

1

Doc No: N3561

Date: 2013-03-15

Authors:

 Robert Geva

 email: robert.geva@intel.com

 Clark Nelson

 email: clark.nelson@intel.com

Intel Corp.

Semantics of Vector Loops

Introduction
In the SG1 conference call on Feb 5 2013, I presented the topic of a critical section in

a vector loop. The discussion on the narrow topic itself resulted in the consensus that

a critical section in a vector loops is undefined behavior. However, the discussion also

led to broader interest in the semantics of a vector loop, which I was asked to present.

This paper describes the semantics we propose. Note that this paper is meant as a

continuation of earlier papers on vector loops, and is probably not self-contained. It

does not repeat the syntax and language rules portions of the proposal.

As was stated in earlier meetings, this proposal is an attempt to codify existing

practice in vector programming. While in a narrow sense, there are no existing

practices of vector programming within standard C++, vector programming is broadly

used in ad hoc ways. The expectations of programmers are well understood. The

proposal here is not to invent new programming models. Instead, it is an attempt to

codify the existing expectations of existing practitioners using C++ methodology.

Syntax disclaimer
As we stated in our previous presentations, our focus at the current stage is on

functionality and semantics. We present a specific syntax for clarity, but the syntax is

not an inherent part of the core capability and we welcome proposals for

improvements.

Vector execution
The iterations of vector loop execute on a single thread, and consecutive iterations are

grouped together and execute in chunks. Ideally, the size of the chunk should

correspond to as many iterations of a sequential loop as can fit within the vector

resources of the target machine. However, the chunk size can also be limited in cases

where there are data dependencies across the iterations of the loop. In those cases, the

mailto:robert.geva@intel.com
mailto:clark.nelson@intel.com

2

results may differ if the chunk size violate the data dependencies, and therefore the

developer needs the ability to limit the size of the chunk.

Vector execution requires reordering expressions from different iterations so that

multiple evaluation of the same expression from different iterations can be grouped

together. The semantics of vector loops are expressed in terms of allowed reorderings,

rather than in terms of vector instructions.

Vector loops are unlike parallel loops. The semantics of parallel loops are that the

iterations are unsequenced. The sequencing rules of vector loops provide more strict

guarantees. Another interesting distinction is the chunked execution of vector loops.

Loop iterations that execute together cannot make progress independent of each other,

i.e. a subset of the vector lanes cannot block while others progress. Therefore, using

existing constructs for critical sections will not work – they will likely deadlock. As we

describe the semantics of vector loops, this interaction will become evident. Seen from

the other direction, since parallel loops are expected to have well-defined behavior

when critical sections are used within them, the implication is that parallel loops are

not appropriate for use as vector loops. Of course, additional programming constructs

have well-defined behavior in parallel loops but not in vector loops. Mechanisms such

as Cilk™ Plus hyperobjects provide the ability to create linked lists in parallel loops.

Vectorizing loops with non vectorizable operations may result in undefined behavior.

Syntax:
The following table lists the set of capabilities we propose for vector loops. The

semantics will be described incrementally, corresponding to the list of capabilities.

Capability Syntax meaning

Vector loop simd_for(; ;) Vector order of evaluation.
Parallelism constructs (such as parallel loops and
cilk_spawn) shall not appear in the loop body.

Limit the chunk size simd_for_chunk(N

) (; ;)

Limit the number of iterations that can be grouped
together and execute in a chunk

Uniform vs. private
variables

Object is declared
outside vs. inside the
loop

Uniform: a single object for all chunked iterations.
Private: each iteration within the chunk has a
private instance.

Linear induction
variables

simd_for (; ;

comma separated

list of increments)

Each iteration within the chunk has its own value.
The values are an arithmetic progression

Reductions Cilk hyper object There is a single object for the whole loop. The
value produced by an iteration is a function of the
value produced by the preceding iteration. Other
uses of the value within the loop are undefined.

nosimd blocks nosimd { } Executions of the block from different iterations of
the containing vector loop are not interleaved.

Elemental functions __attribute__(ve Consecutive operations of the function are chunked

3

ctor) and execute together, as if they were a body of a
vector loop

Definitions:

The scalar elision of a simd_for loop is the loop obtained by replacing simd_for by

for.

