James Widman
Doug Gregor
ISO/IEC JTC1 SC22 WG21 N3282=11-0052 - 2011-03-25

Resolution for core issues 1207 and 1017

Proposed resolution:

e Change 5.1.1 expr.prim.general p2 as indicated and insert the new paragraphs 3, 4, and 5 after that (and move the
example from p2 to the end of the new p5):

2. The keyword this names a pointer to the object for which a non-static member function (9 3.2 class thls) is invoked or a
non- statlc data members mltlallzer (9 2 class. mem) is evaluated he v e

3. If a declaration declares a member function or member function template of a class X , the expression this is a
prvalue of type "pointer to cv-qualifier-seq X" between the optional cv-qualifier-seq and the end of the
function-definition, member-declarator, or declarator. It shall not appear before the optional cv-qualifier-seq and it
shall not appear within the declaration of a static member function (although its type and value category are
defined within a static member function as they are within a non-static member function). /[Note: this is because
declaration matching does not occur until the complete declarator is known. — end note | Unlike the object
expression in other contexts, *this is not required to be of complete type for purposes of class member access
(5.2.5 expr.ref) outside of the member function body. [Note: Only class members declared prior to the declaration
are visible. --end note] [Example:

struct A {
char g();
template<class T> auto f£(T t)->decltype(t + g())
{ return t + g();}

}i
template auto A::f(int t)->decltype(t + g());

— end example]

4. Otherwise, if a member-declarator declares a non-static data member (9.2 class.mem) of a class X, the expression
this is a prvalue of type "pointer to X" within the optional brace-or-equal-initializer. It shall not appear elsewhere
in the member-declarator.

5. The expression this shall not appear in any other context. [Example:
class Outer ({

int a[sizeof(*this)]; // error: not inside a member function
unsigned int sz = sizeof(*this); // OK: in brace-or-equal-initializer

void £() {
int b[sizeof(*this)]; // OK

struct Inner {
int c[sizeof(*this)]; // error: not inside a member function of Inner

— end example]

e Change 5.1.1 expr.prim.general, old-paragraph-10, as indicated.
10. An id-expression that denotes a non-static data member or non-static member function of a class can only be used:

= as part of a class member access (5.2.5 expr.ref) in which the object-expression refers to the member's class [
Footnote: This also applies when the object expression is an implicit (*this) (9.3.1 class.mfct.non-
static). — end footnote | or

m a class derived from that class, or

= to form a pointer to member (5.3.1 expr.unary.op), or

e Change 9.3.1 class.mfct.non-static p3 as indicated:

3. When an id-expression (5.1 expr.prim) that is not part of a class member access syntax (5.2.5 expr.ref) and not used to

form a pointer to member (5.3.1 expr.unary.op) is used in the-body-of-anon-statie-member—tunetion-ot-elass=x a member
of class X in a context where this can be used (5.1.1 expr.prim.general) , if name lookup (3.4 basic.lookup) resolves
the name in the id-expression to a non-static non-type member of some class C, and if either the id-expression is
potentially evaluated or C is X or a base class of X, the id-expression is transformed into a class member access
expression (5.2.5 exprref) using (*this) (9.3.2 class.this) as the postfix-expression to the left of the . operator. [
Note: if C is not X or a base class of X, the class member access expression is ill-formed. — end note] Similarly
during name lookup, when an unqualified-id (5.1) used in the definition of a member function for class X resolves to a
static member, an enumerator or a nested type of class X or of a base class of X, the unqualified-id is transformed into a
qualified-id (5.1) in which the nested-name-specifier names the class of the member function. [Example: [...] — end
example]

