
Canadian C++14 Comments
Authors: Hubert Tong, Michael Wong
Document number: N3771
Date: 2013-09-22
Project: Programming Language C++, CWG

Reply-to: Michael Wong, michaelw@ca.ibm.com

Date: 2013-09-22 Document: Project: Programming Lan-
guages — C++

MB/
NC

1 Line
number
(e.g. 17)

Clause/ Sub-
clause

(e.g. 3.1)

Paragraph/
Figure/ Ta-

ble/
(e.g. Table 1)

Type of
comment

2 Comments Proposed change Observations of the secre-
tariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 1 of 29
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

CA 1 12.2 p5 te Resolve Core Issue 1376.

The proposed resolution from February 2012
seems stalled and does not address other
ways by which an non-prvalue may desig-
nate a temporary.

In subclause 12.2 [class.temporary] para-
graph 5,

Replace:
The second context is when a reference is
bound to a
temporary<ins>prvalue</ins>.

In subclause 8.5.3 [dcl.init.ref] paragraph 5,

Insert:
Otherwise, a <ins>prvalue </ins>temporary
of type "cv1 T1" is created and initialized
from the initializer expression using the rules
for a non-reference copy-initialization.

In subclause 8.5.3 [dcl.init.ref] paragraph 6,

Insert:
[Note: 12.2 describes the lifetime of tempo-
raries bound to references. —end note]

CA 2 3.2 p6 te ODR and closure types with vague link-
age

Although this may be a C++ ABI Issue, we
would like an indication from CWG as to the
intent of the committee.

Does the committee intend for the ODR to
imply that closure types need to have an

Various options from discussion at
http://sourcerytools.com/pipermail/cxx-abi-
dev/2013-January/002544.html:

1. Guarantee the layout of lambdas in func-

tions with weak linkage.

We'd still be able to optimize all other lamb-

http://sourcerytools.com/pipermail/cxx-abi-dev/2013-January/002544.html�
http://sourcerytools.com/pipermail/cxx-abi-dev/2013-January/002544.html�

Canadian C++14 Comments
Authors: Hubert Tong, Michael Wong
Document number: N3771
Date: 2013-09-22
Project: Programming Language C++, CWG

Reply-to: Michael Wong, michaelw@ca.ibm.com

Date: 2013-09-22 Document: Project: Programming Lan-
guages — C++

MB/
NC

1 Line
number
(e.g. 17)

Clause/ Sub-
clause

(e.g. 3.1)

Paragraph/
Figure/ Ta-

ble/
(e.g. Table 1)

Type of
comment

2 Comments Proposed change Observations of the secre-
tariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 2 of 29
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

ABI-specified layout?

Consider the following with source, with one
object compiled with -DMAIN and another
without and then linked together:

- for f in foo(), the layout needs to be
compatible between different implementa-
tions since the static local is shared between
translation units

- for ff in foo(), the layout needs to be
compatible between different implementa-
tions in order to satisfy the ODR requirement
that the program behave as if there was only
one definition of the inline function
extern "C" int printf(const char *, ...);
extern long gz;

inline void foo() {
 long x = 0, q = 0, &z = gz;
 static auto f = [=, &z]() mutable
 { q += ++x; gz = q + x; };

 long a, b;
 auto ff = [=]
 { sizeof(a /*not an odr-use*/),
 printf("%u\n", &b < &a); };
 f();
 ff();
}

void bar();

das, so this isn't really that bad; it's just a bit
disappointing for us compiler hackers and (a
subset of) our users.

2. Ban lambdas in functions with weak

linkage, similar to how C bans static var-
iables in (C's definition of) inline func-
tions.

Of course, "weak linkage" is not a con-
cept in the standard, and you'd have to
formalize that quite carefully to avoid
sweeping up a ton of interesting cases
involving anonymous namespaces. And,
of course, this would mean banning a
bunch of code that doesn't actually run
afoul of this.

3. Give lambdas internal linkage by fiat and

hack the ODR to make that work out.

I imagine this rule would come across
like "lambdas in inline functions will be-
have like they have different types in dif-
ferent translation units, and that's not a
formal ODR violation, but if it affects the
semantics of your program, tough cook-
ies."

Canadian C++14 Comments
Authors: Hubert Tong, Michael Wong
Document number: N3771
Date: 2013-09-22
Project: Programming Language C++, CWG

Reply-to: Michael Wong, michaelw@ca.ibm.com

Date: 2013-09-22 Document: Project: Programming Lan-
guages — C++

MB/
NC

1 Line
number
(e.g. 17)

Clause/ Sub-
clause

(e.g. 3.1)

Paragraph/
Figure/ Ta-

ble/
(e.g. Table 1)

Type of
comment

2 Comments Proposed change Observations of the secre-
tariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 3 of 29
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

#if ! MAIN
void bar() { foo(); }
#else
long gz;
int main() {
 foo();
 bar();
 foo();
 return gz;
}
#endif

Options 1 and 2, respectively, take away op-
timization opportunities and functionality for
obscure reasons.

While we recognize that Option 3 introduces
additional undefined behavior in the lan-
guage, we feel that it resolves the issue neat-
ly since it merely describes the natural result
of implementation freedom in forming closure
types.

CA 3 5.1.2 te Resolve CWG issue 1607. The options listed for resolution of the issue
in April 2013 do not appear to address the
case originally presented with the partial
specializations.

Of the four, #2 may be the best balance with
the overriding aim of making SFINAE work
both for function and class templates.

