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1 Introduction

Since the late 90s, processor manufacturers provide specialized processing
units called multimedia extensions or Single Instruction Multiple Data (SIMD)
extensions. The introduction of this feature has allowed processors to exploit
the latent data parallelism available in applications by executing a given in-
struction simultaneously on multiple data stored in a single special register.
For example, when working with SSE2, these registers are 128 bits wide and
can hold 4 values corresponding to any 32 bits type. While some architec-
tures provide floating-point functionality only with a SIMD unit, some also
provide a scalar floating point unit, like the x87 FPU on the x86 architecture.
This can lead to different behaviour between scalar and SIMD code, since
those two units may not operate with the same precision. Moving scalar to
SIMD code can therefore result in a numerical deviation and direclty impact
the results of an application in the case of floating point. In the case of
integer computations, architectures always have separate scalar and SIMD
units, assuming SIMD integer operations are supported.

With a constantly increasing need for performance in applications, to-
day’s processor architectures offer rich SIMD instruction sets working with
larger and larger SIMD registers (table 1). For example, the AVX exten-
sion introduced in 2011 enhances the x86 instruction set for the Intel Sandy
Bridge and AMD Bulldozer micro-architectures by providing a distinct set of
sixteen 256-bit registers. Similary, the Intel MIC Architecture (also known
as Xeon Phi) is embedded 512-bit SIMD registers. Usage of SIMD process-
ing units can also be mandatory for performance on embedded systems as
demonstrated by the NEON and NEON AArch64 ARM extensions [?] or the
CELL-BE processor by IBM [?] which SPUs were designed as a SIMD-only
system.

In the following section the current limitations to program such extensions
will be described and our proposal introduced.

2 Motivation and Scope

Nowadays, software efficiency has become one of the main concerns since
the hardware has reached the era of parallelism. Reaching the power of new
processor architectures with SIMD units is still a hard task, with several
choices available to the programmer.
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Table 1: SIMD extensions in modern processors

Manufacturer Extension
Registers

size & nbr
Instructions

Intel

SSE 128 bits - 8 70

SSE2 128 bits - 8/16 214

SSE3 128 bits - 8/16 227

SSSE3 128 bits - 8/16 227

SSE4.1 128 bits - 8/16 274

SSE4.2 128 bits - 8/16 281

AVX 256 bits - 8/16 292

AMD SSE4a 128 bits - 8/16 231

Motorola

IBM

VMX 128 - 32 114

VMX128 128 bits - 128

VSX 128 bits - 64

ARM NEON 128 bits - 16 100+

2.1 The current solutions

Using SIMD computation units requires using the dedicated instructions and
registers associated to the the target extension. Writing assembly code is
the most direct solution to use these instructions and ends up with vector-
ized code (i.e. code that use SIMD instructions). This task remains error-
prone and time-consuming. With different manufacturers, the instruction
sets change and between each architecture improvement some new instruc-
tions can be added. The previous statement impacts the portability and the
maintainability of the application.

Compilers are now able to generate SIMD code through their embedded
autovectorizers. This allows the programmer to keep a standard code that
will be analyzed and transformed to a vectorized code during the code gen-
eration process. Autovectorizers have the ability to detect code fragments
that can be vectorized. This automatic process finds its limits when the user
code is not presenting a clear vectorizable pattern (i.e. complex data de-
pendencies, non-contiguous memory accesses, aliasing or control flows). The
SIMD code generation stays fragile and the resulting instruction flow may be
suboptimal compared to an explicit vectorization. Still on the compiler side,
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code directives can be used to enforce loop vectorisation (#pragma simd for
ICC and GCC) but the code quality relies on the compiler and this feature
is not available in every one of them. Dedicated compilers like ISPC or Cilk
choose to add a set of keywords to the language to explicitly mark the code
fragments that are candidates to the automatic vectorization process. The
user code becomes non-standard and strongly dependent to specific compiler
techniques. Most of these approaches also rely on generating SIMD code
from scalar code, disregarding the specificities of each of these computing
units.

The most common way to take advantage of a SIMD extension is to write
calls to intrinsics. These low level C functions represent each SIMD instruc-
tion supported by the hardware, and while being similar to programming with
assembly it is definitely more accessible and optimization-friendly. With a
lot of variants to handle all SIMD register types, the set of intrinsics usu-
ally only covers functionality for which there is a dedicated instruction, often
lacking orthogonality or missing more complex operations like trigonometric
or exponential functions. Due to its C interface, using intrinsics forces the
programmer to deal with a verbose style of programming. Furthermore, from
one extension to another, the Application Programming Interface differs and
the code needs to be written again due to hardware specific functionalities
and optimizations.

Finally, some compilers, mainly GCC and Clang, have introduced exten-
sions for arbitrary-sized SIMD vectors using the vector size attribute. These
however suffer from limited functionality and bad interoperability with C++.
It is the intent of this proposal to propose something similar for C++ but
that can also be purely implemented as a library.

2.2 Our proposal

For maximum accessibility, programmers should be able to vectorize their
code without needing a high level of expertise for every single SIMD exten-
sion. This proposal introduces a high-level abstraction to the user that gives
access to SIMD computation in an instinctive way. It comes as a C++ tem-
plate library, headers only that relies on a possibly full library implementa-
tion. With a high level template type for abstracting a SIMD register, the
user can easily introduce SIMD in his application by instantiating this type
and applying high level functions on it. Working at the register level rather
than the loop nest or big array level keeps the abstraction thin, efficient and
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flexible. By keeping the control of the vectorization process, the programmer
is explicitly expressing the SIMD version of his algorithm, not only guaran-
teeing that vectorization does indeed take place, but also empowering the
user to define his algorithm in a way that is vectorizable. A single generic
code can be written for both the scalar and SIMD types or different code
paths may be selected. The library is also modular and easily extensible by
the user.

In addition to types and functions operating on them, higher-order func-
tions to manipulate and transform data with respect to every hardware con-
straints are provided.

Furthermore, processing multiple data in SIMD registers breaks typical
scalar dataflows when dealing with branching conditions or when shifting or
shuffling values. As a result, special functions to deal with SIMD-specific
idioms are also introduced.

The idea of this proposal is inspired from the Boost.SIMD open-source
library (not part of the Boost C++ libraries as of this writing) developed by
the authors of this paper. This library has been deployed in several academic
and industrial projects where it has shown significant advantages over other
approaches to optimize code for SIMD-enabled processors. Boost.SIMD is
available as part of the NT 2 software project hosted on GitHub [?]. Pub-
lications with experimental results are available in [?] and [?]. All design
decisions and implementation details are discussed in section 4 and 5 respec-
tively.

3 Impact On the Standard

This proposal comes as a library extension that does not impact existing
standard classes, functions or headers. This addition is non-intrusive; its
implementation is fully standards-based and does not require any changes to
the core language.

4 Design Decisions

In this section, we detail the major design of the proposed library extension
by introducing the required additions to the standard.