The scalar elision of simd_for_chunk(N) is the loop obtained by replacing

simd_for_chunk by for and erasing the expression (N).

A simd_for loop has logical iterations numbered 0, 1, … ,N-1 where N is the number of

loop iterations, and the logical numbering denotes the sequence in which the

iterations would execute in the scalar elision of the simd_for loop.

The semantics of simd_for loop allow additional orders of evaluation. We will

sometimes refer to the additionally allowed orders as “vector orders” and use “scalar

order” as a retronym to refer to order of evaluation of a sequential loop as currently

specified by the standard.

Notation
Capital letters stand for expressions in the source program.

Xi The evaluation of X in the i
th

 logical iteration of the loop

A vector loop
iteration-statement:

 simd_for (for-init-decl ; condition ; expression) statement

Consecutive iterations of the loop are grouped and execute in chunks.

Sequencing rules:

0. If X is sequenced before Y in the body of a vector loop, for each iteration i, then

Xi is sequenced before Yi.

1. For every expression X and Y evaluated as part of a vector loop, if X is

sequenced before Y and i < j then Xi is sequenced before Yj

Chunk size expression

iteration-statement:

 simd_for_chunk (constant-expression) (assignment-expression ; condition ;

expression) statement

Semantics:

The chunk size c is 1 ≤ c ≤ constant-expression.

4

When the chunk size is specified, the following additional rule applies:

2. For a vector loop with a chunk size of c ≥ 1, for every expression X in the scalar

elision of the vector loop, for every iteration i, Xi is sequenced before Xi+c.

Note: if the chunk size is not specified, the implementation chooses a size. When the

chunk size is specified, the implementation is restricted to choose a size that is equal

or smaller than that size. This proposal does not allow the program an explicit way to

depend on the actual size that was chosen. For example, there is no syntax that allows

a declaration of array of chunk-size number of elements. If the program behavior

changes with different choices of chunk size (other than violating the size specified by

the chunk expression) then the behavior is undefined. This applies in particular to the

choice of a chunk size of one, which is scalar evaluation.

Discussion point: There may be an interest is providing a way for the program to query

the actual chunk size used by the implementation, either at compile time or at run

time.

A nosimd statement
statement:

 nosimd statement

The scalar elision of nosimd statement is statement.

Sequencing rule for the nosimd statement:

For every Xi and Yj evaluated as part of a nosimd statement, if i<j then Xi is sequenced

before Yj.

Uniform vs. Private variables
An object declared inside the lexical scope of a vector loop (private to the iteration)

shall have separate storage allocated for each iteration of the chunk. Objects can be

assigned values within each iteration independently of the operations in other

iterations. Each iteration can assign values into its instance of the object independent

of other iterations.

Objects that are declared outside the scope of the vector loop (uniform variables) are

allocated according to the existing standard. An attempt to assign different values to

such an object in different iterations of the same chunk leads to undefined behavior.

Linear induction variables
A linear induction variable shall be declared either as part of the loop control

statement or outside of the loop. It shall be incremented as part of the increment

clause of the loop. The stride value shall be loop invariant.

5

The increment expression shall be of one of the following forms:

++ identifier

identifier ++

-- identifier

identifier --

identifier += stride-expression

identifier -= stride-expression

identifier = identifier + stride-expression

identifier = stride-expression + identifier

identifier = identifier – stride-expression

The stride-expression may be evaluated only once. A program that depends on the

number of time that a stride-expression is evaluated has undefined behavior.

Semantics: the values of the induction variables in each iteration are the same as in

the scalar elision of the loop.

Note: Special treatment of induction variables is necessary in order to distinguish

them from uniform variables, otherwise their increment would lead to undefined

behavior.

Reductions
Like inductions, reductions require special support, in order to distinguish them from

uniform object being incremented within the loop, leading to an undefined behavior.

The current proposal supports reductions in a library solution, which uses other

portions of the proposal, and doesn’t require additional language support. For more

about reducers and other hyperobjects see

http://dl.acm.org/citation.cfm?id=1584017

Function called from a vector loop
This proposal places no restriction on functions that may be called from a vector loop.

