
A SFINAE-Friendly std::common_type

Document #: WG21 N3843
Date: 2014-01-01
Revises: None
Project: JTC1.22.32 Programming Language C++
Reply to: Walter E. Brown <webrown.cpp@gmail.com>

Contents

1 Introduction . . . . . . . . . . . . . 1
2 Discussion . . . . . . . . . . . . . . 2
3 Proposed wording . . . . . . . . . . 4

4 Acknowledgments . . . . . . . . . . 5
5 Bibliography . . . . . . . . . . . . . 5
6 Document history . . . . . . . . . . 6

Abstract

This paper proposes to reformulate the specification of the common_type trait so as to avoid a
hard error when there is no common type, and thus to make the trait conveniently usable in a
SFINAE context.

1 Introduction

The paper “std::result_of and SFINAE” (by Niebler et al.) was adopted for C++14 at the
2012 Portland meeting. It addressed “the use of result_of in contexts where SFINAE is a
consideration. . . ” [N3462]. More specifically, “a signature with a hard template error will poison
usage of the entire overload set when it’s not selected by [overload] resolution.”1

Although the Niebler paper proposed wording for only the result_of trait, it also briefly spoke
to the more general question, “Shouldn’t we also address the other traits that could be made
SFINAE-friendly?”:

As noted by some users and by Marc Glisse in [reflector message] c++std-lib-32994,
result_of is far from the only trait that could benefit from the SFINAE treatment.
iterator_traits and common_type are obvious candidates. [We] have chosen to
narrowly focus on result_of for lack of time.

The present paper provides wording that reformulates the specification of common_type2 to
the same purpose. Note that we have preserved full backwards compatibility in all cases where
the C++14 formulation is well-formed, modulo a subtlety (discussed below) in the application of
LWG issue 2141. In particular, no use of common_type in any standard library specification (such
as those throughout <chrono>) needs any adjustment. However, where the current formulation
is ill-formed, the revised formulation is now well-formed, and has been made detectable in SFINAE

contexts.3

Copyright c© 2014 by Walter E. Brown. All rights reserved.
1David Krauss, personal communication, 2013-12-30.
2The common_type trait was first proposed for C++0x by Hinnant et al. in [N2615] and adopted at the 2008 Sophia-

Antipolis meeting via the revised paper [N2661].
3In reflector message c++std-lib-33011, Howard Hinnant terms the underlying technique a Voldemort type. ,

1

mailto:webrown.cpp@gmail.com


2 N3843: A SFINAE-Friendly std::common_type

We first discuss a representative implementation of the reformulated trait. Since the C++11
and C++14 common_type traits are specified in terms of code, the proposed wording will then
substantially excerpt this implementation so as to remain consistent in specification style. We
also provide, for LWG’s consideration, alternative proposed wording via prose.

2 Discussion

As shown below, our proposed reformulation of common_type is implemented in terms of the
helper template ct, which in turn employs helpers ct2 and void_t. We will discuss each of these
helpers in subsequent subsections; thereafter, our proposed wording will treat the helpers as
exposition-only.

1 namespace _ {
2 template< class T, class U >
3 using ct2 = decltype(declval<bool>() ? declval<T>() : declval<U>());

5 template< class T >
6 using void_t = conditional_t<true,void,T>;

8 template< class, class... > // no types, or no common type
9 struct ct { };

10 template< class T > // single type
11 struct ct<void,T> { using type = decay_t<T>; };
12 template< class T, class U, class... V > // two or more types
13 struct ct<void_t<ct2<T,U>>, T, U, V...>
14 : ct<void, ct2<T,U>, V...> { };
15 }

17 template< class... T >
18 struct common_type : _::ct<void, T...> { };

2.1 The ct2 helper
This alias template encapsulates the basic mechanism for determining the type, if any, common
to two given types T and U. While, strictly speaking, the body of this template could be embedded
where it is used, we find that factoring this mechanism into an alias template makes it both
clearer to understand and more convenient to use.

Note that we use declval<bool>() instead of true, as currently formulated. We do so
because, in an unevaluated context such as the above decltype, any specific bool value is
irrelevant; we could equally correctly have specified false. Absent a reason to prefer one over the
other, we decline an unnecessary choice. (Implementers are, of course, free under the as-if rule to
choose differently.)

It is important to observe that a specialization of the ct2 template is ill-formed whenever its
conditional expression is ill-formed, i.e., when T and U have no type in common. This insight
explains why the C++11 and C++14 formulation leads to ill-formed programs under the same
circumstances.

