N3418=12-0108

Proposal for Generic (Polymorphic) Lambda Expressions
Document no: N3418=12-0108

Faisal Vali Herb Sutter Dave Abrahams

2012-09-21

Abstract: The C++11 standard provides support for non-generic lambda expressions.
In the spirit of the original proposal, and motivated by the design principles
that led to the introduction of auto, we propose adding generic lambdas to
C++.

1 Introduction

C++11 lambda expressions can considerably improve the syntax of code that uses simple,
one-off, function objects. Unfortunately, using lambdas can be frustrating because the
programmer is often required to explicitly spell out parameter types that the compiler could
deduce automatically. Here follow two examples:

std::for_each(begin(v), end(v), [](decltype(*begin(v)) x){ std::cout << x; }
)s

auto get_size = [](
std: :unordered_multimap<std::wstring,std::list<std::string> > const& m
Y{ return m.size(); };

If the lambda expressions were generic, these examples would become much simpler:
std::for_each(begin(v), end(v), [](& x){ std::cout << x; });

auto get_size = []J(& m){ return m.size(); };

The lack of genericity in C++11 lambdas can also be a direct obstacle. For example,
Consider a std: : transform-like algorithm whose implementation has been vectorized with
SIMD instructions. The length of most input sequences will not be an exact multiple of the
SIMD vector size, so two versions of the function parameter are needed: one for complete
vectors and another for scalar elements. To accommodate C++11 lambdas, the algorithm
might accept two functions:

vtransform(
begin, end,
[J(float x){ return 2*x; }, [](simd_vector<float> const& x){ return 2*x; }

)5

Note that in a correct call to this algorithm, the bodies of the two functions will always be
identical. With a generic lambda, both functions could be supplied by a single argument:

N3418=12-0108

vtransform(begin, end, [](&x){ return 2*x; });

Generic lambdas have precedent in other useful statically-typed languages:

C# 3.0 (2007) : X => x * x;
Java 1.8 (~2013) : X => x * x;
D 2.0 (~2009) : (x) { return x * x; };

In addition, members of the C++ committee and broader community have expressed the need
for generic lambdas across various C++ forums.*

Generic lambdas similar to those proposed here were considered in the original C++11
lambda proposal [Willcock2006], but were eventually dropped for C++11 because it wasn’t
clear how an un-constrained lambda expression could be used inside a concept-constrained
template [Toronto 2007, Jarvi2007]. Although concepts were also removed from C++11,
the community still has an interest in seeing concepts in a future C++, and the committee is
still working on the problem [Stroustrup 2012], so conflicts between these two features can’t
be dismissed out-of-hand. Fortunately, we believe we now know how to type-check uses of
un-constrained templates from constrained ones [Jarvi2011-19566, Abrahams2011-20760,
Abrahams2011-next].

2 Proposal

We are proposing the following pure extensions to C++11:

1. Allow the type-specifier to be omitted in a lambda’s parameter declaration (as in the
examples above), thereby making the lambda generic

2. Allow the use of a function template parameter list and familiar template syntax,
making it possible to for generic lambdas to be partially-ordered

3. Allow the lambda body to be an expression

4. Allow regular function templates to be declared with a lambda-like syntax

Details follow.

2.1 Allow the type-specifier within a parameter declaration of a lambda to
be optional (as intended by the original authors of C++11 Lambdas')

If the initial type-specifier within the decl-specifier-seq of a lambda’s parameter-
declaration is omitted, the expression creates a generic closure. A generic closure type is
just like a familiar C++11 closure type except that its function call operator is a member
function template. In the operator’s declaration, omitted type-specifiers are replaced by
unique template type parameters, which are added to the operator’s template-parameter-
list.

For example, this expression

[J(const& x, & y){ return x + y; }

I Lawrence Crowl: "Yes. The intent was to expand lambda in just this direction after 2012."

