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1 Abstract

This paper introduces C++ a library function template task_region and a library class task_region_handle
with member functions run and wait that together enable developers to write expressive and portable fork-join
parallel code.

This proposal is a revision of N3832.

2 Changes from N3832

The main change from the previous revision of this paper is the addition of the task_region_handle class
as an explicit means of communicating from a task_region to the spawn point of a child task. A change in
this vein was requested at the February 2014 Issaquah meeting as a way to avoid “magic” or “out-of-band
communication.” It was also suggested that requiring an explicit handshake between these parts of a task
region would make it easier for compilers and linkers to avoid combining disparate implementations of the
library proposed herein.

An additional change is that the type of parallelism described in N3832 was “terminally strict” whereas the
type of parallelism described in this paper is “fully strict” (see Strict Fork-join Parallelism, below). The
change was made because terminal strictness was deemed to present implementation difficulties for little gain
in expressiveness.

These changes created an issue not present in the original paper: potential violations of fully-strict fork-join
parallelism. A few sentences in the formal wording and a new issue in the issues section was added to the
paper in response.

Finally, task_cancelled_exception was renamed to task_canceled_exception (one el instead of two).

3 Motivation and Related Proposals

The working draft for the Parallelism TS N3960 augments the STL algorithms with the inclusion of parallel
execution policies. Programmers use these as a basis to write additional high-level algorithms that can be
implemented in terms of the provided parallel algorithms. However, the scope of N3960 does not include
lower-level mechanisms to express arbitrary fork-join parallelism.

Over the last several years, Microsoft and Intel have collaborated to produce a set of common libraries known
as the Parallel Patterns Library (PPL) by Microsoft and the Threading Building Blocks (TBB) by Intel.
The two libraries have been a part of the commercial products shipped by Microsoft and Intel. Additionally,
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the paper is informed by Intel’s experience with Cilk Plus, an extension to C++ included in the Intel C++
compiler in the Intel Composer XE product and also in gcc 4.9.

The task_region, run and the wait functions proposed in this document are based on the task_group
concept that is a part of the common subset of the PPL and the TBB libraries. A previous proposal, N3711,
was presented to the Committee at the Chicago meeting in 2013. N3711 closely follows the design of the
PPL/TBB with slight modifications to improve exception safety.

This proposal adopts a simpler syntax than N3711 – one that is influenced by language-based concepts such
as spawn and sync from Cilk and async and finish from X10. It improves on N3711 in the following ways:

• The exception handling model is simplified and more consistent with normal C++ exceptions.
• Most violations of strict fork-join parallelism can be enforced at compile time (with compiler assistance,

in some cases).
• The syntax allows scheduling approaches other than child stealing.

We aim to converge with the language-based proposal for low-level parallelism described in N3409 and related
documents.

4 Overview

Consider an example of a parallel traversal of a tree, where a user-provided function compute is applied to
each node of the tree, returning the sum of the results:

template<typename Func>
int traverse(node *n, Func&& compute)
{

int left = 0, right = 0;

task_region([&](task_region_handle& tr) {
if (n->left)

tr.run([&] { left = traverse(n->left, compute); });
if (n->right)

tr.run([&] { right = traverse(n->right, compute); });
});

return compute(n) + left + right;
}

The example above demonstrates the use of two of the functions proposed in this paper, task_region and
task_region_handle::run.

The task_region function delineates a region in a program code potentially containing invocations of tasks
spawned by the run member function of the task_region_handle class.

The run function spawns a task, a unit of work that is allowed to execute in parallel with respect to the caller.
Any parallel tasks spawned by run within the task_region are joined back to a single thread of execution at
the end of the task_region.

run takes a user-provided function object f and starts it asynchronously – i.e. it may return before the
execution of f completes. The implementation’s scheduler may choose to run f immediately or delay running
f until compute resources become available.

