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Language Extensions for Vector level 
parallelism 
Introduction 
This document proposes a language extension for vector level parallel programming (vector 
programming) as an extension to C++. It is based on both Cilk Plus and OpenMP 4.0, which 
have almost exactly the same mutual capability in regard to vector parallelism, however with 
keywords-based syntax instead of pragma-based syntax. 
Both parallel loops and SIMD loops, in OpenMP and in Cilk Plus, require that the loops are 
“countable loops”. While the proposal does not suggest adding countable loops to the language 
as a distinct feature, the document presents the concept separately, so that it can be reused for 
both parallel loops and SIMD loops. The constructs actually being proposed are:  

1. Array notations (in part II) 
2. SIMD loops 
3. SIMD enabled functions. 

Loop grammar modifications 
Change the grammar of iteration-statement as follows: 

iteration-statement: 
while ( condition ) statement 
do statement while ( expression ) ; 
for loop-qualifiersopt ( for-init-statement conditionopt ; expressionopt ) statement 
for loop-qualifiersopt ( for-range-declaration : for-range-initializer ) statement 

Add the following grammar rules: 

loop-qualifiers: 
simd safelen-clauseopt 

safelen-clause: 
safelen ( constant-expression ) 



Countable Loops 
A countable loop is a for statement or range-based for statement that is required to satisfy 
additional constraints. The purpose of these constraints is to ensure that the loop's iteration count 
can be computed before the loop body is executed. 

In a countable range-based for loop ([stmt.ranged] 6.5.4), the type of the __begin variable, 
as determined from the begin-expr, shall satisfy the requirements for a random access iterator. [ 
Note: Intel has not yet implemented support for a parallel range-based for statement. — end 
note ] 

All the following constraints apply to a countable for loop. When a constraint limits the form 
of an expression, parentheses are allowed around the expression or any required subexpression. 

Constraints on the form of the control clauses 
The condition shall be an expression. [ Note: A condition with declaration form is useful in a 
context where a value carries more information than just whether it is zero or nonzero. This is 
not believed to be useful in a countable loop. — end note ] This expression shall be a comparison 
expression with one of the following forms: 

relational-expression < shift-expression 
relational-expression > shift-expression 
relational-expression <= shift-expression 
relational-expression >= shift-expression 
equality-expression != relational-expression 

 
Exactly one of the operands of the comparison operator shall be an identifier that designates an 
induction variable, as described below. This induction variable is known as the control variable. 
The operand that is not the control variable is called the limit expression. Any implicit 
conversion applied to that operand is not considered part of the limit expression. 

The final expression of the control clause of the loop is called the loop-increment; it shall be an 
expression with the following form: 

loop-increment: 
single-increment 
loop-increment , single-increment 

single-increment: 
identifier ++ 
identifier -- 
++ identifier 



-- identifier 
identifier += initializer-clause 
identifier -= initializer-clause 
identifier = identifier + multiplicative-expression 
identifier = identifier - multiplicative-expression 
identifier = additive-expression + identifier 

Each comma in the grammar of loop-increment shall represent a use of the built-in comma 
operator. The identifier in each grammatical alternative for single-increment is called an 
induction variable. If identifier occurs twice in a grammatical alternative for single-increment, 
the same variable shall be named by both occurrences. If a grammatical alternative for single-
increment contains a subexpression that is not an identifier for the induction variable, that is 
called the stride expression for that induction variable. 

An induction variable shall not be designated by more than one single-increment. 

 [ Note: The control variable is identified by considering the loop's condition and loop-increment 
together. If exactly one operand of the condition comparison is a variable, it is the control 
variable, and must be incremented. If both operands of the condition comparison are variables, 
only one is allowed to be incremented; that one is the control variable. It is an error if neither 
operand of the condition comparison is a variable. — end note ] 

[ Note: There is no additional constraint on the form of the initialization clause of a countable 
loop. — end note ] 

Other statically-checkable constraints 
There shall be no return, break, goto or switch statement that might transfer control 
into or out of the loop. 
Each induction variable shall have unqualified integral, pointer, or copy-constructible class type, 
shall have automatic storage duration. 
Each stride expression shall have integral or enumeration type. 

The loop count is computed as follows.  In the following table, “var” stands for an expression 
with the type and value of the loop control variable, “limit” stands for an expression with the 
type and value of the limit expression, and “stride” stands for an expression with the type and 
value of the stride expression. The loop count is computed after the loop initialization is 
performed, and before the control variable is modified by the loop.  