7



4.1 SIMD Register Abstraction : pack<T,N>

The pack class is abstracting the SIMD register type. It respects the Random
Access Sequence Concept and provides a tuple-like interface. For a given
type T and a given static integral value N (N being a small power of 2), a
pack encapsulates the best type able to store a sequence of N elements of
type T. when T and N matches the type and width of a SIMD register, the
architecture-specific type used to represent this register is used. For arbitrary
T and N, this type is emulating a SIMD register or aggregating several of them.
This semantic provides a way to use arbitrarily large SIMD registers on any
system and let the library select the best vectorizable type to handle them.
By default, if N is not provided, pack will automatically select a value that
will trigger the selection of the native SIMD register type. Moreover, by
carrying informations about its underlying scalar type, pack enables proper
instruction selection even when used on extensions (like SSE2 and above)
that map all integral type to a single SIMD type ( m128i for SSE2).

pack handles these low-level SIMD register types as regular objects with
value semantics, which includes the ability to be constructed or copied from
a single scalar value or list of scalar values. In each case, the proper register
loading strategy will be issued. pack also takes care of issues like boolean
predicates support, more details are available in section 4.3.1.
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4.2 Operators and Functions

The pack class comes with support for C++ operators:

• Arithmetic

• Comparison/relational

• Logical

• Bitwise

• Compound assignment

Operators on pack behave like the scalar operators on every elements of the
pack. When an operator is requested between a pack and a scalar value, the
behavior is equivalent to the single value being splatted in a pack and the
operation being performed element-wise.

In addition, pack is completed by a set of functions that provide a
simple way to interact with memory, since the hardware design of SIMD
processing units introduces memory constraints such as alignment. Perfor-
mance is guaranteed by accessing to the memory through dedicated intrin-
sics that perform register-length aligned memory accesses. The load/store
functions perform the explicit memory operations and their unaligned ver-
sions (unaligned load/unaligned store) add flexibility to interact with
unaligned data that can be held in a memory segment unsuitable for aligned
access. When a scalar value needs to be repeated in a vector The splat

function allows to repeat a scalar value in a SIMD register.

int main()

{

float s;

std::vector < float , simd::allocator <float > > v =

{1,-2,3,-4};

// Build pack from initialization list

pack <float > x{1,2,3,4};

// Usage of the load function

pack <float > b = std::simd::load < std::simd::pack <float > >(&

v[0]);

// Built pack from a scalar value (splatted in register)

pack <float > a(1.37);

// pack default construct

pack <float > r;
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// Operator and function calls

r += std::simd::min(a*x+b,b);

// RAS interface and using std:: accumulate

r[0] = 1.f + r[0];

s = accumulate(r.begin (), r.end(), 0.f);

return 0;

}

Listing 1: Working with pack

Classical operators and memory functions enable a clear expressiveness
for the vectorized code and the algorithm is not buried in architecture-specific
details.

4.3 SIMD Idioms

4.3.1 Branching Condition

Comparisons between SIMD vectors yield a vector of boolean results. While
most SIMD extensions store a 0\∼0 bitmask in the same register type as
the one used in the comparison, some, like Intel MIC, have a special reg-
ister bank for those types. To handle architecture-specific predicates, an
abstraction over boolean values and a set of associated operations needs to
be given to the user. The logical class encapsulates the notion of a boolean
value and can be combined with pack. Thus, for any type T, an instance
of pack< logical<T> > encapsulates the proper SIMD register type able to
store boolean values resulting from the application of a SIMD predicate over a
pack<T>. Thus, the comparison operators will return a pack<logical<T> >.
The branching is performed by a dedicated function if else that is able to
vectorise the branching process according to the target architecture.

Unlike scalar branching, SIMD branching does not do lazy evaluation.
All branches of an algorithm are evaluated before the result is selected.

4.3.2 Masking

Working with registers can imply bit masking between two pack even if the
types stored in the two registers differ. The only requirement is two pack

with the same cardinal N. When masking is performed between floating and
integral values, the operation stays valid.
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4.3.3 Shuffling

A typical use case in SIMD is when the user wants to rearrange the data
stored in pack. This operation in called shuffling the register. According
to the cardinal of a pack, several permutations can be achieved between the
data. To handle this, we introduce the shuffle function. This function
accepts a metafunction class that will take as a parameter the destination
index in the result register and return the correct index corresponding to the
value from the source register. A second version version of the function is
also available and allows the user to directly specify the indexes as template
parameters. Listing 4.4.1 shows examples related to this function.

// A metafunction that reverses the register

struct reverse_

{

template <class Index , class Cardinal >

struct apply

: std:: integral_constant <int , Cardinal ::value - Index

:: value - 1> {};

};

[...]

std::simd::pack <int ,4> r{11,22,3,4};

r1 = std::simd::shuffle <reverse_ >(r);

r2 = std::simd::shuffle <3,2,1,0>(r);

assert(std::simd::all(std::simd::pack <int ,4>{4,3,22,11} == r1

));

assert(std::simd::all(std::simd::pack <int ,4>{4,3,22,11} == r2

));

Listing 2: shuffle example

4.3.4 Reduction

Intra-register operations often occur when working at the SIMD register level.
For example, performing the sum of all the values stored in a register is
a common use case. Our proposal covers this use case by providing four
functions :

• sum accumulates all the values stored in a register;

• prod returns the product of all the elements of a register;

• any returns true if at least one element of the input vector is non zero;
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• all returns true if all elements of the input vector are non zero.

• none returns true if no elements of the input vector are non zero.

4.4 Standard Components

4.4.1 SIMD Allocator

The hardware implementation of SIMD processing units introduces con-
straints related to memory handling as seen in section 4.2. This constraint
may be addressed by special memory allocation strategies via OS and compiler-
specific function calls (for example aligned malloc on POSIX systems).

Our proposal aims to provide two STL compliant allocators dealing with
this kind of alignment requirements. The first one, simd::allocator, wraps
these OS and compiler functions in a simple STL-compliant allocator. When
an existing allocator defines a specific memory allocation strategy, the user
can adapt it to handle alignment by wrapping it in simd::allocator adaptor.
The adaptation is realized through a pointer stashing technique.

namespace std { namespace simd

{

template <class T>

struct allocator

{

typedef T value_type;

typedef T* pointer;

typedef T const* const_pointer;

typedef T& reference;

typedef T const& const_reference;

typedef size_t size_type;

typedef ptrdiff_t difference_type;

template <class U>

struct rebind

{

typedef allocator <U> other;

};

allocator ();

template <class U>

allocator(allocator <U> const &);
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pointer address(reference r);

const_pointer address(const_reference r);

size_type max_size () const;

void construct(pointer p, const T& t);

void destroy(pointer p);

pointer allocate( size_type c, const void* = 0 );

void deallocate (pointer p, size_type s);