A task_region_handle can be constructed only by task_region because it has no public constructors.
Thus, run can be invoked (directly or indirectly) only from a user-provided function passed to task_region:
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void g();

void f(task_region_handle& tr)
{

tr.run(g); // OK, invoked from within task_region in h
}

void h()
{

task_region(f);
}

int main()
{

task_region_handle tr; // Error: no public constructor
tr.run(g); // No way to call run outside of a task_region
return 0;

}

5 Task Parallelism Model

5.1 Strict Fork-join Task Parallelism

The model of parallelism supported by the constructs in this paper is called strict fork-join task parallelism,
which has decades of research behind it and is the form of structured parallelism supported by all of
the prominent parallel languages, including Cilk, X10, Habanero, and OpenMP. These languages can be
subdivided into two groups: those with fully-strict semantics and those with terminally-strict semantics.

In both the fully-strict and terminally-strict models, there is a notion of a task region that “owns” all of the
tasks spawned within it. A child task spawned within a task region is automatically joined when the task
region ends (i.e., the program waits for it to finish before continuing).

In the fully-strict model (Cilk and Cilk Plus), a task cannot complete until it has joined with all of its
immediate child tasks. This form of fork-join parallelism provides strong guarantees and make a program easy
to reason about. The terminally-strict model (X10, Habanero, and OpenMP), relaxes this rule and allows a
child task to join with an ancestor rather than with its immediate parent. See Guo2009 for a description of
terminally strict computations.

We have elected to specify fully strict semantics because it is easier to implement efficiently and has a longer
track record. We did retain a feature of terminally-strict languages like X10: the option for a child task
to escape from a (synchronously-called) function. That is, a called function can spawn child tasks and
return without joining with those tasks. This (useful) feature is not directly related to parallel strictness
because a called function does not create a new task, but it does make the program less structured in that a
function may return to its caller before it has completely finished (i.e., while sub-tasks are still running). The
dangers of this relaxation of structured function-call semantics are mitigated by the task_region_handle,
which, when passed from caller to callee, gives both the programmer and the compiler enough information to
recognize the call as special.

This design choice means is that a task_region_handle can be passed to a synchronous function call (or
captured by synchronously-called lambda function), but not to an asynchronous function call. Thus the
following code would have undefined behavior. This violation and most such innocent violations can be
diagnosed by a savvy compiler:

task_region([&](auto& tr) {
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tr.run([&]{ g(tr); }); // Error, tr captured by asynchronous lambda
...

});

It is important to note that strict semantics (whether fully strict or terminally strict) is not a given in
parallelism proposals. Coming from a background in concurrency, many people look to unstructured constructs
such as std::async, citing their flexibility vs. the comparative rigidity of strict parallelism. While these
constructs have their place, the research has shown that fine-grain, large-scale parallelism benefits from a
highly-structured approach. Just as a compiler can implement much more efficient memory allocation for
(highly structured) local variables than for (unstructured) heap-allocated variables, so, too, can a compiler
and scheduler take advantage of the structure of strict fork-join parallelism to implement efficient queuing and
scheduling of parallel tasks. The algorithms described in N3960 neither require nor benefit from unstructured
parallelism.

5.2 Non-mandatory Parallelism

Whereas concurrency constructs such as threads, producer-consumer queues, and the like are primarily about
program structure, parallelism constructs of the kind presented in this paper are primarily about maximum
exploitation of available hardware resources to achieve performance. Critical to this distinction is that, while
separate threads are independently expected to make forward progress, parallel tasks are not.

The most common scheduling technique for fork-join parallelism is called work-stealing. In a work-stealing
scheduler, each hardware resource (usually a CPU core) maintains a queue (which may or may not be FIFO)
of tasks that are ready to run. If a CPU’s queue becomes empty, it “steals” a task from the queue of some
other CPU. In this way, the CPUs stay busy and process their work as quickly as possible. Conversely, if all
of the CPUs are busy working on their own tasks, then those tasks will be executed serially until the queues
are empty. In fact, if the operating system allocates only one CPU to a process, then the entire parallel
computation would be completed on a single core. This automatic load balancing allows a program to scale
efficiently from one core to many cores without recompilation.

