
Vector Programming

A proposal for WG21
(presented to CPLEX within WG14)

Robert Geva

N3734

2013-09-02

2

Software and Services Group
robert.geva@intel.com N3734

Context
• Posing a presentation rather than a document

– Multiple documents with the syntax and semantics shows in
SG1 to date

• In Bristol, semantics were presented w/o a way for the
programmer to actualize them

• This is the next step, presenting syntax

• The presentation covers vector loops, elemental functions
and array notation.
– Array notations may not be presented in the Chicago meeting.

• A comment on the dual syntax:
– The syntax that is actually implemented and shipping is the

#pragma based syntax.

– The syntax being proposed is the keyword based syntax

– The expectation is that capabilities, semantics and performance
are the same

– Some examples and illustrations here use #pragma, some use
keywords.

3

Software and Services Group

SIMD / Vector Hardware Resources

• AVX- 512

– 16x chars/shorts (converted to int)

– 16x dwords/floats

– 8x qwords/doubles/float complex

– 4x double complex

• XMM (128 bit)
– 16x chars

– 8X shorts

– 4x dwords / floats

– 2X qwords / doubles / float complex

– Double complex

• YMM (256 bit)
– 32X chars

– 16X short

– 8X dowrd / float

– 4X qword / double

– 2X double complex

X3

Y3

X3opY3

0 127

X2

Y2

X2opY2

X1

Y1

X1opY1

X0

Y0

X0opY0

X7

Y7

X7opY7

128 255

X6

Y6

X6opY6

X5

Y5

X5opY5

X4

Y4

X4opY4

X11

Y11

X11opY11

256 383

X10

Y10

X10opY10

X9

Y9

X9opY9

X8

Y8

X8opY8

X15

Y15

X15opY15

384 512

X14

Y14

X14opY14

X13

Y13

X13opY13

X12

Y12

X12opY12

X87 SSE 2 AVX AVX-512

N3734
3

4

Software and Services Group
robert.geva@intel.com N3734

Performance with Vector Parallelism

Measurements by Xinmin Tian for paper in IPDPS, PLC’12

5

Software and Services Group
robert.geva@intel.com N3734

Vectorization performance with 64 threads

(a stencil benchmark)

0

10

20

30

40

50

60

70

80

1 2 4 8 16 32 64

Cilk

Cilk+Cean

OpenCL

TBB

TBB+SIMD

0

1

2

3

4

5

6

7

T1 T2 T4 T8 T16 T32 T64

vect/cilk

vect/tbb

6

Software and Services Group
robert.geva@intel.com N3734

Write Vector Code Only Once
and Just Recompile for multiple Targets

#define ABS(X) \

 ((X) >= 0? (X) : -(X))

int A[1000]; double B[1000];

void foo(int n){

 int i;

 for (i=0; i<n; i++){

 B[i] += ABS(A[i]);

 }

}

vpabsd xmm0, [A+r9+rax*4]

vcvtdq2pd ymm1, xmm0

vaddpd ymm2, ymm1, [B+r9+rax*8]

vmovupd [B+r9+rax*8], ymm2

add rax, 4

cmp rax, rcx

jb .B1.4

movq xmm1, [A+r9+rax*4]
pxor xmm0, xmm0
pcmpgtd xmm0, xmm1
pxor xmm1, xmm0
psubd xmm1, xmm0
cvtdq2pd xmm2, xmm1
addpd xmm2, [B+r9+rax*8]
movaps [B+r9+rax*8], xmm2
add rax, 2
cmp rax, rcx
jb .B1.4

-O2

-O2 -QxAVX

ABS
sequence

4 elements

2 elements

movq xmm0, [A+r9+rax*4]

pabsd xmm1, xmm0

cvtdq2pd xmm2, xmm1

addpd xmm2, [B+r9+rax*8]

