
 Document number: N3587
 Date: 2013-03-17
 Project: Programming Language C++
 Reference: N3485
 Reply to: Alan Talbot
 cpp@alantalbot.com

For Loop Exit Strategies

Abstract

This proposal suggests an enhancement to for iteration statements to allow the programmer to
specify separate blocks of code that execute on completion of a for loop; one for normal termi-
nation (when the loop condition is no longer met) and the other for early termination (when
the loop is exited with a break). This feature would be especially useful in range-based for
statements.

The Problem

I often find myself writing code that looks something like this:

auto i = c.begin(); // Unfortunate that i is required here.

for (; i != c.end(); ++i)

{

 if (some_condition(*i)) break;

 do_something(*i);

}

if (i == c.end()) // Extra test here.

{

 do_stuff();

}

else

{

 do_something_else(*i);

}

This is rather a nuisance, involves an unnecessary test, and hoists i out into the surrounding
scope. This is all rather annoying, but the problem gets much worse with range-based for loops.
There it is not legal to declare the loop variable outside the for statement, so the best I can do
would be something like this:

N3587

2

something_t last; // Extra construction here.

for (auto& i : c)

{

 if (some_condition(i))

 {

 last = i; // Extra copy here

 goto EARLY;

}

 do_something(i);

}

do_stuff();

goto DONE;

EARLY:

do_something_else(last);

DONE:

This is pretty awful. Note the extra construction in the outer scope that requires stating the
type. That might not even be possible (if the type isn’t default constructible or copyable). This is
clearly not an improvement over the conventional for version, so the point of range-based for
has been lost, and in fact I suspect that no one would write code like this. I would simply use
the conventional version.

(Of course, in some cases I could eliminate the last variable and call do_something_else
from inside the loop, but that becomes impractical if there are a number of early exit points
and do_something_else is actually several lines of code rather than a simple function call.
And I would still need the goto.)

The Solution

What I’d really like to do is have the language provide me a way to catch the two cases, normal
and early termination. If the language had a then keyword the clearest syntax would probably
be:

for (. . .)

{

 // Regular for loop body.

}

then

{

 // Normal termination: the loop condition failed.

}

else

{

 // Early termination: a break was encountered.

}

It is probably not practical to add a new keyword, especially then, but there is a syntax that I
think would be fairly natural and would be a pure extension to the language. My proposal is to
introduce an if for statement:

N3587

3

if for (. . .)

{

 // Regular for loop body.

}

{

 // Normal termination: the loop condition failed.

}

else

{

 // Early termination: a break was encountered.

}

The semantics of the if for retain the exact sense of the if statement: the declared variable
remains in scope in both the normal termination and early termination (else) substatements,
and only one of the termination substatements is executed. Control transfers to the normal
termination substatement if and when the loop condition is no longer met (even if the loop
substatement is never executed), and to the early termination substatement if the loop exits
with a break.

One interesting question is whether the normal termination block braces should be required. If
they were not, then this example would be legal:

if for (int i = 0; i < 10; ++i)

 if (foo(i)) break; // Loop body statement.

 cout << “no foo”; // Normal termination statement!

else

 cout << “foo at ” << i; // Early termination statement.

This seems too confusing for the human reader to parse, so I suggest that braces be required:

if for (int i = 0; i < 10; ++i)

 if (foo(i)) break; // Loop body.

{ // Normal termination statement,

 cout << “no foo”; // block required.

}

else

 cout << “foo at ” << i; // Early termination statement.

The loop body braces are of course not required, so this scenario is legal and quite reasonable:

if for (int i = 0; i < 10; ++i)

 if (foo(i)) break; // Loop body statement,

 else bar(i); // happens to have an else clause.

else

 cout << “foo at ” << i; ; // Early termination statement.

N3587

4

Examples

Here is our original range-based example:

if for (auto& i : c)

{

 if (some_condition(i)) break;

 do_something(i);

}

{

 do_stuff();

}

else

{

 do_something_else(i);

}

The if for statement also provides for a graceful multiple break. Suppose I want to iterate over a
three-dimensional table and choose a particular cell. Today I would probably do something like
this:

vector<vector<vector<...>>> table = ...;

for (auto& x : table)

 for (auto& y : x)

 for (auto& z : y)

 if (some_condition(z))

 {

 do_something(z);

 goto DONE;

 }

DONE:

This is a little ugly, and gets even worse if you have different exit situations. (I could solve this
particular problem by writing a function that returns from the inner loop, but not all such
constructions are easily put into a function.) With if for you can do this:

for (auto& x : table)

 if for (auto& y : x)

 if for (auto& z : y)

 {

 if (some_condition(z))

 {

 do_something(z);

 break;

 }

 }

 else break;

 else break;

This scales well to more complicated cases since you can either continue or break on either
termination condition.

N3587

5

Specifics

I am proposing to add a new if for iteration statement to section 6.5. This is not meant to be
formal wording. I will provide formal wording in a revision of this proposal.

Conventional if for

if for (for-init-statement conditionopt; expressionopt) statement

compound-statement

if for (for-init-statement conditionopt; expressionopt) statement

compound-statementopt else statement

If and only if the early termination (else) substatement is present, then the normal termination
substatement may be omitted. If the for-init-statement is a declaration, the scope of the
name(s) declared includes the normal termination substatement and the early termination
substatement.

Example

if for (int i = 0; i < 10; ++i)

{

 // Regular for loop substatement.

}

{

 // Normal termination substatement.

 // May be omitted entirely if the else is present.

 // Braces are required.

 // i is in scope and equal to 10.

}

else

{

 // Early termination substatement.

 // May be omitted entirely if the normal termination block is present.

 // Braces are not required.

 // i is in scope and has a value between 0 and 9.

}

Range-based if for

if for (for-range-declaration : for-range-initializer) statement

compound-statement

if for (for-range-declaration : for-range-initializer) statement

compound-statementopt else statement

If and only if the early termination (else) substatement is present, then the normal termination
substatement may be omitted. The scope of the name declared in the for-range-declaration
includes the normal termination substatement and the early termination substatement. In the
normal termination substatement its value is undefined. (It is in scope simply for consistency
with conventional if for statements.)

N3587

6

Example

if for (auto i : v)

{

 // Regular for loop substatement.

}

{

 // Normal termination substatement.

 // May be omitted entirely if the else is present.

 // Braces are required.

 // i is in scope but its value is undefined.

}

else

{

 // Early termination substatement.

 // May be omitted entirely if the normal termination block is present.

 // Braces are not required.

 // i is in scope and has the value it had when the break occurred.

}

Acknowledgements

Beman Dawes reviewed an early draft of this proposal and suggested several excellent
clarifications. Clark Nelson reviewed the final draft and caught several mistakes.