The constructs in this paper allow a programmer to indicate tasks that are permitted to run in parallel, but
does not mandate that they actually run concurrently. An important consequence of this approach, known as
“serial semantics,” is that a task in the queue will not make any forward progress until another task (on the
same or different core) completes, whether or not there is a dependency relationship between them. Thus,
using concurrency constructs such as producer-consumer queues between parallel tasks (including between
parent and child tasks or between sibling tasks) is a sure way to achieve deadlock. If the program is not valid
as a serial program, then it is not valid as a parallel program, either.

6 Interface

The proposed interface is as follows. With the exception of task_region_final, the implementation of each
of the functions defined herein is permitted to return on a different native thread than that from which it
was invoked. See Thread Switching in the issues section for an explanation of when this matters and how
surprises can be mitigated.

6.1 Header <experimental/task_region> synopsis

namespace std {
namespace experimental {
namespace parallel {

class task_canceled_exception;
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class task_region_handle;

template<typename F>
void task_region(F&& f);

template<typename F>
void task_region_final(F&& f);

}
}

experimental::parallel::task_region_handle*
addressof(experimental::parallel::task_region_handle&) = delete;

}

6.2 Class task_canceled_exception

class task_canceled_exception : public exception {
public:

task_canceled_exception() noexcept;
task_canceled_exception(const task_canceled_exception&) noexcept;
task_canceled_exception& operator=(const task_canceled_exception&) noexcept;
virtual const char* what() const noexcept;

};

The class task_canceled_exception defines the type of objects thrown by task_region_handle::run or
task_region_handle::wait if they detect that an exception is pending within the current parallel region.
See Exception Handling, below.

6.3 Class task_region_handle

class task_region_handle {
private:

// Private members and friends (for exposition only)
template<typename F>

friend void task_region(F&& f);
template<typename F>

friend void task_region_final(F&& f);

task_region_handle(_unspecified_);
~task_region_handle();

public:
task_region_handle(const task_region_handle&) = delete;
task_region_handle& operator=(const task_region_handle&) = delete;
task_region_handle* operator&() const = delete;

template<typename F>
void run(F&& f);

void wait();
};
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The class task_region_handle defines an interface for forking and joining parallel tasks. The task_region
and task_region_final function templates create an object of type task_region_handle and pass a
reference to that object to a user-provided callable object.

An object of class task_region_handle cannot be constructed, destroyed, copied, or moved except by the
implementation of the task region library. Taking the address of a task_region_handle object via operator&
or addressof is ill formed. The result of obtaining its address by any other means is unspecified.

A task_region_handle is active if it was created by the nearest enclosing task region, where “task region”
refers to an invocation of task_region or task_region_final and “nearest enclosing” means the most
recent invocation that has not yet completed. Code designated for execution in another thread by means
other than the facilities in this section (e.g., using thread or async) are not enclosed in the task region and
a task_region_handle passed to (or captured by) such code is not active within that code. Performing any
operation on a task_region_handle that is not active results in undefined behavior.

The task_region_handle that is active before a specific call to the run member function is not active
within the asynchronous function that invoked run. (The invoked function should not, therefore, capture the
task_region_handle from the surrounding block.) [Example:

task_region([&](auto& tr) {
tr.run([&]{

tr.run([] { f(); }); // Error: tr is not active
task_region([&](auto& tr) { // Nested task region

tr.run(f); // OK: inner tr is active
...

});
});
...

});

– end example] [Note: implementations are encouraged to diagnose the above error at translation time – end
note]

6.3.1 task_region_handle member function template run

template<typename F>
void run(F&& f);

Requires: F shall be MoveConstructible. The expression, (void) f(), shall be well-formed.

