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1 Introduction

Writing containers that support concurrently access/modification by multi-
ple threads incurs a special problem: when is it safe to delete an object? The
problem is surprisingly tricky when lock-free operations are involved. Numer-
ous general means have been proposed, such as Hazard Pointers [I], Pass the
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Buck [2], Epoch Based Reclamation [3], Read Copy Update (RCU) [4], Differ-
ential Reference Counting (DRC) [5], Reference Counting [6], Garbage Col-
lection (GC), and Transactional Memory.[] Each means has its own strengths
and weaknesses, and no one approach is ideal in all contexts.

This paper sketches a way of abstracting these means so that concurrent
container implementations could be parameterized over these means, thus
allowing users to select the means best for their context. Though few users
will want to change a container at whim, say from Hazard Pointers to RCU,
different applications will have different requirements. For example, though
RCU is popular for kernel writing, Hazard Pointers may be preferable for
user-space code. Hence abstracting over the particular means could enable
wider use of common concurrent container code.

What would be standardized is a conceptual reclaimer interface along
with a concrete implementation. Concurrent containers (see N3732) would
be parameterized over a reclaimer argument. This arrangement would be
analogous to current practice with allocators: they have a conceptual alloca-
tor interface, a concrete implementation std::allocator, and are used as
parameters to container templates.

This paper presents a sketch, not a complete proposal. It is intended
to elicit discussion from experts as to whether the abstraction is viable. As
such, this paper presents a fairly minimal interface that omits knobs for
weak memory consistency and and extensive overloading of operators, so
that experts can focus on a core question: Is the abstraction sufficient to
support various means for deferred object deletion?

1.1 Weak Guarantee

The basic idea is to define some abstractions that support the weakest com-
mon guarantee that the various means can support. There are two funda-
mental abstractions:

e A concurrent_ptr acts like a pointer that supports atomic operations.

e A guard_ptr is an object that can atomically take a snapshot of the
value of a concurrent_ptr and if the target has not yet been deleted,
guarantee that the target will not be deleted while the guard_ptr holds
a pointer to it.

! The recent “Drop the Anchor” [7] approach is omitted from the list since it seems
difficult to apply generically.
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It is important to note that this guarantee is much weaker than classic
garbage collection: It is only guard_ptr references that protect against dele-
tion.

In effect, a concurrent_ptr is a “weak” pointer and a guard_ptr is a “shared
ownership” pointer. The key semantic differences from std: :weak_ptr and
std: :shared_ptr are that

e concurrent_ptr and guard_ptr are abstract interfaces (a.k.a. “concepts”),
not concrete interfaces.

e They support a snapshot operation that is an atomic analog of method
std: :weak_ptr::lock().

e A std::weak_ptr can indicate whether it has “expired” — that is its
target was deleted. A concurrent_ptr gives no such indication even if,
as it can in some implementations, point to freed memory.

1.2 Marked Pointers

Many lock-free algorithms rely on marking pointers with one or more low-
order bits borrowed from the pointer value itself. See references [8) [1, 9] for
examples. Because of the way the bit borrowing interacts with some of the
deferred deletion mechanisms, the notion of a marked pointer is part of the
interface.

The abstractions allow more than one mark bit per pointer, as opposed
to Java’s AtomicMarkableReference that supports only a single bit. If the
number of mark bits exceeds practicality on the target machine, the imple-
mentation can fall back on using locks, much the way existing std: : atomic<T>
can. Like the latter, a marked pointer has a method is_lock_free() that
indicates whether operations on it are lock free.

2 Interface

Each concurrent container would take a reclaimer argument in addition to
an allocator argument. Similar to the allocator argument, there would be a
default reclaimer, for example std: :default_reclaimer.

A reclaimer type R would define two abstractions necessary for safe de-
struction and deletion.
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e R::concurrent_ptr<T,D> : Acts like an atomic markable pointer to
objects of type T with deleter of type D. It supports atomic operations
such as load, store, and compare_exchange_weak. Class T must be
derived from enable_concurrent_ptr<T,N>.

e R::enable_concurrent_ptr<T,N>: Mandatory base class for targets
of concurent_ptr. T is the derived class. N is the number of mark bits
supported, which defaults to zero.

The intent of enable_concurrent_ptr<T,N> is to provide implementers of
reclaimers with two things:

e A way to force the alignment of targets, which is a common way to
provide mark bits in the pointers.

e A place to embed reclaimer state, such as reference counts, in the user’s
objects.