CA 4 14.8.2.5 p10 te Deduction with P/A length mismatch for
function parameter lists

Consider the following:
template <typename U>
struct A {
 template <typename V> operator A<V>();
};

template <typename T>
void foo(A<void (T)>);

void foo();

Specify the cases where deduction fails be-
cause list contexts do not match in length.

Canadian C++14 Comments
Authors: Hubert Tong, Michael Wong
Document number: N3771
Date: 2013-09-22
Project: Programming Language C++, CWG

Reply-to: Michael Wong, michaelw@ca.ibm.com

Date: 2013-09-22 Document: Project: Programming Lan-
guages — C++

MB/
NC

1 Line
number
(e.g. 17)

Clause/ Sub-
clause

(e.g. 3.1)

Paragraph/
Figure/ Ta-

ble/
(e.g. Table 1)

Type of
comment

2 Comments Proposed change Observations of the secre-
tariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 4 of 29
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

int main() {
 A<void (int, char)> a;
 foo<int>(a);
 foo(a); // deduces T to be int
}

In subclause 14.8.2.5 [temp.deduct.type]
paragraph 10 of N3690, deduction from a
function type considers P/A pairs from the
parameter-type-list only where the "P" func-
tion type has a parameter.

Deduction is not specified to fail if there are
additional parameters in the corresponding
"A" function type.

Is the above example intended to be well-
formed?

CA 5 13.3.3.1 p4 ed Resolve CWG issue 1673. The following proposed resolution merges
the one in CWG issues list R85 with the one
sent to the CWG chair last year in February
2012.

Proposed wording:
However, user-defined conversion sequenc-
es are not considered if:
• the target is the first parameter of a con-

structor of a class X, or
• the target is the implicit object parameter

Canadian C++14 Comments
Authors: Hubert Tong, Michael Wong
Document number: N3771
Date: 2013-09-22
Project: Programming Language C++, CWG

Reply-to: Michael Wong, michaelw@ca.ibm.com

Date: 2013-09-22 Document: Project: Programming Lan-
guages — C++

MB/
NC

1 Line
number
(e.g. 17)

Clause/ Sub-
clause

(e.g. 3.1)

Paragraph/
Figure/ Ta-

ble/
(e.g. Table 1)

Type of
comment

2 Comments Proposed change Observations of the secre-
tariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 5 of 29
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

of a user-defined conversion function,
and the constructor or user-defined conver-
sion function is a candidate by:
• 13.3.1.3 [over.match.ctor], when the ar-

gument is the temporary acting as the
source in the second step of a class
copy-initialization.

• 13.3.1.4 [over.match.copy], 13.3.1.5
[over.match.conv], or 13.3.1.6
[over.match.ref] (in all cases).

• the second phase of 13.3.1.7
[over.match.list] when the initializer list
has exactly one element, and the con-
version is to a class X or reference to
(possibly cv-qualified) X.

[Example:
struct X { };
struct B { operator X&(); };
B b;
X x({b}); // error: B::operator X&() is
not a candidate
—end example]

CA 6 10.2 p3, 4, 7 te Hiding of base member named by using-
declaration unsupported by class mem-
ber lookup

N3690 subclause 3.3.10 [basic.scope.hiding]
has various cases of name hiding which re-

Add wording to eliminate hidden declarations
from the declaration set.

Canadian C++14 Comments
Authors: Hubert Tong, Michael Wong
Document number: N3771
Date: 2013-09-22
Project: Programming Language C++, CWG

Reply-to: Michael Wong, michaelw@ca.ibm.com

Date: 2013-09-22 Document: Project: Programming Lan-
guages — C++

MB/
NC

1 Line
number
(e.g. 17)

Clause/ Sub-
clause

(e.g. 3.1)

Paragraph/
Figure/ Ta-

ble/
(e.g. Table 1)

Type of
comment

2 Comments Proposed change Observations of the secre-
tariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 6 of 29
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

fer to derived classes. All such cases point
to 10.2.

N3690 subclause 7.3.3 [namespace.udecl]
paragraph 15 says:

When a using-declaration brings names
from a base class into a derived class
scope, member functions and member func-
tion templates in the derived class override
and/or hide member functions and member
function templates with the same name, pa-
rameter-type-list (8.3.5), cv-qualification, and
ref-qualifier (if any) in a base class (rather
than conflicting).

Notwithstanding the example in that para-
graph, the effect of such “hiding” on class
member name lookup is unclear.

Consider:
struct B { void h(int); };
struct D : B
{ using B::h; void h(int); };
void foo()
{ void (D::*memfp)(int) = &D::h; }

C++03 wording; subclause 10.2
[class.member.lookup] paragraph 2:

A member name f in one subobject B hides

Canadian C++14 Comments
Authors: Hubert Tong, Michael Wong
Document number: N3771
Date: 2013-09-22
Project: Programming Language C++, CWG

Reply-to: Michael Wong, michaelw@ca.ibm.com

Date: 2013-09-22 Document: Project: Programming Lan-
guages — C++

MB/
NC

1 Line
number
(e.g. 17)

Clause/ Sub-
clause

(e.g. 3.1)

Paragraph/
Figure/ Ta-

ble/
(e.g. Table 1)

Type of
comment

2 Comments Proposed change Observations of the secre-
tariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 7 of 29
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

a member name f in a sub-object A if A is a
base class sub-object of B. Any declarations
that are so hidden are eliminated from con-
sideration. Each of these declarations that
was introduced by a using-declaration is
considered to be from each sub-object of C
that is of the type containing the declaration
designated by the using-declaration.

Under this wording, the declaration that was
introduced by the using-declaration is hidden
and would not be found by class member
lookup. This is not the case with the C++11
wording.