};

template <class T>

bool operator ==( allocator <T> const&, allocator <T> const&);

template <class T>

bool operator !=( allocator <T> const&, allocator <T> const&);

template <class Allocator >

struct allocator_adaptor

{

typedef Allocator base_type;

typedef typename base_type :: value_type value_type;

typedef typename base_type :: pointer pointer;

typedef typename base_type :: const_pointer

const_pointer;

typedef typename base_type :: reference reference;

typedef typename base_type :: const_reference

const_reference;

typedef typename base_type :: size_type size_type;

typedef typename base_type :: difference_type

difference_type;

template <class U>

struct rebind

{

typedef allocator_adaptor <typename Allocator ::rebind <U

>::other > other;

};

allocator_adaptor ();

allocator_adaptor(Allocator const& alloc);

~allocator_adaptor ();
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template <class U>

allocator_adaptor(allocator_adaptor <U> const& src);

base_type& base();

base_type const& base() const;

pointer allocate( size_type c, const void* = 0 );

void deallocate (pointer p, size_type s);

};

template <class T>

bool operator ==( allocator_adaptor <T> const& a,

allocator_adaptor <T> const& b);

template <class T>

bool operator !=( allocator_adaptor <T> const& a,

allocator_adaptor <T> const& b);

} }

4.4.2 SIMD Algorithms

Applying the transform or accumulate algorithms with SIMD requires not
only that the data be well-aligned, but also that the data size be an exact
multiple of the SIMD register width. Additionally, in the case of accumulate,
additional operations at the end of the call to accumulate the register itself
are required. To alleviate these limitations, our proposal introduces variants
of the transform and accumulate algorithms that take care of the potential
unaligned or trailing data, with the difference that the provided function
object must be defined for both scalar and SIMD types.

std::vector <int > v(100), r(100);

simd:: transform ( v.data()

, v.data() + v.size()

, r.data()

, []( auto p){ return -p; }

);

Listing 3: Iterators with SIMD algorithm

SIMD-aware algorithms are therefore a particularly good use case of poly-
morphic lambas.

namespace std { namespace simd

{

template <class T, class U, class UnOp >
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U* transform(T const* begin , T const* end , U* out , UnOp f);

template <class T1 , class T2 , class U, class BinOp >

U* transform(T1 const* begin1 , T1 const* end , T2 const*

begin2 , U* out , BinOp f);

template <class T, class U, class F>

U accumulate(T const* begin , T const* end , U init , F f);

} }

template <class T, class U, class UnOp >

U* transform(T const* begin , T const* end , U* out , UnOp f);

Requires: UnOp is Callable<U(T)> and Callable<pack<U>(pack<T>)>

Effects: Writes to out the result of the application of f for each element in
the range [begin, end[, by either loading scalar or SIMD values from the
range if sufficient aligned data is available.

Returns: The iterator past the last written-to position

template <class T1 , class T2 , class U, class BinOp >

U* transform(T1 const* begin1 , T1 const* end , T2 const*

begin2 , U* out , BinOp f);

Requires: BinOp is Callable<U(T1, T2)> and Callable<pack<U>(pack<T1>, pack<T2>)>

Effects: Writes to out the result of the application of f for each pair of ele-
ments in the ranges [begin1, end[ and [begin2, begin2+(end-begin1)[, by
either loading scalar or SIMD values from the ranges if sufficient aligned data
is available.

Returns: The iterator past the last written-to position

template <class T, class U, class F>

U accumulate(T const* begin , T const* end , U init , F f);

Requires: F is Callable<U(U, T)> and Callable<pack<U>(pack<U>, pack<T>)>

Effects: Accumulate the result of the application of f with the accumulation
state and each element of the range [begin, end[, potentially scalar by scalar
of SIMD vector by vector if sufficient aligned data is available.
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Returns: The final accumulation state

Non-normative Note: possible implementation of binary transform

template <class T1 , class T2 , class U, class BinOp >

U* transform(T1 const* begin1 , T1 const* end , T2 const*

begin2 , U* out , BinOp f)

{

// vectorization step based on ideal for output type

typedef pack <U> vU;

static const size_t N = vU:: static_size;

typedef pack <T1 , N> vT1;

typedef pack <T2 , N> vT2;

std:: size_t align = N*sizeof(U);

std:: size_t shift = reinterpret_cast <U*>(( reinterpret_cast <

uinptr_t >(out)+align -1) & ~(align -1)) - out;

T1 const* end2 = begin1 + shift;

T1 const* end3 = end2 + (end - end2)/N*N;

// prologue until ’out’ aligned

for(; begin1 !=end2; ++begin1 , ++begin2 , ++out)

*out = f(*begin1 , *begin2);

// vectorized body while more than N elements

for(; begin1 !=end3; begin1 += N, begin2 += N, out += N)

simd:: store(f(simd:: unaligned_load <vT1 >( begin1), simd::

unaligned_load <vT2 >( begin2)), out);

// epilogue for remaining elements

for(; begin1 !=end; ++begin1 , ++begin2 , ++out)

*out = f(*begin1 , *begin2);

return out;

}

4.5 Implementation Considerations

4.5.1 Intrinsics or built-ins

To be able to generate SIMD instructions as intended, this library requires
compiler-specific support. Compiler-specific implementations of the proposal
can use different techniques, such as attributes, built-ins or autovectorization
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directives, but should lead to the SIMD instructions matching the oper-
ation The most straightforward technique is however to work directly with
platform-specific intrinsics as standardized by hardware manufacturers, since
those are portable across compilers and ensure the instantiation of the in-
struction required.

4.5.2 ABI and inlining

The main issue with implementing this library efficiently is tied to how the
compiler will handle the pack type, in particular how the ABI defines that
objects of these types be passed to functions. Indeed, since pack is defined
as a struct, many ABIs (with the notable exception of Intel x86-64 on Linux)
will be unable to pass that structure directly in registers. Certain ABIs will
also reject passing those types by value due to the alignment requirement
being often higher than that of the stack.

As a result “stack dance” – the unnecessary writing and reading of SIMD
register contents to stack memory – might occur whenever a non-inlined
function is called. A possible way to solve this problem is to force a wrapper
function to be inlined and make it call a function that uses the native type
of the platform to be more friendly with the ABI.

Using the native type directly is not generally possible since is usually
lacks the desired typing information.

4.5.3 Aliasing

The interface of pack requires being able to read and write to the register
with operator[]. A possible way to achieve this is to cast a pointer to the
SIMD register to a pointer to the first element of an array of scalar objects,
but this may require specific compiler extensions to be compatible with the
strict aliasing rules.

5 Technical Specifications

Here, we present the public interface required for the proposal.

5.1 pack<T,N> class

17



namespace std { namespace simd

{

template <class T, std:: size_t N = unspecified >

struct alignas(sizeof(T)*N) pack

{

typedef T value_type;

typedef value_type& reference;

typedef value_type const& const_reference;

typedef T* iterator;

typedef T const* const_iterator;

static const size_t static_size = N;

// does not initialize values of pack

pack();

// copy constructor

pack(pack const& p);

// splat t N times into pack

pack(T t);

// fill pack with values from init

template <class T>

pack(initializer_list <T> init);

reference operator [](std:: size_t i);

const_reference operator [](std:: size_t i) const;

iterator begin ();

const_iterator begin() const;

iterator end();

const_iterator end() const;

std:: size_t size() const;

bool empty() const;

};

} }

5.2 logical<T> class

template <typename T>

struct logical;

Listing 4: The logical structure
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logical is a marker for packs of boolean results and cannot be used in
scalar mode.