Class concurrent_ptr<T,D> provides two auxiliary types for working
with concurrent_ptr objects.

e concurrent_ptr<T,D>::marked_ptr : Acts like a pointer, but has N
mark bits, where N is specified by the base class enable_concurrent_ptr<T,N>
of T.

e concurrent_ptr<T,D>::guard_ptr : Similar to a marked_ptr, but
has shared ownership of its target if the target has not been deleted.

The key operation is acquire, which takes a snapshot with the weak
guarantee. Here is an example of the syntax:

extern concurrent_ptr p;
extern guard_ptr g;
g.acquire(p);

In wait-free algorithms, acquire may be problematic when implemented with
hazard pointers or pass the buck, because it may have to loop indefinitely
to get a good snapshot. Thus a fancier form is also provided that enables
quitting early if the value in p does not match a provided value m.

extern concurrent_ptr p;

extern guard_ptr g;

extern marked_ptr m;

bool b = g.acquire_if_equal(p,m);
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If the pointer in p does not match m, b==false. Otherwise b==true and the
net effect is the same as for a plain acquire, and afterwards g.get ()==m.
Listing [9] in Section [5.2] will show it in use.

Releasing a guard follows the standard smart pointer interface. The op-
eration g.reset releases ownership and sets g to nullptr. The destructor
of guard_ptr implicitly calls reset.

2.1 Possible Concrete Implementations

Some possible concrete implementations:

e Hazard Pointers: guard_ptr is a hazard pointer. The operation acquire (p)

repeatedly copies p into a hazard pointer until the hazard pointer and
p match. The operation g.reset () sets the hazard pointer to null.

e Pass the Buck: guard_ptr is a “guard”. Operation of acquire(p) is
similar to hazard pointers.

e RCU: The operation acquire indicates start of a read critical section
followed by a rcu_dereference operation. The operation g.reset() in-
dicates the end of a read critical section.

e DRC: A concurrent_ptr is a “strong pointer” and a guard_ptr is a
“basic pointer”.

e GC: guard_ptr is just a traceable pointer.

Note that RCU, DRC, and GC provide much stronger guarantees than our
“weak guarantee”. Programmers should take care to not accidentally rely on
the strong guarantees.

3 Alternatives

In theory, shared_ptr and weak_ptr could be used, but their higher degree of
safety adds significant overhead. In particular, atomic operations on these are
quite expensive, requiring expensive locking protocols and solve the problem
poorly. (Michael and Scott [6] discuss why reference counting is problematic.)
In contrast, this proposal enables lightweight mechanisms such as Hazard
Pointers or RCU to be employed.
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The sketched proposal separates allocator and reclaimer policy argu-
ments. An alternative is for concurrent containers to take a single policy
argument that combines both into a “concurrent allocator”. The combi-
nation would eliminate the need for the type enable_concurrent_ptr since
the concurrent allocator could do the equivalent alignment adjustments when
allocating an object.

4 Concrete Interface

This section shows a basic concrete interface, sufficient for the examples in
Section [5] Class templates enable_concurrent_ptr and concurrent_ptr

are assumed to be members of a concrete reclaimer class, for example rcu_reclaimer
or hazard_pointer_reclaimer.

4.1 enable_concurrent_ptr

template<class T, size_t MarkSize=0>
class enable_concurrent_ptr {
protected:
enable_concurrent_ptr() noexcept;
enable_concurrent_ptr(const enable_concurrent_ptr&) noexcept;
enable_concurrent_ptr& operator=(const enable_concurrent_ptr&)
noexcept;
~enable_concurrent_ptr() noexcept;
};

Listing 1: Concrete interface for enable_concurrent_ptr
4.2 concurrent_ptr

//! T must be derived from enable_concurrent_ptr <T>. D is a deleter .
template<class T, class D=std::default_delete<T> >

class concurrent_ptr {

public:

// See Section

typedef implementation-defined marked_ptr;

// See Section
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typedef implementation-defined guard_ptr;

// Constuct concurrent_ptr
concurrent_ptr(const marked_ptr& p=marked_ptr());

// Atomic load that does not guard target from being reclaimed .
marked_ptr load() const;

// Atomic store.
void store(const marked_ptr& src);

// Shorthand for store (src.get())
void store(const guard_ptr& src);

// Atomic exchange.
void swap(guard_ptr& q);

