move(rhs)).swap(*this).

9 Postcondition: rhs has no associated asynchronous state. *this has the associated asynchronous state
of rhs prior to the assignment.

10 Returns: *this.

11 Throws: nothing.

void swap(promise& other);

12 Effects: Exchanges the associated asynchronous state of *this and other.

13 Postcondition: *this has the associated asynchronous state (if any) that other had prior to the call
to swap. other has the associated asynchronous state (if any) that *this had prior to the call to swap.

14 Throws: Nothing.

future<R> get_future();

15 Returns: a future<R> object with the same associated asynchronous state as *this.

16 Throws: future_error if *this has no associated asynchronous state or if get_future has already
been called on a promise with the same associated asynchronous state as *this.

17 Error conditions:

— future_already_retrieved if get_future has already been called on a promise with the same
associated asynchronous state as *this.

— no_state if *this has no associated asynchronous state.

void promise::set_value(const R& r);
void promise::set_value(R&& r);
void promise<R&>::set_value(R& r);
void promise<void>::set_value();

§ 30.6.5 1162

c© ISO/IEC N3092

18 Effects: atomically stores r in the associated asynchronous state and sets that state to ready. Any
threads blocked in a call of a blocking function of any future that refers to the same associated
asynchronous state as *this are unblocked.

19 Throws:

— future_error if its associated asynchronous state already has a stored value or exception, or

— for the first version, any exception thrown by the copy constructor of R, or

— for the second version, any exception thrown by the move constructor of R.

20 Error conditions:

— promise_already_satisfied if its associated asynchronous state already has a stored value or
exception.

— no_state if *this has no associated asynchronous state.

21 Synchronization: calls to set_value and set_exception on a single promise object are serialized.
[Note: and they synchronize and serialize with other functions through the referred associated asyn-
chronous state. — end note]

void set_exception(exception_ptr p);

22 Effects: atomically stores p in the associated asynchronous state and sets that state to ready. Any
threads blocked in a call of a blocking function of any future that refers to the same associated
asynchronous state as *this are unblocked.

23 Throws: future_error if its associated asynchronous state already has a stored value or exception.

24 Error conditions:

— promise_already_satisfied if its associated asynchronous state already has a stored value or
exception.

— no_state if *this has no associated asynchronous state.

25 Synchronization: calls to set_value and set_exception on a single promise object are serialized.
[Note: and they synchronize and serialize with other functions through the referred associated asyn-
chronous state. — end note]

void promise::set_value_at_thread_exit(const R& r);
void promise::set_value_at_thread_exit(R&& r);
void promise<R&>::set_value_at_thread_exit(R& r);
void promise<void>::set_value_at_thread_exit();

26 Effects: Stores r in the associated asynchronous state without making the associated asynchronous
state ready immediately. Schedules the associated asynchronous state to be made ready when the
current thread exits, after all objects of thread storage duration associated with the current thread
have been destroyed.

27 Throws: future_error if an error condition occurs.

28 Error conditions:

— promise_already_satisfied if its associated asynchronous state already has a stored value or
exception.

— no_state if *this has no associated asynchronous state.

§ 30.6.5 1163

c© ISO/IEC N3092

void promise::set_exception_at_thread_exit(exception_ptr p);

29 Effects: Stores p in the associated asynchronous state without making the associated asynchronous
state ready immediately. Schedules the associated asynchronous state to be made ready when the
current thread exits, after all objects of thread storage duration associated with the current thread
have been destroyed.

30 Throws: future_error if an error condition occurs.

31 Error conditions:

— promise_already_satisfied if its associated asynchronous state already has a stored value or
exception.

— no_state if *this has no associated asynchronous state.

template <class R>
void swap(promise<R>& x, promise<R>& y);

32 Effects: x.swap(y).

30.6.6 Class template future [futures.unique_future]

1 The class template future defines a type for asynchronous return objects which do not share their associated
asynchronous state with other asynchronous return objects. A default-constructed future object has no
associated asynchronous state. A future object with associated asynchronous state can be created by func-
tions on asynchronous providers (30.6.4) or by the move constructor and shares its associated asynchronous
state with the original asynchronous provider. The result (value or exception) of a future object can be set
by calling a respective function on an object that shares the same associated asynchronous state.

2 [Note: member functions of future do not synchronize with themselves or with member function of
shared_future. — end note]

3 The effect of calling any member function other than the destructor, the move-assignment operator, or valid
on a future object for which valid() == false is undefined.

namespace std {
template <class R>
class future {
public:

future();
future(future &&);
future(const future& rhs) = delete;
~future();
future& operator=(const future& rhs) = delete;
future& operator=(future&&);

// retrieving the value
see below get();

// functions to check state
bool valid() const;

void wait() const;
template <class Rep, class Period>

future_status wait_for(const chrono::duration<Rep, Period>& rel_time) const;
template <class Clock, class Duration>

§ 30.6.6 1164

c© ISO/IEC N3092

future_status wait_until(const chrono::time_point<Clock, Duration>& abs_time) const;
};

}

4 The implementation shall provide the template future and two specializations, future<R&> and future<void>.
These differ only in the return type and return value of the member function get, as set out in its description,
below.

future();

5 Effects: constructs an empty future object that does not refer to an associated asynchronous state.

6 Postcondition: valid() == false.

future(future&& rhs);

7 Effects: move constructs a future object that refers to the associated asynchronous state that was
originally referred to by rhs (if any).

8 Postconditions:

— valid() returns the same value as rhs.valid() prior to the constructor invocation.

— rhs.valid() == false.

9 Throws: nothing.

~future();

10 Effects:

— gives up the reference to its associated asynchronous state.

— destroys *this.

future& operator=(future&& rhs);

11 Effects:

— if *this referred to an associated asynchronous state prior to the assignment it gives up this
reference.

— assigns the contents of rhs to *this.

Postcondition:

— valid() returns the same value as rhs.valid() prior to the assignment.

— rhs.valid() == false.

R future::get();
R& future<R&>::get();
void future<void>::get();

12 Note: as described above, the template and its two required specializations differ only in the return
type and return value of the member function get.

13 Requires: valid() == true.

14 Effects: wait()s until the associated asynchronous state is ready, then retrieves the value stored in
the associated asynchronous state.

§ 30.6.6 1165

c© ISO/IEC N3092

15 Returns:

— future::get() returns the value stored in the object’s associated asynchronous state. If the type
of the value is MoveAssignable the returned value is moved, otherwise it is copied.

— future<R&>::get() returns the reference stored as value in the object’s associated asynchronous
state.

— future<void>::get() returns nothing.

16 Throws: the stored exception, if an exception was stored in the associated asynchronous state.

17 Postcondition: valid() == false.

bool valid() const;

18 Returns: true only if *this refers to an associated asynchronous state.

void wait() const;

19 Requires: valid() == true.

20 Effects: blocks until the associated asynchronous state is ready.

template <class Rep, class Period>
future_status wait_for(const chrono::duration<Rep, Period>& rel_time) const;

21 Requires: valid() == true.

22 Effects: blocks until the associated asynchronous state is ready or until rel_time has elapsed.

23 Returns:

— future_status::deferred if the associated asynchronous state contains a deferred function that
is not running.

— future_status::ready if the associated state is ready.

— future_status::timeout if the function is returning because the time period specified by rel_-
time has elapsed.

template <class Clock, class Duration>
future_status wait_until(const chrono::time_point<Clock, Duration>& abs_time) const;

24 Requires: valid() == true.

25 Effects: blocks until the associated asynchronous state is ready or until the current time exceeds
abs_time.

26

— future_status::deferred if the associated asynchronous state contains a deferred function that
is not running.

— future_status::ready if the associated state is ready.

— future_status::timeout if the function is returning because the time point specified by abs_-
time has been reached.

§ 30.6.6 1166

c© ISO/IEC N3092

30.6.7 Class template shared_future [futures.shared_future]

1 The class template shared_future defines a type for asynchronous return objects which may share their
associated asynchronous state with other asynchronous return objects. A default-constructed shared_-
future object has no associated asynchronous state. A shared_future object with associated asynchronous
state can be created by conversion from a future object and shares its associated asynchronous state with the
original asynchronous provider (30.6.4) of the associated asynchronous state. The result (value or exception)
of a shared_future object can be set by calling a respective function on an object that shares the same
associated asynchronous state.

2 [Note: member functions of shared_future do not synchronize with themselves, but they synchronize with
the shared asynchronous associated state. — end note]

3 The effect of calling any member function other than the destructor, the move-assignment operator, or
valid() on a shared_future object for which valid() == false is undefined.

namespace std {
template <class R>
class shared_future {
public:

shared_future();
shared_future(const shared_future& rhs);
shared_future(future<R>&&);
shared_future(shared_future&& rhs);
~shared_future();
shared_future& operator=(const shared_future& rhs);
shared_future& operator=(shared_future&& rhs);

// retrieving the value
see below get() const;

// functions to check state
bool valid() const;

void wait() const;
template <class Rep, class Period>

future_status wait_for(const chrono::duration<Rep, Period>& rel_time) const;
template <class Clock, class Duration>

future_status wait_until(const chrono::time_point<Clock, Duration>& abs_time) const;
};

}

4 The implementation shall provide the template shared_future and two specializations, shared_future<R&>
and shared_future<void>. These differ only in the return type and return value of the member function
get, as set out in its description, below.

shared_future();

5 Effects: constructs an empty shared_future object that does not refer to an associated asynchronous
state.

6 Postcondition: valid() == false.

7 Throws: Nothing.

shared_future(const shared_future& rhs);

§ 30.6.7 1167

c© ISO/IEC N3092

8 Effects: constructs a shared_future object that refers to the same associated asynchronous state as
rhs (if any).

9 Postcondition: valid() returns the same value as rhs.valid().

shared_future(future<R>&& rhs);
shared_future(shared_future&& rhs);

10 Effects: move constructs a shared_future object that refers to the associated asynchronous state that
was originally referred to by rhs (if any).

11 Postconditions:

— valid() returns the same value as rhs.valid() returned prior to the constructor invocation.

— rhs.valid() == false.

12 Throws: nothing.

~shared_future();

13 Effects:

— gives up the reference to its associated asynchronous state.

— destroys *this.

shared_future& operator=(shared_future&& rhs);

14 Effects:

— if *this refers to an associated asynchronous state it gives up this reference.

— assigns the contents of rhs to *this.

15 Postconditions:

— valid() returns the same value as rhs.valid() returned prior to the assignment.

— rhs.valid() == false.

shared_future& operator=(const shared_future& rhs);

16 Effects:

— if *this refers to an associated asynchronous state it gives up this reference.

— assigns the contents of rhs to *this. [Note: as a result, *this refers to the same associated
asynchronous state as rhs (if any). — end note]

17 Postconditions: valid() == rhs.valid().

const R& shared_future::get() const;
R& shared_future<R&>::get() const;
void shared_future<void>::get() const;

18 Note: as described above, the template and its two required specializations differ only in the return
type and return value of the member function get.

19 Requires: valid() == true.

§ 30.6.7 1168

c© ISO/IEC N3092

20 Effects: wait()s until the associated asynchronous state is ready, then retrieves the value stored in
the associated asynchronous state.

21 Returns:

— shared_future::get() returns a const reference to the value stored in the object’s associated
asynchronous state.

— shared_future<R&>::get() returns the reference stored as value in the object’s associated asyn-
chronous state.

— shared_future<void>::get() returns nothing.

22 Throws: the stored exception, if an exception was stored in the associated asynchronous state.

bool valid() const;

23 Returns: true only if *this refers to an associated asynchronous state.

void wait() const;

24 Requires: valid() == true.

25 Effects: blocks until the associated asynchronous state is ready.

template <class Rep, class Period>
future_status wait_for(const chrono::duration<Rep, Period>& rel_time) const;

26 Requires: valid() == true.

27 Effects: blocks until the associated asynchronous state is ready or until rel_time has elapsed.

28 Returns:

— future_status::deferred if the associated asynchronous state contains a deferred function that
is not running.

— future_status::ready if the associated state is ready.

— future_status::timeout if the function is returning because the time period specified by rel_-
time has elapsed.

template <class Clock, class Duration>
future_status wait_until(const chrono::time_point<Clock, Duration>& abs_time) const;

29 Requires: valid() == true.

30 Effects: blocks until the associated asynchronous state is ready or until the current time exceeds
abs_time.

31 Returns:

— future_status::deferred if the associated asynchronous state contains a deferred function that
is not running.

— future_status::ready if the associated state is ready.

— future_status::timeout if the function is returning because the time point specified by abs_-
time has been reached.

§ 30.6.7 1169

c© ISO/IEC N3092

30.6.8 Class template atomic_future [futures.atomic_future]

1 The class template atomic_future defines a type for asynchronous return objects which may share their
associated asynchronous state with other asynchronous return objects. A single atomic_future may be
shared between threads. A default-constructed atomic_future object has no associated asynchronous state.
An atomic_future object with associated asynchronous state can be created by conversion from a future
object and shares its associated asynchronous state with the original asynchronous provider of the associated
state. The result (value or exception) of an atomic_future object can be set by calling a respective function
on an object that shares the same associated asynchronous state.

2 Unlike future and shared_future, member functions of atomic_future other than constructors and de-
structors are synchronization operations (1.10). Accessor member functions perform acquire operations on
the object. All member function calls shall be included in the order of memory_order_seq_cst opera-
tions (29.3).

namespace std {
template <class R>
class atomic_future {
public:

atomic_future();
atomic_future(const atomic_future& rhs);
atomic_future(future<R>&&);
~atomic_future();
atomic_future& operator=(const atomic_future& rhs);

// retrieving the value
see below get() const;

// functions to check state
bool valid() const;

void wait() const;
template <class Rep, class Period>

future_status wait_for(const chrono::duration<Rep, Period>& rel_time) const;
template <class Clock, class Duration>

future_status wait_until(const chrono::time_point<Clock, Duration>& abs_time) const;
};

}

atomic_future();

3 Effects: constructs an empty atomic_future object that does not refer to an associated asynchronous
state.

4 Postcondition: valid() == false.

atomic_future(const atomic_future& rhs);

5 Effects: constructs an atomic_future object that refers to the same associated asynchronous state as
rhs (if any).

6 Postcondition: valid() == rhs.valid().

atomic_future(future<R>&& rhs);

7 Effects: constructs an atomic_future object that refers to the associated asynchronous state that was
originally referred to by rhs (if any).

§ 30.6.8 1170

c© ISO/IEC N3092

8 Postcondition:

— valid() returns the same value as rhs.valid() returned prior to the constructor invocation.

— rhs.valid() == false.

~atomic_future();

9 Effects:

— gives up the reference to its associated asynchronous state.

— destroys *this.

atomic_future& operator=(const atomic_future& rhs);

10 Effects: assigns the contents of rhs to *this. [Note: as a result, *this refers to the same associated
asynchronous state as rhs (if any) after the assignment. — end note]

11 Synchronization: the assignment performs an acquire operation on rhs and a release operation on
*this.

12 Postcondition: valid() == rhs.valid().

13 Throws: future_error with an error condition of no_state if the precondition is not met.

const R& atomic_future::get() const;
R& atomic_future<R&>::get() const;
void atomic_future<void>::get() const;

14 Note: as described above, the template and its two required specializations differ only in the return
type and return value of the member function get.

15 Effects: wait()s until the associated asynchronous state is ready, then retrieves the value stored in
the associated asynchronous state.

16 Returns:

— atomic_future::get() returns a const reference to the value stored in the object’s associated
asynchronous state.

— atomic_future<R&>::get() returns the reference stored as value in the object’s associated asyn-
chronous state.

— atomic_future<void>::get() returns nothing.

17 Throws: the exception in the object’s associated asynchronous state if an exception was stored there
or a future_error exception object if an error condition occurs.

18 Error conditions: no_state if valid() == false. [Note: unlike future, calling get more than once
on the same atomic_future object is well defined and produces the result again.

bool valid() const;

19 Returns: true only if *this refers to an associated asynchronous state.

void wait() const;

20 Effects: blocks until the associated asynchronous state is ready.

21 Throws: future_error if an error condition occurs.

§ 30.6.8 1171

c© ISO/IEC N3092

22 Error conditions:

— no_state if *this has no associated asynchronous state.

template <class Rep, class period>
future_status wait_for(const chrono::duration<Rep, Period>& rel_time) const;

23 Effects: blocks until the associated asynchronous state is ready or until rel_time has elapsed.

24 Returns:

— future_status::deferred if the associated asynchronous state contains a deferred function that
is not running.

— future_status::ready if the associated asynchronous state is ready.

— future_status::timeout if the function is returning because the time period specified by rel_-
time has elapsed.

25 Throws: future_error if an error condition occurs.

26 Error conditions:

— no_state if *this has no associated asynchronous state.

template <class Clock, class Duration>
future_status wait_until(const chrono::time_point<Clock, Duration>& abs_time) const;

27 Effects: blocks until the associated asynchronous state is ready or until the current time exceeds
abs_time.

28 Returns:

— future_status::deferred if the associated asynchronous state contains a deferred function that
is not running.

— future_status::ready if the associated asynchronous state is ready.

— future_status::timeout if the function is returning because the time point specified by abs_-
time has been reached.

29 Throws: future_error if an error condition occurs.

30 Error conditions:

— no_state if *this has no associated asynchronous state.

30.6.9 Function template async [futures.async]

1 The template function async provides a mechanism to launch a function potentially in a new thread and
provides the result of the function in a future object with which it shares an associated asynchronous state.

template <class F, class... Args>
future<typename result_of<F(Args...)>::type>
async(F&& f, Args&&... args);

template <class F, class... Args>
future<typename result_of<F(Args...)>::type>
async(launch policy, F&& f, Args&&... args);

§ 30.6.9 1172

c© ISO/IEC N3092

2 Requires: F and each Ti in Args shall satisfy the MoveConstructible requirements. INVOKE(decay_-
copy(std::forward<F>(f)), decay_copy(std::forward<Args>(args))...) (20.8.2, 30.3.1.2) shall
be a valid expression.

3 Effects: The first function behaves the same as a call to the second function with a policy argument
of launch::any and the same arguments for F and Args. The second function creates an associated
asynchronous state that is associated with the returned future object. The further behavior of the
second function depends on the policy argument as follows:

— launch::async — executes INVOKE(decay_copy(std::forward<F>(f)),
decay_copy(std::forward<Args>(args))...) (20.8.2, 30.3.1.2) as if in a new thread of execu-
tion represented by a thread object with the calls to decay_copy() being evaluated in the thread
that called async. Any return value is stored as the result in the associated asynchronous state.
Any exception propagated from the execution of INVOKE(decay_copy(std::forward<F>(f)),
decay_copy(std::forward<Args>(args))...) is stored as the exceptional result in the associ-
ated asynchronous state. The thread object is stored in the associated asynchronous state and
affects the behavior of any future objects that reference that state.

— launch::sync — Stores decay_copy(std::forward<F>(f)) and
decay_copy(std::forward<Arg>(args))... in the associated asynchronous state. These copies
of f and args constitute a deferred function. Invocation of the deferred function evaluates
INVOKE(g, xyz) where g is the stored value of decay_copy(std::forward<F>(f)) and xyz is
the stored copy of decay_copy(std::forward<Args.(args)).... The associated asynchronous
state is not ready until the function has completed. The first call to a function waiting for
the associated asynchronous state created by this async call to become ready shall invoke the
deferred function in the thread that called the waiting function; all other calls waiting for the
same associated asynchronous state to become ready shall block until the deferred function has
completed.

— launch::any — the implementation may choose either policy above at any call to async. [Note:
implementations should defer invocations when no more concurrency can be effectively exploited.
— end note]

4 Returns: an object of type future<typename result_of<F(Args...)>:type> that refers to the as-
sociated asynchronous state created by this call to async.

5 Synchronization: the invocation of async happens before (1.10) the invocation of f. [Note: this
statement applies even when the corresponding future object is moved to another thread. — end
note] If the invocation is not deferred, a call to a waiting function on an asynchronous return object
that shares the associated asynchronous state created by this async call shall block until the associated
thread has completed. If the invocation is not deferred, the join() on the created thread happens-
before (1.10) the first function that successfully detects the ready status of the associated asynchronous
state returns or before the function that gives up the last reference to the associated asynchronous
state returns, whichever happens first. If the invocation is deferred, the completion of the invocation
of the deferred function happens-before the calls to the waiting functions return.

6 Throws: system_error if policy is launch::async and the implementation is unable to start a new
thread.

7 Error conditions:

— resource_unavailable_try_again — if policy is launch::async and the system is unable to
start a new thread.

8 Remarks: The first signature shall not participate in overload resolution if decay<F>::type is std::launch.

§ 30.6.9 1173

c© ISO/IEC N3092

9 [Example:
int work1(int value);
int work2(int value);
int work(int value) {

auto handle = std::async([=]{ return work2(value); });
int tmp = work1(value);
return tmp + handle.get(); // #1

}

[Note: line #1 might not result in concurrency because the async call uses the default launch::any policy,
which may use launch::sync, in which case the lambda might not be invoked until the get() call; in that
case, work1 and work2 are called on the same thread and there is no concurrency. — end note] — end
example]

30.6.10 Class template packaged_task [futures.task]

1 The class template packaged_task defines a type for wrapping a function or callable object so that the
return value of the function or callable object is stored in a future when it is invoked.

2 When the packaged_task object is invoked, its stored task is invoked and the result (whether normal or
exceptional) stored in the associated asynchronous state. Any futures that share the associated asynchronous
state will then be able to access the stored result.

namespace std {
template<class> class packaged_task; // undefined

template<class R, class... ArgTypes>
class packaged_task<R(ArgTypes...)> {
public:

typedef R result_type;

// construction and destruction
packaged_task();
template <class F>

explicit packaged_task(F f);
template <class F, class Allocator>

explicit packaged_task(allocator_arg_t, const Allocator& a, F f);
explicit packaged_task(R(*f)(ArgTypes...));
template <class F>

explicit packaged_task(F&& f);
template <class F, class Allocator>

explicit packaged_task(allocator_arg_t, const Allocator& a, F&& f);
~packaged_task();

// no copy
packaged_task(packaged_task&) = delete;
packaged_task& operator=(packaged_task&) = delete;

// move support
packaged_task(packaged_task&& other);
packaged_task& operator=(packaged_task&& other);
void swap(packaged_task& other);

explicit operator bool() const;

§ 30.6.10 1174

c© ISO/IEC N3092

// result retrieval
future<R> get_future();

// execution
void operator()(ArgTypes...);
void make_ready_at_thread_exit(ArgTypes...);

void reset();
};
template <class R, class... ArgTypes>

void swap(packaged_task<R(ArgTypes...)>& x, packaged_task<R(ArgTypes...)>& y);
template <class R, class Alloc>

struct uses_allocator<packaged_task<R>, Alloc>;
}

30.6.10.1 packaged_task member functions [futures.task.members]

packaged_task();

1 Effects: constructs a packaged_task object with no associated asynchronous state and no stored task.

2 Throws: nothing.

template <class F>
packaged_task(F f);

template <class F, class Allocator>
explicit packaged_task(allocator_arg_t, const Allocator& a, F f);

packaged_task(R(*f)(ArgTypes...));
template <class F>

packaged_task(F&& f);
template <class F, class Allocator>

explicit packaged_task(allocator_arg_t, const Allocator& a, F&& f);

3 Requires: INVOKE(f, t1, t2, ..., tN, R), where t1, t2, ..., tN are values of the corresponding
types in ArgTypes..., shall be a valid expression. Invoking a copy of f shall behave the same as
invoking f.

4 Effects: constructs a new packaged_task object with an associated asynchronous state and stores a
copy of f as the object’s stored task. The constructors that take an Allocator argument use it to
allocate memory needed to store the internal data structures.

5 Throws: any exceptions thrown by the copy or move constructor of f, or std::bad_alloc if memory
for the internal data structures could not be allocated.

packaged_task(packaged_task&& other);

6 Effects: constructs a new packaged_task object and transfers ownership of other’s associated asyn-
chronous state to *this, leaving other with no associated asynchronous state.

7 Postcondition: other has no associated asynchronous state.

8 Throws: nothing.

packaged_task& operator=(packaged_task&& other);

9 Effects: packaged_task<R, ArgTypes...>(other).swap(*this).

§ 30.6.10.1 1175

c© ISO/IEC N3092

~packaged_task();

10 Effects: if the associated asynchronous state of *this is not ready, stores an exception object of type
future_error with an error code of broken_promise. Any threads blocked in a function waiting
for the associated asynchronous state of *this to become ready are unblocked. Destroys *this and
releases its reference to its associated asynchronous state (if any). If this is the last reference to that
associated asynchronous state, destroys that state.

11 Throws: nothing.

void swap(packaged_task& other);

12 Effects: exchanges the associated asynchronous states and stored tasks of *this and other.

13 Postcondition: *this has the same associated asynchronous state and stored task (if any) as other
prior to the call to swap. other has the same associated asynchronous state and stored task (if any)
as *this prior to the call to swap.

14 Throws: nothing.

explicit operator bool() const;

15 Returns: true only if *this has an associated asynchronous state.

16 Throws: nothing.

future<R> get_future();

17 Returns: a future object that shares the same associated asynchronous state as *this.

18 Throws: a future_error object if an error occurs.

19 Error conditions:

— future_already_retrieved if get_future has already been called on a packaged_task object
with the same associated asynchronous state as *this.

— no_state if *this has no associated asynchronous state.

void operator()(ArgTypes... args);

20 Effects: INVOKE(f, t1, t2, ..., tN, R), where f is the stored task of *this and t1, t2, ..., tN
are the values in args.... If the task returns normally, the return value is stored as the asynchronous
result in the associated asynchronous state of *this, otherwise the exception thrown by the task is
stored. The associated asynchronous state of *this is made ready, and any threads blocked in a
function waiting for the associated asynchronous state of *this to become ready are unblocked.

21 Throws: a future_error exception object if there is no associated asynchronous state or the stored
task has already been invoked.

22 Error conditions:

— promise_already_satisfied if the associated asynchronous state is already ready.

— no_state if *this has no associated asynchronous state.

23 Synchronization: a successful call to operator() synchronizes with (1.10) a call to any member func-
tion of a future, shared_future, or atomic_future object that shares the associated asynchronous
state of *this. The completion of the invocation of the stored task and the storage of the result
(whether normal or exceptional) into the associated asynchronous state happens before (1.10) the

§ 30.6.10.1 1176

c© ISO/IEC N3092

state is set to ready. [Note: operator() synchronizes and serializes with other functions through the
associated asynchronous state. — end note]

void make_ready_at_thread_exit(ArgTypes... args);

24 Effects: INVOKE(f, t1, t2, ..., tN, R), where f is the stored task and t1, t2, ..., tN are the
values in args.... If the task returns normally, the return value is stored as the asynchronous result in
the associated asynchronous state of *this, otherwise the exception thrown by the task is stored. In
either case, this shall be done without making the state ready immediately. Schedules the associated
asynchronous state to be made ready when the current thread exits, after all objects of thread storage
duration associated with the current thread have been destroyed.

25 Throws: future_error if an error condition occurs.

26 Error conditions:

— promise_already_satisfied if the associated asynchronous state already has a stored value or
exception.

— no_state if *this has no associated asynchronous state.

void reset();

27 Effects: returns the object to a state as if a newly-constructed instance had just been assigned to
*this by *this = packaged_task(std::move(f)), where f is the task stored in *this. [Note: this
constructs a new associated asynchronous state for *this. The old state is discarded, as described in
the destructor for packaged_task. get_future may now be called again for *this. — end note]

28 Throws:

— bad_alloc if memory for the new associated state could not be allocated.

— any exception thrown by the copy constructor of the task stored in the associated state.

— future_error with an error condition of no_state if *this has no associated state.

30.6.10.2 packaged_task globals [futures.task.nonmembers]

template <class R, class... ArgTypes>
void swap(packaged_task<R(ArgTypes...)>& x, packaged_task<R(ArgTypes...)>& y);

1 Effects: x.swap(y)

2 Throws: Nothing.

template <class R, class Alloc>
struct uses_allocator<packaged_task<R>, Alloc>;

3 Requires: Alloc shall be an Allocator (20.2.5).

§ 30.6.10.2 1177

c© ISO/IEC N3092

Annex A (informative)
Grammar summary [gram]

1 This summary of C++ syntax is intended to be an aid to comprehension. It is not an exact statement
of the language. In particular, the grammar described here accepts a superset of valid C++ constructs.
Disambiguation rules (6.8, 7.1, 10.2) must be applied to distinguish expressions from declarations. Further,
access control, ambiguity, and type rules must be used to weed out syntactically valid but meaningless
constructs.

A.1 Keywords [gram.key]

1 New context-dependent keywords are introduced into a program by typedef (7.1.3), namespace (7.3.1),
class (clause 9), enumeration (7.2), and template (clause 14) declarations.

typedef-name:
identifier

namespace-name:
original-namespace-name
namespace-alias

original-namespace-name:
identifier

namespace-alias:
identifier

class-name:
identifier
template-id

enum-name:
identifier

template-name:
identifier

Note that a typedef-name naming a class is also a class-name (9.1).

A.2 Lexical conventions [gram.lex]

hex-quad:
hexadecimal-digit hexadecimal-digit hexadecimal-digit hexadecimal-digit

universal-character-name:
\u hex-quad
\U hex-quad hex-quad

§ A.2 1178

c© ISO/IEC N3092

preprocessing-token:
header-name
identifier
pp-number
character-literal
user-defined-character-literal
string-literal
user-defined-string-literal
preprocessing-op-or-punc
each non-white-space character that cannot be one of the above

token:
identifier
keyword
literal
operator
punctuator

header-name:
< h-char-sequence >
" q-char-sequence "

h-char-sequence:
h-char
h-char-sequence h-char

h-char:
any member of the source character set except new-line and >

q-char-sequence:
q-char
q-char-sequence q-char

q-char:
any member of the source character set except new-line and "

pp-number:
digit
. digit
pp-number digit
pp-number identifier-nondigit
pp-number e sign
pp-number E sign
pp-number .

identifier:
identifier-nondigit
identifier identifier-nondigit
identifier digit

identifier-nondigit:
nondigit
universal-character-name
other implementation-defined characters

nondigit: one of
a b c d e f g h i j k l m
n o p q r s t u v w x y z
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z _

digit: one of
0 1 2 3 4 5 6 7 8 9

§ A.2 1179

c© ISO/IEC N3092

preprocessing-op-or-punc: one of
{ } [] # ## ()
<: :> <% %> %: %:%: ; : ...
new delete ? :: . .*
+ - * / % ˆ & | ∼
! = < > += -= *= /= %=
ˆ= &= |= << >> >>= <<= == !=
<= >= && || ++ -- , ->* ->
and and_eq bitand bitor compl not not_eq
or or_eq xor xor_eq

literal:
integer-literal
character-literal
floating-literal
string-literal
boolean-literal
pointer-literal
user-defined-literal

integer-literal:
decimal-literal integer-suffixopt

octal-literal integer-suffixopt

hexadecimal-literal integer-suffixopt

decimal-literal:
nonzero-digit
decimal-literal digit

octal-literal:
0
octal-literal octal-digit

hexadecimal-literal:
0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-literal hexadecimal-digit

nonzero-digit: one of
1 2 3 4 5 6 7 8 9

octal-digit: one of
0 1 2 3 4 5 6 7

hexadecimal-digit: one of
0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E F

integer-suffix:
unsigned-suffix long-suffixopt

unsigned-suffix long-long-suffixopt

long-suffix unsigned-suffixopt

long-long-suffix unsigned-suffixopt

unsigned-suffix: one of
u U

long-suffix: one of
l L

long-long-suffix: one of
ll LL

§ A.2 1180

c© ISO/IEC N3092

character-literal:
’ c-char-sequence ’
u’ c-char-sequence ’
U’ c-char-sequence ’
L’ c-char-sequence ’

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any member of the source character set except

the single-quote ’, backslash \, or new-line character
escape-sequence
universal-character-name

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

simple-escape-sequence: one of
\’ \" \? \\
\a \b \f \n \r \t \v

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

floating-literal:
fractional-constant exponent-partopt floating-suffixopt

digit-sequence exponent-part floating-suffixopt

fractional-constant:
digit-sequenceopt . digit-sequence
digit-sequence .

exponent-part:
e signopt digit-sequence
E signopt digit-sequence

sign: one of
+ -

digit-sequence:
digit
digit-sequence digit

floating-suffix: one of
f l F L

string-literal:
encoding-prefixopt " s-char-sequenceopt "
encoding-prefixopt R raw-string

encoding-prefix:
u8
u
U
L

§ A.2 1181

c© ISO/IEC N3092

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source character set except

the double-quote ", backslash \, or new-line character
escape-sequence
universal-character-name

raw-string:
" d-char-sequenceopt (r-char-sequenceopt) d-char-sequenceopt "

r-char-sequence:
r-char
r-char-sequence r-char

r-char:
any member of the source character set, except

a right parenthesis) followed by the initial d-char-sequence
(which may be empty) followed by a double quote ".

d-char-sequence:
d-char
d-char-sequence d-char

d-char:
any member of the basic source character set except:

space, the left parenthesis (, the right parenthesis), the backslash \,
and the control characters representing horizontal tab,
vertical tab, form feed, and newline.

boolean-literal:
false
true

pointer-literal:
nullptr

user-defined-literal:
user-defined-integer-literal
user-defined-floating-literal
user-defined-string-literal
user-defined-character-literal

user-defined-integer-literal:
decimal-literal ud-suffix
octal-literal ud-suffix
hexadecimal-literal ud-suffix

user-defined-floating-literal:
fractional-constant exponent-partopt ud-suffix
digit-sequence exponent-part ud-suffix

user-defined-string-literal:
string-literal ud-suffix

user-defined-character-literal:
character-literal ud-suffix

ud-suffix:
identifier

§ A.2 1182

c© ISO/IEC N3092

A.3 Basic concepts [gram.basic]

translation-unit:
declaration-seqopt

A.4 Expressions [gram.expr]
primary-expression:

literal
this
(expression)
id-expression
lambda-expression

id-expression:
unqualified-id
qualified-id

unqualified-id:
identifier
operator-function-id
conversion-function-id
literal-operator-id
∼ class-name
∼ decltype-specifier
template-id

qualified-id:
::opt nested-name-specifier templateopt unqualified-id
:: identifier
:: operator-function-id
:: literal-operator-id
:: template-id

nested-name-specifier:
type-name ::
namespace-name ::
decltype-specifier ::
nested-name-specifier identifier ::
nested-name-specifier templateopt simple-template-id ::

lambda-expression:
lambda-introducer lambda-declaratoropt compound-statement

lambda-introducer:
[lambda-captureopt]

lambda-capture:
capture-default
capture-list
capture-default , capture-list

capture-default:
&
=

capture-list:
capture ...opt

capture-list , capture ...opt

§ A.4 1183

c© ISO/IEC N3092

capture:
identifier
& identifier
this

lambda-declarator:
(parameter-declaration-clause) attribute-specifieropt mutableopt

exception-specificationopt trailing-return-typeopt

postfix-expression:
primary-expression
postfix-expression [expression]
postfix-expression [braced-init-list]
postfix-expression (expression-listopt)
simple-type-specifier (expression-listopt)
typename-specifier (expression-listopt)
simple-type-specifier braced-init-list
typename-specifier braced-init-list
postfix-expression . templateopt id-expression
postfix-expression -> templateopt id-expression
postfix-expression . pseudo-destructor-name
postfix-expression -> pseudo-destructor-name
postfix-expression ++
postfix-expression --
dynamic_cast < type-id > (expression)
static_cast < type-id > (expression)
reinterpret_cast < type-id > (expression)
const_cast < type-id > (expression)
typeid (expression)
typeid (type-id)

expression-list:
initializer-list

pseudo-destructor-name:
::opt nested-name-specifieropt type-name ::∼ type-name
::opt nested-name-specifier template simple-template-id ::∼ type-name
::opt nested-name-specifieropt ∼ type-name
∼ decltype-specifier

unary-expression:
postfix-expression
++ cast-expression
-- cast-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-id)
sizeof ... (identifier)
alignof (type-id)
noexcept-expression
new-expression
delete-expression

unary-operator: one of
* & + - ! ∼

new-expression:
::opt new new-placementopt new-type-id new-initializeropt

::opt new new-placementopt (type-id) new-initializeropt

§ A.4 1184

c© ISO/IEC N3092

new-placement:
(expression-list)

new-type-id:
type-specifier-seq new-declaratoropt

new-declarator:
ptr-operator new-declaratoropt

noptr-new-declarator
noptr-new-declarator:

[expression] attribute-specifieropt

noptr-new-declarator [constant-expression] attribute-specifieropt

new-initializer:
(expression-listopt)
braced-init-list

delete-expression:
::opt delete cast-expression
::opt delete [] cast-expression

noexcept-expression:
noexcept (expression)

cast-expression:
unary-expression
(type-id) cast-expression

pm-expression:
cast-expression
pm-expression .* cast-expression
pm-expression ->* cast-expression

multiplicative-expression:
pm-expression
multiplicative-expression * pm-expression
multiplicative-expression / pm-expression
multiplicative-expression % pm-expression

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression

and-expression:
equality-expression
and-expression & equality-expression

§ A.4 1185

c© ISO/IEC N3092

exclusive-or-expression:
and-expression
exclusive-or-expression ˆ and-expression

inclusive-or-expression:
exclusive-or-expression
inclusive-or-expression | exclusive-or-expression

logical-and-expression:
inclusive-or-expression
logical-and-expression && inclusive-or-expression

logical-or-expression:
logical-and-expression
logical-or-expression || logical-and-expression

conditional-expression:
logical-or-expression
logical-or-expression ? expression : assignment-expression

assignment-expression:
conditional-expression
logical-or-expression assignment-operator initializer-clause
throw-expression

assignment-operator: one of
= *= /= %= += -= >>= <<= &= ˆ= |=

expression:
assignment-expression
expression , assignment-expression

constant-expression:
conditional-expression

A.5 Statements [gram.stmt]
statement:

labeled-statement
attribute-specifieropt expression-statement
attribute-specifieropt compound-statement
attribute-specifieropt selection-statement
attribute-specifieropt iteration-statement
attribute-specifieropt jump-statement
declaration-statement
attribute-specifieropt try-block

labeled-statement:
attribute-specifieropt identifier : statement
attribute-specifieropt case constant-expression : statement
attribute-specifieropt default : statement

expression-statement:
expressionopt ;

compound-statement:
{ statement-seqopt }

statement-seq:
statement
statement-seq statement

§ A.5 1186

c© ISO/IEC N3092

selection-statement:
if (condition) statement
if (condition) statement else statement
switch (condition) statement

condition:
expression
attribute-specifieropt type-specifier-seq declarator = initializer-clause
attribute-specifieropt type-specifier-seq declarator braced-init-list

iteration-statement:
while (condition) statement
do statement while (expression) ;
for (for-init-statement conditionopt ; expressionopt) statement
for (for-range-declaration : expression) statement

for-init-statement:
expression-statement
simple-declaration

for-range-declaration:
attribute-specifieropt type-specifier-seq declarator

jump-statement:
break ;
continue ;
return expressionopt ;
return braced-init-list ;
goto identifier ;

declaration-statement:
block-declaration

A.6 Declarations [gram.dcl]

declaration-seq:
declaration
declaration-seq declaration

declaration:
block-declaration
function-definition
template-declaration
explicit-instantiation
explicit-specialization
linkage-specification
namespace-definition
empty-declaration
attribute-declaration

block-declaration:
simple-declaration
asm-definition
namespace-alias-definition
using-declaration
using-directive
static_assert-declaration
alias-declaration
opaque-enum-declaration

alias-declaration:
using identifier = type-id ;

§ A.6 1187

c© ISO/IEC N3092

simple-declaration:
attribute-specifieropt decl-specifier-seqopt init-declarator-listopt ;

static_assert-declaration:
static_assert (constant-expression , string-literal) ;

empty-declaration:
;

attribute-declaration:
attribute-specifier ;

decl-specifier:
storage-class-specifier
type-specifier
function-specifier
friend
typedef
constexpr

decl-specifier-seq:
decl-specifier attribute-specifieropt

decl-specifier decl-specifier-seq
storage-class-specifier:

register
static
thread_local
extern
mutable

function-specifier:
inline
virtual
explicit

typedef-name:
identifier

type-specifier:
trailing-type-specifier
class-specifier
enum-specifier

trailing-type-specifier:
simple-type-specifier
elaborated-type-specifier
typename-specifier
cv-qualifier

type-specifier-seq:
type-specifier attribute-specifieropt

type-specifier type-specifier-seq
trailing-type-specifier-seq:

trailing-type-specifier attribute-specifieropt

trailing-type-specifier trailing-type-specifier-seq

§ A.6 1188

c© ISO/IEC N3092

simple-type-specifier:
::opt nested-name-specifieropt type-name
::opt nested-name-specifier template simple-template-id
char
char16_t
char32_t
wchar_t
bool
short
int
long
signed
unsigned
float
double
void
auto
decltype-specifier

type-name:
class-name
enum-name
typedef-name

decltype-specifier:
decltype (expression)

elaborated-type-specifier:
class-key attribute-specifieropt ::opt nested-name-specifieropt identifier
class-key ::opt nested-name-specifieropt templateopt simple-template-id
enum ::opt nested-name-specifieropt identifier

enum-name:
identifier

enum-specifier:
enum-head { enumerator-listopt }
enum-head { enumerator-list , }

enum-head:
enum-key attribute-specifieropt identifieropt enum-baseopt

enum-key attribute-specifieropt nested-name-specifier identifier
enum-baseopt

opaque-enum-declaration:
enum-key attribute-specifieropt identifier enum-baseopt ;

enum-key:
enum
enum class
enum struct

enum-base:
: type-specifier-seq

enumerator-list:
enumerator-definition
enumerator-list , enumerator-definition

enumerator-definition:
enumerator
enumerator = constant-expression

§ A.6 1189

c© ISO/IEC N3092

enumerator:
identifier

namespace-name:
original-namespace-name
namespace-alias

original-namespace-name:
identifier

namespace-definition:
named-namespace-definition
unnamed-namespace-definition

named-namespace-definition:
original-namespace-definition
extension-namespace-definition

original-namespace-definition:
inlineopt namespace identifier { namespace-body }

extension-namespace-definition:
inlineopt namespace original-namespace-name { namespace-body }

unnamed-namespace-definition:
inlineopt namespace { namespace-body }

namespace-body:
declaration-seqopt

namespace-alias:
identifier

namespace-alias-definition:
namespace identifier = qualified-namespace-specifier ;

qualified-namespace-specifier:
::opt nested-name-specifieropt namespace-name

using-declaration:
using typenameopt ::opt nested-name-specifier unqualified-id ;
using :: unqualified-id ;

using-directive:
attribute-specifieropt using namespace ::opt nested-name-specifieropt namespace-name ;

asm-definition:
asm (string-literal) ;

linkage-specification:
extern string-literal { declaration-seqopt }
extern string-literal declaration

attribute-specifier:
[[attribute-list]]

attribute-list:
attributeopt

attribute-list , attributeopt

attribute ...
attribute-list , attribute ...

attribute:
attribute-token attribute-argument-clauseopt

attribute-token:
identifier
attribute-scoped-token

§ A.6 1190

c© ISO/IEC N3092

attribute-scoped-token:
attribute-namespace :: identifier

attribute-namespace:
identifier

attribute-argument-clause:
(balanced-token-seq)

balanced-token-seq:
balanced-token
balanced-token-seq balanced-token

balanced-token:
(balanced-token-seq)
[balanced-token-seq]
{ balanced-token-seq }
any token other than a parenthesis, a bracket, or a brace

A.7 Declarators [gram.decl]

init-declarator-list:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator initializeropt

declarator:
ptr-declarator
noptr-declarator parameters-and-qualifiers trailing-return-type

ptr-declarator:
noptr-declarator
ptr-operator ptr-declarator

noptr-declarator:
declarator-id attribute-specifieropt

noptr-declarator parameters-and-qualifiers
noptr-declarator [constant-expressionopt] attribute-specifieropt

(ptr-declarator)

parameters-and-qualifiers:
(parameter-declaration-clause) attribute-specifieropt cv-qualifier-seqopt

ref-qualifieropt exception-specificationopt

trailing-return-type:
-> trailing-type-specifier-seq abstract-declaratoropt

ptr-operator:
* attribute-specifieropt cv-qualifier-seqopt

& attribute-specifieropt

&& attribute-specifieropt

::opt nested-name-specifier * attribute-specifieropt cv-qualifier-seqopt

cv-qualifier-seq:
cv-qualifier cv-qualifier-seqopt

cv-qualifier:
const
volatile

ref-qualifier:
&
&&

§ A.7 1191

c© ISO/IEC N3092

declarator-id:
...opt id-expression
::opt nested-name-specifieropt class-name

type-id:
type-specifier-seq abstract-declaratoropt

abstract-declarator:
ptr-abstract-declarator
noptr-abstract-declaratoropt parameters-and-qualifiers trailing-return-type
...

