Issues Found Implementing C++0x
And What We Did About Them

Authors: Sean Hunt, Richard Smith, Sebastian Redl, David Majnemer
Context: Doug Gregor <doug.gregor@gmail.com>
Document number: N3307=11-0077

Date: 2011-09-08

1.

(Sean Hunt) [except.spec] (15.4)/14: Functions might not actually
be "directly invoked" by the definition of an implicit member.
<not a defect>

(Sean Hunt) [class.copy] (12.8)/7: Adding new special member

functions to a class via default arguments

If a definition is used to add a default argument to a constructor, this can
have disastrous effects on implicit special member functions of classes that
inherit from or include an object of the first class. In particular, this can
alter the overload selection and thus the implicit exception specification and
triviality(!) of the implicit member function in between its declaration and
definition.

Moreover, it is not entirely clear when an implementation is required to
perform the overload resolution steps to determine if a default constructor is
defined as deleted or not; immediately on the completion of the class or upon
the constructor's first use - clang, for instance, defers creating the
declaration of an implicit member function and thus this overload resolution
until it would affect the semantics of the program.

Example:
struct X {
X (const X&) ;
}i
struct Y {
X X;
bi
// Here Y would have a deleted default constructor if overload resolution
// is performed aggressively.
X::X(const X& = X()) { }
// But if it were defined here, Y would have a valid default constructor.

The suggested resolution is to make this illegal for special members only;
there is no reason in principle that default arguments could not be disallowed
on out-of-line definitions of member functions generally (they are already
forbidden for templates), as such code is rarely useful.

clang behavior: This case has a warning that is on by default. No significant
effort is being made to ensure correct behavior one way or another when it
occurs.

suggested resolution: Add a new paragraph to [dcl.fct.default] (8.3.6) reading:
A default argument shall not be added to a constructor in a definition after

its declaration such that it becomes a sort of special member function (12)

that it was not previously. [Example:
struct X {
X0

X (const X&) ;

1
X::X(const X& = X()) { } // ill-formed: makes X::X(const X&) into a default
// constructor.

— end example]

Delete [basic.def.odr] (3.2)/5 as this paragraph is now redundant since it can
only trigger on an ill-formed program.

Change [class.copy] (12.8)/7 by removing the last sentence, so that it reads:

If the class definition does not explicitly declare a copy constructor, one is
declared implicitly. If the class definition declares a move constructor or move
assignment operator, the implicitly declared copy constructor is defined as
deleted; otherwise, it is defined as defaulted (8.4). The latter case is
deprecated if the class has a user-declared copy assignment operator or a user-
declared destructor. Thus, for the class definition

struct X {

X (const X&, int);
bi

a copy constructor is implicitly-declared. Tfthe Uuser—deciared CONSCIUCCOT T

Toter—defied—as

tcomst—Xe—=,;, Tt —07—¢

)i
therm =y Use of XS TOpPY CONSCIUCCOr IS fii-fOImed DECause Of CIE ampigurty; 10

difagrostic TS Tregquirea:

priority: Medium - This is an uncommon corner case, but getting direction from
the committee in this area would reduce divergence.

(Sean Hunt) [except.spec] (15.4)/14: Should an implicit non-

throwing exception specification be dynamic or not?

In the event that an implicit member (or any destructor!) is to get an implicit
non-throwing exception specification, it is not clear whether it is a noexcept
specification or a throw() one. This has visible effects as it changes the
outcome of violating the specification. See also Core Issue 1073, which
gracefully discovered this issue and failed to address it.

clang behavior: noexcept (true) is considered stricter than throw(). This means

that noexcept (true) is chosen by default, but if any implicitly called function
is declared throw(), the calculated exception specification is throw(). This is
overly complicated; it would be simpler to always use noexcept (true).

suggested resolution: Change [except.spec] (15.4)/14 to read:

An implicitly declared special member function (Clause 12) shall have an
exception-specification. If f is an implicitly declared default constructor,
copy constructor, move constructor, destructor, copy assignment operator,
or move assignment operator, its implicit exception-specification specifies
the type-id T if and only if T is allowed by the exception-specification of
a function directly invoked by f’s implicit definition; f shall allow all
exceptions if any function it directly invokes allows all exceptions, and f

shall allow no exceptions as if with a noexcept-specification if every function

it directly invokes allows no exceptions.

priority: Low - The potential for divergence in implementations is high,
but this is tempered by the fact that this difference is only observable in
programs that use std::set unexpected() and where one of these non-throwing
exception specifications is violated.

4. (Sean Hunt) [class.base.init] (12.6.2)/8: Anonymous unions are
initialized
This paragraph applies also to anonymous union members, although their
members are more or less treated as a part of the enclosing structure for
initialization purposes. This can lead to particularly awkward situations where
a member of an anonymous union cannot be default-constructed, so the anonymous
union constructor is deleted despite the fact that the member might be validly
initialized by the enclosing class. A conforming implementation would have to
reject this:

struct X {
union { const int 1i; }
X() : 1(0) { }

}i
clang behavior: Unknown.

suggested resolution: Never initialize anonymous union members directly, and
instead only initialize their members.

priority: Low - This issue appears to have existed since C++98 but has an
obvious resolution and is likely not a cause for divergence, although some
implementations may implement the looser, seemingly-correct behavior.