// Compare—and—swap.
bool compare_exchange_weak(marked_ptr& expected, marked_ptr
desired);

// Compare—and—swap.
bool compare_exchange_weak(guard_ptr& expected, marked_ptr
desired);

// Shorthand for compare_exchange_weak(src. get())
bool compare_exchange_weak(marked_ptr& expected, guard_ptr&
desired) ;

// Shorthand for compare_exchange_weak(src. get())
bool compare_exchange_weak(guard_ptr& expected, guard_ptrk
desired);

Listing 2: Concrete interface for concurrent_ptr

The interface for atomic exchange departs somewhat from the rest of the

standard library to avoid introducing the need for a third guard_ptr object,
whose construction might be incur unnecessary overhead.
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The several flavors of compare_exchange_weak exist to support various
cases where one or both arguments do not need guard protection.

4.3 marked _ptr

The implementation-defined type concurrent_ptr<T,D>: :mark_ptr should
behave as if it were defined as follows.

template<class T, class D>
class concurrent_ptr<T,D>::marked_ptr {
public:
// Construct a marked_ptr
marked_ptr(T* p=nullptr, uintptr_t mark=0) noexcept;

// Copy constructor
marked_ptr(const marked_ptr&) noexcept;

// Copy underlying marked pointer of a guard_ptr.
marked_ptr(const guard_ptr& g) noexcept;

// Destructor

“marked_ptr() noexcept;

// Assignment
marked_ptr& operator=(const marked_ptr&) noexcept;

// Set to nullptr

void reset() noexcept;

// Get mark bits

uintptr_t mark() const noexcept;

// Get underlying pointer (with mark bits stripped off).
T+ get() const noexcept;

// True iff get()==nullptr &€ mark()==0

explicit operator bool() const noexcept;

// Get pointer with mark bits stripped off .
T* operator->() const noexcept;

// Get reference to target of pointer.
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T& operator*() const noexcept;

// True iff operations are lock— free
static bool is_lock_free() noexcept;
};
Listing 3: Concrete interface for marked_ptr

Additionally, there is a requirement that operator== and operator!= oper-
ate on marked pointers, and include mark bits in their comparisons.

4.4 guard ptr

The implementation-defined type concurrent_ptr<T,D>: :guard_ptr should
behave as if it were defined as follows.

template<class T, class D>
class concurrent_ptr<T,D>::guard_ptr {
public:
// Guard a marked_ptr.
guard_ptr(const marked_ptr& p=marked_ptr());

// Copy constructor
explicit guard_ptr(const guard_ptr& p);

// Copy assignment
guard_ptr& operator=(const guard_ptr& p);

// Destructor
~guard_ptr();

// Atomically take snapshot of p, and xifx it points to unreclaimed
object , acquire shared ownership of it.
void acquire(concurrent_ptr& p);

// Like acquire, but quit early if a snapshot != expected .
bool acquire_if_equal(concurrent_ptr& p, const marked_ptr&
expected) ;

// Release ownership. Postcondition : get()==nullptr.
void reset() noexcept;
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// Get underlying pointer
T* get() const noexcept;

// Get mark bits
uintptr_t mark() const noexcept;

// True if snapshot is nullptr with mark bits set to zero.
explicit operator bool() const noexcept;

// Get pointer with mark bits stripped off. Undefined if target has
been reclaimed .
T+ operator->() const noexcept;

// Get reference to target of pointer. Undefined if target has been
reclaimed .

T& operator*() const noexcept;

// Swap two guards
void swap(guard_ptr& g) noexcept;

// Reset. Deleter d will be applied some time after all owners release
their ownership.

void reclaim(D d=D()) noexcept;

// True iff operations are lock—free
static bool is_lock_free() noexcept;

Listing 4: Concrete interface for guard ptr

Examples

5.1 Classic Lock-Free Stack

The classic lock-free stack is a linked list. Listing [5| declares the data struc-
tures.

struct node;
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typedef typename Reclaimer::template concurrent_ptr<node>
concurrent_ptr;

// A node in a linked list

struct node: Reclaimer::template enable_concurrent_ptr<node> {
const Value value;
node* next;
node (Value k) : value(k) {}

+;

// Root of the linked list

concurrent_ptr root;

typedef typename concurrent_ptr::marked_ptr marked_ptr;
typedef typename concurrent_ptr::guard_ptr guard_ptr;

Listing 5: Data declarations for a lock-free stack

A subtle point is that next is declared as a plain pointer, not a concurrent_ptr
or a atomic<nodex>, though it could be. The reason is that its value is writ-
ten only before it is published to other threads or after reclamation has
determined it is accessible to only one thread.

