
Document Number: N3862
Date: 2014-01-20
Authors: Justin Gottschlich, justin.gottschlich@intel.com

Michael Spear, spear@cse.lehigh.edu
Michael Wong, michaelw@ca.ibm.com
with other members of the transactional memory study group (SG5), including:
Hans Boehm, hans.boehm@hp.com
Victor Luchangco, victor.luchangco@oracle.com
Jens Maurer, jens.maurer@gmx.net
Maged Michael, magedm@us.ibm.com
Mark Moir, mark.moir@oracle.com
Torvald Riegel, triegel@redhat.com
Michael Scott, scott@cs.rochester.edu
Tatiana Shpeisman, tatiana.shpeisman@intel.com

Project: Programming Language C++, LEWG, SG5 Transactional Memory
Reply to: Michael Wong michaelw@ca.ibm.com (Chair of SG5)
Revision: 1

Towards a Transaction-safe C++ Standard Library: std::list

Abstract

This paper documents our effort to transactionalize a C++ Standard Template Library (STL)
container to demonstrate the feasibility of the transactional language constructs proposed by
Study Group 5 (SG5): Transactional Memory. We began this study with std::list and made
it transaction-safe using the transactional memory support in GCC 4.9. The changes were
minimal and were generally restricted to the addition of transaction_safe keyword to a
few interfaces such as allocate, deallocate, and swap functions. The rest of the changes were
added to internal helper functions. Some of the issues that we considered were the constant time
complexity of std::list.size() and friends, and its const noexcept nature. This
experience shows that the safety of STL containers must not be specified directly, but instead
should be inherited from the type with which the container is instantiated. For our future work,
we plan to expand this effort to other STL containers as well as converting the clang/llvm C++
library.

1. Introduction

This paper describes our first effort to transactionalize, that is, to enable transactional memory
(TM) support in the C++ Standard Library starting with a single container, based on the syntax
as described in N3859[1], a follow-on paper to N3718[2]. N3859 describes the syntax and
semantics of the proposed TS for SG5 Transactional memory, while this paper (N3862) shows
how these extensions can be applied to STL.

One of the key feedback items from the September 2013, Chicago meeting was that in order to
facilitate a seamless introduction of transactional memory to C++, we need to provide, at least a
transaction-safe C++ Standard Library along with Transactional Memory syntax and semantics

mailto:justin.gottschlich@intel.com�
mailto:spear@cse.lehigh.edu�
mailto:michaelw@ca.ibm.com�
mailto:hans.boehm@hp.com�
mailto:victor.luchangco@oracle.com�
mailto:jens.maurer@gmx.net�
mailto:magedm@us.ibm.com�
mailto:mark.moir@oracle.com�
mailto:triegel@redhat.com�
mailto:scott@cs.rochester.edu�
mailto:tatiana.shpeisman@intel.com�
mailto:michaelw@ca.ibm.com�

from SG5. This support should enable users to use transactional constructs in the first TS
delivery of SG5, without requiring users to invent their own techniques to use Standard Library
containers with Transactional memory. This was considered a key delivery as part of SG5.

In this paper, we will describe our efforts at making std::list transaction-safe. The results
show it is readily implementable. We used GNU 4.9’s implementation of transactional memory
syntax as applied the GNU C++ Standard Library of std::list which has been converted to
C++11[3]. GNU’s implementation is based on N3725, the original Draft Specification of
Transactional Language Constructs for C++ Version 1.1 that was published in February 2012.

2. Changes to the std::list Implementation

We started our investigation with std::list. Our preliminary work suggests that making STL
transaction-safe is not an insurmountable task. The impact seems to be minimal. A publicly
available repository that stores a fully transaction-safe std::list is available at
https://github.com/mfs409/tm_stl

For reference, GCC 4.9 is under active development, and we were working with trunk version
206059. In GCC 4.9, transactional memory support is enabled via the –fgnu-tm flag. When
this flag is enabled, within each compilation unit the compiler will infer the transaction-safety of
all functions whose bodies are visible[4]. For calls from a __transaction_atomic block
to functions whose bodies are not visible, the compiler requires that those functions are
annotated as transaction_safe. If the functions were not compiled with –fgnu-tm, or if
they were not, in fact, transaction_safe, then linking will fail.