ptr-abstract-declarator:
noptr-abstract-declarator
ptr-operator ptr-abstract-declaratoropt

noptr-abstract-declarator:
noptr-abstract-declaratoropt parameters-and-qualifiers
noptr-abstract-declaratoropt [constant-expression] attribute-specifieropt

(ptr-abstract-declarator)

parameter-declaration-clause:
parameter-declaration-listopt ...opt
parameter-declaration-list , ...

parameter-declaration-list:
parameter-declaration
parameter-declaration-list , parameter-declaration

parameter-declaration:
attribute-specifieropt decl-specifier-seq declarator
attribute-specifieropt decl-specifier-seq declarator = assignment-expression
attribute-specifieropt decl-specifier-seq abstract-declaratoropt

attribute-specifieropt decl-specifier-seq abstract-declaratoropt = assignment-expression
function-definition:

attribute-specifieropt decl-specifier-seqopt declarator function-body
attribute-specifieropt decl-specifier-seqopt declarator = default ;
attribute-specifieropt decl-specifier-seqopt declarator = delete ;

function-body:
ctor-initializeropt compound-statement
function-try-block

initializer:
brace-or-equal-initializer
(expression-list)

brace-or-equal-initializer:
= initializer-clause
braced-init-list

initializer-clause:
assignment-expression
braced-init-list

initializer-list:
initializer-clause ...opt

initializer-list , initializer-clause ...opt

braced-init-list:
{ initializer-list ,opt }
{ }

§ A.7 1192

c© ISO/IEC N3092

A.8 Classes [gram.class]

class-name:
identifier
simple-template-id

class-specifier:
class-head { member-specificationopt }

class-head:
class-key attribute-specifieropt identifieropt base-clauseopt

class-key attribute-specifieropt nested-name-specifier identifier base-clauseopt

class-key attribute-specifieropt nested-name-specifieropt simple-template-id base-clauseopt

class-key:
class
struct
union

member-specification:
member-declaration member-specificationopt

access-specifier : member-specificationopt

member-declaration:
attribute-specifieropt decl-specifier-seqopt

member-declarator-listopt ;
function-definition ;opt

::opt nested-name-specifier templateopt unqualified-id ;
using-declaration
static_assert-declaration
template-declaration

member-declarator-list:
member-declarator
member-declarator-list , member-declarator

member-declarator:
declarator pure-specifieropt

declarator brace-or-equal-initializeropt

identifieropt attribute-specifieropt : constant-expression
pure-specifier:

= 0

A.9 Derived classes [gram.derived]

base-clause:
: base-specifier-list

base-specifier-list:
base-specifier ...opt

base-specifier-list , base-specifier ...opt

base-specifier:
attribute-specifieropt base-type-specifier
attribute-specifieropt virtual access-specifieropt base-type-specifier
attribute-specifieropt access-specifier virtualopt base-type-specifier

class-or-decltype:
::opt nested-name-specifieropt class-name
decltype-specifier

§ A.9 1193

c© ISO/IEC N3092

base-type-specifier:
class-or-decltype

access-specifier:
private
protected
public

A.10 Special member functions [gram.special]

conversion-function-id:
operator conversion-type-id

conversion-type-id:
type-specifier-seq conversion-declaratoropt

conversion-declarator:
ptr-operator conversion-declaratoropt

ctor-initializer:
: mem-initializer-list

mem-initializer-list:
mem-initializer ...opt

mem-initializer , mem-initializer-list ...opt

mem-initializer:
mem-initializer-id (expression-listopt)
mem-initializer-id braced-init-list

mem-initializer-id:
class-or-decltype
identifier

A.11 Overloading [gram.over]

operator-function-id:
operator operator

operator: one of
new delete new[] delete[]
+ - * / % ˆ & | ∼
! = < > += -= *= /= %=
ˆ= &= |= << >> >>= <<= == !=
<= >= && || ++ -- , ->* ->
() []

literal-operator-id:
operator "" identifier

A.12 Templates [gram.temp]

template-declaration:
template < template-parameter-list > declaration

template-parameter-list:
template-parameter
template-parameter-list , template-parameter

template-parameter:
type-parameter
parameter-declaration

§ A.12 1194

c© ISO/IEC N3092

type-parameter:
class ...opt identifieropt

class identifieropt = type-id
typename ...opt identifieropt

typename identifieropt = type-id
template < template-parameter-list > class ...opt identifieropt

template < template-parameter-list > class identifieropt = id-expression
simple-template-id:

template-name < template-argument-listopt >

template-id:
simple-template-id
operator-function-id < template-argument-listopt >
literal-operator-id < template-argument-listopt >

template-name:
identifier

template-argument-list:
template-argument ...opt

template-argument-list , template-argument ...opt

template-argument:
constant-expression
type-id
id-expression

typename-specifier:
typename ::opt nested-name-specifier identifier
typename ::opt nested-name-specifier templateopt simple-template-id

explicit-instantiation:
externopt template declaration

explicit-specialization:
template < > declaration

A.13 Exception handling [gram.except]

try-block:
try compound-statement handler-seq

function-try-block:
try ctor-initializeropt compound-statement handler-seq

handler-seq:
handler handler-seqopt

handler:
catch (exception-declaration) compound-statement

exception-declaration:
attribute-specifieropt type-specifier-seq declarator
attribute-specifieropt type-specifier-seq abstract-declaratoropt

...
throw-expression:

throw assignment-expressionopt

exception-specification:
dynamic-exception-specification
noexcept-specification

§ A.13 1195

c© ISO/IEC N3092

dynamic-exception-specification:
throw (type-id-listopt)

type-id-list:
type-id ...opt

type-id-list , type-id ...opt

noexcept-specification:
noexcept (constant-expression)
noexcept

A.14 Preprocessing directives [gram.cpp]

preprocessing-file:
groupopt

group:
group-part
group group-part

group-part:
if-section
control-line
text-line
non-directive

if-section:
if-group elif-groupsopt else-groupopt endif-line

if-group:
if constant-expression new-line groupopt

ifdef identifier new-line groupopt

ifndef identifier new-line groupopt

elif-groups:
elif-group
elif-groups elif-group

elif-group:
elif constant-expression new-line groupopt

else-group:
else new-line groupopt

endif-line:
endif new-line

control-line:
include pp-tokens new-line
define identifier replacement-list new-line
define identifier lparen identifier-listopt) replacement-list new-line
define identifier lparen ...) replacement-list new-line
define identifier lparen identifier-list, ...) replacement-list new-line
undef identifier new-line
line pp-tokens new-line
error pp-tokensopt new-line
pragma pp-tokensopt new-line
new-line

text-line:
pp-tokensopt new-line

§ A.14 1196

c© ISO/IEC N3092

non-directive:
pp-tokens new-line

lparen:
a (character not immediately preceded by white-space

identifier-list:
identifier
identifier-list , identifier

replacement-list:
pp-tokensopt

pp-tokens:
preprocessing-token
pp-tokens preprocessing-token

new-line:
the new-line character

§ A.14 1197

c© ISO/IEC N3092

Annex B (informative)
Implementation quantities [implimits]

1 Because computers are finite, C++ implementations are inevitably limited in the size of the programs they
can successfully process. Every implementation shall document those limitations where known. This docu-
mentation may cite fixed limits where they exist, say how to compute variable limits as a function of available
resources, or say that fixed limits do not exist or are unknown.

2 The limits may constrain quantities that include those described below or others. The bracketed number
following each quantity is recommended as the minimum for that quantity. However, these quantities are
only guidelines and do not determine compliance.

— Nesting levels of compound statements, iteration control structures, and selection control structures
[256].

— Nesting levels of conditional inclusion [256].

— Pointer, array, and function declarators (in any combination) modifying a class, arithmetic, or incom-
plete type in a declaration [256].

— Nesting levels of parenthesized expressions within a full-expression [256].

— Number of characters in an internal identifier or macro name [1 024].

— Number of characters in an external identifier [1 024].

— External identifiers in one translation unit [65 536].

— Identifiers with block scope declared in one block [1 024].

— Macro identifiers simultaneously defined in one translation unit [65 536].

— Parameters in one function definition [256].

— Arguments in one function call [256].

— Parameters in one macro definition [256].

— Arguments in one macro invocation [256].

— Characters in one logical source line [65 536].

— Characters in a string literal (after concatenation) [65 536].

— Size of an object [262 144].

— Nesting levels for #include files [256].

— Case labels for a switch statement (excluding those for any nested switch statements) [16 384].

— Data members in a single class [16 384].

— Enumeration constants in a single enumeration [4 096].

— Levels of nested class definitions in a single member-specification [256].

— Functions registered by atexit()[32].

1198

c© ISO/IEC N3092

— Direct and indirect base classes [16 384].

— Direct base classes for a single class [1 024].

— Members declared in a single class [4 096].

— Final overriding virtual functions in a class, accessible or not [16 384].

— Direct and indirect virtual bases of a class [1 024].

— Static members of a class [1 024].

— Friend declarations in a class [4 096].

— Access control declarations in a class [4 096].

— Member initializers in a constructor definition [6 144].

— Scope qualifications of one identifier [256].

— Nested external specifications [1 024].

— Recursive constexpr function invocations [512].

— Template arguments in a template declaration [1 024].

— Recursively nested template instantiations [1 024].

— Handlers per try block [256].

— Throw specifications on a single function declaration [256].

— Number of placeholders (20.8.10.1.3) [10].

1199

c© ISO/IEC N3092

Annex C (informative)
Compatibility [diff]
C.1 C++ and ISO C [diff.iso]

1 The subclauses of this subclause list the differences between C++ and ISO C, by the chapters of this docu-
ment.

C.1.1 Clause 2: lexical conventions [diff.lex]

2.4
Change: C++ style comments (//) are added
A pair of slashes now introduce a one-line comment.
Rationale: This style of comments is a useful addition to the language.
Effect on original feature: Change to semantics of well-defined feature. A valid ISO C expression
containing a division operator followed immediately by a C-style comment will now be treated as a C++

style comment. For example:
int a = 4;
int b = 8 //* divide by a*/ a;
+a;

Difficulty of converting: Syntactic transformation. Just add white space after the division operator.
How widely used: The token sequence //* probably occurs very seldom.

2.12
Change: New Keywords
New keywords are added to C++; see 2.12.
Rationale: These keywords were added in order to implement the new semantics of C++.
Effect on original feature: Change to semantics of well-defined feature. Any ISO C programs that used
any of these keywords as identifiers are not valid C++ programs.
Difficulty of converting: Syntactic transformation. Converting one specific program is easy. Converting
a large collection of related programs takes more work.
How widely used: Common.

2.14.3
Change: Type of character literal is changed from int to char
Rationale: This is needed for improved overloaded function argument type matching. For example:

int function(int i);
int function(char c);

function(’x’);

It is preferable that this call match the second version of function rather than the first.
Effect on original feature: Change to semantics of well-defined feature. ISO C programs which depend
on

§ C.1.1 1200

c© ISO/IEC N3092

sizeof(’x’) == sizeof(int)

will not work the same as C++ programs.
Difficulty of converting: Simple.
How widely used: Programs which depend upon sizeof(’x’) are probably rare.

Subclause 2.14.5:
Change: String literals made const
The type of a string literal is changed from “array of char” to “array of const char.” The type of a
char16_t string literal is changed from “array of some-integer-type” to “array of const char16_t.” The
type of a char32_t string literal is changed from “array of some-integer-type” to “array of const char32_t.”
The type of a wide string literal is changed from “array of wchar_t” to “array of const wchar_t.”
Rationale: This avoids calling an inappropriate overloaded function, which might expect to be able to
modify its argument.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Syntactic transformation. The fix is to add a cast:

char* p = "abc"; // valid in C, invalid in C++

void f(char*) {
char* p = (char*)"abc"; // OK: cast added
f(p);
f((char*)"def"); // OK: cast added

}

How widely used: Programs that have a legitimate reason to treat string literals as pointers to potentially
modifiable memory are probably rare.

C.1.2 Clause 3: basic concepts [diff.basic]

3.1
Change: C++ does not have “tentative definitions” as in C E.g., at file scope,

int i;
int i;

is valid in C, invalid in C++. This makes it impossible to define mutually referential file-local static objects,
if initializers are restricted to the syntactic forms of C. For example,

struct X { int i; struct X *next; };

static struct X a;
static struct X b = { 0, &a };
static struct X a = { 1, &b };

Rationale: This avoids having different initialization rules for built-in types and user-defined types.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation.
Rationale: In C++, the initializer for one of a set of mutually-referential file-local static objects must invoke
a function call to achieve the initialization.
How widely used: Seldom.

3.3
Change: A struct is a scope in C++, not in C

§ C.1.2 1201

c© ISO/IEC N3092

Rationale: Class scope is crucial to C++, and a struct is a class.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Semantic transformation.
How widely used: C programs use struct extremely frequently, but the change is only noticeable when
struct, enumeration, or enumerator names are referred to outside the struct. The latter is probably rare.

3.5 [also 7.1.6]
Change: A name of file scope that is explicitly declared const, and not explicitly declared extern, has
internal linkage, while in C it would have external linkage
Rationale: Because const objects can be used as compile-time values in C++, this feature urges program-
mers to provide explicit initializer values for each const. This feature allows the user to put constobjects
in header files that are included in many compilation units.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Semantic transformation
How widely used: Seldom

3.6
Change: Main cannot be called recursively and cannot have its address taken
Rationale: The main function may require special actions.
Effect on original feature: Deletion of semantically well-defined feature
Difficulty of converting: Trivial: create an intermediary function such as mymain(argc, argv.
How widely used: Seldom

3.9
Change: C allows “compatible types” in several places, C++ does not For example, otherwise-identical
struct types with different tag names are “compatible” in C but are distinctly different types in C++.
Rationale: Stricter type checking is essential for C++.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. The “typesafe linkage” mechanism will find many, but
not all, of such problems. Those problems not found by typesafe linkage will continue to function properly,
according to the “layout compatibility rules” of this International Standard.
How widely used: Common.

4.10
Change: Converting void* to a pointer-to-object type requires casting

char a[10];
void *b=a;
void foo() {

char *c=b;
}

ISO C will accept this usage of pointer to void being assigned to a pointer to object type. C++ will not.
Rationale: C++ tries harder than C to enforce compile-time type safety.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Could be automated. Violations will be diagnosed by the C++ translator. The
fix is to add a cast For example:

char *c = (char *) b;

How widely used: This is fairly widely used but it is good programming practice to add the cast when
assigning pointer-to-void to pointer-to-object. Some ISO C translators will give a warning if the cast is not
used.

§ C.1.2 1202

c© ISO/IEC N3092

4.10
Change: Only pointers to non-const and non-volatile objects may be implicitly converted to void*
Rationale: This improves type safety.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Could be automated. A C program containing such an implicit conversion from,
e.g., pointer-to-const-object to void* will receive a diagnostic message. The correction is to add an explicit
cast.
How widely used: Seldom.

C.1.3 Clause 5: expressions [diff.expr]

5.2.2
Change: Implicit declaration of functions is not allowed
Rationale: The type-safe nature of C++.
Effect on original feature: Deletion of semantically well-defined feature. Note: the original feature was
labeled as “obsolescent” in ISO C.
Difficulty of converting: Syntactic transformation. Facilities for producing explicit function declarations
are fairly widespread commercially.
How widely used: Common.

5.3.3, 5.4
Change: Types must be declared in declarations, not in expressions In C, a sizeof expression or cast
expression may create a new type. For example,

p = (void*)(struct x {int i;} *)0;

declares a new type, struct x .
Rationale: This prohibition helps to clarify the location of declarations in the source code.
Effect on original feature: Deletion of a semantically well-defined feature.
Difficulty of converting: Syntactic transformation.
How widely used: Seldom.

5.16, 5.17, 5.18

Change: The result of a conditional expression, an assignment expression, or a comma expression may be
an lvalue
Rationale: C++ is an object-oriented language, placing relatively more emphasis on lvalues. For example,
functions may return lvalues.
Effect on original feature: Change to semantics of well-defined feature. Some C expressions that implicitly
rely on lvalue-to-rvalue conversions will yield different results. For example,

char arr[100];
sizeof(0, arr)

yields 100 in C++ and sizeof(char*) in C.
Difficulty of converting: Programs must add explicit casts to the appropriate rvalue.
How widely used: Rare.

C.1.4 Clause 6: statements [diff.stat]

6.4.2, 6.6.4 (switch and goto statements)
Change: It is now invalid to jump past a declaration with explicit or implicit initializer (except across
entire block not entered)
Rationale: Constructors used in initializers may allocate resources which need to be de-allocated upon

§ C.1.4 1203

c© ISO/IEC N3092

leaving the block. Allowing jump past initializers would require complicated run-time determination of
allocation. Furthermore, any use of the uninitialized object could be a disaster. With this simple compile-
time rule, C++ assures that if an initialized variable is in scope, then it has assuredly been initialized.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation.
How widely used: Seldom.

6.6.3
Change: It is now invalid to return (explicitly or implicitly) from a function which is declared to return a
value without actually returning a value
Rationale: The caller and callee may assume fairly elaborate return-value mechanisms for the return of
class objects. If some flow paths execute a return without specifying any value, the implementation must
embody many more complications. Besides, promising to return a value of a given type, and then not
returning such a value, has always been recognized to be a questionable practice, tolerated only because
very-old C had no distinction between void functions and int functions.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. Add an appropriate return value to the source code,
such as zero.
How widely used: Seldom. For several years, many existing C implementations have produced warnings
in this case.

C.1.5 Clause 7: declarations [diff.dcl]

7.1.1
Change: In C++, the static or extern specifiers can only be applied to names of objects or functions
Using these specifiers with type declarations is illegal in C++. In C, these specifiers are ignored when used
on type declarations.

Example:
static struct S { // valid C, invalid in C++

int i;
};

Rationale: Storage class specifiers don’t have any meaning when associated with a type. In C++, class
members can be declared with the static storage class specifier. Allowing storage class specifiers on type
declarations could render the code confusing for users.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Syntactic transformation.
How widely used: Seldom.

7.1.3
Change: A C++ typedef name must be different from any class type name declared in the same scope
(except if the typedef is a synonym of the class name with the same name). In C, a typedef name and
a struct tag name declared in the same scope can have the same name (because they have different name
spaces)

Example:
typedef struct name1 { /∗...∗/ } name1; // valid C and C++

struct name { /∗...∗/ };
typedef int name; // valid C, invalid C++

§ C.1.5 1204

c© ISO/IEC N3092

Rationale: For ease of use, C++ doesn’t require that a type name be prefixed with the keywords class,
struct or union when used in object declarations or type casts.

Example:
class name { /∗...∗/ };
name i; // i has type class name

Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. One of the 2 types has to be renamed.
How widely used: Seldom.

7.1.6 [see also 3.5]
Change: const objects must be initialized in C++ but can be left uninitialized in C
Rationale: A const object cannot be assigned to so it must be initialized to hold a useful value.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation.
How widely used: Seldom.

7.1.6 (type specifiers)
Change: Banning implicit int

In C++ a decl-specifier-seq must contain a type-specifier . In the following example, the left-hand column
presents valid C; the right-hand column presents equivalent C++:

void f(const parm); void f(const int parm);
const n = 3; const int n = 3;
main() int main()

/∗ ... ∗/ /∗ ... ∗/

Rationale: In C++, implicit int creates several opportunities for ambiguity between expressions involving
function-like casts and declarations. Explicit declaration is increasingly considered to be proper style. Liaison
with WG14 (C) indicated support for (at least) deprecating implicit int in the next revision of C.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Syntactic transformation. Could be automated.
How widely used: Common.

7.1.6.4
Change: The keyword auto cannot be used as a storage class specifier.

void f() {
auto int x; // valid C, invalid C++

}

Rationale: Allowing the use of auto to deduce the type of a variable from its initializer results in undesired
interpretations of auto as a storage class specifier in certain contexts.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Syntactic transformation.
How widely used: Rare.

7.2
Change: C++ objects of enumeration type can only be assigned values of the same enumeration type. In
C, objects of enumeration type can be assigned values of any integral type

§ C.1.5 1205

c© ISO/IEC N3092

Example:
enum color { red, blue, green };
enum color c = 1; // valid C, invalid C++

Rationale: The type-safe nature of C++.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Syntactic transformation. (The type error produced by the assignment can be
automatically corrected by applying an explicit cast.)
How widely used: Common.

7.2
Change: In C++, the type of an enumerator is its enumeration. In C, the type of an enumerator is int.

Example:
enum e { A };
sizeof(A) == sizeof(int) // in C
sizeof(A) == sizeof(e) // in C++

/∗ and sizeof(int) is not necessarily equal to sizeof(e) ∗/

Rationale: In C++, an enumeration is a distinct type.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Semantic transformation.
How widely used: Seldom. The only time this affects existing C code is when the size of an enumerator
is taken. Taking the size of an enumerator is not a common C coding practice.

C.1.6 Clause 8: declarators [diff.decl]

8.3.5
Change: In C++, a function declared with an empty parameter list takes no arguments. In C, an empty
parameter list means that the number and type of the function arguments are unknown.

Example:
int f(); // means int f(void) in C++

// int f(unknown) in C

Rationale: This is to avoid erroneous function calls (i.e., function calls with the wrong number or type of
arguments).
Effect on original feature: Change to semantics of well-defined feature. This feature was marked as
“obsolescent” in C.
Difficulty of converting: Syntactic transformation. The function declarations using C incomplete decla-
ration style must be completed to become full prototype declarations. A program may need to be updated
further if different calls to the same (non-prototype) function have different numbers of arguments or if the
type of corresponding arguments differed.
How widely used: Common.

8.3.5 [see 5.3.3]
Change: In C++, types may not be defined in return or parameter types. In C, these type definitions are
allowed

Example:

§ C.1.6 1206

c© ISO/IEC N3092

void f(struct S { int a; } arg) {} // valid C, invalid C++

enum E { A, B, C } f() {} // valid C, invalid C++

Rationale: When comparing types in different compilation units, C++ relies on name equivalence when
C relies on structural equivalence. Regarding parameter types: since the type defined in an parameter list
would be in the scope of the function, the only legal calls in C++ would be from within the function itself.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. The type definitions must be moved to file scope, or
in header files.
How widely used: Seldom. This style of type definitions is seen as poor coding style.

8.4
Change: In C++, the syntax for function definition excludes the “old-style” C function. In C, “old-style”
syntax is allowed, but deprecated as “obsolescent.”
Rationale: Prototypes are essential to type safety.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Syntactic transformation.
How widely used: Common in old programs, but already known to be obsolescent.

8.5.2
Change: In C++, when initializing an array of character with a string, the number of characters in the
string (including the terminating ’\0’) must not exceed the number of elements in the array. In C, an array
can be initialized with a string even if the array is not large enough to contain the string-terminating ’\0’

Example:
char array[4] = "abcd"; // valid C, invalid C++

Rationale: When these non-terminated arrays are manipulated by standard string routines, there is po-
tential for major catastrophe.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. The arrays must be declared one element bigger to
contain the string terminating ’\0’.
How widely used: Seldom. This style of array initialization is seen as poor coding style.

C.1.7 Clause 9: classes [diff.class]

9.1 [see also 7.1.3]
Change: In C++, a class declaration introduces the class name into the scope where it is declared and
hides any object, function or other declaration of that name in an enclosing scope. In C, an inner scope
declaration of a struct tag name never hides the name of an object or function in an outer scope

Example:
int x[99];
void f() {

struct x { int a; };
sizeof(x); /∗ size of the array in C ∗/
/∗ size of the struct in C++ ∗/

}

Rationale: This is one of the few incompatibilities between C and C++ that can be attributed to the new

§ C.1.7 1207

c© ISO/IEC N3092

C++ name space definition where a name can be declared as a type and as a non-type in a single scope
causing the non-type name to hide the type name and requiring that the keywords class, struct, union
or enum be used to refer to the type name. This new name space definition provides important notational
conveniences to C++ programmers and helps making the use of the user-defined types as similar as possible
to the use of built-in types. The advantages of the new name space definition were judged to outweigh by
far the incompatibility with C described above.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Semantic transformation. If the hidden name that needs to be accessed is at
global scope, the :: C++ operator can be used. If the hidden name is at block scope, either the type or the
struct tag has to be renamed.
How widely used: Seldom.

9.7
Change: In C++, the name of a nested class is local to its enclosing class. In C the name of the nested
class belongs to the same scope as the name of the outermost enclosing class.

Example:
struct X {

struct Y { /∗ ... ∗/ } y;
};
struct Y yy; // valid C, invalid C++

Rationale: C++ classes have member functions which require that classes establish scopes. The C rule would
leave classes as an incomplete scope mechanism which would prevent C++ programmers from maintaining
locality within a class. A coherent set of scope rules for C++ based on the C rule would be very complicated
and C++ programmers would be unable to predict reliably the meanings of nontrivial examples involving
nested or local functions.
Effect on original feature: Change of semantics of well-defined feature.
Difficulty of converting: Semantic transformation. To make the struct type name visible in the scope of
the enclosing struct, the struct tag could be declared in the scope of the enclosing struct, before the enclosing
struct is defined. Example:

struct Y; // struct Y and struct X are at the same scope
struct X {

struct Y { /∗ ... ∗/ } y;
};

1 All the definitions of C struct types enclosed in other struct definitions and accessed outside the scope of
the enclosing struct could be exported to the scope of the enclosing struct. Note: this is a consequence of
the difference in scope rules, which is documented in 3.3.
How widely used: Seldom.

9.9
Change: In C++, a typedef name may not be redeclared in a class definition after being used in that
definition

Example:
typedef int I;
struct S {

I i;
int I; // valid C, invalid C++

};

§ C.1.7 1208

c© ISO/IEC N3092

Rationale: When classes become complicated, allowing such a redefinition after the type has been used
can create confusion for C++ programmers as to what the meaning of ’I’ really is.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. Either the type or the struct member has to be
renamed.
How widely used: Seldom.

C.1.8 Clause 12: special member functions [diff.special]

12.8 (copying class objects)
Change: Copying volatile objects

1 The implicitly-declared copy constructor and implicitly-declared copy assignment operator cannot make a
copy of a volatile lvalue. For example, the following is valid in ISO C:

struct X { int i; };
volatile struct X x1 = {0};
struct X x2(x1); // invalid C++

struct X x3;
x3 = x1; // also invalid C++

Rationale: Several alternatives were debated at length. Changing the parameter to volatile const X&
would greatly complicate the generation of efficient code for class objects. Discussion of providing two
alternative signatures for these implicitly-defined operations raised unanswered concerns about creating
ambiguities and complicating the rules that specify the formation of these operators according to the bases
and members.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. If volatile semantics are required for the copy, a
user-declared constructor or assignment must be provided. [Note: this user-declared constructor may be
explicitly defaulted. — end note] If non-volatile semantics are required, an explicit const_cast can be
used.
How widely used: Seldom.

C.1.9 Clause 16: preprocessing directives [diff.cpp]

16.8 (predefined names)
Change: Whether _ _ STDC _ _ is defined and if so, what its value is, are implementation-defined
Rationale: C++ is not identical to ISO C. Mandating that _ _ STDC _ _ be defined would require that
translators make an incorrect claim. Each implementation must choose the behavior that will be most
useful to its marketplace.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Semantic transformation.
How widely used: Programs and headers that reference _ _ STDC _ _ are quite common.

C.2 Standard C library [diff.library]

1 This subclause summarizes the contents of the C++ standard library included from the Standard C library.
It also summarizes the explicit changes in definitions, declarations, or behavior from the Standard C library
noted in other subclauses (17.6.1.2, 18.2, 21.7).

2 The C++ standard library provides 57 standard macros from the C library, as shown in Table 146.

§ C.2 1209

c© ISO/IEC N3092

3 The header names (enclosed in < and >) indicate that the macro may be defined in more than one header.
All such definitions are equivalent (3.2).

Table 146 — Standard macros
assert HUGE_VAL NULL <cstring> SIGINT va_end
BUFSIZ LC_ALL NULL <ctime> SIGSEGV va_start
CLOCKS_PER_SEC LC_COLLATE NULL <cwchar> SIGTERM WCHAR_MAX
EDOM LC_CTYPE offsetof SIG_DFL WCHAR_MIN
EILSEQ LC_MONETARY RAND_MAX SIG_ERR WEOF <cwchar>
EOF LC_NUMERIC SEEK_CUR SIG_IGN WEOF <cwctype>
ERANGE LC_TIME SEEK_END stderr _IOFBF
errno L_tmpnam SEEK_SET stdin _IOLBF
EXIT_FAILURE MB_CUR_MAX setjmp stdout _IONBF
EXIT_SUCCESS NULL <clocale> SIGABRT TMP_MAX
FILENAME_MAX NULL <cstddef> SIGFPE va_arg
FOPEN_MAX NULL <cstdlib> SIGILL va_copy

4 The C++ standard library provides 57 standard values from the C library, as shown in Table 147.

Table 147 — Standard values
CHAR_BIT FLT_DIG INT_MIN MB_LEN_MAX
CHAR_MAX FLT_EPSILON LDBL_DIG SCHAR_MAX
CHAR_MIN FLT_MANT_DIG LDBL_EPSILON SCHAR_MIN
DBL_DIG FLT_MAX LDBL_MANT_DIG SHRT_MAX
DBL_EPSILON FLT_MAX_10_EXP LDBL_MAX SHRT_MIN
DBL_MANT_DIG FLT_MAX_EXP LDBL_MAX_10_EXP UCHAR_MAX
DBL_MAX FLT_MIN LDBL_MAX_EXP UINT_MAX
DBL_MAX_10_EXP FLT_MIN_10_EXP LDBL_MIN ULONG_MAX
DBL_MAX_EXP FLT_MIN_EXP LDBL_MIN_10_EXP USRT_MAX
DBL_MIN FLT_RADIX LDBL_MIN_EXP
DBL_MIN_10_EXP FLT_ROUNDS LONG_MAX
DBL_MIN_EXP INT_MAX LONG_MIN

5 The C++ standard library provides 20 standard types from the C library, as shown in Table 148.

Table 148 — Standard types

clock_t ldiv_t size_t <cstdio> va_list
div_t mbstate_t size_t <cstdlib> wctrans_t
FILE ptrdiff_t size_t <cstring> wctype_t
fpos_t sig_atomic_t size_t <ctime> wint_t <cwchar>
jmp_buf size_t <cstddef> time_t wint_t <cwctype>

6 The C++ standard library provides 2 standard structs from the C library, as shown in Table 149.

Table 149 — Standard structs

lconv tm

7 The C++ standard library provides 209 standard functions from the C library, as shown in Table 150.

§ C.2 1210

c© ISO/IEC N3092

Table 150 — Standard functions
abort fmod isupper mktime strftime wcrtomb
abs fopen iswalnum modf strlen wcscat
acos fprintf iswalpha perror strncat wcschr
asctime fputc iswcntrl pow strncmp wcscmp
asin fputs iswctype printf strncpy wcscoll
atan fputwc iswdigit putc strpbrk wcscpy
atan2 fputws iswgraph putchar strrchr wcscspn
atexit fread iswlower puts strspn wcsftime
atof free iswprint putwc strstr wcslen
atoi freopen iswpunct putwchar strtod wcsncat
atol frexp iswspace qsort strtok wcsncmp
bsearch fscanf iswupper raise strtol wcsncpy
btowc fseek iswxdigit rand strtoul wcspbrk
calloc fsetpos isxdigit realloc strxfrm wcsrchr
ceil ftell labs remove swprintf wcsrtombs
clearerr fwide ldexp rename swscanf wcsspn
clock fwprintf ldiv rewind system wcsstr
cos fwrite localeconv scanf tan wcstod
cosh fwscanf localtime setbuf tanh wcstok
ctime getc log setlocale time wcstol
difftime getchar log10 setvbuf tmpfile wcstombs
div getenv longjmp signal tmpnam wcstoul
exit gets malloc sin tolower wcsxfrm
exp getwc mblen sinh toupper wctob
fabs getwchar mbrlen sprintf towctrans wctomb
fclose gmtime mbrtowc sqrt towlower wctrans
feof isalnum mbsinit srand towupper wctype
ferror isalpha mbsrtowcs sscanf ungetc wmemchr
fflush iscntrl mbstowcs strcat ungetwc wmemcmp
fgetc isdigit mbtowc strchr vfprintf wmemcpy
fgetpos isgraph memchr strcmp vfwprintf wmemmove
fgets islower memcmp strcoll vprintf wmemset
fgetwc isprint memcpy strcpy vsprintf wprintf
fgetws ispunct memmove strcspn vswprintf wscanf
floor isspace memset strerror vwprintf

§ C.2 1211

c© ISO/IEC N3092

C.2.1 Modifications to headers [diff.mods.to.headers]

1 For compatibility with the Standard C library, the C++ standard library provides the 18 C headers (D.6),
but their use is deprecated in C++.

C.2.2 Modifications to definitions [diff.mods.to.definitions]

C.2.2.1 Types char16_t and char32_t [diff.char16]

1 The types char16_t and char32_t are distinct types rather than typedefs to existing integral types.

C.2.2.2 Type wchar_t [diff.wchar.t]

1 wchar_t is a keyword in this International Standard (2.12). It does not appear as a type name defined in
any of <cstddef>, <cstdlib>, or <cwchar> (21.7).

C.2.2.3 Header <iso646.h> [diff.header.iso646.h]

1 The tokens and, and_eq, bitand, bitor, compl, not_eq, not, or, or_eq, xor, and xor_eq are keywords in
this International Standard (2.12). They do not appear as macro names defined in <ciso646>.

C.2.2.4 Macro NULL [diff.null]

1 The macro NULL, defined in any of <clocale>, <cstddef>, <cstdio>, <cstdlib>, <cstring>, <ctime>, or
<cwchar>, is an implementation-defined C++ null pointer constant in this International Standard (18.2).

C.2.3 Modifications to declarations [diff.mods.to.declarations]

1 Header <cstring>: The following functions have different declarations:

— strchr

— strpbrk

— strrchr

— strstr

— memchr

21.7 describes the changes.

C.2.4 Modifications to behavior [diff.mods.to.behavior]

1 Header <cstdlib>: The following functions have different behavior:

— atexit

— exit

— abort

18.5 describes the changes.

2 Header <csetjmp>: The following functions have different behavior:

— longjmp

18.10 describes the changes.

§ C.2.4 1212

c© ISO/IEC N3092

C.2.4.1 Macro offsetof(type,member-designator) [diff.offsetof]

1 The macro offsetof, defined in <cstddef>, accepts a restricted set of type arguments in this International
Standard. 18.2 describes the change.

C.2.4.2 Memory allocation functions [diff.malloc]

1 The functions calloc, malloc, and realloc are restricted in this International Standard. 20.9.14 describes
the changes.

§ C.2.4.2 1213

c© ISO/IEC N3092

Annex D (normative)
Compatibility features [depr]

1 This Clause describes features of the C++ Standard that are specified for compatibility with existing imple-
mentations.

2 These are deprecated features, where deprecated is defined as: Normative for the current edition of the
Standard, but not guaranteed to be part of the Standard in future revisions.

D.1 Increment operator with bool operand [depr.incr.bool]

1 The use of an operand of type bool with the ++ operator is deprecated (see 5.3.2 and 5.2.6).

D.2 static keyword [depr.static]

1 The use of the static keyword is deprecated when declaring objects in namespace scope (see 3.3.6).

D.3 Access declarations [depr.access.dcl]

1 Access declarations are deprecated (see 11.3).

D.4 register keyword [depr.register]

1 The use of the register keyword as a storage-class-specifier (7.1.1) is deprecated.

D.5 Dynamic exception specifications [depr.except.spec]

1 The use of dynamic-exception-specifications is deprecated.

D.6 C standard library headers [depr.c.headers]

1 For compatibility with the C standard library and the C Unicode TR, the C++ standard library provides
the 25 C headers, as shown in Table 151.

Table 151 — C headers
<assert.h> <float.h> <math.h> <stddef.h> <tgmath.h>
<complex.h> <inttypes.h> <setjmp.h> <stdio.h> <time.h>
<ctype.h> <iso646.h> <signal.h> <stdint.h> <uchar.h>
<errno.h> <limits.h> <stdarg.h> <stdlib.h> <wchar.h>
<fenv.h> <locale.h> <stdbool.h> <string.h> <wctype.h>

2 Every C header, each of which has a name of the form name.h, behaves as if each name placed in the standard
library namespace by the corresponding cname header is placed within the global namespace scope. It is
unspecified whether these names are first declared or defined within namespace scope (3.3.6) of the namespace
std and are then injected into the global namespace scope by explicit using-declarations (7.3.3).

3 [Example: The header <cstdlib> assuredly provides its declarations and definitions within the namespace
std. It may also provide these names within the global namespace. The header <stdlib.h> assuredly

§ D.6 1214

c© ISO/IEC N3092

provides the same declarations and definitions within the global namespace, much as in the C Standard. It
may also provide these names within the namespace std. — end example]

D.7 Old iostreams members [depr.ios.members]

1 The following member names are in addition to names specified in Clause 27:
namespace std {

class ios_base {
public:

typedef T1 io_state;
typedef T2 open_mode;
typedef T3 seek_dir;
typedef OFF_T streamoff;
typedef POS_T streampos;
// remainder unchanged

};
}

2 The type io_state is a synonym for an integer type (indicated here as T1) that permits certain member
functions to overload others on parameters of type iostate and provide the same behavior.

3 The type open_mode is a synonym for an integer type (indicated here as T2) that permits certain member
functions to overload others on parameters of type openmode and provide the same behavior.

4 The type seek_dir is a synonym for an integer type (indicated here as T3) that permits certain member
functions to overload others on parameters of type seekdir and provide the same behavior.

5 The type streamoff is an implementation-defined type that satisfies the requirements of type OFF_-
T (27.5.1).

6 The type streampos is an implementation-defined type that satisfies the requirements of type POS_T (27.3).

7 An implementation may provide the following additional member function, which has the effect of calling
sbumpc() (27.6.2.2.3):

namespace std {
template<class charT, class traits = char_traits<charT> >
class basic_streambuf {
public:

void stossc();
// remainder unchanged

};
}

8 An implementation may provide the following member functions that overload signatures specified in Clause 27:
namespace std {

template<class charT, class traits> class basic_ios {
public:

void clear(io_state state);
void setstate(io_state state);
void exceptions(io_state);
// remainder unchanged

};

class ios_base {

§ D.7 1215

c© ISO/IEC N3092

public:
// remainder unchanged

};

template<class charT, class traits = char_traits<charT> >
class basic_streambuf {
public:

pos_type pubseekoff(off_type off, ios_base::seek_dir way,
ios_base::open_mode which = ios_base::in | ios_base::out);

pos_type pubseekpos(pos_type sp,
ios_base::open_mode which);

// remainder unchanged
};

template <class charT, class traits = char_traits<charT> >
class basic_filebuf : public basic_streambuf<charT,traits> {
public:

basic_filebuf<charT,traits>* open
(const char* s, ios_base::open_mode mode);
// remainder unchanged

};

template <class charT, class traits = char_traits<charT> >
class basic_ifstream : public basic_istream<charT,traits> {
public:

void open(const char* s, ios_base::open_mode mode);
// remainder unchanged

};

template <class charT, class traits = char_traits<charT> >
class basic_ofstream : public basic_ostream<charT,traits> {
public:

void open(const char* s, ios_base::open_mode mode);
// remainder unchanged

};
}

9 The effects of these functions is to call the corresponding member function specified in Clause 27.

D.8 char* streams [depr.str.strstreams]

1 The header <strstream> defines three types that associate stream buffers with character array objects and
assist reading and writing such objects.

D.8.1 Class strstreambuf [depr.strstreambuf]

namespace std {
class strstreambuf : public basic_streambuf<char> {
public:

explicit strstreambuf(streamsize alsize_arg = 0);
strstreambuf(void* (*palloc_arg)(size_t), void (*pfree_arg)(void*));
strstreambuf(char* gnext_arg, streamsize n, char* pbeg_arg = 0);
strstreambuf(const char* gnext_arg, streamsize n);

strstreambuf(signed char* gnext_arg, streamsize n,
signed char* pbeg_arg = 0);

§ D.8.1 1216

c© ISO/IEC N3092

strstreambuf(const signed char* gnext_arg, streamsize n);
strstreambuf(unsigned char* gnext_arg, streamsize n,

unsigned char* pbeg_arg = 0);
strstreambuf(const unsigned char* gnext_arg, streamsize n);

virtual ~strstreambuf();

void freeze(bool freezefl = true);
char* str();
int pcount();

protected:
virtual int_type overflow (int_type c = EOF);
virtual int_type pbackfail(int_type c = EOF);
virtual int_type underflow();
virtual pos_type seekoff(off_type off, ios_base::seekdir way,

ios_base::openmode which
= ios_base::in | ios_base::out);

virtual pos_type seekpos(pos_type sp, ios_base::openmode which
= ios_base::in | ios_base::out);

virtual streambuf* setbuf(char* s, streamsize n);

private:
typedef T1 strstate; // exposition only
static const strstate allocated; // exposition only
static const strstate constant; // exposition only
static const strstate dynamic; // exposition only
static const strstate frozen; // exposition only
strstate strmode; // exposition only
streamsize alsize; // exposition only
void* (*palloc)(size_t); // exposition only
void (*pfree)(void*); // exposition only

};
}

1 The class strstreambuf associates the input sequence, and possibly the output sequence, with an object of
some character array type, whose elements store arbitrary values. The array object has several attributes.

2 [Note: For the sake of exposition, these are represented as elements of a bitmask type (indicated here as
T1) called strstate. The elements are:

— allocated, set when a dynamic array object has been allocated, and hence should be freed by the
destructor for the strstreambuf object;

— constant, set when the array object has const elements, so the output sequence cannot be written;

— dynamic, set when the array object is allocated (or reallocated) as necessary to hold a character
sequence that can change in length;

— frozen, set when the program has requested that the array object not be altered, reallocated, or freed.

— end note]

3 [Note: For the sake of exposition, the maintained data is presented here as:

— strstate strmode, the attributes of the array object associated with the strstreambuf object;

— int alsize, the suggested minimum size for a dynamic array object;

§ D.8.1 1217

c© ISO/IEC N3092

— void* palloc)(size_t), points to the function to call to allocate a dynamic array object;

— void (*pfree)(void*), points to the function to call to free a dynamic array object.

— end note]

4 Each object of class strstreambuf has a seekable area, delimited by the pointers seeklow and seekhigh.
If gnext is a null pointer, the seekable area is undefined. Otherwise, seeklow equals gbeg and seekhigh is
either pend, if pend is not a null pointer, or gend.

D.8.1.1 strstreambuf constructors [depr.strstreambuf.cons]

explicit strstreambuf(streamsize alsize_arg = 0);

1 Effects: Constructs an object of class strstreambuf, initializing the base class with streambuf().
The postconditions of this function are indicated in Table 152.

Table 152 — strstreambuf(streamsize) effects
Element Value
strmode dynamic
alsize alsize_arg
palloc a null pointer
pfree a null pointer

strstreambuf(void* (*palloc_arg)(size_t), void (*pfree_arg)(void*));

2 Effects: Constructs an object of class strstreambuf, initializing the base class with streambuf().
The postconditions of this function are indicated in Table 153.

Table 153 — strstreambuf(void* (*)(size_t), void (*)(void*)) effects

Element Value
strmode dynamic
alsize an unspecified value
palloc palloc_arg
pfree pfree_arg

strstreambuf(char* gnext_arg, streamsize n, char *pbeg_arg = 0);
strstreambuf(signed char* gnext_arg, streamsize n,

signed char *pbeg_arg = 0);
strstreambuf(unsigned char* gnext_arg, streamsize n,

unsigned char *pbeg_arg = 0);

3 Effects: Constructs an object of class strstreambuf, initializing the base class with streambuf().
The postconditions of this function are indicated in Table 154.

4 gnext_arg shall point to the first element of an array object whose number of elements N is determined
as follows:

— If n > 0, N is n.

— If n == 0, N is std::strlen(gnext_arg).

§ D.8.1.1 1218

c© ISO/IEC N3092

Table 154 — strstreambuf(charT*, streamsize, charT*) effects
Element Value
strmode 0
alsize an unspecified value
palloc a null pointer
pfree a null pointer

— If n < 0, N is INT_MAX.343

5 If pbeg_arg is a null pointer, the function executes:

setg(gnext_arg, gnext_arg, gnext_arg + N);

6 Otherwise, the function executes:
setg(gnext_arg, gnext_arg, pbeg_arg);
setp(pbeg_arg, pbeg_arg + N);

strstreambuf(const char* gnext_arg, streamsize n);
strstreambuf(const signed char* gnext_arg, streamsize n);
strstreambuf(const unsigned char* gnext_arg, streamsize n);

7 Effects: Behaves the same as strstreambuf((char*)gnext_arg,n), except that the constructor also
sets constant in strmode.

virtual ~strstreambuf();

8 Effects: Destroys an object of class strstreambuf. The function frees the dynamically allocated array
object only if strmode & allocated != 0 and strmode & frozen == 0. (D.8.1.3 describes how a
dynamically allocated array object is freed.)

D.8.1.2 Member functions [depr.strstreambuf.members]

void freeze(bool freezefl = true);

1 Effects: If strmode & dynamic is non-zero, alters the freeze status of the dynamic array object as
follows:

— If freezefl is true, the function sets frozen in strmode.