By N3690 subclause 10.2
[class.member.lookup] paragraphs 3, 4 and
7, the result of the name lookup is the decla-
ration set of S(f,C). The declaration set con-
tains both the member named by the using-
declaration as well as the member declared
in the derived class using a declarator since
both are declarations present in the derived
class.

The resolution for taking the address of an
overloaded function would then fail since
there is more than one selected function.

CA 7 7.2 p5 te Representability within an enumeration Add a note to clarify the behavior of the case

Canadian C++14 Comments
Authors: Hubert Tong, Michael Wong
Document number: N3771
Date: 2013-09-22
Project: Programming Language C++, CWG

Reply-to: Michael Wong, michaelw@ca.ibm.com

Date: 2013-09-22 Document: Project: Programming Lan-
guages — C++

MB/
NC

1 Line
number
(e.g. 17)

Clause/ Sub-
clause

(e.g. 3.1)

Paragraph/
Figure/ Ta-

ble/
(e.g. Table 1)

Type of
comment

2 Comments Proposed change Observations of the secre-
tariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 8 of 29
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

type

The type of a enumerator before the enu-
meration is complete is the type of its initial-
izer. This initializer may be of enumeration
type.

A enumerator with no initializer has a value
that is one greater than the previous enu-
merator. Its type before the enumeration is
complete is the type of the previous enu-
merator unless if the incremented value is
not representable in that type. An unspeci-
fied integral type sufficient to contain the
incremented value is used instead (and the
program is ill-formed if no such type exists).

The values of an enumeration are defined by
[dcl.enum]. It can be taken that a value is not
representable in an enumeration type if it is
not within the range of enumeration values
of the enumeration type.

For the case below, there is implementation
divergence between compilers with almost a
50/50 split between the ones surveyed:
template <typename T>
struct Hack;

enum E { F, T };

presented.

Canadian C++14 Comments
Authors: Hubert Tong, Michael Wong
Document number: N3771
Date: 2013-09-22
Project: Programming Language C++, CWG

Reply-to: Michael Wong, michaelw@ca.ibm.com

Date: 2013-09-22 Document: Project: Programming Lan-
guages — C++

MB/
NC

1 Line
number
(e.g. 17)

Clause/ Sub-
clause

(e.g. 3.1)

Paragraph/
Figure/ Ta-

ble/
(e.g. Table 1)

Type of
comment

2 Comments Proposed change Observations of the secre-
tariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 9 of 29
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

template <>
struct Hack<E>
{ enum { val = 42 }; };

namespace A {
 enum { A = F, B, C =
Hack<decltype(B)>::val }; // #1 --
// Hack<E>::val
}

namespace B {
 enum { A = T, B, C =
Hack<decltype(B)>::val }; // #2 --
// Hack<?>::val
}

The compilers surveyed produce either an
error for both #1 and #2 or produces an error
for neither of the two.

In short, we are not aware of any implemen-
tation that behaves consistently with what
appears to be the obvious interpretation of
the wording.

CA 8 6.4.2 p2 te Undefined behavior for members of
scoped enumerations in a switch

Using a scoped enumeration as the control-
ling condition of a switch does not seem to
work well.

The current (N3690) wording of [stmt.switch]

In 6.4.2 [stmt.switch] paragraph 2:
<ins>For a type that is subject to the integral
promotions (4.5), inte-
gral</ins>Integral promotions are
performed.

Canadian C++14 Comments
Authors: Hubert Tong, Michael Wong
Document number: N3771
Date: 2013-09-22
Project: Programming Language C++, CWG

Reply-to: Michael Wong, michaelw@ca.ibm.com

Date: 2013-09-22 Document: Project: Programming Lan-
guages — C++

MB/
NC

1 Line
number
(e.g. 17)

Clause/ Sub-
clause

(e.g. 3.1)

Paragraph/
Figure/ Ta-

ble/
(e.g. Table 1)

Type of
comment

2 Comments Proposed change Observations of the secre-
tariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 10 of 29
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

paragraph 2 does not mention scoped enu-
merations and says that "[i]ntegral promo-
tions are performed"; however, it is not de-
fined by [conv.prom] what integral promotion
on a scoped enumeration is.

CA 9 14.8.3 te Partial ordering while ignoring cv-
qualification on top of function types

Should one template be considered more
specialized than the other below?

This is similar to CWG issue 1221 that we
opened for reference collapsing.
// C++03 behaviour is different from
C++11 behaviour.

template <class T>
int foo(const T &t); // not a candidate
under C++03
// SFINAE C++03 14.8.3 [temp.ovr] par-
agraph 1
// C++03 14.8.2 [temp.deduct] par-
agraph 4
// C++03 14.8.2 [temp.deduct] par-
agraph 2 (last point)
// There is a wording problem in C++03 as
to what happens with argument deduction
itself forms an invalid type.
// Substitution is only said to occur
either from explicitly specified template
arguments or into non-deduced contexts.

template <class T>

Take a unified approach to resolving CWG
issue 1221 and this additional case.

Canadian C++14 Comments
Authors: Hubert Tong, Michael Wong
Document number: N3771
Date: 2013-09-22
Project: Programming Language C++, CWG

Reply-to: Michael Wong, michaelw@ca.ibm.com

Date: 2013-09-22 Document: Project: Programming Lan-
guages — C++

MB/
NC

1 Line
number
(e.g. 17)

Clause/ Sub-
clause

(e.g. 3.1)

Paragraph/
Figure/ Ta-

ble/
(e.g. Table 1)

Type of
comment

2 Comments Proposed change Observations of the secre-
tariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 11 of 29
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

void foo(T &t); // less specialized tem-
plate under N3690
 // N3690 14.8.2.4
[temp.deduct.partial] paragraphs 6, 9.

void bar() { }
int main() { return foo(bar); }

CA
10

 5.16 p2 te Expanding conditional expression spe-
cial case for throw expressions

The Standard (N3690) in 5.16 [expr.cond]
paragraph 2, makes a special case for when
one of the result (second or third) expres-
sions is a (possibly parenthesized) throw
expression. Unfortunately, the wording does
not handle certain natural continuations:

The parenthesized case was added in CWG
issue 1550.
// last operand of comma expression
should be considered the form of the com-
ma-expression
 1 ? 0 : (0, throw 0);

// both branches of a conditional are
throw expressions
 1 ? 0 : (1 ? throw 0 : throw 0);

Preferably, exceptions manually specified
using the form of the syntactic construct
would not be used; however, lacking a gen-
eral mechanism to specify properties such as
an expression being not returning, the speci-
fication should either not have any special
rules for semantic reasons which are formu-
lated by syntax, or should have as many
rules as necessary to cover obvious and eas-
ily described cases.

CA
11

 12.3.1 p1 te Unnecessary change in definition of con-
verting constructors

12.3.1 [class.conv.ctor] has removed the
requirement that a converting constructor

Reverse the change.

Canadian C++14 Comments
Authors: Hubert Tong, Michael Wong
Document number: N3771
Date: 2013-09-22
Project: Programming Language C++, CWG

Reply-to: Michael Wong, michaelw@ca.ibm.com

Date: 2013-09-22 Document: Project: Programming Lan-
guages — C++

MB/
NC

1 Line
number
(e.g. 17)

Clause/ Sub-
clause

(e.g. 3.1)

Paragraph/
Figure/ Ta-

ble/
(e.g. Table 1)

Type of
comment

2 Comments Proposed change Observations of the secre-
tariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 12 of 29
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

must be callable with a single parameter.

This change does not appear to be neces-
sary, as all overload resolution contexts for
which converting constructors are specifical-
ly considered to be candidates (13.3.1.3
[over.match.ctor], 13.3.1.4
[over.match.copy]) are initialization contexts
outside of list initialization.

Any constructors which are now converting
constructors which are not callable with only
a single parameter cannot be viable candi-
dates in the aforementioned contexts.

CA
12

 18.8.5 p8 te std::current_exception and odr-use, ac-
cessibility or existence of a copying con-
structor

std::current_exception is intended to
be implementable such that copying the ex-
ception object is a viable strategy; however,
there seems to be no indication that when
an exception is thrown, that a copying con-
structor is required to be accessible and
considered odr-used.

In particular, the candidate used to construct
the exception object is allowed to be a move
constructor or otherwise unsuitable for per-
forming the copy because the exception ob-

Either specify the appropriate odr-use, can-
didate selection and access checking at the
throw site (rendering move-only types non-
throwable) or modify the library specification
to allow copying only for very limited cases.

Canadian C++14 Comments
Authors: Hubert Tong, Michael Wong
Document number: N3771
Date: 2013-09-22
Project: Programming Language C++, CWG

Reply-to: Michael Wong, michaelw@ca.ibm.com

Date: 2013-09-22 Document: Project: Programming Lan-
guages — C++

MB/
NC

1 Line
number
(e.g. 17)

Clause/ Sub-
clause

(e.g. 3.1)

Paragraph/
Figure/ Ta-

ble/
(e.g. Table 1)

Type of
comment

2 Comments Proposed change Observations of the secre-
tariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 13 of 29
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

ject is an lvalue.

Consider the following:

a.cc:
struct A {
 friend void foo();
private:
 A() { }
 A(const A &) = delete;
 template <typename T> A(T &);
 A(A &&) { }
};

void foo() {
 throw A();
}

b.cc:
#include <exception>
struct A;
void foo();

bool bar() {
 try { foo(); }
 catch (...) { return
std::current_exception() ==
std::current_exception(); }
}

How is an implementation expected to per-
form the copying?

Canadian C++14 Comments
Authors: Hubert Tong, Michael Wong
Document number: N3771
Date: 2013-09-22
Project: Programming Language C++, CWG

Reply-to: Michael Wong, michaelw@ca.ibm.com

Date: 2013-09-22 Document: Project: Programming Lan-
guages — C++

MB/
NC

1 Line
number
(e.g. 17)

Clause/ Sub-
clause

(e.g. 3.1)

Paragraph/
Figure/ Ta-

ble/
(e.g. Table 1)

Type of
comment

2 Comments Proposed change Observations of the secre-
tariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 14 of 29
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

Should the best candidate for the copy op-
eration have been considered odr-used at
the point of the throw-expression?

Similarly, is the access checking for the cop-
ying constructor performed in the context of
the throw-expression?

CA
13

 15.3 p16 te Converting constructor candidate sur-
prise for copy initialization of catch-
clause parameter

N3690 subclause 15.3 [except.handle] para-
graph 16 states that the catch-clause pa-
rameter is copy-initialized from the exception
object.

It does not say that, for catching-by-value
(as opposed to by pointer or by reference), it
is copy-initialized from the exception object
cast to be an lvalue of the declared type of
the catch-clause parameter.

Consider the following:

ehDerivedToBaseConvertingA.cc:
extern int ret;
struct B;

struct A {
 A() { }
 A(B &) { ret = 1; }
};

Specify the initialization such that the con-
structor used is predictable in the context of
the catch-clause.

Canadian C++14 Comments
Authors: Hubert Tong, Michael Wong
Document number: N3771
Date: 2013-09-22
Project: Programming Language C++, CWG

Reply-to: Michael Wong, michaelw@ca.ibm.com

Date: 2013-09-22 Document: Project: Programming Lan-
guages — C++

MB/
NC

1 Line
number
(e.g. 17)

Clause/ Sub-
clause

(e.g. 3.1)

Paragraph/
Figure/ Ta-

ble/
(e.g. Table 1)

Type of
comment

2 Comments Proposed change Observations of the secre-
tariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 15 of 29
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

struct B : A { };

void foo() {
 throw B();
}

ehDerivedToBaseConvertingB.cc:
extern int ret;
struct B;

struct A {
 A() { }
 A(B &) { ret = 1; }
};

void foo();

int ret = 0;

int main() {
 try { foo(); }
 catch (A a) { if (ret == 0) throw; }
}

It seems that a good number of implementa-
tions have no problem performing copy-
initialization with converting constructors
which convert from a derived type to a base
type except that they do not consider such
candidates when initializing a catch-clause

Canadian C++14 Comments
Authors: Hubert Tong, Michael Wong
Document number: N3771
Date: 2013-09-22
Project: Programming Language C++, CWG

Reply-to: Michael Wong, michaelw@ca.ibm.com

Date: 2013-09-22 Document: Project: Programming Lan-
guages — C++

MB/
NC

1 Line
number
(e.g. 17)

Clause/ Sub-
clause

(e.g. 3.1)

Paragraph/
Figure/ Ta-

ble/
(e.g. Table 1)

Type of
comment

2 Comments Proposed change Observations of the secre-
tariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 16 of 29
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

parameter.

Seeing as derived-to-base converting con-
structors are most likely bad form, perhaps
overload resolution should not consider
them viable candidates at all?

Alternatively, the initialization of catch-clause
parameters can be specified such that the
type of source expression is adjusted and
not necessarily an lvalue of the most derived
type of the exception object.

CA
14

 4.1 p2 te Definedness of out-of-lifetime lvalue-to-
rvalue conversion of block-scope con-
stants

Certain contexts, such as lambda expres-
sions and local class definitions, allow name
expressions which name block-scope con-
stants even though the evaluation of the
name expression may (technically) occur
after the storage for the "constant" has been
released.

Consider:
struct Base {
 virtual int call() = 0;
};

Base *foo() {
 constexpr int x = 0;

Remove this source of undefined behavior.

Canadian C++14 Comments
Authors: Hubert Tong, Michael Wong
Document number: N3771
Date: 2013-09-22
Project: Programming Language C++, CWG

Reply-to: Michael Wong, michaelw@ca.ibm.com

Date: 2013-09-22 Document: Project: Programming Lan-
guages — C++

MB/
NC

1 Line
number
(e.g. 17)

Clause/ Sub-
clause

(e.g. 3.1)

Paragraph/
Figure/ Ta-

ble/
(e.g. Table 1)

Type of
comment

2 Comments Proposed change Observations of the secre-
tariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 17 of 29
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

 struct Local : Base {
 virtual int call() { return x; }
 };
 static Local local;
 return &local;
}

int main() {
 return foo()->call();
}

While the likely intention is that the lvalue-to-
rvalue conversion of the block-scope con-
stant is implemented by using the value of
the constant expression in place of reading
from storage, it seems that the wording does
not prevent the program above from being
subject to undefined behaviour caused by
lifetime violation.

In particular, it seems that a name expres-
sion that appears in a potentially-evaluated
expression such that the object named is not
odr-used (by that instance of the name) may
still be evaluated, in theory, as an lvalue
through which the object named or a
subobject thereof is accessed (see N3690
subclause 4.1 [conv.lval] paragraph 2).

CA
15

 14.8.2.5 p17 te Applicability of non-type template param-
eter type agreement on deduction from

Consider modifying the restriction to instead
treat the instance of the template parameter

Canadian C++14 Comments
Authors: Hubert Tong, Michael Wong
Document number: N3771
Date: 2013-09-22
Project: Programming Language C++, CWG

Reply-to: Michael Wong, michaelw@ca.ibm.com

Date: 2013-09-22 Document: Project: Programming Lan-
guages — C++

MB/
NC

1 Line
number
(e.g. 17)

Clause/ Sub-
clause

(e.g. 3.1)

Paragraph/
Figure/ Ta-

ble/
(e.g. Table 1)

Type of
comment

2 Comments Proposed change Observations of the secre-
tariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 18 of 29
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

return types

In N3690 subclause 14.8.2.5
[temp.deduct.type] paragraph 17, there is a
requirement regarding the type of a non-type
template parameter and the type of the de-
duced template argument (if any).

Namely, the two types are required to match
"exactly" if the template argument is de-
duced from a use of the template parameter
in the parameter-list of the function.

The requirement as worded seems oddly
restricted. It does not cover return types for
example.

Consider:
template <int N> struct A;

template <short N>
A<N> *foo();

void bar() {
 A<1> *(*fp)(void) = &foo;
}

GCC and Clang does not accept the above.
We are not sure if there is separate wording
which supports their behavior.

The result of the wording is also odd in that

as being in a non-deduced context.

Canadian C++14 Comments
Authors: Hubert Tong, Michael Wong
Document number: N3771
Date: 2013-09-22
Project: Programming Language C++, CWG

Reply-to: Michael Wong, michaelw@ca.ibm.com

Date: 2013-09-22 Document: Project: Programming Lan-
guages — C++

MB/
NC

1 Line
number
(e.g. 17)

Clause/ Sub-
clause

(e.g. 3.1)

Paragraph/
Figure/ Ta-

ble/
(e.g. Table 1)

Type of
comment

2 Comments Proposed change Observations of the secre-
tariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 19 of 29
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

adding the explicit cast to the use in the
function type would cause the use to be in
an non-deduced context, and the behaviour
with the explicit cast would be different from
that without if the argument could be other-
wise deduced.