5.3 Operators overload for pack<T,N>

5.3.1 Unary Operators

namespace std { namespace simd

{

template <class T, std:: size_t N>

pack <T,N> operator +(pack <T,N> p);

template <class T, std:: size_t N>

pack <T,N> operator -(pack <T,N> p);

template <class T, std:: size_t N>

typename as\_logical < pack <T,N> >::type operator !(pack <T,N>

p);

template <class T, std:: size_t N>

pack <T,N> operator ~(pack <T,N> p);

} }

template<class T, std::size t N>

pack<T,N> operator+(pack<T,N> p);

Requires: T is not a logical type.

Effects: Apply unary operator+ on every element of p

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = + p[i]

template<class T, std::size t N>

pack<T,N> operator-(pack<T,N> p);

Requires: T is not a logical type.

Effects: Apply unary operator- on every element of p

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = - p[i]

template<class T, std::size t N>

typename as logical< pack<T,N> >::type operator!(pack<T,N> p);

Effects: Apply unary operator! on every element of p
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Returns: A as logical< pack<T,N> >::type value r so that ∀i ∈ [0, N [,
r[i] = ! p[i]

template <class T, std:: size_t N>

pack <T,N> operator ~(pack <T,N> p);

Effects: Apply unary operator~ to every element of p

Returns: A pack<T,N> value r so that :
• If T is an integral type: ∀i ∈ [0, N [, r[i] = ~ p[i];

• If T is a floating point type, the operation is performed on r[i] bit
pattern;

• If T is a logical type: ∀i ∈ [0, N [, r[i] = !p[i].

5.3.2 Binary Operators

namespace std { namespace simd

{

template <class T, std:: size_t N>

pack <T,N> operator +(pack <T,N> p,pack <T,N> q);

template <class T, class U, std:: size_t N>

pack <T,N> operator +(pack <T,N> p, U q);

template <class T, class U, std:: size_t N>

pack <T,N> operator +(U p, pack <T,N> q);

template <class T, std:: size_t N>

pack <T,N> operator -(pack <T,N> p,pack <T,N> q);

template <class T, class U, std:: size_t N>

pack <T,N> operator -(pack <T,N> p, U q);

template <class T, class U, std:: size_t N>

pack <T,N> operator -(U p, pack <T,N> q);

template <class T, std:: size_t N>

pack <T,N> operator *(pack <T,N> p,pack <T,N> q);

template <class T, class U, std:: size_t N>

pack <T,N> operator *(pack <T,N> p, U q);

template <class T, class U, std:: size_t N>

pack <T,N> operator *(U p, pack <T,N> q);

template <class T, std:: size_t N>

pack <T,N> operator /(pack <T,N> p,pack <T,N> q);
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template <class T, class U, std:: size_t N>

pack <T,N> operator /(pack <T,N> p, U q);

template <class T, class U, std:: size_t N>

pack <T,N> operator /(U p, pack <T,N> q);

template <class T, std:: size_t N>

pack <T,N> operator %(pack <T,N> p,pack <T,N> q);

template <class T, class U, std:: size_t N>

pack <T,N> operator %(pack <T,N> p, U q);

template <class T, class U, std:: size_t N>

pack <T,N> operator %(U p, pack <T,N> q);

template <class T, std:: size_t N>

pack <T,N> operator &(pack <T,N> p,pack <T,N> q);

template <class T, class U, std:: size_t N>

pack <T,N> operator &(pack <T,N> p, U q);

template <class T, class U, std:: size_t N>

pack <T,N> operator &(U p, pack <T,N> q);

template <class T, std:: size_t N>

pack <T,N> operator |(pack <T,N> p,pack <T,N> q);

template <class T, class U, std:: size_t N>

pack <T,N> operator |(pack <T,N> p, U q);

template <class T, class U, std:: size_t N>

pack <T,N> operator |(U p, pack <T,N> q);

template <class T, std:: size_t N>

pack <T,N> operator ^(pack <T,N> p,pack <T,N> q);

template <class T, class U, std:: size_t N>

pack <T,N> operator ^(pack <T,N> p, U q);

template <class T, class U, std:: size_t N>

pack <T,N> operator ^(U p, pack <T,N> q);

} }

template<class T, std::size t N>

pack<T,N> operator+(pack<T,N> p, pack<T,N> q);

Requires: T is not a logical type.

Effects: Apply binary operator+ between every element of p and q

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = p[i] + q[i]

template<class T, class U, std::size t N>

pack<T,N> operator+(pack<T,N> p, U q);
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Requires: T is not a logical type.

Effects: Apply binary operator+ between every element of p and q

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = p[i] + static cast<T>(q)

template<class T, class U, std::size t N>

pack<T,N> operator+(U p, pack<T,N> q);

Requires: T is not a logical type.

Effects: Apply binary operator+ between p and every element of q

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = static cast<T>(p)

+ q[i]

template<class T, std::size t N>

pack<T,N> operator-(pack<T,N> p, pack<T,N> q);

Requires: T is not a logical type.

Effects: Apply binary operator- between every element of p and q

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = p[i] - q[i]

template<class T, class U, std::size t N>

pack<T,N> operator-(pack<T,N> p, U q);

Requires: T is not a logical type.

Effects: Apply binary operator- between every element of p and q

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = p[i] - static cast<T>(q)

template<class T, class U, std::size t N>

pack<T,N> operator-(U p, pack<T,N> q);

Requires: T is not a logical type.

Effects: Apply binary operator- between p and every element of q

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = static cast<T>(p)

- q[i]

template<class T, std::size t N>

pack<T,N> operator*(pack<T,N> p, pack<T,N> q);
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Requires: T is not a logical type.

Effects: Apply binary operator* between every element of p and q

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = p[i] * q[i]

template<class T, class U, std::size t N>

pack<T,N> operator*(pack<T,N> p, U q);

Requires: T is not a logical type.

Effects: Apply binary operator* between every element of p and q

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = p[i] * static cast<T>(q)

template<class T, class U, std::size t N>

pack<T,N> operator*(U p, pack<T,N> q);

Requires: T is not a logical type.

Effects: Apply binary operator* between p and every element of q

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = static cast<T>(p)

* q[i]

template<class T, std::size t N>

pack<T,N> operator/(pack<T,N> p, pack<T,N> q);

Requires: T is not a logical type.

Effects: Apply binary operator/ between every element of p and q

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = p[i] / q[i]

template<class T, class U, std::size t N>

pack<T,N> operator/(pack<T,N> p, U q);

Requires: T is not a logical type.

Effects: Apply binary operator/ between every element of p and q

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = p[i] / static cast<T>(q)

template<class T, class U, std::size t N>

pack<T,N> operator/(U p, pack<T,N> q);
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Requires: T is not a logical type.