— Otherwise, it clears frozen in strmode.

char* str();

2 Effects: Calls freeze(), then returns the beginning pointer for the input sequence, gbeg.

3 Remarks: The return value can be a null pointer.

int pcount() const;

4 Effects: If the next pointer for the output sequence, pnext, is a null pointer, returns zero. Otherwise,
returns the current effective length of the array object as the next pointer minus the beginning pointer
for the output sequence, pnext - pbeg.

343) The function signature strlen(const char*) is declared in <cstring>. (21.7). The macro INT_MAX is defined in
<climits> (18.3).

§ D.8.1.2 1219

c© ISO/IEC N3092

D.8.1.3 strstreambuf overridden virtual functions [depr.strstreambuf.virtuals]

int_type overflow(int_type c = EOF);

1 Effects: Appends the character designated by c to the output sequence, if possible, in one of two ways:

— If c != EOF and if either the output sequence has a write position available or the function makes
a write position available (as described below), assigns c to *pnext++.

2 Returns (unsigned char)c.

— If c == EOF, there is no character to append.

3 Returns a value other than EOF.

4 Returns EOF to indicate failure.

5 Remarks: The function can alter the number of write positions available as a result of any call.

6 To make a write position available, the function reallocates (or initially allocates) an array object with
a sufficient number of elements n to hold the current array object (if any), plus at least one additional
write position. How many additional write positions are made available is otherwise unspecified.344

If palloc is not a null pointer, the function calls (*palloc)(n) to allocate the new dynamic array
object. Otherwise, it evaluates the expression new charT[n]. In either case, if the allocation fails, the
function returns EOF. Otherwise, it sets allocated in strmode.

7 To free a previously existing dynamic array object whose first element address is p: If pfree is not a
null pointer, the function calls (*pfree)(p). Otherwise, it evaluates the expression delete[] p.

8 If strmode & dynamic == 0, or if strmode & frozen != 0, the function cannot extend the array
(reallocate it with greater length) to make a write position available.

int_type pbackfail(int_type c = EOF);

9 Puts back the character designated by c to the input sequence, if possible, in one of three ways:

— If c != EOF, if the input sequence has a putback position available, and if (char)c == gnext[-1],
assigns gnext - 1 to gnext.

10 Returns c.

— If c != EOF, if the input sequence has a putback position available, and if strmode & constant
is zero, assigns c to *--gnext.

11 Returns c.

— If c == EOF and if the input sequence has a putback position available, assigns gnext - 1 to
gnext.

12 Returns a value other than EOF.

13 Returns EOF to indicate failure.

14 Remarks: If the function can succeed in more than one of these ways, it is unspecified which way is
chosen. The function can alter the number of putback positions available as a result of any call.

int_type underflow();

344) An implementation should consider alsize in making this decision.

§ D.8.1.3 1220

c© ISO/IEC N3092

15 Effects: Reads a character from the input sequence, if possible, without moving the stream position
past it, as follows:

— If the input sequence has a read position available, the function signals success by returning
(unsigned char)*gnext.

— Otherwise, if the current write next pointer pnext is not a null pointer and is greater than the
current read end pointer gend, makes a read position available by assigning to gend a value greater
than gnext and no greater than pnext.

16 Returns (unsigned char*)gnext.

17 Returns EOF to indicate failure.

18 Remarks: The function can alter the number of read positions available as a result of any call.

pos_type seekoff(off_type off, seekdir way, openmode which = in | out);

19 Effects: Alters the stream position within one of the controlled sequences, if possible, as indicated in
Table 155.

Table 155 — seekoff positioning

Conditions Result
(which & ios::in) != 0 positions the input sequence
(which & ios::out) != 0 positions the output sequence
(which & (ios::in |
ios::out)) == (ios::in |
ios::out)) and
way == either
ios::beg or
ios::end

positions both the input and the output sequences

Otherwise the positioning operation fails.

20 For a sequence to be positioned, if its next pointer is a null pointer, the positioning operation fails.
Otherwise, the function determines newoff as indicated in Table 156.

Table 156 — newoff values
Condition newoff Value

way == ios::beg 0
way == ios::cur the next pointer minus the begin-

ning pointer (xnext - xbeg).
way == ios::end seekhigh minus the beginning

pointer (seekhigh - xbeg).
If (newoff + off) <
(seeklow - xbeg),
or (seekhigh - xbeg) <
(newoff + off)

the positioning operation fails

21 Otherwise, the function assigns xbeg + newoff + off to the next pointer xnext.

22 Returns: pos_type(newoff), constructed from the resultant offset newoff (of type off_type), that
stores the resultant stream position, if possible. If the positioning operation fails, or if the constructed
object cannot represent the resultant stream position, the return value is pos_type(off_type(-1)).

§ D.8.1.3 1221

c© ISO/IEC N3092

pos_type seekpos(pos_type sp, ios_base::openmode which
= ios_base::in | ios_base::out);

23 Effects: Alters the stream position within one of the controlled sequences, if possible, to correspond
to the stream position stored in sp (as described below).

— If (which & ios::in) != 0, positions the input sequence.

— If (which & ios::out) != 0, positions the output sequence.

— If the function positions neither sequence, the positioning operation fails.

24 For a sequence to be positioned, if its next pointer is a null pointer, the positioning operation
fails. Otherwise, the function determines newoff from sp.offset():

— If newoff is an invalid stream position, has a negative value, or has a value greater than (seekhigh
- seeklow), the positioning operation fails

— Otherwise, the function adds newoff to the beginning pointer xbeg and stores the result in the
next pointer xnext.

25 Returns: pos_type(newoff), constructed from the resultant offset newoff (of type off_type), that
stores the resultant stream position, if possible. If the positioning operation fails, or if the constructed
object cannot represent the resultant stream position, the return value is pos_type(off_type(-1)).

streambuf<char>* setbuf(char* s, streamsize n);

26 Effects: Implementation defined, except that setbuf(0, 0) has no effect.

D.8.2 Class istrstream [depr.istrstream]

namespace std {
class istrstream : public basic_istream<char> {
public:

explicit istrstream(const char* s);
explicit istrstream(char* s);
istrstream(const char* s, streamsize n);
istrstream(char* s, streamsize n);
virtual ~istrstream();

strstreambuf* rdbuf() const;
char *str();

private:
strstreambuf sb; // exposition only

};
}

1 The class istrstream supports the reading of objects of class strstreambuf. It supplies a strstreambuf
object to control the associated array object. For the sake of exposition, the maintained data is presented
here as:

— sb, the strstreambuf object.

D.8.2.1 istrstream constructors [depr.istrstream.cons]

explicit istrstream(const char* s);
explicit istrstream(char* s);

§ D.8.2.1 1222

c© ISO/IEC N3092

1 Effects: Constructs an object of class istrstream, initializing the base class with istream(&sb) and
initializing sb with strstreambuf(s,0)). s shall designate the first element of an ntbs.

istrstream(const char* s, streamsize n);

2 Effects: Constructs an object of class istrstream, initializing the base class with istream(&sb) and
initializing sb with strstreambuf(s,n)). s shall designate the first element of an array whose length
is n elements, and n shall be greater than zero.

D.8.2.2 Member functions [depr.istrstream.members]

strstreambuf* rdbuf() const;

1 Returns: const_cast<strstreambuf*>(&sb).

char* str();

2 Returns: rdbuf()->str().

D.8.3 Class ostrstream [depr.ostrstream]

namespace std {
class ostrstream : public basic_ostream<char> {
public:

ostrstream();
ostrstream(char* s, int n, ios_base::openmode mode = ios_base::out);
virtual ~ostrstream();

strstreambuf* rdbuf() const;
void freeze(bool freezefl = true);
char* str();
int pcount() const;

private:
strstreambuf sb; // exposition only

};
}

1 The class ostrstream supports the writing of objects of class strstreambuf. It supplies a strstreambuf
object to control the associated array object. For the sake of exposition, the maintained data is presented
here as:

— sb, the strstreambuf object.

D.8.3.1 ostrstream constructors [depr.ostrstream.cons]

ostrstream();

1 Effects: Constructs an object of class ostrstream, initializing the base class with ostream(&sb) and
initializing sb with strstreambuf()).

ostrstream(char* s, int n, ios_base::openmode mode = ios_base::out);

2 Effects: Constructs an object of class ostrstream, initializing the base class with ostream(&sb), and
initializing sb with one of two constructors:

§ D.8.3.1 1223

c© ISO/IEC N3092

— If (mode & app) == 0, then s shall designate the first element of an array of n elements.

The constructor is strstreambuf(s, n, s).

— If (mode & app) != 0, then s shall designate the first element of an array of n elements that
contains an ntbs whose first element is designated by s. The constructor is strstreambuf(s,
n, s + std::strlen(s)).345

D.8.3.2 Member functions [depr.ostrstream.members]

strstreambuf* rdbuf() const;

1 Returns: (strstreambuf*)&sb .

void freeze(bool freezefl = true);

2 Effects: Calls rdbuf()->freeze(freezefl).

char* str();

3 Returns: rdbuf()->str().

int pcount() const;

4 Returns: rdbuf()->pcount().

D.8.4 Class strstream [depr.strstream]

namespace std {
class strstream

: public basic_iostream<char> {
public:

// Types
typedef char char_type;
typedef typename char_traits<char>::int_type int_type;
typedef typename char_traits<char>::pos_type pos_type;
typedef typename char_traits<char>::off_type off_type;

// constructors/destructor
strstream();
strstream(char* s, int n,

ios_base::openmode mode = ios_base::in|ios_base::out);
virtual ~strstream();

// Members:
strstreambuf* rdbuf() const;
void freeze(bool freezefl = true);
int pcount() const;
char* str();

private:
strstreambuf sb; // exposition only
};

}

345) The function signature strlen(const char*) is declared in <cstring> (21.7).

§ D.8.4 1224

c© ISO/IEC N3092

1 The class strstream supports reading and writing from objects of classs strstreambuf. It supplies a
strstreambuf object to control the associated array object. For the sake of exposition, the maintained data
is presented here as

— sb, the strstreambuf object.

D.8.4.1 strstream constructors [depr.strstream.cons]

strstream();

1 Effects: Constructs an object of class strstream, initializing the base class with iostream(&sb).

strstream(char* s, int n,
ios_base::openmode mode = ios_base::in|ios_base::out);

2 Effects: Constructs an object of class strstream, initializing the base class with iostream(&sb) and
initializing sb with one of the two constructors:

— If (mode & app) == 0, then s shall designate the first element of an array of n elements. The
constructor is strstreambuf(s,n,s).

— If (mode & app) != 0, then s shall designate the first element of an array of n elements that
contains an ntbs whose first element is designated by s. The constructor is strstreambuf(s,n,s
+ std::strlen(s)).

D.8.4.2 strstream destructor [depr.strstream.dest]

virtual ~strstream()

1 Effects: Destroys an object of class strstream.

strstreambuf* rdbuf() const;

2 Returns: &sb.

D.8.4.3 strstream operations [depr.strstream.oper]

void freeze(bool freezefl = true);

1 Effects: Calls rdbuf()->freeze(freezefl).

char* str();

2 Returns: rdbuf()->str().

int pcount() const;

3 Returns: rdbuf()->pcount().

D.9 Binders [depr.lib.binders]

The binders binder1st, bind1st, binder2nd, and bind2nd are deprecated. [Note: The function template
bind (20.8.10) provides a better solution. — end note]

D.9.1 Class template binder1st [depr.lib.binder.1st]

§ D.9.1 1225

c© ISO/IEC N3092

template <class Fn>
class binder1st

: public unary_function<typename Fn::second_argument_type,
typename Fn::result_type> {

protected:
Fn op;
typename Fn::first_argument_type value;

public:
binder1st(const Fn& x,

const typename Fn::first_argument_type& y);
typename Fn::result_type

operator()(const typename Fn::second_argument_type& x) const;
typename Fn::result_type

operator()(typename Fn::second_argument_type& x) const;
};

1 The constructor initializes op with x and value with y.

2 operator() returns op(value,x).

D.9.2 bind1st [depr.lib.bind.1st]

template <class Fn, class T>
binder1st<Fn> bind1st(const Fn& fn, const T& x);

1 Returns: binder1st<Fn>(fn, typename Fn::first_argument_type(x)).

D.9.3 Class template binder2nd [depr.lib.binder.2nd]

template <class Fn>
class binder2nd

: public unary_function<typename Fn::first_argument_type,
typename Fn::result_type> {

protected:
Fn op;
typename Fn::second_argument_type value;

public:
binder2nd(const Fn& x,

const typename Fn::second_argument_type& y);
typename Fn::result_type

operator()(const typename Fn::first_argument_type& x) const;
typename Fn::result_type

operator()(typename Fn::first_argument_type& x) const;
};

1 The constructor initializes op with x and value with y.

2 operator() returns op(x,value).

D.9.4 bind2nd [depr.lib.bind.2nd]

template <class Fn, class T>
binder2nd<Fn> bind2nd(const Fn& op, const T& x);

1 Returns: binder2nd<Fn>(op, typename Fn::second_argument_type(x)).

§ D.9.4 1226

c© ISO/IEC N3092

2 [Example:
find_if(v.begin(), v.end(), bind2nd(greater<int>(), 5));

finds the first integer in vector v greater than 5;
find_if(v.begin(), v.end(), bind1st(greater<int>(), 5));

finds the first integer in v less than 5. — end example]

D.10 auto_ptr [depr.auto.ptr]

The class template auto_ptr is deprecated. [Note: The class template unique_ptr (20.9.10) provides a
better solution. — end note]

D.10.1 Class template auto_ptr [auto.ptr]

1 The class template auto_ptr stores a pointer to an object obtained via new and deletes that object when it
itself is destroyed (such as when leaving block scope 6.7).

2 The class template auto_ptr_ref is for exposition only. An implementation is permitted to provide equiv-
alent functionality without providing a template with this name. The template holds a reference to an
auto_ptr. It is used by the auto_ptr conversions to allow auto_ptr objects to be passed to and returned
from functions.

namespace std {
template <class Y> struct auto_ptr_ref; // exposition only

template <class X> class auto_ptr {
public:

typedef X element_type;

// D.10.1.1 construct/copy/destroy:
explicit auto_ptr(X* p =0) throw();
auto_ptr(auto_ptr&) throw();
template<class Y> auto_ptr(auto_ptr<Y>&) throw();
auto_ptr& operator=(auto_ptr&) throw();
template<class Y> auto_ptr& operator=(auto_ptr<Y>&) throw();
auto_ptr& operator=(auto_ptr_ref<X> r) throw();

~auto_ptr() throw();

// D.10.1.2 members:
X& operator*() const throw();
X* operator->() const throw();
X* get() const throw();
X* release() throw();
void reset(X* p =0) throw();

// D.10.1.3 conversions:
auto_ptr(auto_ptr_ref<X>) throw();
template<class Y> operator auto_ptr_ref<Y>() throw();
template<class Y> operator auto_ptr<Y>() throw();

};

template <> class auto_ptr<void>
{

§ D.10.1 1227

c© ISO/IEC N3092

public:
typedef void element_type;

};
}

3 The class template auto_ptr provides a semantics of strict ownership. An auto_ptr owns the object it holds
a pointer to. Copying an auto_ptr copies the pointer and transfers ownership to the destination. If more than
one auto_ptr owns the same object at the same time the behavior of the program is undefined. [Note: The
uses of auto_ptr include providing temporary exception-safety for dynamically allocated memory, passing
ownership of dynamically allocated memory to a function, and returning dynamically allocated memory from
a function. Instances of auto_ptr meet the requirements of MoveConstructible and MoveAssignable, but
do not meet the requirements of CopyConstructible and CopyAssignable. — end note]

D.10.1.1 auto_ptr constructors [auto.ptr.cons]

explicit auto_ptr(X* p =0) throw();

1 Postconditions: *this holds the pointer p.

auto_ptr(auto_ptr& a) throw();

2 Effects: Calls a.release().

3 Postconditions: *this holds the pointer returned from a.release().

template<class Y> auto_ptr(auto_ptr<Y>& a) throw();

4 Requires: Y* can be implicitly converted to X*.

5 Effects: Calls a.release().

6 Postconditions: *this holds the pointer returned from a.release().

auto_ptr& operator=(auto_ptr& a) throw();

7 Requires: The expression delete get() is well formed.

8 Effects: reset(a.release()).

9 Returns: *this.

template<class Y> auto_ptr& operator=(auto_ptr<Y>& a) throw();

10 Requires: Y* can be implicitly converted to X*. The expression delete get() is well formed.

11 Effects: reset(a.release()).

12 Returns: *this.

~auto_ptr() throw();

13 Requires: The expression delete get() is well formed.

14 Effects: delete get().

§ D.10.1.1 1228

c© ISO/IEC N3092

D.10.1.2 auto_ptr members [auto.ptr.members]

X& operator*() const throw();

1 Requires: get() != 0

2 Returns: *get()

X* operator->() const throw();

3 Returns: get()

X* get() const throw();

4 Returns: The pointer *this holds.

X* release() throw();

5 Returns: get()

6 Postcondition: *this holds the null pointer.

void reset(X* p=0) throw();

7 Effects: If get() != p then delete get().

8 Postconditions: *this holds the pointer p.

D.10.1.3 auto_ptr conversions [auto.ptr.conv]

auto_ptr(auto_ptr_ref<X> r) throw();

1 Effects: Calls p.release() for the auto_ptr p that r holds.

2 Postconditions: *this holds the pointer returned from release().

template<class Y> operator auto_ptr_ref<Y>() throw();

3 Returns: An auto_ptr_ref<Y> that holds *this.

template<class Y> operator auto_ptr<Y>() throw();

4 Effects: Calls release().

5 Returns: An auto_ptr<Y> that holds the pointer returned from release().

auto_ptr& operator=(auto_ptr_ref<X> r) throw()

6 Effects: Calls reset(p.release()) for the auto_ptr p that r holds a reference to.

7 Returns: *this

§ D.10.1.3 1229

c© ISO/IEC N3092

Annex E (informative)
Cross references [xref]
To refer to sections in the text, use section labels, which appear at the beginning of every section on the
right-hand side of the page. While section numbers appear more natural, they change from time to time as
material is added and removed from the draft.

This appendix lists each section label and the corresponding section number, in alphabetical order by label.
It will be revised with each new draft, so can be used to find where a section is located in the current draft.

All of the section labels are the same as in the 2003 standard, except:

— Labels that begin with lib. in the 2003 standard have had the lib. removed so that they do not all
appear in the same part of this list. For example, in the 2003 standard, the non-modifying sequence
algorithms were found in a section with the label [lib.alg.nonmodifying]. The label for that section
is now [alg.nonmodifying].

— The label for Appendix B has been changed from [limits] to [implimits]. The label [limits]
refers to section 18.3.1.

A

accumulate 26.7.1
adjacent.difference 26.7.4
adjustfield.manip 27.5.5.2
alg.adjacent.find 25.2.8
alg.all_of 25.2.1
alg.any_of 25.2.2
alg.binary.search 25.4.3
alg.c.library 25.5
alg.copy 25.3.1
alg.count 25.2.9
alg.equal 25.2.11
alg.fill 25.3.6
alg.find 25.2.5
alg.find.end 25.2.6
alg.find.first.of 25.2.7
alg.foreach 25.2.4
alg.generate 25.3.7
alg.heap.operations 25.4.6
alg.is_permutation 25.2.12
alg.lex.comparison 25.4.8
alg.merge 25.4.4
alg.min.max 25.4.7
alg.modifying.operations 25.3
alg.move 25.3.2
alg.none_of 25.2.3
alg.nonmodifying 25.2

alg.nth.element 25.4.2
alg.partitions 25.3.13
alg.permutation.generators 25.4.9
alg.random.shuffle 25.3.12
alg.remove 25.3.8
alg.replace 25.3.5
alg.reverse 25.3.10
alg.rotate 25.3.11
alg.search 25.2.13
alg.set.operations 25.4.5
alg.sort 25.4.1
alg.sorting 25.4
alg.swap 25.3.3
alg.transform 25.3.4
alg.unique 25.3.9
algorithms 25
algorithms.general 25.1
alloc.errors 18.6.2
allocator.adaptor 20.9.6
allocator.adaptor.cnstr 20.9.6.2
allocator.adaptor.members 20.9.6.3
allocator.adaptor.types 20.9.6.1
allocator.globals 20.9.5.2
allocator.members 20.9.5.1
allocator.requirements 20.2.5
allocator.tag 20.9.1
allocator.traits 20.9.4

1230

c© ISO/IEC N3092

allocator.traits.members 20.9.4.2
allocator.traits.types 20.9.4.1
allocator.uses 20.9.2
allocator.uses.construction 20.9.2.2
allocator.uses.trait 20.9.2.1
alt.headers 17.6.3.4
arithmetic.operations 20.8.5
array 23.3.1
array.cons 23.3.1.1
array.data 23.3.1.4
array.fill 23.3.1.5
array.size 23.3.1.3
array.special 23.3.1.2
array.swap 23.3.1.6
array.tuple 23.3.1.8
array.zero 23.3.1.7
assertions 19.3
associative 23.4
associative.reqmts 23.2.4
associative.reqmts.except 23.2.4.1
atomics 29
atomics.fences 29.8
atomics.flag 29.7
atomics.general 29.1
atomics.lockfree 29.4
atomics.order 29.3
atomics.syn 29.2
atomics.types 29.5
atomics.types.address 29.5.2
atomics.types.generic 29.5.3
atomics.types.integral 29.5.1
atomics.types.operations 29.6
auto.ptr D.10.1
auto.ptr.cons D.10.1.1
auto.ptr.conv D.10.1.3
auto.ptr.members D.10.1.2

B

back.insert.iter.cons 24.5.2.2.1
back.insert.iter.op* 24.5.2.2.3
back.insert.iter.op++ 24.5.2.2.4
back.insert.iter.op= 24.5.2.2.2
back.insert.iter.ops 24.5.2.2
back.insert.iterator 24.5.2.1
back.inserter 24.5.2.2.5
bad.alloc 18.6.2.1
bad.cast 18.7.2
bad.exception 18.8.2.1
bad.typeid 18.7.3
base 20.8.3

basefield.manip 27.5.5.3
basic 3
basic.align 3.11
basic.compound 3.9.2
basic.def 3.1
basic.def.odr 3.2
basic.fundamental 3.9.1
basic.funscope 3.3.5
basic.ios.cons 27.5.4.1
basic.ios.members 27.5.4.2
basic.life 3.8
basic.link 3.5
basic.lookup 3.4
basic.lookup.argdep 3.4.2
basic.lookup.classref 3.4.5
basic.lookup.elab 3.4.4
basic.lookup.qual 3.4.3
basic.lookup.udir 3.4.6
basic.lookup.unqual 3.4.1
basic.lval 3.10
basic.namespace 7.3
basic.scope 3.3
basic.scope.class 3.3.7
basic.scope.declarative 3.3.1
basic.scope.enum 3.3.8
basic.scope.hiding 3.3.10
basic.scope.local 3.3.3
basic.scope.namespace 3.3.6
basic.scope.pdecl 3.3.2
basic.scope.proto 3.3.4
basic.scope.temp 3.3.9
basic.start 3.6
basic.start.init 3.6.2
basic.start.main 3.6.1
basic.start.term 3.6.3
basic.stc 3.7
basic.stc.auto 3.7.3
basic.stc.dynamic 3.7.4
basic.stc.dynamic.allocation 3.7.4.1
basic.stc.dynamic.deallocation 3.7.4.2
basic.stc.dynamic.safety 3.7.4.3
basic.stc.inherit 3.7.5
basic.stc.static 3.7.1
basic.stc.thread 3.7.2
basic.string 21.4
basic.string.hash 21.6
basic.type.qualifier 3.9.3
basic.types 3.9
bidirectional.iterators 24.2.6
binary.search 25.4.3.4
bind 20.8.10

1231

c© ISO/IEC N3092

bitmask.types 17.5.2.1.3
bitset.cons 20.5.1
bitset.hash 20.5.3
bitset.members 20.5.2
bitset.operators 20.5.4
bitwise.operations 20.8.8
byte.strings 17.5.2.1.4.1

C

c.files 27.9.2
c.limits 18.3.2
c.locales 22.6
c.malloc 20.9.14
c.math 26.8
c.strings 21.7
category.collate 22.4.4
category.ctype 22.4.1
category.messages 22.4.7
category.monetary 22.4.6
category.numeric 22.4.2
category.time 22.4.5
ccmplx 26.4.10
cfenv 26.3
cfenv.syn 26.3.1
char.traits 21.2
char.traits.require 21.2.1
char.traits.specializations 21.2.3
char.traits.specializations.char 21.2.3.1
char.traits.specializations.char16_t 21.2.3.2
char.traits.specializations.char32_t 21.2.3.3
char.traits.specializations.wchar.t 21.2.3.4
char.traits.typedefs 21.2.2
char16_t.seq 17.5.2.1.4.3
char32_t.seq 17.5.2.1.4.4
character.seq 17.5.2.1.4
class 9
class.abstract 10.4
class.access 11
class.access.base 11.2
class.access.dcl 11.3
class.access.nest 11.8
class.access.spec 11.1
class.access.virt 11.6
class.base.init 12.6.2
class.bit 9.6
class.cdtor 12.7
class.conv 12.3
class.conv.ctor 12.3.1
class.conv.fct 12.3.2
class.copy 12.8

class.ctor 12.1
class.derived 10
class.dtor 12.4
class.expl.init 12.6.1
class.free 12.5
class.friend 11.4
class.gslice 26.6.6
class.inhctor 12.9
class.init 12.6
class.local 9.8
class.mem 9.2
class.member.lookup 10.2
class.mfct 9.3
class.mfct.non-static 9.3.1
class.mi 10.1
class.name 9.1
class.nest 9.7
class.nested.type 9.9
class.paths 11.7
class.protected 11.5
class.qual 3.4.3.1
class.slice 26.6.4
class.static 9.4
class.static.data 9.4.2
class.static.mfct 9.4.1
class.temporary 12.2
class.this 9.3.2
class.union 9.5
class.virtual 10.3
classification 22.3.3.1
cmplx.over 26.4.9
comparisons 20.8.6
complex 26.4.2
complex.member.ops 26.4.5
complex.members 26.4.4
complex.numbers 26.4
complex.ops 26.4.6
complex.special 26.4.3
complex.syn 26.4.1
complex.transcendentals 26.4.8
complex.value.ops 26.4.7
compliance 17.6.1.3
conforming 17.6.4
conforming.overview 17.6.4.1
cons.slice 26.6.4.1
constexpr.functions 17.6.4.6
constraints 17.6.3
constraints.overview 17.6.3.1
container.adaptors 23.3.5
container.requirements 23.2
container.requirements.dataraces 23.2.2

1232

c© ISO/IEC N3092

container.requirements.general 23.2.1
containers 23
containers.general 23.1
contents 17.6.1.1
conv 4
conv.array 4.2
conv.bool 4.12
conv.double 4.8
conv.fpint 4.9
conv.fpprom 4.6
conv.func 4.3
conv.integral 4.7
conv.lval 4.1
conv.mem 4.11
conv.prom 4.5
conv.ptr 4.10
conv.qual 4.4
conv.rank 4.13
conventions 17.5.2
conversions 22.3.3.2
conversions.buffer 22.3.3.2.3
conversions.character 22.3.3.2.1
conversions.string 22.3.3.2.2
cpp 16
cpp.concat 16.3.3
cpp.cond 16.1
cpp.error 16.5
cpp.include 16.2
cpp.line 16.4
cpp.null 16.7
cpp.pragma 16.6
cpp.pragma.op 16.9
cpp.predefined 16.8
cpp.replace 16.3
cpp.rescan 16.3.4
cpp.scope 16.3.5
cpp.stringize 16.3.2
cpp.subst 16.3.1
cstdint 18.4
cstdint.syn 18.4.1

D

date.time 20.11
dcl.align 7.6.2
dcl.ambig.res 8.2
dcl.array 8.3.4
dcl.asm 7.4
dcl.attr 7.6
dcl.attr.depend 7.6.6
dcl.attr.final 7.6.4

dcl.attr.grammar 7.6.1
dcl.attr.noreturn 7.6.3
dcl.attr.override 7.6.5
dcl.constexpr 7.1.5
dcl.dcl 7
dcl.decl 8
dcl.enum 7.2
dcl.fct 8.3.5
dcl.fct.def 8.4
dcl.fct.def.default 8.4.2
dcl.fct.def.delete 8.4.3
dcl.fct.def.general 8.4.1
dcl.fct.default 8.3.6
dcl.fct.spec 7.1.2
dcl.friend 7.1.4
dcl.init 8.5
dcl.init.aggr 8.5.1
dcl.init.list 8.5.4
dcl.init.ref 8.5.3
dcl.init.string 8.5.2
dcl.link 7.5
dcl.meaning 8.3
dcl.mptr 8.3.3
dcl.name 8.1
dcl.ptr 8.3.1
dcl.ref 8.3.2
dcl.spec 7.1
dcl.spec.auto 7.1.6.4
dcl.stc 7.1.1
dcl.type 7.1.6
dcl.type.cv 7.1.6.1
dcl.type.elab 7.1.6.3
dcl.type.simple 7.1.6.2
dcl.typedef 7.1.3
declval 20.3.4
default.allocator 20.9.5
definitions 17.3
defns.additional 17.4
defns.arbitrary.stream
defns.argument
defns.blocked
defns.character
defns.character.container
defns.comparison
defns.component
defns.cond.supp
defns.deadlock
defns.default.behavior
defns.diagnostic
defns.dynamic.type
defns.handler

1233

c© ISO/IEC N3092

defns.ill.formed
defns.impl.defined
defns.impl.limits
defns.iostream.templates
defns.locale.specific
defns.modifier
defns.move.assign
defns.move.assign.op
defns.move.ctor
defns.multibyte
defns.ntcts
defns.obj.state
defns.observer
defns.parameter
defns.regex.collating.element
defns.regex.finite.state.machine
defns.regex.format.specifier
defns.regex.matched
defns.regex.primary.equivalence.class
defns.regex.regular.expression
defns.regex.subexpression
defns.replacement
defns.repositional.stream
defns.required.behavior
defns.reserved.function
defns.signature
defns.stable
defns.static.type
defns.traits
defns.undefined
defns.unspecified
defns.well.formed
denorm.style 18.3.1.4
depr D
depr.access.dcl D.3
depr.auto.ptr D.10
depr.c.headers D.6
depr.except.spec D.5
depr.incr.bool D.1
depr.ios.members D.7
depr.istrstream D.8.2
depr.istrstream.cons D.8.2.1
depr.istrstream.members D.8.2.2
depr.lib.bind.1st D.9.2
depr.lib.bind.2nd D.9.4
depr.lib.binder.1st D.9.1
depr.lib.binder.2nd D.9.3
depr.lib.binders D.9
depr.ostrstream D.8.3
depr.ostrstream.cons D.8.3.1
depr.ostrstream.members D.8.3.2

depr.register D.4
depr.static D.2
depr.str.strstreams D.8
depr.strstream D.8.4
depr.strstream.cons D.8.4.1
depr.strstream.dest D.8.4.2
depr.strstream.oper D.8.4.3
depr.strstreambuf D.8.1
depr.strstreambuf.cons D.8.1.1
depr.strstreambuf.members D.8.1.2
depr.strstreambuf.virtuals D.8.1.3
deque 23.3.2
deque.capacity 23.3.2.2
deque.cons 23.3.2.1
deque.modifiers 23.3.2.3
deque.special 23.3.2.4
derivation 17.6.4.10
derived.classes 17.6.3.5
description 17.5
diagnostics 19
diagnostics.general 19.1
diff C
diff.basic C.1.2
diff.char16 C.2.2.1
diff.class C.1.7
diff.cpp C.1.9
diff.dcl C.1.5
diff.decl C.1.6
diff.expr C.1.3
diff.header.iso646.h C.2.2.3
diff.iso C.1
diff.lex C.1.1
diff.library C.2
diff.malloc C.2.4.2
diff.mods.to.behavior C.2.4
diff.mods.to.declarations C.2.3
diff.mods.to.definitions C.2.2
diff.mods.to.headers C.2.1
diff.null C.2.2.4
diff.offsetof C.2.4.1
diff.special C.1.8
diff.stat C.1.4
diff.wchar.t C.2.2.2
domain.error 19.2.2

E

enumerated.types 17.5.2.1.2
equal.range 25.4.3.3
errno 19.4
error.reporting 27.5.5.5

1234

c© ISO/IEC N3092

except 15
except.ctor 15.2
except.handle 15.3
except.nested 18.8.6
except.spec 15.4
except.special 15.5
except.terminate 15.5.1
except.throw 15.1
except.uncaught 15.5.3
except.unexpected 15.5.2
exception 18.8.1
exception.terminate 18.8.3
exception.unexpected 18.8.2
expr 5
expr.add 5.7
expr.alignof 5.3.6
expr.ass 5.17
expr.bit.and 5.11
expr.call 5.2.2
expr.cast 5.4
expr.comma 5.18
expr.cond 5.16
expr.const 5.19
expr.const.cast 5.2.11
expr.delete 5.3.5
expr.dynamic.cast 5.2.7
expr.eq 5.10
expr.log.and 5.14
expr.log.or 5.15
expr.mptr.oper 5.5
expr.mul 5.6
expr.new 5.3.4
expr.or 5.13
expr.post 5.2
expr.post.incr 5.2.6
expr.pre.incr 5.3.2
expr.prim 5.1
expr.prim.general 5.1.1
expr.prim.lambda 5.1.2
expr.pseudo 5.2.4
expr.ref 5.2.5
expr.reinterpret.cast 5.2.10
expr.rel 5.9
expr.shift 5.8
expr.sizeof 5.3.3
expr.static.cast 5.2.9
expr.sub 5.2.1
expr.type.conv 5.2.3
expr.typeid 5.2.8
expr.unary 5.3
expr.unary.noexcept 5.3.7

expr.unary.op 5.3.1
expr.xor 5.12
ext.manip 27.7.4
extern.names 17.6.3.3.3
extern.types 17.6.3.3.4

F

facet.ctype.char.dtor 22.4.1.3.1
facet.ctype.char.members 22.4.1.3.2
facet.ctype.char.statics 22.4.1.3.3
facet.ctype.char.virtuals 22.4.1.3.4
facet.ctype.special 22.4.1.3
facet.num.get.members 22.4.2.1.1
facet.num.get.virtuals 22.4.2.1.2
facet.num.put.members 22.4.2.2.1
facet.num.put.virtuals 22.4.2.2.2
facet.numpunct 22.4.3
facet.numpunct.members 22.4.3.1.1
facet.numpunct.virtuals 22.4.3.1.2
facets.examples 22.4.8
file.streams 27.9
filebuf 27.9.1.1
filebuf.assign 27.9.1.3
filebuf.cons 27.9.1.2
filebuf.members 27.9.1.4
filebuf.virtuals 27.9.1.5
floatfield.manip 27.5.5.4
fmtflags.manip 27.5.5.1
fmtflags.state 27.5.2.2
forward 20.3.3
forward.iterators 24.2.5
forwardlist 23.3.3
forwardlist.access 23.3.3.3
forwardlist.cons 23.3.3.1
forwardlist.iter 23.3.3.2
forwardlist.modifiers 23.3.3.4
forwardlist.ops 23.3.3.5
forwardlist.spec 23.3.3.6
fpos 27.5.3
fpos.members 27.5.3.1
fpos.operations 27.5.3.2
front.insert.iter.cons 24.5.2.4.1
front.insert.iter.op* 24.5.2.4.3
front.insert.iter.op++ 24.5.2.4.4
front.insert.iter.op= 24.5.2.4.2
front.insert.iter.ops 24.5.2.4
front.insert.iterator 24.5.2.3
front.inserter 24.5.2.4.5
fstream 27.9.1.14
fstream.assign 27.9.1.16

1235

c© ISO/IEC N3092

fstream.cons 27.9.1.15
fstream.members 27.9.1.17
fstreams 27.9.1
func.bind 20.8.10.1
func.bind.bind 20.8.10.1.2
func.bind.isbind 20.8.10.1.1
func.bind.place 20.8.10.1.3
func.def 20.8.1
func.memfn 20.8.13
func.require 20.8.2
func.wrap 20.8.14
func.wrap.badcall 20.8.14.1
func.wrap.badcall.const 20.8.14.1.1
func.wrap.func 20.8.14.2
func.wrap.func.alg 20.8.14.2.7
func.wrap.func.cap 20.8.14.2.3
func.wrap.func.con 20.8.14.2.1
func.wrap.func.inv 20.8.14.2.4
func.wrap.func.mod 20.8.14.2.2
func.wrap.func.nullptr 20.8.14.2.6
func.wrap.func.targ 20.8.14.2.5
function.objects 20.8
function.pointer.adaptors 20.8.11
functions.within.classes 17.5.2.2
futures 30.6
futures.async 30.6.9
futures.atomic_future 30.6.8
futures.errors 30.6.2
futures.future_error 30.6.3
futures.overview 30.6.1
futures.promise 30.6.5
futures.shared_future 30.6.7
futures.state 30.6.4
futures.task 30.6.10
futures.task.members 30.6.10.1
futures.task.nonmembers 30.6.10.2
futures.unique_future 30.6.6

G

global.functions 17.6.4.4
global.names 17.6.3.3.2
gram A
gram.basic A.3
gram.class A.8
gram.cpp A.14
gram.dcl A.6
gram.decl A.7
gram.derived A.9
gram.except A.13
gram.expr A.4

gram.key A.1
gram.lex A.2
gram.over A.11
gram.special A.10
gram.stmt A.5
gram.temp A.12
gslice.access 26.6.6.2
gslice.array.assign 26.6.7.1
gslice.array.comp.assign 26.6.7.2
gslice.array.fill 26.6.7.3
gslice.cons 26.6.6.1

H

handler.functions 17.6.3.7
hash.requirements 20.2.4
headers 17.6.1.2

I

ifstream 27.9.1.6
ifstream.assign 27.9.1.8
ifstream.cons 27.9.1.7
ifstream.members 27.9.1.9
implimits B
includes 25.4.5.1
indirect.array.assign 26.6.9.1
indirect.array.comp.assign 26.6.9.2
indirect.array.fill 26.6.9.3
inner.product 26.7.2
input.iterators 24.2.3
input.output 27
input.output.general 27.1
input.streams 27.7.1
insert.iter.cons 24.5.2.6.1
insert.iter.op* 24.5.2.6.3
insert.iter.op++ 24.5.2.6.4
insert.iter.op= 24.5.2.6.2
insert.iter.ops 24.5.2.6
insert.iterator 24.5.2.5
insert.iterators 24.5.2
inserter 24.5.2.6.5
intro 1
intro.ack 1.11
intro.compliance 1.4
intro.defs 1.3
intro.execution 1.9
intro.memory 1.7
intro.multithread 1.10
intro.object 1.8
intro.refs 1.2

1236

c© ISO/IEC N3092

intro.scope 1.1
intro.structure 1.5
invalid.argument 19.2.3
ios 27.5.4
ios.base 27.5.2
ios.base.callback 27.5.2.6
ios.base.cons 27.5.2.7
ios.base.locales 27.5.2.3
ios.base.storage 27.5.2.5
ios.members.static 27.5.2.4
ios.types 27.5.2.1
ios::failure 27.5.2.1.1
ios::fmtflags 27.5.2.1.2
ios::Init 27.5.2.1.6
ios::iostate 27.5.2.1.3
ios::openmode 27.5.2.1.4
ios::seekdir 27.5.2.1.5
iostate.flags 27.5.4.3
iostream.assign 27.7.1.5.3
iostream.cons 27.7.1.5.1
iostream.dest 27.7.1.5.2
iostream.format 27.7
iostream.forward 27.3
iostream.limits.imbue 27.2.1
iostream.objects 27.4
iostreamclass 27.7.1.5
iostreams.base 27.5
iostreams.limits.pos 27.2.2
iostreams.requirements 27.2
iostreams.threadsafety 27.2.3
is.heap 25.4.6.5
is.sorted 25.4.1.5
istream 27.7.1.1
istream.assign 27.7.1.1.2
istream.cons 27.7.1.1.1
istream.formatted 27.7.1.2
istream.formatted.arithmetic 27.7.1.2.2
istream.formatted.reqmts 27.7.1.2.1
istream.iterator 24.6.1
istream.iterator.cons 24.6.1.1
istream.iterator.ops 24.6.1.2
istream.manip 27.7.1.4
istream.rvalue 27.7.1.6
istream.unformatted 27.7.1.3
istream::extractors 27.7.1.2.3
istream::sentry 27.7.1.1.3
istreambuf.iterator 24.6.3
istreambuf.iterator.cons 24.6.3.2
istreambuf.iterator::equal 24.6.3.5
istreambuf.iterator::op!= 24.6.3.7
istreambuf.iterator::op* 24.6.3.3

istreambuf.iterator::op++ 24.6.3.4
istreambuf.iterator::op== 24.6.3.6
istreambuf.iterator::proxy 24.6.3.1
istringstream 27.8.2
istringstream.assign 27.8.2.2
istringstream.cons 27.8.2.1
istringstream.members 27.8.2.3
iterator.basic 24.4.2
iterator.iterators 24.2.2
iterator.operations 24.4.4
iterator.primitives 24.4
iterator.range 24.6.5
iterator.requirements 24.2
iterator.requirements.general 24.2.1
iterator.synopsis 24.3
iterator.traits 24.4.1
iterators 24
iterators.general 24.1

J

K

L

language.support 18
length.error 19.2.4
lex 2
lex.bool 2.14.6
lex.ccon 2.14.3
lex.charset 2.3
lex.comment 2.8
lex.digraph 2.6
lex.ext 2.14.8
lex.fcon 2.14.4
lex.header 2.9
lex.icon 2.14.2
lex.key 2.12
lex.literal 2.14
lex.literal.kinds 2.14.1
lex.name 2.11
lex.nullptr 2.14.7
lex.operators 2.13
lex.phases 2.2
lex.ppnumber 2.10
lex.pptoken 2.5
lex.separate 2.1
lex.string 2.14.5
lex.token 2.7
lex.trigraph 2.4
library 17
library.c 17.2

1237

c© ISO/IEC N3092

library.general 17.1
limits 18.3.1
list 23.3.4
list.capacity 23.3.4.2
list.cons 23.3.4.1
list.modifiers 23.3.4.3
list.ops 23.3.4.4
list.special 23.3.4.5
locale 22.3.1
locale.categories 22.4
locale.category 22.3.1.1.1
locale.codecvt 22.4.1.4
locale.codecvt.byname 22.4.1.5
locale.codecvt.members 22.4.1.4.1
locale.codecvt.virtuals 22.4.1.4.2
locale.collate 22.4.4.1
locale.collate.byname 22.4.4.2
locale.collate.members 22.4.4.1.1
locale.collate.virtuals 22.4.4.1.2
locale.cons 22.3.1.2
locale.convenience 22.3.3
locale.ctype 22.4.1.1
locale.ctype.byname 22.4.1.2
locale.ctype.members 22.4.1.1.1
locale.ctype.virtuals 22.4.1.1.2
locale.facet 22.3.1.1.2
locale.global.templates 22.3.2
locale.id 22.3.1.1.3
locale.members 22.3.1.3
locale.messages 22.4.7.1
locale.messages.byname 22.4.7.2
locale.messages.members 22.4.7.1.1
locale.messages.virtuals 22.4.7.1.2
locale.money.get 22.4.6.1
locale.money.get.members 22.4.6.1.1
locale.money.get.virtuals 22.4.6.1.2
locale.money.put 22.4.6.2
locale.money.put.members 22.4.6.2.1
locale.money.put.virtuals 22.4.6.2.2
locale.moneypunct 22.4.6.3
locale.moneypunct.byname 22.4.6.4
locale.moneypunct.members 22.4.6.3.1
locale.moneypunct.virtuals 22.4.6.3.2
locale.nm.put 22.4.2.2
locale.num.get 22.4.2.1
locale.numpunct 22.4.3.1
locale.numpunct.byname 22.4.3.2
locale.operators 22.3.1.4
locale.statics 22.3.1.5
locale.stdcvt 22.5
locale.syn 22.2

locale.time.get 22.4.5.1
locale.time.get.byname 22.4.5.2
locale.time.get.members 22.4.5.1.1
locale.time.get.virtuals 22.4.5.1.2
locale.time.put 22.4.5.3
locale.time.put.byname 22.4.5.4
locale.time.put.members 22.4.5.3.1
locale.time.put.virtuals 22.4.5.3.2
locale.types 22.3.1.1
locales 22.3
localization 22
localization.general 22.1
logic.error 19.2.1
logical.operations 20.8.7
lower.bound 25.4.3.1