5. (Richard Smith) [dcl.spec.auto] (7.1.6.4)/6: parenthesized
initializers and the auto specifier
This paragraph does not specify how to handle an initializer of the form
(expression-list). For instance:

auto a(l, 2, 3);

In this case, the initializer is not an expression, so it is not meaningful to
use it as a function argument. [dcl.init]/13 cannot be applied here, since we
do not know whether the entity being initialized has class type.

clang behavior: If the expression-list contains a single expression, that
expression is used as the argument in the hypothetical function call.
Otherwise, the declaration is ill-formed.

suggested resolution: Change [dcl.spec.auto] (7.1.6.4)/6 as follows:

[...] The type deduced for the variable d is then the deduced A determined
using the rules of template argument deduction from a function call (14.8.2.1),
where P is a function template parameter type and the ITmitiarizer initializer-
clause, braced-init-1ist or single expression in the expression-list in

d’s initializer is the corresponding argument. If the initializer is a

parenthesized expression-1list which is not a single expression, or the

deduction fails, the declaration is ill-formed. [...]

priority: Low - implementations cannot and do not accept such cases anyway.

6. (Richard Smith) [dcl.spec.auto] (7.1.6.4)/7: ‘auto’ can represent
different types for different declarators in the same declaration
The intent of p7 appears to be that ‘auto’ must represent the same type in each
declarator in the same declaration, but this is violated by the handling of
initializer-lists and trailing-return-types. This is well-formed:

auvto a =0, b= {1, 2, 3}, (*f) () -> double;

The ‘auto’ specifier stands in for ‘int’, ‘std::initializer list<int>’
and ‘double’, respectively.

clang behavior: Clang implements the letter of the standard for function
declarations with trailing-return-types, and does not yet implement
initializer-lists.

suggested resolution: Change [dcl.spec.autolp7:

If the list of declarators contains more than one declarator, the type of each
declared variable is determined as described above. For each such entity, the
automatic type is the trailing-return-type if the declarator is a function

declarator, std::initializer 1ist<V> if the initializer is a braced-init-1list,

and V otherwise, where V is the type deduced for the template parameter U. If

the automatic type deducedfor the temMprate parameter U 1is not the same in each
case, the program is ill-formed.

priority: High - gcc and clang currently follow the letter of the standard, and
changing this will incur a backwards-compatibility cost if deferred.

7.

10

(Richard Smith) [dcl.spec.auto] (7.1.6.4)/3: is ‘auto’ legal in a
trailing-return-type®?
Is this legal?

int £();
auto (*qg) () = &£f; // legal.
auto (*h) () -> auto = &f; // illegal?

The first ‘auto’ in the declaration of ‘h’ is allowed by [dcl.spec.auto]

p2. The second ‘auto’ may be legal too, depending on the interpretation of
[dcl.spec.auto]p3. It says “auto shall appear as one of the decl-specifiers in
the decl-specifier-seq”, which it does. However, it’s a different instance of
the ‘auto’ keyword, and the intent seems to be to reject it.

clang behavior: ‘h’ is rejected.

suggested resolution: Change [dcl.spec.auto]p3:
[...] This use of auto shall appear as one of the decl-specifiers in the decl-
specifier-seqgl[...]

priority: Medium - gcc and clang already reject this, but the standard is at
best unclear.

(Richard Smith) [temp.alias] (14.5.7]: alias template
redeclarations are not required to specify an equivalent type
This appears to be well-formed:

template<typename T, typename U> using A
template<typename T, typename U> using A

T;
U;

Since an alias template is a declaration, not a definition, the ODR does not
apply to alias templates. Is [dcl.typedef]p3 intended to apply here?

clang behavior: In an alias template redeclaration, the type is required to be
equivalent to the original declaration.

priority: Medium - clang already rejects such cases, but this is in defiance of
the standard.

(Richard Smith) [temp.alias] (14.5.7)/3: This paragraph is

redundant

Since the point of declaration for an alias template was moved to the
semicolon, this paragraph no longer applies. It is impossible for an alias
template to refer to itself, except by (harmlessly) referring to a previous
declaration.

The example in this paragraph was ill-formed without this rule (and with the
old point of declaration): in the declaration of A::U, A<T> is the current
instantiation, and it does not yet contain a member named U.

clang behavior: This paragraph is not implemented.
suggested resolution: Delete this paragraph.

priority: Low

. (Richard Smith) [dcl.typedef] (7.1.3)/2: identifier in an alias-

declaration cannot appear in the type-id
This paragraph says “The identifier following the using keyword [...] has
the same semantics as if it were introduced by the typedef specifier. In
particular, it [...] shall not appear in the type-id.” This is incorrect:
typedefs have no such restriction. This is legal:

typedef int A;

namespace N {
typedef A A; // 1
typedef A A; // 2

Both (1) and (2) would be ill-formed if they were rewritten as alias-
declarations according to this wording. This is not the same semantics as a
typedef specifier!

clang behavior: This restriction is not implemented.

suggested resolution: Change this paragraph as follows:
[...] It has the same semantics as if it were introduced by the typedef

specifier. In particular, it does not define a new typearmd Tt sharT TIotappear

Tthe—type—1d.

priority: Low - The deleted text does not appear to be intended to be
normative.

11.

12.

13.

(Richard Smith) [class.mem] (9.2): bitfield members cannot have
in-class initializers
The grammar does not allow a brace-or-equal-initializer for a bitfield member.