To ensure complete coverage, we manually instrumented every method of the std::list
container. This was done to ensure that every method was called from a transactional context.
We then constructed a program that called every method of std::list from within some
transaction. In total, there were six instances in which the compiler could not infer transaction
safety, and one instance in which the compiler is not yet up-to-date with the latest updates in
N3859[1].

The following changes were made, most of them to internal helper functions of GNU:

1. In the file include/bits/functexcept.h, the noreturn function
throw_bad_alloc needed to be marked transaction_safe. This function,
whose body essentially consists of a throw statement, is called by member function
pointer allocate(size_type, allocator<void>::const_pointer
hint = 0) in the default allocator of 20.7.9. We also recommend that the default
allocator’s methods be specified as transaction_safe, to ensure that the default
allocator can always be used with STL containers.

2. In the file include/bits/stl_list.h, there is a call to __builtin_abort that
is not safe. SG5 has discussed the need to support assert() and abort(), and has
concluded that since neither calls atexit() functions, both can be

https://github.com/mfs409/tm_stl�

transaction_safe. The GCC implementation does not yet reflect this change, but
through a small kludge in our program code we were able to coax the compiler into
accepting the call to __builtin_abort.

3. In the file include/bits/stl_list.h, the _List_node_base struct has five
methods which are implemented in a .cc file that is compiled separately. Consequently,
GCC is unable to infer the safety of these five methods. For our study, we annotated the
methods as transaction_safe. Should such an approach complicate the process of
bootstrapping the compiler (i.e., due to the need to support transactions when building
fundamental data structures), these five methods could be moved into a header file, at the
cost of possibly increasing the compiler generated code size.

In addition, 23.3.5.6 indicates that std::swap is specialized for std::list. Thus while no
code modifications were required to support its use, the specification will require any such
specializations of std::swap for std::list to be transaction_safe.

3. Potential Changes to Draft N3797 [7], the 2013-10-13 Working

Draft

1.Add the keyword transaction_safe to 20.7.9 The default allocator [default.allocator]

namespace std {
 template <class T> class allocator;

 // specialize for void:
 template <> class allocator<void> {
 public:
 typedef void* pointer;
 typedef const void* const_pointer;
 // reference-to-void members are impossible.
 typedef void value_type;
 template <class U> struct rebind { typedef allocator<U> other; };
 };
 template <class T> class allocator {
 public:
 typedef size_t size_type;
 typedef ptrdiff_t difference_type;
 typedef T* pointer;
 typedef const T* const_pointer;
 typedef T& reference;
 typedef const T& const_reference;
 typedef T value_type;
 template <class U> struct rebind { typedef allocator<U> other; };
 typedef true_type propagate_on_container_move_assignment;

 allocator() noexcept;
 allocator(const allocator&) noexcept;
 template <class U> allocator(const allocator<U>&) noexcept;
 ~allocator();

 pointer address(reference x) const noexcept;

 const_pointer address(const_reference x) const noexcept;

 pointer allocate(
 size_type, allocator<void>::const_pointer hint = 0) transaction_safe;
 void deallocate(pointer p, size_type n); transaction_safe;
 size_type max_size() const noexcept;

 template<class U, class... Args>
 void construct(U* p, Args&&... args);
 template <class U>
 void destroy(U* p);
 };
}

2. Update 23.3.5.6/1 [list.special] to add transaction_safe keyword to swap

23.3.5.6 list specialized algorithms [list.special]
template <class T, class Allocator>
 void swap(list<T,Allocator>& x, list<T,Allocator>& y) transaction_safe;
1 Effects:
 x.swap(y);

4. Discussion

In the process of transactionalizing std::list, we considered three issues.

The first is that list member function size() is required to take constant time in C++11. Since
every list mutation thus needs to modify a counter, it implies the potential for many aborts. Our
group considered this and felt that we are essentially taking a non-scalable abstraction (linked
list) and unreasonably expecting the use of transactional memory to force it to scale. A more
realistic outcome is that some transactional data structures will use std::list internally (a
specific analogy to STAPL[6] was made).

