constexpr consternation

Author: Richard Smith

Contact: Doug Gregor <doug.gregor@gmail.com>
Document number: N3308=11-0078

Date: 2011-09-08

History

When constexpr was first proposed, constexpr forward declarations were outlawed, and constexpr functions and
constructors were required to always produce a constant expression for any constant expression arguments. Both of
these decisions have been (rightly) changed, but the resulting changes have not been fully propagated throughout
the standard.

Problems

A number of problems have been found while implementing the FDIS wording for constexpr.

Non-defining constexpr function declarations

The introduction of forward-declarations of constexpr functions by N2826 introduced the possibility of the
instantiation of a constexpr template function declaration with no accompanying definition. In such a case, it is
unspecified whether the instantiated definition should be constexpr. Thus it is impossible to determine whether the
following class template instantiates to a literal type:

template<typename T> struct S { constexpr S(T); };

Additionally, while there are a number of restrictions on the argument types and result types of constexpr function
definitions, there are no such restrictions on the corresponding declarations.

Whether a declared-but-not-defined function is constexpr is usually immaterial, but matters when determining
whether a type is a literal type. However, the notion of a literal type itself is unnecessary, and the standard could
easily make do without it. It does not capture the notion of “a type which has constant expression values”, and makes
understanding, implementing, and using constexpr harder. A review of every mention of ‘literal type’ in the standard
turns up the following:

Types of constexpr variables

constexpr variables and static data members are required to be of literal type. This constraint is entirely
unnecessary and can be deleted: such variables are required to be initialized with a constant expression at the point
of declaration; checking whether the type is literal just produces less useful diagnostics.

Requirements on constexpr functions and constructors

Arguments and return values of constexpr functions and constructors are required to be of literal type. This
constraint is partly unnecessary: compilers are free to diagnose such cases anyway, since such functions are
required to be able to produce a constant expression when constant expressions are substituted in. However,
compilers would not be required to diagnose such cases without this check.

Types of constexpr static data member declarations

The type of a constexpr static data member is required to be a literal type. As for constexpr variables, this constraint
is unnecessary, since such variables are required to be initialized with a constant expression at the point of

declaration.

Value-dependent constants

[temp.dep.constexpr]p2 identifies constants with literal type initialized with value-dependent expressions as being
value-dependent. The set of value-dependent expressions is growing in C++11 as a result of this rule; extending it
further to all constants initialized with value-dependent expressions does not seem to present a particular issue.

is_literal_type

Generic programming cannot beneficially make use of std::is_literal_type<>, since it does not guarantee that any
particular expression will produce a constant expression. However, such detection does not even require compiler
support; SFINAE techniques can be used to determine if particular expressions are constant expressions:

template<typename T> constexpr bool swallow(T) { return true; }
template<typename T> integral constant<bool, swallow(T() + T())>
constexpr addable helper (int);

template<typename T> false type constexpr addable helper(...);
template<typename T> using constexpr addable =

decltype (constexpr addable helper<T>(0));

static_assert (constexpr addable<int>(), “”);
struct S {}; S operator+(S, S);
static assert (!constexpr addable<S>(), “”);

istream_iterator

Some of the istream iterator<T> constructors are required to be constexpr if T is a literal type. The intention
is to allow the existing implementation technique of storing an element of type T inline to continue to work. However,
it actually rules out this technique: the default and copy constructors of T need not be marked constexpr, and if
they are not, the istream iterator<T> constructors could not be instantiated as constexpr.

Option 1 - tweak definition of literal type

The definition of ‘literal type’ could be modified such that instantiations of class templates are literal types if the
template from which they are instantiated has any constexpr constructors or constructor templates other than
move/copy constructors. g++ implements this resolution (perhaps accidentally).

Option 2 - split constexpr requirements

The requirements on constexpr functions and constructors could be split into requirements on declarations and
requirements on definitions, and then only the requirements on declarations could be considered when determining
whether a constexpr function template instantiation is constexpr.

Option 3 - remove notion of literal type

The notion of a literal type does not seem a useful addition to the existing notion of a constant expression, and
removing it would make C++ simpler and easier to learn, and would not hamstring future developments over
compatibility concerns.