N3418=12-0108

might create the following closure type:

struct anonymous

{
template <typename T, typename U>
auto operator()(T const& x, U& y) const -> decltype(x+y)
{ return x + y; }

}s

Note: the syntactic rule for what can be omitted from a lambda’s parameter-declaration
corresponds to the rule for the placement of auto in variable declarations: it must be the
type-specifier at the beginning.

As a consequence of this rule, the following examples are all valid generic lambda

expressions:

¢ &&a {}
[1C *a {}
[1¢ const* a {}
[1(*const a {3

[1((&) [5] {3}

[1((*funptr)(int, char) {}

[1(X::*data_member Y}

[1((X::*member_function)(int)){}

While these forms of parameter-declaration are expected to be less common than x, &y,
and const&z, they can be partially-ordered. We explain why that may be useful in the
next section. Note: This syntax intentionally does not support unnamed parameters.

2.2 Allow the use of familiar template syntax in lambda expressions

While omitting type-specifiers is very convenient, and expressive enough for most
cases, it does not support certain very common parameter forms (e.g shared_ptr<T>,
initializer_list<T>) that are useful in creating partial orderings amongst overloaded
generic functions. Lambdas, being functions and not function objects, can’t be
overloaded in the usual implicit way, but they can be “explicitly overloaded” using the
following simple code (brought to our attention by Mathias Gaunard):

template<class F1, class F2> struct overloaded : F1, F2
{

overloaded(F1 x1, F2 x2) : F1(x1), F2(x2) {}

using F1::operator();

using F2::operator();

}s

template<class F1, class F2>
overloaded<F1l, F2> overload(F1l f1, F2 f2)
{ return overloaded<F1, F2>(f1, f2); }

N3418=12-0108

This technique would especially useful for creating visitors, e.g. for boost: :variant,
something like this:

auto visitor
= overload([]((&a)[N]) {...},

overload([](T* p) { ... },

overload([](shared_ptr<T> sp) { ... },
[1(initializer_list<7T> il) { ... })

))s

However, simply omitting template parameters doesn’t allow us to express the lambda
expressions needed for this example (note the uses of “T” and “N”’). Therefore, we
propose to allow a template-parameter-list enclosed in angle-brackets following the
lambda-introducer, as follows:

auto visitor
= overload([]<int N>((&a)[N]) { .. },
overload([]<class T>(T* p) { .. }, // equivalent to [](*p){ .. };
overload([]<class T>(shared_ptr<T> sp){ .. },
[J<class T>(initializer_list<T> il){ .. }

)))s

visitor({1, 2, 3}); // ok - calls initializer_list "overload"

When mixed with explicit template-parameter-lists, template parameters implied by
omitted type-specifiers are appended to the list, so []<int N>((&a)[N]) is equivalent to
[]<int N, class T>(T (&a)[N]).

Familiar template syntax and partial ordering rules apply, with no new rules or corner
cases, so we expect all of the following examples to be valid:

[I<int N>(int (&a)[N]) {}
[]<class T, int N>(T (&a)[N], b) {}
[](Stack<std::vector, int, 5> x, a) {}

[]<int N, class T>(Stack<std::vector, T, N>& a, b) {}

[1<
template< template<...> class, class, int> class StackLike
, template<...> class V, class T, int N
>(StackLike<V, T, N>& a, b) {}

[]<class...Tys>(Tys...a) {}

Since the function call operator is public, elements of the template-parameter-list can be
explicitly specified if needed:

[1<int N>(const int(&h)[N]){}).operator()<5>({1,2,3});)

http://boost.org/libs/variant
http://boost.org/libs/variant
http://boost.org/libs/variant

N3418=12-0108

In early 2009, a similar experimental extension to lambda expressions was implemented
for GCC (http://gcc.gnu.org/ml/gec/2009-08/msg00174.html).

2.3 Permit a lambda body to be an expression

Experience has shown that many lambda bodies are short, and of the form “{ return
expr; }”. As a further convenience, we propose allowing such a lambda body to be
written as simply “expr” with identical semantics:

for_each(begin(v), end(v), [](&e) e += 42); // { return e += 42; }
sort(begin(myints), end(myints), []1(i,j) j < i); // { return j < i; }

Note: this extension should also apply to non-generic lambdas and should not be tied to
generic-lambdas.

