
s/bound/extent/

Document #: WG21 N3549
Date: 2013-03-12
Revises: None
Project: JTC1.22.32 Programming Language C++
Reply to: Walter E. Brown <webrown.cpp@gmail.com>

Contents

1 Proposal 1
2 Proposed wording 2
3 Acknowledgments 2
4 Bibliography 2
5 Revision history 3

Abstract

The C++11 standard uses two distinct terms of art to denote an array’s number of elements.
For the sake of consistency, as well as improved technical accuracy, this paper proposes to
adopt a single term of art throughout the standard.

1 Proposal

As we all know, a C++ array declaration typically takes the form T a[N]. In such a declaration,
“The constant expression specifies the bound of (number of elements in) the array. If the value of
the constant expression is N , the array has N elements numbered 0 to N − 1 . . . ” [dcl.array]/1.

Although this wording has been in place for a very long time, the nomenclature remains
inconsistent with standard practice in very many (if not most) areas of computing. What C++
historically terms a bound is more commonly known as an extent. For example, Cray’s Fortran
Language Reference Manual, Volume 1, provides the following definitions under the heading
“Array Terminology”:1

An array consists of elements that extend in one or more dimensions to represent
columns, rows, planes, and so on. . . . The number of dimensions in an array is called
the rank of the array. The number of elements in a dimension is called the extent of
the array in that dimension. . . . The size of an array is the product of the extents; that
is, it is the total number of elements in the array.

Even in our own C++11 standard library, the corresponding type property query trait is named
extent [meta.unary.prop.query], and the array modification traits are named remove_extent
and remove_all_extents [meta.query].

We propose to restore consistency within the standard by clarifying the relationship between
an array’s (lower and upper) bounds and its extent. The usual formula seems perfectly applicable
to C++: extent = ubound− lbound+ 1. As a bonus, such a definition makes meaningful the phrase

1 http://docs.cray.com/books/S-3692-51/html-S-3692-51/ju1vlchri.html

1

mailto:webrown.cpp@gmail.com
http://docs.cray.com/books/S-3692-51/html-S-3692-51/ju1vlchri.html

2 N3549: s/bound/extent/

“out of bounds”; it seems somewhat embarrassing to have a bound that exceeds the upper bound
and so denotes an out of bounds value.

2 Proposed wording

All proposed wording is relative to WG21 draft [DuT12]. Green text is to be added; text in red is to
be removed. Editorial instructions and notes are displayed against a gray background .

1. Edit [dcl.array]/1:
. . . The constant expression specifies the array’s bound extent of (number of elements in)
the array. If the value of the constant expression is N , the array has N elements numbered
0 (the lower bound) to N−1 (the upper bound) . . . ” [dcl.array]/1.

2. Edit [dcl.array]/2:
. . . only the first of the constant expressions that specify the bounds extents of the arrays
may be omitted. In addition to declarations in which an incomplete object type is allowed, an
array bound extent may be omitted in some cases in the declaration of a function parameter
(8.3.5). An array bound extent may also be omitted when the declarator is followed by
an initializer (8.5). In this case the bound extent is calculated from the number of initial
elements (say, N) supplied (8.5.1), and the type of the identifier of D is “array of N T.”
Furthermore, if there is a preceding declaration of the entity in the same scope in which the
bound extent was specified, an omitted array bound extent is taken to be the same as in
that earlier declaration, and similarly for the definition of a static data member of a class.

3. Apply the change “//OK: bound extent is 10” 2× in [dcl.array]/4.

4. Apply the change “__bound __extent” 2× in [stmt.ranged]/4.

5. Apply the change “different bound extent” in [temp.static]/2.

6. Apply the changes “the bound extent (8.3.4) of the I’th Ith dimension of T” in [Table 50].

7. Apply the change “array bounds extents” 3× throughout the draft.

8. Apply the change “array bound extent” 8× more throughout the draft.

9. Apply the change “unknown bound extent” 38× throughout the draft.

3 Acknowledgments

Many thanks to the readers of early drafts of this paper for their helpful feedback.

4 Bibliography

[DuT12] Stefanus Du Toit: “Working Draft, Standard for Programming Language C++.” ISO/IEC JTC1/
SC22/WG21 document N3485 (post-Portland mailing), 2012-11-02.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3485.pdf.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3485.pdf

N3549: s/bound/extent/ 3

5 Revision history

Revision Date Changes

1.0 2013-03-12 • Published as N3549.

	1 Proposal
	2 Proposed wording
	3 Acknowledgments
	4 Bibliography
	5 Revision history