Precondition: this shall be the active task_region_handle.

Effects: Causes the expression f() to be invoked asynchronously at an unspecified time prior to completion
of the next invocation of wait or completion of the nearest enclosing task region (i.e., the task_region or
task_region_final that created this task_region_handle).

Throws: task_canceled_exception, as defined in Exception Handling.

Remarks: The invocation of the user-supplied callable object, f, may be immediate or may be delayed until
compute resources are available. run might or might not return before invocation of f completes.

6.3.2 task_region_handle member function wait

void wait();
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Precondition: this shall be the active task_region_handle.

Effects: Blocks until the tasks spawned using this task_region_handle have finished.

Throws: task_canceled_exception, as defined in Exception Handling.

Postcondition: All tasks spawned by the nearest enclosing task region have finished.

[Example:

task_region([&](auto& tr) {
tr.run([&]{ process(a, w, x); }); // Process a[w] through a[x]
if (y < x) tr.wait(); // Wait if overlap between [w,x) and [y,z)
process(a, y, z); // Process a[y] through a[z]

});

– end example]

6.4 Function templates task_region and task_region_final

template<typename F>
void task_region(F&& f);

template<typename F>
void task_region_final(F&& f);

Requires: F shall be MoveConstructible. Given an lvalue tr of type task_region_handle, the expression,
(void) f(tr), shall be well-formed.

Effects: Constructs a task_region_handle, tr, and invokes the expression f(tr) on the user-provided object,
f.

Throws: exception_list, as specified in Exception Handling.

Postcondition: All tasks spawned from f have finished execution. task_region_final always returns on the
same native thread as that on which it was invoked. (See Thread Switching in the Issues section.)

Notes: It is expected (but not mandated) that f will (directly or indirectly) call tr.run(_callable_object_).

7 Exception Handling

Every task region has an associated exception list. When the task region starts, its associated exception list
is empty.

When an exception is thrown from the user-provided callable object passed to task_region or
task_region_final, it is added to the exception list for that task region. Similarly, when an exception
is thrown from the user-provided function object passed into task_region_handle::run, the exception
object is added to the exception list associated with the nearest enclosing task region. In both cases, an
implementation may discard any pending tasks that have not yet been invoked. Tasks that are already in
progress are not interrupted except at a call to task_region_handle::run or task_region_handle::wait,
as described above.

If the implementation is able to detect that an exception has been thrown by another task within the same
nearest enclosing task region, then task_region_handle::run or task_region_handle::wait may throw
task_canceled_exception; these instances of task_canceled_exception are not added to the exception
list of the corresponding task_group.
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When a task region finishes with a non-empty exception list, the exceptions are aggregated into an
exception_list object (defined below), which is then thrown from the task region.

The order of the exceptions in the exception_list object is unspecified.

The exception_list class is described in N3960 and is defined as follows:

class exception_list : public exception
{
public:

typedef exception_ptr value_type;
typedef const value_type& reference;
typedef const value_type& const_reference;
typedef _implementation-defined_ const_iterator;
typedef const_iterator iterator;
typedef typename iterator_traits<const_iterator>::difference_type

difference_type;
typedef size_t size_type;

size_t size() const noexcept;
const_iterator begin() const noexcept;
const_iterator end() const noexcept;

private:
// ...

};

8 Scheduling Strategies

A possible implementation of the task_region_handle::run is to spawn individual tasks and immediately
return to the caller. These child tasks are then executed (or stolen) by a scheduler using a different (native)
thread, based on the availability of hardware resources and other factors. The original parent thread may
participate in the execution of the tasks when it reaches the join point (i.e. at the end of the execution of the
callable object passed to the task_region or task_region_final). This approach to scheduling is known
as child stealing.