2.4 Allow regular function templates to be defined by inserting a name in
the (extended) lambda syntax

The great syntactic convenience of the extensions proposed in here, and of the existing
automatic return type deduction, should be extended to ordinary function templates,
allowing declarations like this one:

[Imin(&x, &y) ¥ < X ? y : X; // define a function template

In this syntax, non-empty capture lists would be forbidden. See also http://cpp-next.com/
archive/2011/11/having-it-all-pythy-syntax/, where this extension was first proposed, and
http://pfultz2.github.com/Pythy/, where it has been implemented in terms of macros.

2.5 Autogenerate a SFINAE-friendly template conversion operator to
pointer-to-function in captureless generic lambdas

Similar to the C++11 non-generic lambda, each polymorphic lambda that does not
capture any variable shall have a public non-virtual non-explicit const conversion to
pointer to function, that, when invoked, has the same effect as invoking the closure type’s
function call operator. In the case of a generic lambda, this conversion function will be

a member template that provides a SFINAE-friendly conversion to a type-appropriate
function-pointer using current C++11 rules. For example,

void (*fp)(widget, widget*, gadget const&, gadget (*)(widget&)
, widget (&)[10], int (widget::*)()
) =[1(a, b, ¢, d, e, f) { };

3 Member templates of local classes

We define the semantics of the proposed generic lambdas as similar to that of non-generic
lambdas except that the function call operator and implicit conversion to function-pointer (if
capture-less) will be generated as member templates.