Effects: Apply binary operator/ between p and every element of q

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = static cast<T>(p)

/ q[i]

template<class T, std::size t N>

pack<T,N> operator%(pack<T,N> p, pack<T,N> q);

Requires: T is not a logical type.

Effects: Apply binary operator% between every element of p and q

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = p[i] % q[i]

template<class T, class U, std::size t N>

pack<T,N> operator%(pack<T,N> p, U q);

Requires: T is not a logical type.

Effects: Apply binary operator% between every element of p and q

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = p[i] % static cast<T>(q)

template<class T, class U, std::size t N>

pack<T,N> operator%(U p, pack<T,N> q);

Requires: T is not a logical type.

Effects: Apply binary operator% between p and every element of q

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = static cast<T>(p)

% q[i]

template<class T, std::size t N>

pack<T,N> operator&(pack<T,N> p, pack<T,N> q);

Requires: T is not a logical type.

Effects: Apply binary operator& between every element of p and q

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = p[i] & q[i]

template<class T, class U, std::size t N>

pack<T,N> operator&(pack<T,N> p, U q);
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Requires: T is not a logical type.

Effects: Apply binary operator& between every element of p and q

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = p[i] & static cast<T>(q)

template<class T, class U, std::size t N>

pack<T,N> operator&(U p, pack<T,N> q);

Requires: T is not a logical type.

Effects: Apply binary operator& between p and every element of q

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = static cast<T>(p)

& q[i]

template<class T, std::size t N>

pack<T,N> operator|(pack<T,N> p, pack<T,N> q);

Requires: T is not a logical type.

Effects: Apply binary operator| between every element of p and q

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = p[i] | q[i]

template<class T, class U, std::size t N>

pack<T,N> operator|(pack<T,N> p, U q);

Requires: T is not a logical type.

Effects: Apply binary operator| between every element of p and q

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = p[i] | static cast<T>(q)

template<class T, class U, std::size t N>

pack<T,N> operator|(U p, pack<T,N> q);

Requires: T is not a logical type.

Effects: Apply binary operator| between p and every element of q

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = static cast<T>(p)

| q[i]

template<class T, std::size t N>

pack<T,N> operator^(pack<T,N> p, pack<T,N> q);
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Requires: T is not a logical type.

Effects: Apply binary operator^ between every element of p and q

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = p[i] ^ q[i]

template<class T, class U, std::size t N>

pack<T,N> operator^(pack<T,N> p, U q);

Requires: T is not a logical type.

Effects: Apply binary operator^ between every element of p and q

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = p[i] ^ static cast<T>(q)

template<class T, class U, std::size t N>

pack<T,N> operator^(U p, pack<T,N> q);

Requires: T is not a logical type.

Effects: Apply binary operator^ between p and every element of q

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = static cast<T>(p)

^ q[i]

5.3.3 Logical Operators

namespace std { namespace simd

{

template <class T, std:: size_t N>

pack <T,N> operator <(pack <T,N> p,pack <T,N> q);

template <class T, class U, std:: size_t N>

pack <T,N> operator <(pack <T,N> p, U q);

template <class T, class U, std:: size_t N>

pack <T,N> operator <(U p, pack <T,N> q);

template <class T, std:: size_t N>

pack <T,N> operator >(pack <T,N> p,pack <T,N> q);

template <class T, class U, std:: size_t N>

pack <T,N> operator >(pack <T,N> p, U q);

template <class T, class U, std:: size_t N>

pack <T,N> operator >(U p, pack <T,N> q);

template <class T, std:: size_t N>

pack <T,N> operator <=(pack <T,N> p,pack <T,N> q);
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template <class T, class U, std:: size_t N>

pack <T,N> operator <=(pack <T,N> p, U q);

template <class T, class U, std:: size_t N>

pack <T,N> operator <=(U p, pack <T,N> q);

template <class T, std:: size_t N>

pack <T,N> operator >=(pack <T,N> p,pack <T,N> q);

template <class T, class U, std:: size_t N>

pack <T,N> operator >=(pack <T,N> p, U q);

template <class T, class U, std:: size_t N>

pack <T,N> operator >=(U p, pack <T,N> q);

template <class T, std:: size_t N>

pack <T,N> operator ==(pack <T,N> p,pack <T,N> q);

template <class T, class U, std:: size_t N>

pack <T,N> operator ==(pack <T,N> p, U q);

template <class T, class U, std:: size_t N>

pack <T,N> operator ==(U p, pack <T,N> q);

template <class T, std:: size_t N>

pack <T,N> operator !=(pack <T,N> p,pack <T,N> q);

template <class T, class U, std:: size_t N>

pack <T,N> operator !=(pack <T,N> p, U q);

template <class T, class U, std:: size_t N>

pack <T,N> operator !=(U p, pack <T,N> q);

template <class T, std:: size_t N>

pack <T,N> operator &&(pack <T,N> p,pack <T,N> q);

template <class T, class U, std:: size_t N>

pack <T,N> operator &&(pack <T,N> p, U q);

template <class T, class U, std:: size_t N>

pack <T,N> operator &&(U p, pack <T,N> q);

template <class T, std:: size_t N>

pack <T,N> operator ||(pack <T,N> p,pack <T,N> q);

template <class T, class U, std:: size_t N>

pack <T,N> operator ||(pack <T,N> p, U q);

template <class T, class U, std:: size_t N>

pack <T,N> operator ||(U p, pack <T,N> q);

} }

template<class T, std::size t N>

as logical<pack<T,N>> operator<(pack<T,N> p, pack<T,N> q);
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Effects: Apply binary operator< between every element of p and q

Returns: A logical value r so that ∀i ∈ [0, N [, r[i] = p[i] < q[i]

template<class T, class U, std::size t N>

as logical<pack<T,N>> operator<(pack<T,N> p, U q);

Effects: Apply binary operator< between every element of p and q

Returns: A logical value r so that ∀i ∈ [0, N [, r[i] = p[i] < static cast<T>(q)

template<class T, class U, std::size t N>

as logical<pack<T,N>> operator<(U p, pack<T,N> q);

Effects: Apply binary operator< between p and every element of q

Returns: A logical value r so that ∀i ∈ [0, N [, r[i] = static cast<T>(p)

< q[i]

template<class T, std::size t N>

as logical<pack<T,N>> operator>(pack<T,N> p, pack<T,N> q);

Effects: Apply binary operator> between every element of p and q

Returns: A logical value r so that ∀i ∈ [0, N [, r[i] = p[i] > q[i]

template<class T, class U, std::size t N>

as logical<pack<T,N>> operator>(pack<T,N> p, U q);

Effects: Apply binary operator> between every element of p and q

Returns: A logical value r so that ∀i ∈ [0, N [, r[i] = p[i] > static cast<T>(q)

template<class T, class U, std::size t N>

as logical<pack<T,N>> operator>(U p, pack<T,N> q);

Effects: Apply binary operator> between p and every element of q

Returns: A logical value r so that ∀i ∈ [0, N [, r[i] = static cast<T>(p)

> q[i]

template<class T, std::size t N>
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as logical<pack<T,N>> operator<=(pack<T,N> p, pack<T,N> q);

Effects: Apply binary operator<= between every element of p and q

Returns: A logical value r so that ∀i ∈ [0, N [, r[i] = p[i] <= q[i]

template<class T, class U, std::size t N>

as logical<pack<T,N>> operator<=(pack<T,N> p, U q);

Effects: Apply binary operator<= between every element of p and q

Returns: A logical value r so that ∀i ∈ [0, N [, r[i] = p[i] <= static cast<T>(q)

template<class T, class U, std::size t N>

as logical<pack<T,N>> operator<=(U p, pack<T,N> q);

Effects: Apply binary operator<= between p and every element of q

Returns: A logical value r so that ∀i ∈ [0, N [, r[i] = static cast<T>(p)

<= q[i]

template<class T, std::size t N>

as logical<pack<T,N>> operator>=(pack<T,N> p, pack<T,N> q);

Effects: Apply binary operator>= between every element of p and q

Returns: A logical value r so that ∀i ∈ [0, N [, r[i] = p[i] >= q[i]

template<class T, class U, std::size t N>

as logical<pack<T,N>> operator>=(pack<T,N> p, U q);

Effects: Apply binary operator>= between every element of p and q

Returns: A logical value r so that ∀i ∈ [0, N [, r[i] = p[i] >= static cast<T>(q)

template<class T, class U, std::size t N>

as logical<pack<T,N>> operator>=(U p, pack<T,N> q);

Effects: Apply binary operator>= between p and every element of q

Returns: A logical value r so that ∀i ∈ [0, N [, r[i] = static cast<T>(p)

>= q[i]
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template<class T, std::size t N>

as logical<pack<T,N>> operator==(pack<T,N> p, pack<T,N> q);

Effects: Apply binary operator== between every element of p and q

Returns: A logical value r so that ∀i ∈ [0, N [, r[i] = p[i] == q[i]

template<class T, class U, std::size t N>

as logical<pack<T,N>> operator==(pack<T,N> p, U q);

Effects: Apply binary operator== between every element of p and q

Returns: A logical value r so that ∀i ∈ [0, N [, r[i] = p[i] == static cast<T>(q)

template<class T, class U, std::size t N>

as logical<pack<T,N>> operator==(U p, pack<T,N> q);

Effects: Apply binary operator== between p and every element of q

Returns: A logical value r so that ∀i ∈ [0, N [, r[i] = static cast<T>(p)

== q[i]

template<class T, std::size t N>

as logical<pack<T,N>> operator!=(pack<T,N> p, pack<T,N> q);

Effects: Apply binary operator!= between every element of p and q

Returns: A logical value r so that ∀i ∈ [0, N [, r[i] = p[i] != q[i]

template<class T, class U, std::size t N>

as logical<pack<T,N>> operator!=(pack<T,N> p, U q);

Effects: Apply binary operator!= between every element of p and q

Returns: A logical value r so that ∀i ∈ [0, N [, r[i] = p[i] != static cast<T>(q)

template<class T, class U, std::size t N>

as logical<pack<T,N>> operator!=(U p, pack<T,N> q);

Effects: Apply binary operator!= between p and every element of q

Returns: A logical value r so that ∀i ∈ [0, N [, r[i] = static cast<T>(p)
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!= q[i]

template<class T, std::size t N>

as logical<pack<T,N>> operator&&(pack<T,N> p, pack<T,N> q);

Effects: Apply binary operator&& between every element of p and q

Returns: A logical value r so that ∀i ∈ [0, N [, r[i] = p[i] && q[i]

template<class T, class U, std::size t N>

as logical<pack<T,N>> operator&&(pack<T,N> p, U q);

Effects: Apply binary operator&& between every element of p and q

Returns: A logical value r so that ∀i ∈ [0, N [, r[i] = p[i] && static cast<T>(q)

template<class T, class U, std::size t N>

as logical<pack<T,N>> operator&&(U p, pack<T,N> q);

Effects: Apply binary operator&& between p and every element of q

Returns: A logical value r so that ∀i ∈ [0, N [, r[i] = static cast<T>(p)

&& q[i]

template<class T, std::size t N>

as logical<pack<T,N>> operator||(pack<T,N> p, pack<T,N> q);

Effects: Apply binary operator|| between every element of p and q

Returns: A logical value r so that ∀i ∈ [0, N [, r[i] = p[i] || q[i]

template<class T, class U, std::size t N>

as logical<pack<T,N>> operator||(pack<T,N> p, U q);

Effects: Apply binary operator|| between every element of p and q

Returns: A logical value r so that ∀i ∈ [0, N [, r[i] = p[i] || static cast<T>(q)

template<class T, class U, std::size t N>

as logical<pack<T,N>> operator||(U p, pack<T,N> q);

Effects: Apply binary operator|| between p and every element of q
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Returns: A logical value r so that ∀i ∈ [0, N [, r[i] = static cast<T>(p)

|| q[i]

5.3.4 Ternary Operators

namespace std { namespace simd

{

template <class T, class U, std:: size_t N>

pack <T,N> if_else(pack <U,N> c,pack <T,N> t,pack <T,N> f);

template <class T, class U, std:: size_t N>

pack <T,N> if_else(U c,pack <T,N> t,pack <T,N> f);

template <class T, class U, std:: size_t N>

pack <T,N> if_else(pack <U,N> c, T t,pack <T,N> f);

template <class T, class U, std:: size_t N>

pack <T,N> if_else(pack <U,N> c, pack <T,N> t,T f);

} }

template <class T, class U, std:: size_t N>

pack <T,N> if_else(pack <U,N> c,pack <T,N> t,pack <T,N> f);

Effects: Apply ternary operator?: between every element of c, t and f

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = c[i] ? t[i] :

f[i]

template <class T, class U, std:: size_t N>

pack <T,N> if_else(U c,pack <T,N> t,pack <T,N> f);

Effects: Apply ternary operator?: between c and every element of t and f

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = c ? t[i] :

f[i]

template <class T, class U, std:: size_t N>

pack <T,N> if_else(pack <U,N> c,T t,pack <T,N> f);

Effects: Apply ternary operator?: between t and every element of c and f
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Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = c[i] ? t :

f[i]

template <class T, class U, std:: size_t N>

pack <T,N> if_else(pack <U,N> c,pack <T,N> t,T f);

Effects: Apply ternary operator?: between f and every element of c and t

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = c[i] ? t[i] :

f

Non-Normative Note If c is a logical type or a pack of logical type,
implementation of if else can be optimized by not requiring the conversion
of c to an actual SIMD bitmask.