Listing [6] shows how an item is pushed onto the list. Each mark_ptr here
has zero mark bits. No guard_ptr is required since no other thread can
possibly delete the newly created node until it is published in the list.

void push(Value value) {
marked_ptr n = new node(value);
marked_ptr m;
do {
m = root.load();
n->next = m.get();
} while(root.compare_exchange_weak(m,n));

Listing 6: Pushing onto a lock-free stack

Listing [7] shows how to pop an item from the stack. The guard_ptr is
essential for preventing an ABA problem that could corrupt the list repre-
sentation.

bool try_pop(Value& v) {
guard_ptr g;
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do {
// Get guarded snapshot of root.
g.acquire(root);
if(1g)
// Stack is empty.
return false;
} while(!'root.compare_exchange_weak(g, g->next));
// Successfully popped item from stack .
v = g->value;
g.reclaim();
return true;

Listing 7: Popping from a lock-free stack

5.2 Lock-Free List-Based Set

This example is adapted from Figure 9 of reference[l]. Listing|8|declares the
data structures.

struct node;

typedef typename Reclaimer::template concurrent_ptr<node>
concurrent_ptr;

typedef Key key;

struct node: Reclaimer::template enable_concurrent_ptr<node,1> {
const Key key;
concurrent_ptr next;
node(Key k) : key(k) {}

};

© 00 g O Ot W
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typedef typename concurrent_ptr::guard_ptr guard_ptr;
typedef typename concurrent_ptr::marked_ptr marked_ptr;
concurrent_ptr head;

Listing 8: Data declarations for a lock-Free list-based set

Listing [9] shows routine find, which is the workhorse for the lock-free list.

w

It searches the list for a given key or suitable insertion point for the key.

bool find(Key key, concurrent_ptr*& prev, guard_ptr& cur,
marked_ptr& next, guard_ptr& save) {

retry:
prev = &head;
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next = prev->load();
for(;;) {

if(!'cur.acquire_if_equal (*prev, next))
goto retry;
if (!cur)
return false;
next = cur->next.load();
if (next.mark() !=0) {
// Node xcur is marked for deletion .
next = marked_ptr(next.get(),0);
// Try to splice out node
if (!prev->compare_exchange_weak(cur, next))
goto retry,;
cur.reclaim();
} else {
Key ckey = cur->key;
if (prev->load () !=marked_ptr(cur))
// xcur might be cut from list .
goto retry;
if (ckey>=key)
return ckey==key;
prev = &cur->next;
cur.swap (save) ;

Listing 9: Find operation on a lock-free List

If it returns true, then the following properties hold:

prev points to a live (not in reclaimed memory) concurrent_ptr.
cur points to a live node with a key greater or equal to the search key.

save is guarding the node containing *prev, unless prev==&head, in
which case no guard is necessary.

While cur->next and next match, the node pointed to by cur is still
part of the list.

While prev->load() and cur match, it is safe to insert a new node
there. See Listing [10| for details.
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Listing |10] uses find to insert an item.

bool insert(Key key) {
node* n = new node(key) ;
concurrent_ptr* prev;
guard_ptr cur, save;
marked_ptr next;
do {
if (find (key,prev,cur,next,save)) {
delete n;
return false;
}
// Try to install new node
n->next.store(cur.get());
} while(!prev->compare_exchange_weak(cur,n));
return true;

Listing 10: Insert operation on a lock-Free list

Listing [11] uses find to erase an item.

bool erase(Key key) {
concurrent_ptr* prev;
guard_ptr cur, save;
marked_ptr next;
// Find node in list with matching key and mark it for erasure.
do {
if (! find (key,prev,cur,next,save))
// No such node in the list
return false;
} while(!cur->next.compare_exchange_weak(next,marked_ptr(next.
get(),1)));
// Try to splice out node
if (prev->compare_exchange_weak(cur,next))
cur.reclaim();
else
// Another thread interfered . Rewalk list to ensure reclamation of
marked node before returning .
find (key,prev,cur,next,save);
return true;
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Listing 11: Erase operation on a lock-Free list

The find on line 16 assures progress guarantees [§].
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