http://gcc.gnu.org/ml/gcc/2009-08/msg00174.html
http://gcc.gnu.org/ml/gcc/2009-08/msg00174.html
http://gcc.gnu.org/ml/gcc/2009-08/msg00174.html
http://gcc.gnu.org/ml/gcc/2009-08/msg00174.html
http://gcc.gnu.org/ml/gcc/2009-08/msg00174.html
http://gcc.gnu.org/ml/gcc/2009-08/msg00174.html
http://gcc.gnu.org/ml/gcc/2009-08/msg00174.html
http://gcc.gnu.org/ml/gcc/2009-08/msg00174.html
http://gcc.gnu.org/ml/gcc/2009-08/msg00174.html
http://gcc.gnu.org/ml/gcc/2009-08/msg00174.html
http://gcc.gnu.org/ml/gcc/2009-08/msg00174.html
http://gcc.gnu.org/ml/gcc/2009-08/msg00174.html
http://gcc.gnu.org/ml/gcc/2009-08/msg00174.html
http://gcc.gnu.org/ml/gcc/2009-08/msg00174.html
http://gcc.gnu.org/ml/gcc/2009-08/msg00174.html
http://cpp-next.com/archive/2011/11/having-it-all-pythy-syntax/,
http://cpp-next.com/archive/2011/11/having-it-all-pythy-syntax/,
http://cpp-next.com/archive/2011/11/having-it-all-pythy-syntax/,
http://cpp-next.com/archive/2011/11/having-it-all-pythy-syntax/,
http://cpp-next.com/archive/2011/11/having-it-all-pythy-syntax/,
http://cpp-next.com/archive/2011/11/having-it-all-pythy-syntax/,
http://cpp-next.com/archive/2011/11/having-it-all-pythy-syntax/,
http://cpp-next.com/archive/2011/11/having-it-all-pythy-syntax/,
http://cpp-next.com/archive/2011/11/having-it-all-pythy-syntax/,
http://cpp-next.com/archive/2011/11/having-it-all-pythy-syntax/,
http://cpp-next.com/archive/2011/11/having-it-all-pythy-syntax/,
http://cpp-next.com/archive/2011/11/having-it-all-pythy-syntax/,
http://cpp-next.com/archive/2011/11/having-it-all-pythy-syntax/,
http://cpp-next.com/archive/2011/11/having-it-all-pythy-syntax/,
http://cpp-next.com/archive/2011/11/having-it-all-pythy-syntax/,
http://cpp-next.com/archive/2011/11/having-it-all-pythy-syntax/,
http://cpp-next.com/archive/2011/11/having-it-all-pythy-syntax/,
http://cpp-next.com/archive/2011/11/having-it-all-pythy-syntax/,
http://cpp-next.com/archive/2011/11/having-it-all-pythy-syntax/,
http://cpp-next.com/archive/2011/11/having-it-all-pythy-syntax/,
http://cpp-next.com/archive/2011/11/having-it-all-pythy-syntax/,
http://www.google.com/url?q=http%3A%2F%2Fpfultz2.github.com%2FPythy%2F&sa=D&sntz=1&usg=AFQjCNGkIjQQjkoJ9uTElWWxsM20UFbjRw
http://www.google.com/url?q=http%3A%2F%2Fpfultz2.github.com%2FPythy%2F&sa=D&sntz=1&usg=AFQjCNGkIjQQjkoJ9uTElWWxsM20UFbjRw
http://www.google.com/url?q=http%3A%2F%2Fpfultz2.github.com%2FPythy%2F&sa=D&sntz=1&usg=AFQjCNGkIjQQjkoJ9uTElWWxsM20UFbjRw
http://www.google.com/url?q=http%3A%2F%2Fpfultz2.github.com%2FPythy%2F&sa=D&sntz=1&usg=AFQjCNGkIjQQjkoJ9uTElWWxsM20UFbjRw
http://www.google.com/url?q=http%3A%2F%2Fpfultz2.github.com%2FPythy%2F&sa=D&sntz=1&usg=AFQjCNGkIjQQjkoJ9uTElWWxsM20UFbjRw
http://www.google.com/url?q=http%3A%2F%2Fpfultz2.github.com%2FPythy%2F&sa=D&sntz=1&usg=AFQjCNGkIjQQjkoJ9uTElWWxsM20UFbjRw
http://www.google.com/url?q=http%3A%2F%2Fpfultz2.github.com%2FPythy%2F&sa=D&sntz=1&usg=AFQjCNGkIjQQjkoJ9uTElWWxsM20UFbjRw
http://www.google.com/url?q=http%3A%2F%2Fpfultz2.github.com%2FPythy%2F&sa=D&sntz=1&usg=AFQjCNGkIjQQjkoJ9uTElWWxsM20UFbjRw
http://www.google.com/url?q=http%3A%2F%2Fpfultz2.github.com%2FPythy%2F&sa=D&sntz=1&usg=AFQjCNGkIjQQjkoJ9uTElWWxsM20UFbjRw
http://www.google.com/url?q=http%3A%2F%2Fpfultz2.github.com%2FPythy%2F&sa=D&sntz=1&usg=AFQjCNGkIjQQjkoJ9uTElWWxsM20UFbjRw
http://www.google.com/url?q=http%3A%2F%2Fpfultz2.github.com%2FPythy%2F&sa=D&sntz=1&usg=AFQjCNGkIjQQjkoJ9uTElWWxsM20UFbjRw

N3418=12-0108

Since block-scoped lambdas are defined in terms of local classes, we’d need to ensure that
the semantics of member templates of local classes (which are not supported by C++11) are
well defined and consistent with those of member templates of non-local classes. While

this issue has presumably been solved, since member templates of local classes seem to be
supported by Clang-3.2, we have largely sidestepped this issue by relying on our current
C++11 intuition of the behavior of member templates. We assume that if this proposal is
moved forward by EWG, these details will need to be fully-elaborated (probably in a separate
proposal) before this feature can be incorporated in the working paper.

There have been some suggestions on the reflectors [Voutilainen2011-20750, Denett2011-
19528, Gabriel2011-19533] of extending the language to support local templates. If such a
proposal is made and accepted, then this particular issue would evaporate.