Loop count expression and value 

Form of 
condition Form of increment 

 
var++ 
++var 

var-- 
--var 

var += stride 
var = var + stride 
var = stride + var 

var -= stride 
var = var - stride 

var < limit 

limit > var 
((limit)-
(var)) n/a ((limit)-(var)-

1)/(stride)+1 
((limit)-(var)-1)/-
(stride)+1 

var > limit 

limit < var 
n/a ((var)-

(limit)) 
((var)-(limit)-1)/-
(stride)+1 

((var)-(limit)-
1)/(stride)+1 

var <= limit 

limit >= var 
((limit)-
(var))+1 n/a ((limit)-

(var))/(stride)+1 
((limit)-(var))/-
(stride)+1 

var >= limit 

limit <= var 
n/a ((var)-

(limit))+1 
((var)-(limit))/-
(stride)+1 

((var)-(limit))/(stride)+1 

var != limit 

limit != var 
((limit)-
(var)) 

((var)-
(limit)) 

((stride)<0) ? 

((var)-(limit)-1)/-
(stride)+1 : 

((limit)-(var)-
1)/(stride)+1 

((stride)<0) ? 

((limit)-(var)-1)/-
(stride)+1 : 

((var)-(limit)-
1)/(stride)+1 

The loop count expression shall be well-formed. When a stride expression is present, if the 
divisor of the division is not greater than zero, the behavior is undefined. 
The type of the difference between the limit expression and the control variable is the 
subtraction type, which shall be integral. When the condition operation is !=, (limit)-(var) and 
(var)-(limit) shall have the same type. Each stride expression shall be convertible to the 
subtraction type. The loop odr-uses whatever operator- functions are selected to compute 
these differences. 
For each induction variable V, one of the expressions from the following table shall be well-
formed, depending on the operator used in its single-increment: 
Operator ++ += + -- -= - 
Expression V += X V -= X 

where X is some expression with the same type as the subtraction type. The loop odr-uses 
whatever operator+= and operator-= functions are selected by these expressions. 



Dynamic constraints 
If an induction variable is modified within the loop other than as the side effect of its single-
increment operation, the behavior of the program is undefined. 
If evaluation of the iteration count, or a call to a required operator+= or operator-= 
function, terminates with an exception, the behavior of the program is undefined. 
If X and Y are values of the control variable that occur in consecutive evaluations of the loop 
condition in the serialization, then the behavior is undefined if ((limit) - X) - ((limit) - Y) 
evaluated in infinite integer precision, does not equal the stride. [Note: in other words, the 
control variable must obey the rules of normal arithmetic Unsigned wraparound is not allowed. – 
end note] If the condition expression is true on entry to the loop, then the behavior is undefined if 
the computed loop count is not greater than zero. If the computed loop count is not representable 
as a value of type unsigned long long, the behavior is undefined.  

Evaluation relaxations 
The stride expressions shall not be evaluated if the loop count is zero; otherwise, it is unspecified 
how many times the stride and limit expressions are evaluated. If execution of a loop iteration 
alters the value of the increment or limit expression, the behavior is undefined. 
Within each iteration of the loop body, the name of each induction variable refers to a local 
object, as if the name were declared as an object within the body of the loop, with automatic 
storage duration and with the type of the original object. If the loop body throws an exception 
that is not caught within the same iteration of the loop, the behavior is undefined, unless 
otherwise specified.  

SIMD loops 

Description 
This section describes the SIMD loop portion of the vector programming extension. A SIMD 
loop is syntactically similar to a for loop, with the addition of the contextual keyword simd 
after the keyword for. The loop shall be a countable loop, as described above. 

The serialization of a SIMD loop is the loop obtained by omitting the contextual keyword simd 
or simd_safelen.  

Semantics 
A SIMD loop has logical iterations numbered 0, 1, … , N-1 where N is the number of loop 
iterations, and the logical numbering denotes the sequence in which the iterations would execute 
in the serialization of the SIMD loop. 



The order of evaluation of the expressions in a SIMD loop is a partial order, and a relaxation of 
the order specified for sequential loops. Let Xi denote evaluation of an expression X in the ith 
logical iteration of the loop.  The partial order is: 

For all expressions X and Y evaluated as part of a SIMD loop, if X is sequenced before Y 
in a single iteration of the serialization of the loop and i ≤ j, then Xi is sequenced before 
Yj in the SIMD loop. 

