
c© ISO/IEC N3819

Document Number: N3819
Date:
Reply to:

2013-10-11
Andrew Sutton
University of Akron
asutton@uakron.edu

Concepts Lite Specification

Note: this is an early draft. It’s known to be incomplet and incorrekt, and it has lots of bad
formatting.

Contents
Contents i

1 General 1
1.1 Introduction . 1
1.2 Scope . 1
1.3 Normative References . 2
1.4 Terms and Definitions . 2
1.5 Conformance . 2
1.6 Acknowledgements . 2

2 Lexical conventions 2
2.1 Keywords . 2

3 Expressions 2
3.1 Primary expressions . 2

4 Templates 5
4.1 Template parameters . 6
4.2 Template names . 6
4.3 Template arguments . 7
4.4 Template declarations . 7

5 Constrained Declarations 10
5.1 Partial ordering of constrained declarations . 10
5.2 Equivalence of declaration constraints . 10
5.3 Constraint satisfaction . 10
5.4 Constraint ordering . 10
5.5 Constraint equivalence . 12
5.6 Concept introduction . 12

CONTENTS i

c© ISO/IEC N3819

1 General [intro]
1.1 Introduction [intro.intro]

1 C++ has long provided language support for generic programming in the form of templates. However, these
templates are unconstrained, allowing any type or value to be substituted for a template argument, often
resulting in compiler errors. What is lacking is a specification of an interface for a template, separate from
its implementation, so that a use of a template can be selected among alternative templates and checked in
isolation.

2 A concept is a predicate that expresses a set of requirements on types. These requirements consist of
syntactic requirements, which what related types, literals, operations, and expressions are available, and
semantic requirements that give meaning to the required syntax and also provide complexity guarantees.
Concepts are the basis of generic programming in C++ and allow us to write and reason about generic
algorithms and data structures by constraining template arguments.

3 Concepts are not new to C++ or even to C (where Integral and Arithmetic are long-established concepts
used to specify the language rules for types); the idea of stating and enforcing type requirements on template
arguments has a long history (several methods are discussed in The Design and Evolution of C++ (1994).
Concepts were a part of documentation of the STL and are used to express requirements in the C++ standard,
ISO/IEC 14882. For example, Table 106 in ISO/IEC 14882gives the definition of the STL Iterator concept
as a list valid expressions and their result types, operational semantics, and pre- and post-conditions.
— allows programmers to directly state the requirements of a set of template arguments as part of a

template’s interface,

— supports function overloading and class template specialization based on constraints,

— seamlessly integrates a number of orthogonal features to provide uniform syntax and semantics for
generic lambdas, auto declarations, and result type deduction,

— fundamentally improves diagnostics by checking template arguments in terms of stated intent at the
point of use,

— do all of this without any runtime overhead or longer compilation times.

4 This specification describes a solution to the problem of constraining template arguments in the form “Con-
cepts Lite.” Constraints are defined as constexpr functions and evaluate compile time properties of types
and values. A small amount of additional syntax is provided to make the specification of constraints and
the description of syntactic requirements easier.

5 The design of this specification is based in part of a specification of the algorithms part of the C++ standard
library (known as “The Palo Alto" TR (WG21 N3350) developed by a large group of experts as a test of
the expressive power of the idea of concepts. Despite syntacdic differences between the notation of the Palo
Alto TR and this TS, the TR can be seen as a large-scale test of the expressiveness of this TS.

1.2 Scope [intro.scope]
1 This Technical Specification specifies requirements for implementations of an extension to the C++ pro-

gramming language concerning the application of constraints to template arguments, the use of constraints
in function overloading and class template specialization, and the definition of those constraints. The Tech-
nical Specification also describes library requirements for a core set of constraints related to the C++ type
system and closely related to the C++ standard type traits ??.

2 International Standard, ISO/IEC 14882, provides important context and specification for this Technical
Specification. Clause 2 of this Technical Specification should be read as if merged into Clause 2 of ISO/IEC

§ 1.2 1

c© ISO/IEC N3819

14882. Clause 3 of this specification should be read as if merged into Clause 5 of ISO/IEC 14882. Clause
4 of this Technical specification should be read as if merged into Clause 14 of ISO/IEC 14882. Clause 5 of
this specification should be added as Section 14.9 in ISO/IEC 14882.
1.3 Normative References [intro.refs]

1 The following referenced documents are indispensable for the application of this document. For dated refer-
ences, only the edition cited applies. For undated references, the latest edition of the referenced document
(including any amendments) applies.
— ISO/IEC 14882, Programming Language C++

1.4 Terms and Definitions [intro.defs]
For the purpose of this document, the following definitions apply.

1.4.1 [defns.concept]
constraint
A template declaration declared with the concept declaration specifier.

1.4.2 [defns.constraint]
constraint
An atom in the constraints language, represented as a constant Boolean expression.

1.4.3 [defns.requirement]
constraint
An expression denoting sets of constraints.
1.5 Conformance [intro.conform]

Conformance is specified in terms of behavior.
1.6 Acknowledgements [intro.ack]

The following people have contributed to writing and editing of this technical specification:

2 Lexical conventions [lex]
2.1 Keywords [lex.key]

Add to table 4, the keywords concept and requires.

3 Expressions [expr]
3.1 Primary expressions [expr.prim]
3.1.1 General [expr.prim.general]

Modify the grammar of primary-expression

.

primary-expression::
literal
this
...
requires-expression

§ 3.1.1 2

c© ISO/IEC N3819

Add the following sections.
3.1.2 Requires expressions [expr.requires]

1 A requires expression provides a concise way to express syntactic requirements for template constraints.
requires-expression:

requires requirement-parameter-list requirement-body
requirement-parameter-list:

(parameter-declaration-clauseopt)

requirement-body:
{ requirement-list }

requirement-list:
requirementopt
requirement-list ; requirementopt

requirement:
simple-requirement
compound-requirement
type-requirement
nested-requirement

simple-requirement:
expression

compound-requirement:
{ expression } trailing-requirements

type-requirement:
type-id

nested-requirement:
requires-clause

trailing-requirements:
constraint-specifier-seq result-type-requirementopt

constraint-specifier-seq:
constexproptnoexceptopt

result-type-requirement:
-> type-id

2 A requires-expression a constant expression, and its result type is is bool. [Example:

template<typename T>
concept bool Readable() {

return requires (T i) {
typename Value_type<T>;
{*i} -> const Value_type<T>&;

};
}

The return expression of the is a requires expression and the statements written within the enclosing braces
denote specific interface requiremnts on the template parameter T. —end example]

3 The requires-expression may introduce local arguments via a parameter-declaration-clause. These parameters
have no linkage, storage, or lifetime. They are used only as notation for the purpose of writing requirements
within the requirement-body and are not visible outside the closing } of requirement-body. The requirement-
body is a list of requirements written as statements. These statements may refer to local arguments, template
parameters, and any other declarations visible from the concept definition.

§ 3.1.2 3

c© ISO/IEC N3819

4 A requires-expression evaluates to true if and only if each requirement in the requirement-list evaluates to
true. The semantics of each requirement are described in the following sections.
3.1.2.1 Simple requirements [expr.req.simple]

1 A simple-requirement introduces a requirement that instantiation of the expression does not result in a
substitution failure. The expression is not evaluated. A simple-requirement evaluates to true if and only if
instantiation succeeds. [Example:

requires (T a, T b) {
a + b; // A simple requirement.

}

—end example]
3.1.2.2 Compound requirements [expr.req.compound]

1 A compound-requirement introduces a set of constraints pertaining to a single expression. The expression
is not evaluated. A compound-requirement evaluates to true only if instantiation succeeds and every other
associated constraint constraints evaluates to true.

2 If a result-type-requirement is present then a) instantiation of the result type must succeed and b) the result
type of the instantiated expression must be convertible to that type. [Example:

template<typename T>
concept bool Deref() {

return requires(T p) {
{*p} -> T::reference;

}
}

The concept evaluates to true iff the expression *p can be instantiated, the type T::reference can be in-
stantiated to a type, and decltype(*p) is convertible to T::reference when instantiated. —end example]

3 If the type-id specified by the result-type-requirement refers to a concept, then that concept is applied to the
result type of the instantiate expression. [Example:

template<typename I>
concept bool Iterator() { ... }

template<typename T>
concept bool Range() {

return requires(T x) {
{begin(x)} -> Iterator; // Iterator

}
}

The concept evaluates to true iff the expression begin(x) can be instantiated, and the Iterator<decltype(begin(x))>()
evaluates to true. —end example]

4 If the constexpr specifier is present in the constraint-specifier-seq, the instantiated expression must be
constexpr-evaluable. [Example:

template<typename Trait>
bool concept Boolean_metaprogram() {

return requires (Trait t) {
{Trait::value} constexpr -> bool;
{t()} constexpr -> bool;

}
}

When instantiated, the resolved nested value member and function call operator must be constexpr-
evaluable. Otherwise, the concept is not satisfied. —end example]

§ 3.1.2.2 4

c© ISO/IEC N3819

5 If the noexcept specifier is present, in the constraint-specifier-seq the instantiated expression must not
propagate exceptions. [Example:

template<typename T>
bool concept Nothrow_movable() {

return requires (T x) {
{T(std::move(x))} noexcept;
{x = std::move(x)} noexcept -> T&;

}
}

When instantiated, the resolved move constructor and move assignment operator must not propagate ex-
ceptions. If not, the concept is not satisfied. —end example]
3.1.2.3 Type requirements [expr.req.type]

1 A type-requirement introduces a requirement that an associated type-id can be formed when instantiated. A
type-requirement evaluates to true only if instantiation succeeds.
3.1.2.4 Nested requirements [expr.req.nested]

1 A nested-requirement introduces additional constraints to be evaluated as part of the requires-expression
and evaluates to true only if the given expression evaluates to true. [Example: Nested requirements are
generally used to provide additional constraints on associated types within a requires-expression.

template<typename T>
concept bool Input_range() {

return requires(T range) {
typename Iterator_type<T>;
requires Input_iterator<T>;

};
}

—end example]

4 Templates [temp]
1 A template defines a family of classes or functions or an alias for a family of types.

template-declaration:
template < template-parameter-list > requires-clauseopt declaration
concept-introduction declaration

requires-clause:
constant-expression

Add the following paragraphs.
7 The requires-clause introduces the following expression as an associated constraint of the template-declaration.
8 A constrained template declaration is a template-declaration with associated constraints. The associated

constraints of a constrained template declaration are the conjunction of the associated constraints of all
constrained-parameters in the template-parameter-list (4.1) and an expression introduced by a requires-
clause. The associated constraints of a concept-introduction are those required by the reference concept
declaration. [Example:

template<typename T>
concept bool Integral() { return is_integral<T>::value; }

template<Integral T>
requires Unsigned<T>()

T binary_gcd(T a, T b);

Templates 5

c© ISO/IEC N3819

The associated constraints of binary_gcd is denoted by the conjunction Integral<T>() && Unsigned<T>().
—end example]

9 A constrained template declaration’s associated constraints must be satisfied (5.3) before its corresponding
definition is instantiated. Class template and alias template constraints are checked during name lookup
(4.2), function template constraints and class template partial specialization constraints are checked during
template argument deduction (??).
4.1 Template parameters [temp.param]

1 The syntax for template-parameters is:
template-parameter:

type-parameter
parameter-declaration
constrained-parameter

constrained-parameter:
constraint-id ...opt identifier
constraint-id ...opt identifier = constrained-default-argument

constraint-id:
concept-name partial-concept-id

constrained-default-argument:
type-id
template-name
expression

Add the following paragraphs.
16 A constrained-parameter is introduced by a constraint-id, which is either a concept-name or a partial-concept-

id. The concept declaration referred to by the constraint-id determines the kind of template parameter.
17 The template parameter introduced by the constraint-id has the same kind as the first template parameter

of the concept declaration. If that template parameter is a parameter pack, then the constrained parameter
shall also be declared as a parameter pack. [Example:

template<typename... Ts>
concept bool Same_types() { ... }

template<Same_types Args> // error: Must be Same_types...
void f(Args... args);

—end example]
18 The associated constraints introduced by the constraint-id are formed by applying the concept-name to

that parameter. If the constraint-id is a partial-concept-id, then the supplied template-arguments follow the
declared parameter in the application. [Example:

template<Input_iterator I, Equality_comparable<Value_type<I>> T>
I find(I first, I last, const T& value);

The constraints formed from these constrained template parameters are equivalent to the following declara-
tion:

template<typename I, typename T>
requires Input_iterator<I>() && Equality_comparable<T, Value_type<I>>()

I find(I first, I last, const T& value);

—end example]
19 The kind of constrained-default-argument shall match the kind of parameter introduced by the constrained-id.

4.2 Template names [temp.names]
Modify paragraph 6.

§ 4.2 6

c© ISO/IEC N3819

6 A simple-template-id that names a class template specialization is a class-name provided that the template-arguments
satisfy the associated constraints (5.3) (if any) of the referenced primary template. Otherwise the program
is ill-formed. [Example:

template<Object T, int N> // T must be an object type
class array;

array<int&, 3>* p; // error: int& is not an object type

—end example] [Note: This guarantees that a partial specialization cannot be less specialized than a
primary template. The enforcement of this requirement is done by checking the primary template during
name lookup rather than enforcing the requirement when the partial specialization is declared.—end note]
4.3 Template arguments [temp.arg]
4.3.1 Template template arguments [temp.arg.template]

Modify paragraph 3.
3 A template-argument matches a template template-parameter (call it P) when each of the template parameters

in the template-parameter-list of the template-argument’s corresponding class template or alias template (call
it A) matches the corresponding template parameter in the template-parameter-list of P given that Q is more
constrained (5.1) than A. [Example:

// ... from standard

template<template<Copyable>> class C>
class stack { ... };

template<Regular T> class list1;
template<Object T> class list2;

stack<list1> s1; // OK: Regular is more strict than Copyable
stack<list2> s2; // error: Object is not more strict than Copyable

—end example]
4.4 Template declarations [temp.decls]
4.4.1 Class templates [temp.class]
4.4.1.1 Member functions of class templates [temp.mem.func]

Add the following paragraphs.
6 A member function of a class template can be constrained by writing a requires-clause after the member

declarator. [Example:

template<typename T>
class S {

void f() requires Integral<T>();
};

—end example] The requires-clause introduces following expression as an associated constraint of the mem-
ber function. A member function of a class template with an associated constraint is a constrained member
function.

7 The member function’s associated constraints are not not evaluated during class template instantiation.
[Note: Member function constraints do not affect the declared interface of a class. This means that the
rules for synthesizing default constructors are unaffected by the presence of constrained constructors and
assignment operators. Constraints on member functions are evaluated during overload resolution. —end
note]

§ 4.4.1.1 7

c© ISO/IEC N3819

8 During overload resolution, if a member function candidate is an instantiation of a constrained member
function template, then those constraints must be satisfied (5.3) before it is considered viable. Constraints
are checked by substituting the template arguments of member function’s corresponding class template
specialization into the associated constraints of the constrained member function template and evaluating
the results.
4.4.2 Friends [temp.friend]

Add the following paragraphs.
10 A constrained friend is a friend of a class template with associated constraints. A constrained friend can

be a constrained class template, constrained function template, or an ordinary (non-template) function.
Constraints on template friends are written using shorthand, introductions, or a requires clause following
the template-parameter-list. Constraints on non-template friend functions are written after the result type.
[Example: All of the following are valid constrained friend declarations:

template<typename T>
struct X {

template<Integral U>
friend void f(X x, U u) { }

template<Object W>
friend struct Z { };

friend bool operator==(X a, X b) requires Equality_comparable<T>()
{

return true;
}

};

—end example]
11 A non-template friend function may not be constrained if the function’s parameter types or result type are

not dependent on any template parameters. [Example:

template<typename T>
struct S {

friend void f(int n) requires C<T>(); // Error: cannot be constrained
};

—end example]
12 A constrained non-template friend function shall not declare a specialization. [Example:

template<typename T>
struct S {

friend void f<>(T x) requires C<T>(); // Error: declares a specialization

friend void g(T x) { } // OK: does not declare a specialization
};

—end example]
13 As with constrained member functions, constraints on non-template friend functions are not instantiated

during class template instantiation.
4.4.3 Class template partial specializations [temp.class.spec]
4.4.3.1 Matching of class template partial specializations [temp.class.spec.match]

Modify paragraph 2.

§ 4.4.3.1 8

c© ISO/IEC N3819

A partial specialization matches a given actual template argument list if the template arguments of
the partial specialization can be deduced from the actual template argument list (14.8.2), and the deduced
template arguments satisfy the constraints of partial specialization, if any (??).
4.4.3.2 Partial ordering of class template specializations [temp.class.order]

Modify paragraph 1.
For two class template partial specializations, the first is at least as specialized as the second if, given

the following rewrite to two function templates, the first function template is at least as specialized as the
second according to the ordering rules for function templates (14.5.6.2):
— the first function template has the same template parameters and constraints as the first partial

specialization and has a single function parameter whose type is a class template specialization with
the template arguments of the first partial specialization, and

— the second function template has the same template parameters and constraints as the second partial
specialization and has a single function parameter whose type is a class template specialization with
the template arguments of the second partial specialization.

New text.
[Example:

template<typename T> class S { };
template<Integer T> class S<T> { }; // #1
template<Unsigned_integer T> class S<T> { }; // #2

template<Integer T> void f(S<T>); // A
template<Unsigned_integer T> void f(S<T>); // B

The partial specialization #2 will be more specialized than #1 for template arguments that satisfy both
constraints because A will be more specialized than B. — end example]

4.4.4 Function templates [temp.fct]
4.4.4.1 Function template overloading [temp.over.link]

Modify paragraph 6.
Two function templates are equivalent if they are declared in the same scope, have the same name, have

identical template parameter lists, and have return types and parameter lists that are equivalent using the
rules described above to compare expressions involving template parameters, and have equivalent constraints
(??).
4.4.4.2 Partial ordering of function templates [temp.func.order]

Modify paragraph 2.
Partial ordering selects which of two function templates is more specialized than the other by transforming

each template in turn (see next paragraph) and performing template argument deduction using the function
type. The deduction process determines whether one of the templates is more specialized than the other.
If so, the more specialized template is the one chosen by the partial ordering process. If both deductions
succeed, the the more specialized template is the one that is whose constraints are more strict (??).
4.4.5 Abbreviated template declaration [tmp.abbrev]

Add the following paragraphs.
1 The name of a unary concept may be used as a simple-type-specifier in a function or constructor declaration,

either as part of parameter-declaration or as part of the return type. In that case, that declaration is
considered a template declaration declaring the function or the constructor. This is called an abbreviated
template declaration. The use of the concept name shall be interpreted as a use of a template parameter
satisfying the kind and requirements of the concept. [Note: The exact mechanism for achieving this is
unspecified. [Example: The following declaration

§ 4.4.5 9

c© ISO/IEC N3819

void sort(Sortable& c);

is equivalent to

template<Sortable __Sortable>
void sort(__Sortable& c);

—end example] —end note]
2 If an entity is declared by an abbreviated template declaration, then all its declarations must have the same

form.

5 Constrained Declarations [con.decl]
1 A constrained declaration is a constrained-template-declaration, a constrained-parameter , or a constrained-

member-function. A declaration without associated constraints is an unconstrained declaration.
5.1 Partial ordering of constrained declarations [con.decl.order]

One declaration D1 is more constrained than another D2 when both declarations are of the same kind and
have equivalent type and the associated constraints of D1 are more strict 5.4 than those of D2. A constrained
declaration is more constrained than an unconstrained declaration of the same kind and equivalent type.
5.2 Equivalence of declaration constraints [con.decl.equiv]

Two declarations of the same kind and equivalent type are equivalently constrained when their constraints
are equivalent 5.5, or when both declarations are unconstrained.

1 Before a constrained template is instantiated, its associated constraints must be satisfied]5.3.
2 The partial ordering of constrained function templates and the partial ordering of constrained class template

specializations rely on the partial ordering those template declaration’s constraints. A template declaration
is more constrained than another if its associated constraints are more strict 5.4.
5.3 Constraint satisfaction [con.sat]

A template’s constraints are satisfied if the constexpr evaluation of the reduced constraints results in
true.
5.4 Constraint ordering [con.order]

1 Partial ordering of constraints is used to choose among template specializations during the partial ordering
of function templates, the partial ordering of class templates, and the use of template template arguments.
This computation of this ordering is modeled as a propositional deduction by holding one constraint, P, as
an assumption and determining if another constraint, Q, cab be inferred from P. [Note: In formal logic, the
ordering of constraints determines whether P ` Q is valid inference, that is, if P implies Q. —end note]

2 A constraint P is more strict than another constraint Q if and only if P implies Q and Q does not imply P.
3 The mechanism of this computation depends on the kind of expression or proposition of P and Q. There are

four kinds of propositions in the constraints language.
— conjunctions – logical AND expressions

— disjunctions – logical OR expressions

— concept checks – function calls to concept-declared functions

— requirements – requires expressions

— atomic propositions – every other constant expression

The following sections describe semantics for the different kinds of propositions and their derivation rules.

§ 5.4 10

c© ISO/IEC N3819

5.4.1 Atomic Propositions [con.prop.atomic]
1 An atomic proposition is an expression that has no deeper logical meaning in the constraints language; they

represent a truth value when evaluated. [Example: The following are all atomic propositions, assuming that
M and N are constant expressions (possibly having literal type) and is_prime is declared constexpr.

true
M == N
M < N
is_prime(N)
std::is_integral<T>::value
std::is_integral<T>()()
!std::is_reference<T>::value

—end example]
2 [Note: The literal values true and false do not have meaning within the constraints language. A template

constrained by only requires true is not equivalent to an unconstrained template (true is a constraint).
A template constrained by requires false is allowed, even though it will never be selected by overload
resolution. —end note]

3 [Note: The logical ! expression is not in the constraints language because it has multiple interpretations. It
can mean both the negation of a proposition (it must not be the case that) and the negation of a requirement
(it is not required that) depending on context and operand. By making it atomic, it can only have the former
meaning. —end note]

4 An atomic proposition P implies an atomic proposition Q if and only if both propositions have the same
spelling.

5 If Q is a conjunction, A && B, then P must imply A and P must imply B.
6 If Q is a disjunction, A || B, then either P must imply A or P must imply B.

5.4.2 Requirements [temp.prop.req]
A requires expression denotes a conjunction of syntactic, type, and nested requirements. An the context

of a constraint, a requires expression is replaced by its conjunction of requirements. [Note: The syntactic
representation of expressions checking syntactic and type requirements is implementation-specific. However,
each such valid expression and valid type requirement is an atomic proposition. —end note]
5.4.3 Conjunctions [con.prop.conj]

1 A conjunction is a logical AND expression. User-defined && operators are not found in the resolution of
disjunctions within a constraint.

2 A conjunction of the form P && Q implies a proposition R if and only if P implies R or Q implies R.
3 If R is a conjunction of the form A && B, then either P or Q must imply A, and either P or Q must imply B.
4 If R is a disjunction of the form A || B, then either P or Q must imply A, or either P or Q must imply B.

5.4.4 Disjunction [con.con.disj]
1 A disjunction is a logical OR expression. User-defined || operators are not found in the resolution of

disjunctions within a constraint.
2 A disjunction of the form P || Q implies a proposition R if and only if P matches R and Q matches R.
3 If R is a conjunction of the form A && B, then P must imply either A or B, and Q must imply either A or B.
4 If R is a disjunction of the form A || B, then either P or Q must imply A, or either P or Q must imply B.

5.4.5 Concept Checks [temp.con.prop.check]
1 A concept check is a function call expression to function template declared with the concept specifier.

Argument dependent lookup is not used in the resolution of concept checks. After lookup, a concept check
is replaced by the instantiated expression returned by the resolved concept definition. [Note: Replacing

§ 5.4.5 11

c© ISO/IEC N3819

a concept check with its definition means that there no “concept check propositions” in the associated
constraints of a template. —end note]
5.5 Constraint equivalence [con.equiv]

1 The equivalence of constraints is used to determine whether function declarations are redeclarations or
overloads and whether constrained partial template specializations are redeclarations or new declarations.

2 Two constraints P and Q are equivalent if and only if P implies Q and Q implies P.
5.6 Concept introduction [temp.con.intro]

A concept-introduction introduces a list of template parameters for template declaration 4 or lambda
expression (??).

concept-introduction:
concept-name { introduced-parameter-list }

introduced-parameter-list:
identifier introduced-parameter-list , identifier

The concept name is matched, based on the number of introduced parameters to a corresponding concept
definition. If no such concept can be found, the program is ill-formed.

The kind of each introduced parameter (type, non-type, template), is the same as the corresponding
template parameter in the matched concept definition. The concept is applied introduced parameters as a
constraint on the trailing declaration. [Example:

template<typename I1, typename I2, typename O>
concept bool Mergeable() { ... }

Mergeable{A, B, C}
O merge(A first1, A last1, B first2, B last2 C out);

A, B, and C are introduced as type parameters. The constraint on the algorithm is Mergeable<A, B, C>().
The declaration is equivalent to:

template<typename A, typename B, typename C>
requires Mergeable<A, B, C>()

O merge(A first1, A last1, B first1, B first2, C out);

—end example]

§ 5.6 12

	Contents
	1 General
	1.1 Introduction
	1.2 Scope
	1.3 Normative References
	1.4 Terms and Definitions
	1.5 Conformance
	1.6 Acknowledgements

	2 Lexical conventions
	2.1 Keywords

	3 Expressions
	3.1 Primary expressions
	3.1.1 General
	3.1.2 Requires expressions
	3.1.2.1 Simple requirements
	3.1.2.2 Compound requirements
	3.1.2.3 Type requirements
	3.1.2.4 Nested requirements

	4 Templates
	4.1 Template parameters
	4.2 Template names
	4.3 Template arguments
	4.3.1 Template template arguments

	4.4 Template declarations
	4.4.1 Class templates
	4.4.1.1 Member functions of class templates

	4.4.2 Friends
	4.4.3 Class template partial specializations
	4.4.3.1 Matching of class template partial specializations
	4.4.3.2 Partial ordering of class template specializations

	4.4.4 Function templates
	4.4.4.1 Function template overloading
	4.4.4.2 Partial ordering of function templates

	4.4.5 Abbreviated template declaration

	5 Constrained Declarations
	5.1 Partial ordering of constrained declarations
	5.2 Equivalence of declaration constraints
	5.3 Constraint satisfaction
	5.4 Constraint ordering
	5.4.1 Atomic Propositions
	5.4.2 Requirements
	5.4.3 Conjunctions
	5.4.4 Disjunction
	5.4.5 Concept Checks

	5.5 Constraint equivalence
	5.6 Concept introduction