M

macro.names 17.6.3.3.1
make.heap 25.4.6.3
map 23.4.1
map.access 23.4.1.2
map.cons 23.4.1.1
map.modifiers 23.4.1.3
map.ops 23.4.1.4
map.special 23.4.1.5
mask.array.assign 26.6.8.1
mask.array.comp.assign 26.6.8.2
mask.array.fill 26.6.8.3
member.functions 17.6.4.5
member.pointer.adaptors 20.8.12
memory 20.9
meta 20.7
meta.help 20.7.3
meta.rel 20.7.5
meta.rqmts 20.7.1
meta.trans 20.7.6
meta.trans.arr 20.7.6.4
meta.trans.cv 20.7.6.1
meta.trans.other 20.7.6.6
meta.trans.ptr 20.7.6.5
meta.trans.ref 20.7.6.2
meta.trans.sign 20.7.6.3
meta.type.synop 20.7.2
meta.unary 20.7.4
meta.unary.cat 20.7.4.1
meta.unary.comp 20.7.4.2
meta.unary.prop 20.7.4.3
mismatch 25.2.10
move.iter.nonmember 24.5.3.3.14
move.iter.op.+ 24.5.3.3.8

1238

c© ISO/IEC N3092

move.iter.op.+= 24.5.3.3.9
move.iter.op.- 24.5.3.3.10
move.iter.op.-= 24.5.3.3.11
move.iter.op.comp 24.5.3.3.13
move.iter.op.const 24.5.3.3.1
move.iter.op.conv 24.5.3.3.3
move.iter.op.decr 24.5.3.3.7
move.iter.op.incr 24.5.3.3.6
move.iter.op.index 24.5.3.3.12
move.iter.op.ref 24.5.3.3.5
move.iter.op.star 24.5.3.3.4
move.iter.op= 24.5.3.3.2
move.iter.ops 24.5.3.3
move.iter.requirements 24.5.3.2
move.iterator 24.5.3.1
move.iterators 24.5.3
multibyte.strings 17.5.2.1.4.2
multimap 23.4.2
multimap.cons 23.4.2.1
multimap.modifiers 23.4.2.2
multimap.ops 23.4.2.3
multimap.special 23.4.2.4
multiset 23.4.4
multiset.cons 23.4.4.1
multiset.special 23.4.4.2

N

namespace.alias 7.3.2
namespace.constraints 17.6.3.2
namespace.def 7.3.1
namespace.memdef 7.3.1.2
namespace.posix 17.6.3.2.2
namespace.qual 3.4.3.2
namespace.std 17.6.3.2.1
namespace.udecl 7.3.3
namespace.udir 7.3.4
namespace.unnamed 7.3.1.1
narrow.stream.objects 27.4.1
negators 20.8.9
new.badlength 18.6.2.2
new.delete 18.6.1
new.delete.array 18.6.1.2
new.delete.dataraces 18.6.1.4
new.delete.placement 18.6.1.3
new.delete.single 18.6.1.1
new.handler 18.6.2.3
nullablepointer.requirements 20.2.3
numarray 26.6
numeric.iota 26.7.5
numeric.limits 18.3.1.1

numeric.limits.members 18.3.1.2
numeric.ops 26.7
numeric.requirements 26.2
numeric.special 18.3.1.5
numerics 26
numerics.general 26.1

O

objects.within.classes 17.5.2.3
ofstream 27.9.1.10
ofstream.assign 27.9.1.12
ofstream.cons 27.9.1.11
ofstream.members 27.9.1.13
operators 20.3.1
organization 17.6.1
ostream 27.7.2.1
ostream.assign 27.7.2.3
ostream.cons 27.7.2.2
ostream.formatted 27.7.2.6
ostream.formatted.reqmts 27.7.2.6.1
ostream.inserters 27.7.2.6.3
ostream.inserters.arithmetic 27.7.2.6.2
ostream.inserters.character 27.7.2.6.4
ostream.iterator 24.6.2
ostream.iterator.cons.des 24.6.2.1
ostream.iterator.ops 24.6.2.2
ostream.manip 27.7.2.8
ostream.rvalue 27.7.2.9
ostream.seeks 27.7.2.5
ostream.unformatted 27.7.2.7
ostream::sentry 27.7.2.4
ostreambuf.iter.cons 24.6.4.1
ostreambuf.iter.ops 24.6.4.2
ostreambuf.iterator 24.6.4
ostringstream 27.8.3
ostringstream.assign 27.8.3.2
ostringstream.cons 27.8.3.1
ostringstream.members 27.8.3.3
out.of.range 19.2.5
output.iterators 24.2.4
output.streams 27.7.2
over 13
over.ass 13.5.3
over.best.ics 13.3.3.1
over.binary 13.5.2
over.built 13.6
over.call 13.5.4
over.call.func 13.3.1.1.1
over.call.object 13.3.1.1.2
over.dcl 13.2

1239

c© ISO/IEC N3092

over.ics.ellipsis 13.3.3.1.3
over.ics.list 13.3.3.1.5
over.ics.rank 13.3.3.2
over.ics.ref 13.3.3.1.4
over.ics.scs 13.3.3.1.1
over.ics.user 13.3.3.1.2
over.inc 13.5.7
over.literal 13.5.8
over.load 13.1
over.match 13.3
over.match.best 13.3.3
over.match.call 13.3.1.1
over.match.conv 13.3.1.5
over.match.copy 13.3.1.4
over.match.ctor 13.3.1.3
over.match.funcs 13.3.1
over.match.list 13.3.1.7
over.match.oper 13.3.1.2
over.match.ref 13.3.1.6
over.match.viable 13.3.2
over.oper 13.5
over.over 13.4
over.ref 13.5.6
over.sub 13.5.5
over.unary 13.5.1
overflow.error 19.2.8

P

pair.astuple 20.3.5.3
pair.piecewise 20.3.5.5
pair.range 20.3.5.4
pairs 20.3.5
pairs.general 20.3.5.1
pairs.pair 20.3.5.2
partial.sort 25.4.1.3
partial.sort.copy 25.4.1.4
partial.sum 26.7.3
pointer.traits 20.9.3
pointer.traits.functions 20.9.3.2
pointer.traits.types 20.9.3.1
pop.heap 25.4.6.2
predef.iterators 24.5
priority.queue 23.3.5.2
priqueue.cons 23.3.5.2.1
priqueue.cons.alloc 23.3.5.2.2
priqueue.members 23.3.5.2.3
priqueue.special 23.3.5.2.4
propagation 18.8.5
protection.within.classes 17.6.4.9
ptr.align 20.9.13

push.heap 25.4.6.1

Q

queue 23.3.5.1
queue.cons 23.3.5.1.2
queue.cons.alloc 23.3.5.1.3
queue.defn 23.3.5.1.1
queue.ops 23.3.5.1.4
queue.special 23.3.5.1.5

R

rand 26.5
rand.adapt 26.5.4
rand.adapt.disc 26.5.4.1
rand.adapt.ibits 26.5.4.2
rand.adapt.shuf 26.5.4.3
rand.device 26.5.6
rand.dist 26.5.8
rand.dist.bern 26.5.8.2
rand.dist.bern.bernoulli 26.5.8.2.1
rand.dist.bern.bin 26.5.8.2.2
rand.dist.bern.geo 26.5.8.2.3
rand.dist.bern.negbin 26.5.8.2.4
rand.dist.norm 26.5.8.4
rand.dist.norm.cauchy 26.5.8.4.4
rand.dist.norm.chisq 26.5.8.4.3
rand.dist.norm.f 26.5.8.4.5
rand.dist.norm.lognormal 26.5.8.4.2
rand.dist.norm.normal 26.5.8.4.1
rand.dist.norm.t 26.5.8.4.6
rand.dist.pois 26.5.8.3
rand.dist.pois.exp 26.5.8.3.2
rand.dist.pois.extreme 26.5.8.3.5
rand.dist.pois.gamma 26.5.8.3.3
rand.dist.pois.poisson 26.5.8.3.1
rand.dist.pois.weibull 26.5.8.3.4
rand.dist.samp 26.5.8.5
rand.dist.samp.discrete 26.5.8.5.1
rand.dist.samp.pconst 26.5.8.5.2
rand.dist.samp.plinear 26.5.8.5.3
rand.dist.uni 26.5.8.1
rand.dist.uni.int 26.5.8.1.1
rand.dist.uni.real 26.5.8.1.2
rand.eng 26.5.3
rand.eng.lcong 26.5.3.1
rand.eng.mers 26.5.3.2
rand.eng.sub 26.5.3.3
rand.predef 26.5.5
rand.req 26.5.1

1240

c© ISO/IEC N3092

rand.req.adapt 26.5.1.5
rand.req.dist 26.5.1.6
rand.req.eng 26.5.1.4
rand.req.genl 26.5.1.1
rand.req.seedseq 26.5.1.2
rand.req.urng 26.5.1.3
rand.synopsis 26.5.2
rand.util 26.5.7
rand.util.canonical 26.5.7.2
rand.util.seedseq 26.5.7.1
random.access.iterators 24.2.7
range.error 19.2.7
ratio 20.6
ratio.arithmetic 20.6.2
ratio.comparison 20.6.3
ratio.ratio 20.6.1
ratio.si 20.6.4
re 28
re.alg 28.11
re.alg.match 28.11.2
re.alg.replace 28.11.4
re.alg.search 28.11.3
re.badexp 28.6
re.const 28.5
re.def 28.2
re.err 28.5.3
re.except 28.11.1
re.general 28.1
re.grammar 28.13
re.iter 28.12
re.matchflag 28.5.2
re.regex 28.8
re.regex.assign 28.8.3
re.regex.const 28.8.1
re.regex.construct 28.8.2
re.regex.locale 28.8.5
re.regex.nmswap 28.8.7.1
re.regex.nonmemb 28.8.7
re.regex.operations 28.8.4
re.regex.swap 28.8.6
re.regiter 28.12.1
re.regiter.cnstr 28.12.1.1
re.regiter.comp 28.12.1.2
re.regiter.deref 28.12.1.3
re.regiter.incr 28.12.1.4
re.req 28.3
re.results 28.10
re.results.acc 28.10.3
re.results.all 28.10.5
re.results.const 28.10.1
re.results.form 28.10.4

re.results.nonmember 28.10.7
re.results.size 28.10.2
re.results.swap 28.10.6
re.submatch 28.9
re.submatch.members 28.9.1
re.submatch.op 28.9.2
re.syn 28.4
re.synopt 28.5.1
re.tokiter 28.12.2
re.tokiter.cnstr 28.12.2.1
re.tokiter.comp 28.12.2.2
re.tokiter.deref 28.12.2.3
re.tokiter.incr 28.12.2.4
re.traits 28.7
reentrancy 17.6.4.7
refwrap 20.8.4
refwrap.access 20.8.4.3
refwrap.assign 20.8.4.2
refwrap.const 20.8.4.1
refwrap.helpers 20.8.4.5
refwrap.invoke 20.8.4.4
replacement.functions 17.6.3.6
requirements 17.6
res.on.arguments 17.6.3.9
res.on.data.races 17.6.4.8
res.on.exception.handling 17.6.4.11
res.on.functions 17.6.3.8
res.on.headers 17.6.4.2
res.on.macro.definitions 17.6.4.3
res.on.objects 17.6.3.10
res.on.pointer.storage 17.6.4.12
res.on.required 17.6.3.11
reserved.names 17.6.3.3
reverse.iter.cons 24.5.1.3.1
reverse.iter.conv 24.5.1.3.3
reverse.iter.op!= 24.5.1.3.15
reverse.iter.op+ 24.5.1.3.8
reverse.iter.op++ 24.5.1.3.6
reverse.iter.op+= 24.5.1.3.9
reverse.iter.op- 24.5.1.3.10
reverse.iter.op-= 24.5.1.3.11
reverse.iter.op.star 24.5.1.3.4
reverse.iter.op< 24.5.1.3.14
reverse.iter.op<= 24.5.1.3.18
reverse.iter.op= 24.5.1.3.2
reverse.iter.op== 24.5.1.3.13
reverse.iter.op> 24.5.1.3.16
reverse.iter.op>= 24.5.1.3.17
reverse.iter.opdiff 24.5.1.3.19
reverse.iter.opindex 24.5.1.3.12
reverse.iter.opref 24.5.1.3.5

1241

c© ISO/IEC N3092

reverse.iter.ops 24.5.1.3
reverse.iter.opsum 24.5.1.3.20
reverse.iter.op-- 24.5.1.3.7
reverse.iter.requirements 24.5.1.2
reverse.iterator 24.5.1.1
reverse.iterators 24.5.1
round.style 18.3.1.3
runtime.error 19.2.6

S

sequence.reqmts 23.2.3
sequences 23.3
set 23.4.3
set.cons 23.4.3.1
set.difference 25.4.5.4
set.intersection 25.4.5.3
set.new.handler 18.6.2.4
set.special 23.4.3.2
set.symmetric.difference 25.4.5.5
set.terminate 18.8.3.2
set.unexpected 18.8.2.3
set.union 25.4.5.2
slice.access 26.6.4.2
slice.arr.assign 26.6.5.1
slice.arr.comp.assign 26.6.5.2
slice.arr.fill 26.6.5.3
sort 25.4.1.1
sort.heap 25.4.6.4
special 12
specialized.addressof 20.9.9.1
specialized.algorithms 20.9.9
stable.sort 25.4.1.2
stack 23.3.5.3
stack.cons 23.3.5.3.2
stack.cons.alloc 23.3.5.3.3
stack.defn 23.3.5.3.1
stack.ops 23.3.5.3.4
stack.special 23.3.5.3.5
std.exceptions 19.2
std.ios.manip 27.5.5
std.iterator.tags 24.4.3
std.manip 27.7.3
stmt.ambig 6.8
stmt.block 6.3
stmt.break 6.6.1
stmt.cont 6.6.2
stmt.dcl 6.7
stmt.do 6.5.2
stmt.expr 6.2
stmt.for 6.5.3

stmt.goto 6.6.4
stmt.if 6.4.1
stmt.iter 6.5
stmt.jump 6.6
stmt.label 6.1
stmt.ranged 6.5.4
stmt.return 6.6.3
stmt.select 6.4
stmt.stmt 6
stmt.switch 6.4.2
stmt.while 6.5.1
storage.iterator 20.9.7
stream.buffers 27.6
stream.iterators 24.6
stream.types 27.5.1
streambuf 27.6.2
streambuf.assign 27.6.2.3.1
streambuf.buffer 27.6.2.2.2
streambuf.cons 27.6.2.1
streambuf.get.area 27.6.2.3.2
streambuf.locales 27.6.2.2.1
streambuf.members 27.6.2.2
streambuf.protected 27.6.2.3
streambuf.pub.get 27.6.2.2.3
streambuf.pub.pback 27.6.2.2.4
streambuf.pub.put 27.6.2.2.5
streambuf.put.area 27.6.2.3.3
streambuf.reqts 27.6.1
streambuf.virt.buffer 27.6.2.4.2
streambuf.virt.get 27.6.2.4.3
streambuf.virt.locales 27.6.2.4.1
streambuf.virt.pback 27.6.2.4.4
streambuf.virt.put 27.6.2.4.5
streambuf.virtuals 27.6.2.4
string.access 21.4.5
string.accessors 21.4.7.1
string.capacity 21.4.4
string.classes 21.3
string.cons 21.4.2
string.conversions 21.5
string.io 21.4.8.9
string.iterators 21.4.3
string.modifiers 21.4.6
string.nonmembers 21.4.8
string.ops 21.4.7
string.require 21.4.1
string.special 21.4.8.8
string.streams 27.8
string::append 21.4.6.2
string::assign 21.4.6.3
string::compare 21.4.7.9

1242

c© ISO/IEC N3092

string::copy 21.4.6.7
string::erase 21.4.6.5
string::find 21.4.7.2
string::find.first.not.of 21.4.7.6
string::find.first.of 21.4.7.4
string::find.last.not.of 21.4.7.7
string::find.last.of 21.4.7.5
string::insert 21.4.6.4
string::op!= 21.4.8.3
string::op+ 21.4.8.1
string::op+= 21.4.6.1
string::op< 21.4.8.4
string::op<= 21.4.8.6
string::op> 21.4.8.5
string::op>= 21.4.8.7
string::operator== 21.4.8.2
string::replace 21.4.6.6
string::rfind 21.4.7.3
string::substr 21.4.7.8
string::swap 21.4.6.8
stringbuf 27.8.1
stringbuf.assign 27.8.1.2
stringbuf.cons 27.8.1.1
stringbuf.members 27.8.1.3
stringbuf.virtuals 27.8.1.4
strings 21
strings.general 21.1
stringstream 27.8.4
stringstream.assign 27.8.5.1
stringstream.cons 27.8.5
stringstream.members 27.8.6
structure 17.5.1
structure.elements 17.5.1.1
structure.requirements 17.5.1.3
structure.see.also 17.5.1.5
structure.specifications 17.5.1.4
structure.summary 17.5.1.2
support.dynamic 18.6
support.exception 18.8
support.general 18.1
support.initlist 18.9
support.initlist.access 18.9.2
support.initlist.cons 18.9.1
support.initlist.range 18.9.3
support.limits 18.3
support.rtti 18.7
support.runtime 18.10
support.start.term 18.5
support.types 18.2
swappable.requirements 20.2.2
syntax 1.6

syserr 19.5
syserr.compare 19.5.4
syserr.errcat 19.5.1
syserr.errcat.derived 19.5.1.4
syserr.errcat.nonvirtuals 19.5.1.3
syserr.errcat.objects 19.5.1.5
syserr.errcat.overview 19.5.1.1
syserr.errcat.virtuals 19.5.1.2
syserr.errcode 19.5.2
syserr.errcode.constructors 19.5.2.2
syserr.errcode.modifiers 19.5.2.3
syserr.errcode.nonmembers 19.5.2.5
syserr.errcode.observers 19.5.2.4
syserr.errcode.overview 19.5.2.1
syserr.errcondition 19.5.3
syserr.errcondition.constructors 19.5.3.2
syserr.errcondition.modifiers 19.5.3.3
syserr.errcondition.nonmembers 19.5.3.5
syserr.errcondition.observers 19.5.3.4
syserr.errcondition.overview 19.5.3.1
syserr.hash 19.5.5
syserr.syserr 19.5.6
syserr.syserr.members 19.5.6.2
syserr.syserr.overview 19.5.6.1

T

temp 14
temp.alias 14.5.7
temp.arg 14.3
temp.arg.explicit 14.8.1
temp.arg.nontype 14.3.2
temp.arg.template 14.3.3
temp.arg.type 14.3.1
temp.class 14.5.1
temp.class.order 14.5.5.2
temp.class.spec 14.5.5
temp.class.spec.match 14.5.5.1
temp.class.spec.mfunc 14.5.5.3
temp.decls 14.5
temp.deduct 14.8.2
temp.deduct.call 14.8.2.1
temp.deduct.conv 14.8.2.3
temp.deduct.funcaddr 14.8.2.2
temp.deduct.partial 14.8.2.4
temp.deduct.type 14.8.2.5
temp.dep 14.6.2
temp.dep.candidate 14.6.4.2
temp.dep.constexpr 14.6.2.3
temp.dep.expr 14.6.2.2
temp.dep.res 14.6.4

1243

c© ISO/IEC N3092

temp.dep.temp 14.6.2.4
temp.dep.type 14.6.2.1
temp.expl.spec 14.7.3
temp.explicit 14.7.2
temp.fct 14.5.6
temp.fct.spec 14.8
temp.friend 14.5.4
temp.func.order 14.5.6.2
temp.inject 14.6.5
temp.inst 14.7.1
temp.local 14.6.1
temp.mem 14.5.2
temp.mem.class 14.5.1.2
temp.mem.func 14.5.1.1
temp.names 14.2
temp.nondep 14.6.3
temp.over 14.8.3
temp.over.link 14.5.6.1
temp.param 14.1
temp.point 14.6.4.1
temp.res 14.6
temp.spec 14.7
temp.static 14.5.1.3
temp.type 14.4
temp.variadic 14.5.3
template.bitset 20.5
template.gslice.array 26.6.7
template.indirect.array 26.6.9
template.mask.array 26.6.8
template.slice.array 26.6.5
template.valarray 26.6.2
temporary.buffer 20.9.8
terminate 18.8.3.3
terminate.handler 18.8.3.1
thread 30
thread.condition 30.5
thread.condition.condvar 30.5.1
thread.condition.condvarany 30.5.2
thread.general 30.1
thread.lock 30.4.3
thread.lock.algorithm 30.4.4
thread.lock.guard 30.4.3.1
thread.lock.unique 30.4.3.2
thread.lock.unique.cons 30.4.3.2.1
thread.lock.unique.locking 30.4.3.2.2
thread.lock.unique.mod 30.4.3.2.3
thread.lock.unique.obs 30.4.3.2.4
thread.mutex 30.4
thread.mutex.class 30.4.1.1
thread.mutex.recursive 30.4.1.2
thread.mutex.requirements 30.4.1

thread.once 30.4.5
thread.once.callonce 30.4.5.2
thread.once.onceflag 30.4.5.1
thread.req 30.2
thread.req.exception 30.2.2
thread.req.native 30.2.3
thread.req.paramname 30.2.1
thread.req.timing 30.2.4
thread.thread.algorithm 30.3.1.7
thread.thread.assign 30.3.1.4
thread.thread.class 30.3.1
thread.thread.constr 30.3.1.2
thread.thread.destr 30.3.1.3
thread.thread.id 30.3.1.1
thread.thread.member 30.3.1.5
thread.thread.static 30.3.1.6
thread.thread.this 30.3.2
thread.threads 30.3
thread.timedmutex.class 30.4.2.1
thread.timedmutex.recursive 30.4.2.2
thread.timedmutex.requirements 30.4.2
time 20.10
time.clock 20.10.5
time.clock.hires 20.10.5.3
time.clock.monotonic 20.10.5.2
time.clock.req 20.10.1
time.clock.system 20.10.5.1
time.duration 20.10.3
time.duration.arithmetic 20.10.3.3
time.duration.cast 20.10.3.7
time.duration.comparisons 20.10.3.6
time.duration.cons 20.10.3.1
time.duration.nonmember 20.10.3.5
time.duration.observer 20.10.3.2
time.duration.special 20.10.3.4
time.point 20.10.4
time.point.arithmetic 20.10.4.3
time.point.cast 20.10.4.7
time.point.comparisons 20.10.4.6
time.point.cons 20.10.4.1
time.point.nonmember 20.10.4.5
time.point.observer 20.10.4.2
time.point.special 20.10.4.4
time.traits 20.10.2
time.traits.duration_values 20.10.2.2
time.traits.is_fp 20.10.2.1
time.traits.specializations 20.10.2.3
tuple 20.4
tuple.assign 20.4.2.2
tuple.cnstr 20.4.2.1
tuple.creation 20.4.2.4

1244

c© ISO/IEC N3092

tuple.elem 20.4.2.6
tuple.general 20.4.1
tuple.helper 20.4.2.5
tuple.range 20.4.2.10
tuple.rel 20.4.2.7
tuple.special 20.4.2.9
tuple.swap 20.4.2.3
tuple.traits 20.4.2.8
tuple.tuple 20.4.2
type.descriptions 17.5.2.1
type.descriptions.general 17.5.2.1.1
type.index 20.12
type.index.hash 20.12.4
type.index.members 20.12.3
type.index.overview 20.12.2
type.index.synopsis 20.12.1
type.info 18.7.1

U

uncaught 18.8.4
underflow.error 19.2.9
unexpected 18.8.2.4
unexpected.handler 18.8.2.2
uninitialized.copy 20.9.9.2
uninitialized.fill 20.9.9.3
uninitialized.fill.n 20.9.9.4
unique.ptr 20.9.10
unique.ptr.dltr 20.9.10.1
unique.ptr.dltr.dflt 20.9.10.1.2
unique.ptr.dltr.dflt1 20.9.10.1.3
unique.ptr.dltr.general 20.9.10.1.1
unique.ptr.runtime 20.9.10.3
unique.ptr.runtime.ctor 20.9.10.3.1
unique.ptr.runtime.modifiers 20.9.10.3.3
unique.ptr.runtime.observers 20.9.10.3.2
unique.ptr.single 20.9.10.2
unique.ptr.single.asgn 20.9.10.2.3
unique.ptr.single.ctor 20.9.10.2.1
unique.ptr.single.dtor 20.9.10.2.2
unique.ptr.single.modifiers 20.9.10.2.5
unique.ptr.single.observers 20.9.10.2.4
unique.ptr.special 20.9.10.4
unord 23.5
unord.hash 20.8.15
unord.map 23.5.1
unord.map.cnstr 23.5.1.1
unord.map.elem 23.5.1.2
unord.map.modifers 23.5.1.3
unord.map.swap 23.5.1.4
unord.multimap 23.5.2

unord.multimap.cnstr 23.5.2.1
unord.multimap.modifers 23.5.2.2
unord.multimap.swap 23.5.2.3
unord.multiset 23.5.4
unord.multiset.cnstr 23.5.4.1
unord.multiset.swap 23.5.4.2
unord.req 23.2.5
unord.req.except 23.2.5.1
unord.set 23.5.3
unord.set.cnstr 23.5.3.1
unord.set.swap 23.5.3.2
upper.bound 25.4.3.2
using 17.6.2
using.headers 17.6.2.2
using.linkage 17.6.2.3
using.overview 17.6.2.1
usrlit.suffix 17.6.3.3.5
util.dynamic.safety 20.9.12
util.smartptr 20.9.11
util.smartptr.enab 20.9.11.4
util.smartptr.getdeleter 20.9.11.2.11
util.smartptr.hash 20.9.11.6
util.smartptr.ownerless 20.9.11.3.7
util.smartptr.shared 20.9.11.2
util.smartptr.shared.assign 20.9.11.2.3
util.smartptr.shared.atomic 20.9.11.5
util.smartptr.shared.cast 20.9.11.2.10
util.smartptr.shared.cmp 20.9.11.2.7
util.smartptr.shared.const 20.9.11.2.1
util.smartptr.shared.create 20.9.11.2.6
util.smartptr.shared.dest 20.9.11.2.2
util.smartptr.shared.io 20.9.11.2.8
util.smartptr.shared.mod 20.9.11.2.4
util.smartptr.shared.obs 20.9.11.2.5
util.smartptr.shared.spec 20.9.11.2.9
util.smartptr.weak 20.9.11.3
util.smartptr.weak.assign 20.9.11.3.3
util.smartptr.weak.const 20.9.11.3.1
util.smartptr.weak.dest 20.9.11.3.2
util.smartptr.weak.mod 20.9.11.3.4
util.smartptr.weak.obs 20.9.11.3.5
util.smartptr.weak.spec 20.9.11.3.6
util.smartptr.weakptr 20.9.11.1
utilities 20
utilities.general 20.1
utility 20.3
utility.arg.requirements 20.2.1
utility.requirements 20.2
utility.swap 20.3.2

1245

c© ISO/IEC N3092

V

valarray.access 26.6.2.3
valarray.assign 26.6.2.2
valarray.binary 26.6.3.1
valarray.cassign 26.6.2.6
valarray.comparison 26.6.3.2
valarray.cons 26.6.2.1
valarray.members 26.6.2.7
valarray.nonmembers 26.6.3
valarray.range 26.6.10
valarray.special 26.6.3.4
valarray.sub 26.6.2.4
valarray.syn 26.6.1
valarray.transcend 26.6.3.3
valarray.unary 26.6.2.5
value.error.codes 17.6.4.13
vector 23.3.6
vector.bool 23.3.7

vector.capacity 23.3.6.2
vector.cons 23.3.6.1
vector.data 23.3.6.3
vector.modifiers 23.3.6.4
vector.special 23.3.6.5

W

wide.characters 17.5.2.1.4.5
wide.stream.objects 27.4.2

X

xref E

Y

Z

1246

c© ISO/IEC N3092

Index
!, see logical negation operator
!=, see inequality operator
(), see function call operator

function declarator, 185
*, see indirection operator, see multiplication opera-

tor
pointer declarator, 180

+, see unary plus operator, see addition operator
++, see increment operator
,, see comma operator
-, see unary minus operator, see subtraction operator
->, see class member access operator
->*, see pointer to member operator
--, see decrement operator
., see class member access operator
.*, see pointer to member operator
..., see ellipsis
/, see division operator
:

field declaration, 222
label specifier, 125

::, see scope resolution operator
::*

pointer to member declarator, 183
<, see less than operator

template and, 318, 319
<=, see less than or equal to operator
<<, see left shift operator
=, see assignment operator
==, see equality operator
>, see greater than operator
>=, see greater than or equal operator
>>, see right shift operator
?:, see conditional expression operator
[], see subscripting operator

array declarator, 184
#define, 402
#elif, 399
#else, 400
#endif, 400
#error, 407
#if, 399, 428
#ifdef, 400
#ifndef, 400
#include, 400, 423

#line, 406
#pragma, 407
#undef, 404, 424
%, see modulus operator
&, see address-of operator, see bitwise AND operator

reference declarator, 181
&&, see logical AND operator
ˆ, see bitwise exclusive OR operator
_ _ DATE _ _, 408
_ _ FILE _ _, 408
_ _ LINE _ _, 408
_ _ STDC _ _, 408

implementation-defined, 408
_ _ STDC_HOSTED _ _, 408

implementation-defined, 408
_ _ STDC_ISO_10646 _ _, 408

implementation-defined, 408
_ _ STDC_MB_MIGHT_NEQ_WC _ _, 408

implementation-defined, 408
_ _ STDC_VERSION _ _, 408

implementation-defined, 408
_ _ TIME _ _, 408
_ _cplusplus, 407
\, see backslash
operator, 403
operator, 403
const object

undefined change to, 145
exception::what message

implementation-defined, 454
friend function

nested class, 224
delete, 111
{}

block statement, 125
class declaration, 210
class definition, 210
enum declaration, 150
initializer list, 199

∼, see destructor
_, see character, underscore
∼, see one’s complement operator
|, see bitwise inclusive OR operator
||, see logical OR operator

0, see also zero, null

INDEX 1247

c© ISO/IEC N3092

null character, 28
string terminator, 28

abort, 61, 131
abstract-declarator, 177, 1192
access

union default member, 210
adjusting base class member, 244
base class, 242
base class member, 226
class member, 95
member name, 239
overloading and, 286
virtual function, 249

access-specifier, 226, 1194
access control, 239

anonymous union, 222
member function and, 251
overloading resolution and, 230

access specifier, 241, 242
actual argument, 2
actual parameter, 2
addition operator, 114
additive-expression, 114, 1185
address, 73, 117
address of member function

unspecified, 429
aggregate, 199
aggregate initialization, 199
algorithm

stable, 413
alias, 157
alias-declaration, 135, 1187
alignment

extended, 76
fundamental, 76

alignment requirement
implementation-defined, 76

allocation
alignment storage, 108
implementation defined bit-field, 222
unspecified, 215

allocation functions, 63
ambiguity

base class member, 229
class conversion, 232
declaration type, 137
declaration versus cast, 178
declaration versus expression, 133
function declaration, 197
member access, 229

parentheses and, 107
ambiguity detection

overloaded function, 286
Amendment 1, 425
and-expression, 118, 1185
appertain, 170
argc, 58
argument, 2, 427–429, 463

access checking and default, 240
binding of default, 190
evaluation of default, 190, 191
example of default, 189, 190
overloaded operator and default, 307
reference, 94
scope of default, 191
template, 320
type checking of default, 190

arguments
implementation-defined order of evaluation of func-

tion, 191
argument and name hiding

default, 191
argument and virtual function

default, 192
argument list

empty, 186
variable, 186

argument passing, 94
reference and, 203

argument substitution, 402
argument type

unknown, 186
argv, 58
arithmetic

pointer, 115
unsigned, 71

array, 186
bound, 184
const, 74
delete, 111
multidimensional, 185
new, 108
overloading and pointer versus, 284
sizeof, 106
storage of, 185

array
as aggregate, 740
contiguous storage, 740
initialization, 740, 742
tuple interface to, 742
zero sized, 742

INDEX 1248

c© ISO/IEC N3092

array size
default, 184

arrow operator, see class member access operator
asm

implementation-defined, 166
asm-definition, 166, 1190
assembler, 166
<assert.h>, 423
assignment

and lvalue, 120
conversion by, 121
move, 412
reference, 203

assignment-expression, 121, 1186
assignment-operator, 121, 1186
assignment operator

copy, 275
overloaded, 308

associated asynchronous state, 1160
associative containers

exception safety, 728
requirements, 728
unordered, see unordered associative containers

asynchronous provider, 1160
asynchronous return object, 1160
atexit, 61
attribute, 170
attribute, 170, 1190
attribute-argument-clause, 170, 1191
attribute-declaration, 135, 1188
attribute-list, 170, 1190
attribute-namespace, 170, 1191
attribute-scoped-token, 170, 1191
attribute-specifier, 170, 1190
attribute-token, 170, 1190
automatic storage duration, 62
awk, 1071

backslash character, 24
bad_alloc, 109
bad_cast, 98
bad_exception, 396
bad_typeid, 99
bad_typeid::what

implementation-defined, 452
balanced-token, 170, 1191
balanced-token-seq, 170, 1191
base class subobject, 6
base-clause, 226, 1193
base-specifier, 226, 1193
base-specifier-list, 226, 1193

base-type-specifier, 226, 1194
BaseCharacteristic, 513
base class, 226, 227

direct, 226
indirect, 226
private, 242
protected, 242
public, 242

base class virtual, see virtual base class
basic_ios::failure argument

implementation-defined, 993
begin

unordered associative containers, 735
behavior

conditionally-supported, 2, 5
default, 412, 416
implementation-defined, 2, 696
locale-specific, 3
required, 413, 416
undefined, 3
unspecified, 3

Ben, 286
Bernoulli distributions, 923–926
bernoulli_distribution

discrete probability function, 923
binary function, 534
BinaryTypeTrait, 513
binary operator

interpretation of, 308
overloaded, 308

bind directly, 205
binding

reference, 203
binomial_distribution

discrete probability function, 923
bit-field, 222

address of, 223
alignment of, 223
implementation-defined sign of, 223
implementation defined alignment of, 222
type of, 223
unnamed, 223
zero width of, 223

block
initialization in, 132

block scope, 37
block-declaration, 135, 1187
block scope; see local scope, 37
block structure, 132
body

function, 192

INDEX 1249

c© ISO/IEC N3092

Boolean, 223
Boolean literal, 28
boolean-literal, 28, 1182
Boolean type, 72
bound arguments, 540
bound, of array, 184
brace-or-equal-initializer, 196, 1192
braced-init-list, 196, 1192
bucket

unordered associative containers, 735
bucket_count

unordered associative containers, 735
bucket_size

unordered associative containers, 735
buckets, 729
built-in type; see fundamental type, 71
byte, 5, 106

C
linkage to, 167

C standard, 1
C standard library, 1
C Unicode TR, 1
c-char, 24, 1181
c-char-sequence, 24, 1181
call, see also function call, member function call, over-

loaded function call, virtual function call
operator function, 307
pseudo destructor, 95

call signature, 532
call wrapper, 533

forwarding, 533
simple, 533

call wrapper type, 533
Callable, 546
callable object, 532, 546
callable type, 532
capture, 88, 1184
capture-default, 87, 1183
capture-list, 88, 1183
captured, 90
captured by copy, 91
captured by reference, 91
carries a dependency, 11
carry

subtract_with_carry_engine, 910
<cassert>, 423
cast

base class, 100
const, 102
derived class, 100

dynamic, 97, 451
integer to pointer, 101
lvalue, 99, 101
pointer to function, 101
pointer to integer, 101
pointer to member, 101, 102
reference, 99, 102
reinterpret, 101
reinterpret_cast

lvalue, 101
reference, 102

static, 99
static_cast

lvalue, 99
reference, 99

undefined pointer to function, 101
cast-expression, 112, 1185
casting, 95
catch, 387
cauchy_distribution

probability density function, 934
cbegin

unordered associative containers, 735
cend

unordered associative containers, 735
<cerrno>, 425
char

implementation-defined sign of, 71
char-like object, 611
char-like type, 611
char16_t, 24, 419
char16_t character, 24
char32_t, 24, 419
char32_t character, 24
char_class_type

Regular Expression Traits, 1061
character, 411

decimal-point, 418
multibyte, 3
set

basic execution, 5
basic source, 16

signed, 71
underscore, 425

in identifier, 21
character string literal, 403
character-literal, 23, 1181
character string, 27
checking

point of error, 345
syntax, 345

INDEX 1250

c© ISO/IEC N3092

chi_squared_distribution
probability density function, 933

class, 73, 210
abstract, 236
base, 425, 430
cast to incomplete, 113
constructor and abstract, 238
definition, 33
derived, 430
linkage of, 56
linkage specification, 168
pointer to abstract, 237
polymorphic, 233
scope of enumerator, 153
standard-layout, 211
trivial, 210
unnamed, 142

class-head, 210, 1193
class-key, 210, 1193
class-name, 210, 1193
class-or-decltype, 226, 1193
class-specifier, 210, 1193
class base, see base class
class derived, see derived class
class local, see local class
class name, 177

elaborated, 149, 213
point of declaration, 213
scope of, 212
typedef, 141, 142, 213

class nested, see nested class
class object

assignment to, 121
const, 74
member, 215
sizeof, 106

class object copy, see also copy constructor
class object initialization, see also constructor
clear

unordered associative containers, 734
<clocale>, 418
closure object, 88
closure type, 88
collating element, 1060
comment, 18

/* */, 19
//, 19

comparison
pointer, 117
pointer to function, 117
undefined pointer, 115, 117

unspecified pointer, 117
void* pointer, 116

compatible, 393
compilation

separate, 15
compiler control line, see preprocessing directive
complete object, 6
completely defined, 214
component, 412
compound-statement, 125, 1186
concatenation

string, 27
undefined string literal, 28

condition, 126, 1187
conditions

rules for, 126
conditional-expression

throw-expression in, 119
conditional-expression, 119, 1186
conflict, 11
consistency

linkage, 138
linkage specification, 168
type declaration, 58

const, 73
constructor and, 219, 252
destructor and, 219, 259
linkage of, 55, 138
overloading and, 285

const_local_iterator, 729
unordered associative containers, 729

constant, 22, 85
enumeration, 151
null pointer, 81

constant iterator, 811
constant-expression, 122, 1186
constructor, 251

address of, 253
array of class objects and, 264
conversion by, 256
converting, 256
copy, 253, 254, 271, 272, 420
exception handling, 390
inheritance of, 252
move, 413
non-trivial, 252
random number distribution requirement, 903
random number engine requirement, 899, 900
type of, 253
union, 221
unspecified argument to, 109

INDEX 1251

c© ISO/IEC N3092

constructor call
explicit, 253

constructor conversion by, see also user-defined con-
version

constructor default, see default constructor
context

non-deduced, 379
control-line, 398, 1196
control line, see preprocessing directive
convention, 416
conversion

argument, 186
array pointer, 78
array-to-pointer, 78
Boolean, 82
class, 255
derived-to-base, 297
floating point, 80
floating-integral, 81
function-to-pointer, 78
implementation-defined floating point, 80
implementation defined pointer integer, 101
implicit, 77, 255
implicit user-defined, 256
inheritance of user-defined, 258
integer, 80
integer rank, 82
lvalue-to-rvalue, 78, 1203
narrowing, 209
overload resolution and, 295
overload resolution and pointer, 306
pointer, 81
pointer to function, 78
pointer to member, 81

void*, 82
return type, 131
signed unsigned integer, 80
standard, 77
static user-defined, 258
type of, 257
user-defined, 255–257
virtual user-defined, 258

conversion operator, see conversion function
conversion rank, 298
conversion-declarator, 257, 1194
conversion-function-id, 257, 1194
conversion-type-id, 257, 1194
conversions

qualification, 78
usual arithmetic, 84

conversion explicit type, see casting

conversion function, see also user-defined conversion
copy

class object, 271
copy constructor

random number engine requirement, 899
copy elision, 278
copy-initialization, 198
copy assignment operator

implicitly-declared, 275
copy constructor

implicitly-declared, 273
count

unordered associative containers, 735
<cstdarg>, 186
<cstddef>, 106, 115
<cstdint>, 442
<cstdlib>, 61, 422
<cstring>, 419
ctor-initializer, 264, 1194
<cuchar>, 419, 420, 425
cv-qualifier, 73
cv-qualifier, 177, 1191
cv-qualifier-seq, 177, 1191
<cwchar>, 420, 425
<cwctype>, 425

d-char, 26, 1182
d-char-sequence, 26, 1182
DAG

multiple inheritance, 228, 229
non-virtual base class, 229
virtual base class, 228, 229

data race, 13
data member, see member

static, 219
deadlock, 412
deallocation, see delete
deallocation functions, 63
decimal-literal, 22, 1180
decl-specifier, 137, 1188
decl-specifier-seq, 137, 1188
declaration, 31, 135

extern reference, 203
typedef as type, 140
access, 244
array, 184
asm, 166
bit-field, 222
class member, 214
class name, 31
constant pointer, 180

INDEX 1252

c© ISO/IEC N3092

default argument, 189
definition versus, 31
ellipsis in function, 94, 186
enumerator point of, 36
extern, 31
forward, 139
forward class, 213
function, 31, 185
member, 214
multiple, 58
name, 31
overloaded, 283
overloaded name and friend, 247
parameter, 186
parentheses in, 178, 180
pointer, 180
reference, 181
register, 138
static member, 31
storage class, 137
type, 179
typedef, 32

declaration, 135, 1187
declaration-seq, 135, 1187
declaration-statement, 132, 1187
declaration hiding, see name hiding
declaration matching

overloaded function, 285
declarative region, 35
declarator, 136, 176

meaning of, 179
multidimensional array, 184

declarator, 176, 1191
declarator-id, 177, 1192
decltype-specifier, 147, 1189
decrement operator

overloaded, 309
default

access control, 239
default constructor

random number distribution requirement, 903
seed sequence requirement, 897

default-initialization, 197
defaulted, 194
default argument

overload resolution and, 294
default constructor, 252
default initializers

overloading and, 285
deferred function, 1173
definition, 31

static member, 220
altermate, 425
class, 210, 214
class name as type, 212
constructor, 192
declaration as, 136
empty class, 210
function, 192
local class, 224
member function, 216
namespace, 154
nested class, 223
pure virtual function, 237
scope of class, 212
virtual function, 235

delete, 62, 110, 111, 261
destructor and, 111, 260
operator, 426
overloading and, 64
type of, 262
undefined, 111

delete-expression, 110, 1185
deleter, 567
dependency-ordered before, 12
deprecated features, 97, 105
dereferencing, see also indirection
derivation, see inheritance
derived class, 226

most, 6
overloading and, 285

derived object
most, 6

destructor, 258, 420
default, 259
exception handling, 390
non-trivial, 259
program termination and, 259
pure virtual, 259
union, 221
virtual, 259

destructor call
explicit, 260
implicit, 259

diagnosable rules, 4
digit, 20, 1179
digit-sequence, 25, 1181
digraph, 18
directed acyclic graph, see DAG
directive

error, 407
null, 407

INDEX 1253

c© ISO/IEC N3092

pragma, 407
preprocessing, 397

discard
random number engine requirement, 900

discard_block_engine
generation algorithm, 912
state, 912
textual representation, 913
transition algorithm, 912

discrete probability function
bernoulli_distribution, 923
binomial_distribution, 923
discrete_distribution, 936
geometric_distribution, 924
negative_binomial_distribution, 925
poisson_distribution, 926
uniform_int_distribution, 921

discrete_distribution
discrete probability function, 936
weights, 937

distribution, see random number distribution
dominance

virtual base class, 231
dot operator, see class member access operator
dynamic binding, see virtual function
dynamic initialization, 59
dynamic-exception-specification, 392, 1196

ECMA-262, 2
ECMAScript, 1071, 1104
egrep, 1071
elaborated-type-specifier, 149, 1189
elaborated type specifier, see elaborated class name
elif-group, 397, 1196
elif-groups, 397, 1196
elision

copy constructor, 278
ellipsis

conversion sequence, 94, 299
overload resolution and, 294

else, 126
else-group, 397, 1196
empty, 1165, 1167, 1170
empty-declaration, 135, 1188
encoding

multibyte, 28
encoding-prefix, 26, 1181
end

unordered associative containers, 735
end-of-file, 510
endif-line, 397, 1196

engine, see random number engine
engine adaptor, see random number engine adaptor
engines with predefined parameters

default_random_engine, 916
knuth_b, 916
minstd_rand, 915
minstd_rand0, 915
mt19937, 915
mt19937_64, 916
ranlux24, 916
ranlux24_base, 916
ranlux48, 916
ranlux48_base, 916

entity, 31
enum, 73

overloading and, 284
type of, 150, 151
underlying type, 151

enum-base, 151, 1189
enum-head, 150, 1189
enum-key, 151, 1189
enum-name, 150, 1189
enum-specifier, 150, 1189
enumeration, 150, 151

linkage of, 56
scoped, 151
unscoped, 151

enumeration scope, 40
enumeration scope, 40
enumeration type

conversion to, 100
static_cast

conversion to, 100
enumerator

definition, 33
value of, 151

enumerator, 151, 1190
enumerator-definition, 151, 1189
enumerator-list, 151, 1189
enum name

typedef, 142
environment

program, 58
epoch, 596
equal_range

unordered associative containers, 735
equality-expression, 117, 1185
equivalence

template type, 326
type, 140, 212

equivalent-key group, 728

INDEX 1254

c© ISO/IEC N3092

equivalent parameter declarations, 284
overloading and, 284

erase
unordered associative containers, 734

escape-sequence, 24, 1181
escape character, see backslash
escape sequence

undefined, 24
Evaluation, 9
evaluation

order of argument, 95
unspecified order of, 10, 60
unspecified order of argument, 95
unspecified order of function call, 95

example
*const, 180
static member, 220
array, 184
class definition, 215
const, 180
constant pointer, 180
constructor, 253
constructor and initialization, 263
declaration, 32, 187
declarator, 177
definition, 32
delete, 262
derived class, 226
destructor and delete, 262
ellipsis, 186
enumeration, 152
explicit destructor call, 260
explicit qualification, 230
friend, 213
friend function, 245
function declaration, 187
function definition, 192
linkage consistency, 138
local class, 224
member function, 217, 245
member name access, 244
nested type name, 225
nested class, 223
nested class definition, 224, 250
nested class forward declaration, 224
pointer to member, 183
pure virtual function, 237
scope of delete, 262
scope resolution operator, 230
subscripting, 184
typedef, 140

type name, 177
unnamed parameter, 192
variable parameter list, 186
virtual function, 234, 235

exception
allowing an, 394
arithmetic, 83
handling, 387
object, 389
undefined arithmetic, 83