Other approaches to scheduling exist. In the approach pioneered by Cilk, the parent thread immediately
executes the spawned task at the spawn point. The execution of the rest of the function – i.e., the continuation
– is stolen by the scheduler if there are hardware resources available. Otherwise, the parent thread returns
from the spawned task and continues as if it had been a normal function call instead of a spawn. This
approach to scheduling is known as continuation stealing (or parent stealing).

Both approaches have advantages and disadvantages. It has been shown that the continuation stealing
approach provides better asymptotic space guarantees and prevents threads from stalling at a join point.
Child stealing is generally easier to implement without compiler involvement. N3872 provides a worthwhile
primer that addresses the differences between, and respective benefits of, these scheduling approaches.

It is the intent of this proposal to enable either scheduling approach and, in general, to be as open as possible
to additional scheduling approaches.

9 Issues

The constructs proposed in this paper have a strong theoretical foundation from previous work on language-
based parallelism such as Cilk, X10, and Habanero. However, there are some practical issues that arise from
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trying to harmonize these constructs with the existing C++ threading model. For example, the ability in X10
and Habanero to return from a function without joining with sub-tasks is more difficult to achieve in C++
because the strict scoping of C++ function variables is less forgiving than the garbage collected variables in
the other two languages.

This section describes a couple of important issues along with some discussion of how they might be addressed.

9.1 Thread Switching

One of the properties of continuation stealing and greedy scheduling is that a task_region or run or wait
call might return on a different thread than that from which it was invoked, assuming scheduler threads are
mapped 1:1 to standard threads. This phenomenon, which is new to C++, can be surprising to programmers
and break programs that rely on the OS thread remaining the same throughout the serial portions of the
function (for example, in programs accessing GUI objects, mutexes, thread-local storage and thread ID).

There are a number of possible approaches to mitigate the problems caused by thread switching. In considering
mitigation proposals, it is important to avoid overly-constraining future implementations in order to support
today’s limited view of threads. For example, this proposal does not require that parallelism be implemented
using OS threads at all – it could be implemented using specialized hardware such as GPUs or using other
facilities such as light-weight execution agents.

Additionally, the solution to problems caused by thread switching may be different for mutexes than for
thread-local storage (TLS) and thread ID. For example, a prototype mutex exists that works well with thread
switching and has nice theoretical properties that allow it to be used for both parallelism and for traditional
concurrency. The desired behavior for thread-local storage varies depending on its intended use, even in the
absence of thread switching. For example, the handle to a GUI object might need to be shared among all of
the tasks executing on behalf of a single original thread. Conversely, thread-local caches should not be shared
between concurrently-executing tasks. With or without thread switching, we will certainly need new TLS-like
facilities.

In this proposal, the task_region_final function template provides a minimal but powerful approach for
addressing thread switching. Using this facility, a user can be sure that both thread-local variables and
mutexes are in a consistent state before and after the execution of a parallel computation. This feature
is expected to solve most of the issues that a user may run into in well-structured parallel code. Because
task_region_final requires stalling at a join point, it can potentially reduce parallel speed-up. For this
reason, our advice to users would be to use task_region except in circumstances where thread identity is
important. In implementations that do not support greedy scheduling, the behavior of task_region_final
would probably be identical to task_region.

We have also discussed the possibility of language or library constructs to mark a function as potentially return-
ing on a different thread than that on which it was called. A straw-man proposal involves a thread_switching
keyword that would be applied as a suffix in the declarator for such functions:

void f() thread_switching;

If function decorated with the thread_switching modifier were called from a function that did not have the
modifier, the compiler would inject code at the call site that would, on return from the decorated function,
stall the caller until the original thread became available to resume execution:

void f() thread_switching;

int main() {
auto thread_id_begin = std::this_thread::get_id();
f();
auto thread_id_end = std::this_thread::get_id();

N3991 9



assert(thread_id_end == thread_id_begin);
return 0;

}

Alternatively, calling a decorated function from an undecorated function could simply be ill formed, requiring
the programmer to call task_region_final explicitly to avoid an error:

void f() thread_switching;

void g() {
f(); // ill-formed

}

void h() {
task_region_final([]{

f(); // OK
});

}

Other approaches are also being considered, including making a theoretical distinction between a “thread”
as defined in C++11 and a “worker” as the agent that executes tasks. Making this distinction would solve
certain problems with parallelism and thread identity, including issues of object and thread lifetimes that the
thread_switching keyword does not address.