movaps [B+r9+rax*8], xmm2

add rax, 2

cmp rax, rcx

jb .B1.4

ABS
instruction

2 elements

7

Software and Services Group
robert.geva@intel.com N3734

Vector Programming

• Loop iterations execute in “vector
order” and use vector instructions

Vector
Loops

• Compiled as if part of a vector loop
Elemental
functions

• Element-wise operations on arrays
with vector order semantics

Array
Notations

7
Language extensions to express vector parallelism

8

Software and Services Group

Programming vs. Hinting

• Vector programming is a part of parallel

programming

• Language syntax provided for “go ahead and

generate vector code” model

– If the results ≠ scalar code then it may be a

programmers bug, rather than a compiler bug

• Additional constructs include private,

reduction, linear, etc

directive hint

vector SIMD IVDEP

thread OpenMP PARALLEL

Not all pragmas

are hints

9

Software and Services Group
robert.geva@intel.com N3734

Capabilities in vector loops
Capability Syntax Meaning

Vector loop simd_for (; ;) Vector order of evaluation

Limit the chunk size simd_for_chunk(N) (; ;) Limit the number of iterations that can be

grouped together and execute in a chunk

A uniform variable A single object common for all iterations

in a chunk. If iters assign diff values the

behavior is undefined

A private variable Each iteration has a separate object

induction simd_for (; ; x+=s, p+=4) A single object across all iteration, and

they are allowed to all increment

(exception to uniform).

Reduction TBD, consistent with proposal

for reduction in tasking

A single object for all vector lanes, allowed

to be modified differently by different

iterations, value undefined during the

loop, available after the loop.

Turn vector ordering

off

simd_off { } Turn off the relaxed order of evaluaiton

within the scope and re-impose C11 order

of evaluation.

Elemental Functions T f (args) simd (qualified args) Consecutive iterations of the function are

chunked and execute together, as if they

were in the body of a vector loop

10

Software and Services Group
robert.geva@intel.com N3734

Capabilities in Elemental Functions

Capability Syntax Meaning

Elemental function T f (args) simd(args,

chunk(N)) { body }

N Consecutive invocations

of f are chunked and

execute in vector order

A varying parameter default Values of the arg within

the chunk are unrelated to

each other

A uniform parameter uniform arg All N values of the arg are

the same

A Linear parameter linear arg:s N values of args are linear

increments by S

Chunk size chunk(N) Determines the numbers

of consecutive invocations

to be grouped together

Multiple versions T f (args)

simd(args, chunk(N1))

simd(args, chunk(N2))

{ body }

Multiple versions of f are

generated, differ by

argument qualifiers and

/or chunk size

11

Software and Services Group
robert.geva@intel.com N3734

Vector Loops Semantics

• The loops has to be “countable”

• The loop has logical iterations numbered 0, 1, … ,N-1

• Order of evaluation:
– If X is sequenced before Y in the body of the loop, then for each

iteration i, Xi is sequenced before Yi

– For every X and Y evaluated as part of the vector loop, if X is
sequenced before Y and i<j then Xi is sequenced before Yj

• If the chunk c≥1 is specified then in addition:
– For every expression X and every iteration i, Xi is sequenced before

Xi+c

• Note:
– The above allows order of evaluation that facilitates generation of

vector code,

– it also allows the regular, “scalar” order

– i.e. vector order of evaluation is not mandated

Different order of evaluation from
sequential and from parallel loops

12

Software and Services Group
robert.geva@intel.com N3734

Illustration: Vector Order of Evaluation

simd_for (int n = 0; n < N; ++n) {
 a[n] += b[n];
 c[n] += d[n];
}

for (int n = 0; n < N; n+=2) {
 t1 = a[n]; t2 = a[n+1]; // a[n+1] can be written
 // before c[n] and d[n] are read
 t5 = b[n]; t6 = b[n+1];
 t1 += t5; t2 += t6;
 a[n] = t1; a[n+1] = t2;
 t3 = c[n]; t4 = c[n+1]; // c[n+1] can only be accessed
 // after a[n]
 t5 = d[n]; t6 = d[n+1];
 t3 += t5; t4 += t6
 c[n] = t3; d[n] = t4;
}

(Remainder loop is left as

an exercise for the reader)

13

Software and Services Group
robert.geva@intel.com N3734

Uniform vs. Private variables

• In this example

m is uniform:

a single object

shared between

all iterations

within a chunk.

• tmp is private:

each iteration has a distinct object.

• Different iterations within a chunk cannot assign

different values to a uniform variable.

float m = 3.6f;
float *p = a;
int s = 4;

simd_for (int i = 0; i < N; ++i, p+=s) {
 float tmp = 0.0;
 tmp = *p * m;
 b[i] += tmp;
}

14

Software and Services Group
robert.geva@intel.com N3734

Data in Vector Loops

• The two statements with the += operations have

different meaning from each other

• The programmer should be able to express those

differently

• The compiler has to generate different code

• The variables i, p and step have different “meaning”

from each other

float sum = 0.0f;
float *p = a;
int step = 4;
#pragma omp simd

for (int i = 0; i < N; ++i) {
 sum += *p;
 p += step;
}

15

Software and Services Group
robert.geva@intel.com N3734

Data in Vector Loops

• The two statements with the += operations have

different meaning from each other

• The programmer should be able to express those

differently

• The compiler has to generate different code

• The variables i, p and step have different “meaning”

from each other

float sum = 0.0f;
float *p = a;
int step = 4;
#pragma omp simd reduction(+:sum) \
Linear (p:step)
for (int i = 0; i < N; ++i) {
 sum += *p;
 p += step;
}

16

Software and Services Group

Outer Loop Vectorization

 simd_for (i=0; i<n; i++) {
 complex<float> c = a[i];
 complex<float> z = c;
 int k = 0;
 while ((k < max_cnt)
 && (abs(z)< limit)) {
 z = z*z + c;
 k++;
 };
 color[i] = k;
}

Intel Confidential – NDA Presentation

• Each iteration of the(outer) vector loop
executes its own version of the (inner) while loop.

• The trip counts of the inner loops are unrelated
to each other.

• Each has its own instance of “k”.

• Masking may be required for inactive vector lanes

17

Software and Services Group

Outer Loop Vectorization as a motivating

example for a uniform qualifier
(*not implemented yet)

 simd_for (int i=0; i<N; ++i) {
 for (int j = 0; j < M; ++j) {
 a[i][j] = (a[i][j-1] + a[i][j+1])/2;
 }
 b[i] += a[i][N/2];
}

Intel Confidential – NDA Presentation

• All iterations of the inner loop are the same

• If each iteration has its own instance of “j” then this is
not expressed.

• Allow the programmer to express that the inner loop have
the same trip count by allowing the declaration of “j” as
uniform

18

Software and Services Group
robert.geva@intel.com N3734

In-order Blocks

simd_for (int n = 0; n < N; ++n) {

 a[n] += b[n];

 simd_off {

 g1+=a[n];

 g2+=b[n];

 }

}

Turn off the vector order of evaluation within the scope of the { }

Enforce scalar order of evaluation

Useful when a portion of the loop is semantically non vectorizeable

For example append noted to a linked list

In-order blocks of code are useful for non-vectorizeable code within

loops, where the rest of the loop vectorizeable.

19

Software and Services Group
robert.geva@intel.com N3734

Elemental Functions

• Write a function to describe

an operation for one element

• Add __declspec(vector) to get

vector code for it

• Then deploy the function

across a collection of

elements, e.g. arrays

• Each invocation will produce

a vector of results instead of a

single result

float foo(float a, float b, float c, float d) simd()
{
 return a * b + c * d;

}

 vmulps ymm0, ymm0, ymm1

 vmulps ymm2, ymm2, ymm3

 vaddps ymm0, ymm0, ymm2 // vector of results

 ret

20

Software and Services Group
robert.geva@intel.com N3734

Chunk Size
• How many vectorized copies of the

function should execute together per

function call?

• As many as you can fit into the

hardware vector register

• Constraints: this ratio must be

determined consistently yet

independently for the function

declaration and its callers  cannot rely

on the code inside the function, only

return type and parameters

• The cases of v_add_f and v_add_d are

handled as expected

• In “oops”, most of the time is being spent

in single precision, but the compiler

cannot automatically use it as the

“characteristic type” of the function

• The clause chunk is provided for

override

• Another motivation is for correctness

• The use of the chunk clauses changes

the linkage of the function

float v_add_f(float b, float c) simd()
{
 return b+c;
}

double v_add_d(double b, double c) simd()
{
 return b+c;
}

double oops(double e, double f) simd()
{
 return
 sinf(float(e)*sinf(float(f))
}

F3 F2 F1 F0

D1 D0

F
1

F
0 D1 D0

21

Software and Services Group
robert.geva@intel.com N3734

Uniform/Linear clauses

• One motivating use case is in
address computation

• Can make the difference
between vector ld / st
(efficient) vs. gather / scatter
(less efficient) or multiple
scalar loads and merge