4 Implementation issues

Although this is a preliminary design paper, we spent some time considering implementation.
Naturally, if this paper is moved forward by EWG, more attention would be given to

this area, but so far, we believe the following implementation issues might need further
discussion and investigation:

1. The grammar rules for lambdas with omitted #ype-specifiers and lambda bodies
as expressions would need to be explored for feasibility and ambiguity (although
mention has been made in this web-article that some of these rules have already been
worked out)

2. The feasibility of return type deduction of generic lambda-expressions would need to
be investigated

3. Notwithstanding the patch mentioned earlier, there is currently no complete
implementation of these features in a C++ compiler. Some of the authors of this
paper are working on a C++ compiler implementation and intend to share their
experience in a followup paper.

5 Design Space Considerations, Choices and Rationale

In this section we discuss some of the design choices we considered and our rationale for
their omission where applicable.

5.1 We do not require or allow the use of a placeholder such as auto
We considered the use of auto as a type specifier to indicate a generic parameter and
decided against it because we felt that it did not add readability.

Consider the following proposed forms:

[1(a) Vs [1(auto a)

[]1(&a) Vs [1(auto &a)

[](&&a) Vs [](auto &&a)

[1(*a) Vs [1(auto *a)

[1((&)[5]) Vs [1(auto (&a)[5])
[1((*funptr)(int, char)) vs [J(auto (*funptr)(int, char))
[1(X::*memvar) Vs [1(auto X::*memvar)
[J((X::*memfun) (int)) Vs [J(auto (X::*memfun)(int))

http://cpp-next.com/archive/2011/11/having-it-all-pythy-syntax/
http://cpp-next.com/archive/2011/11/having-it-all-pythy-syntax/
http://cpp-next.com/archive/2011/11/having-it-all-pythy-syntax/

N3418=12-0108

A consequence of this decision is that generic lambdas do not support unnamed
parameters.

It might be that some would prefer to have auto be optional here. If that is the case,
we would remind them to consider the discrepancy in deduction semantics between
auto variable deduction and template argument deduction for function calls when

it comes to initializer lists, and how the auto might seem misleading if generics
follow template argument deduction for function calls. This would be a non-issue if
there was a perfect correspondence between auto deduction and template argument
deduction for function calls, and we hope this discordance will be addressed by
another proposal.

In addition, if after feedback from the core-language committee, it is felt that the use
of auto is essential to avoid parsing ambiguities, then we would obviously need to
reconsider the implications of this design choice.

5.2 We do not propose allowing instantiation of a non-generic lambda
from a generic one

We considered providing a member function template, which for the purposes of
this section we will call instantiate, within the closure type of every generic lambda,
that if supplied (either explicitly, or implicitly) with types for the generic parameters
would instantiate a non-generic lambda closure object of a unique closure type.

That is, imagine a nested member template class within the closure type of the generic
lambda, that has the same template-parameter-list as the inline function call operator
and contains its own non-template inline function call operator with corresponding
types that forwards to the generic lambda's body. Thus, this type when specialized
with the relevant types, would instantiate a non-generic version of the generic lambda,
and behave exactly like any other non-generic lambda.

So consider:

struct widget { ... } wl; struct gadget { ... } gi;
struct widget2 { ... } w2; struct gadget2 { ... } g2;
auto generic = [J(a, b) { ... }

generic(wl, gl); // ok
generic(w2, g2); // ok

auto nongeneric = generic.instantiate<widget, gadget>();

nongeneric(wl, gl); // ok
nongeneric(w2, g2); // ERROR

While the idea seemed vaguely promising to some of us, none of us could construct a
compelling use-case, so we dropped it. Without this feature, if a non-generic version
of the lambda is truly ever needed, perhaps a non-generic lambda expression could be
made to forward to the generic lambda, e.g:

N3418=12-0108

5.3

[&local_capture](a) { return a + local_capture; };
[g]l(int a) { return g(a); };

auto g
auto n

We note that generic lambdas support recursion slightly better than

non-generic lambdas

5.4

6

Currently, in C++11, if one desires a recursive lambda expression, then one has to
resort to the following gymnastics using std::function. e.g.,

std::function<int(int)> factorial;
factorial = [&factorial](int n) { return n <=1 ? n : n * factorial(n -
ED NN

int n = factorial(5);

This seems hackish and is less efficient than the direct use of the lambda.
With generic lambdas, such affairs improve slightly, and one could write:

auto factorial = []J(self, n) { return n <=1 ? n : n * self(self, n-1); }
int n = factorial(factorial, 5);

Not too much better, and in some ways worse as far as syntax goes, but it avoids the
overhead of std::function and a capture.