Comments

In practice, the only use of the notion of a ‘literal type’ is to force implementers to diagnose certain ill-formed
constructs where otherwise no diagnostic would be required. However, removing it at this very late stage seems
impractical, so we provide wording for option 2.

Types can become literal after their definition

Despite the clear intentions of the standard, type B is not a literal type:

struct A {}; struct B : A {};

This is because its constructor is not implicitly defined until it is odr-used, and until that point it has no constexpr
constructors. This is hard to satisfactorily fix if option 3 (above) is not chosen: in general, determining whether the
constructor would be defined constexpr requires going though the motions of defining it (including performing any
necessary template instantiations and so on), and such work would be required in many contexts which require a
literal type.

Comments

We feel the best way to solve this problem is option 3 above (which removes any way to detect whether the
constructor is constexpr without odr-using it). If that option is not chosen, implementations could be required

to determine whether the implicitly-defined constructor would be constexpr when the meaning of the program
depends on whether the implicit declaration is constexpr, or an implicit default constructor could be declared (and
defined) constexpr if the class’ members and bases all have at least one constexpr constructor.

constexpr functions cannot use their parameters

[dcl.constexpr](7.1.5)/3 says: “The definition of a constexpr function shall satisfy the following constraints: [...] every
constructor call and implicit conversion used in initializing the return value shall be one of those allowed in a constant
expression.” Hence this is ill-formed:

constexpr int f(int a) { return a; }
... since the implicit lvalue-to-rvalue conversion on a is not allowed in a constant expression.

Comments

The requirement on constructor calls is dubious too: if a constructor might not be called (depending on the values of
the parameters) but is nonetheless used by the returned expression, the function should not be ill-formed.

Undefined constexpr functions can sometimes be called in constant
expressions

[expr.const](5.19)/2: Calls to undefined constexpr functions are allowed within constant expressions in the
definition of constexpr functions. Thus this is legal:

template<int N> struct S;

constexpr int f£();

constexpr int g() { return S<f()>::x; }

Such calls should not be core constant expressions.

Implicitly generating ill-formed constexpr functions

Many constexpr function templates can instantiate to functions which are marked constexpr but cannot produce
constant expressions. For instance:
struct S {}; bool operator<(S, S);
template<typename T> constexpr T max(T a, T b) { return (a < b) 2?2 b : a; }
constexpr S m = max(S(), S()); // ill-formed (no diagnostic required)
This is ill-formed because the instantiation max<s> is defined as a constexpr function, but cannot produce a
constant expression.

Likewise in this example:

int £();

struct A { constexpr A(int = £()); };
struct B : A {};

B b;

Here, the implicit definition of B::B() is constexpr, since it obeys the requirements of [dcl.constexpr](7.1.5)/4, but it
can never produce a constant expression so is ill-formed (again, no diagnostic is required).

And in this example:
struct A { A(); };
struct B { constexpr B(int); };

struct C { A a; using B::B; } c;
This is ill-formed (no diagnostic required) because C::C() is constexpr (because constexpr is an inherited
constructor characteristic), but again can never produce a constant expression.

Comments

An implementation is, of course, free to simply not diagnose these cases. But we feel that they should be well-
formed! We propose that template instantiations and implicitly-defined members be exempt from this rule. Templates
would instead follow the rule that there must exist a set of template arguments and function arguments which would
allow them to produce a constant expression.

Further, the wording for inherited constructors and defaulted constructors should be tightened such that the above
cases do not produce constexpr constructors.

Unions and constexpr

Union constructors can be marked constexpr, but are required to initialize all non-static data members. Hence
only unions with at most one member can have constexpr constructors. Likewise a union-like class is required to
initialize all of its variant members.

Comments

Union constructors should be required to initialize exactly one member (if the union has any members). Union-like
class constructors should be required to initialize all non-variant members, and one variant member in each non-
empty anonymous union. g++ does not require constexpr union constructors to initialize any member.