<exception>, 452
exception object, 389
exception-declaration, 387, 1195
exception-specification, 392, 1195
exclusive-or-expression, 118, 1186
exit, 59, 61, 131
explanation

subscripting, 184
explicit-instantiation, 360, 1195
explicit-specialization, 362, 1195
explicitly captured, 89
explicit type conversion, see casting
exponent-part, 25, 1181
exponential_distribution

probability density function, 927
expression, 83

constant, 122
lambda, 87
order of evaluation of, 8
parenthesized, 86
pointer to member constant, 104
postfix, 92
primary, 85
reference, 83
rvalue reference, 83
unary, 104

expression, 122, 1186
expression-list, 92, 1184
expression-statement, 125, 1186
extended alignment, 76
extended integer type, 71
extended signed integer type, 71
extended unsigned integer type, 71
extension-namespace-definition, 154, 1190
extern, 137

linkage of, 138
extern "C", 423, 425
extern "C++", 423, 425
external linkage, 55
extreme_value_distribution

probability density function, 930

INDEX 1255

c© ISO/IEC N3092

file, 15
source, 15, 423, 425

final overrider, 233
find

unordered associative containers, 734
finite state machine, 1060
fisher_f_distribution

probability density function, 935
floating-literal, 25, 1181
floating-suffix, 26, 1181
floating point type, 72

implementation-defined, 72
for

scope of declaration in, 130
for-init-statement, 128, 1187
for-range-declaration, 128, 1187
formal arguments, 3
formal parameters, 3
formal argument, see parameter
format specifier, 1060
forwarding call wrapper, 533
fractional-constant, 25, 1181
freestanding, 4
free store, see also new, delete
friend

virtual and, 235
access specifier and, 247
class access and, 246
inheritance and, 247
local class and, 248
template and, 333

friend function
access and, 245
inline, 247
linkage of, 247
member function and, 245

full-expression, 9
function, see friend function, member function, in-

line function, virtual function, 186
allocation, 63, 108
comparison, 412
conversion, 257
deallocation, 64, 111, 261
definition, 33
global, 425, 428, 429
handler, 412
linkage specification overloaded, 169
modifier, 412
observer, 413
operator, 306
plain old, 460

pointer to member, 114
replacement, 413
reserved, 413
viable, 287
virtual member, 425, 429

function object, 529
function object type, 529
function objects

binders, 539–541
mem_fn, 544
reference_wrapper, 534
wrapper, 544–549

function-definition, 192, 1192
function-specifier, 139, 1188
function-try-block, 387, 1195
functions

candidate, 355
function argument, see argument
function call, 94

recursive, 95
undefined, 101

function call operator
overloaded, 309

function overloaded, see overloading
function parameter, see parameter
function prototype, 38
function return, see return
function return type, see return type
function virtual, see virtual function
fundamental alignment, 76
fundamental type

destructor and, 261
fundamental type conversion, see conversion, user-

defined conversion

gamma_distribution
probability density function, 928

generate
seed sequence requirement, 898

generated destructor, see default destructor
generation algorithm

discard_block_engine, 912
independent_bits_engine, 913
linear_congruential_engine, 908
mersenne_twister_engine, 909
shuffle_order_engine, 914
subtract_with_carry_engine, 911

geometric_distribution
discrete probability function, 924

global, 39
global namespace, 39

INDEX 1256

c© ISO/IEC N3092

global namespace scope, 39
global scope, 39
glvalue, 74
goto

initialization and, 132
grammar

regular expression, 1104
grep, 1071
group, 397, 1196
group-part, 397, 1196

h-char, 19, 1179
h-char-sequence, 19, 1179
handler

exception, 390, 430
incomplete type in exception, 390

handler, 387, 1195
handler-seq, 387, 1195
happens before, 12
Hash, 482
hash

instantiation restrictions, 550
hash code, 729
hash function, 728
hash tables, see unordered associative containers
hash_function

unordered associative containers, 732
hasher

unordered associative containers, 729
header

C, 423, 425, 428, 1214
header-name, 19, 1179
headers

x C++ library, 421
hex-quad, 17, 1178
hexadecimal-digit, 22, 1180
hexadecimal-escape-sequence, 24, 1181
hexadecimal-literal, 22, 1180
hiding; see name hiding, 41
high-order bit, 5
hosted, 4

id
qualified, 86

id-expression, 86
id-expression, 85, 1183
identifier, 20, 86, 136
identifier, 20, 1179
identifier-list, 398, 1197
identifier-nondigit, 20, 1179
if-group, 397, 1196

if-section, 397, 1196
immolation

self, 364
implementation

freestanding, 422
hosted, 422

implementation-defined, 425, 433, 444, 449, 452, 454,
986, 1039, 1212

implementation-dependent, 1012
implementation-generated, 32
implicitly captured, 90
implicitly-declared default constructor, 252, see also

default constructor
implicit object parameter, 287
implied object argument, 287

implicit conversion sequences, 288
inclusion

conditional, 399
source file, 400

inclusive-or-expression, 118, 1186
incomplete, 114
increment

bool, 97, 105
increment operator

overloaded, 309
independent_bits_engine

generation algorithm, 913
state, 913
textual representation, 914
transition algorithm, 913

indeterminately sequenced, 9
indirection, 104
inheritance, 226, see also multiple inheritance
init-declarator, 176, 1191
init-declarator-list, 176, 1191
initialization, 59, 196

aggregate, 199
array, 199
array of class objects, 202, 264
automatic, 132
automatic object, 196
base class, 264, 265
character array, 202
class member, 197
class object, see also constructor, 199, 263
const, 145, 199
const member, 266
constant, 59
constructor and, 263
copy, 198
default, 196

INDEX 1257

c© ISO/IEC N3092

default constructor and, 263
definition and, 136
direct, 198
dynamic, 59
jump past, 132
local static, 132
member, 264
member object, 265
order of, 59, 227
order of base class, 267
order of member, 267
order of virtual base class, 267
overloaded assignment and, 264
parameter, 94
reference, 182, 202
reference member, 266
run-time, 59
static and thread, 59
static member, 220
static object, 59
static object, 196
union, 202, 222
virtual base class, 274

initializer
base class, 192
member, 192
scope of member, 267
temporary and declarator, 254

initializer, 196, 1192
initializer-clause, 196, 1192
initializer-list, 196, 1192
initializer-list constructor

seed sequence requirement, 897
injected-class-name, 210
inline, 428
inline

linkage of, 55
inline function, 140
insert

unordered associative containers, 733, 734
instantiation

explicit, 360
point of, 354
template implicit, 357

instantiation units, 16
int

bool promotion to, 80
integer representation, 65
integer-literal, 22, 1180
integer-suffix, 22, 1180
integer type, 72

integral type, 72
sizeof, 71

inter-thread happens before, 12
internal linkage, 55
interval boundaries

piecewise_constant_distribution, 938
piecewise_linear_distribution, 940

invocation
macro, 402

isctype
Regular Expression Traits, 1062

iteration-statement, 128, 131, 1187

Jessie, 256
jump-statement, 131, 1187

key_eq
unordered associative containers, 732

key_equal
unordered associative containers, 729

key_type
unordered associative containers, 729

label, 132
case, 125, 127
default, 125, 127
scope of, 38, 125

labeled-statement, 125, 1186
lambda-capture, 87, 1183
lambda-declarator, 88, 1184
lambda-expression, 87, 1183
lambda-introducer, 87, 147, 1183
lattice; see DAG

subobject, 227
layout

bit-field, 222
class object, 215, 227

layout-compatible type, 71
left shift

undefined, 116
left shift operator, 116
lexical conventions, 15
library

x C++ Standard, 425, 427, 430
x C++ standard, 410, 430
C standard, 1214
C standard, 421
Standard C, 411, 423, 1209, 1212
standard C, 418

library clauses, 5
lifetime, 65

INDEX 1258

c© ISO/IEC N3092

limits
implementation, 2

<limits>, 433
linear_congruential_engine

generation algorithm, 908
modulus, 908
state, 908
textual representation, 908
transition algorithm, 908

linkage, 31, 55
external, 55, 423, 425
implementation-defined object, 169
internal, 55

linkage-specification, 167, 1190
linkage specification, 167

extern, 167
implementation-defined, 167

list
operator, 21, 306

literal, 22, 85
base of integer, 23
char16_t, 24
char32_t, 24
character, 24
decimal, 23
double, 26
float, 26
floating point, 26
hexadecimal, 23
char, 25
implementation-defined value of multicharacter,

24
integer, 23
long, 23
long double, 26
multicharacter, 24
narrow-character, 24
octal, 23
type of character, 24
type of floating point, 26
type of integer, 23
unsigned, 23

literal, 22, 1180
literal type, 70
literal-operator-id, 310, 1194
load_factor

unordered associative containers, 736
local lambda expression, 89
local variable, 37
local_iterator, 729

unordered associative containers, 729

locale, 1060, 1061, 1063, 1071
local class

friend, 248
member function in, 217
scope of, 224

local variable
destruction of, 131, 132

logical-and-expression, 118, 1186
logical-or-expression, 119, 1186
lognormal_distribution

probability density function, 932
long

typedef and, 137
long-long-suffix, 22, 1180
long-suffix, 22, 1180
lookup

argument-dependent, 46
member name, 229
name, 31, 41
template name, 343

lookup_classname
Regular Expression Traits, 1106

lookup_classname
Regular Expression Traits, 1062

lookup_collatename
Regular Expression Traits, 1062

low-order bit, 5
lowercase, 418
lparen, 398, 1197
lvalue, 74, 1203
lvalue reference, 72, 181

macro
function-like, 401
masking, 428
object-like, 401

main(), 58
implementation-defined linkage of, 58
implementation-defined parameters to, 58
parameters to, 58
return from, 61
return from, 59

match_results
as sequence, 1088

matched, 1060
max

random number distribution requirement, 904
uniform random number generator requirement,

898
max_bucket_count

unordered associative containers, 735

INDEX 1259

c© ISO/IEC N3092

max_load_factor
unordered associative containers, 736

mean
normal_distribution, 931
poisson_distribution, 926

mem-initializer, 264, 1194
mem-initializer-id, 264, 1194
mem-initializer-list, 264, 1194
member

class static, 62
enumerator, 153
static, 219
template and static, 329

member names, 38
member subobject, 6
member-declaration, 214, 1193
member-declarator, 214, 1193
member-declarator-list, 214, 1193
member-specification, 214, 1193
members, 38
member access operator

overloaded, 309
member function

class, 216
const, 218
constructor and, 253
destructor and, 259
friend, 247
inline, 216
local class, 225
nested class, 250
overload resolution and, 287
static, 219, 220
union, 221
volatile, 218

member function call
undefined, 217

member pointer to; see pointer to member, 73
member use

static, 219
memory location, 6
memory model, 5
memory management, see also new, delete
mersenne_twister_engine

generation algorithm, 909
state, 909
textual representation, 910
transition algorithm, 909

message
diagnostic, 2

min

random number distribution requirement, 904
uniform random number generator requirement,

898
modification order, 11
most derived class, 6
most derived object, 6
multi-pass guarantee, 814
multicharacter literal, 24
multiple inheritance, 226, 227

virtual and, 235
multiplicative-expression, 114, 1185
mutable, 137
mutable iterator, 811

name, 20, 31, 86
address of cv-qualified, 104
dependent, 349, 354
elaborated enum, 149
global, 39
length of, 20
macro, 401
overloaded function, 283
overloaded member, 214
point of declaration, 36
predefined macro, 407
qualified, 47
reserved, 424
scope of, 35
unqualified, 42

named-namespace-definition, 154, 1190
namespace, 421, 1214

global, 425
unnamed, 155

namespace-alias, 157, 1190
namespace-alias-definition, 157, 1190
namespace-body, 154, 1190
namespace-definition, 154, 1190
namespace-name, 154, 1190
namespaces, 153
name class, see class name
name hiding, 36, 41, 85, 86, 132

class definition, 212
function, 286
overloading versus, 286
user-defined conversion and, 256

name space
label, 125

narrowing conversion, 209
NDEBUG, 423
negative_binomial_distribution

discrete probability function, 925

INDEX 1260

c© ISO/IEC N3092

nested-name-specifier, 86, 1183
nested class

local class, 225
scope of, 223

<new>, 426, 445
new, 62, 106, 108

array of class objects and, 109
constructor and, 109
default constructor and, 109
exception and, 109
initialization and, 109
operator, 426
scoping and, 107
storage allocation, 107
type of, 261
unspecified constructor and, 109
unspecified order of evaluation, 109

new-declarator, 107, 1185
new-expression, 107, 1184
new-initializer, 107, 1185
new-line, 398, 1197
new-placement, 107, 1185
new-type-id, 107, 1185
new_handler, 63
no linkage, 55
noexcept-expression, 111, 1185
noexcept-specification, 392, 1196
non-directive, 398, 1197
non-throwing, 394
nondigit, 20, 1179
nonzero-digit, 22, 1180
noptr-abstract-declarator, 177, 1192
noptr-declarator, 176, 1191
noptr-new-declarator, 107, 1185
normal distributions, 931–936
normal_distribution

mean, 931
probability density function, 931
standard deviation, 931

notation
syntax, 5

notify_all_at_thread_exit, 1150
NTBS, 419, 1048, 1223, 1224

static, 419
NTC16S, 419

static, 419
NTC32S, 420

static, 420
NTCTS, 413
NTMBS, 419

static, 419

NTWCS, 420
static, 420

number
hex, 25
octal, 25

numeric_limits, 434
numeric_limits, 72

object, 6, 31
complete, 6
definition, 33
delete, 110
destructor static, 61
destructor and placement of, 260
linkage specification, 169
local static, 62
undefined deleted, 64
unnamed, 253

object representation, 69
object type, 6, 70
object-expression, 84
object class, see also class object
object lifetime, 65
object temporary, see temporary
object type, 70
observable behavior, 8
octal-digit, 22, 1180
octal-escape-sequence, 24, 1181
octal-literal, 22, 1180
opaque-enum-declaration, 151, 1189
operator, 307

*=, 120
+=, 105, 120
-=, 120
/=, 120
<<=, 120
>>=, 120
%=, 120
&=, 120
ˆ=, 120
|=, 120
additive, 114
address-of, 104
assignment, 120, 420
bitwise, 118
bitwise AND, 118
bitwise exclusive OR, 118
bitwise inclusive OR, 118
cast, 104, 177
class member access, 95
comma, 122

INDEX 1261

c© ISO/IEC N3092

conditional expression, 119
copy assignment, 271
decrement, 97, 104, 105
division, 114
equality, 117
function call, 93, 307
greater than, 116
greater than or equal to, 116
increment, 97, 104, 105
indirection, 104
inequality, 117
less than, 116
less than or equal to, 116
logical AND, 118
logical negation, 104, 105
logical OR, 119
modulus, 114
multiplication, 114
multiplicative, 114
one’s complement, 104, 105
overloaded, 83
pointer to member, 113
pragma, 408
precedence of, 8
relational, 116
scope resolution, 85, 86, 108, 216, 226, 236
side effects and comma, 122
side effects and logical AND, 119
side effects and logical OR, 119
sizeof, 104, 106
subscripting, 93, 307
unary, 104
unary minus, 104, 105
unary plus, 104, 105

operator, 307, 1194
operator

overloaded, 306
operator delete, see also delete, 108, 111, 261
operator new, see also new, 108
operator()

random number distribution requirement, 903,
904

random number engine requirement, 900
uniform random number generator requirement,

898
operator-function-id, 307, 1194
operator<<

random number distribution requirement, 904
random number engine requirement, 900

operator==
random number distribution requirement, 904

random number engine requirement, 900
operator>>

random number distribution requirement, 904
random number engine requirement, 901

operator left shift, see left shift operator
operator overloading, see also overloaded operator
operator right shift; right shift operator, 116
operator shift, see left shift operator, right shift op-

erator
operator use

scope resolution, 220
optimization of temporary, see elimination of tempo-

rary
ordering

function template partial, 341
order of execution

base class constructor, 253
base class destructor, 259
constructor and static objects, 264
constructor and array, 263
destructor, 259
destructor and array, 259
member constructor, 253
member destructor, 259

original-namespace-definition, 154, 1190
original-namespace-name, 154, 1190
over-aligned type, 76
overflow, 83

undefined, 83
overloaded function

address of, 105, 305
overloaded operator, 306

inheritance of, 307
overloading, 186, 212, 283, 340

example of, 283
overloads

floating point, 895
overload resolution contexts, 287
overrider

final, 233
own, 567

pair
tuple interface to, 492

param
random number distribution requirement, 903
seed sequence requirement, 898

param_type
random number distribution requirement, 903

parameter, 3
reference, 181

INDEX 1262

c© ISO/IEC N3092

scope of, 37
void, 186

parameter-declaration, 186, 1192
parameter-declaration-clause, 185, 1192
parameter-declaration-list, 185, 1192
parameter-type-list, 186
parameterized type, see template
parameters

macro, 402
parameters-and-qualifiers, 176, 1191
parameter list

variable, 94, 186
period, 418
phases

translation, 15
piecewise construction, 493
piecewise_constant_distribution

interval boundaries, 938
probability density function, 938
weights, 938

piecewise_linear_distribution
interval boundaries, 940
probability density function, 940
weights at boundaries, 940

placement syntax
new, 108

pm-expression, 113, 1185
POD class, 211
POD struct, 211
POD union, 211
POF, 460
point of declaration, 36
pointer

safely-derived, 65
to traceable object, 64, 431
zero, 81

pointer, integer representation of safely-derived, 65
pointer-literal, 28, 1182
void*, 73
pointer to member, 73, 113
Poisson distributions, 926–931
poisson_distribution

discrete probability function, 926
mean, 926

POSIX, 2
extended regular expressions, 1071
regular expressions, 1071

postfix-expression, 92, 1184
postfix ++ and --

overloading, 309
postfix ++ and --, 97

potential scope, 35
potentially evaluated, 33
pp-number, 20, 1179
pp-tokens, 398, 1197
prefix

L, 24, 27
prefix ++ and --

overloading, 309
prefix ++ and dcr, 105
preprocessing, 397
preprocessing directive, 397
preprocessing-file, 397, 1196
preprocessing-op-or-punc, 21, 1180
preprocessing-token, 18, 1179
preprocessor

macro, 397
primary equivalence class, 1061
primary-expression, 85, 1183
private, 239
probability density function

cauchy_distribution, 934
chi_squared_distribution, 933
exponential_distribution, 927
extreme_value_distribution, 930
fisher_f_distribution, 935
gamma_distribution, 928
lognormal_distribution, 932
normal_distribution, 931
piecewise_constant_distribution, 938
piecewise_linear_distribution, 940
student_t_distribution, 936
uniform_real_distribution, 922
weibull_distribution, 929

program, 55
ill-formed, 2
well-formed, 4

promotion
floating point, 80
integral, 79

protected, 239
protection, see access control, 430
prvalue, 75
pseudo-destructor-name, 95
pseudo-destructor-name, 93, 1184
ptr-abstract-declarator, 177, 1192
ptr-declarator, 176, 1191
ptr-operator, 177, 1191
ptrdiff_t, 115

implementation defined type of, 115
public, 239
punctuators, 21

INDEX 1263

c© ISO/IEC N3092

pure-specifier, 214, 1193

q-char, 20, 1179
q-char-sequence, 20, 1179
qualification

explicit, 47
qualified-id, 86, 1183
qualified-namespace-specifier, 157, 1190

r-char, 26, 1182
r-char-sequence, 26, 1182
random number distribution

bernoulli_distribution, 923
binomial_distribution, 923
chi_squared_distribution, 933
discrete_distribution, 936
exponential_distribution, 927
extreme_value_distribution, 930
fisher_f_distribution, 935
gamma_distribution, 928
geometric_distribution, 924
lognormal_distribution, 932
negative_binomial_distribution, 925
normal_distribution, 931
piecewise_constant_distribution, 938
piecewise_linear_distribution, 940
poisson_distribution, 926
requirements, 902–905, 905
student_t_distribution, 936
uniform_int_distribution, 921
uniform_real_distribution, 922

random number distributions
Bernoulli, 923–926
normal, 931–936
Poisson, 926–931
sampling, 936–942
uniform, 921–922

random number engine
linear_congruential_engine, 908
mersenne_twister_engine, 909
requirements, 899–901
subtract_with_carry_engine, 910
with predefined parameters, 915–917

random number engine adaptor
discard_block_engine, 912
independent_bits_engine, 913
shuffle_order_engine, 914
with predefined parameters, 915–917

random number generation, 895–942
distributions, 920–942
engines, 907–915

predefined engines and adaptors, 915–917
requirements, 896–905
synopsis, 905–907
utilities, 918–920

random number generator, see uniform random num-
ber generator

random_device
implementation leeway, 917

raw string literal, 27
raw-string, 26, 1182
reaching scope, 89
ready, 1160
redefinition

typedef, 141
ref-qualifier, 177, 1191
reference, 72

assignment to, 121
call by, 94
lvalue, 72
null, 182
rvalue, 72
sizeof, 106

reference-compatible, 203
reference-related, 203
regex_iterator

end-of-sequence, 1099
regex_token_iterator

end-of-sequence, 1100
regex_traits

specializations, 1075
region

declarative, 31, 35
register, 137
regular expression, 1060–1106

grammar, 1104
matched, 1060
requirements, 1061

Regular Expression Traits, 1104
char_class_type, 1061
isctype, 1062
lookup_classname, 1106
lookup_classname, 1062
lookup_collatename, 1062
requirements, 1061, 1075
transform, 1105
transform, 1062
transform_primary, 1106
transform_primary, 1062
translate, 1105
translate, 1062
translate_nocase, 1105

INDEX 1264

c© ISO/IEC N3092

translate_nocase, 1062
rehash

unordered associative containers, 736
relational-expression, 116, 1185
relaxed pointer safety, 65
release sequence, 11
remainder operator, see modulus operator
replacement

macro, 401
replacement-list, 398, 1197
representation

object, 69
value, 69

requirements, 415
Allocator, 483
Container, 729, 740, 742

not required for unordered associated contain-
ers, 728

container, 710, 1088
CopyAssignable, 479
CopyConstructible, 479
DefaultConstructible, 479
Destructible, 479
EqualityComparable, 479
Hash, 482
iterator, 810
LessThanComparable, 479
MoveAssignable, 479
MoveConstructible, 479
NullablePointer, 482
numeric type, 884
random number distribution, 902–905, 905
random number engine, 899–901
Regular Expression Traits, 1061, 1075
seed sequence, 897–898
sequence, 1088
uniform random number generator, 898–899
Unordered Associative Container, 729

reraise, 389
rescanning and replacement, 404
reserved identifier, 21
reset, 567
reset

random number distribution requirement, 903
resolution

argument matching, see overload
function template overload, 385
overload, 286
overloaded function call resolution, see also ar-

gument matching, overload
resolution overloading, see overload

scoping ambiguity, 230
template name, 343
template overload, 341

restriction, 427, 428, 430
static member local class, 221
address of bit-field, 223
anonymous union, 222
bit-field, 223
constructor, 252, 253
destructor, 259
extern, 138
local class, 225
overloading, 307
pointer to bit-field, 223
reference, 182
register, 138
static, 138
union, 221

restrictions
operator overloading, 307

result, 1160
result_type

entity characterization based on, 896
result_type

random number distribution requirement, 903
seed sequence requirement, 897
uniform random number generator requirement,

898
rethrow, 389
return, 131

constructor and, 131
reference and, 203

return statement, see also return
return type, 187

overloading and, 283
right shift

implementation defined, 116
right shift operator, 116
rounding, 81
rule

as-if, 7
one-definition, 33

rvalue, 75
lvalue conversion to, 78
lvalue conversion to, 1203

rvalue reference, 72, 181

s-char, 26, 1182
s-char-sequence, 26, 1182
safely-derived pointer, 65

integer representation, 65

INDEX 1265

c© ISO/IEC N3092

sampling distributions, 936–942
scalar type, 70
scope, 31, 35

anonymous union at namespace, 222
class, 39
destructor and exit from, 131
enumeration, 40
exception declaration, 38
function, 38
global, 39
global namespace, 39
iteration-statement, 128
local, 37
macro definition, 404
namespace, 38
overloading and, 285
potential, 35
selection-statement, 126

scope resolution operator, 48
seed

random number engine requirement, 900
seed sequence, 897

requirements, 897–898
selection-statement, 126, 1187
semantics

class member, 95
sequence

ambiguous conversion, 298
implicit conversion, 297
standard conversion, 77
statement, 125

sequence constructor
seed sequence requirement, 897

Sequenced before, 9
sequencing operator, see comma operator
setlocale, 418
shift-expression, 116, 1185
shift operator, see left shift operator, right shift op-

erator
short

typedef and, 137
shuffle_order_engine

generation algorithm, 914
state, 914
textual representation, 915
transition algorithm, 914

side effects, 9, 10
sign, 25, 1181
signature, 3
signed

typedef and, 137

signed integer type, 71
simple call wrapper, 533
simple-declaration, 135, 1188
simple-escape-sequence, 24, 1181
simple-template-id, 319, 1195
simple-type-specifier, 147, 1189
size

seed sequence requirement, 898
size_t, 106
sizeof

empty class, 210
smart pointers, 577–593
space

white, 18
specialization

class template, 320
class template partial, 335
template, 356
template explicit, 362

special member function, see constructor, destructor,
inline function, user-defined conversion, vir-
tual function

specification
template argument, 367

specifications
x C++ standard library exception, 430
implementation-defined exception, 431
Standard C library exception, 430

specifier
declaration, 137
explicit, 140
friend, 430
friend, 142
function, 139
inline, 140
missing storage class, 138
static, 138
storage class, 137
typedef, 140
virtual, 140

specifier access, see access specifier
specifier type, see type specifier
stable algorithm, 413
standard

structure of, 5
standard deviation

normal_distribution, 931
standard-layout types, 70
standard-layout class, 211
standard-layout struct, 211
standard-layout union, 211

INDEX 1266

c© ISO/IEC N3092

standard integer type, 71
standard signed integer type, 71
standard unsigned integer type, 71
start

program, 58, 59
startup

program, 423, 426
state

discard_block_engine, 912
independent_bits_engine, 913
linear_congruential_engine, 908
mersenne_twister_engine, 909
object, 413
shuffle_order_engine, 914
subtract_with_carry_engine, 910

statement, 125
continue in for, 129
break, 131
compound, 125
continue, 131
declaration, 132
declaration in for, 130
declaration in switch, 128
do, 128, 129
empty, 125
expression, 125
for, 128, 129
goto, 125, 131, 132
if, 126, 127
iteration, 128
jump, 131
labeled, 125
null, 125
selection, 126
switch, 126, 127, 131
while, 128

statement, 125, 1186
statement-seq, 126, 1186
static, 137

destruction of local, 133
linkage of, 55, 138
overloading and, 283

static initialization, 59
static storage duration, 62
static_assert, 136
static_assert-declaration, 135, 1188
<stddef.h>, 24, 27
<stdexcept>, 461
storage-class-specifier, 137, 1188
storage class, 31
storage duration, 61

automatic, 62
class member, 65
dynamic, 62, 107
local object, 62
register, 62

storage management, see new, delete
stream

arbitrary-positional, 411
repositional, 413

streambuf
implementation-defined, 973

strict pointer safety, 65
string

distinct, 27
null-terminated byte, 419
null-terminated char16-character, 419
null-terminated char32-character, 420
null-terminated character type, 413
null-terminated multibyte, 419
null-terminated wide-character, 420
sizeof, 28
type of, 27

string-literal, 26, 1181
string literal, 27

char16_t, 27
char32_t, 27
implementation-defined, 27
narrow, 27
type of, 27
undefined change to, 27
wide, 27

struct
standard-layout, 211

struct
class versus, 210

structure, 210
structure tag, see class name
student_t_distribution

probability density function, 936
sub-expression, 1061
subobject, 6
subobjects, 6
subscripting operator

overloaded, 309
subsequence rule

overloading, 302
subtract_with_carry_engine

carry, 910
generation algorithm, 911
state, 910
textual representation, 911

INDEX 1267

c© ISO/IEC N3092

transition algorithm, 910
subtraction

implementation defined pointer, 115
subtraction operator, 114
suffix

E, 26
F, 26
f, 26
L, 23, 26
l, 23, 26
U, 23
u, 23

summary
compatibility with ISO C, 1200
scope rules, 41

swappable, 481
swappable with, 481
synchronize with, 11
synonym, 157

type name as, 140
syntax

class member, 95

target object, 533
template, 315

definition of, 315
function, 367
member function, 328
primary, 335

template, 315
template alias, 342
template-argument, 319, 1195
template-argument-list, 319, 1195
template-declaration, 315, 1194
template-id, 319, 1195
template-name, 319, 1195
template-parameter, 316, 1194
template-parameter-list, 315, 1194
template name

linkage of, 315
temporary, 253

constructor for, 254
destruction of, 254
destructor for, 254
elimination of, 253, 278
implementation-defined generation of, 253
order of destruction of, 254

terminate(), 395, 396
termination

program, 59, 61
terminology

pointer, 73
text-line, 398, 1196
textual representation

discard_block_engine, 913
independent_bits_engine, 914
shuffle_order_engine, 915
subtract_with_carry_engine, 911

the complete object of, 6
this, 85

type of, 218
this pointer, see this
thread, 10
thread of execution, 10
thread storage duration, 62
thread, blocked, 411
thread_local, 137
throw, 387
throw-expression, 387, 1195
throwing

exception, 388
token, 22
token, 19, 1179
traceable pointer object, 64, 431
trailing-return-type, 176, 1191
trailing-type-specifier, 144, 1188
trailing-type-specifier-seq, 145, 1188
traits, 414
transfer ownership, 567
transform

Regular Expression Traits, 1105
transform

Regular Expression Traits, 1062
transform_primaryl

Regular Expression Traits, 1106
transform_primary

Regular Expression Traits, 1105
transform_primaryl

Regular Expression Traits, 1062
TransformationTrait, 514
transition algorithm

discard_block_engine, 912
independent_bits_engine, 913
linear_congruential_engine, 908
mersenne_twister_engine, 909
shuffle_order_engine, 914
subtract_with_carry_engine, 910

translate
Regular Expression Traits, 1105

translate
Regular Expression Traits, 1062

translate_nocase

INDEX 1268

c© ISO/IEC N3092

Regular Expression Traits, 1105
translate_nocase

Regular Expression Traits, 1062
translation

separate, 15
translation unit, 15
translation units, 55
translation-unit, 55, 1183
translation unit, 55

name and, 31
trigraph, 15
trivial types, 70
trivially copyable class, 210
trivially copyable types, 70
trivial class, 210
trivial class type, 109
trivial type, 109
truncation, 81
try, 387
try-block, 387, 1195
tuple

and pair, 492
type, 31

arithmetic, 72
array, 72, 186
bitmask, 417, 418
Boolean, 71
char, 71
char16_t, 72
char32_t, 72
character, 71
character container, 411
class and, 210
compound, 72
const, 144
destination, 198
double, 72
dynamic, 2
enumerated, 73, 417
enumeration underlying, 152
example of incomplete, 70
extended integer, 71
extended signed integer, 71
extended unsigned integer, 71
float, 72
floating point, 71
function, 72, 185, 186
fundamental, 71
sizeof, 71
incomplete, 33, 36, 69, 78, 93–97, 99, 104, 106,

111, 121, 226

int, 71
integral, 71
long, 71
long double, 72
long long, 71
multi-level mixed pointer and pointer to mem-

ber, 79
multi-level pointer to member, 79
object, 6
over-aligned, 76
POD, 70
pointer, 72
polymorphic, 233
short, 71
signed char, 71
signed integer, 71
standard integer, 71
standard signed integer, 71
standard unsigned integer, 71
static, 3
underlying wchar_t, 72
unsigned, 71
unsigned char, 71
unsigned int, 71
unsigned long, 71
unsigned long long, 71
unsigned short, 71
unsigned integer, 71
void, 72
volatile, 144
wchar_t, 72

type-id, 177, 1192
type-id-list, 392, 1196
type-name, 147, 1189
type-parameter, 316, 1195
type-specifier

bool, 147
wchar_t, 147

type-specifier, 144, 1188
type-specifier-seq, 145, 1188
type_info, 98
typedef

function, 187
typedef

overloading and, 284
typedef-name, 140, 1188
typeid, 98
<typeinfo>, 450
typename, 149
typename-specifier, 344, 1195
types

INDEX 1269

c© ISO/IEC N3092

implementation-defined, 417
implementation-defined exception, 431

type checking
argument, 94

type conversion, explicit, see casting
type generator, see template
type name, 177

nested, 225
scope of nested, 225

type pun, 102
type specifier

char, 147
char16_t, 147
char32_t, 147
class, 210
double, 147
enum, 149
float, 147
int, 147
long, 147
short, 147
signed, 147
struct, 210
union, 210
unsigned, 147
void, 147
volatile, 146

ud-suffix, 29, 1182
unary function, 534
unary-expression, 104, 1184
unary-operator, 104, 1184
UnaryTypeTrait, 513
unary operator

interpretation of, 308
overloaded, 308

undefined, 413, 424, 425, 427, 630, 947, 949, 951, 952,
954, 955, 959, 963, 989

undefined behavior, 840
underlying type, 72
unexpected(), 396
Unicode required set, 408
uniform distributions, 921–922
uniform random number generator

requirements, 898–899
uniform_int_distribution

discrete probability function, 921
uniform_real_distribution

probability density function, 922
union

standard-layout, 211

union, 73, 221
class versus, 210
anonymous, 222
global anonymous, 222

unique pointer, 567
unit

translation, 423–425
universal-character-name, 17, 1178
unnamed-namespace-definition, 154, 1190
unordered associative containers, 728–809

begin, 735
bucket, 735
bucket_count, 735
bucket_size, 735
cbegin, 735
cend, 735
clear, 734
complexity, 728
const_local_iterator, 729
count, 735
end, 735
equal_range, 735
equality function, 728
equivalent keys, 728, 729, 800, 806
erase, 734
exception safety, 737
find, 734
hash function, 728
hash_function, 732
hasher, 729
insert, 733, 734
iterator invalidation, 737
iterators, 736
key_eq, 732
key_equal, 729
key_type, 729
lack of comparison operators, 728
load_factor, 736
local_iterator, 729
max_bucket_count, 735
max_load_factor, 736
rehash, 736
requirements, 728, 729, 737
unique keys, 728, 729, 796, 803

unordered_map
element access, 799
unique keys, 796

unordered_multimap
equivalent keys, 800

unordered_multiset
equivalent keys, 806

INDEX 1270

c© ISO/IEC N3092

unordered_set
unique keys, 803

unqualified-id, 85, 1183
unsequenced, 9
unsigned

typedef and, 137
unsigned-suffix, 22, 1180
unsigned integer type, 71
unspecified, 446, 447, 451, 869, 1038, 1218, 1220
unspecified behavior, 952
unwinding

stack, 390
uppercase, 418, 425
used, 33
user-defined-character-literal, 29, 1182
user-defined-floating-literal, 29, 1182
user-defined-integer-literal, 29, 1182
user-defined-literal, 29, 1182
user-defined-string-literal, 29, 1182
user-provided, 194
Uses-allocator construction, 554
using-declaration, 158
using-declaration, 158, 1190
using-directive, 164
using-directive, 164, 1190

valid, 35
value, 69

call by, 94
null member pointer, 81
null pointer, 81
undefined unrepresentable integral, 81

value category, 75
value representation, 69
value-initialization, 197
ValueSwappable, 481
variable, 31

indeterminate uninitialized, 196
virtual base class, 228
virtual function, 233

pure, 237
virtual function call, 236

constructor and, 270
destructor and, 270
undefined pure, 238

visibility, 41
visible, 41
visible sequence of side effects, 13
visible side effect, 13
void*

type, 73

void&, 181
volatile, 73

constructor and, 219, 252
destructor and, 219, 259
implementation-defined, 146
overloading and, 285

wchar_t, 24, 27, 420, 650
implementation-defined, 72

weak result type, 533
weibull_distribution

probability density function, 929
weights

discrete_distribution, 937
piecewise_constant_distribution, 938

weights at boundaries
piecewise_linear_distribution, 940

white space, 19
wide-character, 24

X(X&), see copy constructor
xvalue, 74

zero
undefined division by, 83, 114
undefined modulus, 83

zero-initialization, 196

INDEX 1271

c© ISO/IEC N3092

Index of Grammar Productions
The first page number for each entry is the page in the general text where the grammar production is
defined. The second page number is the corresponding page in the Grammar summary (Annex A).

abstract-declarator, 177, 1192
access-specifier, 226, 1194
additive-expression, 114, 1185
alias-declaration, 135, 1187
and-expression, 118, 1185
asm-definition, 166, 1190
assignment-expression, 121, 1186
assignment-operator, 121, 1186
attribute, 170, 1190
attribute-argument-clause, 170, 1191
attribute-declaration, 135, 1188
attribute-list, 170, 1190
attribute-namespace, 170, 1191
attribute-scoped-token, 170, 1191
attribute-specifier, 170, 1190
attribute-token, 170, 1190

balanced-token, 170, 1191
balanced-token-seq, 170, 1191
base-clause, 226, 1193
base-specifier, 226, 1193
base-specifier-list, 226, 1193
base-type-specifier, 226, 1194
block-declaration, 135, 1187
boolean-literal, 28, 1182
brace-or-equal-initializer, 196, 1192
braced-init-list, 196, 1192

c-char, 24, 1181
c-char-sequence, 24, 1181
capture, 88, 1184
capture-default, 87, 1183
capture-list, 88, 1183
cast-expression, 112, 1185
character-literal, 23, 1181
class-head, 210, 1193
class-key, 210, 1193
class-name, 210, 1193
class-or-decltype, 226, 1193
class-specifier, 210, 1193
compound-statement, 125, 1186
condition, 126, 1187
conditional-expression, 119, 1186

constant-expression, 122, 1186
control-line, 398, 1196
conversion-declarator, 257, 1194
conversion-function-id, 257, 1194
conversion-type-id, 257, 1194
ctor-initializer, 264, 1194
cv-qualifier, 177, 1191
cv-qualifier-seq, 177, 1191

d-char, 26, 1182
d-char-sequence, 26, 1182
decimal-literal, 22, 1180
decl-specifier, 137, 1188
decl-specifier-seq, 137, 1188
declaration, 135, 1187
declaration-seq, 135, 1187
declaration-statement, 132, 1187
declarator, 176, 1191
declarator-id, 177, 1192
decltype-specifier, 147, 1189
delete-expression, 110, 1185
digit, 20, 1179
digit-sequence, 25, 1181
dynamic-exception-specification, 392, 1196

elaborated-type-specifier, 149, 1189
elif-group, 397, 1196
elif-groups, 397, 1196
else-group, 397, 1196
empty-declaration, 135, 1188
encoding-prefix, 26, 1181
endif-line, 397, 1196
enum-base, 151, 1189
enum-head, 150, 1189
enum-key, 151, 1189
enum-name, 150, 1189
enum-specifier, 150, 1189
enumerator, 151, 1190
enumerator-definition, 151, 1189
enumerator-list, 151, 1189
equality-expression, 117, 1185
escape-sequence, 24, 1181
exception-declaration, 387, 1195

INDEX OF GRAMMAR PRODUCTIONS 1272

c© ISO/IEC N3092

exception-specification, 392, 1195
exclusive-or-expression, 118, 1186
explicit-instantiation, 360, 1195
explicit-specialization, 362, 1195
exponent-part, 25, 1181
expression, 122, 1186
expression-list, 92, 1184
expression-statement, 125, 1186
extension-namespace-definition, 154, 1190

floating-literal, 25, 1181
floating-suffix, 26, 1181
for-init-statement, 128, 1187
for-range-declaration, 128, 1187
fractional-constant, 25, 1181
function-definition, 192, 1192
function-specifier, 139, 1188
function-try-block, 387, 1195

group, 397, 1196
group-part, 397, 1196

h-char, 19, 1179
h-char-sequence, 19, 1179
handler, 387, 1195
handler-seq, 387, 1195
header-name, 19, 1179
hex-quad, 17, 1178
hexadecimal-digit, 22, 1180
hexadecimal-escape-sequence, 24, 1181
hexadecimal-literal, 22, 1180

id-expression, 85, 1183
identifier, 20, 1179
identifier-list, 398, 1197
identifier-nondigit, 20, 1179
if-group, 397, 1196
if-section, 397, 1196
inclusive-or-expression, 118, 1186
init-declarator, 176, 1191
init-declarator-list, 176, 1191
initializer, 196, 1192
initializer-clause, 196, 1192
initializer-list, 196, 1192
integer-literal, 22, 1180
integer-suffix, 22, 1180
iteration-statement, 128, 1187

jump-statement, 131, 1187

labeled-statement, 125, 1186
lambda-capture, 87, 1183

lambda-declarator, 88, 1184
lambda-expression, 87, 1183
lambda-introducer, 87, 1183
linkage-specification, 167, 1190
literal, 22, 1180
literal-operator-id, 310, 1194
logical-and-expression, 118, 1186
logical-or-expression, 119, 1186
long-long-suffix, 22, 1180
long-suffix, 22, 1180
lparen, 398, 1197

mem-initializer, 264, 1194
mem-initializer-id, 264, 1194
mem-initializer-list, 264, 1194
member-declaration, 214, 1193
member-declarator, 214, 1193
member-declarator-list, 214, 1193
member-specification, 214, 1193
multiplicative-expression, 114, 1185

named-namespace-definition, 154, 1190
namespace-alias, 157, 1190
namespace-alias-definition, 157, 1190
namespace-body, 154, 1190
namespace-definition, 154, 1190
namespace-name, 154, 1190
nested-name-specifier, 86, 1183
new-declarator, 107, 1185
new-expression, 107, 1184
new-initializer, 107, 1185
new-line, 398, 1197
new-placement, 107, 1185
new-type-id, 107, 1185
noexcept-expression, 111, 1185
noexcept-specification, 392, 1196
non-directive, 398, 1197
nondigit, 20, 1179
nonzero-digit, 22, 1180
noptr-abstract-declarator, 177, 1192
noptr-declarator, 176, 1191
noptr-new-declarator, 107, 1185

octal-digit, 22, 1180
octal-escape-sequence, 24, 1181
octal-literal, 22, 1180
opaque-enum-declaration, 151, 1189
operator, 307, 1194
operator-function-id, 307, 1194
original-namespace-definition, 154, 1190
original-namespace-name, 154, 1190

INDEX OF GRAMMAR PRODUCTIONS 1273

c© ISO/IEC N3092

parameter-declaration, 186, 1192
parameter-declaration-clause, 185, 1192
parameter-declaration-list, 185, 1192
parameters-and-qualifiers, 176, 1191
pm-expression, 113, 1185
pointer-literal, 28, 1182
postfix-expression, 92, 1184
pp-number, 20, 1179
pp-tokens, 398, 1197
preprocessing-file, 397, 1196
preprocessing-op-or-punc, 21, 1180
preprocessing-token, 18, 1179
primary-expression, 85, 1183
pseudo-destructor-name, 93, 1184
ptr-abstract-declarator, 177, 1192
ptr-declarator, 176, 1191
ptr-operator, 177, 1191
pure-specifier, 214, 1193

q-char, 20, 1179
q-char-sequence, 20, 1179
qualified-id, 86, 1183
qualified-namespace-specifier, 157, 1190

r-char, 26, 1182
r-char-sequence, 26, 1182
raw-string, 26, 1182
ref-qualifier, 177, 1191
relational-expression, 116, 1185
replacement-list, 398, 1197

s-char, 26, 1182
s-char-sequence, 26, 1182
selection-statement, 126, 1187
shift-expression, 116, 1185
sign, 25, 1181
simple-declaration, 135, 1188
simple-escape-sequence, 24, 1181
simple-template-id, 319, 1195
simple-type-specifier, 147, 1189
statement, 125, 1186
statement-seq, 126, 1186
static_assert-declaration, 135, 1188
storage-class-specifier, 137, 1188
string-literal, 26, 1181

template-argument, 319, 1195
template-argument-list, 319, 1195
template-declaration, 315, 1194
template-id, 319, 1195
template-name, 319, 1195

template-parameter, 316, 1194
template-parameter-list, 315, 1194
text-line, 398, 1196
throw-expression, 387, 1195
token, 19, 1179
trailing-return-type, 176, 1191
trailing-type-specifier, 144, 1188
trailing-type-specifier-seq, 145, 1188
translation-unit, 55, 1183
try-block, 387, 1195
type-id, 177, 1192
type-id-list, 392, 1196
type-name, 147, 1189
type-parameter, 316, 1195
type-specifier, 144, 1188
type-specifier-seq, 145, 1188
typedef-name, 140, 1188
typename-specifier, 344, 1195

ud-suffix, 29, 1182
unary-expression, 104, 1184
unary-operator, 104, 1184
universal-character-name, 17, 1178
unnamed-namespace-definition, 154, 1190
unqualified-id, 85, 1183
unsigned-suffix, 22, 1180
user-defined-character-literal, 29, 1182
user-defined-floating-literal, 29, 1182
user-defined-integer-literal, 29, 1182
user-defined-literal, 29, 1182
user-defined-string-literal, 29, 1182
using-declaration, 158, 1190
using-directive, 164, 1190

INDEX OF GRAMMAR PRODUCTIONS 1274

c© ISO/IEC N3092

Index of Library Names
_Exit, 443

_1, 541

a
cauchy_distribution, 934
extreme_value_distribution, 930
uniform_int_distribution, 921
uniform_real_distribution, 922
weibull_distribution, 930

abort, 61, 131, 422, 443, 450, 455
abs, 955, 968

complex, 893
accumulate, 965
acos, 955, 968

complex, 894
acosh, 968

complex, 894
address

allocator, 558, 559
addressof, 566
adjacent_difference, 966
adjacent_find, 857
advance, 821
<algorithm>, 844
align, 593
all

bitset, 509
all_of, 854
allocate

allocator, 559
allocator_traits, 557
scoped_allocator_adaptor, 563

allocator, 1092
allocator, 558

address, 558, 559
allocate, 559
constructor, 559
deallocate, 559
destructor, 559
max_size, 559
operator!=, 559
operator==, 559

allocator_arg, 554
allocator_arg_t, 554
allocator_traits, 555

allocate, 557
const_pointer, 556
const_void_pointer, 556
constructor, 557
deallocate, 557
destructor, 557
difference_type, 557
max_size, 557
pointer, 556
propagate_on_container_copy_assignment, 557
propagate_on_container_move_assignment, 557
propagate_on_container_swap, 557
rebind_alloc, 557
select_on_container_copy_construction, 557
size_type, 557
void_pointer, 556

alpha
gamma_distribution, 929

always_noconv
codecvt, 675

any
bitset, 509

any_of, 855
append

basic_string, 631
basic_string, 631, 632

apply
valarray, 953

arg, 895
complex, 893

<array>, 737
array, 740, 742

begin, 740
data, 742
end, 740
fill, 742
get, 743
max_size, 740
size, 740, 742
swap, 742

asin, 955, 968
complex, 894

asinh, 968
complex, 894

<assert.h>, 423

INDEX OF LIBRARY NAMES 1275

c© ISO/IEC N3092

assign
basic_string, 632
deque, 746
list, 757
basic_regex, 1080, 1081
basic_string, 633
deque, 746
error_code, 472
error_condition, 474
forward_list, 751
function, 548
list, 758
vector, 772, 773

async, 1172
at

basic_string, 630
map, 783
unordered_map, 799

at_quick_exit, 444
atan, 955, 968

complex, 894
atan2, 955, 968
atanh, 968

complex, 894
atexit, 61, 422, 443, 444
atomic type

atomic_compare_exchange_strong, 1123
atomic_compare_exchange_strong_explicit, 1123
atomic_compare_exchange_weak, 1123
atomic_compare_exchange_weak_explicit, 1123
atomic_exchange, 1123
atomic_exchange_explicit, 1123
atomic_fetch_, 1125
atomic_is_lock_free, 1122
atomic_load, 1123
atomic_load_explicit, 1123
atomic_store, 1123
atomic_store_explicit, 1123
compare_exchange_strong, 1123
compare_exchange_strong_explicit, 1123
compare_exchange_weak, 1123
compare_exchange_weak_explicit, 1123
constructor, 1122
exchange, 1123
fetch_, 1125
load, 1123
operator @=, 1125
operator C , 1123
operator++, 1125, 1126
operator--, 1126
operator=, 1123

store, 1123
atomic_compare_exchange_strong

atomic type, 1123
shared_ptr, 591

atomic_compare_exchange_strong_explicit
atomic type, 1123
shared_ptr, 591

atomic_compare_exchange_weak
atomic type, 1123
shared_ptr, 591

atomic_compare_exchange_weak_explicit
atomic type, 1123
shared_ptr, 591

atomic_exchange
atomic type, 1123
shared_ptr, 591

atomic_exchange_explicit
atomic type, 1123
shared_ptr, 591

atomic_fetch_
atomic type, 1125

atomic_flag
clear, 1127

atomic_flag_clear, 1127
atomic_flag_clear_explicit, 1127
atomic_flag_test_and_set, 1127
atomic_flag_test_and_set_explicit, 1127
atomic_future

constructor, 1170
destructor, 1171
get, 1171
operator=, 1171
valid, 1171
wait, 1171
wait_for, 1172
wait_until, 1172

atomic_is_lock_free
atomic type, 1122
shared_ptr, 590

atomic_load
atomic type, 1123
shared_ptr, 590

atomic_load_explicit
atomic type, 1123
shared_ptr, 590

atomic_signal_fence, 1128
atomic_store

atomic type, 1123
shared_ptr, 590

atomic_store_explicit
atomic type, 1123

INDEX OF LIBRARY NAMES 1276

c© ISO/IEC N3092

shared_ptr, 590
atomic_thread_fence, 1127
auto_ptr, 580, 1227

auto_ptr, 1228
auto_ptr_ref, 1229
constructor, 1228, 1229
destructor, 1228
operator=, 1228

auto_ptr_ref
auto_ptr, 1229
operator auto_ptr, 1229
operator=, 1229

b
cauchy_distribution, 934
extreme_value_distribution, 931
uniform_int_distribution, 921
uniform_real_distribution, 922
weibull_distribution, 930

back
basic_string, 631

back_insert_iterator, 828
back_insert_iterator, 828

back_inserter, 829
bad

basic_ios, 994
bad_alloc, 109, 446, 450

bad_alloc, 449
bad_alloc::what

implementation-defined, 449
bad_array_new_length

bad_array_new_length, 450
bad_cast, 98, 451

bad_cast, 451, 452
bad_cast::what

implementation-defined, 452
bad_exception, 454

bad_exception, 454
bad_exception::what

implementation-defined, 454
bad_function_call, 544

bad_function_call, 545
bad_typeid, 99, 452

bad_typeid, 452
bad_weak_ptr, 577

bad_weak_ptr, 577
what, 577

base
move_iterator, 834
reverse_iterator, 824

basic_filebuf, 973, 1045

basic_filebuf, 1047
constructor, 1047
destructor, 1047
operator=, 1048
swap, 1048

basic_filebuf<char>, 1045
basic_filebuf<wchar_t>, 1045
basic_fstream, 973, 1056

basic_fstream, 1057
constructor, 1057
operator=, 1058
swap, 1058

basic_ifstream, 973, 1052
basic_ifstream, 1053
constructor, 1053
operator=, 1053
swap, 1054

basic_ifstream<char>, 1045
basic_ifstream<wchar_t>, 1045
basic_ios, 973, 989

basic_ios, 990
constructor, 990
destructor, 990
exceptions, 994
fill, 992
init, 990
move, 992
rdbuf, 991
set_rdbuf, 993
swap, 993
tie, 991

basic_ios<char>, 978
basic_ios<wchar_t>, 978
basic_iostream, 1020

basic_iostream, 1020
constructor, 1020, 1021
destructor, 1021
operator=, 1021
swap, 1021

basic_istream, 973, 1008
basic_istream, 1010
constructor, 1010
destructor, 1011, 1012
get, 1016, 1017, 1019
operator<<, 1021
operator=, 1011
seekg, 1019
swap, 1011

basic_istream<char>, 1007
basic_istream<wchar_t>, 1007
basic_istreambuf_iterator, 973

INDEX OF LIBRARY NAMES 1277

c© ISO/IEC N3092

basic_istringstream, 973, 1039
basic_istringstream, 1040
constructor, 1040
operator=, 1040
str, 1041
swap, 1041

basic_istringstream<char>, 1034
basic_istringstream<wchar_t>, 1034
basic_ofstream, 973, 1054

basic_ofstream, 1055
constructor, 1055
operator=, 1055
swap, 1056

basic_ofstream<char>, 1045
basic_ofstream<wchar_t>, 1045
basic_ostream, 973, 1087

basic_ostream, 1023
constructor, 1024
destructor, 1023, 1024
operator<<, 1027, 1028, 1030
operator=, 1024
seekp, 1025
swap, 1024

basic_ostream<char>, 1008
basic_ostream<wchar_t>, 1008
basic_ostreambuf_iterator, 973
basic_ostringstream, 973, 1041

basic_ostringstream, 1042
constructor, 1042
operator=, 1042
str, 1043
swap, 1042

basic_ostringstream<char>, 1034
basic_ostringstream<wchar_t>, 1034
basic_regex, 1063, 1076, 1104

assign, 1080, 1081
basic_regex, 1079, 1080
constants, 1078
constructor, 1079, 1080
flag_type, 1081
getloc, 1081
imbue, 1081
mark_count, 1081
operator=, 1080
swap, 1082

basic_streambuf, 973, 998
basic_streambuf, 1000
constructor, 1000
destructor, 1000
operator=, 1002
setbuf, 1039

swap, 1002
basic_streambuf<char>, 997
basic_streambuf<wchar_t>, 997
basic_string, 620, 643, 1034

append, 631, 632
assign, 633
basic_string, 625–627
begin, 629
cbegin, 629
cend, 629
compare, 642
crbegin, 629
crend, 629
end, 629
erase, 635
find, 639
find_first_not_of, 641
find_first_of, 640
find_last_not_of, 641
find_last_of, 640
get_allocator, 638
getline, 647, 648
insert, 634, 635
length, 629
operator!=, 645
operator+, 643, 644
operator+=, 631
operator<, 645
operator<=, 646
operator<<, 647
operator=, 628, 629
operator==, 644
operator>, 645, 646
operator>=, 646
push_back, 632
rbegin, 629
rend, 629
replace, 636, 637
resize, 630
rfind, 639

basic_stringbuf, 973, 1034
basic_stringbuf, 1036
constructor, 1036
operator=, 1036
str, 1037
swap, 1036, 1037

basic_stringbuf<char>, 1034
basic_stringbuf<wchar_t>, 1034
basic_stringstream, 973, 1043

basic_stringstream, 1044
constructor, 1044

INDEX OF LIBRARY NAMES 1278

c© ISO/IEC N3092

operator=, 1044
str, 1045
swap, 1044

before
type_info, 451

before_begin
forward_list, 751

begin
array, 740
basic_string, 629
initializer_list, 458
match_results, 1091
valarray, 964

begin(C&), 843
begin(const pair&), 494
begin(const tuple&), 504
begin(initlist<E>), 459
begin(T (&)[N]), 843
bernoulli_distribution, 923

constructor, 923
p, 923

beta
gamma_distribution, 929

bidirectional_iterator_tag, 820
binary_function, 534, 535, 544
binary_negate, 538
binary_search, 872
bind, 539–541
bind1st, 1226
bind2nd, 1226
binder1st, 1225
binder2nd, 1226
binomial_distribution, 923

constructor, 924
p, 924
t, 924

bit_and, 538
bit_or, 538
bit_xor, 538
<bitset>, 504
bitset, 504

bitset, 506, 507
flip, 508
operator[], 509
reset, 508
set, 507

boolalpha, 994
byte_string

wstring_convert, 664

c_str

basic_string, 638
cacos

complex, 894
cacosh

complex, 894
call_once, 1149
calloc, 594, 1213
capacity

basic_string, 630
vector, 773

casin
complex, 894

casinh
complex, 894

<cassert>, 423
catan

complex, 894
catanh

complex, 894
category

error_code, 472
error_condition, 475
locale, 657

cauchy_distribution, 934
a, 934
b, 934
constructor, 934

cbefore_begin
forward_list, 751

cbegin
basic_string, 629

cbrt, 968
<ccomplex>, 895
cend

basic_string, 629
cerr, 976
<cerrno>, 425
<cfenv>, 885
char_class_type

regex_traits, 1075
char_traits

char_type, 613
int_type, 613
off_type, 613
pos_type, 613
state_type, 613

char_type
char_traits, 613

chi_squared_distribution, 933
constructor, 933
n, 933

INDEX OF LIBRARY NAMES 1279

c© ISO/IEC N3092

chrono, 594
cin, 976
<ciso646>, 1212
classic

locale, 662
classic_table

ctype<char>, 673
clear

basic_string, 630
atomic_flag, 1127
basic_ios, 993
errcondition, 474
error_code, 472
forward_list, 752

<climits>, 1219
<clocale>, 418, 1212
clog, 977
close

basic_filebuf, 1048, 1058
basic_ifstream, 1054
basic_ofstream, 1056
messages, 704

code
future_error, 1160
system_error, 477

codecvt, 674
codecvt_byname, 678
collate, 689
collate_byname, 691
combine

locale, 661
common_type, 598, 602
compare

basic_string, 642
basic_string, 642
collate, 690
sub_match, 1083

compare_exchange_strong
atomic type, 1123

compare_exchange_strong_explicit
atomic type, 1123

compare_exchange_weak
atomic type, 1123

compare_exchange_weak_explicit
atomic type, 1123

<complex>, 886
complex, 888

complex, 890
imag, 890
operator-, 892
operator/, 892

real, 890
condition

wait, 1152, 1156
wait_for, 1153, 1154
wait_until, 1154

<condition_variable>, 1150
condition_variable

constructor, 1151
destructor, 1151
notify_all, 1152
notify_one, 1152
wait, 1152
wait_until, 1153

condition_variable_any
constructor, 1155
destructor, 1155
notify_all, 1156
notify_one, 1156
wait, 1156
wait_for, 1157
wait_until, 1156, 1157

conj, 895
complex, 893

const_mem_fun1_ref_t, 543
const_mem_fun1_t, 543
const_mem_fun_ref_t, 543
const_mem_fun_t, 543
const_pointer

allocator_traits, 556
const_pointer_cast

shared_ptr, 585
const_void_pointer

allocator_traits, 556
converted

wstring_convert, 664
copy, 859

basic_string, 638
copy_backward, 860
copy_n, 859
copyfmt

basic_ios, 992
copysign, 968
cos, 955, 968

complex, 894
cosh, 955, 968

complex, 894
count, 857

bitset, 509
duration, 600

count_if, 857
cout, 976

INDEX OF LIBRARY NAMES 1280

c© ISO/IEC N3092

crbegin
basic_string, 629

cref
reference_wrapper, 536

crend
basic_string, 629

<csetjmp>, 425
cshift

valarray, 953
<cstdarg>, 425
<cstdatomic>, 1107
<cstddef>, 1212, 1213
<cstdint>, 442
<cstdio>, 976, 977, 1045, 1048, 1049, 1212
<cstdlib>, 422, 1212, 1214
<cstring>, 419, 1212, 1219, 1224
<ctgmath>, 967
<ctime>, 655, 1212
ctype, 668

ctype, 672
ctype<char>

ctype<char>, 672
destructor, 672

ctype_byname, 671
<cuchar>, 419, 420, 425
current_exception, 456
<cwchar>, 420, 425, 1212
<cwctype>, 425

data
basic_string, 638
array, 742
vector, 774

date_order
time_get, 692

deallocate
allocator, 559
allocator_traits, 557
scoped_allocator_adaptor, 563

dec, 996, 1027
decimal_point

numpunct, 688
declare_no_pointers, 592
declare_reachable, 592
default_delete

default_delete, 568
operator(), 568, 569

default_error_condition
error_category, 469, 470
error_code, 472

default_random_engine, 916

defaultfloat, 996
delete

operator, 594
operator, 426, 446–448

denorm_min
numeric_limits, 438

densitities
piecewise_constant_distribution, 940
piecewise_linear_distribution, 942

<deque>, 738
deque, 743

assign, 746
deque, 745, 746
shrink_to_fit, 746
swap, 747

detach
thread, 1134

difference_type
allocator_traits, 557
pointer_traits, 555

digits
numeric_limits, 435

digits10
numeric_limits, 435

discard_block_engine, 912
constructor, 913

discrete_distribution, 936
constructor, 937
probabilities, 938

distance, 821
div, 968
divides, 536
do_always_noconv

codecvt, 677
do_close

messages, 704
do_compare

collate, 690
do_curr_symbol

moneypunct, 702
do_date_order

time_get, 693
do_decimal_point

moneypunct, 702
numpunct, 688

do_encoding
codecvt, 677

do_falsename
numpunct, 689

do_frac_digits
moneypunct, 702

INDEX OF LIBRARY NAMES 1281

c© ISO/IEC N3092

do_get
messages, 704
money_get, 698
num_get, 680, 682
time_get, 694

do_get_date
time_get, 694

do_get_monthname
time_get, 694

do_get_time
time_get, 693

do_get_weekday
time_get, 694

do_get_year
time_get, 694

do_grouping
moneypunct, 702
numpunct, 689

do_hash
collate, 690

do_in
codecvt, 676

do_is
ctype, 669

do_length
codecvt, 677

do_max_length
codecvt, 678

do_narrow, 673
ctype, 670

do_neg_format
moneypunct, 702

do_negative_sign
moneypunct, 702

do_open
messages, 704

do_out
codecvt, 676

do_pos_format
moneypunct, 702

do_positive_sign
moneypunct, 702

do_put
money_put, 700
num_put, 684, 687
time_put, 696

do_scan_is
ctype, 670

do_scan_not
ctype, 670

do_thousands_sep

moneypunct, 702
numpunct, 688

do_tolower
ctype, 670

do_toupper
ctype, 670

do_transform
collate, 690

do_truename
numpunct, 689

do_unshift
codecvt, 677

do_widen, 673
ctype, 670

domain_error, 462
domain_error, 462

duration
count, 600
duration, 600
max, 601
min, 601
operator!=, 603
operator*, 602
operator*=, 601
operator+, 600, 605
operator++, 600, 601
operator+=, 601
operator-, 600, 606
operator-=, 601
operator--, 601
operator/, 602
operator/=, 601
operator<, 603
operator<=, 603
operator==, 603
operator>=, 603
operator%, 602, 603
operator%=, 601
zero, 601

duration_cast, 603
duration_values, 597

max, 598
min, 598
zero, 597

dynamic_pointer_cast
shared_ptr, 584

eback
basic_streambuf, 1003

egptr
basic_streambuf, 1003

INDEX OF LIBRARY NAMES 1282

c© ISO/IEC N3092

element_type
pointer_traits, 555

emplace
priority_queue, 767

emplace_after
forward_list, 752

emplace_front
forward_list, 751

empty, 820
basic_string, 630
match_results, 1090

enable_shared_from_this, 588
destructor, 589
enable_shared_from_this, 589
operator=, 589
shared_from_this, 589

encoding
codecvt, 675

end
array, 740
basic_string, 629
initializer_list, 458
match_results, 1091
valarray, 964

end(C&), 843
end(const pair&), 495
end(const tuple&), 504
end(initializer_list<E>), 459
end(T (&)[N]), 843
endl, 1027, 1029
ends, 1029
entropy

random_device, 917
eof

basic_ios, 993
epptr

basic_streambuf, 1003
epsilon

numeric_limits, 436
eq

char_traits, 639–641
equal, 858

istreambuf_iterator, 841
equal_range, 872
equal_to, 537
equivalent

error_category, 469, 470
erase

basic_string, 635
deque, 747
list, 759

basic_string, 635
vector, 774

erase_after
forward_list, 752

erased
forward_list, 752

erf, 968
erfc, 968
errcondition

clear, 474
error_category

default_error_condition, 469, 470
equivalent, 469, 470
message, 469
name, 469, 470
operator!=, 469
operator<, 470
operator==, 469

error_code
assign, 472
category, 472
clear, 472
default_error_condition, 472
error_code, 471, 472
message, 472
operator bool, 472
operator!=, 476
operator<, 473
operator<<, 473
operator=, 472
operator==, 475
value, 472

error_condition
assign, 474
category, 475
error_condition, 474
message, 475
operator bool, 475
operator!=, 476
operator<, 475
operator=, 474
operator==, 475
value, 475

error_type, 1072–1074
exception

bad_function_call, 544
bad_weak_ptr, 577

<exception>, 452
exception

constructor, 453
destructor, 454

INDEX OF LIBRARY NAMES 1283

c© ISO/IEC N3092

exception_ptr, 456
exceptions

basic_ios, 994
exchange

atomic type, 1123
exit, 59, 61, 131, 422, 444, 450
exp, 955, 968

complex, 894
exp2, 968
expired

weak_ptr, 587
expm1, 968
exponential_distribution, 927

constructor, 928
lambda, 928

extreme_value_distribution, 930
a, 930
b, 931
constructor, 930

facet
locale, 658

fail
basic_ios, 994

failed
ostreambuf_iterator, 843

failure
ios_base::failure, 981, 982

falsename
numpunct, 688

fclose, 1049
fdim, 968
FE_ALL_EXCEPT, 885
FE_DFL_ENV, 885
FE_DIVBYZERO, 885
FE_DOWNWARD, 885
FE_INEXACT, 885
FE_INVALID, 885
FE_OVERFLOW, 885
FE_TONEAREST, 885
FE_TOWARDZERO, 885
FE_UNDERFLOW, 885
FE_UPWARD, 885
feclearexcept, 885
fegetenv, 885
fegetexceptflag, 885
fegetround, 885
feholdexcept, 885
fenv_t, 885
feraiseexcept, 885
fesetenv, 885

fesetexceptflag, 885
fesetround, 885
fetch_

atomic type, 1125
fetestexcept, 885
feupdateenv, 885
fexcept_t, 885
filebuf, 973, 1045
fill, 862

array, 742
basic_ios, 992
gslice_array, 961
indirect_array, 963
mask_array, 962
slice_array, 958

fill_n, 862
find, 855

basic_string, 638
basic_string, 639
map, 783
multimap, 787

find_end, 856
find_first_not_of

basic_string, 640
basic_string, 641

find_first_of, 856
basic_string, 639
basic_string, 640

find_if, 855
find_if_not, 855
find_last_not_of

basic_string, 641
basic_string, 641

find_last_of
basic_string, 640
basic_string, 640

fisher_f_distribution, 935
constructor, 935
m, 935
n, 935

fixed, 996
flag_type

basic_regex, 1081
flags

ios_base, 667, 985
flip

bitset, 508
bitset, 508
vector<bool>, 777

float_denorm_style
numeric_limits, 437

INDEX OF LIBRARY NAMES 1284

c© ISO/IEC N3092

float_round_style, 439
floor, 968
flush, 985, 1011, 1024, 1025, 1030

basic_ostream, 1029
fma, 968
fmax, 968
fmin, 968
fmtflags

ios, 1030
ios_base, 982, 985

fopen, 1048
for_each, 855
format

match_results, 1091, 1092
format_default, 1070
format_default, 1072
format_first_only, 1070, 1097
format_first_only, 1072
format_no_copy, 1070, 1097
format_no_copy, 1072
format_sed, 1070
format_sed, 1072
forward, 490
forward_iterator_tag, 820
<forward_list>, 738
forward_list

assign, 751
before_begin, 751
cbefore_begin, 751
clear, 752
emplace_after, 752
emplace_front, 751
erase_after, 752
erased, 752
forward_list, 750
front, 751
insert_after, 751, 752
merge, 754
pop, 751
push_front, 751
remove, 753
remove_if, 753
resize, 752
reverse, 754
sort, 754
splice_after, 752, 753
swap, 754
unique, 753

fpclassify, 970
fpos, 978, 988

state, 988

free, 594
freeze

ostrstream, 1224
strstream, 1225
strstreambuf, 1219

frexp, 968
from_bytes

wstring_convert, 664
from_time_t, 607
front

basic_string, 631
forward_list, 751

front_insert_iterator, 829
front_insert_iterator, 829

front_inserter, 830
fseek, 1048
<fstream>, 1045
fstream, 973
function, 545

assign, 548
bool conversion, 548
destructor, 548
function, 547
invocation, 548
operator!=, 549
operator(), 548
operator=, 547, 548
operator==, 549
swap, 548, 549
target, 549
target_type, 549

<functional>, 529
future

constructor, 1165
get, 1165
operator=, 1165
valid, 1166
wait, 1166
wait_for, 1166
wait_until, 1166

future_category, 1159
future_errc

make_error_code, 1160
make_error_condition, 1160

future_error
code, 1160
what, 1160

gamma_distribution, 928
alpha, 929
beta, 929

INDEX OF LIBRARY NAMES 1285

c© ISO/IEC N3092

constructor, 928
gbump

basic_streambuf, 1003
gcount

basic_istream, 1015
generate, 863

seed_seq, 919
generate_canonical, 920
generate_n, 863
generic_category, 470
geometric_distribution, 924

constructor, 925
p, 925

get
array, 743
atomic_future, 1171
auto_ptr, 1229
basic_istream, 1015–1017, 1019
future, 1165
money_get, 698
num_get, 680
pair, 494
reference_wrapper, 535
shared_future, 1168
shared_ptr, 582
time_get, 692, 693
tuple, 502
unique_ptr, 574

get_allocator
basic_string, 638
match_results, 1092

get_date
time_get, 692

get_deleter
shared_ptr, 585
unique_ptr, 574

get_future
packaged_task, 1176
promise, 1162

get_id
this_thread, 1135
thread, 1135

get_money, 1032
get_monthname

time_get, 692
get_pointer_safety, 593
get_temporary_buffer, 565
get_time, 1033

time_get, 692
get_weekday

time_get, 692

get_year
time_get, 692

getline
basic_string, 647
basic_istream, 1017, 1018
basic_string, 647, 648

getloc, 1076
basic_regex, 1081
basic_streambuf, 1001
ios_base, 986

global
locale, 662

good
basic_ios, 993

gptr
basic_streambuf, 1003

greater, 537
greater_equal, 537
grouping

numpunct, 688
gslice, 958

constructor, 959
gslice_array, 960

hardware_concurrency
thread, 1135

has_denorm_loss
numeric_limits, 437

has_facet
locale, 662

has_infinity
numeric_limits, 437

has_quiet_NaN
numeric_limits, 437

has_signaling_NaN
numeric_limits, 437

hash, 550
collate, 690

hash_code
type_info, 451
type_index, 609

hex, 996
hexfloat, 996
hypot, 968

id
locale, 659

idxl
operator>, 603

ifstream, 973, 1045
ignore

INDEX OF LIBRARY NAMES 1286

c© ISO/IEC N3092

basic_istream, 1018
ilogb, 968
imag, 895

complex, 890, 893
imbue, 1076

basic_filebuf, 1052
basic_ios, 991
basic_regex, 1081
basic_streambuf, 1003
ios_base, 986

in
codecvt, 675

in_avail
basic_streambuf, 1001

includes, 874
independent_bits_engine, 913
indirect_array, 962

operator[], 963
infinity

numeric_limits, 437
Init

ios_base::Init, 984
init

basic_ios, 990, 1010, 1023
initializer_list

begin, 458
end, 458
initializer_list, 458
size, 459

inner_allocator
scoped_allocator_adaptor, 562

inner_allocator_type
scoped_allocator_adaptor, 561

inner_product, 965
inplace_merge, 873
input_iterator_tag, 820
emplace

deque, 747
insert

basic_string, 634
deque, 747
list, 758
basic_string, 634, 635
map, 783
multimap, 787
vector, 774

push_back
deque, 747

push_front
deque, 747

insert_after

forward_list, 751, 752
insert_iterator, 830

insert_iterator, 831
inserter, 831
int16_t, 442
int32_t, 442
int64_t, 442
int8_t, 442
int_fast16_t, 442
int_fast32_t, 442
int_fast64_t, 442
int_fast8_t, 442
int_least16_t, 442
int_least32_t, 442
int_least64_t, 442
int_least8_t, 442
int_type

char_traits, 613
wstring_convert, 665

internal, 995
intervals

piecewise_constant_distribution, 940
piecewise_linear_distribution, 942

intmax_t, 442
intptr_t, 442
invalid_argument, 462, 506

invalid_argument, 462, 463
INVOKE , 533
<iomanip>, 1008
<ios>, 977
ios, 973, 978
ios_base, 979

destructor, 988
fmtflags, 985
ios_base, 987
iostate, 983
precision, 985
setf, 985
streamsize, 985

ios_base::failure, 981
ios_base::Init, 984

destructor, 985
<iosfwd>, 973
iostate

ios_base, 983
<iostream>, 975
iostream_category, 997
iota, 967
is

ctype, 669
ctype<char>, 672

INDEX OF LIBRARY NAMES 1287

c© ISO/IEC N3092

is_bind_expression, 539
is_bounded

numeric_limits, 438
is_exact

numeric_limits, 436
is_heap, 878
is_heap_until, 878
is_iec559

numeric_limits, 438
is_integer

numeric_limits, 436
is_modulo

numeric_limits, 438
is_open

basic_filebuf, 1048, 1058
basic_ifstream, 1054
basic_ofstream, 1056

is_partitioned, 866
is_permutation, 858
is_signed

numeric_limits, 436
is_sorted, 870
is_sorted_until, 870
isalnum, 662
isalpha, 662
iscntrl, 662
isctype

regex_traits, 1076
Regular Expression Traits, 1105

isdigit, 662
isfinite, 970
isgraph, 662
isgreater, 970
isgreaterequal, 970
isinf, 970
isless, 970
islessequal, 970
islessgreater, 970
islower, 662
isnan, 970
isnormal, 970
<iso646.h>, 1212
isprint, 662
ispunct, 662
isspace, 662
<istream>, 1007
istream, 973, 1007
istream_iterator, 836

constructor, 837
destructor, 837
operator!=, 838

operator*, 838
operator++, 838
operator->, 838
operator==, 838

istreambuf_iterator, 840
constructor, 841
operator++, 841

istringstream, 973, 1034
istrstream, 1222

constructor, 1223
istrstream, 1222

isunordered, 970
isupper, 662
isxdigit, 662
iter_swap, 861
<iterator>, 815
iword

ios_base, 987

join
thread, 1134

joinable
thread, 1134

kill_dependency, 1112
knuth_b, 916

lambda
exponential_distribution, 928

left, 995
length

char_traits, 627, 628, 631–634, 637, 639–641,
643–645

basic_string, 629
codecvt, 675
match_results, 1091
regex_traits, 1075
sub_match, 1082
valarray, 952

length_error, 463, 621
length_error, 463

less, 537
less_equal, 537
lexicographical_compare, 880
lgamma, 968
<limits>, 433
linear_congruential_engine, 908

constructor, 908
<list>, 738
list, 754

assign, 758

INDEX OF LIBRARY NAMES 1288

c© ISO/IEC N3092

list, 757
splice, 759
swap, 761

llrint, 968
llround, 968
load

atomic type, 1123
<locale>, 654
locale, 1076, 1081, 1104

destructor, 661
locale, 660, 661
operator=, 660

lock, 1148
unique_lock, 1146
weak_ptr, 587

lock_guard
constructor, 1143
destructor, 1143

log, 955, 968
complex, 894

log10, 955, 968
complex, 894

log1p, 968
log2, 968
logb, 968
logic_error, 461

logic_error, 462
logical_and, 537
logical_not, 538
logical_or, 538
lognormal_distribution, 932

constructor, 932
m, 932
s, 933

longjmp, 460
lookup_classname

regex_traits, 1075
Regular Expression Traits, 1105

lookup_collatename
regex_traits, 1075
Regular Expression Traits, 1105

lower_bound, 871
lowest

numeric_limits, 435
lrint, 968
lround, 968

m
fisher_f_distribution, 935
lognormal_distribution, 932

make_error_code, 473, 997

future_errc, 1160
make_error_condition, 475, 997

future_errc, 1160
make_exception_ptr, 456
make_heap, 877
make_move_iterator, 836
make_pair, 494
make_ready_at_thread_exit

packaged_task, 1177
make_tuple, 500
malloc, 594, 1213
<map>, 777
map, 779

constructor, 782
find, 783
insert, 783
map, 782
operator<, 782
operator==, 782
swap, 784

mark_count
basic_regex, 1081

mask_array, 961
operator[], 961

match_any, 1070
match_any, 1072
match_continuous, 1070, 1100
match_continuous, 1072
match_default, 1070
match_flag_type, 1070, 1071, 1105
match_not_bol, 1070
match_not_bol, 1072
match_not_bow, 1070
match_not_bow, 1072
match_not_eol, 1070
match_not_eol, 1072
match_not_eow, 1070
match_not_eow, 1072
match_not_null, 1070, 1100
match_not_null, 1072
match_prev_avail, 1070, 1100
match_prev_avail, 1072
match_results, 1088, 1098, 1100

begin, 1091
empty, 1090
end, 1091
format, 1091, 1092
get_allocator, 1092
length, 1091
match_results, 1089, 1090
matched, 1088

INDEX OF LIBRARY NAMES 1289

c© ISO/IEC N3092

max_size, 1090
operator!=, 1093
operator=, 1090
operator==, 1092
operator[], 1091
position, 1091
prefix, 1091
size, 1090
str, 1091
suffix, 1091
swap, 1092

max, 878, 879
duration, 601
duration_values, 598
numeric_limits, 435
time_point, 605
valarray, 952

max_digits10
numeric_limits, 435

max_element, 880
max_exponent

numeric_limits, 436
max_exponent10

numeric_limits, 437
max_length

codecvt, 676
max_size

basic_string, 629
allocator, 559
allocator_traits, 557
array, 740
match_results, 1090
scoped_allocator_adaptor, 563

mean
normal_distribution, 931
poisson_distribution, 927
student_t_distribution, 936

mem_fn, 544
mem_fun, 542, 543
mem_fun1_ref_t, 542
mem_fun1_t, 542
mem_fun_ref, 543
mem_fun_ref_t, 542
mem_fun_t, 542
memchr, 650
<memory>, 550
merge, 873

list, 760
forward_list, 754

mersenne_twister_engine, 909
constructor, 910

message
error_category, 469
error_code, 472
error_condition, 475

messages, 703
messages_byname, 704
min, 878

duration, 601
duration_values, 598
numeric_limits, 435
time_point, 605
valarray, 952

min_element, 880
min_exponent

numeric_limits, 436
min_exponent10

numeric_limits, 436
minmax, 879
minmax_element, 880
minstd_rand, 915
minstd_rand0, 915
minus, 536
mismatch, 857
mod, 968
modf, 968
modulus, 536
money_get, 697
money_put, 699
moneypunct, 700
moneypunct_byname, 703
move, 490

basic_ios, 992
movemove, 860
move_backward, 860
move_iterator, 832

base, 834
constructor, 833
move_iterator, 833
operator!=, 835
operator*, 834
operator+, 835, 836
operator++, 834
operator+=, 835
operator-, 835, 836
operator-=, 835
operator->, 834
operator--, 834
operator<, 835
operator<=, 835
operator=, 833
operator==, 835

INDEX OF LIBRARY NAMES 1290

c© ISO/IEC N3092

operator>, 835
operator>=, 836
operator[], 835

mt19937, 915
mt19937_64, 916
multimap, 784

find, 787
insert, 787
multimap, 787
operator<, 787
operator==, 787
swap, 788

multiplies, 536
multiset, 791

multiset, 793, 794
operator<, 793
operator==, 793
swap, 794

<mutex>, 1136
mutex

unique_lock, 1147

n
chi_squared_distribution, 933
fisher_f_distribution, 935

name
type_info, 451
error_category, 469, 470
locale, 661
type_index, 609

nan, 968
narrow

basic_ios, 991
ctype, 669
ctype<char>, 673

NDEBUG, 423
nearbyint, 968
negate, 536
negative_binomial_distribution, 925

constructor, 926
p, 926
t, 926

nested_exception
nested_exception, 457
nested_ptr, 457
rethrow_if_nested, 457
returned, 457
throw_with_nested, 457

nested_ptr
nested_exception, 457

<new>, 426, 445

new
operator, 445, 448
operator, 426, 446–449, 594

new_handler, 450
next, 822
next_permutation, 881
nextafter, 968
nexttoward, 968
noboolalpha, 994
none

bitset, 509
none_of, 855
norm, 895

complex, 893
normal_distribution, 931

constructor, 931
mean, 931
stddev, 932

noshowbase, 994
noshowpoint, 994
noshowpos, 995
noskipws, 995
not1, 538
not2, 539
not_equal_to, 537
notify_all

condition_variable, 1152
condition_variable_any, 1156

notify_one
condition_variable, 1152
condition_variable_any, 1156

nounitbuf, 995
nouppercase, 995
nth_element, 870
NULL, 433
num_get, 678

do_get, 682
num_put, 683

do_put, 687
<numeric>, 964
numeric_limits, 434
numeric_limits

denorm_min, 438
digits, 435
digits10, 435
epsilon, 436
float_denorm_style, 437
has_denorm_loss, 437
has_infinity, 437
has_quiet_NaN, 437
has_signaling_NaN, 437

INDEX OF LIBRARY NAMES 1291

c© ISO/IEC N3092

infinity, 437
is_bounded, 438
is_exact, 436
is_iec559, 438
is_integer, 436
is_modulo, 438
is_signed, 436
lowest, 435
max, 435
max_digits10, 435
max_exponent, 436
max_exponent10, 437
min, 435
min_exponent, 436
min_exponent10, 436
quiet_NaN, 437
radix, 436
round_error, 436
round_style, 439
signaling_NaN, 438
tinyness_before, 438
traps, 438

numpunct, 687
numpunct_byname, 689

oct, 996
off_type

char_traits, 613
offsetof, 1213
ofstream, 973, 1045
once_flag, 1148
open

basic_filebuf, 1048, 1058
basic_ifstream, 1054
basic_ofstream, 1056
messages, 704

openmode
ios_base, 983

operator @=
atomic type, 1125

operator auto_ptr
auto_ptr_ref, 1229

operator basic_string
sub_match, 1083

operator bool
basic_istream, 1012
basic_ios, 993
basic_ostream, 1025
error_code, 472
error_condition, 475
packaged_task, 1176

shared_ptr, 583
unique_lock, 1147
unique_ptr, 574

operator C
atomic type, 1123

operator T&
reference_wrapper, 535

operator!
basic_ios, 993
valarray, 951

operator!=, 489
basic_string, 645
pair, 493
type_info, 451
allocator, 559
basic_string, 645
bitset, 509
complex, 892
duration, 603
error_category, 469
error_code, 476
error_condition, 476
function, 549
istream_iterator, 838
istreambuf_iterator, 842
locale, 661
match_results, 1093
move_iterator, 835
queue, 763
regex_iterator, 1099
regex_token_iterator, 1103
reverse_iterator, 826
stack, 769
sub_match, 1083–1087
thread::id, 1132
time_point, 606
tuple, 503
type_index, 609
unique_ptr, 576
valarray, 954, 955

operator()
default_delete, 568, 569
function, 548
locale, 661
packaged_task, 1176
random_device, 918
reference_wrapper, 535

operator*
auto_ptr, 1229
back_insert_iterator, 828
complex, 892

INDEX OF LIBRARY NAMES 1292

c© ISO/IEC N3092

duration, 602
front_insert_iterator, 830
insert_iterator, 831
istream_iterator, 838
istreambuf_iterator, 841
move_iterator, 834
ostream_iterator, 839
ostreambuf_iterator, 843
raw_storage_iterator, 565
regex_iterator, 1099
regex_token_iterator, 1103
reverse_iterator, 824
shared_ptr, 582
unique_ptr, 573
valarray, 953, 954

operator*=
complex, 891
duration, 601
gslice_array, 960
indirect_array, 963
mask_array, 962
slice_array, 957
valarray, 951

operator+
basic_string, 643
basic_string, 643, 644
complex, 891
duration, 600, 605
move_iterator, 835, 836
reverse_iterator, 825, 827
time_point, 605
valarray, 951, 953, 954

operator++
atomic type, 1125, 1126
back_insert_iterator, 829
duration, 600, 601
front_insert_iterator, 830
insert_iterator, 831
istream_iterator, 838
istreambuf_iterator, 841
move_iterator, 834
ostream_iterator, 839
ostreambuf_iterator, 843
raw_storage_iterator, 565
regex_iterator, 1099, 1100
regex_token_iterator, 1103
reverse_iterator, 825

operator+=
basic_string, 631
basic_string, 631
complex, 890, 891

duration, 601
gslice_array, 960
indirect_array, 963
mask_array, 962
move_iterator, 835
reverse_iterator, 825
slice_array, 957
time_point, 605
valarray, 951

operator-
complex, 892
duration, 600, 606
move_iterator, 835, 836
reverse_iterator, 825, 827
time_point, 606
valarray, 951, 953

operator-=
complex, 891
duration, 601
gslice_array, 960
indirect_array, 963
mask_array, 962
move_iterator, 835
reverse_iterator, 826
slice_array, 957
time_point, 605
valarray, 951

operator->
auto_ptr, 1229
istream_iterator, 838
move_iterator, 834
regex_iterator, 1099
regex_token_iterator, 1103
reverse_iterator, 824
shared_ptr, 582
unique_ptr, 574

operator--
atomic type, 1126
duration, 601
move_iterator, 834
reverse_iterator, 825

operator/
complex, 892
duration, 602
valarray, 953, 954

operator/=
complex, 891
duration, 601
gslice_array, 960
indirect_array, 963
mask_array, 962

INDEX OF LIBRARY NAMES 1293

c© ISO/IEC N3092

slice_array, 957
valarray, 951

operator<
basic_string, 645
pair, 493
basic_string, 645
duration, 603
error_category, 470
error_code, 473
error_condition, 475
move_iterator, 835
queue, 763
reverse_iterator, 826
shared_ptr, 584
stack, 769
sub_match, 1083–1087
thread::id, 1132
time_point, 606
tuple, 503
type_index, 609
unique_ptr, 576
valarray, 954, 955

operator<<
shared_ptr, 584
sub_match, 1087

operator<<
basic_string, 647
bitset, 509, 510
complex, 892

operator<<=
bitset, 507

operator<=, 489
basic_string, 646
pair, 493
basic_string, 646
duration, 603
move_iterator, 835
queue, 763
reverse_iterator, 827
shared_ptr, 576
stack, 769
sub_match, 1083–1087
thread::id, 1132
time_point, 606
tuple, 503
type_index, 609
valarray, 954, 955

operator<<
basic_istream, 1021
basic_ostream, 1025, 1027, 1028, 1030
basic_string, 647

error_code, 473
thread::id, 1132
valarray, 953, 954

operator<<=
gslice_array, 960
indirect_array, 963
mask_array, 962
slice_array, 957
valarray, 951

operator=
bad_alloc, 449
bad_cast, 452
bad_exception, 454
bad_typeid, 452
basic_string, 627
reverse_iterator, 824
atomic type, 1123
atomic_future, 1171
auto_ptr, 1228
auto_ptr_ref, 1229
back_insert_iterator, 828
basic_filebuf, 1048
basic_fstream, 1058
basic_ifstream, 1053
basic_iostream, 1021
basic_istream, 1011
basic_istringstream, 1040
basic_ofstream, 1055
basic_ostream, 1024
basic_ostringstream, 1042
basic_regex, 1080
basic_streambuf, 1002
basic_string, 628, 629
basic_stringbuf, 1036
basic_stringstream, 1044
enable_shared_from_this, 589
error_code, 472
error_condition, 474
exception, 453
front_insert_iterator, 829, 830
function, 547, 548
future, 1165
gslice_array, 960
indirect_array, 963
insert_iterator, 831
locale, 660
mask_array, 961
match_results, 1090
move_iterator, 833
ostream_iterator, 839
ostreambuf_iterator, 843

INDEX OF LIBRARY NAMES 1294

c© ISO/IEC N3092

packaged_task, 1175
pair, 493
promise, 1162
raw_storage_iterator, 565
reference_wrapper, 535
shared_future, 1168
shared_ptr, 581, 582
slice_array, 957
thread, 1134
tuple, 499, 500
unique_lock, 1146
unique_ptr, 573
valarray, 948, 954
weak_ptr, 587

operator==
basic_string, 644
pair, 493
type_info, 451
allocator, 559
basic_string, 644
bitset, 509
complex, 892
duration, 603
error_category, 469
error_code, 475
error_condition, 475
function, 549
istream_iterator, 838
istreambuf_iterator, 842
locale, 661
match_results, 1092
move_iterator, 835
queue, 763
regex_iterator, 1099
regex_token_iterator, 1101, 1103
reverse_iterator, 826
shared_ptr, 584
stack, 769
sub_match, 1083–1087
thread::id, 1132
time_point, 606
tuple, 503
type_index, 609
unique_ptr, 576
valarray, 954, 955

operator>, 489
basic_string, 645
pair, 493
basic_string, 645, 646
idxl, 603
move_iterator, 835

queue, 764
reverse_iterator, 826
stack, 769
sub_match, 1083–1087
thread::id, 1132
time_point, 606
tuple, 503
type_index, 609
unique_ptr, 577
valarray, 954, 955

operator>=, 489
basic_string, 646
pair, 493
basic_string, 646
duration, 603
move_iterator, 836
queue, 764
reverse_iterator, 827
stack, 769
sub_match, 1083–1087
thread::id, 1132
time_point, 606
tuple, 503
type_index, 609
unique_ptr, 577
valarray, 954, 955

operator>>
basic_string, 647
bitset, 509, 510
complex, 892

operator>>=
bitset, 507

operator>>
basic_istream, 1013
istream, 1012–1015
valarray, 953, 954

operator>>=
gslice_array, 960
indirect_array, 963
mask_array, 962
slice_array, 957
valarray, 951

operator[]
basic_string, 630
bitset, 509
indirect_array, 963
map, 782, 783
mask_array, 961
match_results, 1091
move_iterator, 835
reverse_iterator, 826

INDEX OF LIBRARY NAMES 1295

c© ISO/IEC N3092

unique_ptr, 576
unordered_map, 799
unordered_multimap, 803
valarray, 948–950

operator%
duration, 602, 603
valarray, 953, 954

operator%=
duration, 601
gslice_array, 960
indirect_array, 963
mask_array, 962
slice_array, 957
valarray, 951

operator&
bitset, 510
valarray, 953, 954

operator&=
bitset, 507
gslice_array, 960
indirect_array, 963
mask_array, 962
slice_array, 957
valarray, 951

operator&&
valarray, 953–955

operatorˆ
bitset, 510
valarray, 953, 954

operatorˆ=
bitset, 507
gslice_array, 960
indirect_array, 963
mask_array, 962
slice_array, 957
valarray, 951

operator˜
bitset, 508
valarray, 951

operator|
bitset, 510
valarray, 953, 954

operator|=
bitset, 507
gslice_array, 960
indirect_array, 963
mask_array, 962
slice_array, 957
valarray, 951

operator||
valarray, 953–955

<ostream>, 1007
ostream, 973, 1008
ostream_iterator, 838

constructor, 839
destructor, 839
operator*, 839
operator++, 839
operator=, 839

ostreambuf_iterator, 842
constructor, 842, 843

ostringstream, 973, 1034
ostrstream, 1223

constructor, 1223
ostrstream, 1223

out
codecvt, 675

out_of_range, 463, 506, 508, 509, 621
out_of_range, 463

outer_allocator
scoped_allocator_adaptor, 562, 563

output_iterator_tag, 820
overflow

basic_filebuf, 1050
basic_streambuf, 1006
basic_stringbuf, 1038
strstreambuf, 1220

overflow_error, 464, 465, 506, 508
overflow_error, 465

owner_before
shared_ptr, 583, 587

owns_lock
unique_lock, 1147

p
bernoulli_distribution, 923
binomial_distribution, 924
geometric_distribution, 925
negative_binomial_distribution, 926

pack_arguments, 501
packaged_task

constructor, 1175
destructor, 1175
get_future, 1176
make_ready_at_thread_exit, 1177
operator bool, 1176
operator(), 1176
operator=, 1175
reset, 1177
swap, 1176, 1177

pair, 492, 498, 500
get, 494

INDEX OF LIBRARY NAMES 1296

c© ISO/IEC N3092

operator=, 493
pair, 492
swap, 493

param
seed_seq, 920

partial_sort, 869
partial_sort_copy, 869
partial_sum, 965
partition, 866
partition_copy, 867
partition_point, 867
pbackfail

basic_filebuf, 1050
basic_streambuf, 1006
basic_stringbuf, 1037
strstreambuf, 1220

pbase
basic_streambuf, 1003

pbump
basic_streambuf, 1003

pcount
ostrstream, 1224
strstream, 1225
strstreambuf, 1219

peek
basic_istream, 1018

piecewise_constant_distribution, 938
constructor, 939
densitities, 940
intervals, 940

piecewise_linear_distribution, 940
constructor, 941
densitities, 942
intervals, 942

placeholders, 541
plus, 536
pointer

allocator_traits, 556
pointer_to

pointer_traits, 555
pointer_to_binary_function, 541
pointer_to_unary_function, 541
pointer_traits, 554

difference_type, 555
element_type, 555
pointer_to, 555
rebind, 555

poisson_distribution, 926
constructor, 927
mean, 927

polar

complex, 893
pop

priority_queue, 767
forward_list, 751

pop_back
basic_string, 636

pop_heap, 877
pos_type

char_traits, 613
position

match_results, 1091
pow, 895, 955, 968

complex, 894
pptr

basic_streambuf, 1003
precision

ios_base, 667, 985
prefix

match_results, 1091
prev, 822
prev_permutation, 881
priority_queue, 764

emplace, 767
priority_queue, 765
swap, 767

probabilities
discrete_distribution, 938

proj
complex, 893

promise
constructor, 1161, 1162
destructor, 1162
get_future, 1162
operator=, 1162
set_exception, 1163
set_exception_at_thread_exit, 1164
set_value, 1162
set_value_at_thread_exit, 1163
swap, 1162, 1164

propagate_on_container_copy_assignment
allocator_traits, 557
scoped_allocator_adaptor, 561

propagate_on_container_move_assignment
allocator_traits, 557
scoped_allocator_adaptor, 561

propagate_on_container_swap
allocator_traits, 557
scoped_allocator_adaptor, 562

proxy
istreambuf_iterator, 840

ptr_fun, 541

INDEX OF LIBRARY NAMES 1297

c© ISO/IEC N3092

pubimbue
basic_streambuf, 1000

pubseekoff
basic_streambuf, 1001

pubseekpos
basic_streambuf, 1001

pubsetbuf
basic_streambuf, 1001

pubsync
basic_streambuf, 1001

push
priority_queue, 766

push_back
basic_string, 632

push_front
forward_list, 751

push_heap, 876
put

basic_ostream, 1029
money_put, 699
num_put, 684
time_put, 696

put_money, 1032
put_time, 1033
putback

basic_istream, 1019
pword

ios_base, 987

<queue>, 739
queue, 761

swap, 764
quick_exit, 444
quiet_NaN

numeric_limits, 437

radix
numeric_limits, 436

<random>, 905–907
random_access_iterator_tag, 820
random_device, 917

constructor, 917
entropy, 917
operator(), 918

random_shuffle, 866
range_error, 464

range_error, 464
ranlux24, 916
ranlux24_base, 916
ranlux48, 916
ranlux48_base, 916

ratio, 511
ratio_add, 512
ratio_divide, 512
ratio_equal, 512
ratio_greater, 513
ratio_greater_equal, 513
ratio_less, 513
ratio_less_equal, 513
ratio_multiply, 512
ratio_not_equal, 513
ratio_subtract, 512
raw_storage_iterator

operator*, 565
operator++, 565
operator=, 565
raw_storage_iterator, 565

rbegin
basic_string, 629

rdbuf
basic_filebuf, 1058
basic_ifstream, 1054
basic_ios, 991
basic_istringstream, 1041
basic_ofstream, 1056
basic_ostringstream, 1043
basic_stringstream, 1045
istrstream, 1223
ostrstream, 1224
strstream, 1225
wbuffer_convert, 667

rdstate
basic_ios, 993

read
basic_istream, 1018

readsome
basic_istream, 1018

real, 895
complex, 890, 893

realloc, 594, 1213
rebind

pointer_traits, 555
rebind_alloc

allocator_traits, 557
ref

reference_wrapper, 536
reference_wrapper, 534

cref, 536
get, 535
operator T&, 535
operator(), 535
operator=, 535

INDEX OF LIBRARY NAMES 1298

c© ISO/IEC N3092

ref, 536
reference_wrapper, 535

<regex>, 1063
regex, 1063
regex_constants, 1069

error_type, 1072–1074
match_flag_type, 1070
syntax_option_type, 1070

regex_error, 1074, 1076, 1105
constructor, 1074

regex_iterator, 1098
increment, 1099
operator!=, 1099
operator*, 1099
operator++, 1099, 1100
operator->, 1099
operator==, 1099
regex_iterator, 1099

regex_match, 1093, 1094
regex_replace, 1096, 1097
regex_search, 1095, 1096
regex_token_iterator, 1100

end-of-sequence, 1101
operator!=, 1103
operator*, 1103
operator++, 1103
operator->, 1103
operator==, 1101, 1103
regex_token_iterator, 1102

regex_traits, 1074
char_class_type, 1075
isctype, 1076
length, 1075
lookup_classname, 1075
lookup_collatename, 1075
transform, 1075
transform_primary, 1075
translate, 1075
translate_nocase, 1075
value, 1076

register_callback
ios_base, 987

Regular Expression Traits
isctype, 1105
lookup_classname, 1105
lookup_collatename, 1105
transform_primary, 1105

rel_ops, 488
release

auto_ptr, 1229
unique_lock, 1147

unique_ptr, 574
remainder, 968
remove, 863

list, 760
forward_list, 753

remove_copy, 863
remove_copy_if, 863
remove_if, 863

forward_list, 753
remquo, 968
rend

basic_string, 629
rep

system_clock, 607
replace, 862

basic_string, 636
basic_string, 636, 637

replace_copy, 862
replace_copy_if, 862
replace_if, 862
reserve

basic_string, 630
vector, 773

reset
auto_ptr, 1229
bitset, 508
packaged_task, 1177
shared_ptr, 582
unique_ptr, 574, 576
weak_ptr, 587

resetiosflags, 1030
resize

basic_string, 629
deque, 746
list, 758
basic_string, 630
forward_list, 752
valarray, 953
vector, 773

rethrow_exception, 456
rethrow_if_nested

nested_exception, 457
returned

nested_exception, 457
reverse, 865

list, 761
forward_list, 754

reverse_copy, 865
reverse_iterator, 822

reverse_iterator, 824
base, 824

INDEX OF LIBRARY NAMES 1299

c© ISO/IEC N3092

constructor, 824
operator++, 825
operator--, 825

rfind
basic_string, 639
basic_string, 639

right, 996
rint, 968
rotate, 865
rotate_copy, 865
round, 968
round_error

numeric_limits, 436
round_style

numeric_limits, 439
runtime_error, 464

runtime_error, 464

s
lognormal_distribution, 933

sbumpc
basic_streambuf, 1001

scalbln, 968
scalbn, 968
scan_is

ctype, 669
ctype<char>, 673

scan_not
ctype, 669
ctype<char>, 673

scientific, 996
scoped_allocator_adaptor

allocate, 563
constructor, 562, 563
deallocate, 563
destructor, 564
inner_allocator, 562
inner_allocator_type, 561
max_size, 563
outer_allocator, 562, 563
propagate_on_container_copy_assignment, 561
propagate_on_container_move_assignment, 561
propagate_on_container_swap, 562

search, 858
search_n, 859
seed_seq

constructor, 918, 919
generate, 919
param, 920
size, 919

seekdir

ios_base, 984
seekg

basic_istream, 1019
seekoff

basic_filebuf, 1051
basic_streambuf, 1004
basic_stringbuf, 1038
strstreambuf, 1221

seekp
basic_ostream, 1025

seekpos
basic_filebuf, 1051
basic_streambuf, 1004
basic_stringbuf, 1039
strstreambuf, 1222

select_on_container_copy_construction
allocator_traits, 557

sentry
basic_istream, 1011
basic_ostream, 1024
constructor, 1011, 1024

<set>, 778
set, 788

bitset, 507
operator<, 790
operator==, 790
set, 790
swap, 791

set_difference, 875
set_exception

promise, 1163
set_exception_at_thread_exit

promise, 1164
set_intersection, 874
set_new_handler, 426, 450
set_rdbuf

basic_ios, 993
set_symmetric_difference, 876
set_terminate, 426, 455
set_unexpected, 426, 455
set_union, 874
set_value

promise, 1162
set_value_at_thread_exit

promise, 1163
setbase, 1031
setbuf

basic_filebuf, 1051
basic_streambuf, 1004, 1039
streambuf, 1222
strstreambuf, 1222

INDEX OF LIBRARY NAMES 1300

c© ISO/IEC N3092

setf
ios_base, 985

setfill, 1031
setg

basic_streambuf, 1003
strstreambuf, 1219

setiosflags, 1030
setjmp, 425
setlocale, 418
setp

basic_streambuf, 1003
setprecision, 1031
setstate

basic_ios, 993
setw, 1032
sgetc

basic_streambuf, 1001
sgetn

basic_streambuf, 1001
shared_from_this

enable_shared_from_this, 589
shared_future

constructor, 1167, 1168
destructor, 1168
get, 1168
operator=, 1168
valid, 1169
wait, 1169
wait_for, 1169
wait_until, 1169

shared_ptr, 577, 589
∼shared_ptr, 581
atomic_compare_exchange_strong, 591
atomic_compare_exchange_strong_explicit, 591
atomic_compare_exchange_weak, 591
atomic_compare_exchange_weak_explicit, 591
atomic_exchange, 591
atomic_exchange_explicit, 591
atomic_is_lock_free, 590
atomic_load, 590
atomic_load_explicit, 590
atomic_store, 590
atomic_store_explicit, 590
const_pointer_cast, 585
dynamic_pointer_cast, 584
get, 582
get_deleter, 585
operator bool, 583
operator*, 582
operator->, 582
operator<, 584

operator<<, 584
operator<=, 576
operator=, 581, 582
operator==, 584
owner_before, 583, 587
reset, 582
shared_ptr, 579–581
static_pointer_cast, 584
swap, 582, 584
unique, 583
use_count, 583

shift
valarray, 952

showbase, 994
showmanyc

basic_filebuf, 1049
basic_streambuf, 1004, 1049

showpoint, 994
showpos, 995
shrink_to_fit

basic_string, 630
deque, 746
vector, 773

shuffle, 866
shuffle_order_engine, 914

constructor, 915
signaling_NaN

numeric_limits, 438
signbit, 970
sin, 955, 968

complex, 894
sinh, 955, 968

complex, 895
size

basic_string, 629
array, 740, 742
bitset, 509
gslice, 959
initializer_list, 459
match_results, 1090
seed_seq, 919
slice, 956

size_t, 106
size_type

allocator_traits, 557
skipws, 995
sleep_for

this_thread, 1136
sleep_until

this_thread, 1136
slice, 956

INDEX OF LIBRARY NAMES 1301

c© ISO/IEC N3092

slice, 956
slice_array, 957
snextc

basic_streambuf, 1001
sort, 868

list, 761
forward_list, 754

sort_heap, 877
splice

list, 759
list, 759

splice_after
forward_list, 752, 753

sputbackc
basic_streambuf, 1002

sputc
basic_streambuf, 1002

sputn
basic_streambuf, 1002

sqrt, 955, 968
complex, 895

<sstream>, 1034
stable_partition, 867
stable_sort, 869
<stack>, 739
stack, 767

swap, 769
start

gslice, 959
slice, 956

state
fpos, 988
wbuffer_convert, 667
wstring_convert, 665

state_type
char_traits, 613
wbuffer_convert, 667
wstring_convert, 665

static_pointer_cast
shared_ptr, 584

stddev
normal_distribution, 932

<stdexcept>, 461
<stdlib.h>, 1214
stod, 649
stof, 648, 649
stoi, 648, 649
stol, 648, 649
stold, 648, 649
stoll, 648, 649
store

atomic type, 1123
stoul, 648, 649
stoull, 648, 649
str

basic_istringstream, 1041
basic_ostringstream, 1043
basic_stringbuf, 1037
basic_stringstream, 1045
istrstream, 1223
match_results, 1091
ostrstream, 1224
strstream, 1225
strstreambuf, 1219
sub_match, 1083

strchr, 650
<streambuf>, 997
streambuf, 973, 997
streamoff, 978, 988, 1215
streamsize, 978

ios_base, 985
strftime, 696
stride

gslice, 959
slice, 956

<string>, 617
stringbuf, 973, 1034
stringstream, 973
strlen, 1218, 1219, 1224
strpbrk, 650
strrchr, 650
strstr, 650
strstream, 1224

destructor, 1225
strstream, 1225

strstreambuf, 1216, 1218
strstreambuf, 1218
destructor, 1219
setg, 1219

student_t_distribution, 936
constructor, 936
mean, 936

sub_match, 1082
compare, 1083
length, 1082
operator basic_string, 1083
operator!=, 1083–1087
operator<, 1083–1087
operator<<, 1087
operator<=, 1083–1087
operator==, 1083–1087
operator>, 1083–1087

INDEX OF LIBRARY NAMES 1302

c© ISO/IEC N3092

operator>=, 1083–1087
str, 1083

substr
basic_string, 641

subtract_with_carry_engine, 910
constructor, 911

suffix
match_results, 1091

sum
valarray, 952

sungetc
basic_streambuf, 1002

swap, 490
basic_string, 638, 646
pair, 494
array, 742
basic_filebuf, 1048
basic_fstream, 1058
basic_ifstream, 1054
basic_ios, 993
basic_iostream, 1021
basic_istream, 1011
basic_istringstream, 1041
basic_ofstream, 1056
basic_ostream, 1024
basic_ostringstream, 1042
basic_regex, 1082
basic_streambuf, 1002
basic_stringbuf, 1036, 1037
basic_stringstream, 1044
deque, 747
forward_list, 754
function, 548, 549
list, 761
map, 784
match_results, 1092
multimap, 788
multiset, 794
packaged_task, 1176, 1177
pair, 493
priority_queue, 767
promise, 1162, 1164
queue, 764
set, 791
shared_ptr, 582, 584
stack, 769
thread, 1134, 1135
tuple, 500
unique_lock, 1147
unique_ptr, 574
unordered_map, 800

unordered_multimap, 803
unordered_multiset, 809
unordered_set, 806
valarray, 952, 956
vector, 773, 775
vector<bool>, 777
weak_ptr, 587, 588

swap(unique_ptr&, unique_ptr&), 576
swap_ranges, 861
sync

basic_filebuf, 1052
basic_istream, 1019
basic_streambuf, 1004

sync_with_stdio
ios_base, 986

syntax_option_type, 1070
awk, 1070
basic, 1070
collate, 1070, 1105
ECMAScript, 1070
egrep, 1070
extended, 1070
grep, 1070
icase, 1070
nosubs, 1070
optimize, 1070

syntax_option_type
awk, 1071
basic, 1071
collate, 1071
ECMAScript, 1071
egrep, 1071
extended, 1071
grep, 1071
icase, 1071
nosubs, 1071
optimize, 1071

system_category, 470
system_clock

rep, 607
system_error

code, 477
system_error, 476, 477
what, 477

t
binomial_distribution, 924
negative_binomial_distribution, 926

table
ctype<char>, 673

tan, 955, 968

INDEX OF LIBRARY NAMES 1303

c© ISO/IEC N3092

complex, 895
tanh, 955, 968

complex, 895
target

function, 549
target_type

function, 549
tellg

basic_istream, 1019
tellp

basic_ostream, 1025
terminate, 444, 445, 455
terminate_handler, 426, 455
test

bitset, 509
tgamma, 968
this_thread

get_id, 1135
sleep_for, 1136
sleep_until, 1136
yield, 1136

thousands_sep
numpunct, 688

<thread>, 1130
thread

constructor, 1133
destructor, 1133
detach, 1134
get_id, 1135
hardware_concurrency, 1135
join, 1134
joinable, 1134
operator=, 1134
swap, 1134, 1135

thread::id
constructor, 1132
operator!=, 1132
operator<, 1132
operator<=, 1132
operator<<, 1132
operator==, 1132
operator>, 1132
operator>=, 1132

throw_with_nested
nested_exception, 457

tie, 501
basic_ios, 991

time_get, 691
do_get, 694
get, 692, 693

time_get_byname, 695

time_point
max, 605
min, 605
operator!=, 606
operator+, 605
operator+=, 605
operator-, 606
operator-=, 605
operator<, 606
operator<=, 606
operator==, 606
operator>, 606
operator>=, 606
time_point, 604, 605
time_since_epoch, 605

time_point_cast, 606
time_put, 695
time_put_byname, 696
time_since_epoch

time_point, 605
tinyness_before

numeric_limits, 438
to_bytes

wstring_convert, 665
to_string, 649

bitset, 508
to_time_t, 607
to_ullong

bitset, 508
to_ulong

bitset, 508
to_wstring, 649
tolower, 663

ctype, 669
ctype<char>, 673

toupper, 663
ctype, 669
ctype<char>, 673

transform, 861
collate, 690
regex_traits, 1075

transform_primary
regex_traits, 1075

translate
regex_traits, 1075

translate_nocase
regex_traits, 1075

traps
numeric_limits, 438

treat_as_floating_point, 597
truename

INDEX OF LIBRARY NAMES 1304

c© ISO/IEC N3092

numpunct, 688
trunc, 968
try_lock, 1148

unique_lock, 1146
try_lock_for

unique_lock, 1146
try_lock_until

unique_lock, 1146
<tuple>, 495
tuple, 495, 496, 742

get, 502
make_tuple, 500
operator!=, 503
operator<, 503
operator<=, 503
operator=, 499, 500
operator==, 503
operator>, 503
operator>=, 503
pack_arguments, 501
swap, 500
tie, 501
tuple, 497, 498

tuple_cat, 501, 502
tuple_element, 494, 502, 743
tuple_size, 494, 502, 742
type_index

hash_code, 609
name, 609
operator!=, 609
operator<, 609
operator<=, 609
operator==, 609
operator>, 609
operator>=, 609
type_index, 609

type_info, 98, 450
type_info::name

implementation-defined, 451
<typeinfo>, 450, 608

uflow
basic_filebuf, 1050
basic_streambuf, 1005

uint16_t, 442
uint32_t, 442
uint64_t, 442
uint8_t, 442
uint_fast16_t, 442
uint_fast32_t, 442
uint_fast64_t, 442

uint_fast8_t, 442
uint_least16_t, 442
uint_least32_t, 442
uint_least64_t, 442
uint_least8_t, 442
uintmax_t, 442
uintptr_t, 442
unary_function, 533, 534, 544
unary_negate, 538
uncaught_exception, 456
undeclare_no_pointers, 593
undeclare_reachable, 592
underflow

basic_filebuf, 1049
basic_streambuf, 1005
basic_stringbuf, 1037
strstreambuf, 1220

underflow_error
underflow_error, 465

unexpected, 455
unexpected_handler, 426, 454
unget

basic_istream, 1019
uniform_int_distribution, 921

a, 921
b, 921
constructor, 921

uniform_real_distribution, 922
a, 922
b, 922
constructor, 922

uninitialized_copy, 566
uninitialized_copy_n, 566
uninitialized_fill, 566
uninitialized_fill_n, 567
unique, 864

list, 760
forward_list, 753
shared_ptr, 583

unique_copy, 864
unique_lock

constructor, 1144, 1145
destructor, 1146
lock, 1146
mutex, 1147
operator bool, 1147
operator=, 1146
owns_lock, 1147
release, 1147
swap, 1147
try_lock, 1146

INDEX OF LIBRARY NAMES 1305

c© ISO/IEC N3092

try_lock_for, 1146
try_lock_until, 1146
unlock, 1147

unique_ptr
destructor, 572
get, 574
get_deleter, 574
operator bool, 574
operator!=, 576
operator*, 573
operator->, 574
operator<, 576
operator=, 573
operator==, 576
operator>, 577
operator>=, 577
operator[], 576
release, 574
reset, 574, 576
swap, 574
unique_ptr, 570–572, 576

unitbuf, 995
unlock

unique_lock, 1147
<unordered_map>, 794
unordered_map, 794, 796

at, 799
operator[], 799
swap, 800
unordered_map, 798

unordered_multimap, 794, 800
operator[], 803
swap, 803
unordered_multimap, 802

unordered_multiset, 795, 806, 807
swap, 809
unordered_multiset, 809

<unordered_set>, 795
unordered_set, 795, 803

swap, 806
unordered_set, 806

unsetf
ios_base, 985

unshift
codecvt, 675

upper_bound, 871
uppercase, 995
use_count

shared_ptr, 583
weak_ptr, 587

use_facet

locale, 662
uses_allocator, 554, 1161, 1177
uses_allocator<tuple>, 503
<utility>, 488

va_end, 425
va_list, 425
<valarray>, 942
valarray, 945, 960

begin, 964
constructor, 947
destructor, 947
end, 964
operator!=, 955
operator*, 954
operator*=, 951
operator+, 954
operator+=, 951
operator-=, 951
operator/, 954
operator/=, 951
operator<, 955
operator<=, 955
operator<<, 954
operator<<=, 951
operator=, 948, 954
operator==, 955
operator>, 955
operator>=, 955
operator>>, 954
operator>>=, 951
operator%, 954
operator%=, 951
operator&, 954
operator&=, 951
operator&&, 955
operatorˆ, 954
operatorˆ=, 951
operator|, 954
operator|=, 951
operator||, 955
swap, 952, 956
valarray, 946

valid
atomic_future, 1171
future, 1166
shared_future, 1169

value
error_code, 472
error_condition, 475
regex_traits, 1076

INDEX OF LIBRARY NAMES 1306

c© ISO/IEC N3092

<vector>, 740
vector, 770

operator<, 772
operator==, 772
vector, 772
assign, 773
swap, 775

vector<bool>, 775
flip, 777
swap, 777

void_pointer
allocator_traits, 556

wait
atomic_future, 1171
condition, 1152, 1156
condition_variable, 1152
condition_variable_any, 1156
future, 1166
shared_future, 1169

wait_for
atomic_future, 1172
condition, 1153, 1154
condition_variable_any, 1157
future, 1166
shared_future, 1169

wait_until
atomic_future, 1172
condition, 1154
condition_variable, 1153
condition_variable_any, 1156, 1157
future, 1166
shared_future, 1169

wbuffer_convert
destructor, 667
rdbuf, 667
state, 667
state_type, 667
wbuffer_convert, 667

wcerr, 977
wcin, 977
wclog, 977
wcout, 977
wcschr, 651
wcspbrk, 651
wcsrchr, 651
wcsstr, 651
weak_ptr, 580, 585

∼weak_ptr, 586
expired, 587
lock, 587

operator=, 587
reset, 587
swap, 587, 588
use_count, 587
weak_ptr, 586

weibull_distribution, 929
a, 930
b, 930
constructor, 929

wfilebuf, 973, 1045
wfstream, 973
what

bad_alloc, 449
bad_cast, 452
bad_exception, 454
bad_typeid, 452
exception, 454
bad_weak_ptr, 577
future_error, 1160
system_error, 477

wide_string
wstring_convert, 665

widen
basic_ios, 991
ctype, 669
ctype<char>, 673

width
ios_base, 667, 985

wifstream, 973, 1045
wios, 978
wistream, 973, 1007
wistringstream, 973, 1034
wmemchr, 651
wofstream, 973, 1045
wostream, 973, 1008
wostringstream, 973, 1034
wregex, 1063
write

basic_ostream, 1029
ws, 1014, 1020
wstreambuf, 973, 997
wstring_convert

byte_string, 664
converted, 664
destructor, 666
from_bytes, 664
int_type, 665
state, 665
state_type, 665
to_bytes, 665
wide_string, 665

INDEX OF LIBRARY NAMES 1307

c© ISO/IEC N3092

wstring_convert, 665
wstringbuf, 973, 1034
wstringstream, 973

xalloc
ios_base, 987

xsgetn
basic_streambuf, 1004

xsputn
basic_streambuf, 1006

yield
this_thread, 1136

zero
duration, 601
duration_values, 597

INDEX OF LIBRARY NAMES 1308

c© ISO/IEC N3092

Index of Implementation Defined Behavior
The entries in this section are rough descriptions; exact specifications are at the indicated page in the
general text.

#pragma, 407

additional formats for time_get::do_get_date, 694
alignment, 76
alignment additional values, 76
alignment of bit-fields within a class object, 222
allocation of bit-fields within a class object, 222
argument values to construct basic_ios::failure,

993
assignability of placeholder objects, 541

behavior of attribute scoped token, 170
behavior of iostream classes when traits::pos_type

is not streampos or when traits::off_-
type is not streamoff, 973

behavior of non-standard attributes, 171
bits in a byte, 5

choice of larger or smaller value of floating literal, 26
concatenation of some types of string literals, 27
conversions between pointers and integers, 101
converting characters from source character set to ex-

ecution character set, 16
converting pointer to function into pointer to object

and vice versa, 102

defining main in freestanding environment, 58
definition and meaning of _ _ STDC _ _, 408
definition and meaning of _ _ STDC_VERSION _ _, 408
derived type for typeid, 98
diagnostic message, 2
distinctness of string literals, 27
dynamic initialization of static objects before main,

60
dynamic initialization of thread-local objects before

entry, 60

effect of array::front() and array::back() on zero-
sized array, 742

effect of calling basic_filebuf::setbuf with non-
zero arguments, 1051

effect of calling basic_filebuf::sync when a get
area exists, 1052

effect of calling basic_streambuf::setbuf with non-
zero arguments, 1039

effect of calling ios_base::sync_with_stdio after
any input or output operation on standard
streams, 986

effect on C locale of calling locale::global, 662
encoding of universal character name not in execution

character set, 25
error_category for errors originating outside the

operationg system, 431
exception type when shared_ptr constructor fails,

579–581
exceptions thrown by standard library functions that

do not have an exception specification, 430
execution character-set and execution wide-character

set, 17
exit status, 444
extended signed integer types, 71

formatted character sequence generated by time_-
put::do_put in C locale, 696

headers for freestanding implementation, 422

interactive device, 8

linkage of main, 58
linkage of names from Standard C library, 423
locale names, 660

mapping from name to catalog when calling messages
::do_open, 704

mapping header name to header or external source
file, 20

mapping physical source file characters to basic source
character set, 15

mapping to message when calling messages::do_-
get, 704

meaning of asm declaration, 167
meaning of attribute declaration, 136

negative value of character literal in preprocessor, 399
nesting limit for #include directives, 401

INDEX OF IMPLEMENTATION DEFINED BEHAVIOR 1309

c© ISO/IEC N3092

number of threads in a program under a freestanding
implementation, 11

numeric values of character literals in #if directives,
399

parameters to main, 58
passing argument of class type through ellipsis, 94
physical source file characters, 15
presence and meaning of native_handle_type and

native_handle, 1129

rank of extended signed integer type, 82
representation of char, 71
required libraries for freestanding implementation, 4
result of exception::what, 454
result of inexact floating-point conversion, 80
result of right shift of negative value, 116
return value of bad_alloc::what, 449
return value of bad_cast::what, 452
return value of bad_exception::what, 454
return value of bad_typeid::what, 452
return value of char_traits<char16_t>::eof, 615
return value of char_traits<char32_t>::eof, 616
return value of type_info::name(), 451

search locations for "" header, 400
search locations for <> header, 400
semantics of extern linkage|hyperpage, 167
semantics of linkage specification on templates, 315
semantics of non-standard escae sequences, 25
set of blank characters defined by regex_traits::

isctype, 1076
signedness of char, 71
signedness of plain integral bit-field, 223
sizeof applied to fundamental types other than char,

signed char, and unsigned char, 106
stack unwinding before call to std::terminate(),

391, 396
start-up and termination in freestanding environment,

58
string resulting from __func__, 193
support for extended alignment, 528
support for over-aligned types, 106, 559, 565
supported multibyte character encoding rules, 614,

617

text of _ _ DATE _ _ when date of translation is not
available, 408

text of _ _ TIME _ _ when time of translation is not
available, 408

type of ios_base::streamoff, 1215

type of ios_base::streampos, 1215
type of ptrdiff_t, 115
type of regex_constants::error_type, 1073
type of streamoff, 614
type of streampos, 614
type of u16streampos, 615
type of u32streampos, 616
type of wstreampos, 617
type of array::const_iterator, 741
type of array::iterator, 741

underlying source of random numbers for random_-
shuffle, 866

underlying type for enumeration, 152
use of non-POF function as signal handler, 460

value of ctype<char>::table_size, 672
value of character literal outside range of correspond-

ing type, 25
value of multicharacter, 24
value of result of inexact integer to floating-point con-

version, 81
value of result of unsigned to signed conversion, 80
value of wide-character literal containing multiple char-

acters, 24
value of wide-character literal with single c-char that

is not in execution wide-character set, 24
value representation of floating-point types, 72
value representation of pointer types, 73
values of a trivially copyable type, 69
Values of various ATOMIC_..._LOCK_FREE macros, 1112

whether get_pointer_safety returns pointer_safety::relaxed
or pointer_safety::preferred if the im-
plementation has relaxed pointer safety., 593

whether time_get::do_get_year accepts two-digit
year numbers, 694

whether an implementation has relaxed or strict pointer
safety, 65

whether locale object is global or per-thread, 657
whether sequence pointers are copied by basic_filebuf

move constructor, 1047
whether sequence pointers are copied by basic_stringbuf

move constructor, 1036
whether source of translation units must be available

to locate template definitions, 16
whether values are rounded or truncated to the re-

quired precision when converting between
time_t values and time_point objects., 607

which functions in Standard C++ library may be re-
cursively reentered, 429

INDEX OF IMPLEMENTATION DEFINED BEHAVIOR 1310

	Contents
	List of Tables
	List of Figures
	1 General
	1.1 Scope
	1.2 Normative references
	1.3 Definitions
	1.4 Implementation compliance
	1.5 Structure of this International Standard
	1.6 Syntax notation
	1.7 The C++ memory model
	1.8 The C++ object model
	1.9 Program execution
	1.10 Multi-threaded executions and data races
	1.11 Acknowledgments

	2 Lexical conventions
	2.1 Separate translation
	2.2 Phases of translation
	2.3 Character sets
	2.4 Trigraph sequences
	2.5 Preprocessing tokens
	2.6 Alternative tokens
	2.7 Tokens
	2.8 Comments
	2.9 Header names
	2.10 Preprocessing numbers
	2.11 Identifiers
	2.12 Keywords
	2.13 Operators and punctuators
	2.14 Literals
	2.14.1 Kinds of literals
	2.14.2 Integer literals
	2.14.3 Character literals
	2.14.4 Floating literals
	2.14.5 String literals
	2.14.6 Boolean literals
	2.14.7 Pointer literals
	2.14.8 User-defined literals

	3 Basic concepts
	3.1 Declarations and definitions
	3.2 One definition rule
	3.3 Scope
	3.3.1 Declarative regions and scopes
	3.3.2 Point of declaration
	3.3.3 Block scope
	3.3.4 Function prototype scope
	3.3.5 Function scope
	3.3.6 Namespace scope
	3.3.7 Class scope
	3.3.8 Enumeration scope
	3.3.9 Template Parameter Scope
	3.3.10 Name hiding

	3.4 Name lookup
	3.4.1 Unqualified name lookup
	3.4.2 Argument-dependent name lookup
	3.4.3 Qualified name lookup
	3.4.3.1 Class members
	3.4.3.2 Namespace members

	3.4.4 Elaborated type specifiers
	3.4.5 Class member access
	3.4.6 Using-directives and namespace aliases

	3.5 Program and linkage
	3.6 Start and termination
	3.6.1 Main function
	3.6.2 Initialization of non-local variables
	3.6.3 Termination

	3.7 Storage duration
	3.7.1 Static storage duration
	3.7.2 Thread storage duration
	3.7.3 Automatic storage duration
	3.7.4 Dynamic storage duration
	3.7.4.1 Allocation functions
	3.7.4.2 Deallocation functions
	3.7.4.3 Safely-derived pointers

	3.7.5 Duration of subobjects

	3.8 Object lifetime
	3.9 Types
	3.9.1 Fundamental types
	3.9.2 Compound types
	3.9.3 CV-qualifiers

	3.10 Lvalues and rvalues
	3.11 Alignment

	4 Standard conversions
	4.1 Lvalue-to-rvalue conversion
	4.2 Array-to-pointer conversion
	4.3 Function-to-pointer conversion
	4.4 Qualification conversions
	4.5 Integral promotions
	4.6 Floating point promotion
	4.7 Integral conversions
	4.8 Floating point conversions
	4.9 Floating-integral conversions
	4.10 Pointer conversions
	4.11 Pointer to member conversions
	4.12 Boolean conversions
	4.13 Integer conversion rank

	5 Expressions
	5.1 Primary expressions
	5.1.1 General
	5.1.2 Lambda expressions

	5.2 Postfix expressions
	5.2.1 Subscripting
	5.2.2 Function call
	5.2.3 Explicit type conversion (functional notation)
	5.2.4 Pseudo destructor call
	5.2.5 Class member access
	5.2.6 Increment and decrement
	5.2.7 Dynamic cast
	5.2.8 Type identification
	5.2.9 Static cast
	5.2.10 Reinterpret cast
	5.2.11 Const cast

	5.3 Unary expressions
	5.3.1 Unary operators
	5.3.2 Increment and decrement
	5.3.3 Sizeof
	5.3.4 New
	5.3.5 Delete
	5.3.6 Alignof
	5.3.7 noexcept operator

	5.4 Explicit type conversion (cast notation)
	5.5 Pointer-to-member operators
	5.6 Multiplicative operators
	5.7 Additive operators
	5.8 Shift operators
	5.9 Relational operators
	5.10 Equality operators
	5.11 Bitwise AND operator
	5.12 Bitwise exclusive OR operator
	5.13 Bitwise inclusive OR operator
	5.14 Logical AND operator
	5.15 Logical OR operator
	5.16 Conditional operator
	5.17 Assignment and compound assignment operators
	5.18 Comma operator
	5.19 Constant expressions

	6 Statements
	6.1 Labeled statement
	6.2 Expression statement
	6.3 Compound statement or block
	6.4 Selection statements
	6.4.1 The if statement
	6.4.2 The switch statement

	6.5 Iteration statements
	6.5.1 The while statement
	6.5.2 The do statement
	6.5.3 The for statement
	6.5.4 The range-based for statement

	6.6 Jump statements
	6.6.1 The break statement
	6.6.2 The continue statement
	6.6.3 The return statement
	6.6.4 The goto statement

	6.7 Declaration statement
	6.8 Ambiguity resolution

	7 Declarations
	7.1 Specifiers
	7.1.1 Storage class specifiers
	7.1.2 Function specifiers
	7.1.3 The typedef specifier
	7.1.4 The friend specifier
	7.1.5 The constexpr specifier
	7.1.6 Type specifiers
	7.1.6.1 The cv-qualifiers
	7.1.6.2 Simple type specifiers
	7.1.6.3 Elaborated type specifiers
	7.1.6.4 auto specifier

	7.2 Enumeration declarations
	7.3 Namespaces
	7.3.1 Namespace definition
	7.3.1.1 Unnamed namespaces
	7.3.1.2 Namespace member definitions

	7.3.2 Namespace alias
	7.3.3 The using declaration
	7.3.4 Using directive

	7.4 The asm declaration
	7.5 Linkage specifications
	7.6 Attributes
	7.6.1 Attribute syntax and semantics
	7.6.2 Alignment attribute
	7.6.3 Noreturn attribute
	7.6.4 Final attribute
	7.6.5 Class member name checking attributes
	7.6.6 Carries dependency attribute

	8 Declarators
	8.1 Type names
	8.2 Ambiguity resolution
	8.3 Meaning of declarators
	8.3.1 Pointers
	8.3.2 References
	8.3.3 Pointers to members
	8.3.4 Arrays
	8.3.5 Functions
	8.3.6 Default arguments

	8.4 Function definitions
	8.4.1 In general
	8.4.2 Explicitly-defaulted functions
	8.4.3 Deleted definitions

	8.5 Initializers
	8.5.1 Aggregates
	8.5.2 Character arrays
	8.5.3 References
	8.5.4 List-initialization

	9 Classes
	9.1 Class names
	9.2 Class members
	9.3 Member functions
	9.3.1 Nonstatic member functions
	9.3.2 The this pointer

	9.4 Static members
	9.4.1 Static member functions
	9.4.2 Static data members

	9.5 Unions
	9.6 Bit-fields
	9.7 Nested class declarations
	9.8 Local class declarations
	9.9 Nested type names

	10 Derived classes
	10.1 Multiple base classes
	10.2 Member name lookup
	10.3 Virtual functions
	10.4 Abstract classes

	11 Member access control
	11.1 Access specifiers
	11.2 Accessibility of base classes and base class members
	11.3 Access declarations
	11.4 Friends
	11.5 Protected member access
	11.6 Access to virtual functions
	11.7 Multiple access
	11.8 Nested classes

	12 Special member functions
	12.1 Constructors
	12.2 Temporary objects
	12.3 Conversions
	12.3.1 Conversion by constructor
	12.3.2 Conversion functions

	12.4 Destructors
	12.5 Free store
	12.6 Initialization
	12.6.1 Explicit initialization
	12.6.2 Initializing bases and members

	12.7 Construction and destruction
	12.8 Copying and moving class objects
	12.9 Inheriting Constructors

	13 Overloading
	13.1 Overloadable declarations
	13.2 Declaration matching
	13.3 Overload resolution
	13.3.1 Candidate functions and argument lists
	13.3.1.1 Function call syntax
	13.3.1.1.1 Call to named function
	13.3.1.1.2 Call to object of class type

	13.3.1.2 Operators in expressions
	13.3.1.3 Initialization by constructor
	13.3.1.4 Copy-initialization of class by user-defined conversion
	13.3.1.5 Initialization by conversion function
	13.3.1.6 Initialization by conversion function for direct reference binding
	13.3.1.7 Initialization by list-initialization

	13.3.2 Viable functions
	13.3.3 Best viable function
	13.3.3.1 Implicit conversion sequences
	13.3.3.1.1 Standard conversion sequences
	13.3.3.1.2 User-defined conversion sequences
	13.3.3.1.3 Ellipsis conversion sequences
	13.3.3.1.4 Reference binding
	13.3.3.1.5 List-initialization sequence

	13.3.3.2 Ranking implicit conversion sequences

	13.4 Address of overloaded function
	13.5 Overloaded operators
	13.5.1 Unary operators
	13.5.2 Binary operators
	13.5.3 Assignment
	13.5.4 Function call
	13.5.5 Subscripting
	13.5.6 Class member access
	13.5.7 Increment and decrement
	13.5.8 User-defined literals

	13.6 Built-in operators

	14 Templates
	14.1 Template parameters
	14.2 Names of template specializations
	14.3 Template arguments
	14.3.1 Template type arguments
	14.3.2 Template non-type arguments
	14.3.3 Template template arguments

	14.4 Type equivalence
	14.5 Template declarations
	14.5.1 Class templates
	14.5.1.1 Member functions of class templates
	14.5.1.2 Member classes of class templates
	14.5.1.3 Static data members of class templates

	14.5.2 Member templates
	14.5.3 Variadic templates
	14.5.4 Friends
	14.5.5 Class template partial specializations
	14.5.5.1 Matching of class template partial specializations
	14.5.5.2 Partial ordering of class template specializations
	14.5.5.3 Members of class template specializations

	14.5.6 Function templates
	14.5.6.1 Function template overloading
	14.5.6.2 Partial ordering of function templates

	14.5.7 Template aliases

	14.6 Name resolution
	14.6.1 Locally declared names
	14.6.2 Dependent names
	14.6.2.1 Dependent types
	14.6.2.2 Type-dependent expressions
	14.6.2.3 Value-dependent expressions
	14.6.2.4 Dependent template arguments

	14.6.3 Non-dependent names
	14.6.4 Dependent name resolution
	14.6.4.1 Point of instantiation
	14.6.4.2 Candidate functions

	14.6.5 Friend names declared within a class template

	14.7 Template instantiation and specialization
	14.7.1 Implicit instantiation
	14.7.2 Explicit instantiation
	14.7.3 Explicit specialization

	14.8 Function template specializations
	14.8.1 Explicit template argument specification
	14.8.2 Template argument deduction
	14.8.2.1 Deducing template arguments from a function call
	14.8.2.2 Deducing template arguments taking the address of a function template
	14.8.2.3 Deducing conversion function template arguments
	14.8.2.4 Deducing template arguments during partial ordering
	14.8.2.5 Deducing template arguments from a type

	14.8.3 Overload resolution

	15 Exception handling
	15.1 Throwing an exception
	15.2 Constructors and destructors
	15.3 Handling an exception
	15.4 Exception specifications
	15.5 Special functions
	15.5.1 The std::terminate() function
	15.5.2 The std::unexpected() function
	15.5.3 The std::uncaught_exception() function

	16 Preprocessing directives
	16.1 Conditional inclusion
	16.2 Source file inclusion
	16.3 Macro replacement
	16.3.1 Argument substitution
	16.3.2 The # operator
	16.3.3 The ## operator
	16.3.4 Rescanning and further replacement
	16.3.5 Scope of macro definitions

	16.4 Line control
	16.5 Error directive
	16.6 Pragma directive
	16.7 Null directive
	16.8 Predefined macro names
	16.9 Pragma operator

	17 Library introduction
	17.1 General
	17.2 The C standard library
	17.3 Definitions
	17.4 Additional definitions
	17.5 Method of description (Informative)
	17.5.1 Structure of each clause
	17.5.1.1 Elements
	17.5.1.2 Summary
	17.5.1.3 Requirements
	17.5.1.4 Detailed Specifications
	17.5.1.5 C Library