5.4 Functions

5.4.1 Memory related Functions

namespace std { namespace simd

{

// replicate a scalar value in a pack

template <class T, class U>

T splat(U v);

// convert a pack

template <class T, std:: size_t N, class U>

T splat(pack <U, N> v);

// aligned load

template <class T, class U>

T load(U* p);

template <class T, class U>

T load(U* p, std:: ptrdiff_t o);

// aligned gather

template <class T, class U, class V, std:: size_t N>

T load(U* p, pack <V, N> o);

// load with static misalignment

template <class T, std:: ptrdiff_t A, class U>

T load(U* p);

33



template <class T, std:: ptrdiff_t A, class U>

T load(U* p, std:: ptrdiff_t o);

// gather with static misalignment

template <class T, std:: ptrdiff_t A, class U, class V, std::

size_t N>

T load(U* p, pack <V, N> o);

// unaligned load

template <class T, class U>

T unaligned_load(U* p);

template <class T, class U>

T unaligned_load(U* p, std:: ptrdiff_t o);

// gather

template <class T, class U, class V, std:: size_t N>

T unaligned_load(U* p, pack <V, N> o);

// aligned store

template <class T, class U>

void store(T v, U* p);

template <class T, class U>

void store(T v, U* p, std:: ptrdiff_t o);

// aligned scatter

template <class T, class U, class V, std:: size_t N>

void store(pack <T, N> v, U* p, pack <V, N> o);

// unaligned store

template <class T, class U>

void unaligned_store(T v, U* p);

template <class T, class U>

void unaligned_store(T v, U* p, std:: ptrdiff_t o);

// scatter

template <class T, class U, class V, std:: size_t N>

void unaligned_store(pack <T, N> v, U* p, pack <V, N> o);

} }

template <class T, class U>

T splat(U v);
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Effects: Convert the value v to the type T, replicate the value if T is a pack.

Returns: If T is pack<T2,N>, return a value r so that ∀i ∈ [0, N [, r[i] =

static cast<T2>(v).
else r = static cast<T>(v).

template <class T, class U, std:: size_t N>

T splat(pack <U, N> v);

Requires: T is pack<T2,N>.

Effects: Convert each element of v from U to T2.

Returns: Return a value r so that ∀i ∈ [0, N [, r[i] = static cast<T2>(v[i]).

Note: While the cardinal of the two packs is the same, the size of the element
and therefore the register type being used may change arbitrarily between
the input and output of this function.

template <class T, class U>

T load(U* p);

Requires: U is not a pack type, p is aligned on a boundary suitable for loading
objects of type T.

Effects: Load an object of type T from aligned memory, possibly after doing
a type conversion.

Returns: If T is pack<T2,N>, return a value r so that ∀i ∈ [0, N [, r[i] =

static cast<T2>(p[i]).
else r = static cast<T>(*p).

template <class T, class U>

T load(U* p, std:: ptrdiff_t o);

Requires: U is not a pack type, p+o is aligned on a boundary suitable for
loading objects of type T.
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Effects: Load an object of type T from aligned memory, possibly after doing
a type conversion.

Returns: If T is pack<T2,N>, return a value r so that ∀i ∈ [0, N [, r[i] =

static cast<T2>(p[o+i]).
else r = static cast<T>(p[o]).

template <class T, class U, class V, std:: size_t N>

T load(U* p, pack <V, N> o);

Requires: U is not a pack type, T is pack<T2,N> and all of of p+o[i] are
aligned on a boundary suitable for loading objects of type T.

Effects: Load an object of type T from aligned indexed memory, possibly
after doing a type conversion.

Returns: Return a value r so that ∀i ∈ [0, N [, r[i] = static cast<T2>(p[o[i]]).

Note: This is usually known as a gather operation.

template <class T, std:: ptrdiff_t A, class U>

T load(U* p);

Requires: U is not a pack type, p-A is aligned on a boundary suitable for
loading objects of type T.

Effects: Load an object of type T from memory whose misalignment is A,
possibly after doing a type conversion.

Returns: If T is pack<T2,N>, return a value r so that ∀i ∈ [0, N [, r[i] =

static cast<T2>(p[i]).
else r = static cast<T>(*p).

template <class T, std:: ptrdiff_t A, class U>

T load(U* p, std:: ptrdiff_t o);

Requires: U is not a pack type, p+o-A is aligned on a boundary suitable for
loading objects of type T.
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Effects: Load an object of type T from memory whose misalignment is A,
possibly after doing a type conversion.

Returns: If T is pack<T2,N>, return a value r so that ∀i ∈ [0, N [, r[i] =

static cast<T2>(p[o+i]).
else r = static cast<T>(p[o]).

template <class T, std:: ptrdiff_t A, class U, class V, std::

size_t N>

T load(U* p, pack <V, N> o);

Requires: U is not a pack type, T is pack<T2,N> and all of of p+o[i]-A are
aligned on a boundary suitable for loading objects of type T.

Effects: Load an object of type T from indexed memory whose misalignment
is A, possibly after doing a type conversion.

Returns: Return a value r so that ∀i ∈ [0, N [, r[i] = static cast<T2>(p[o[i]]).

Note: This is usually known as a gather operation.

template <class T, class U>

T unaligned_load(U* p);

Requires: U is not a pack type.

Effects: Load an object of type T from memory, possibly after doing a type
conversion.

Returns: If T is pack<T2,N>, return a value r so that ∀i ∈ [0, N [, r[i] =

static cast<T2>(p[i]).
else r = static cast<T>(*p).

template <class T, class U>

T unaligned_load(U* p, std:: ptrdiff_t o);

Requires: U is not a pack type.

Effects: Load an object of type T from memory, possibly after doing a type
conversion.
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Returns: If T is pack<T2,N>, return a value r so that ∀i ∈ [0, N [, r[i] =

static cast<T2>(p[o+i]).
else r = static cast<T>(p[o]).

template <class T, class U, class V, std:: size_t N>

T unaligned_load(U* p, pack <V, N> o);

Requires: U is not a pack type, T is pack<T2,N>.

Effects: Load an object of type T from indexed memory, possibly after doing
a type conversion.

Returns: Return a value r so that ∀i ∈ [0, N [, r[i] = static cast<T2>(p[o[i]]).

Note: This is usually known as a gather operation.

template <class T, class U>

void store(T v, U* p);

Requires: U is not a pack type, p is aligned on a boundary suitable for storing
objects of type T.

Effects: Store the object v to memory to aligned memory, possibly after do-
ing a type conversion.
If T is pack<T2,N>, ∀i ∈ [0, N [, p[i] = static cast<T2>(v[i]).
else *p = static cast<T>(v).

template <class T, class U>

void store(T v, U* p, std:: ptrdiff_t o);

Requires: U is not a pack type, p+o is aligned on a boundary suitable for
storing objects of type T.

Effects: Store the object v to memory to aligned memory, possibly after do-
ing a type conversion.
If T is pack<T2,N>, ∀i ∈ [0, N [, p[o+i] = static cast<T2>(v[i]).
else p[o] = static cast<T>(v).
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template <class T, class U, class V, std:: size_t N>

void store(pack <T, N> v, U* p, pack <V, N> o);

Requires: U is not a pack type and all of p+o[i] are aligned on a boundary
suitable for storing objects of type T.

Effects: Store the object v to aligned indexed memory, possibly after doing
a type conversion.
Return a value r so that ∀i ∈ [0, N [, p[o[i]] = static cast<T2>(v[i]).