Deleted constexpr constructors and virtual base classes

constexpr constructors cannot generally appear in classes with virtual base classes. However, if they are defined
as deleted, then they can be. For instance, here:
struct A {};
struct B : virtual A {
constexpr B() = delete; };
This creates particular problems for option 2 (above) since it means that ‘no virtual base classes’ is not a requirement
of a constexpr constructor declaration, but is strange and inconsistent in any case.

Forward declarations of types inside and outside typedefs

This is legal:
constexpr int f£() {
typedef struct S;
return 0;
}
This is not:
constexpr int f£() {
struct S;
return 0;

}
This is inconsistent, to say the least. Since implementations are required to support the former, it is not unreasonable
to require them to also support the latter. Implementation experience shows that supporting full class definitions in
constexpr functions is also no additional burden.

In-class initializers and constexpr constructors
This is ill-formed:
int f£();

struct S {
int a = £();

constexpr S(int b) : a(b) {}
bi

because a class with a non-constant in-class initializer cannot have any constexpr constructors, even if they don’t use
that initializer. This is ill-formed too:

struct S {
int a = 0, b = a;
constexpr S(int k) : a(k) {} };

because b’s initializer is non-constant (even though it could be used unproblematically within a constexpr
constructor).

constexpr in for-range-declarations

An over-zealous rewording for the resolution of CWG1204 (added in the FDIS) allowed constexpr in for-range-
declarations. It is (almost) not possible for a for-range-declaration to ever legally be constexpr, since its initializer is
of the form * begin, where begin is neither constexpr nor const.

Proposed wording

The following wording changes target option 2 above; most of these changes would be required for any of the options
for handling literal types.

[basic.start.init](3.6.2)/2

Variables with static storage duration (3.7.1) or thread storage duration (3.7.2) shall be zero-initialized (8.5) before

any other initialization takes place.

Constant initialization is performed:

— if each full-expression (including implicit conversions) that appears in the initializer of a reference with static or

thread storage duration is a constant expression (5.19) and the reference is bound to an Ivalue designating an object

with static storage duration or to a temporary (see 12.2);

— if an object with static or thread storage duration is initialized by a constructor call, if the constructor is a

constexpr constructor, if all constructor arguments are constant expressions (including conversions), and if, after

function |nvocat|on substltutlon (7 1. 5) evewmshmmd-mﬁ-expmssmmmemmmmdﬂnfhe—
=or= is

constant expression;

— if an object with static or thread storage duration is not initialized by a constructor call and if every full-expression

that appears in its initializer is a constant expression.

Rationale: a brace-or-equal-initializer within the class definition should not affect behaviour of a constructor which

does not use it.

[basic.types](3.9)/10

A type is a literal type if it is:

— a scalar type; or

— a reference type; or

—aclass type (Clause 9) | thattesattof-

—ithas atriviardestroctor;

=tis an aggregate type (8.5.1) or has at least one constexpr constructor or constructor template that
TSTIot @ Topy or Move ToTTstructor;-

amd—

B S fh or

— an array of literal type.

Rationale: While a class is being defined, it may not yet have any constexpr constructors, but should still be usable
as a constexpr member function argument. The requirements of a trivial destructor and literal base and member
types have been moved to [dcl.constexpr](7.1.5)/4 to allow such cases to be diagnosed. The requirement on brace-

or-equal-initializers within the class definition is unnecessary and harmful. Finally, a constexpr constructor S(const
S&, int) should not be enough to make S a literal type, especially since if the definition of S::S adds a default
argument, it would stop being one.