[ Note: In each iteration of a SIMD loop, the “sequenced before” relationships are exactly as in 
the corresponding serial loop. — end note ] 

SIMD loop with safelen 
 The constant-expression in simd_safelen(constant-expression) shall be an integer constant 
expression with a value greater than zero. 
The value of the argument to the constant-expression is the maximum chunk size, c, for a SIMD 
loop. The order of evaluation of expressions within a simd loop with safelen is the same 
partial ordering as for a simd loop without safelen (above), with the following additional 
constraint: 

For a SIMD loop with a chunk size of c, for every expression X in a single iteration of the 
SIMD loop, for every iteration i, Xi is sequenced before Xi+c. 

SIMD-enabled functions 

Description 
A SIMD-enabled function is a function declared with one or more SIMD specifiers. The SIMD 
specifiers direct the compiler to generate multiple variants of the function for use with data 
parallel context such as array sections or within a SIMD loop. Although a call to a SIMD-
enabled function from a vectorizable context may be handled specially, calls from "scalar" (non-
vector) contexts are not affected by the SIMD specifier. 
Conceptually, an invocation of a SIMD-enabled function from a loop or array-section context is 
matched against the declared variants. If a variant is found with an appropriate vector length and 
with matching uniform and linear arguments (see below), then that variant is called. Otherwise, 
the scalar variant is used. Since the scalar variant of the SIMD-enabled function can always be 
invoked, there are no error conditions associated with matching a variant of the SIMD-enabled 
function to the call site. 

Syntax 

[ Note: simd is added as a new context-dependent keyword, like the virt-specifiers 
override and final, and it is recognized/allowed in basically the same syntactic contexts. 



However,the virt-specifiers are semantically applicable only to virtual functions, and according 
to 9.2p8, shall not appear in any other kind of declaration. 

In addition to that restriction, the use of virt-specifier-seq in the grammar is limited to member-
declarator and function-definition. Given the semantic restriction, the grammatical limitations 
appear to be superfluous. 

Because a SIMD specifier is applicable to any sort of function, including a lambda, and to enable 
the more general use of context-dependent keywords in declarations, a new cdk-specifier non-
terminal is added to the top-level grammars for declarators. The existing virt-specifiers, and the 
new simd-specifier, are moved under this category. — end note ] 

Change existing grammar rules as follows: 

lambda-declarator: 
( parameter-declaration-clause ) mutableopt exception-specificationopt attribute-

specifier-seqopt trailing-return-typeopt cdk-specifier-seqopt 
declarator: 

ptr-declarator cdk-specifier-seqopt 
noptr-declarator parameters-and-qualifiers trailing-return-type cdk-specifier-seqopt 

abstract-declarator: 
ptr-abstract-declarator cdk-specifier-seqopt 
noptr-abstract-declaratoropt parameters-and-qualifiers trailing-return-type cdk-specifier-

seqopt 
abstract-pack-declarator cdk-specifier-seqopt 

function-definition: 
attribute-specifier-seqopt decl-specifier-seqopt declarator virt-specifier-seqopt function-

body 
member-declarator: 

declarator virt-specifier-seqopt pure-specifieropt 
declarator brace-or-equal-initializeropt 
identifieropt attribute-specifier-seqopt : constant-expression 

virt-specifier-seq: 
virt-specifier 
virt-specifier-seq virt-specifier 

Add the following new grammar rules: 

cdk-specifier-seq: 
cdk-specifier 
cdk-specifier-seq cdk-specifier 

cdk-specifier: 
virt-specifier 
simd-specifier 

simd-specifier: 
simd 



simd ( simd-function-clausesopt ) 
simd-function-clauses: 

simd-function-clause 
simd-function-clauses , simd-function-clause 
simd-function-clauses simd-function-clause 

simd-function-clause: 
simdlen-clause 
uniform-clause 
linear-clause 
inbranch-clause 

 
The SIMD specifier consists of the contextual keyword simd and an optional list of clauses: 
Example: 
void vec_add (float *r, float *op1, float *op2, int k) 
simd(uniform(r,op1,op2) linear(k:1)) simd  
{ r[k] = op1[k] + op2[k]; } 

This function can be called in three different ways: 
A scalar context, to add two values and place the result in a scalar variables:  
vec_add(*x, *a, *b, 0); 
In this case, the scalar variant of vec_add is matched to the caller. 
A vector context where the actual pointer arguments to r, op1 and op2 are fixed across calls to 
the function and the actual values matched into the argument k are an arithmetic sequence with a 
step of 1  
for (int n = 0; n < N; ++n) vec_add(res, op1, op2, n); 
In this case, the vector variant corresponding to the specifier simd(uniform(r,op1,op2) 
is matched to the caller. 
A vector context with no known relationship between the values within the vectors of arguments   
for (int n = 0; n < N; ++n) 
vec_add(res[idout[n]], op1[id_in1[n]], op2[id_op2[n]], n);  
In this case, the vector variant corresponding to the specifier simd is matched to the caller. 