__declspec(vector)
void foo(float *a, int i);

a is a vector of pointers

i is a vector of integers

a[i] becomes gather/scatter

__declspec(vector(uniform (a)))
void foo(float *a, int i);

a is a pointer

i is a vector of integers

a[i] becomes gather/scatter

__declspec(vector(linear(i)))
void foo(float *a, int i);

a is a vector of pointers

i is a sequence of integers
[i, i+1, i+2…]

a[i] becomes gather/scatter

__declspec(vector(uniform(a),linear(i)))
void foo(float *a, int i);

a is a pointer

i is a sequence of integers [i, i+1, i+2…]

a[i] is a unit-stride load/store ([v]movups)

BEST PERFORMING OPTION

The slow version may defeat

the purpose of vector programming

altogether

22

Software and Services Group
robert.geva@intel.com N3734

Multiple versions: Illustration

void
vec_add (float *r, float *op1, float *op2, int i)
 simd (chunk(N))
 simd (uniform (r,op1, op2) , linear (i), chunk(N))
{
 r[i] = op1[i] + op2[i];
}

Two vector versions

and one scalar

simd_for (int i = 0; i<N; ++i) {
 vec_add(a,b,c,i);
}

simd_for (int i = 0; i<N; ++i) {
 vec_add(a[x1[[i]],b[x2[[i]],c[x3[[i]],i);
}

Call matches the

version w/o the

uniforms

Call matches the

version with the

uniforms

23

Software and Services Group
robert.geva@intel.com N3734

Construct Example Semantics

Sequential for loop for (j = 0; j < N; j++) {

 a[j] = my_ef(b[j]);

}

Single thread,
auto vectorization

Vector loop simd_for (j = 0; j < N; j++) {

 a[j] = my_ef(b[j]);

}

Single thread,
vectorized, use the
vector version if
matched

parallel loop cilk_for (j = 0; j < N; j++) {

 a[j] = my_ef(b[j]);

}

Both vectorization and
concurrent execution

Array notation a[:] = my_ef(b[:]); Vectorization

Invoking Elemental Functions

24

Software and Services Group robert.geva@intel.com

The rest may not be covered in the Chicago

meeting, depending on time.

25

Software and Services Group robert.geva@intel.com
iXPTC 2013

Intel® Xeon Phi ™Coprocessor

Array notations for C/C++

data parallel operations on array sections 

vectorization is always semantically correct

<array base> [<lower bound>:<length>[:<stride>]]+

A[:] // All of vector A

B[2:6] // Elements 2 to 7 of vector B

C[:][5] // Column 5 of matrix C

D[0:3:2] // Elements 0,2,4 of vector D

+ + + + + + + +

A[:] = B[:] + C[:]

C /C++ syntax with guaranteed vector implementation

All language standard
arithmetic and logical

operations.

26

Software and Services Group
robert.geva@intel.com N3734

Array Section

float a[10];

..

 = a[:];

..

a:

0 1 2 3 4 5 6 7 8 9

27

Software and Services Group
robert.geva@intel.com N3734

Array Section

float b[10];

..

 = b[2:6];

..

b: 0 1 2 3 4 5 6 7 8 9

28

Software and Services Group
robert.geva@intel.com N3734

Array Section

float c[10][10];

..

 = c[:][5];

..

 c:

29

Software and Services Group
robert.geva@intel.com N3734

Array Section

float d[10];

..

 = d[0:3:2];

..

d: 0 1 2 3 4 5 6 7 8 9

30

Software and Services Group
robert.geva@intel.com N3734

Operator Maps

• Most arithmetic and logic operators for C/C++ basic data types

are available for array sections:

• An operator is implicitly mapped to all the elements of the array

section operands:

– Operations are parallel among all the elements

– Array operands must have the same rank and extent

– Scalar operand is automatically expanded to fill the whole section

+, -, *, /, %, <,==,!=,>,|,&,^,&&,||,!,-(unary),

+(unary),++,--, +=, -=, *=, /=, *(p)

a[0:s]+b[2:s] => {a[i]+b[i+2], forall

(i=0;i<s;i++)}

a[0:s]*c => {a[i]*c, forall (i=0;i<s;i++)}

31

Software and Services Group
robert.geva@intel.com N3734

Assignment

• Assignment maps to all elements of the LHS array section in parallel:

• LHS of an assignment defines an array context where RHS is
evaluated.

– The rank of the RHS array section must be the same as the LHS

– The length of each rank must match the corresponding LHS rank

– Scalar is expanded automatically

• In case of partial overlap between RHS and LHS, results are
undefined.
– Save the temp arrays, deliver higher performance

a[:][:] = b[:][2][:] + c;

e[:] = d;

e[:] = b[:][1][:]; // error

a[:][:] = e[:]; // error

a[1:s] = a[0:s] + 1 // Undefined behavior

32

Software and Services Group
robert.geva@intel.com N3734

Conditional Statements

“If statement” creates a masked vector operation

if (a[:] > 0) {

 b[:] = 1;

} else {

 b[:] *= d[:];

}

Statements from both “then” and “else” may execute





33

Software and Services Group
robert.geva@intel.com N3734

Reductions

• Reduction combines array section elements to generate a scalar result

• Nine built-in reduction functions supporting basic C data-types:

– add, mul, max, max_ind, min, min_ind, all_zero, all_non_zero, any_nonzero

• Supports user-defined reduction function

– Built-in reductions provide best performance



+

int a[] = {1,2,3,4};

sum = __sec_reduce_add(a[:]); // sum

 // is 10

type fn(type in1, type in2); // scalar reduction function

out = __sec_reduce(fn, identity_value, in[x:y:z]);

34

Software and Services Group
robert.geva@intel.com N3734

Gather/Scatter

• Take non-consecutive array elements and “gather” them into

consecutive locations, or vice-versa.

• The indices of interest are in an index array

Gather

Scatter

c[:] = a[b[:]]; // gather elements of a into c,

 // according to index array b

a[b[:]] = c[:]; // scatter elements of c into a,

 // according to index array b

35

Software and Services Group
robert.geva@intel.com N3734

Shift/Rotate

• Shift elements in a[:] to the right/left by shift_val

• The leftmost/rightmost element will get fill_val assigned

• Rotate will circular-shift elements in a[:] to the right/left by

rotate_val

• Result is assigned to b[:]

• Argument a[:] is not modified

b[:] = __sec_shift_right(a[:], shift_val, fill_val)

b[:] = __sec_shift_left(a[:], shift_val, fill_val)

b[:] = __sec_rotate_right(a[:], rotate_val)

b[:] = __sec_rotate_left(a[:], rotate_val)

36

Software and Services Group
robert.geva@intel.com N3734

Shuffle

• Permute elements in the array section a[:] and copy the result into b[:].

• The parameter perm is a const array of integer values, which contains the
permutation indices to apply to the source.

Legal text goes here in Verdana regular 7pt.

b[:] = __sec_shuffle(a[:], perm)

const int perm[] = {3, 2, 1, 0};

…

for (i = 0; i < MAX-4; i+=4) {

 b[i:4] = __sec_shuffle(a[i:4], perm)

}

Resulting in:

…

b[i+0] = a[i + 3];

b[i+1] = a[i + 2];

b[i+2] = a[i + 1];

b[i+3] = a[i + 0];

37

Software and Services Group
robert.geva@intel.com N3734

Rank and Shape

• An array section doesn't have a new kind of type

– the type of an array section is exactly that of the analogous

subscript expression.

– Additionally, an array section has rank and shape.

• A section implicitly iterates over some elements of an

array.

– Rank is the number of levels of loop nesting (i.e. dimensions)

in the iteration space.

– Shape is a (mathematical) vector of lengths. (The rank is the

same as the length of the shape vector.)

38

Software and Services Group
robert.geva@intel.com N3734

Rank and Shape (continued)

• The rank of an expression is determined statically. In

general the shape of a section is determined

dynamically.

Expression Rank Shape

a[0] 0

a[0:n] 1 n

a[0][i:10] 1 10

a[i:n][j:m] 2 n×m

39

Software and Services Group
robert.geva@intel.com N3734

Shapes have to match

• If array size is not known, both lower-bound and length must

be specified

• Section ranks and lengths (“shapes”) must match.

– Scalars are OK.

a[0:5] = b[0:6]; // No. Size mismatch.

a[0:5][0:4] = b[0:5]; // No. Rank mismatch.

a[0:5] = b[0:5][0:5]; // No. No 2D->1D

a[0:4] = 5; // OK. 4 elements of A filled w/ 5.

a[0:4] = b[i]; // OK. Fill with scalar b[i].

a[10][0:4] = b[1:4]; // OK. Both are 1D sections.

b[i] = a[0:4]; // No. 1D  0 D

40

Software and Services Group
robert.geva@intel.com N3734

Array Notation Example

Serial Example
float dot_product(unsigned int sz,float A[], float B[])
{
 float dp=0.0f;
 for (int i=0; i<size; i++)
 dp += A[i] * B[i];
 return dp;
}

Array Notation Version
float dot_product(unsigned int sz,float A[], float B[])
{
 return __sec_reduce_add(A[0:sz] * B[0:sz]);
}

Array
Section

Element-wise
multiplication

Intrinsic reduction

41

Software and Services Group
robert.geva@intel.com N3734

Vector Programming Summary

• Vector programming is part of parallel programming

• New syntax provided to express vector semantics

• Source code is independent of target architecture

• Currently provided by the Intel compilers, expecting

soon in additional compilers

• Standardized as part of OpenMP® 4.0

• Being proposed to the C and C++ committees

Software and Services Group 43

Legal Notices
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S
TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING
TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL
PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN
WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or
characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no
responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change
without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without
notice.

This document contains information on products in the design phase of development.

Cilk, Core Inside, Intel, the Intel logo, Intel AppUp, Intel Atom, Intel Atom Inside, Intel Core, the Intel Sponsors of Tomorrow. logo, Intel
StrataFlash, Intel vPro, Itanium, Itanium Inside, MCS, MMX, Pentium, Pentium Inside, Ultrabook, vPro Inside, VTune, Xeon, Xeon Inside,
XMM, are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Microsoft, Windows, and the Windows logo are trademarks, or registered trademarks of Microsoft Corporation in the United States and/or
other countries.

Copyright © 2012 Intel Corporation. All rights reserved.

Software and Services Group 44

Optimization Notice

44

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that

are not unique to Intel microprocessors. These optimizations include SSE2®, SSE3, and SSSE3 instruction sets and

other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on

microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended

for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for

Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information

regarding the specific instruction sets covered by this notice.

Notice revision #20110804

http://software.intel.com/en-us/articles/optimization-notice/

45

Software and Services Group
robert.geva@intel.com

Vector Instructions are Sometimes Smarter

(not just wider)

#define MAX(x,y) ((x)>(y)?(x):(y))

#define MIN(x,y) ((x)<(y)?(x):(y))

#define SAT2SI16(x) \
MAX(MIN((x),32767),-32768)

short A[N];

for (i=0; i<n; i++) {

 A[i] = SAT2SI16(A[i]+B[i]);

}

movsx r11d, [rdx+r9*2]

movsx ebx, [r8+r9*2]

add r11d, ebx

cmp r11d, 32767

cmovge r11d, eax

cmp r11d, -32768

cmovl r11d, ecx

mov [rdx+r9*2], r11w

inc r9

cmp r9, r10

jb .B1.8

movdqa xmm0, [rdx+rax*2]

paddsw xmm0, [r8+rax*2]

movdqa [rdx+rax*2], xmm0

add rax, 8

cmp rax, r9

jb .B1.4

11 insts / 1
elem

6 insts / 8
elems

Saturating Add

46

Software and Services Group
robert.geva@intel.com

Auto-Vectorization – Limited by Serial Semantics

Compiler checks for
– Is “*p” loop invariant?
– Are a, b, and c loop invariant?
– Does a[] overlap with b[], c[], and/or sum?
– Is “+” operator associative? (Does the order of “add”s matter?)
– Vector computation on the target expected to be faster than

scalar code?

• Also:
– How do you vectorize an outer loop
– How do you allow function calls in vector loop?
– What if “idiom recognition” fails?

Auto vectorization is limited by the language rules:

you can’t say what you mean!

for(i=0;i<*p;i++) {
 a[i] = b[i]*c[i];
 sum = sum + a[i];
}

47

Software and Services Group

Multiple versions

• Multiple declspec(vector) lines
are allowed for a single
function

• Each will result in another
compiled version of the
function

• Example: the same function
may be called with uniform /
non uniform arguments

• Avoiding the second line will
deliver correct results but lose
performance

• If only the line with uniform is
given, then for call sites where
the actual arguments are not
uniform, the compiler will call
the scalar, not vector, version
of the function!

__declspec(vector)
__declspec(vector(uniform(b,c))

float vmul(float a, float b, float c)

{

 return sqrt(a)*sqrt(b) +
 sqrt(a)*sqrt(c) +
 sqrt(b)*sqrt(c);

}