[expr.const](5.19)/2

A conditional-expression is a core constant expression unless it involves one of the following as a potentially
evaluated subexpression (3.2), but subexpressions of logical AND (5.14), logical OR (5.15), and conditional (5.16)
operations that are not evaluated are not considered [Note: An overloaded operator invokes a function. — end note]:
— this (5.1) unless it appears as the postfix-expression in a class member access expression, including the result
of the implicit transformation in the body of a non-static member function (9.3.1);

— an invocation of a function other than a constexpr constructor for a literal class or a constexpr function [Note:
Overload resolution (13.3) is applied as usual — end note J;

— an invocation of an undefined constexpr function or an undefined constexpr constructoroutsidethredefimtiom
of acorstexprfunctiomoracorstexprconstructor;

— an invocation of a constexpr function with arguments that, when substituted by function invocation substitution
(7.1.5), do not produce a constant expression; [Example:

constexpr const int* addr (const inté& ir) { return &ir; } // OK

static const int x = 5;
constexpr const int* xp = addr(x); // OK: (const int*)s&(const int&)x is an

// address contant expression
constexpr const int* tp = addr(5); // error, initializer for constexpr variable not a
constant

// expression; (const int*)&(const int&)5 is not a
constant

// expression because it takes the address of a
temporary

— end example]
— an invocation of a constexpr constructor with arguments that, when substituted by function invocation
substitution (7.1.5), do not produce all constant expressions for the
corstroctor cattsand-futtcexpressions i the rrer=mitiatizers; [Example:
int x; // not constant
struct A {
constexpr A(bool b) : m(b?42:x) { }
int m; };
constexpr int v = A(true).m; // OK: constructor call initializes
// m with the value 42 after substitution
constexpr int w = A(false).m; // error: initializer for m is
// x, which is non-constant

— end example]

— an invocation of a constexpr function or a constexpr constructor that would exceed the implementation-

defined recursion limits (see Annex B);

— a result that is not mathematically defined or not in the range of representable values for its type;

— a lambda-expression (5.1.2);

— an lvalue-to-rvalue conversion (4.1) unless it is applied to
— a glvalue of integral or enumeration type that refers to a non-volatile const object with a preceding
initialization, initialized with a constant expression, or
— a glvalue of literal type that refers to a non-volatile object defined with constexpr, or that refers to a sub-
object of such an object, or
— a glvalue of literal type that refers to a non-volatile temporary object whose lifetime has not ended,
initialized with a constant expression;

— an Ivalue-to-rvalue conversion (4.1) that is applied to a glvalue that refers to a non-active member of a union or a

subobject thereof;

— an id-expression that refers to a variable or data member of reference type unless the reference has a preceding

initialization, initialized with a constant expression;

— a dynamic cast (5.2.7);

— a reinterpret_cast (5.2.10);

— a pseudo-destructor call (5.2.4);

— increment or decrement operations (5.2.6, 5.3.2);

— a typeid expression (5.2.8) whose operand is of a polymorphic class type;

— a new-expression (5.3.4);

— a delete-expression (5.3.5);

— a subtraction (5.7) where both operands are pointers;

— arelational (5.9) or equality (5.10) operator where the result is unspecified;
— an assignment or a compound assignment (5.17); or

— a throw-expression (15.1).

[stmt.ranged](6.5.4)/2
In the decl-specifier-seq of a for-range-declaration, each decl-specifier shall be sittrera type-specifierorcomstexpr.

[dcl.constexpr](7.1.5)/1

The constexpr specifier shall be applied only to the definition of a variable, the declaration of a function or function
template, or the declaration of a static data member of a literal type (3.9). If

any declaration of a function or function template has = constexpr specifier, then all its declarations shall contain
the constexpr specifier. [Note: An explicit specialization can differ from the template declaration with respect to
the constexpr specifier. — end note] [Note: Function parameters cannot be declared constexpr. — end note] [
Example: ...]

[dcl.constexpr](7.1.5)/2

A constexpr specifier used in the declaration of a function that is not a constructor declares
that forctiom to be a constexpr function . Similarly, a constexpr
specifier used in a constructor or dectaratiomrdeclares that comstructor to
be a constexpr constructor . constexpr functions and constexpr

constructors are implicitly inline (7.1.2).
Rationale: The standard uses these terms, so should define them.