Nevertheless, nonscalable transactional data structures can serve useful purposes for building
scalable ones. For example, a transactional hash table whose buckets are implemented using
std::list would achieve scalability in the common case in which hashing is effective, because
individual buckets would not normally experience heavy contention. However, if such a hash
table were to include a size method with similar requirements for constant-time execution, the
same problem experienced with list nonscalability would apply to the hash table.

In general, building scalable data structures requires not only effective programming support for
concurrency, but also careful design of interfaces so that they do not preclude scalability. For
example, omitting the size method for the putative hash table mentioned above would easily
avoid the problem. From there, it is useful to consider what functionality could be added that
would be useful without precluding scalability. Possibilities include weaker semantic
guarantees for a size "estimate" method, weaker requirements for execution time, etc.

The second is a further discussion of const noexcept. Specifically, imagine the following
scenario:

Let a long-running transaction T call my_vector->size(). Assume that the calling

transaction has never accessed my_vector before. In most any STM implementation, T will
need to internally allocate some data to be able to log the read, in case of an abort. However, the
system can run out of memory when trying to do this. If so, the transaction cannot throw
bad_alloc, because it is in the middle of a const noexcept function. So the transaction
must abort and restart in a more pessimistic mode, so that it can avoid logging.

The reason this is interesting is because it seems that const noexcept functions seem to have
"progress guarantees", which, in turn, don't compose with the "progress guarantees" that people
in the distributed computing research community use. The members of SG5 do not yet have a
conclusive position on this issue.

The third issue is about annotations for transaction safety. This experience shows in a very clear
manner that the safety of STL containers must not be specified, but instead inherited from the
type with which the container is instantiated. Put another way, if std::list is instantiated
with a class whose constructor and assignment operators perform an unsafe operation (e.g., I/O),
then the compiler should accept the instantiation, but forbid calling (most of) its methods from
within a transaction. If std::list is instantiated with a primitive type, or a class lacking such
unsafe code, then the compiler should not prohibit the transactional use of any method of the list.
We have shown this behavior to be achievable in GCC, with only minor modifications to the
existing support for transactions.

5. Conclusion and Recommendation

This effort demonstrates the feasibility of making an STL container transaction_safe.
The authors will continue this effort, to analyze additional containers and develop a
comprehensive set of recommended changes to the specification. Thus far, we are pleased to
observe that changes are minimal and relatively benign.

We will continue to make additional containers transaction-safe as well as work on equivalent
clang-llvm C++ library changes. We plan to move onto std::vector next, as well as taking
into account any particular strategy or preferred containers that need to be made safe as feedback
from the committee. One possible list is:

C++98/03 and C++11

std::string
std::vector
std::set
std::multiset
std::map
std::multimap
std::list
std::stack
std::deque

New for C++11:

std::array
std::forward_list
std::unordered_set
std::unordered_multiset
std::unordered_map
std::unordered_multimap

6. Acknowledgements

We wish to acknowledge and thank committee members and others who have given us valuable
feedbacks.

7. Reference
[1]N3859, Transactional Memory Support for C++, 2014-01-20, SG5, new paper
[2]N3718, Transactional Memory Support for C++, 2013-08-30, SG5, http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2013/n3718.pdf
[3] http://gcc.gnu.org/onlinedocs/libstdc++/manual/status.html#status.iso.200x
[4] N3861: Meeting Minutes of SG5. 2014-01-20. Discussion with T. Riegel during SG5 meeting dated
Jan 6
[5] "Transactionalizing Legacy Code: An Experience Report Using GCC and Memcached", by Wenjia
Ruan, Trilok Vyas, Yujie Liu, and Michael Spear. 19th International Conference on Architectural Support
for Programming Languages and Operating Systems, Salt Lake City, UT. March 2014.
[6] STAPL: https://parasol.tamu.edu/stapl/
[7] N3797: Working Draft, Standard for Programming Language C++, 2013-10-13, Stefanus Du Toit,
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3797.pdf

http://gcc.gnu.org/onlinedocs/libstdc++/manual/status.html#status.iso.200x�
https://parasol.tamu.edu/stapl/�

