
N3235=11-0005: Generalized pointer casts Page 1 of 10

Doc No: N3235=11-0005

Date: 2011-02-23

Authors: Pablo Halpern

 Intel Corp..

 phalpern@halpernwightsoftware.com

Generalized pointer casts

Contents

National Body Comments and Issues ... 1

Document Conventions .. 1

Background ... 2

Argument against NAD future for LWG 1289 .. 3

Summary of Proposed Changes .. 4

Implementation Experience .. 5

Proposed Wording ... 5

Additional Proposal: Requiring const_pointer_cast ... 9

Proposed wording ... 9

Acknowledgements ... 10

References ... 10

National Body Comments and Issues

This paper proposes a new resolution for LWG issue 1289, which is part of NB comment US 2

to the July, 2010 FCD. It is also tangentially related to US 88.

Document Conventions

All section names and numbers are relative to the November 2010 WP, N3225.

Existing working paper text is indented and shown in dark blue. Edits to the working paper are shown with red

strikeouts for deleted text and green underlining for inserted text within the indented blue original text.

Comments and rationale mixed in with the proposed wording appears as shaded text.

Requests for LWG opinions and guidance appear with light (yellow) shading. It is expected

that changes resulting from such guidance will be minor and will not delay acceptance of this

proposal in the same meeting at which it is presented.

mailto:phalpern@halpernwightsoftware.com
http://lwg.github.com/issues/lwg-closed.html#1289
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2010/n3225.pdf

N3235=11-0005: Generalized pointer casts Page 2 of 10

Background

In Table 44 – Allocator requirements in [allocator.requirements] (section 20.2.5), of the current

WP, the following conversion is required between void_pointer and pointer:

Table 44 – Allocator requirements

Expression Return Type Assertion/note

pre-/post-condition

Defaul

t
static_cast<X::pointer>(w) X::pointer static_cast<X::pointer>(w) == p

This requirement means that a pointer-like type must provide an explicit conversion

constructor such that a pointer-to-void can be used to construct a pointer-to-T. LWG 1289

observes that “this explicit conversion weakens the safety of a smart pointer since the

following expression (invalid for raw pointers) would become valid:

smart_ptr<void> smart_v = ...;

smart_ptr<T> smart_t(smart_v);

.” In fact, it is quite difficult to build a pointer-like class that has both of the following two

desirable properties yet still meets the requirements of an allocator pointer:

1. Implicit conversion from pointer-to-derived to pointer-to-base or from pointer-to-T to

pointer-to-void.

2. Explicit conversion from pointer-to-base to pointer-to-derived or from pointer-to-void to

pointer-to-T.

An implicit conversion constructor is required for the first property. Conversely, an

explicit conversion constructor is desirable for the second property, if static_cast is to

used for those conversions. The two conversion constructors would need to coexist, using

SFINAE tricks to create non-overlapping overload sets. LWG 1289 recommends a cleaner

solution: that the standard provide a static_pointer_cast function template as a user

customization point instead of requiring the use of static_cast directly. The proposed

resolution would use the same syntax for static_pointer_cast as currently exists for

shared_ptr. See http://lwg.github.com/issues/lwg-closed.html#1289 for details.

LWG issue 1289 was moved to NAD Future at the October 2010 meeting in Batavia. At the

time, it was seen as a good idea, but not essential for completing the standard. It was seen as a

feature that could be added in the next round of standardization.

In this paper, I argue that this feature cannot easily be added to a later revision of the standard

and that, therefore, it should be standardized in this round. The proposed wording in this

paper differs from that in LWG 1289, but is conceptually similar and was developed in

consultation with the author of LWG 1289, Ion Gaztañaga.

http://lwg.github.com/issues/lwg-closed.html#1289

N3235=11-0005: Generalized pointer casts Page 3 of 10

Argument against NAD future for LWG 1289

If the current static_cast requirement is changed to a static_pointer_cast in a future

standard, it will create the same kind of breakage as was described in US 88. To recap in

general terms the problem described in US 88: When a requirement is weakened, then any

generic code written against the stronger requirement may fail to compile with a new type that

does not conform to the older (stricter) requirement. In this case, code written to use

static_cast with pointer-like types would not work with a pointer type that did not

provide the necessary conversion constructor, even if such a pointer type meets the new

requirement of a static_pointer_cast function. Although a standard-library

implementation of static_pointer_cast that defers to static_cast would allow older

pointer types to work with new container implementations, it would do nothing to allow the

reverse.