We distinguish between calls to elemental and non-elemental functions. The proposal

introduces the concept of an “elemental function” which executes as if its body were a

part of the body of the loop. Calls to functions that are not elemental functions are

evaluated within the loop according to the order of evaluation specified earlier in this

paper for expressions in a simd_for loop. While the calls themselves are ordered in

vector order, the functions themselves are evaluated (in scalar order) as: if F is a

function called in a vector loop and i,j are iterations of the loop, if i < j then Fi is

sequenced before Fj.

Note: unlike many of the primitive operations, ordering a chunk of function calls next

to each other does not present an opportunity to replace them with a single call, the

way c additions can be replaced by a single addition. However, as the semantics are

http://dl.acm.org/citation.cfm?id=1584017

6

defined in terms of order of evaluation, function calls do not represent a special case.

Therefore, the choice of specification for the ordering rules within the functions mostly

manifests in practice in the case when the functions are inlined.

Discussion point: It is possible to choose a different semantic rule, which allows for

the evaluation of expressions inside a non-elemental function called within a vector

loop to be evaluated under the same ordering rules at the expressions that are within

the lexical scope of the loop. This alternative would also be sound. Some obvious pros

and cons: the advantage of the current proposal is that the author of the non-

elemental function may not have designed for it to be called in a vector context. The

disadvantage of the current proposal (and an advantage of the alternative), is that it

complicates the implementation. If the non-elemental function is inlined, then the

compiler will have to treat differently expressions that were originally in the lexical

scope of the loop from expressions that were inlined into it from the non-elemental

function.

Elemental functions
Elemental functions called from vector loops execute in chunks, corresponding to the

chunk of the caller loop. The order of evaluation of expressions within a consecutive

chunk of elemental functions is the same as the rules for the vector loop shown above.

The number of call operations is undefined.

Note: The implementation is allowed to replace a chunk of calls to an elemental

function by a single call, pass chunks of arguments and receive a chunk of return

values as part of the vector loop. A call to an elemental function which is not from a

vector loop is evaluated according to existing specifications. The implementation can

also replace a chunk of calls by fewer calls. For example, if the chunk size of a loop is

8, the implementation is allowed to replace the 8 calls by 2 calls to the elemental

function, each call executing in a chunk size of 4.

There is no new syntax associated with a call to elemental functions. The indication

that a function is elemental is used when authoring the elemental function, as well as

using a consistent prototype in header files. The capabilities required for authoring

efficient elemental functions are the ability to qualify that parameters are uniform or

linear, and to express the chunk size of the function.

The Intel compiler product supports the capabilities of elemental functions via the

__declspec syntax for Windows and __attribute__ syntax for Linux. In both cases,

the syntax allows for additional clauses, as well as multiple attributes per function.

We take advantage of both. That syntax is not being proposed for the C++ standard.

Note: Like the vector loop, the elemental function allows the specification of a chunk

size. However, where in the case of the vector loop the implementation is allowed to

choose a chunk size that is smaller than the one specified, in the case of elemental

function the size has to be exactly the one specified. The reason is that elemental

7

functions create linkage, and the linkage has to match between the definition and the

call site.

Capability Meaning

Elemental function Vector order of evaluation across a chunk of consecutive calls to the
function is allowed; No parallelism constructs shall appear inside the
function.

A uniform parameter The value of the argument is the same across the consecutive chunk of
invocations of the function.

A linear parameter Values of the argument in consecutive invocations of the function within
the chunk differ by the value incr.

Chunk size The number of consecutive invocations of the function that should be
grouped into a single invocation. Editorial: in an implementation, this may
create linkage.

Multiple versions Multiple versions of the function are generated, each corresponding to a

different set of clauses.

Discussion point: If the prototype of an elemental function specifies that a certain

parameter is uniform, and in a given call site to that function from a vector loop, the

matching argument is non-uniform, the current implementation silently generate a

chunk of calls to the non-elemental version of the function. The implementation

always generates code for the scalar version. A possible alternative is to fail the

matching and generate a compile time error diagnostic.

Summary
This paper summarizes the set of capabilities we propose for vector programming as

part of parallel programming.