Feature extension in the setting of the Concepts Proposal (n3351)

Since the initial generic-lambda proposal was affected by concerns regarding
interactions with concepts, we felt that we should discuss the ramifications of the
current Concept design on our proposal. While the implementation concerns are
discussed in the section on implementation issues, we wanted to briefly touch upon
how generic-lambdas could evolve in the setting of concepts.

For concepts with a single template parameter, one could write:

concept PodType<typename T> = is_pod<T>::value;

[1(PodType p) { } // generic lambda accepting only pod types

For concepts with multiple template parameters one could resort to the more verbose
syntax described above.

Further work

We are certain that we have not covered the entire extent of the design space here and
welcome suggestions to refine and improve this proposal. In particular, we believe we may
have made an important step towards the unification of functions and function objects in
C++, but that work is still ongoing.

7

Acknowledgments

N3418=12-0108

We are grateful for the timely help and comments provided by Dean Michael Berris,
Lawrence Crowl, Mathias Gaunard, Jaako Jarvi, Ville Voutilainen.

Arthur Butcher is the author of the GCC patch mentioned earlier in the paper.

This proposal draws much from all the initial lambda (generic and nongeneric) proposals put
forth by Jaako Jarvi, John Freeman & Lawrence Crowl.

(*) User Demand

e “Ireally hope this gets added to C++ soon. This would fix so many problems
with lambdas. Currently, lambdas in C++, trap you in a monomorphic box
that you can’t get out. So, in C++11, I have to use named functions and
Boost.Phoenix, just like I did in C++03.” Paul (http://cpp-next.com/archive/2011/11/
having-it-all-pythy-syntax/)

http://cpp-next.com/archive/2011/1 1/having-it-all-pythy-syntax/

http://pfultz2.github.com/Pythy/ (Macro-based simulation of pythy functions)
http://stackoverflow.com/questions/4643039/c11-and-the-lack-of-polymorphic-lambdas-why
http://stackoverflow.com/questions/3575901/can-lambda-functions-be-templated

“Why aren’t there polymorphic lambdas?” (Scott Meyers’ question every single time Herb
shows any lambda example in a talk or paper)

References

e [Willcock2006] J. Willcock, J Jarvi, D Gregor, B Stroustrup and A Lumsdaine. Lambda expressions
and
closures for C++ N1968=06-0038, ISO/IEC JTC 1, Information Technology,
Subcommittee SC 22, Programming Language C++, 2006.
[Jarvi2007] J Jarvi, J Freeman, and L Crowl. Lambda expressions and
closures for C++ (Revision 1) N2329=07-00189, ISO/IEC JTC 1, Information
Technology, Subcommittee SC 22, Programming Language C++, 2007.
[Stroustrup2012] B. Stroustrup, A. Sutton (editors). A Concept Design for the STL
N3351=12-0041, ISO/IEC JTC 1, Information Technology, Subcommittee SC 22,
Programming Language C++, 2012.
o [Jarvi2011-19566] c++std-core-19566 Re: Why [temp.mem] p.2: A local class shall not have member
templates. ?
e [Abrahams2011-20760] c++std-core-20760 Re: Template definitions in block scope?
e [Abrahams2011-next] http://cpp-next.com/archive/2011/12/a-breakthrough-for-concepts/
e [Toronto2007] : C++ ISO Standards committee Evolution WG wiki, Thursday Notes Excerpt:
debate about monomorphic/polymorphic lambdas and specification size and time.
Jakko will redraft proposal.
Two level strategy:
1. simple syntax + just monomorphic design
5/2/2/0/0
2. general syntax + polymorphic
Just make sure 1 is extendible to 2.
e [Voutilainen2011-20750]: ct++std-core-20750, Template definitions in block scope?

