
Proposed C++14 Value Classification

Document #: WG21 N3550
Date: 2013-03-12
Revises: None
Project: JTC1.22.32 Programming Language C++
Reply to: Walter E. Brown <webrown.cpp@gmail.com>

Contents

1 Introduction 1
2 Proposal 2
3 Acknowledgments 6
4 Bibliography 6
5 Revision history 6

1 Introduction

CWG issue 1585 (reproduced here in its entirety from Revision 82 of the C++ Standard Core Lan-
guage Issues List) proposes to review the value classification of some member access expressions:

(From messages 22742 through 22750 and 22765 through 22769.)

According to 5.2.5 [expr.ref] paragraph 4,

If E2 is declared to have type “reference to T,” then E1.E2 is an lvalue. . .

This applies to rvalue reference types as well as to lvalue reference types, based on the
rationale from 5 [expr] paragraph 7 that

In general. . . named rvalue references are treated as lvalues and unnamed
rvalue references to objects are treated as xvalues. . .

Since a non-static data member has a name, it would appear most naturally to fall into
the lvalue category. This makes sense as well from the perspective that the target of
such a reference does not bear any necessary correlation with the value category of
the object expression; in particular, an xvalue object might have an rvalue reference
member referring to a different object from which it would be an error to move.

On the other hand, rvalue reference members have limited utility and are likely only to
occur as the result of template argument deduction in the context of perfect forwarding,
such as using a std::pair to forward values. In such cases, a first or second
member of rvalue reference type would be most naturally treated as having the same
value category as that of the object expression. The utility of this usage may outweigh
the safety considerations that shaped the current policy.

Because the C++11 value classification scheme is widely distributed throughout the text of the
standard, it seems unnecessarily difficult to assess the global impact of the direction suggested in
the last paragraph of the issue. We therefore propose a centralized specification of the scheme.

1

mailto:webrown.cpp@gmail.com
http://accu.org/cgi-bin/wg21/message?wg=core&msg=22742
http://accu.org/cgi-bin/wg21/message?wg=core&msg=22750
http://accu.org/cgi-bin/wg21/message?wg=core&msg=22765
http://accu.org/cgi-bin/wg21/message?wg=core&msg=22769

2 N3550: Proposed C++14 Value Classification

2 Proposal

Independent of the outcome of CWG 1585, we propose to centralize the specification of value
classification, and correspondingly to excise the current widely distributed specifications.
If the following wording is incorrect or incomplete in any detail, a revision of this proposal will
address any defects that CWG identifies. All citations are from WG21 draft [DuT12]. Green text is
proposed for addition; text in red is to be deleted. Footnotes are for clarification, and are not part
of the proposed wording.

2.1 Proposed value classification rules

The following comprehensive value classification scheme (inspired by and subsuming the Note
that is [expr]/7) is proposed for inclusion as a new paragraph following [basic.lval]/1. The wording
is drafted1 under the assumption that CWG decides in favor of the direction suggested in the
last paragraph of the above-cited issue. If CWG decides against making a change in response to
issue 1585, item (5) should be redrafted so as to correspond to the status quo.

Unless specified otherwise, an expression’s value category is determined according to the following
ordered list of rules:

1. The value classification of an expression enclosed in parentheses is the same as the expres-
sion’s value classification without the enclosing parentheses.

2. An unparenthesized expression E is classified as a prvalue if it is a constant expres-
sion [expr.const] whose result is of non-arrary type.

3. Otherwise, E is classified as an lvalue if:

a) it is an id-expression [expr.prim.general], or
b) the type of its result is (i) an lvalue reference type,2 (ii) an array type,3 or (iii) a function

type, a non-static member function type, or an rvalue reference to either.

4. Otherwise, if its result has an rvalue reference type, E is classified as an xvalue if:

a) it is a cast expression, or
b) it is an explicit or implicit function call expression.

5. Otherwise, if E is a class member access [expr.ref], then E ’s value classification is the same
as the value classification of its object expression.

6. Otherwise, E is classified as a prvalue.

[Example: from [expr]/7 — end example]

2.2 Proposed excisions

The following list of proposed excisions is in addition to [expr]/7, which was handled in the
previous subsection. Items are presented in approximate order of occurrence:

[lex.bool]/1
The Boolean literals are the keywords false and true. Such literals are prvalues and have
type bool.

2 The return types in the lists of operator functions in [over.built] identify those native operators that return an lvalue
reference result: (i) prefix ++ and --, (ii) unary *, (iii) [], and (iv) = and the compound assignment operators.