	17.5.2 Other conventions
	17.5.2.1 Type descriptions
	17.5.2.1.1 General
	17.5.2.1.2 Enumerated types
	17.5.2.1.3 Bitmask types
	17.5.2.1.4 Character sequences
	17.5.2.1.4.1 Byte strings
	17.5.2.1.4.2 Multibyte strings
	17.5.2.1.4.3 char16_t sequences
	17.5.2.1.4.4 char32_t sequences
	17.5.2.1.4.5 Wide-character sequences

	17.5.2.2 Functions within classes
	17.5.2.3 Private members

	17.6 Library-wide requirements
	17.6.1 Library contents and organization
	17.6.1.1 Library contents
	17.6.1.2 Headers
	17.6.1.3 Freestanding implementations

	17.6.2 Using the library
	17.6.2.1 Overview
	17.6.2.2 Headers
	17.6.2.3 Linkage

	17.6.3 Constraints on programs
	17.6.3.1 Overview
	17.6.3.2 Namespace use
	17.6.3.2.1 Namespace std
	17.6.3.2.2 Namespace posix

	17.6.3.3 Reserved names
	17.6.3.3.1 Macro names
	17.6.3.3.2 Global names
	17.6.3.3.3 External linkage
	17.6.3.3.4 Types
	17.6.3.3.5 User-defined literal suffixes

	17.6.3.4 Headers
	17.6.3.5 Derived classes
	17.6.3.6 Replacement functions
	17.6.3.7 Handler functions
	17.6.3.8 Other functions
	17.6.3.9 Function arguments
	17.6.3.10 Shared objects and the library
	17.6.3.11 Required paragraph

	17.6.4 Conforming implementations
	17.6.4.1 Overview
	17.6.4.2 Headers
	17.6.4.3 Restrictions on macro definitions
	17.6.4.4 Global and non-member functions
	17.6.4.5 Member functions
	17.6.4.6 constexpr functions and constructors
	17.6.4.7 Reentrancy
	17.6.4.8 Data race avoidance
	17.6.4.9 Protection within classes
	17.6.4.10 Derived classes
	17.6.4.11 Restrictions on exception handling
	17.6.4.12 Restrictions on storage of pointers
	17.6.4.13 Value of error codes

	18 Language support library
	18.1 General
	18.2 Types
	18.3 Implementation properties
	18.3.1 Numeric limits
	18.3.1.1 Class template numeric_limits
	18.3.1.2 numeric_limits members
	18.3.1.3 Type float_round_style
	18.3.1.4 Type float_denorm_style
	18.3.1.5 numeric_limits specializations

	18.3.2 C Library

	18.4 Integer types
	18.4.1 Header <cstdint> synopsis

	18.5 Start and termination
	18.6 Dynamic memory management
	18.6.1 Storage allocation and deallocation
	18.6.1.1 Single-object forms
	18.6.1.2 Array forms
	18.6.1.3 Placement forms
	18.6.1.4 Data races

	18.6.2 Storage allocation errors
	18.6.2.1 Class bad_alloc
	18.6.2.2 Class bad_array_new_length
	18.6.2.3 Type new_handler
	18.6.2.4 set_new_handler

	18.7 Type identification
	18.7.1 Class type_info
	18.7.2 Class bad_cast
	18.7.3 Class bad_typeid

	18.8 Exception handling
	18.8.1 Class exception
	18.8.2 Violating exception-specifications
	18.8.2.1 Class bad_exception
	18.8.2.2 Type unexpected_handler
	18.8.2.3 set_unexpected
	18.8.2.4 unexpected

	18.8.3 Abnormal termination
	18.8.3.1 Type terminate_handler
	18.8.3.2 set_terminate
	18.8.3.3 terminate

	18.8.4 uncaught_exception
	18.8.5 Exception Propagation
	18.8.6 nested_exception

	18.9 Initializer lists
	18.9.1 Initializer list constructors
	18.9.2 Initializer list access
	18.9.3 Initializer list range access

	18.10 Other runtime support

	19 Diagnostics library
	19.1 General
	19.2 Exception classes
	19.2.1 Class logic_error
	19.2.2 Class domain_error
	19.2.3 Class invalid_argument
	19.2.4 Class length_error
	19.2.5 Class out_of_range
	19.2.6 Class runtime_error
	19.2.7 Class range_error
	19.2.8 Class overflow_error
	19.2.9 Class underflow_error

	19.3 Assertions
	19.4 Error numbers
	19.5 System error support
	19.5.1 Class error_category
	19.5.1.1 Class error_category overview
	19.5.1.2 Class error_category virtual members
	19.5.1.3 Class error_category non-virtual members
	19.5.1.4 Program defined classes derived from error_category
	19.5.1.5 Error category objects

	19.5.2 Class error_code
	19.5.2.1 Class error_code overview
	19.5.2.2 Class error_code constructors
	19.5.2.3 Class error_code modifiers
	19.5.2.4 Class error_code observers
	19.5.2.5 Class error_code non-member functions

	19.5.3 Class error_condition
	19.5.3.1 Class error_condition overview
	19.5.3.2 Class error_condition constructors
	19.5.3.3 Class error_condition modifiers
	19.5.3.4 Class error_condition observers
	19.5.3.5 Class error_condition non-member functions

	19.5.4 Comparison operators
	19.5.5 Hash support
	19.5.6 Class system_error
	19.5.6.1 Class system_error overview
	19.5.6.2 Class system_error members

	20 General utilities library
	20.1 General
	20.2 Requirements
	20.2.1 Template argument requirements
	20.2.2 Swappable requirements
	20.2.3 NullablePointer requirements
	20.2.4 Hash requirements
	20.2.5 Allocator requirements

	20.3 Utility components
	20.3.1 Operators
	20.3.2 swap
	20.3.3 forward/move helpers
	20.3.4 Function template declval
	20.3.5 Pairs
	20.3.5.1 In general
	20.3.5.2 Class template pair
	20.3.5.3 Tuple-like access to pair
	20.3.5.4 pair range access
	20.3.5.5 Piecewise construction

	20.4 Tuples
	20.4.1 In general
	20.4.2 Class template tuple
	20.4.2.1 Construction
	20.4.2.2 Assignment
	20.4.2.3 swap
	20.4.2.4 Tuple creation functions
	20.4.2.5 Tuple helper classes
	20.4.2.6 Element access
	20.4.2.7 Relational operators
	20.4.2.8 Tuple traits
	20.4.2.9 Tuple specialized algorithms
	20.4.2.10 tuple range access

	20.5 Class template bitset
	20.5.1 bitset constructors
	20.5.2 bitset members
	20.5.3 Hash support
	20.5.4 bitset operators

	20.6 Compile-time rational arithmetic
	20.6.1 Class template ratio
	20.6.2 Arithmetic on ratio types
	20.6.3 Comparison of ratio types
	20.6.4 SI types for ratio

	20.7 Metaprogramming and type traits
	20.7.1 Requirements
	20.7.2 Header <type_traits> synopsis
	20.7.3 Helper classes
	20.7.4 Unary Type Traits
	20.7.4.1 Primary Type Categories
	20.7.4.2 Composite type traits
	20.7.4.3 Type properties

	20.7.5 Relationships between types
	20.7.6 Transformations between types
	20.7.6.1 Const-volatile modifications
	20.7.6.2 Reference modifications
	20.7.6.3 Sign modifications
	20.7.6.4 Array modifications
	20.7.6.5 Pointer modifications
	20.7.6.6 Other transformations

	20.8 Function objects
	20.8.1 Definitions
	20.8.2 Requirements
	20.8.3 Base
	20.8.4 Class template reference_wrapper
	20.8.4.1 reference_wrapper construct/copy/destroy
	20.8.4.2 reference_wrapper assignment
	20.8.4.3 reference_wrapper access
	20.8.4.4 reference_wrapper invocation
	20.8.4.5 reference_wrapper helper functions

	20.8.5 Arithmetic operations
	20.8.6 Comparisons
	20.8.7 Logical operations
	20.8.8 Bitwise operations
	20.8.9 Negators
	20.8.10 Function template bind
	20.8.10.1 Function object binders
	20.8.10.1.1 Class template is_bind_expression
	20.8.10.1.2 Function template bind
	20.8.10.1.3 Placeholders

	20.8.11 Adaptors for pointers to functions
	20.8.12 Adaptors for pointers to members
	20.8.13 Function template mem_fn
	20.8.14 Polymorphic function wrappers
	20.8.14.1 Class bad_function_call
	20.8.14.1.1 bad_function_call constructor

	20.8.14.2 Class template function
	20.8.14.2.1 function construct/copy/destroy
	20.8.14.2.2 function modifiers
	20.8.14.2.3 function capacity
	20.8.14.2.4 function invocation
	20.8.14.2.5 function target access
	20.8.14.2.6 null pointer comparison operators
	20.8.14.2.7 specialized algorithms

	20.8.15 Class template hash

	20.9 Memory
	20.9.1 Allocator argument tag
	20.9.2 uses_allocator
	20.9.2.1 uses_allocator trait
	20.9.2.2 uses-allocator construction

	20.9.3 Pointer traits
	20.9.3.1 Pointer traits member types
	20.9.3.2 Pointer traits member functions

	20.9.4 Allocator traits
	20.9.4.1 Allocator traits member types
	20.9.4.2 Allocator traits static member functions

	20.9.5 The default allocator
	20.9.5.1 allocator members
	20.9.5.2 allocator globals

	20.9.6 Scoped allocator adaptor
	20.9.6.1 Scoped allocator adaptor member types
	20.9.6.2 Scoped allocator adaptor constructors
	20.9.6.3 Scoped allocator adaptor members

	20.9.7 Raw storage iterator
	20.9.8 Temporary buffers
	20.9.9 Specialized algorithms
	20.9.9.1 addressof
	20.9.9.2 uninitialized_copy
	20.9.9.3 uninitialized_fill
	20.9.9.4 uninitialized_fill_n

	20.9.10 Class template unique_ptr
	20.9.10.1 Default deleters
	20.9.10.1.1 In general
	20.9.10.1.2 default_delete
	20.9.10.1.3 default_delete<T[]>

	20.9.10.2 unique_ptr for single objects
	20.9.10.2.1 unique_ptr constructors
	20.9.10.2.2 unique_ptr destructor
	20.9.10.2.3 unique_ptr assignment
	20.9.10.2.4 unique_ptr observers
	20.9.10.2.5 unique_ptr modifiers

	20.9.10.3 unique_ptr for array objects with a runtime length
	20.9.10.3.1 unique_ptr constructors
	20.9.10.3.2 unique_ptr observers
	20.9.10.3.3 unique_ptr modifiers

	20.9.10.4 unique_ptr specialized algorithms

	20.9.11 Smart pointers
	20.9.11.1 Class bad_weak_ptr
	20.9.11.2 Class template shared_ptr
	20.9.11.2.1 shared_ptr constructors
	20.9.11.2.2 shared_ptr destructor
	20.9.11.2.3 shared_ptr assignment
	20.9.11.2.4 shared_ptr modifiers
	20.9.11.2.5 shared_ptr observers
	20.9.11.2.6 shared_ptr creation
	20.9.11.2.7 shared_ptr comparison
	20.9.11.2.8 shared_ptr I/O
	20.9.11.2.9 shared_ptr specialized algorithms
	20.9.11.2.10 shared_ptr casts
	20.9.11.2.11 get_deleter

	20.9.11.3 Class template weak_ptr
	20.9.11.3.1 weak_ptr constructors
	20.9.11.3.2 weak_ptr destructor
	20.9.11.3.3 weak_ptr assignment
	20.9.11.3.4 weak_ptr modifiers
	20.9.11.3.5 weak_ptr observers
	20.9.11.3.6 weak_ptr specialized algorithms
	20.9.11.3.7 Class template owner_less

	20.9.11.4 Class template enable_shared_from_this
	20.9.11.5 shared_ptr atomic access
	20.9.11.6 Hash support

	20.9.12 Pointer safety
	20.9.13 Align
	20.9.14 C Library

	20.10 Time utilities
	20.10.1 Clock requirements
	20.10.2 Time-related traits
	20.10.2.1 treat_as_floating_point
	20.10.2.2 duration_values
	20.10.2.3 Specializations of common_type

	20.10.3 Class template duration
	20.10.3.1 duration constructors
	20.10.3.2 duration observer
	20.10.3.3 duration arithmetic
	20.10.3.4 duration special values
	20.10.3.5 duration non-member arithmetic
	20.10.3.6 duration comparisons
	20.10.3.7 duration_cast

	20.10.4 Class template time_point
	20.10.4.1 time_point constructors
	20.10.4.2 time_point observer
	20.10.4.3 time_point arithmetic
	20.10.4.4 time_point special values
	20.10.4.5 time_point non-member arithmetic
	20.10.4.6 time_point comparisons
	20.10.4.7 time_point_cast

	20.10.5 Clocks
	20.10.5.1 Class system_clock
	20.10.5.2 Class monotonic_clock
	20.10.5.3 Class high_resolution_clock

	20.11 Date and time functions
	20.12 Class type_index
	20.12.1 Header <typeindex> synopsis
	20.12.2 type_index overview
	20.12.3 type_index members
	20.12.4 Hash support

	21 Strings library
	21.1 General
	21.2 Character traits
	21.2.1 Character traits requirements
	21.2.2 traits typedefs
	21.2.3 char_traits specializations
	21.2.3.1 struct char_traits<char>
	21.2.3.2 struct char_traits<char16_t>
	21.2.3.3 struct char_traits<char32_t>
	21.2.3.4 struct char_traits<wchar_t>

	21.3 String classes
	21.4 Class template basic_string
	21.4.1 basic_string general requirements
	21.4.2 basic_string constructors and assigment operators
	21.4.3 basic_string iterator support
	21.4.4 basic_string capacity
	21.4.5 basic_string element access
	21.4.6 basic_string modifiers
	21.4.6.1 basic_string::operator+=
	21.4.6.2 basic_string::append
	21.4.6.3 basic_string::assign
	21.4.6.4 basic_string::insert
	21.4.6.5 basic_string::erase
	21.4.6.6 basic_string::replace
	21.4.6.7 basic_string::copy
	21.4.6.8 basic_string::swap

	21.4.7 basic_string string operations
	21.4.7.1 basic_string accessors
	21.4.7.2 basic_string::find
	21.4.7.3 basic_string::rfind
	21.4.7.4 basic_string::find_first_of
	21.4.7.5 basic_string::find_last_of
	21.4.7.6 basic_string::find_first_not_of
	21.4.7.7 basic_string::find_last_not_of
	21.4.7.8 basic_string::substr
	21.4.7.9 basic_string::compare

	21.4.8 basic_string non-member functions
	21.4.8.1 operator+
	21.4.8.2 operator==
	21.4.8.3 operator!=
	21.4.8.4 operator<
	21.4.8.5 operator>
	21.4.8.6 operator<=
	21.4.8.7 operator>=
	21.4.8.8 swap
	21.4.8.9 Inserters and extractors

	21.5 Numeric Conversions
	21.6 Hash support
	21.7 Null-terminated sequence utilities

	22 Localization library
	22.1 General
	22.2 Header <locale> synopsis
	22.3 Locales
	22.3.1 Class locale
	22.3.1.1 locale types
	22.3.1.1.1 Type locale::category
	22.3.1.1.2 Class locale::facet
	22.3.1.1.3 Class locale::id

	22.3.1.2 locale constructors and destructor
	22.3.1.3 locale members
	22.3.1.4 locale operators
	22.3.1.5 locale static members

	22.3.2 locale globals
	22.3.3 Convenience interfaces
	22.3.3.1 Character classification
	22.3.3.2 Conversions
	22.3.3.2.1 Character conversions
	22.3.3.2.2 string conversions
	22.3.3.2.3 Buffer conversions

	22.4 Standard locale categories
	22.4.1 The ctype category
	22.4.1.1 Class template ctype
	22.4.1.1.1 ctype members
	22.4.1.1.2 ctype virtual functions

	22.4.1.2 Class template ctype_byname
	22.4.1.3 ctype specializations
	22.4.1.3.1 ctype<char> destructor
	22.4.1.3.2 ctype<char> members
	22.4.1.3.3 ctype<char> static members
	22.4.1.3.4 ctype<char> virtual functions

	22.4.1.4 Class template codecvt
	22.4.1.4.1 codecvt members
	22.4.1.4.2 codecvt virtual functions

	22.4.1.5 Class template codecvt_byname

	22.4.2 The numeric category
	22.4.2.1 Class template num_get
	22.4.2.1.1 num_get members
	22.4.2.1.2 num_get virtual functions

	22.4.2.2 Class template num_put
	22.4.2.2.1 num_put members
	22.4.2.2.2 num_put virtual functions

	22.4.3 The numeric punctuation facet
	22.4.3.1 Class template numpunct
	22.4.3.1.1 numpunct members
	22.4.3.1.2 numpunct virtual functions

	22.4.3.2 Class template numpunct_byname

	22.4.4 The collate category
	22.4.4.1 Class template collate
	22.4.4.1.1 collate members
	22.4.4.1.2 collate virtual functions

	22.4.4.2 Class template collate_byname

	22.4.5 The time category
	22.4.5.1 Class template time_get
	22.4.5.1.1 time_get members
	22.4.5.1.2 time_get virtual functions

	22.4.5.2 Class template time_get_byname
	22.4.5.3 Class template time_put
	22.4.5.3.1 time_put members
	22.4.5.3.2 time_put virtual functions

	22.4.5.4 Class template time_put_byname

	22.4.6 The monetary category
	22.4.6.1 Class template money_get
	22.4.6.1.1 money_get members
	22.4.6.1.2 money_get virtual functions

	22.4.6.2 Class template money_put
	22.4.6.2.1 money_put members
	22.4.6.2.2 money_put virtual functions

	22.4.6.3 Class template moneypunct
	22.4.6.3.1 moneypunct members
	22.4.6.3.2 moneypunct virtual functions

	22.4.6.4 Class template moneypunct_byname

	22.4.7 The message retrieval category
	22.4.7.1 Class template messages
	22.4.7.1.1 messages members
	22.4.7.1.2 messages virtual functions

	22.4.7.2 Class template messages_byname

	22.4.8 Program-defined facets

	22.5 Standard code conversion facets
	22.6 C Library Locales

	23 Containers library
	23.1 General
	23.2 Container requirements
	23.2.1 General container requirements
	23.2.2 Container data races
	23.2.3 Sequence containers
	23.2.4 Associative containers
	23.2.4.1 Exception safety guarantees

	23.2.5 Unordered associative containers
	23.2.5.1 Exception safety guarantees

	23.3 Sequence containers
	23.3.1 Class template array
	23.3.1.1 array constructors, copy, and assignment
	23.3.1.2 array specialized algorithms
	23.3.1.3 array::size
	23.3.1.4 array::data
	23.3.1.5 array::fill
	23.3.1.6 array::swap
	23.3.1.7 Zero sized arrays
	23.3.1.8 Tuple interface to class template array

	23.3.2 Class template deque
	23.3.2.1 deque constructors, copy, and assignment
	23.3.2.2 deque capacity
	23.3.2.3 deque modifiers
	23.3.2.4 deque specialized algorithms

	23.3.3 Class template forward_list
	23.3.3.1 forward_list constructors, copy, assignment
	23.3.3.2 forward_list iterators
	23.3.3.3 forward_list element access
	23.3.3.4 forward_list modifiers
	23.3.3.5 forward_list operations
	23.3.3.6 forward_list specialized algorithms

	23.3.4 Class template list
	23.3.4.1 list constructors, copy, and assignment
	23.3.4.2 list capacity
	23.3.4.3 list modifiers
	23.3.4.4 list operations
	23.3.4.5 list specialized algorithms

	23.3.5 Container adaptors
	23.3.5.1 Class template queue
	23.3.5.1.1 queue definition
	23.3.5.1.2 queue constructors
	23.3.5.1.3 queue constructors with allocators
	23.3.5.1.4 queue operators
	23.3.5.1.5 queue specialized algorithms

	23.3.5.2 Class template priority_queue
	23.3.5.2.1 priority_queue constructors
	23.3.5.2.2 priority_queue constructors with allocators
	23.3.5.2.3 priority_queue members
	23.3.5.2.4 priority_queue specialized algorithms

	23.3.5.3 Class template stack
	23.3.5.3.1 stack definition
	23.3.5.3.2 stack constructors
	23.3.5.3.3 stack constructors with allocators
	23.3.5.3.4 stack operators
	23.3.5.3.5 stack specialized algorithms

	23.3.6 Class template vector
	23.3.6.1 vector constructors, copy, and assignment
	23.3.6.2 vector capacity
	23.3.6.3 vector data
	23.3.6.4 vector modifiers
	23.3.6.5 vector specialized algorithms

	23.3.7 Class vector<bool>

	23.4 Associative containers
	23.4.1 Class template map
	23.4.1.1 map constructors, copy, and assignment
	23.4.1.2 map element access
	23.4.1.3 map modifiers
	23.4.1.4 map operations
	23.4.1.5 map specialized algorithms

	23.4.2 Class template multimap
	23.4.2.1 multimap constructors
	23.4.2.2 multimap modifiers
	23.4.2.3 multimap operations
	23.4.2.4 multimap specialized algorithms

	23.4.3 Class template set
	23.4.3.1 set constructors, copy, and assignment
	23.4.3.2 set specialized algorithms

	23.4.4 Class template multiset
	23.4.4.1 multiset constructors
	23.4.4.2 multiset specialized algorithms

	23.5 Unordered associative containers
	23.5.1 Class template unordered_map
	23.5.1.1 unordered_map constructors
	23.5.1.2 unordered_map element access
	23.5.1.3 unordered_map modifiers
	23.5.1.4 unordered_map swap

	23.5.2 Class template unordered_multimap
	23.5.2.1 unordered_multimap constructors
	23.5.2.2 unordered_multimap modifiers
	23.5.2.3 unordered_multimap swap

	23.5.3 Class template unordered_set
	23.5.3.1 unordered_set constructors
	23.5.3.2 unordered_set swap

	23.5.4 Class template unordered_multiset
	23.5.4.1 unordered_multiset constructors
	23.5.4.2 unordered_multiset swap

	24 Iterators library
	24.1 General
	24.2 Iterator requirements
	24.2.1 In general
	24.2.2 Iterator
	24.2.3 Input iterators
	24.2.4 Output iterators
	24.2.5 Forward iterators
	24.2.6 Bidirectional iterators
	24.2.7 Random access iterators

	24.3 Header <iterator> synopsis
	24.4 Iterator primitives
	24.4.1 Iterator traits
	24.4.2 Basic iterator
	24.4.3 Standard iterator tags
	24.4.4 Iterator operations

	24.5 Iterator adaptors
	24.5.1 Reverse iterators
	24.5.1.1 Class template reverse_iterator
	24.5.1.2 reverse_iterator requirements
	24.5.1.3 reverse_iterator operations
	24.5.1.3.1 reverse_iterator constructor
	24.5.1.3.2 reverse_iterator::operator=
	24.5.1.3.3 Conversion
	24.5.1.3.4 operator*
	24.5.1.3.5 operator->
	24.5.1.3.6 operator++
	24.5.1.3.7 operator--
	24.5.1.3.8 operator+
	24.5.1.3.9 operator+=
	24.5.1.3.10 operator-
	24.5.1.3.11 operator-=
	24.5.1.3.12 operator[]
	24.5.1.3.13 operator==
	24.5.1.3.14 operator<
	24.5.1.3.15 operator!=
	24.5.1.3.16 operator>
	24.5.1.3.17 operator>=
	24.5.1.3.18 operator<=
	24.5.1.3.19 operator-
	24.5.1.3.20 operator+

	24.5.2 Insert iterators
	24.5.2.1 Class template back_insert_iterator
	24.5.2.2 back_insert_iterator operations
	24.5.2.2.1 back_insert_iterator constructor
	24.5.2.2.2 back_insert_iterator::operator=
	24.5.2.2.3 back_insert_iterator::operator*
	24.5.2.2.4 back_insert_iterator::operator++
	24.5.2.2.5 back_inserter

	24.5.2.3 Class template front_insert_iterator
	24.5.2.4 front_insert_iterator operations
	24.5.2.4.1 front_insert_iterator constructor
	24.5.2.4.2 front_insert_iterator::operator=
	24.5.2.4.3 front_insert_iterator::operator*
	24.5.2.4.4 front_insert_iterator::operator++
	24.5.2.4.5 front_inserter

	24.5.2.5 Class template insert_iterator
	24.5.2.6 insert_iterator operations
	24.5.2.6.1 insert_iterator constructor
	24.5.2.6.2 insert_iterator::operator=
	24.5.2.6.3 insert_iterator::operator*
	24.5.2.6.4 insert_iterator::operator++
	24.5.2.6.5 inserter

	24.5.3 Move iterators
	24.5.3.1 Class template move_iterator
	24.5.3.2 move_iterator requirements
	24.5.3.3 move_iterator operations
	24.5.3.3.1 move_iterator constructors
	24.5.3.3.2 move_iterator::operator=
	24.5.3.3.3 move_iterator conversion
	24.5.3.3.4 move_iterator::operator*
	24.5.3.3.5 move_iterator::operator->
	24.5.3.3.6 move_iterator::operator++
	24.5.3.3.7 move_iterator::operator--
	24.5.3.3.8 move_iterator::operator+
	24.5.3.3.9 move_iterator::operator+=
	24.5.3.3.10 move_iterator::operator-
	24.5.3.3.11 move_iterator::operator-=
	24.5.3.3.12 move_iterator::operator[]
	24.5.3.3.13 move_iterator comparisons
	24.5.3.3.14 move_iterator non-member functions

	24.6 Stream iterators
	24.6.1 Class template istream_iterator
	24.6.1.1 istream_iterator constructors and destructor
	24.6.1.2 istream_iterator operations

	24.6.2 Class template ostream_iterator
	24.6.2.1 ostream_iterator constructors and destructor
	24.6.2.2 ostream_iterator operations

	24.6.3 Class template istreambuf_iterator
	24.6.3.1 Class template istreambuf_iterator::proxy
	24.6.3.2 istreambuf_iterator constructors
	24.6.3.3 istreambuf_iterator::operator*
	24.6.3.4 istreambuf_iterator::operator++
	24.6.3.5 istreambuf_iterator::equal
	24.6.3.6 operator==
	24.6.3.7 operator!=

	24.6.4 Class template ostreambuf_iterator
	24.6.4.1 ostreambuf_iterator constructors
	24.6.4.2 ostreambuf_iterator operations

	24.6.5 range access

	25 Algorithms library
	25.1 General
	25.2 Non-modifying sequence operations
	25.2.1 All of
	25.2.2 Any of
	25.2.3 None of
	25.2.4 For each
	25.2.5 Find
	25.2.6 Find End
	25.2.7 Find First
	25.2.8 Adjacent find
	25.2.9 Count
	25.2.10 Mismatch
	25.2.11 Equal
	25.2.12 Is permutation
	25.2.13 Search

	25.3 Mutating sequence operations
	25.3.1 Copy
	25.3.2 Move
	25.3.3 swap
	25.3.4 Transform
	25.3.5 Replace
	25.3.6 Fill
	25.3.7 Generate
	25.3.8 Remove
	25.3.9 Unique
	25.3.10 Reverse
	25.3.11 Rotate
	25.3.12 Random shuffle
	25.3.13 Partitions

	25.4 Sorting and related operations
	25.4.1 Sorting
	25.4.1.1 sort
	25.4.1.2 stable_sort
	25.4.1.3 partial_sort
	25.4.1.4 partial_sort_copy
	25.4.1.5 is_sorted

	25.4.2 Nth element
	25.4.3 Binary search
	25.4.3.1 lower_bound
	25.4.3.2 upper_bound
	25.4.3.3 equal_range
	25.4.3.4 binary_search

	25.4.4 Merge
	25.4.5 Set operations on sorted structures
	25.4.5.1 includes
	25.4.5.2 set_union
	25.4.5.3 set_intersection
	25.4.5.4 set_difference
	25.4.5.5 set_symmetric_difference

	25.4.6 Heap operations
	25.4.6.1 push_heap
	25.4.6.2 pop_heap
	25.4.6.3 make_heap
	25.4.6.4 sort_heap
	25.4.6.5 is_heap

	25.4.7 Minimum and maximum
	25.4.8 Lexicographical comparison
	25.4.9 Permutation generators

	25.5 C library algorithms

	26 Numerics library
	26.1 General
	26.2 Numeric type requirements
	26.3 The floating-point environment
	26.3.1 Header <cfenv> synopsis

	26.4 Complex numbers
	26.4.1 Header <complex> synopsis
	26.4.2 Class template complex
	26.4.3 complex specializations
	26.4.4 complex member functions
	26.4.5 complex member operators
	26.4.6 complex non-member operations
	26.4.7 complex value operations
	26.4.8 complex transcendentals
	26.4.9 Additional Overloads
	26.4.10 Header <ccomplex>

	26.5 Random number generation
	26.5.1 Requirements
	26.5.1.1 General requirements
	26.5.1.2 Seed sequence requirements
	26.5.1.3 Uniform random number generator requirements
	26.5.1.4 Random number engine requirements
	26.5.1.5 Random number engine adaptor requirements
	26.5.1.6 Random number distribution requirements

	26.5.2 Header <random> synopsis
	26.5.3 Random number engine class templates
	26.5.3.1 Class template linear_congruential_engine
	26.5.3.2 Class template mersenne_twister_engine
	26.5.3.3 Class template subtract_with_carry_engine

	26.5.4 Random number engine adaptor class templates
	26.5.4.1 Class template discard_block_engine
	26.5.4.2 Class template independent_bits_engine
	26.5.4.3 Class template shuffle_order_engine

	26.5.5 Engines and engine adaptors with predefined parameters
	26.5.6 Class random_device
	26.5.7 Utilities
	26.5.7.1 Class seed_seq
	26.5.7.2 Function template generate_canonical

	26.5.8 Random number distribution class templates
	26.5.8.1 Uniform distributions
	26.5.8.1.1 Class template uniform_int_distribution
	26.5.8.1.2 Class template uniform_real_distribution

	26.5.8.2 Bernoulli distributions
	26.5.8.2.1 Class bernoulli_distribution
	26.5.8.2.2 Class template binomial_distribution
	26.5.8.2.3 Class template geometric_distribution
	26.5.8.2.4 Class template negative_binomial_distribution

	26.5.8.3 Poisson distributions
	26.5.8.3.1 Class template poisson_distribution
	26.5.8.3.2 Class template exponential_distribution
	26.5.8.3.3 Class template gamma_distribution
	26.5.8.3.4 Class template weibull_distribution
	26.5.8.3.5 Class template extreme_value_distribution

	26.5.8.4 Normal distributions
	26.5.8.4.1 Class template normal_distribution
	26.5.8.4.2 Class template lognormal_distribution
	26.5.8.4.3 Class template chi_squared_distribution
	26.5.8.4.4 Class template cauchy_distribution
	26.5.8.4.5 Class template fisher_f_distribution
	26.5.8.4.6 Class template student_t_distribution

	26.5.8.5 Sampling distributions
	26.5.8.5.1 Class template discrete_distribution
	26.5.8.5.2 Class template piecewise_constant_distribution
	26.5.8.5.3 Class template piecewise_linear_distribution

	26.6 Numeric arrays
	26.6.1 Header <valarray> synopsis
	26.6.2 Class template valarray
	26.6.2.1 valarray constructors
	26.6.2.2 valarray assignment
	26.6.2.3 valarray element access
	26.6.2.4 valarray subset operations
	26.6.2.5 valarray unary operators
	26.6.2.6 valarray computed assignment
	26.6.2.7 valarray member functions

	26.6.3 valarray non-member operations
	26.6.3.1 valarray binary operators
	26.6.3.2 valarray logical operators
	26.6.3.3 valarray transcendentals
	26.6.3.4 valarray specialized algorithms

	26.6.4 Class slice
	26.6.4.1 slice constructors
	26.6.4.2 slice access functions

	26.6.5 Class template slice_array
	26.6.5.1 slice_array assignment
	26.6.5.2 slice_array computed assignment
	26.6.5.3 slice_array fill function

	26.6.6 The gslice class
	26.6.6.1 gslice constructors
	26.6.6.2 gslice access functions

	26.6.7 Class template gslice_array
	26.6.7.1 gslice_array assignment
	26.6.7.2 gslice_array
	26.6.7.3 gslice_array fill function

	26.6.8 Class template mask_array
	26.6.8.1 mask_array assignment
	26.6.8.2 mask_array computed assignment
	26.6.8.3 mask_array fill function

	26.6.9 Class template indirect_array
	26.6.9.1 indirect_array assignment
	26.6.9.2 indirect_array computed assignment
	26.6.9.3 indirect_array fill function

	26.6.10 valarray range access

	26.7 Generalized numeric operations
	26.7.1 Accumulate
	26.7.2 Inner product
	26.7.3 Partial sum
	26.7.4 Adjacent difference
	26.7.5 Iota

	26.8 C Library

	27 Input/output library
	27.1 General
	27.2 Iostreams requirements
	27.2.1 Imbue Limitations
	27.2.2 Positioning Type Limitations
	27.2.3 Thread safety

	27.3 Forward declarations
	27.4 Standard iostream objects
	27.4.1 Narrow stream objects
	27.4.2 Wide stream objects

	27.5 Iostreams base classes
	27.5.1 Types
	27.5.2 Class ios_base
	27.5.2.1 Types
	27.5.2.1.1 Class ios_base::failure
	27.5.2.1.2 Type ios_base::fmtflags
	27.5.2.1.3 Type ios_base::iostate
	27.5.2.1.4 Type ios_base::openmode
	27.5.2.1.5 Type ios_base::seekdir
	27.5.2.1.6 Class ios_base::Init

	27.5.2.2 ios_base state functions
	27.5.2.3 ios_base functions
	27.5.2.4 ios_base static members
	27.5.2.5 ios_base storage functions
	27.5.2.6 ios_base callbacks
	27.5.2.7 ios_base constructors/destructor

	27.5.3 Class template fpos
	27.5.3.1 fpos Members
	27.5.3.2 fpos requirements

	27.5.4 Class template basic_ios
	27.5.4.1 basic_ios constructors
	27.5.4.2 Member functions
	27.5.4.3 basic_ios flags functions

	27.5.5 ios_base manipulators
	27.5.5.1 fmtflags manipulators
	27.5.5.2 adjustfield manipulators
	27.5.5.3 basefield manipulators
	27.5.5.4 floatfield manipulators
	27.5.5.5 Error reporting

	27.6 Stream buffers
	27.6.1 Stream buffer requirements
	27.6.2 Class template basic_streambuf<charT,traits>
	27.6.2.1 basic_streambuf constructors
	27.6.2.2 basic_streambuf public member functions
	27.6.2.2.1 Locales
	27.6.2.2.2 Buffer management and positioning
	27.6.2.2.3 Get area
	27.6.2.2.4 Putback
	27.6.2.2.5 Put area

	27.6.2.3 basic_streambuf protected member functions
	27.6.2.3.1 Assignment
	27.6.2.3.2 Get area access
	27.6.2.3.3 Put area access

	27.6.2.4 basic_streambuf virtual functions
	27.6.2.4.1 Locales
	27.6.2.4.2 Buffer management and positioning
	27.6.2.4.3 Get area
	27.6.2.4.4 Putback
	27.6.2.4.5 Put area

	27.7 Formatting and manipulators
	27.7.1 Input streams
	27.7.1.1 Class template basic_istream
	27.7.1.1.1 basic_istream constructors
	27.7.1.1.2 Class basic_istream assign and swap
	27.7.1.1.3 Class basic_istream::sentry

	27.7.1.2 Formatted input functions
	27.7.1.2.1 Common requirements
	27.7.1.2.2 Arithmetic Extractors
	27.7.1.2.3 basic_istream::operator>>

	27.7.1.3 Unformatted input functions
	27.7.1.4 Standard basic_istream manipulators
	27.7.1.5 Class template basic_iostream
	27.7.1.5.1 basic_iostream constructors
	27.7.1.5.2 basic_iostream destructor
	27.7.1.5.3 basic_iostream assign and swap

	27.7.1.6 Rvalue stream extraction

	27.7.2 Output streams
	27.7.2.1 Class template basic_ostream
	27.7.2.2 basic_ostream constructors
	27.7.2.3 Class basic_ostream assign and swap
	27.7.2.4 Class basic_ostream::sentry
	27.7.2.5 basic_ostream seek members
	27.7.2.6 Formatted output functions
	27.7.2.6.1 Common requirements
	27.7.2.6.2 Arithmetic Inserters
	27.7.2.6.3 basic_ostream::operator<<
	27.7.2.6.4 Character inserter function templates

	27.7.2.7 Unformatted output functions
	27.7.2.8 Standard basic_ostream manipulators
	27.7.2.9 Rvalue stream insertion

	27.7.3 Standard manipulators
	27.7.4 Extended Manipulators

	27.8 String-based streams
	27.8.1 Class template basic_stringbuf
	27.8.1.1 basic_stringbuf constructors
	27.8.1.2 Assign and swap
	27.8.1.3 Member functions
	27.8.1.4 Overridden virtual functions

	27.8.2 Class template basic_istringstream
	27.8.2.1 basic_istringstream constructors
	27.8.2.2 Assign and swap
	27.8.2.3 Member functions

	27.8.3 Class template basic_ostringstream
	27.8.3.1 basic_ostringstream constructors
	27.8.3.2 Assign and swap
	27.8.3.3 Member functions

	27.8.4 Class template basic_stringstream
	27.8.5 basic_stringstream constructors
	27.8.5.1 Assign and swap

	27.8.6 Member functions

	27.9 File-based streams
	27.9.1 File streams
	27.9.1.1 Class template basic_filebuf
	27.9.1.2 basic_filebuf constructors
	27.9.1.3 Assign and swap
	27.9.1.4 Member functions
	27.9.1.5 Overridden virtual functions
	27.9.1.6 Class template basic_ifstream
	27.9.1.7 basic_ifstream constructors
	27.9.1.8 Assign and swap
	27.9.1.9 Member functions
	27.9.1.10 Class template basic_ofstream
	27.9.1.11 basic_ofstream constructors
	27.9.1.12 Assign and swap
	27.9.1.13 Member functions
	27.9.1.14 Class template basic_fstream
	27.9.1.15 basic_fstream constructors
	27.9.1.16 Assign and swap
	27.9.1.17 Member functions

	27.9.2 C Library files

	28 Regular expressions library
	28.1 General
	28.2 Definitions
	28.3 Requirements
	28.4 Header <regex> synopsis
	28.5 Namespace std::regex_constants
	28.5.1 Bitmask Type syntax_option_type
	28.5.2 Bitmask Type regex_constants::match_flag_type
	28.5.3 Implementation-defined error_type

	28.6 Class regex_error
	28.7 Class template regex_traits
	28.8 Class template basic_regex
	28.8.1 basic_regex constants
	28.8.2 basic_regex constructors
	28.8.3 basic_regex assign
	28.8.4 basic_regex constant operations
	28.8.5 basic_regex locale
	28.8.6 basic_regex swap
	28.8.7 basic_regex non-member functions
	28.8.7.1 basic_regex non-member swap

	28.9 Class template sub_match
	28.9.1 sub_match members
	28.9.2 sub_match non-member operators

	28.10 Class template match_results
	28.10.1 match_results constructors
	28.10.2 match_results size
	28.10.3 match_results element access
	28.10.4 match_results formatting
	28.10.5 match_results allocator
	28.10.6 match_results swap
	28.10.7 match-results non-member functions

	28.11 Regular expression algorithms
	28.11.1 exceptions
	28.11.2 regex_match
	28.11.3 regex_search
	28.11.4 regex_replace

	28.12 Regular expression Iterators
	28.12.1 Class template regex_iterator
	28.12.1.1 regex_iterator constructors
	28.12.1.2 regex_iterator comparisons
	28.12.1.3 regex_iterator dereference
	28.12.1.4 regex_iterator increment

	28.12.2 Class template regex_token_iterator
	28.12.2.1 regex_token_iterator constructors
	28.12.2.2 regex_token_iterator comparisons
	28.12.2.3 regex_token_iterator dereference
	28.12.2.4 regex_token_iterator increment

	28.13 Modified ECMAScript regular expression grammar

	29 Atomic operations library
	29.1 General
	29.2 Header <atomic> synopsis
	29.3 Order and Consistency
	29.4 Lock-free Property
	29.5 Atomic Types
	29.5.1 Integral Types
	29.5.2 Address Type
	29.5.3 Generic Types

	29.6 Operations on Atomic Types
	29.7 Flag Type and Operations
	29.8 Fences

	30 Thread support library
	30.1 General
	30.2 Requirements
	30.2.1 Template parameter names
	30.2.2 Exceptions
	30.2.3 Native handles
	30.2.4 Timing specifications

	30.3 Threads
	30.3.1 Class thread
	30.3.1.1 Class thread::id
	30.3.1.2 thread constructors
	30.3.1.3 thread destructor
	30.3.1.4 thread assignment
	30.3.1.5 thread members
	30.3.1.6 thread static members
	30.3.1.7 thread specialized algorithms

	30.3.2 Namespace this_thread

	30.4 Mutual exclusion
	30.4.1 Mutex requirements
	30.4.1.1 Class mutex
	30.4.1.2 Class recursive_mutex

	30.4.2 TimedMutex requirements
	30.4.2.1 Class timed_mutex
	30.4.2.2 Class recursive_timed_mutex

	30.4.3 Locks
	30.4.3.1 Class template lock_guard
	30.4.3.2 Class template unique_lock
	30.4.3.2.1 unique_lock constructors, destructor, and assignment
	30.4.3.2.2 unique_lock locking
	30.4.3.2.3 unique_lock modifiers
	30.4.3.2.4 unique_lock observers

	30.4.4 Generic locking algorithms
	30.4.5 Call once
	30.4.5.1 Struct once_flag
	30.4.5.2 Function call_once

	30.5 Condition variables
	30.5.1 Class condition_variable
	30.5.2 Class condition_variable_any

	30.6 Futures
	30.6.1 Overview
	30.6.2 Error handling
	30.6.3 Class future_error
	30.6.4 Associated asynchronous state
	30.6.5 Class template promise
	30.6.6 Class template future
	30.6.7 Class template shared_future
	30.6.8 Class template atomic_future
	30.6.9 Function template async
	30.6.10 Class template packaged_task
	30.6.10.1 packaged_task member functions
	30.6.10.2 packaged_task globals

	A Grammar summary
	A.1 Keywords
	A.2 Lexical conventions
	A.3 Basic concepts
	A.4 Expressions
	A.5 Statements
	A.6 Declarations
	A.7 Declarators
	A.8 Classes
	A.9 Derived classes
	A.10 Special member functions
	A.11 Overloading
	A.12 Templates
	A.13 Exception handling
	A.14 Preprocessing directives

	B Implementation quantities
	C Compatibility
	C.1 C++ and ISO C
	C.1.1 Clause 2: lexical conventions
	C.1.2 Clause 3: basic concepts
	C.1.3 Clause 5: expressions
	C.1.4 Clause 6: statements
	C.1.5 Clause 7: declarations
	C.1.6 Clause 8: declarators
	C.1.7 Clause 9: classes
	C.1.8 Clause 12: special member functions
	C.1.9 Clause 16: preprocessing directives

	C.2 Standard C library
	C.2.1 Modifications to headers
	C.2.2 Modifications to definitions
	C.2.2.1 Types char16_t and char32_t
	C.2.2.2 Type wchar_t
	C.2.2.3 Header <iso646.h>
	C.2.2.4 Macro NULL

	C.2.3 Modifications to declarations
	C.2.4 Modifications to behavior
	C.2.4.1 Macro offsetof(type,member-designator)
	C.2.4.2 Memory allocation functions

	D Compatibility features
	D.1 Increment operator with bool operand
	D.2 static keyword
	D.3 Access declarations
	D.4 register keyword
	D.5 Dynamic exception specifications
	D.6 C standard library headers
	D.7 Old iostreams members
	D.8 char* streams
	D.8.1 Class strstreambuf
	D.8.1.1 strstreambuf constructors
	D.8.1.2 Member functions
	D.8.1.3 strstreambuf overridden virtual functions

	D.8.2 Class istrstream
	D.8.2.1 istrstream constructors
	D.8.2.2 Member functions

	D.8.3 Class ostrstream
	D.8.3.1 ostrstream constructors
	D.8.3.2 Member functions

	D.8.4 Class strstream
	D.8.4.1 strstream constructors
	D.8.4.2 strstream destructor
	D.8.4.3 strstream operations

	D.9 Binders
	D.9.1 Class template binder1st
	D.9.2 bind1st
	D.9.3 Class template binder2nd
	D.9.4 bind2nd

	D.10 auto_ptr
	D.10.1 Class template auto_ptr
	D.10.1.1 auto_ptr constructors
	D.10.1.2 auto_ptr members
	D.10.1.3 auto_ptr conversions

	E Cross references
	Index
	Index of Grammar Productions
	Index of Library Names
	Index of Implementation Defined Behavior