2.2 The void_t helper
The purpose of the void_t alias template is simply to map any given type to void. Although a
trivial transformation, it is nonetheless exceedingly useful, for it makes an arbitrary well-formed
type into one that is completely predicable. Consider the following example of void_t’s utility, a
trait-like metafunction to determine whether a type T has a type member named type:



N3843: A SFINAE-Friendly std::common_type 3

1 template< class, class = void >
2 struct has_type_member : false_type { };
3 template< class T >
4 struct has_type_member<T, void_t<typename T::type>> : true_type { };

Compared to traditional code that computes such a result, this version seems considerably
simpler, and has no special cases (e.g., to avoid forming any pointer-to-reference type). The code
features exactly two cases, each straightforward: (a) when there is a type member named type, the
specialization is well-formed (with void as its second argument) and will be selected, producing a
true_type result; (b) when there is no such type member, SFINAE will apply, the specialization
will be nonviable, and the primary template will be selected instead, yielding false_type. Thus,
each case obtains the appropriate result.

Indeed, we can use the above has_type_member example in conjunction with our proposed
reformulation of common_type:

1 has_type_member< common_type<int,double> >{}() // true
2 has_type_member< common_type<int,string> >{}() // false

Note that the C++11 and C++14 versions of common_type are not usable in this way, as (a) they
produce a hard error whenever there is no common type, and therefore (b) the SFINAE inside
has_type_member can’t apply.

Incidentally, our above implementation of void_t may seem somewhat curious: since the pro-
grammer knows that the final result is void, there seems literally nothing that the compiler need
do; why, then, do we involve conditional_t? Indeed, we would prefer a more straightforward
formulation; contrast:

1 template<class T> using void_t = conditional_t<true,void,T>; // as above
2 template<class > using void_t = void; // preferred

Alas, we have as of this writing encountered implementation divergence (Clang vs. GCC) while
working with the preferred version shown above, probably because of CWG issue 1558: “The
treatment of unused arguments in an alias template specialization is not specified by the current
wording of 14.5.7 [temp.alias].” While the issue is currently in drafting status, the notes from
the CWG issues list indicate that CWG intends “to treat this case as substitution failure,” a
direction entirely consistent with our intended uses. It therefore seems likely that we will at some
future time be able to make portable use of our preferred simpler form. Until then, we employ
conditional_t as a workaround to ensure that our template’s argument is always used.

Finally, let us mention for completeness that we have experimented with a more general version
of void_t. Instead of a single type only. our expanded version takes a parameter pack of types as
its template parameter. While not needed for the present purpose, such a generalization seems
useful in connection with multiple type members when an all-or-none approach is desired. See
our companion paper [N3844] for an application of just such a generalized void_t.

2.3 The ct helper
This helper consists of a primary template and two specializations. The primary template handles
all cases where there is no common type. Such cases typically arise when, in a given list of types,
there are two adjacent types such that (a) neither can be converted to any form of the other, or
(b) there is no third type to which both can be converted. This case also arises when the given
list of types is empty. This primary template thus ensures that there is now a well-defined result
(albeit a vacuous one4) in such circumstances.

4Note that the D programming language made a different design decision for its analogous CommonType template:
“Returns void if passed an empty list, or if the types have no common type” [http://dlang.org/phobos/std_traits.html].
Such a choice would defeat this paper’s principal purpose: we would be unable, for example, to distinguish cases having
no common type from even the trivial-yet-valid common_type_t<void,void>.

http://dlang.org/phobos/std_traits.html


4 N3843: A SFINAE-Friendly std::common_type

The first specialization is designed to handle the case of a single type. Moreover, it is here
that we apply our understanding of the intent underlying LWG issue 2141’s resolution in C++14,
namely to apply the decay trait to the result type as previously specified in C++11. While the
resolution technically calls for a decay at each processing step, we believe this was an unintended
artifact of the resolution’s specification.5 As documented by the outcomes of reflector threads
starting with messages c++std-lib-32298 and c++std-lib-33104, we believe that LWG intended
a single, final, decay step, as that completely addresses the issue as raised. We drafted this
specialization accordingly.

Finally, the second specialization handles the general case of two or more types. Note that this
specialization will be viable only so long as the first two types in the argument list of types have
a common type as defined by the above-described ct2 helper. If at any point the first two types
have no common type, both specializations will be nonviable and so the primary template will
be selected to terminate the recursion. Otherwise, once the list has been recursively pairwise
reduced to a single type, the first specialization will be selected and again we will achieve a result
consistent with LWG 2141.

3 Proposed wording6

3.1 Common wording
There are two alternative wording proposals (marked below as Alternative 1 and Alternative 2),
but both encompass the following wording changes:

Change, as shown, the entry in row common_type, column “Comments” of Table 57 — Other
transformations:

The member typedef type, if any, shall be defined as set out specified below; otherwise there shall
be no member type. All types in the parameter pack T shall be complete or (possibly cv) void.
A program may specialize this trait if at least one template parameter in the specialization is a
user-defined type. [Note: Such specializations are needed only when only explicit conversions are
desired among the between two consecutive template arguments. — end note]

3.2 Alternative 1

Replace paragraph 3 of subclause [meta.trans.other] (20.10.7.6) with the following mostly-code
specification. (This wording follows the presentation style of this trait’s C++11 and C++14 versions.)