e [Denett2011-19528]: ct+tstd-core-19528, Re: Why [temp.mem] p.2: A local class shall not have
member templates. ?
o [Gabriel2011-19533]: ct++std-core-19533, Re: Why [temp.mem] p.2: A local class shall
not have

member templates. ?

http://cpp-next.com/archive/2011/11/having-it-all-pythy-syntax/
http://cpp-next.com/archive/2011/11/having-it-all-pythy-syntax/
http://cpp-next.com/archive/2011/11/having-it-all-pythy-syntax/
http://cpp-next.com/archive/2011/11/having-it-all-pythy-syntax/
http://cpp-next.com/archive/2011/11/having-it-all-pythy-syntax/
http://cpp-next.com/archive/2011/11/having-it-all-pythy-syntax/
http://cpp-next.com/archive/2011/11/having-it-all-pythy-syntax/
http://cpp-next.com/archive/2011/11/having-it-all-pythy-syntax/
http://cpp-next.com/archive/2011/11/having-it-all-pythy-syntax/
http://cpp-next.com/archive/2011/11/having-it-all-pythy-syntax/
http://cpp-next.com/archive/2011/11/having-it-all-pythy-syntax/
http://cpp-next.com/archive/2011/11/having-it-all-pythy-syntax/
http://cpp-next.com/archive/2011/11/having-it-all-pythy-syntax/
http://cpp-next.com/archive/2011/11/having-it-all-pythy-syntax/
http://cpp-next.com/archive/2011/11/having-it-all-pythy-syntax/
http://cpp-next.com/archive/2011/11/having-it-all-pythy-syntax/
http://cpp-next.com/archive/2011/11/having-it-all-pythy-syntax/
http://cpp-next.com/archive/2011/11/having-it-all-pythy-syntax/
http://cpp-next.com/archive/2011/11/having-it-all-pythy-syntax/
http://cpp-next.com/archive/2011/11/having-it-all-pythy-syntax/
http://pfultz2.github.com/Pythy/
http://pfultz2.github.com/Pythy/
http://pfultz2.github.com/Pythy/
http://pfultz2.github.com/Pythy/
http://pfultz2.github.com/Pythy/
http://pfultz2.github.com/Pythy/
http://pfultz2.github.com/Pythy/
http://pfultz2.github.com/Pythy/
http://pfultz2.github.com/Pythy/
http://pfultz2.github.com/Pythy/
http://stackoverflow.com/questions/4643039/c11-and-the-lack-of-polymorphic-lambdas-why
http://stackoverflow.com/questions/4643039/c11-and-the-lack-of-polymorphic-lambdas-why
http://stackoverflow.com/questions/4643039/c11-and-the-lack-of-polymorphic-lambdas-why
http://stackoverflow.com/questions/4643039/c11-and-the-lack-of-polymorphic-lambdas-why
http://stackoverflow.com/questions/4643039/c11-and-the-lack-of-polymorphic-lambdas-why
http://stackoverflow.com/questions/4643039/c11-and-the-lack-of-polymorphic-lambdas-why
http://stackoverflow.com/questions/4643039/c11-and-the-lack-of-polymorphic-lambdas-why
http://stackoverflow.com/questions/4643039/c11-and-the-lack-of-polymorphic-lambdas-why
http://stackoverflow.com/questions/4643039/c11-and-the-lack-of-polymorphic-lambdas-why
http://stackoverflow.com/questions/4643039/c11-and-the-lack-of-polymorphic-lambdas-why
http://stackoverflow.com/questions/4643039/c11-and-the-lack-of-polymorphic-lambdas-why
http://stackoverflow.com/questions/4643039/c11-and-the-lack-of-polymorphic-lambdas-why
http://stackoverflow.com/questions/4643039/c11-and-the-lack-of-polymorphic-lambdas-why
http://stackoverflow.com/questions/4643039/c11-and-the-lack-of-polymorphic-lambdas-why
http://stackoverflow.com/questions/4643039/c11-and-the-lack-of-polymorphic-lambdas-why
http://stackoverflow.com/questions/4643039/c11-and-the-lack-of-polymorphic-lambdas-why