This seems like an oversight. A brace-or-equal-initializer after a constant-
expression appears to be unambiguous.

clang behavior: clang implements the letter of the standard.
suggested resolution: Change the grammar as follows:

member-declarator:
identifier,,, attribute-specifier-seq.,: : constant-expression_brace-or-equal-

initializer

priority: Low - this is a backward-compatible change
(Richard Smith) [class.inhctor] (12.9)/3: incorrect exception

specification for inherited constructors

If the default constructor or brace-or-equal-initializer for a non-static data
member can throw an exception, then the exception specification used for an
inherited constructor can be tighter than the set of exceptions it may actually
throw.

clang behavior: clang implements the letter of the standard. The exception
specification is copied from the inherited constructor.

suggested resolution: Remove third bullet ‘the exception-specification (15.4),’
from [class.inhctor]/2, and change [except.spec] (15.4)/14 as follows:

An implicitly declared special member function or inherited constructor (Clause
12) shall have an exception-specification. If f is an inherited constructor or
an implicitly declared default constructor, copy constructor, move constructor,
destructor, copy assignment operator, or move assignment operator, its implicit

exception-specification specifies the type-id T if and only if T is allowed by
the exception-specification of a function directly invoked by f’s implicit
definition; f shall allow all exceptions if any function it directly invokes
allows all exceptions, and f shall allow no exceptions if every function it
directly invokes allows no exceptions.[...]

priority: High - implementations are currently implicitly generating code which
surprisingly fails at runtime

(Richard Smith) [except.spec] (15.4)/14: implicit exception-
specification includes too many, and too few, exceptions

This paragraph says: “[an] implicit exception-specification specifies the type-
id T if and only if T is allowed by the exception-specification of a function
directly invoked by f’s implicit definition; f shall allow all exceptions if
any function it directly invokes allows all exceptions, and f shall allow no
exceptions if every function it directly invokes allows no exceptions.”
However, such a function can throw exceptions by other means than a function
call:

bool cond;

struct S {
int n = cond ? throw “eep” : 0;
bi
struct T {
T(int n = cond ? throw “eep” : 0) noexcept;

b
struct U {

T t;
b

S::35() and U::U() are given no-throw exception specifications by the current
rules. Conversely, the term ‘directly invoked’ is not defined in the standard,
and the only references to invocation do not indicate the invocation need be
potentially-evaluated:

int £();
struct V {
int n = sizeof (f());

b
It is unclear whether V::V () is given a noexcept(false) specification.

clang behavior: clang considers an implicit constructor to throw the exception
E if either E is allowed by the chosen constructor of a base class or non-
static data member with no brace-or-equal-initializer. If any brace-or-equal-
initializer is not no-throwing (as determined by the rules for a noexcept
expression), the constructor is implicitly noexcept(false) [clang does not
track which exceptions a brace-or-init-initializer may throw]. clang does not
yet consider default argument expressions used within an implicit definition.

suggested resolution: Extend [expr.unary.noexcept] to define a set of
potentially-thrown exceptions for an expression, and define the exception
specification for an implicit member function to be the union of those sets for
each full-expression directly contained within the implicit definition of the
constructor.

priority: High - implementations are currently implicitly generating code which
surprisingly fails at runtime

14 . (Richard Smith) ordering issues with implicit exception

specification and class components with deferred parsing

In the contexts where the class is considered complete before we finish
parsing the definition (function definitions, member initializers, default
arguments and exception specifications), the result of parsing can depend on
the exception specification of the implicit default constructor. However, the
exception specification of the implicit default constructor can also depend on
the results of that parse. This leads to unparseable constructs such as this:

template struct ExceptionIf { static int £(); };
template<> struct ExceptionIf { typedef int £f; };
struct S {

int n = ExceptionIf<noexcept (S())>::f();
}i

Here, S::S is noexcept iff n’s initializer is noexcept, which happens iff S::S
is not noexcept. We can observe the same problem in the other forms in which
the class is prematurely considered complete. In exception specifications:

struct NoExcept {
struct T {
T () noexcept (!noexcept (NoExcept ()));
ot
b

In default arguments:

struct Default ({
struct T {
T (int = ExceptionIf<noexcept (Default())>::£());
bt
}i

clang behavior: If a brace-or-equal-initializer for a non-static data member
uses the exception specification of a defaulted default constructor for the
class being defined, or any lexically-enclosing class within which that class
is nested, the program is ill-formed. Clang does not yet support deferred
parsing of default arguments and exception specifications, but the same
resolution will probably be applied in those cases.

priority: High - The standard as specified is unimplementable, and there is a
risk of implementations diverging on how they resolve this issue.

15. (Richard Smith) deferred parsing rules inconsistent
There are three distinct sets of rules which govern behaviour within
the ‘deferred’ parts of a class (member function definitions, default
arguments, initializers for non-static data members and exception
specifications).

[class.mem] /2 says: Within the class member-specification, the class is
regarded as complete within function bodies, default arguments, exception-
specifications, and brace-or-equal-initializers for non-static data members
(including such things in nested classes).

[basic.scope.class] /1.1 says: The potential scope of a name declared in a class

consists not only of the declarative region following the name’s point of
declaration, but also of all function bodies, brace-or-equal-initializers of
non-static data members, and default arguments in that class (including such
things in nested classes).

but not exception specifications. That’s difficult to implement: the class
is complete but name lookup is restricted to those declarations declared
earlier. But wait...