Because of several mitigating factors, US 88 was closed as NAD. The problem described in

LWG 1289, however, does not benefit from most of the mitigating factors that applied to US

88. Specifically:

1. Mitigating Factor for US 88: Because of various handicaps built into the C++03

definition of allocators, there are very few user-defined containers that currently

depend on the full Allocator requirements.

Does not apply to LWG 1289 because: We hope that the changes made in the allocator

model in C++0x will make Allocators more popular, invalidating this argument in a few

years.

2. Mitigating Factor for US 88: It is easy to create an adaptor that allows a C++0x-

complaiant allocator to work with a container written to the C++0x specification.

Does not apply to LWG 1289 because: Although it might be possible to create an

adaptor for a pointer-like type, a related adaptor would also need to be created for the

allocator type that uses it. This dual-adaptor idiom would not meet reasonable criteria

for being considered easy.

3. Mitigating Factor for US 88: Adding extra members to an allocator so that it meets the

requirements of both C++03 and C++0x does not create problems.

Does not apply to LWG 1289 because: As described above, the conversion constructor

needed to satisfy the current requirements is not just inconvenient, but undesirable; thus

users would be discouraged from creating robust pointer-like types if they want to

remain compatible with both C++0x and a future standard that supported

static_pointer_cast. This factor is probably the most problematic aspect of the

issue.

4. Mitigating Factor for US 88: The “fix” to US 88 would do damage to the simplicity of

the C++0x allocator model.

N3235=11-0005: Generalized pointer casts Page 4 of 10

Does not apply to LWG 1289 because: The fix to LWG 1289 described in this proposal

is not onerous or disruptive to the allocator model. It is, in fact, very much in keeping

with the philosophy of using traits classes (allocator_traits and

pointer_traits) as adaptation points.

I assert that the absence of cast functions in pointer_traits was an oversight and is a

defect; they belong there as a way to maintain flexibility for the future.

Summary of Proposed Changes

This proposal uses a slightly different approach than the proposed resolution in LWG 1289.

LWG 1289 would replace static_cast<X::pointer>(w) with a customizable (via ADL)

static_pointer_cast<X::value_type>(w). Instead of using ADL, this paper proposes

that the customization be made by adding a static_pointer_cast member to

pointer_traits. For convenience, a namespace-scoped std::static_pointer_cast

calls the version in pointer_traits. I.e.,

namespace std {

 template <class Ptr>

 struct pointer_traits {

 ...

 template <class U>

 static rebind<U> static_pointer_cast(const Ptr& p);

 };

 template <class T, class Ptr>

 auto static_pointer_cast(Ptr&& p) -> typename

 pointer_traits<typename std::decay<Ptr>::type>::template rebind<T>

 {

 return pointer_traits<typename std::decay<Ptr>::type>::

 static_pointer_cast<T>(std::forward<Ptr>(p));

 }

}

This approach has several advantages over the ADL mechanism:

 It centralizes all pointer-related customizations in the pointer_traits class.

 It prevents ADL-related issues such as those potential ambiguities plaguing the

begin() and end() namespace-scoped functions.

 It avoids requiring a “using std::static_pointer_cast;” declaration at every

use. (I have found this to be a nuisance with swap.)

For symmetry, we also add const_pointer_cast and dynamic_pointer_cast. Note

that a particular specialization of pointer_traits need not supply all three casts. Only

static_pointer_cast from void_pointer is required for an allocator’s pointer type.

(An additional proposal at the end of this paper would add const_pointer_cast to the list

of requirements.)

N3235=11-0005: Generalized pointer casts Page 5 of 10

For consistency, a pointer_traits structure was added for shared_ptr. The

shared_ptr casts have been replaced with the corresponding generic templates, but no

change in syntax or semantics should result.

Implementation Experience

Implementing the facilities described in this proposal is quite simple. A full implementation of

pointer_traits with a test driver (tested on using gcc 4.4.3) is available at

http://www.halpernwightsoftware.com/WG21/allocator_traits_n3235.tgz. This archive also

includes an implementation of allocator_traits, scoped_allocator_adaptor and

std::list using pointer_traits.

Proposed Wording

In Section 20.2.5 [allocator.requirements] Table 44, change the static_cast requirement:

Table 44 – Allocator requirements

Expression Return Type Assertion/note

pre-/post-condition

Default

static_cast<X::pointer>(w)
std::static_pointer_cast<T>(w)

X::pointer static_cast<X::pointer>(w)
std::static_pointer_cast<T>(w)

== p

static_cast<X::const_pointer>(z)
std::static_pointer_cast<const

T>(z)

X::const_poi

nter
static_cast<X::const_pointer>(z)
std::static_pointer_cast<const

T>(z) == q

In section 20.9 [memory], add three function templates to the synopsis:

// 20.9.3, pointer traits
template <class Ptr> struct pointer_traits;

template <class T> struct pointer_traits<T*>;

// 20.9.x pointer casts
template <class T, class Ptr>

 rbptr static_pointer_cast(Ptr&& p) noexcept;
template <class T, class Ptr>

 rbptr const_pointer_cast(Ptr&& p) noexcept;
template <class T, class Ptr>

 rbptr dynamic_pointer_cast(Ptr&& p) noexcept;

And (also in 20.9 [memory]), replace the shared pointer casts with shared pointer traits:

// 20.9.10.2.10, shared_ptr castspointer traits:
template<class T, class U>

 shared_ptr<T> static_pointer_cast(shared_ptr<U> const& r);

template<class T, class U>

 shared_ptr<T> dynamic_pointer_cast(shared_ptr<U> const& r);

template<class T, class U>

 shared_ptr<T> const_pointer_cast(shared_ptr<U> const& r);

template <class T> struct pointer_traits<shared_ptr<T>>;

http://www.halpernwightsoftware.com/WG21/allocator_traits_n3235.tgz

N3235=11-0005: Generalized pointer casts Page 6 of 10

In section 20.9.3 [pointer.traits], add some text and add three function templates to

pointer_traits:

The class template pointer_traits supplies a uniform interface to certain attributes of pointer-like types.

A user may define a specialization for std::pointer_traits for a user-defined pointer-like class. Such a

specialization shall contain definitions of the pointer and element_type members, but is not required to

define every member of the primary template. [Note: Other parts of this standard impose additional constraints

on a specialization. For example, according to the Allocator requirements (20.2.5), the pointer type for an

Allocator requires the presence of an std::static_pointer_cast function that creates a pointer

from a corresponding void_pointer. This function, in turn, requires that

pointer_traits<pointer>::static_pointer_cast be defined to implement this conversion. –

end note]

namespace std {

 template <class Ptr> struct pointer_traits {

 typedef Ptr pointer;

 typedef see below element_type;

 typedef see below difference_type;

 template <class U> using rebind = see below;

 static pointer pointer_to(see below r);

 template <class U>

 static rebind<U> static_pointer_cast(const pointer& p) noexcept;

 template <class U>

 static rebind<U> const_pointer_cast(const pointer& p) noexcept;

 template <class U>

 static rebind<U> dynamic_pointer_cast(const pointer& p) noexcept;

 };

 template <class T> struct pointer_traits<T*> {

 typedef T element_type;

 typedef T* pointer;

 typedef ptrdiff_t difference_type;

 template <class U> using rebind = U*;

 static pointer pointer_to(see below r);

 template <class U> static U* static_pointer_cast(T* p) noexcept;

 template <class U> static U* const_pointer_cast(T* p) noexcept;

 template <class U> static U* dynamic_pointer_cast(T* p) noexcept;

 };

 template <class Ptr> struct pointer_traits<const Ptr>;

 template <class Ptr> struct pointer_traits<volatile Ptr>;

 template <class Ptr> struct pointer_traits<const volatile Ptr>;

}

N3235=11-0005: Generalized pointer casts Page 7 of 10

Each member of a specialization of pointer_traits on a cv-qualified type cv Ptr shall be identical to

the corresponding member of the specialization on the unqualified type Ptr.

Add the following to the end of section 20.9.3.2 [pointer.traits.functions]:

template <class U>

 static rebind<U> static_pointer_cast(const pointer& p) noexcept;

template <class U>

 static U* pointer_traits<T*>::static_pointer_cast(T* p) noexcept;

Requires: The expression static_cast<U*>(declval<element_type*>()) shall be well

formed (in an unevaluated context). For the first template, if the expression

p.template static_pointer_cast<U>() is well-formed then the result of that expression shall

be implicitly convertible to rebind<U>.

Returns: The first template returns the result of calling

p.template static_pointer_cast<U>() if such an expression is well-formed; otherwise, it

returns static_cast<rebind<U>>(p) if such an expression is well formed; otherwise the

specialization is ill-formed. The second template returns static_cast<U*>(p).

template <class U>

 static rebind<U> const_pointer_cast(const pointer& p) noexcept;

template <class U>

 static U* pointer_traits<T*>::const_pointer_cast(T* p) noexcept;

Requires: The expression const_cast<U*>(declval<element_type*>()) shall be well

formed (in an unevaluated context). For the first template, if the expression

p.template const_pointer_cast<U>() is well-formed then the result of that expression shall

be implicitly convertible to rebind<U>.

Returns: The first template returns the result of calling p.template const_pointer_cast<U>()

if such an expression is well-formed; otherwise the specialization is ill-formed. The second template

returns const_cast<U*>(p).

template <class U>

 static rebind<U> dynamic_pointer_cast(const pointer& p) noexcept;

template <class U>

 static U* pointer_traits<T*>::dynamic_pointer_cast(T* p) noexcept;

Requires: The expression dynamic_cast<U*>(declval<element_type*>()) shall be well

formed (in an unevaluated context). For the first template, if the expression

p.template dynamic_pointer_cast<U>() is well-formed then the result of that expression

shall be implicitly convertible to rebind<U>.

Returns: The first template returns the result of calling

p.template dynamic_pointer_cast<U>() if such an expression is well-formed; otherwise the

specialization is ill-formed. The second template returns dynamic_cast<U*>(p).

Between section 20.9.3 [pointer.traits] and section 20.9.4 [allocator.traits], add a new section:

20.9.x pointer casts [pointer.cast]

In the function descriptions that follow, let rbptr be typename pointer_traits<typename

decay<Ptr>::type>::template rebind<T>.

N3235=11-0005: Generalized pointer casts Page 8 of 10

template <class T, class Ptr>

 rbptr static_pointer_cast(Ptr&& p) noexcept;

Returns: pointer_traits<typename

decay<Ptr>::type>::static_pointer_cast<T>(std::forward<Ptr>(p)).

template <class T, class Ptr>

 rbptr const_pointer_cast(Ptr&& p) noexcept;

Returns: pointer_traits<typename

decay<Ptr>::type>::const_pointer_cast<T>(std::forward<Ptr>(p)).

template <class T, class Ptr>

 rbptr dynamic_pointer_cast(Ptr&& p) noexcept;

Returns: pointer_traits<typename

decay<Ptr>::type>::dynamic_pointer_cast<T>(std::forward<Ptr>(p)).