http://stackoverflow.com/questions/4643039/c11-and-the-lack-of-polymorphic-lambdas-why
http://stackoverflow.com/questions/4643039/c11-and-the-lack-of-polymorphic-lambdas-why
http://stackoverflow.com/questions/4643039/c11-and-the-lack-of-polymorphic-lambdas-why
http://stackoverflow.com/questions/4643039/c11-and-the-lack-of-polymorphic-lambdas-why
http://stackoverflow.com/questions/4643039/c11-and-the-lack-of-polymorphic-lambdas-why
http://stackoverflow.com/questions/4643039/c11-and-the-lack-of-polymorphic-lambdas-why
http://stackoverflow.com/questions/4643039/c11-and-the-lack-of-polymorphic-lambdas-why
http://stackoverflow.com/questions/3575901/can-lambda-functions-be-templated
http://stackoverflow.com/questions/3575901/can-lambda-functions-be-templated
http://stackoverflow.com/questions/3575901/can-lambda-functions-be-templated
http://stackoverflow.com/questions/3575901/can-lambda-functions-be-templated
http://stackoverflow.com/questions/3575901/can-lambda-functions-be-templated
http://stackoverflow.com/questions/3575901/can-lambda-functions-be-templated
http://stackoverflow.com/questions/3575901/can-lambda-functions-be-templated
http://stackoverflow.com/questions/3575901/can-lambda-functions-be-templated
http://stackoverflow.com/questions/3575901/can-lambda-functions-be-templated
http://stackoverflow.com/questions/3575901/can-lambda-functions-be-templated
http://stackoverflow.com/questions/3575901/can-lambda-functions-be-templated
http://stackoverflow.com/questions/3575901/can-lambda-functions-be-templated
http://stackoverflow.com/questions/3575901/can-lambda-functions-be-templated
http://stackoverflow.com/questions/3575901/can-lambda-functions-be-templated
http://stackoverflow.com/questions/3575901/can-lambda-functions-be-templated
http://stackoverflow.com/questions/3575901/can-lambda-functions-be-templated
http://stackoverflow.com/questions/3575901/can-lambda-functions-be-templated
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1455.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1455.htm
http://cpp-next.com/archive/2011/12/a-breakthrough-for-concepts/
http://cpp-next.com/archive/2011/12/a-breakthrough-for-concepts/
http://cpp-next.com/archive/2011/12/a-breakthrough-for-concepts/
http://cpp-next.com/archive/2011/12/a-breakthrough-for-concepts/
http://cpp-next.com/archive/2011/12/a-breakthrough-for-concepts/
http://cpp-next.com/archive/2011/12/a-breakthrough-for-concepts/
http://cpp-next.com/archive/2011/12/a-breakthrough-for-concepts/
http://cpp-next.com/archive/2011/12/a-breakthrough-for-concepts/
http://cpp-next.com/archive/2011/12/a-breakthrough-for-concepts/
http://cpp-next.com/archive/2011/12/a-breakthrough-for-concepts/
http://cpp-next.com/archive/2011/12/a-breakthrough-for-concepts/
http://cpp-next.com/archive/2011/12/a-breakthrough-for-concepts/
http://cpp-next.com/archive/2011/12/a-breakthrough-for-concepts/
http://cpp-next.com/archive/2011/12/a-breakthrough-for-concepts/
http://cpp-next.com/archive/2011/12/a-breakthrough-for-concepts/
http://cpp-next.com/archive/2011/12/a-breakthrough-for-concepts/
http://cpp-next.com/archive/2011/12/a-breakthrough-for-concepts/
http://cpp-next.com/archive/2011/12/a-breakthrough-for-concepts/