Note: This is usually known as a scatter operation.

template <class T, class U>

void unaligned_store(T v, U* p);

Requires: U is not a pack type.

Effects: Store the object v to memory, possibly after doing a type conversion.
If T is pack<T2,N>, ∀i ∈ [0, N [, p[i] = static cast<T2>(v[i]).
else *p = static cast<T>(v).

template <class T, class U>

void unaligned_store(T v, U* p, std:: ptrdiff_t o);

Requires: U is not a pack type.
Effects: Store the object v to memory, possibly after doing a type conversion.
If T is pack<T2,N>, ∀i ∈ [0, N [, p[o+i] = static cast<T2>(v[i]).
else p[o] = static cast<T>(v).

template <class T, class U, class V, std:: size_t N>

void unaligned_store(pack <T, N> v, U* p, pack <V, N> o);

Requires: U is not a pack type and all of p+o[i] are aligned on a boundary
suitable for storing objects of type T.

Effects: Store the object v to indexed memory, possibly after doing a type
conversion.
Return a value r so that ∀i ∈ [0, N [, p[o[i]] = static cast<T2>(v[i]).
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Note: This is usually known as a scatter operation.

5.4.2 Shuffling Functions

namespace std { namespace simd

{

template <class F, class T, std:: size_t N>

pack <T,N> shuffle(pack <T,N> p);

} }

Requires: F is a metafunction class.

Effects: fills the elements of the destination pack<T,N> r with the ele-
ments of p respecting the following expression : r[i] = p[F::template

apply<i,N>::value] ∀i ∈ [0, N [.

Returns: The resulting pack<T,N>.

namespace std { namespace simd

{

template <std:: ptrdiff_t ... I, class T, std:: size_t N>

pack <T,N> shuffle(pack <T,N> p);

} }

Requires: sizeof...(I) is equal to N and I belongs to [0, N [.

Effects: fills the elements of the destination pack<T,N> r with the ele-
ments of p respecting the following expression : r[i] = p[F::template

apply<i,N>::value] ∀i ∈ [0, N [.

Returns: The resulting pack<T,N>.

namespace std { namespace simd

{

template <class F, class T, std:: size_t N>

pack <T,N> shuffle(pack <T,N> p1 , pack <T,N> p2);

} }

Requires: F is a metafunction class.

Effects: fills the elements of the destination pack<T,N> r with the elements of
p respecting the following expression : r[i] = (F::template apply<i,N>::value<N)

? p[F::template apply<i,N>::value] : p[F::template apply<i,N>::value
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- N] ∀i ∈ [0, N [.

Returns: The resulting pack<T,N>.

namespace std { namespace simd

{

template <std:: ptrdiff_t ... I, class T, std:: size_t N>

pack <T,N> shuffle(pack <T,N> p1 , pack <T,N> p2);

} }

Requires: sizeof...(I) is equal to N and I belongs to [0, N [.

Effects: fills the elements of the destination pack<T,N> r with the elements of
p respecting the following expression : r[i]=(F::template apply<i,N>::value<N)?p[F::template

apply<i,N>::value]:p[F::template apply<i,N>::value-N] ∀i ∈ [0, N [.

Returns: The resulting pack<T,N>.

5.4.3 Reduction Functions

namespace std { namespace simd

{

template <class T > T sum(T p);

template <class T, std:: size_t N> T sum(pack <T,N> p);

template <class T > T prod(T p);

template <class T, std:: size_t N> T prod(pack <T,N> p);

template <class T > T min(T p);

template <class T, std:: size_t N> T min(pack <T,N> p);

template <class T > T max(T p);

template <class T, std:: size_t N> T max(pack <T,N> p);

template <class T > bool all(T p);

template <class T, std:: size_t N> bool all(pack <T,N> p);

template <class T > bool any(T p);

template <class T, std:: size_t N> bool any(pack <T,N> p);

template <class T > bool none(T p);

template <class T, std:: size_t N> bool none(pack <T,N> p);

} }

5.4.4 cmath Functions

The function supported includes all of the mathematical functions available
in the cmath header 2.
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Table 2: Functions on pack

Generic Name Description
abs computes the absolute value
div the quotient and remainder of integer division

fmod remainder of the floating point division operation
remainder signed remainder of the division operation

fma fused multiply-add operation
max larger of two values
min smaller of two values
dim positive difference of two floating point values
nan not-a-number
exp returns e raised to the given power
exp2 returns 2 raised to the given power

expm1 returns e raised to the given power, minus one
log computes natural (base e) logarithm (to base e)

log10 computes common (base 10) logarithm
log1p natural logarithm (to base e) of 1 plus the given number
log2p base 2 logarithm of the given number
sqrt computes square root
cbrt computes cubic root

hypot computes square root of the sum of the squares of two given numbers
pow raises a number to the given power

sin and variants computes sine (arc sine, hyperbolic sine)
cos and variants computes cosine (arc cosine, hyperbolic cosine)
tan and variants computes tangent (arc tangent, hyperbolic tangent)

erf error function
erfc complementary error function

lgamma natural logarithm of the gamma function
tgamma gamma function

ceil nearest integer not less than the given value
floor nearest integer not greater than the given value
trunc nearest integer not greater in magnitude than the given value
round nearest integer, rounding away from zero in halfway cases

nearbyint nearest integer using current rounding mode
rint nearest integer using current rounding mode with exception if the result differs

frexp decomposes a number into significand and a power of 2
ldexp multiplies a number by 2 raised to a power
modf decomposes a number into integer and fractional parts
logb extracts exponent of the number

nextafter/nexttoward next representable floating point value towards the given value
copysign copies the sign of a value
isfinite checks if the given number has finite value
isinf checks if the given number is infinite
isnan checks if the given number is NaN

isnormal checks if the given number is normal
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Table 2: Functions on pack

Generic Name Description
signbit checks if the given number is negative

isgreater checks if the first floating-point argument is greater than the second
isgreaterequal checks if the first floating-point argument is greater or equal than the second

isless checks if the first floating-point argument is less than the second
islessequal checks if the first floating-point argument is less or equal than the second

islessgreater checks if the first floating-point argument is less or greater than the second
isunordered checks if two floating-point values are unordered

5.5 Traits and metafunctions

namespace std { namespace simd

{

template <class T> struct scalar_of;

template <class T> struct cardinal_of;

template <class T> struct as_logical;

} }

template <class T> struct scalar_of;

Returns: If T is a cv or reference qualified pack<T2, N> type, return T2 with
the same cv and reference qualifiers. Otherwise return T.

template <class T> struct cardinal_of;

Returns: If T is a cv or reference qualified pack<T2, N> type, return integral constant<size t,

N>. Otherwise return integral constant<size t, 1>.

template <class T> struct as_logical;

Returns: If T is a cv or reference qualified pack<T2, N> type with T2 a non-
logical type, return pack<logical<T2>, N> with the same cv and reference
qualifiers. Else if T is a cv or reference qualified non-logical type T2, return
logical<T2> with the same cv and reference qualifiers. Otherwise return T.
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