3 This includes string literals.

N3550: Proposed C++14 Value Classification 3

[lex.nullptr]/1
The pointer literal is the keyword nullptr. It is a prvalue of has type std::nullptr_t.
[Note: . . . — end note]

[conv]/6
. . . The result is an lvalue if T is an lvalue reference type or an rvalue reference to function
type (8.3.2), an xvalue if T is an rvalue reference to object type, and a prvalue otherwise. . . .

[expr]/5
. . . The expression designates the object or function denoted by the reference, and the
expression is an lvalue or an xvalue, depending on the expression.

[expr.prim.general]/1
. . . A string literal is an lvalue; all other literals are prvalues.

[expr.prim.general]/6
. . . The presence of parentheses does not affect whether the expression is an lvalue. . . .

[expr.prim.general]/7
. . . The result is an lvalue if the entity is a function, variable, or data member and a prvalue
otherwise.

[expr.prim.general]/9
. . . The result is an lvalue if the member is a static member function or a data member and
a prvalue otherwise. . . .

[expr.prim.general]/10
. . . The result is an lvalue if the member is a static member function or a data member and
a prvalue otherwise.

[expr.prim.general]/11
. . . The result is a prvalue.

[expr.sub]/1
. . . The result is an lvalue of has type “T.” . . .

[expr.call]/10
A function call is an lvalue if the result type is an lvalue reference type or an rvalue reference
to function type, an xvalue if the result type is an rvalue reference to object type, and a
prvalue otherwise.

[expr.type.conv]/1
. . . If the expression list specifies more than a single value, the type shall be a class with a
suitably declared constructor (8.5, 12.1), and the expression T(x1, x2, ...) is equivalent
in effect to the declaration T t(x1, x2, ...) for some invented temporary variable t with
the result being the value of t as a prvalue.

[expr.type.conv]/2
The expression T(), where T is a simple-type-specifier or typename-specifier for a non-array
complete object type or the (possibly cv-qualified) void type, creates a prvalue value of the
specified type, whose value is that produced by value-initializing (8.5) an object of type T; no
initialization is done for the void() case. [Note: . . . — end note]

[expr.type.conv]/3
Similarly, a simple-type-specifier or typename-specifier followed by a braced-init-list creates
a temporary object of the specified type direct-list-initialized (8.5.4) with the specified braced-
init-list, and its value is that temporary object as a prvalue.

4 N3550: Proposed C++14 Value Classification

[expr.ref]/4
If E2 is declared to have type “reference to T,” then E1.E2 is an lvalue; the type of E1.E2 is T.
Otherwise, one of the following rules applies.

— If E2 is a static data member and the type of E2 is T, then E1.E2 is an lvalue; the
expression designates the named member of the class. . . .

— . . . If E1 is an lvalue, then E1.E2 is an lvalue; if E1 is an xvalue, then E1.E2 is an xvalue;
otherwise, it is a prvalue. . . .

— If E2 is a (possibly overloaded) member function, function overload resolution (13.3) is
used to determine whether E1.E2 refers to a static or a non-static member function.

— If it refers to a static member function and the type of E2 is “function of parameter-
type-list returning T”, then E1.E2 is an lvalue; the expression designates the static
member function. . . .

— Otherwise, if E1.E2 refers to a non-static member function and the type of E2 is
“function of parameter-type-list cv ref-qualifieropt returning T”, then E1.E2 is a prvalue.
The expression designates a non-static member function. . . .

— . . .

— If E2 is a member enumerator and the type of E2 is T, the expression E1.E2 is a prvalue.
The type of E1.E2 is T.

[expr.post.incr]/1
. . . The result is a prvalue. . . .

[expr.dynamic.cast]/2
If T is a pointer type, v shall be a prvalue of a pointer to complete class type, and the result
is a prvalue of type T. If T is an lvalue reference type, v shall be an lvalue of a complete class
type, and the result is an lvalue of the type referred to by T. If T is an rvalue reference type, v
shall be an expression having a complete class type, and the result is an xvalue of the type
referred to by T.

[expr.dynamic.cast]/5
. . . The result is an lvalue if T is an lvalue reference, or an xvalue if T is an rvalue reference.
. . .