[basic.scope.class] /1.5 says: The potential scope of a declaration that extends
to or past the end of a class definition also extends to the regions defined by
its member definitions, even if the members are defined lexically outside the
class (this includes [...] member function definitions (including [...] any
portion of the declarator part of such definitions which follows the declarator-
id.

(Editorial note: this paragraph contains two open parentheses with no matching
close parentheses).

So the potential scope of class members does includes exception specifications,
default arguments and trailing return types, and also argument types! But only
for member function definitions, and not for member function declarations!

[basic.lookup.unqual]/7 says: A name used in the definition of a class X
outside of a member function body or nested class definition shall be declared
in one of the following ways:

- before its use [...]

Therefore name lookup in default arguments, brace-or-equal-initializers and
exception specifications does not find later-declared class members, unless
it’s in a nested class. The next paragraph flat-out contradicts this:

[basic.lookup.unqual] /8 says: A name used in the definition of a member
function of a class X following the function’s declarator-id or in the brace-or-
equal-initializer of a non-static data member of class X shall be declared in
one of the following ways:

[...]

- shall be a member of class X [...]

Summary:

- argument types and trailing return types in member function declarations:
only earlier-declared names are in scope, class is incomplete, name lookup does
not find later-declared members.

- argument types and trailing return types in member function definitions:
all members are in scope, class is incomplete, name lookup does (p8) and does
not (p7) find later-declared class members.

- default arguments in member function declarations: all members are in
scope, class is complete, name lookup does not find later-declared class
members.

- default arguments in member function definitions: all members are in scope,
class is complete, name lookup does (p8) and does not (p7) find later-declared
class members.

- exception specifications in member declarations: only earlier-declared
names are in scope, class is complete, name lookup does not find later-declared
names.

- exception specifications in member definitions: all members are in scope,
class is complete, name lookup does (p8) and does not (p7) find later-declared
names.

- in-class member initializers: all members are in scope, class is complete,
name lookup does (p8) and does not (p7) find later-declared names.

le6.

17.

(Richard Smith) disambiguating unparenthesized comma within in-

class initializer

Core issue#325 covers disambiguation of unparenthesized commas within default
arguments, but the same issue affects brace-or-equal-initializers for non-
static data members:

struct S {
int n = T<a,b>(c); // ill-formed declarator for member ‘b’, or template?
}i

clang behavior: As an extension of the proposed resolution to core issue#325,
clang treats the first unparenthesized comma as the end of a brace-or-equal-
initializer for a non-static data member.

priority: Low - this is the natural resolution, as an extension of core issue
#325.

(Sean Hunt) [class.ctor] (12.1)/5, [class.copy] (12.8)/11,23:
missing arrays and variant members in a few cases for deleted
defaulted member functions

In the various specifications for when defaulted member functions get deleted,

array types and variant members are occasionally forgotten. See the suggested
resolution for a comprehensive list.

clang behavior: Somewhere between the suggestion and the standard as written
(the code was written before the suggested resolution but with the intent

of following it, and as a result not all cases added by the suggestion are
covered) .

suggested resolution: Change the first list in [class.ctor] (12.1)/5 to read:

= TS unton—rIke Cira that—has o varfant member Wit & o= trivigar aefautt
TOoTStructor,

— any non-static data member with no brace-or-equal-initializer is of reference
type7;

— any non-variant non-static data member of const-qualified type (or array
thereof) with no brace-or-equal-initializer does not have a user-provided
default constructor7;

— X is a union and all of its variant members are of const-qualified type (or
array thereof)7;

— X is a non-union class and all members of any anonymous union member are of
const-qualified type (or array thereof)7;

— any direct or virtual base class, or non-static data member with no brace-
or-equal-initializer, has class type M (or array thereof) and either M has no
default constructor or overload resolution (13.3) as applied to M’s default
constructor results in an ambiguity or in a function that is deleted or
inaccessible from the defaulted default constructor7 or, in the case of a
variant member, is not trivial; or_

— any direct or virtual base class or non-static data member t=is of a class
type (or array thereof) with a destructor that is deleted or inaccessible from
the defaulted default constructor or, in the case of a variant member, is not

trivial.

Similar changes should be made to the other forms of implicit member.

18.

19.

(Sebastian Redl) [expr.unary.noexcept] (5.3.7) Destructor

exceptions for temporaries in noexcept expressions.

The noexcept operator does not consider that the destruction of temporaries
created in the operand expression could throw. Although throwing destructors
ought to be rare, this can lead to bad surprises. Because throwing destructors
ought to be rare, changing this should not lead to any issues with degraded
performance or code breaking that shouldn’t.

clang behavior: Clang follows the letter of the standard.
suggested resolution: Insert a new paragraph before the first that reads:

The operand of the noexcept operator is an unevaluated expression (Clause 5).

Change the first sentence of the first (now second) paragraph to read:

The noexcept operator determines whether the evaluation of its operand;—wirfcir—

Ts—amr unevaluated operand, as a full-expression can throw an exception (15.1).

Add a footnote to to this sentence that reads:

This means that calls to destructors of temporary objects created in the

expression are considered.

priority: Moderate - implementations can easily be fixed, and diverging should
not affect much code in the first place.

(Sean Hunt) [dcl.fct.def.default] (8.4.2)/4: Functions other than

special members cannot be user-provided.