Semantics 
The semantics of a SIMD-enabled function differ from a normal function in sequencing and in 
constraints on the program, as follows: 
Invocations of the SIMD-enabled function in consecutive iterations of a SIMD loop or for 
consecutive elements of an array section are unsequenced with respect to one another. 
The body of a SIMD-enabled function is required to conform to the same constraints as the body 
of a SIMD loop. 



Implementation note: The compiler will typically generate a scalar variant of the function, and 
two vector variants per SIMD specifier. The first vector variant processes multiple array 
elements at a time through the use of vector registers and SIMD instructions.  The second vector 
variant does the same, but additionally takes an implicit mask argument, which disables 
processing of some of the vector lanes.  The compiler calls the second variant and supplies the 
implicit mask when the function is called from a conditional statement for which the condition 
might differ between iterations. The programmer can use an inbranch clause to suppress one 
of the two vector variants if they are not needed. The compiler may suppress generation of any 
variant (including the scalar variant) if it knows that the variant will not be called. In a separate-
compilation environment, such knowledge might require access to all compilation units that may 
use the SIMD-enabled function. 

For each simd specifier, one vector variant of the vectorized function is created. The simd 
specifier and its associated clauses are considered part of the function interface. 

A SIMD-enabled function shall not have a dynamic exception specification. 

In a SIMD specifier, no parameter shall be the subject of more than one clause of kind uniform 
or linear. 

The simdlen clause 

simdlen-clause: 
simdlen ( constant-expression ) 

A SIMD specifier shall not contain more than one simdlen clause.  
Every vector variant of a SIMD-enabled function has a vector length (VL). If the simdlen 
clause is used, the VL is the value of the argument of that clause. Otherwise the VL is defined by 
the implementation's ABI.  

The uniform clause 

uniform-clause: 
uniform ( param-list ) 

param-list: 
parameter-name 
param-list , parameter-name 

parameter-name: 
identifier 
this 



The uniform clause declares one or more parameters to have an invariant value for all 
invocations of the vector variant in the execution of a single SIMD loop or array-section 
expression. 
The identifier in a parameter-name shall match the name in a parameter-declaration of the 
function to which the containing clause applies; the parameter shall have arithmetic or pointer 
type. The keyword this shall not be used as a parameter-name except with a non-static member 
function. 

The linear clause 

linear-clause: 
linear ( param-list ) 
linear ( param-list : linear-step ) 

linear-step: 
parameter-name 
constant-expression 

The linear clause declares one or more parameters to have values that increase or decrease 
linearly in consecutive invocations of the function in the execution of a single SIMD loop or 
array-section expression. 
If a linear-step consists of a single identifier matching the name of a parameter, or in the 
declaration of a non-static member function is the keyword this, the linear-step is interpreted 
as referring to the parameter; otherwise, the linear-step shall satisfy the requirements of a 
constant-expression. A constant-expression in a linear-step shall be an integer constant 
expression. A parameter referenced as a linear-step shall be the subject of a uniform clause.  
An omitted linear-step is equivalent to a linear-step of 1. 

The inbranch clauses 

inbranch-clause: 
inbranch 
notinbranch 

Hint to suppress generation of the other variant.   
Implementation note: In typical implementations, both variants are generated and the clause 
serves to suppress generation of an unnecessary variant.  By default, for every SIMD specifier, 
two variants are generated: one especially suitable for conditional invocation (i.e. masked), and 
another suitable only for unconditional invocation (i.e. unmasked). If all invocations are 
conditional, generation of the unmasked variant can be suppressed using the inbranch clause. 
Similarly, if all invocations are unconditional, generation of the masked variant can be 
suppressed using the notinbranch clause.  A SIMD specifier shall not have both an 
inbranch clause and a notinbranch clause. 



Restrictions on SIMD-enabled functions and SIMD 
loops 
The behavior is undefined if any of the following language constructs appears within the body of 
a SIMD-enabled function, or in a SIMD loop: 

1. a try statement 
2. a call to setjmp or longjmp 

If execution of a function called from a SIMD-enabled function or SIMD loop terminates with an 
exception or a call to longjmp, the behavior is undefined. 

Note: Because invocations of a SIMD-enabled function, and iterations of a SIMD loop, are 
implicitly allowed to be unsequenced, modifying any non-atomic non-local object carries the 
potential for unsequenced side effects and value computations (1.9 clause 15), and therefore 
undefined behavior. 
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