Consider:
template <int N> struct A;

template <short N>
void foo(A<N> *, char (*)[N]);

template <short N>
void bar(A<int(N)> *, char (*)[N]);

void (*fp1)(A<1> *, char (*)[1]) = foo;
void (*fp2)(A<1> *, char (*)[1]) = bar;

Perhaps some rationale would be useful as
to why failing the deduction for foo() is supe-
rior to treating it as non-deduced.

Related:

http://llvm.org/bugs/show_bug.cgi?id=16279,
"Deduction succeeds despite type mismatch
of non-type template parameter and de-
duced argument"

http://gcc.gnu.org/bugzilla/show_bug.cgi?id=
57570, "Deduction succeeds despite type

http://llvm.org/bugs/show_bug.cgi?id=16279�
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=57570�
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=57570�

Canadian C++14 Comments
Authors: Hubert Tong, Michael Wong
Document number: N3771
Date: 2013-09-22
Project: Programming Language C++, CWG

Reply-to: Michael Wong, michaelw@ca.ibm.com

Date: 2013-09-22 Document: Project: Programming Lan-
guages — C++

MB/
NC

1 Line
number
(e.g. 17)

Clause/ Sub-
clause

(e.g. 3.1)

Paragraph/
Figure/ Ta-

ble/
(e.g. Table 1)

Type of
comment

2 Comments Proposed change Observations of the secre-
tariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 20 of 29
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

mismatch of non-type template parameter
and deduced argument"

CA
16

 5.1.2 p17 te Resolve CWG issue 1613.

CA
17

 5.1.2 p12 te Resolve CWG issue 1612.

CA
18

 14.7.1 p13 te Resolve CWG issue 1664.

CA
19

 5.1.2 p6 te Resolve CWG issue 1663.

CA
20

 5.1.2 p10 te Resolve CWG issue 1662.

CA
21

 3.4.3 p1 te Name lookup in nested-name-specifiers
versus lookup-dependent grammar pro-
ductions

According to subclause 3.4.3
[basic.lookup.qual] paragraph 1:

If a :: scope resolution operator in a nest-
ed-name-specifier is not preceded by a
decltype-specifier, lookup of the name pre-
ceding that :: considers only namespaces,
types, and templates whose specializations
are types.

Canadian C++14 Comments
Authors: Hubert Tong, Michael Wong
Document number: N3771
Date: 2013-09-22
Project: Programming Language C++, CWG

Reply-to: Michael Wong, michaelw@ca.ibm.com

Date: 2013-09-22 Document: Project: Programming Lan-
guages — C++

MB/
NC

1 Line
number
(e.g. 17)

Clause/ Sub-
clause

(e.g. 3.1)

Paragraph/
Figure/ Ta-

ble/
(e.g. Table 1)

Type of
comment

2 Comments Proposed change Observations of the secre-
tariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 21 of 29
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

Consider the following source:
template <typename T> struct B { };

namespace N {
 namespace L {
 template <int> void A();
 }

 namespace M {
 template <int> struct A { typedef
int y; };
 }

 using namespace L;
 using namespace M;
}

B<N::/*template */A<0>::y> (x); //
 // basic.lookup.qual applies?

The interpretation of the < token after N::A
depends on name lookup (14.2
[temp.names] paragraph 3).

If this lookup occurs prior to determining that
the quoted portion of 3.4.3 paragraph 1 ap-
plies, then it will find that the name is ambig-
uous.

When should the name lookup for the poten-
tial template-name occur in relation to de-
termining the applicability of the wording in

Canadian C++14 Comments
Authors: Hubert Tong, Michael Wong
Document number: N3771
Date: 2013-09-22
Project: Programming Language C++, CWG

Reply-to: Michael Wong, michaelw@ca.ibm.com

Date: 2013-09-22 Document: Project: Programming Lan-
guages — C++

MB/
NC

1 Line
number
(e.g. 17)

Clause/ Sub-
clause

(e.g. 3.1)

Paragraph/
Figure/ Ta-

ble/
(e.g. Table 1)

Type of
comment

2 Comments Proposed change Observations of the secre-
tariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 22 of 29
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

question?

Is the last line equivalent to
B<N::M::A<0>::y> x;
or not?

Of interest is that if the optional template
keyword was uncommented then lookup for
A is not necessary to determine the interpre-
tation of the < token after it.

Is the behavior for the modified case (with
the template keyword present) expected to
be the same as the case where template
remains commented out?

CA
22

 5.1.2 p7 te Lookup for __func__ in lambda bodies

Is it intended that the following can be a
translation unit in a well-formed program?
namespace K {
 auto ff = [] { return __func__; };
}

When we are told by N3690 subclause 5.1.2
[expr.prim.lambda] paragraph 7 that the
compound-statement "yields" the function-
body of the function call operator, it is un-
derstood that it means that a function-body
is produced from the compound-statement

If lookup failure is expected for the case pre-
sented, clarify by adding an example.
In the alternative, add wording for the scope
of a predefined variable, __func__, within
the compound-statement of a lambda ex-
pression.

Canadian C++14 Comments
Authors: Hubert Tong, Michael Wong
Document number: N3771
Date: 2013-09-22
Project: Programming Language C++, CWG

Reply-to: Michael Wong, michaelw@ca.ibm.com

Date: 2013-09-22 Document: Project: Programming Lan-
guages — C++

MB/
NC

1 Line
number
(e.g. 17)

Clause/ Sub-
clause

(e.g. 3.1)

Paragraph/
Figure/ Ta-

ble/
(e.g. Table 1)

Type of
comment

2 Comments Proposed change Observations of the secre-
tariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 23 of 29
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

and that the latter is not an actual function-
body. We are also told that for the purposes
of name lookup, the compound-statement is
considered in the context of the lambda-
expression.

We find that, in the absence of a function-
body, __func__ is not specified to be a
predefined variable (8.4.1
[dcl.fct.def.general] paragraphs 7-8). We
also note that the form of a function defini-
tion (8.4.1 paragraph 1) is not present in the
above program and that the wording in sub-
clauses 3.3.2 [basic.scope.pdecl] and 3.3.3
[basic.scope.block] (paragraphs 8 and 2,
respectively) covers only function-local pre-
defined variables in function definitions.

The conclusion is that __func__ in a lamb-
da body is bound using the context of the
lambda-expression, and not bound later to
be the function-local predefined variable
which would exist in the context of the func-
tion-call operator's compiler-generated defi-
nition.

In the case of the above code, it means that
the lookup for __func__ fails and renders
the program ill-formed.

Canadian C++14 Comments
Authors: Hubert Tong, Michael Wong
Document number: N3771
Date: 2013-09-22
Project: Programming Language C++, CWG

Reply-to: Michael Wong, michaelw@ca.ibm.com

Date: 2013-09-22 Document: Project: Programming Lan-
guages — C++

MB/
NC

1 Line
number
(e.g. 17)

Clause/ Sub-
clause

(e.g. 3.1)

Paragraph/
Figure/ Ta-

ble/
(e.g. Table 1)

Type of
comment

2 Comments Proposed change Observations of the secre-
tariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 24 of 29
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

Implementations such as GCC behave in a
manner inconsistent with this interpretation.

CA
23

 12.8 p31 te Resolve CWG issue 1493.

An exception object is an lvalue whose life-
time is not necessarily ending soon—
consider rethrows and exception_ptr.

Remove initialization of exception-
declarations as a context for copy elision.

CA
24

 15.2 p2 te Revisit CWG issue 1424.

It is rather conspicuous that an array new
requires the odr-use of the destructor (of the
most derived object) even if the constructor
used for the initialization is a noexcept-
specification compatible with noexcept(true).

It may also make sense if the destruction of
completely constructed subobjects (and the
corresponding case with delegating con-
structors) is omitted when the constructor for
the most derived object is a noexcept-
specification compatible with noexcept(true).

Note that the current treatment of base and
member subobject destruction and general
stack unwinding is not consistent for
noexcept-specifications—for general stack
unwinding, destructors might not be called
before terminate() is.

Related discussion:

Identify cases where the destructor would not
be called because of interaction with
noexcept and exempt them from causing odr-
use.
Also, harmonize the treatment of subobject
destruction for partially constructed objects
with general stack unwinding.

Canadian C++14 Comments
Authors: Hubert Tong, Michael Wong
Document number: N3771
Date: 2013-09-22
Project: Programming Language C++, CWG

Reply-to: Michael Wong, michaelw@ca.ibm.com

Date: 2013-09-22 Document: Project: Programming Lan-
guages — C++

MB/
NC

1 Line
number
(e.g. 17)

Clause/ Sub-
clause

(e.g. 3.1)

Paragraph/
Figure/ Ta-

ble/
(e.g. Table 1)

Type of
comment

2 Comments Proposed change Observations of the secre-
tariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 25 of 29
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

https://groups.google.com/a/isocpp.org/foru
m/#!topic/std-discussion/DL75bqa8f2g

CA
25

 8.5 p17 te Resolve CWG issue 670.

It seems that certain initialization contexts
are expected to be slicing/copy operations
but the overload resolution is not straight-
forward (see CA 13).

Related bug reports:

http://llvm.org/bugs/show_bug.cgi?format=m
ultiple&id=16773

http://gcc.gnu.org/bugzilla/show_bug.cgi?for
mat=multiple&id=58052

Modify the overload resolution such that the
first parameter is considered to be converted
to a lvalue/xvalue of the target type and the
ellipsis conversion is not considered.
Also, in 12.3 [class.conv], modify the follow-
ing to be a note: At most one user-defined
conversion (constructor or conversion func-
tion) is implicitly applied to a single value.

CA
26

 2.2 p2 te In N3690 subclause 2.2 [lex.phases] para-
graph 2, the formation of a character se-
quence which matches the syntax of a UCN
via line-splicing causes undefined behavior.
It is unclear whether a program which has
such a line-splicing in a context where it will
be reverted (as part of a raw-string literal)
will be subject to undefined behavior be-
cause of UCN formation.

The undefined behavior is undesired.

CA
27

 8.2 te Resolve CWG issue 1740.