3 For the common_type trait, the member type shall be either defined or not present according to
the following specification in terms of the exposition-only templates ct2, void_t, and ct:

5We mention this because there appear to be some subtle corner cases, apparently not previously fully explored in
the resolution’s context, in which the results may differ.

6All proposed additions and deletions are relative to the post-Chicago Working Draft [N3797]. Editorial notes are
displayed against a gray background.



N3843: A SFINAE-Friendly std::common_type 5

template <class T, class U>
using ct2 = decltype(declval<bool>() ? declval<T>() : declval<U>());

template <class T> using void_t = conditional_t<true,void,T>;

template <class, class...> struct ct {};
template <class T> struct ct<void,T> { using type = decay_t<T>; };
template <class T, class U, class... V>
struct ct<void_t<ct2<T,U>>, T, U, V...> : ct<void, ct2<T,U>, V...> {};

template <class... T> struct common_type : ct<void, T...> {};

3.3 Alternative 2

Replace paragraph 3 of subclause [meta.trans.other] (20.10.7.6) with the following prose specifi-
cation.

3 For the common_type trait applied to a parameter pack T of types, the member type shall be
either defined or not present as follows:

• If sizeof...(T) is zero, there shall be no member type.
• If sizeof...(T) is one, let T0 denote the sole type comprising T. The member typedef type

shall denote the same type as decay_t<T0>.
• If sizeof...(T) is greater than one, let T1, T2, and R respectively denote the first, second,

and (pack of) remaining types comprising T. [Note: sizeof...(R) may be zero. — end note]
Finally, let C denote the type, if any, of an unevaluated conditional expression ([expr.cond])
whose first operand is an arbitrary value of type bool, whose second operand is an xvalue
of type T1, and whose third operand is an xvalue of type T2. If there is such a type C,
the member typedef type shall denote the same type, if any, as common_type_t<C,R...>.
Otherwise, there shall be no member type.

3.4 Feature-testing macro
For the purposes of SG10, we recommend the macro name __cpp_lib_common_type_sfinae.
This name was selected for consistency with __cpp_lib_result_of_sfinae as documented
in [N3745].

4 Acknowledgments

Many thanks to the readers of early drafts of this paper for their thoughtful comments. Special
thanks to Stephan T. Lavavej for his extensive experimentation and consequent elegant contri-
butions to the final form of the trait’s implementation, to Daniel Krügler for pointing out CWG
issue 1558, and to Jens Maurer for inspiring the prose form of the proposed wording.

5 Bibliography

[N2615] Howard E. Hinnant, Walter E. Brown, Jeff Garland, and Marc Paterno: “A Foundation to Sleep
On.” ISO/IEC JTC1/SC22/WG21 document N2615 (pre-Sophia-Antipolis mailing), 2008-05-18.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2615.html.

[N2661] Howard E. Hinnant, Walter E. Brown, Jeff Garland, and Marc Paterno: “A Foundation to Sleep
On.” ISO/IEC JTC1/SC22/WG21 document N2661 (post-Sophia-Antipolis mailing), 2008-06-11. A
revision of [N2615]. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2661.html.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2615.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2661.html


6 N3843: A SFINAE-Friendly std::common_type

[N3436] Eric Niebler, Daniel Walker, and Joel de Guzman: “std::result_of and SFINAE.” ISO/IEC
JTC1/SC22/WG21 document N3436 (pre-Portland mailing), 2012-09-21. http://www.open-std.
org/jtc1/sc22/wg21/docs/papers/2012/n3436.html.

[N3462] Eric Niebler, Daniel Walker, and Joel de Guzman: “std::result_of and SFINAE.” ISO/IEC JTC1/
SC22/WG21 document N3462 (post-Portland mailing), 2012-10-18. A revision of [N3436]. http:
//www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3462.html.

[N3745] Clark Nelson: “Feature-testing recommendations for C++.” ISO/IEC JTC1/SC22/WG21 docu-
ment N3745 (pre-Chicago mailing), 2013-08-28. http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2013/n3745.htm.

[N3797] Stefanus Du Toit: “Working Draft, Standard for Programming Language C++.” ISO/IEC JTC1/
SC22/WG21 document N3797 (post-Chicago mailing), 2013-10-13. http://www.open-std.org/
jtc1/sc22/wg21/docs/papers/2013/n3797.pdf.

[N3844] Walter E. Brown: “A SFINAE-Friendly std::iterator_traits.” ISO/IEC JTC1/SC22/WG21 doc-
ument N3844 (pre-Issaquah mailing), 2014-01-01. http://www.open-std.org/jtc1/sc22/wg21/
docs/papers/2014/n3844.pdf.

6 Document history

Version Date Changes

1 2014-01-01 • Published as N3843.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3436.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3436.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3462.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3462.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3745.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3745.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3797.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3797.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3844.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3844.pdf

	Title
	Contents
	Abstract
	1 Introduction
	2 Discussion
	3 Proposed wording
	4 Acknowledgments
	5 Bibliography
	6 Document history