[expr.typeid]/1
The result of a typeid expression is an lvalue of static type const std::type_info (18.7.1)
and

[expr.static.cast]/1
. . . If T is an lvalue reference type or an rvalue reference to function type, the result is an
lvalue; if T is an rvalue reference to object type, the result is an xvalue; otherwise, the result
is a prvalue. . . .

[expr.static.cast]/1
. . . If T is an lvalue reference type or an rvalue reference to function type, the result is an
lvalue; if T is an rvalue reference to object type, the result is an xvalue; otherwise, the result is
a prvalue, and the lvalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3)
standard conversions are performed on the expression v. . . .

[expr.reinterpret.cast]/1
. . . If T is an lvalue reference type or an rvalue reference to function type, the result is an
lvalue; if T is an rvalue reference to object type, the result is an xvalue; otherwise, the result is
a prvalue, and the lvalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3)
standard conversions are performed on the expression v. . . .

N3550: Proposed C++14 Value Classification 5

[expr.const.cast]/1
. . . If T is an lvalue reference to object type, the result is an lvalue; if T is an rvalue reference
to object type, the result is an xvalue; otherwise, the result is a prvalue, and the lvalue-to-
rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are
performed on the expression v. . . .

[expr.unary.op]/1
The unary * operator performs indirection: the expression to which it is applied shall be a
pointer to an object type, or a pointer to a function type and the result is an lvalue referring
refers to the object or function to which the expression points. . . .

[expr.unary.op]/2
The result of each of the following unary operators is a prvalue.

[expr.unary.op]/3
. . . If the operand is a qualified-id naming a non-static member m of some class C with type
T, the result has type “pointer to member of class C of type T” and is a prvalue designating
designates C::m. Otherwise, if the type of the expression is T, the result has type “pointer
to T’’ and is a prvalue yields a value that is the address of the designated object (1.7) or a
pointer to the designated function. [Note: . . . — end note]

[expr.pre.incr]/1
. . . The result is the updated operand; it is an lvalue, and it is a bit-field if the operand is a
bit-field. . . .

[expr.cast]/1
. . . The result is an lvalue if T is an lvalue reference type or an rvalue reference to function
type and an xvalue if T is an rvalue reference to object type; otherwise the result is a prvalue.
. . .

[expr.mptr.oper]/6
. . . The result of a .* expression whose second operand is a pointer to a data member is
of the same value category (3.10) as its first operand. The result of a .* expression whose
second operand is a pointer to a member function is a prvalue. . . .

[expr.cond]/2
. . . and one of the following shall hold:

— The second or the third operand (but not both) is a throw-expression (15.1); the result is
of the type of the other and is a prvalue.

— Both the second and the third operands have type void; the result is of type void and is
a prvalue. [Note: . . . — end note]

[expr.cond]/4
If the second and third operands are glvalues of the same value category and have the same
type, the result is of that type and value category and it is a bit-field if the second or the
third operand is a bit-field, or if both are bit-fields.

[expr.cond]/5
Otherwise, the result is a prvalue. If if the second and third operands do not have the
same type, and either has (possibly cv-qualified) class type, overload resolution is used to
determine the conversions (if any) to be applied to the operands (13.3.1.2, 13.6). . . .

[expr.cond]/6
Lvalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conver-
sions are performed on the second and third operands. After those conversions, one of the
following shall hold:

6 N3550: Proposed C++14 Value Classification

— . . . If the operands have class type, the result is a prvalue temporary of the result type,
which

— . . .

[expr.comma]/1
. . . The type and value of the result are the type and value of the right operand; the result
is of the same value category as its right operand, and is a bit-field if its right operand is a
glvalue and a bit-field. . . .

[over.match.conv]/1
. . .

— . . . Conversion functions that return “reference to cv2 X” return lvalues or xvalues, de-
pending on the type of reference, of type “cv2 X” and are therefore considered to yield X
for this process of selecting candidate functions.

[temp.param]/6
A non-type non-reference template-parameter is a prvalue. It shall not be assigned to or in
any other way have its value changed. . . .

3 Acknowledgments

Many thanks to the readers of early drafts of this paper for their helpful feedback.

4 Bibliography

[DuT12] Stefanus Du Toit: “Working Draft, Standard for Programming Language C++.” ISO/IEC JTC1/
SC22/WG21 document N3485 (post-Portland mailing), 2012-11-02.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3485.pdf.

5 Revision history

Revision Date Changes

1.0 2013-03-12 • Published as N3550.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3485.pdf

	1 Introduction
	2 Proposal
	3 Acknowledgments
	4 Bibliography
	5 Revision history