[dcl.constexpr](7.1.5)/3

The defimitiom of a constexpr function shall satisfy the following corstraimts.
— it shall not be virtual (10.3);

— its return type shall be a literal type;

— each of its parameter types shall be a literal type;

— its function-body shall be = delete, = default, or a compound-statement that contains only
— null statements,
— static_assert-declarations
— typedef-declarations and alias-declarations that do not define classes or
enumerations,
— using-declarations,
— using-directives,
— and exactly one return statement;

[Example:
constexpr int square (int x)
{ return x * x; } // OK
constexpr long long max ()
{ return 2147483647; } // OK
constexpr int abs(int x)
{ return x < 0 ? -x : x; } // OK
constexpr void f (int x) // error: return type is void
(/%)
CONMStEXpTr T pPreviimt =7
1 i CLULTIl ==X, 7 el L oL, use OL GeCLeElllelll
constexpr int g(int x, int n) { STTOr T DOdy TIoC JUSt S TIeturT ©XpT
int r = 1;
while (--n > 0) r *= x;

return r; }
— end example]
Rationale: The constraints have been split, and renamed to requirements since that is how they are described
elsewhere in the standard. Forward-declared functions should be able to have parameters of forward-declared types.
Since a function definition requires complete argument and return types, constexpr function definitions still require

their argument and return types to be literal. The requirement on constructor calls and implicit conversions rejects too
much, and is unnecessary since such a function is required to be able to return a constant expression.

[dcl.constexpr](7.1.5)/4
tadefimition, of a constexpr constructor;
each of the parameter types shall be a literal type

In additior; either its function-body shall be = delete or = default orit
shall satisfy the following constraints:
=theclassshattrmottaveany virtuvat base ctasses;—
— its function-body shall not be a function-try-block;
— the compound-statement of its function-body shall contain only
— null statements,
— static_assert-declarations
— typedef-declarations and alias-declarations that do not define classes or
enumerations,
— using-declarations,
— and using-directives;
— every non-static data member and base class sub-object shall be initialized (12.6.2);
— every constructor involved in initializing non-static data members and base class sub-objects shall be a
constexpr constructor;

[Example:

struct Length ({

explicit constexpr Length(int 1 = 0) : val(i) { }

private:

int val; };
— end example]
Rationale: Same as /3. Some bullets have been moved here from the definition of a literal type, to require such
constexpr constructors to be diagnosed. (These diagnostics were permitted anyway, since such a constructor could
not produce a constant expression.) The bullet on brace-or-equal-initializers for non-static data members rejects
reasonable programs, and the previous bullet already covers the corrected requirements.

[dcl.constexpr](7.1.5)/5
[...] For a tomste=prfunction ,if no

function argument values and exist such that the function invocation substitution
would produce a constant expression (5.19), the program is ill-formed;

no diagnostic required.Foracomnstexpreonstructor; it moargument vatues exist sucthrthatafter furctiommvocation
tmctodingconversions);theprogranTisitformed; o diegnostic required: [Example: ...]

Rationale: constexpr functions should be rejected if that use of the constexpr specifier cannot produce a constant
expression. [expr.const] defines what it means for a call to a constructor to be a constant expression; special handling
of constexpr constructors is therefore unnecessary.

[dcl.constexpr](7.1.5)/6

If the instantiated template specialization of a constexpr function template or member function of a
ttasstemplate woutdfaitto-satisfyics the requirements for a constexpr function or constexpr constructor
, that specialization is Tot-a constexpr function or constexpr constructor. [Note: tf the function
is a member function it will still be const as described below. — end note] If no specialization of the template would
yield a constexpr function or constexpr constructor, the program is ill-formed; no diagnostic required.
Rationale: For consistency, only the declaration of a constexpr function template is analyzed to determine whether
an instantiation is constexpr. The sense has been reversed since there is no other normative text which would make
constexpr function template instantiations produce constexpr functions. Finally, the wording is extended to handle
constexpr member functions in local classes defined within function or class templates.

[class.static.data](9.4.2)/3

If a non-volatile const static data member is of integral or enumeration type, its declaration in the class definition can
specify a brace-or-equal-initializer in which every initializer-clause that is an assignment-expression is a constant
expression (5.19). A static data member of literal type can be declared in the class definition with the constexpr
specifier; if so, its declaration shall specify a brace-or-equal-initializer in which every initializer-
clause that is an assignment-expression is a constant expression. [Note: In both these cases, the member may
appear in constant expressions. — end note] The member shall still be defined in a namespace scope if it is odr-
used (3.2) in the program and the namespace scope definition shall not contain an initializer.

[class.ctor](12.1)/5
A default constructor for a class X is a constructor of class X that can be called without an argument. If there is no
user-declared constructor for class X, a constructor having no parameters is implicitly declared as defaulted (8.4). An
implicitly-declared default constructor is an inline public member of its class

. A defaulted default constructor for class X is defined as deleted if:
— X is a union-like class that has a variant member with a non-trivial default constructor,
— any non-static data member with no brace-or-equal-initializer is of reference type,
— any non-variant non-static data member of const-qualified type (or array thereof) with no brace-or-equal-initializer
does not have a user-provided default constructor,
— X is a union and all of its variant members are of const-qualified type (or array thereof),
— X is a non-union class and all members of any anonymous union member are of const-qualified type (or array
thereof),
— any direct or virtual base class, or non-static data member with no brace-or-equal-initializer, has class type M
(or array thereof) and either M has no default constructor or overload resolution (13.3) as applied to M’s default
constructor results in an ambiguity or in a function that is deleted or inaccessible from the defaulted default
constructor, or
— any direct or virtual base class or non-static data member has a type with a destructor that is deleted or
inaccessible from the defaulted default constructor.
A default constructor is trivial if it is not user-provided and if:
— its class has no virtual functions (10.3) and no virtual base classes (10.1), and
— no non-static data member of its class has a brace-or-equal-initializer, and
— all the direct base classes of its class have trivial default constructors, and
— for all the non-static data members of its class that are of class type (or array thereof), each such class has a trivial
default constructor.
Otherwise, the default constructor is non-trivial.

[class.ctor](12.1)/6

A default constructor that is defaulted and not defined as deleted is implicitly defined when it is odr-used (3.2) to
create an object of its class type (1.8) or when it is explicitly defaulted after its first declaration. The implicitly-defined
default constructor performs the set of initializations of the class that would be performed by a user-written default
constructor for that class with no ctor-initializer (12.6.2) and an empty compound-statement. If that user-written
default constructor would be ill-formed, the program is ill-formed. If that user-written default constructor would satisfy
the requirements of a constexpr constructor (7.1.5), the implicitly-defined default constructor is constexpr.
Before the defaulted default constructor for a class is implicitly defined, all the non-user-provided default constructors
for its base classes and its non-static data members shall have been implicitly defined. [Note: An implicitly-declared
default constructor has an exception-specification (15.4). An explicitly-defaulted definition might have an implicit
exception-specification, see 8.4. — end note]

[class.copy](12.8)/13

A copy/move constructor that is defaulted and not defined as deleted is implicitly defined if it is odr-used (3.2)
to initialize an object of its class type from a copy of an object of its class type or of a class type derived

from its class type or when it is explicitly defaulted after its first declaration. [Note: The copy/move

constructor is implicitly defined even if the implementation elided its odr-use (3.2, 12.2). — end note] If

the implicitly-defined constructor would satisfy the requirements of a constexpr constructor (7.1.5), the
implicitly-defirret: constructor is constexpr.

[class.inhctor](12.9)/2

The constructor characteristics of a constructor or constructor template are
— the template parameter list (14.1), if any,

— the parameter-type-list (8.3.5),

— the exception-specification (15.4),

— absence or presence of explicit (12.3.1);amd—

[class.inhctor](12.9) Add new paragraph after p9:
An inherited constructor is declared as constexpr if its implicit definition would satisfy the requirements of a
constexpr constructor.

[istream.iterator.cons](24.6.1.1)/1

Efects: Constructs the end-of-stream iterator. If T () is a titerattype, then this constructor shall be
a constexpr constructor.
Rationale: A literal type need not have a constexpr default constructor.

[istream.iterator.cons](24.6.1.1)/5
Effects: Constructs a copy of x. If T isa titerattype, then this constructor shall be a
triviatcopy constructor.

Rationale: A literal type need not be trivially-copyable.