In section 20.9.10.2.9 [util.smartptr.shared.cast], replace the shared pointer cast free-functions

with shared pointer traits:

20.9.10.2.10 shared_ptr castspointer traits [util.smartptr.shared.castptrtrait]

namespace std {

 template <class T>

 struct pointer_traits<shared_ptr<T>> {

 typedef shared_ptr<T> pointer;

 typedef T element_type;

 typedef ptrdiff_t difference_type;

 template <class U> using rebind = shared_ptr<U>;

 static pointer pointer_to(unspecified r) = delete;

 template <class U>

 static shared_ptr<U> static_pointer_cast(const shared_ptr<T>& p) noexcept;

 template <class U>

 static shared_ptr<U> dynamic_pointer_cast(const shared_ptr<T>& p) noexcept;

 template <class U>

 static shared_ptr<U> const_pointer_cast(const shared_ptr<T>& p) noexcept;

 };

}

20.9.10.2.10.1 shared_ptr traits members

template<class T, class U>

 static shared_ptr<TU> static_pointer_cast(const shared_ptr<UT>& r) noexcept;

1 Requires: The expression static_cast<TU*>(r.get()) shall be well formed.

2 Returns: If r is empty, an empty shared_ptr<TU>; otherwise, a shared_ptr<TU> object that stores

static_cast< TU*>(r.get()) and shares ownership with r.

3 Postconditions: w.get() == static_cast<TU*>(r.get()) and w.use_count() ==

r.use_count(), where w is the return value.

N3235=11-0005: Generalized pointer casts Page 9 of 10

4 [Note: The seemingly equivalent expression shared_ptr<TU>(static_cast<TU*>(r.get()))

will eventually result in undefined behavior, attempting to delete the same object twice. —end note]

template<class T, class U>

 static shared_ptr<TU> dynamic_pointer_cast(const shared_ptr<UT>& r) noexcept;

5 Requires: The expression dynamic_cast<TU*>(r.get()) shall be well formed and shall have well

defined behavior.

6 Returns:

— When dynamic_cast<TU*>(r.get()) returns a nonzero value, a shared_ptr<TU> object that

stores a copy of it and shares ownership with r;

— Otherwise, an empty shared_ptr<TU> object.

7 Postcondition: w.get() == dynamic_cast<TU*>(r.get()), where w is the return value.

8 [Note: The seemingly equivalent expression shared_ptr<TU>(dynamic_cast<TU*>(r.get()))

will eventually result in undefined behavior, attempting to delete the same object twice. —end note]

template<class T, class U>

 static shared_ptr<TU> const_pointer_cast(const shared_ptr<UT>& r) noexcept;

9 Requires: The expression const_cast<TU*>(r.get()) shall be well formed.

10 Returns: If r is empty, an empty shared_ptr< TU>; otherwise, a shared_ptr< TU> object that stores

const_cast<TU*>(r.get()) and shares ownership with r.

11 Postconditions: w.get() == const_cast<TU*>(r.get()) and w.use_count() ==

r.use_count(), where w is the return value.

Additional Proposal: Requiring const_pointer_cast

A survey by Ion Gaztañaga of existing standard and Boost container implementations shows

that it may also be a good idea to require const_pointer_cast as part of the allocator

requirements. I propose this addition here as a separable proposal, since it is related to, but

goes beyond, the original issue and thus might be considered out of scope.

Proposed wording

In Section 20.2.5 [allocator.requirements] Table 44, add the following two rows:

Table 44 – Allocator requirements

Expression Return Type Assertion/note

pre-/post-condition

Default

std::const_pointer_cast<T>(q) X::pointer std::const_pointer_cast<T>(q)

== p

std::const_pointer_cast<void>(z

)

X::void_poin

ter

std::const_pointer_cast<void>(z

) == w

N3235=11-0005: Generalized pointer casts Page 10 of 10

Acknowledgements

Thanks to Ion Gaztañaga, Alisdair Meredith, Mike Giroux, John Lakos and especially Daniel

Krugler for their input and review.

References

N3102: ISO/IEC FCD 14882, C++0X, National Body Comments

LWG 1289: Generic casting requirements for smart pointers

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2010/n3102.pdf
http://lwg.github.com/issues/lwg-closed.html#1289