Final resolution of issues related to thread-switching may need to wait until a thorough discussion of “execution
agents.”

9.2 Returning with Unjoined Children

The escaping asynchronous children feature of the constructs proposed in this paper allow a function to
return to the caller while some of its child tasks are still running. As in the case of thread switching, this
behavior can be surprising to programmers and break programs that rely on functions finishing their work
before they return. Although unstructured concurrency constructs such fire-and-forget threads already violate
these assumptions, we are attempting, in this paper, to define much more structured constructs that operate
at a finer granularity of work. Programmers writing structured parallel code need to be put on notice when a
function invoked in their program might spawn parallel tasks and return without joining them first. The
compiler may need to generate stack-allocated stack frames for such functions and the optimizer might be
impaired in doing its job if it needs to defensively assume that any function might return with child tasks
still running.

This proposal, unlike the previous revision, requires that a task_region_handle be available in order to
spawn a child task. It can be argued that the presence of a task_region_handle& argument to a function
is sufficient notice for both the compiler and the programmer to recognize that the called function might
spawn children and return with them still running. Indeed, there seems to be little reason to pass a
task_region_handle to a called function except to allow exactly this usage.

We previously considered adding an unjoined_children decoration, similar to the thread_switching
keyword described above. This decoration would be automatically inherited by lambda functions, so that
common cases would not require the use of this keyword. This idea is explored in more detail in the
original Task Region paper N3832. With the advent of task_region_handle, it seems that this approach is
unnecessary and is not discussed further in this revision.
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9.3 Violating Structured Parallelism

The task_region_handle class was introduced (or re-introduced, as it was present in an early draft for
task regions) in order to avoid “out of band” communication between task_region and run, which a
number of committee members found to be troubling, especially during the experimentation phase when
multiple incompatible implementations might exist and silently collide with one another. The addition of
task_region_handle solves a number of other problems, including that of returning with unjoined children
(above). However, task_region_handle also exposes a name that can be abused to violate structured
parallelism. For example:

task_region([&](auto& tr1) {
tr1.run(f);
task_region([&](auto& tr2) {

tr2.run(g);
tr1.run(h); // Using tr1 violates strict fork-join rules
tr2.run(j);

}
k();

}

Simply allowing such code makes all parallel programs harder to reason about, both for tools such as race
detectors and for human programmers. Additionally, in order to support scheduling children other than
from the inner-most task region might require more expensive data structures in the scheduler and/or
more expensive synchronization than the strict constructs. This proposal would make such usage undefined
behavior, but it is unfortunate that we cannot make it ill-formed because this is a library-only interface.
Nevertheless, we believe that most, if not all, such abuses can be caught by a an implementation that
integrates the parallelism library with the compiler.

Another way in which task_region_handle can be misused is by passing one to an asynchronous call. An
example of such misuse appears in the formal wording for task_region_handle, above. Again, such abuses
a generally detectable by a sufficiently sophisticated compiler, but it is unfortunate that we cannot declare
such misuse “ill formed.”

10 Moving Forward with Unresolved Issues

The authors continue to research a number of alternatives for addressing the issues described above, both with
and without language support, and we seek committee guidance in the form of feedback on the ideas we’ve
presented as well as additional ideas. We believe, however, that working through these issues will have only a
modest impact on the library interfaces described in this paper and that these interfaces should therefore be
used as the basis for adding strict fork-join library constructs, either to the parallelism TS or to a new TS.
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