The current definition of user-provided does not apply to any function other
than a special member function. This has an unfortunate effect on aggregates,
as a class with user-declared constructors will thus be an aggregate unless one
of those constructors is a special member function.

clang behavior: clang currently implements the letter of the standard.

suggested resolution: Change (8.4.2) to read:

Explicitly-defaulted functions and implicitly-declared functions are
collectively called defaulted functions, and the implementation shall provide
implicit definitions for them (12.1 12.4, 12.8), which might mean defining

them as deleted. A function is user-provided if it is user-declared and not
explicitly defaulted or deleted on its first declaration.[*] A user-provided
explicitly-defaulted function (i.e., explicitly defaulted after its first
declaration) is defined at the point where it is explicitly defaulted; if

such a function is implicitly defined as deleted, the program is ill-formed.

[Note: Declaring a function as defaulted after its first declaration can
provide efficient execution and concise definition while enabling a stable binary
interface to an evolving code base. — end note]

Insert a footnote (at the point marked [*]) above reading:
Since only special member functions can be explicitly defaulted, any other
function is user-provided unless deleted.

[Note that this resolution counter-intuitively allows a class with a deleted
initializer list constructor to undergo aggregate initialization; it might be
desirable to limit this in some fashion.]

priority: High - This is not a difficult issue to resolve, but may be cause for
diverging implementations. Since this affects whether or not a structure is an

aggregate, the behavior could be quite noticeable when list initialization is

involved.

20.

21.

22.

(Sean Hunt) [except.spec] (15.4)/14: Unspecified exception

specifications of copy assignment operators with virtual bases.
It’s unspecified if an implicit copy assignment operator directly calls the
copy assignment operators of virtual bases. Accordingly, this makes its
exception specification unspecified, which is untenable. A change to 12.8 was
made in 0x to deal with the issue of const parameter types, but this did not
carry through to exception specifications.

Note that this issue is not new, but was previously unreported.
clang behavior: As suggested (including in C++03 mode) .

suggested resolution: Insert the following sentence immediately before the
note in [except.spec] (15.4)/14: In the case of an implicit copy assignment

operator for a class with virtual bases, assignment operators of virtual bases

are considered directly invoked for this purpose as if they were direct bases,

regardless of whether the definition of the special member function actuall

invokes them.

priority: Medium - it has gone unnoticed since C++98, but is now more
significant with the addition of the noexcept operator. Divergence of
implementations is quite possible, here, and could produce noticeably different
code where templates are involved.

(Richard Smith) [class.mem] (9.2)/5: typedef and function members

can have in-class initializers

The grammar allows a brace-or-equal-initializer for typedef members and for
member function declarations. There is no semantic rule making such uses ill-
formed.

clang behavior: As suggested.
suggested resolution: Change [class.mem] (9.2)/5 as follows:
A data member can be initialized using a brace-or-equal-initializer. (For

static data members, see 9.4.2; for non-static data members, see 12.6.2). No
other member-declarator shall have a brace-or-equal-initializer.

priority: Low.
(Richard Smith) [stmt.ranged] (6.5.4)/2: constexpr is permitted in

for-range-declarations

The resolution to CWG issue 1204 seemed to have only one effect: allowing
constexpr in for-range-declarations. This change seems unrelated to the
reported issue, and is in any case surprising since constexpr can (almost! see
below) not appear in a legal for-range-declaration anyway.

Calling a constexpr member of a literal type does not appear to require the
object expression in the member call to be a constant expression, so this
example seems to be one (and possibly the only) legal way to use ‘constexpr’ in
a for-range-declaration:

struct LiteralRange {
constexpr LiteralRange() {}
LiteralRange é&begin();

LiteralRange &end() ;

bool operator!=(const LiteralRange &o) const;
LiteralRange &operator++();
constexpr int operator* () const { return 0; }
}i
for (constexpr int a : LiteralRange()) {}

It is not clear whether the constexpr rules intended to allow constexpr member
functions of non-constexpr objects of literal type to be called within constant

expressions.

This change appears to be for consistency with the rules for conditions,
but that consistency is not natural: a for-range-declaration is not like a
condition and should not follow the same rules.

clang behavior: clang will reject constexpr within for-range-declarations.
suggested resolution: Either revert the changes made by CWG issue 1204 or

change [stmt.ranged] (6.5.4)/2 as follows:
In the decl-specifier-seq of a for-range-declaration, each decl-specifier shall

be =tfther—a type-specifier—or—Tomstexpr.

priority: Low - it seems implausible that a real, legal program would ever use
constexpr in a for-range-declaration.

23.

24.

(Richard Smith) [dcl.constexpr](7.1.5)/3,4,6: no restrictions on
declarations of constexpr functions

(7.1.5)/6 says: If the instantiated template specialization of a constexpr
function template or member function of a class template would fail to satisfy
the requirements for a constexpr function or constexpr constructor, that
specialization is not a constexpr function or constexpr constructor.

While it’s not completely clear which requirements are being referred to, the
evolution of the wording indicates that it is the requirements in (7.1.5)/3,
which only apply to function definitions, and some of them cannot be applied to
function declarations. This results in the ‘constexpr’ status of some functions
not being defined; for instance, the standard does not clearly specify whether
the following type is literal:

template<typename T> struct S { constexpr S(T); 1},

struct T { T(); };

static assert(std::is literal type(S<T>), "“is S<T>::S(T) constexpr?”);

The ‘requirements for a constexpr function or constexpr constructor’ fall into
three categories: requirements on declarations (which can be checked after
instantiating the declaration), syntactic requirements on definitions (which
can be checked for template definitions prior to instantiation), and semantic
requirements on definitions (which may require the template definition to be
known at the point where the declaration is instantiated). The suggested
resolution uses the first category for determining whether an instantiation is
constexpr, and removes the third category entirely: such cases are already ill-
formed (although no diagnostic is required), and it is neither reasonable to
reject template instantiations on this basis, nor to cause them to mark the
function as non-constexpr (since the definition is not necessarily known) .

Also, the wording allows a constexpr constructor to be defined for a class with
virtual base classes if the constructor is explicitly defaulted or deleted;
this is a literal type:

struct B {}; struct D : virtual B { constexpr D() = delete; };

gcc behaviour: gcc appears to ignore (7.1.5)/6 when determining when an
instantiation of a class template is a literal type: a non-aggregate template
specialization class type seems to be considered literal if the class template
had any constexpr constructors or ctor templates.

clang behavior: as per suggested resolution (WIP)

suggested resolution: See this separate paper for a suggested resolution for
this and the other constexpr issues reported here.

priority: High - This renders constexpr unimplementable as specified.
Implementations are already diverging: gcc always treats such instantiated
declarations as constexpr, and clang will probably not do so.

(Richard Smith) [dcl.constexpr] (7.1.5)/5,6 constexpr templates
don’ t work

(7.1.5)/5 says “if no function argument values exist such that the function
invocation substitution would produce a constant expression, the program is ill-
formed; no diagnostic required”.

(7.1.5)/6 says “If the instantiated template specialization of a constexpr
function template [...] would fail to satisfy the requirements for a constexpr

function [...] that specialization is not a constexpr function”

The “requirements for a constexpr function” here are presumably those in (7.1.5)
/3, and not (7.1.5)/5’s nebulous ill-formed, NDR rule (since compiler vendors
are not required to implement the (7.1.5)/5 checking, it seems infeasible for
the constexpr-ness of a template instantiation to depend on it).

So what about a trivial case like this:
template<typename T> constexpr T max(T a, T b) { return (a > b) ? a : b; }

Suppose we instantiate this with a literal type T, with a non-constexpr
operator>. (7.1.5)/6 implies that this is a constexpr function: it meets all
the relevant requirements. But its result is unconditionally not a constant
expression, so (7.1.5)/5 says this is ill-formed (NDR)! We should accept this
case, instantiate a constexpr function, and merely treat the result as not a
constant expression as per usual.

Conversely, if we consider (7.1.5)/5 to be part of the “requirements for a
constexpr function”, consider this:

template<typename T>
struct S { constexpr S(T a, T b) : c(a <b ?a :Db) {} Tc; };

Now we can observe whether (7.1.5)/5 checking is implemented in the compiler:
if it is, the instantiation of S<T>::S<T>(T, T) will not be declared constexpr,
the class has no non-copy, non-move constexpr constructors, and

std::is literal type<S<T>> is derived from false type.

clang behavior: I intend to implement the suggested resolution.

suggested resolution: Change [dcl.constexpr] (7.1.5)/5 as follows:

For a constexpr function which is not an instantiation of a function template,
if no function argument values exist such that the function invocation
substitution would produce a constant expression (5.19), the program is ill-

formed; no diagnostic required. For a constexpr function template definition,

if no combination of template parameters and function argument values exist
such that function template instantiation and function invocation substitution
would produce a constant expression, the program is ill-formed; no diagnostic

required. For a constexpr constructor_which is not an instantiation of a
function template, if no argument values exist such that after function
invocation substitution, every constructor call and full-expression in the mem-

initializers would be a constant expression (including conversions), the
program is ill-formed; no diagnostic required. For a constexpr constructor
template definition, if no combination of template parameters and argument
values exist such that after function template instantiation and function
invocation substitution, every constructor call and full-expression in the mem-
initializers would be a constant expression (including conversions), the

program is ill-formed; no diagnostic required. [Example: [...]]

priority: Low - implementations are not required to diagnose such issues, and
do not currently do so.

25.

26.

27.

(David Majnemer) [over.literal] (13.5.8)/8 User-defined literal

example contains questionable literal suffix identifier
The example given:

template <char...> int operator “” \u03CO(); // OK: UCN for lowercase pi
is supposedly a valid declaration of a literal operator template.

However, [usrlit.suffix](17.6.4.3.5)/1 says: Literal suffix identifiers that do
not start with an underscore are reserved for future standardization.

clang behavior: I intend to implement an extension warning that essentially
says what [usrlit.suffix] has to say on the matter.

suggested resolution: The example should probably be changed to:
template <char...> double operator “” _\uO3CO();

This example would not conflict with [usrlit.suffix]. Additionally, the return
type of the literal operator template was adjusted to be a floating point type
as it makes sense for a “pi operator”. Alternatively, the restriction on a
required leading underscore code be removed, making usage of user defined
literals more natural.

priority: Very low - this is an issue in an example.
(merged with issue 23)

(Sebastian Redl) [dcl.init.list](8.5.4)/3: List-initialization of
references is very surprising.
Consider the following code:

int 1i;
int &ri(i):;

The reference ri is bound to i. The expectation for the user is that uniform
initialization syntax works the same:

int 1i;
int &ri{i};

But this isn’t the case. The FDIS has a list of 8 bullet points describing the
meaning of initializers. The first one that is applicable to references is

the fifth: “Otherwise, if T is a reference type, a prvalue temporary of the
type referenced by T is list-initialized, and the reference is bound to the
temporary.”

This bullet applies to the example above. So we list-initialize a temporary int
from the list-initializer and try to bind the reference to that. Since we have
a non-const lvalue reference, the binding fails.

If the reference is const, the situation is actually worse, because the code
silently does something unexpected:

int 1 = 0;

const int &ri{i}; // binds to temporary
i = 4;
std::cout << ri << std::endl; // outputs “0”

DR934 attempted to resolve this, but failed to do so satisfactorily, and in any
case the wording change from this issue, which was accepted into CD2, was lost
in the FDIS. DR934 changed the wording of the fifth bullet to only apply to
references to class type. This has the following effects:

int 1 = 0;

int &ril {i}; // ok: binds directly to i

const int &ri2 {i}; // ok: binds directly to i

const int &ri3 {}; // error: no longer binds to a value-initialized
// temporary, cannot value-initialize reference

Whether the third part here is a positive or negative change is a matter of
taste. However, the situation for class types remains the same:

std::string s = “bar”;

//std::string &rsl {s}; // error: cannot bind to temporary

const std::string &rs2 (s); // ok: binds to s

const std::string &rs3 {s}; // ok: binds to temporary

s = “foo”;

std::cout << rs2 << “ “ << rs3 << std::endl; // outputs “foo bar”

This is still the same surprising effect for users: an unexpected compile

error for non-const references, and silent binding to a temporary for const
references. Only now it is worse, because it is completely different behavior
in class types and other types.

When a reference is initialized from a single-element initializer list, it
should try to bind to the single element in all cases. The only case where this
might not be what the user wants is when initializing a const reference to an
array. We can special-case this if necessary, but the proposed solution for now
is not to.

clang behavior: clang implements the proposed solution

suggested resolution: Swap the fifth and sixth bullet in [dcl.init.list]p3.
This means that the bullet starting with “Otherwise, if the initializer list
has a single element” comes before the bullet starting with “Otherwise, if T is
a reference type”.

Don’t reintroduce the wording change of DR934, it only causes more confusion.

priority: High - divergent implementations are already coming into existence,
and this is a significant change in semantics.

28.

29.

30.

(Richard Smith) [dcl.constexpr] (7.1.5)/3,4 tag declarations
only permitted in typedefs and using-declarations in constexpr
functions
The following is legal:
constexpr bool f () {
typedef struct S dummy;
return (S*)0;
}
The following is not:
constexpr bool f() {
struct S;
return (S*)0;
}
Since compilers are required to support the former, it is very strange to
disallow the latter.

gcc behaviour: gcc accepts tag declarations and even definitions in constexpr
functions, even in pedantic mode.

clang behavior: clang will allow both these cases (and possibly reject the
latter with -pedantic)

suggested resolution: Add a new bullet to both (7.1.5)/3 and (7.1.5)/4 in the
list of acceptable statements:
— simple-declarations that have empty init-declarator-lists and do not define

classes or enumerations;

priority: Low - Implementations can simply accept this as an extension, and gcc
already does.

(Richard Smith) [dcl.constexpr](7.1.5)/4 constexpr union
constructors are only legal for single-member unions

A union constructor is only allowed to initialize a single non-static data
member. A constexpr constructor is required to initialize all non-static data
members. Therefore a constexpr union constructor can only exist in a union with
a single non-static data member.

gcc behaviour: gcc does not check whether any members of a union are
initialized in a constexpr union constructor.

suggested resolution: Change (7.1.5)/4 as follows:

— every non-static non-variant data member and base class sub-object shall be
initialized (12.6.2);

— for a non-union class, one non-static data member shall be initialized in

each non-empty anonymous union member;

— for a union, one non-static data member shall be initialized;

priority: Medium - implementations are diverging on what is legal, and do not
implement what the standard says.

(Richard Smith) [class.ctor] (12.1)/6 When are defaulted default

constructors constexpr?

Defaulted default constructors are implicitly defined as constexpr if

the “user-written default constructor would satisfy the requirements of a
constexpr constructor”.

There are two problems with this. Firstly, the rules only talk about the
definition of a default constructor (see issue 23). Consider:
struct A {};
struct S1 : A {};
static assert(!std::is literal type<Sl>::value, “not literal yet”);
constexpr S1 = S1(); // legal?
static assert(std::is literal type<Sl>::value, “now it’s literal”);
Since the implicit declaration of S1::S1 isn’t constexpr, S1 has no constexpr
constructors until S1::S1 is odr-used and implicitly defined.

Secondly, many reasonable programs are ill-formed under this rule, such as this

one:
int f£();
struct Bad { constexpr Bad(int n = f£()) : n(n) {} int n; };

struct S2 { Bad b; } s;
This is ill-formed (no diagnostic required) because S2()’s implicit default
constructor is defined constexpr but can never produce a constant expression.
The following example is ill-formed (no diagnostic required) too, for the same
reason:

constexpr int f(bool log) { return log ? (std::clog << '!’, 0) : 0; }

struct Ugly { constexpr Ugly(bool log = true) : n(f(log)) {} int n; };

struct S3 { Ugly u; } u;

gcc behaviour: S1 is treated as a literal type. gcc does not diagnose that it
has generated ill-formed default constructors for S2 and S3.

suggested resolution: Change (12.1)/6 as follows: If that user-written default
constructor would satisfy the requirements of a constexpr constructor, the
implicitly-defined default constructor is constexpr. An implicitly-declared
default constructor is constexpr if the implicit definition would be.

Change (7.1.5)/5 as follows: For a user-declared constexpr constructor, if no

argument values exist such that after function invocation substitution, ev-
ery constructor call and full-expression in the mem-initializers would be a
constant expression (including conversions), the program is ill-formed; no
diagnostic required.

priority: Low - implementations seem to agree on how to treat this case.

31.

32.

(Sean Hunt) [class] (9)/6: How should template constructors affect

trivially copyable-ness?
The following class is trivially copyable:

struct tc {

template <typename T> tc(T&);

}i
The template constructor does not suppress triviality, but does participate in
overload resolution and will be selected to perform the copy of any non-const
object of that type. This has all sorts of nasty effects.

Tentative suggestion: Make templated constructors copy/move constructors and
adjust other places to accommodate this change without affecting behavior of
implicit members.

(Richard Smith) [basic.types] (3.9)/10: weird and pointless
restriction on non-static data member initializers for literal
types

In the FDIS, the following extra restriction was added to the definition of a
literal class type: “every constructor call and full-expression in the brace-
or-equal-initializers for non-static data members (if any) is a constant
expression (5.19),”

The bullet in question was added to resolve core issue 1219, which was

actually not a defect: since a class type with a brace-or-equal-initializer

is never an aggregate, the class is already required to have a constexpr
constructor (by the very next bullet). Either the (defaulted or user-provided)
constexpr constructor initializes the member, in which case the brace-or-equal-
initializer should be ignored, or it does not, in which case the program is
already ill-formed by [dcl.constexpr]/4 in the appropriate circumstances. Hence
this rule only rejects reasonable programs.

Further, the rule rejects reasonable programs which have constexpr constructors
which use the initializers, such as this one:

struct S {
int a = 0, b = a;
constexpr S(int k) : a(k) {} };
since b’s initializer is not a constant expression.

Even the rules in [dcl.constexpr]/4 are too strong; they too rule out the above
program. The bullet on brace-or-equal-initializers there is unnecessary, since
if used, they are treated as member initialization ([class.base.init] (12.6.2)
/8) and thus are covered by the normal rules on initializing non-static data
members.

clang behavior: clang will probably implement the suggested resolution.

suggested resolution: Delete that bullet entirely. Also delete the following
bullet in [dcl.constexpr] (7.1.5)/4: “every assignment-expression that is an
initializer-clause appearing directly or indirectly within a brace-
or-equal-initializer for a non-static data member that is not named by a mem-
initializer-id shall be a constant expression; and”

priority: Low-Medium - there is a risk of implementations diverging.

33.

34.

35.

36.

(Richard Smith) [dcl.constexpr] (7.1.5)/6 constexpr functions

inside non-class templates

This paragraph says “If the instantiated template specialization of a constexpr
function template or member function of a class template would fail to satisfy
the requirements for a constexpr function [...]”

This does not cover all cases where a function could be defined inside a

template:
template<typename T> void f() {
struct S {
constexpr T g () { return T(); }
}i
S50 .90
t
Here, f()::S::g is neither a function template nor a member function of a class
template.

priority: Low - this is a special case of a more general, old problem.
(Richard Smith) [basic.def.odr](3.2)/4 must T be complete in an
implicit conversion to T&?

The sixth bullet in the note in this paragraph says "A class type T must be

complete if [...] an expression [...] is converted to type pointer to T or
reference to T using an implicit conversion". There appears to be no normative
wording to justify this in cases such as:

struct A;

struct C { operator A&(); } c;

A &a = c;

priority: Low - this text is not normative.
(Richard Smith) [class.inhctor] (12.9)/2 inherited constructors

are constexpr too often
According to the FDIS, C is a literal type:
struct A {
constexpr A();
}i
struct B {
B();
bi
struct C : A {
B b;
using A::A;

}; ... because constexpr is a constructor characteristic, and thus C::C is
constexpr irrespective of whether it obeys the relevant restrictions.
Further, the above code is ill-formed (no diagnostic required) because C::C()
is constexpr but cannot produce a constant expression (however, this additional
problem is covered by the solution to issue 30 above).
priority: Low-Medium - there is a risk of implementations diverging here.

(Sean Hunt) [class] (9)/6: A class with multiple default

constructors can be needlessly trivial.
A class is trivial if it has a trivial default constructor and is trivially
copyable. This does not cover the case where a class has multiple default
constructors, and one of them is trivial, as in the following:
struct A {
A(int 1 = 0);
A() = default;
}i

As a result, A is considered trivial. It probably should not be because any
default-initialization will be ill-formed, but the triviality may affect other
things (such as POD-ness and thus whether initialization is required).

clang behavior: As the suggested resolution.

suggested resolution: Replace “has a trivial default constructor” with “has a
unique and trivial default constructor”.

priority: Low - default arguments on constructors to create ambiguity like this
are uncommon enough, and the odds are good that they wouldn't stay that way for
long due to other issues. It's not entirely clear anything bad would happen if
implementations handled this differently (since, in practice, the worst that
will happen is some undefined behavior that does the right thing anyway) .