CA 3.2 p3 te N3690 subclause 3.2 [basic.def.odr] para-
graph 3, in describing cases where odr-use

Clarify and also resolve CWG issue 1741.

https://groups.google.com/a/isocpp.org/forum/#!topic/std-discussion/DL75bqa8f2g�
https://groups.google.com/a/isocpp.org/forum/#!topic/std-discussion/DL75bqa8f2g�
http://llvm.org/bugs/show_bug.cgi?format=multiple&id=16773�
http://llvm.org/bugs/show_bug.cgi?format=multiple&id=16773�
http://gcc.gnu.org/bugzilla/show_bug.cgi?format=multiple&id=58052�
http://gcc.gnu.org/bugzilla/show_bug.cgi?format=multiple&id=58052�

Canadian C++14 Comments
Authors: Hubert Tong, Michael Wong
Document number: N3771
Date: 2013-09-22
Project: Programming Language C++, CWG

Reply-to: Michael Wong, michaelw@ca.ibm.com

Date: 2013-09-22 Document: Project: Programming Lan-
guages — C++

MB/
NC

1 Line
number
(e.g. 17)

Clause/ Sub-
clause

(e.g. 3.1)

Paragraph/
Figure/ Ta-

ble/
(e.g. Table 1)

Type of
comment

2 Comments Proposed change Observations of the secre-
tariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 26 of 29
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

28 does not occur says in part:

... unless x satisfies the requirements for
appearing in a constant expression (5.19) ...

By this, a reader might assume that x is
such that an lvalue-to-rvalue conversion may
be applied within a constant expression to a
glvalue that refers to x; however, the word-
ing seems rather unclear.

CA
29

 12.8 p2 te According to N3690 subclause 12.8
[class.copy] paragraph 2:

A non-template constructor for class X is a
copy constructor if its first parameter is of
type X&, const X&, volatile X& or
const volatile X&, and either there are
no other parameters or else all other param-
eters have default arguments (8.3.6).

On the topic of providing default arguments
later in the translation unit, paragraph 7 has
this to say:

Thus, for the class definition
struct X {
 X(const X&, int);
};
a copy constructor is implicitly-declared. If
the user-declared constructor is later defined

Resolve CWG issue 1344 by specifying that
the formation of special-member functions by
adding default arguments to later declara-
tions is ill-formed.

Canadian C++14 Comments
Authors: Hubert Tong, Michael Wong
Document number: N3771
Date: 2013-09-22
Project: Programming Language C++, CWG

Reply-to: Michael Wong, michaelw@ca.ibm.com

Date: 2013-09-22 Document: Project: Programming Lan-
guages — C++

MB/
NC

1 Line
number
(e.g. 17)

Clause/ Sub-
clause

(e.g. 3.1)

Paragraph/
Figure/ Ta-

ble/
(e.g. Table 1)

Type of
comment

2 Comments Proposed change Observations of the secre-
tariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 27 of 29
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

as
X::X(const X& x, int i =0) { /* ... */ }
then any use of X's copy constructor is ill-
formed because of the ambiguity; no diag-
nostic is required.

It does not say that the user-declared con-
structor is not a copy constructor.

The "no diagnostic required" probably needs
clarification if it is not meant to say that an
actual use which hits the ambiguity does not
need a diagnostic.

This begs the question: is the same class
type trivially copyable in some places and
not in others (depending on which default
arguments are known in that context)?

Consider the following two files:
#include <type_traits>
struct A
{ A() = default;
 A(const A &) = default;
 A(A &, int); };

A::A(A&, int = 0) { }
inline constexpr bool isTrivialA() { re-
turn std::is_trivial<A>::value; }

static_assert(!isTrivialA(), "");
// GCC asserts, Clang and ICC does not

Canadian C++14 Comments
Authors: Hubert Tong, Michael Wong
Document number: N3771
Date: 2013-09-22
Project: Programming Language C++, CWG

Reply-to: Michael Wong, michaelw@ca.ibm.com

Date: 2013-09-22 Document: Project: Programming Lan-
guages — C++

MB/
NC

1 Line
number
(e.g. 17)

Clause/ Sub-
clause

(e.g. 3.1)

Paragraph/
Figure/ Ta-

ble/
(e.g. Table 1)

Type of
comment

2 Comments Proposed change Observations of the secre-
tariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 28 of 29
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

#include <type_traits>
struct A
{ A() = default;
 A(const A &) = default;
 A(A &, int); };

inline constexpr bool isTrivialA() { re-
turn std::is_trivial<A>::value; }

static_assert(isTrivialA(), ""); // none
of GCC, Clang or ICC assert

It would seem that

• whether the user-defined constructor is
a copy constructor is not agreed upon
across implementations, and

• the definition of isTrivialA() does not
violate the ODR rules nor does it violate
the constraints for std::is_trivial, yet it
ends up with behavior that is not con-
sistent across instances from different
translation units.

This probably affects at least some of the
other special member functions as well.

CA
30

 8.5.3 p5 te Resolve CWG issue 1604. If the target that is the destination of the non-
reference copy-initialization is specified to be
the reference (and not the temporary invent-

Canadian C++14 Comments
Authors: Hubert Tong, Michael Wong
Document number: N3771
Date: 2013-09-22
Project: Programming Language C++, CWG

Reply-to: Michael Wong, michaelw@ca.ibm.com

Date: 2013-09-22 Document: Project: Programming Lan-
guages — C++

MB/
NC

1 Line
number
(e.g. 17)

Clause/ Sub-
clause

(e.g. 3.1)

Paragraph/
Figure/ Ta-

ble/
(e.g. Table 1)

Type of
comment

2 Comments Proposed change Observations of the secre-
tariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 29 of 29
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

ed in [dcl.init.ref]), the direct initialization step
would naturally not require a constructor.
That is, the user-defined conversion function
is called and the result is used to direct-
initialize the reference.

This may also address the concerns over
slicing and performance mentioned in CWG
issue 1650.

In addition to wording to specify the above,
add a note:
A conversion function returning a cv-qualified
type may produce a value for which the bind-
ing is ill-formed.

Example:
struct B { };
struct A { operator const B(); };

void foo() {
 typedef const B ConstB;
 B &&b1 = ConstB(); // ill-formed
 B &&b2 = A(); // ill-formed
}

