
On Parallel Invocations of Functions in Parallelism TS | N3993

Artur Laksberg

2014-5-23

Abstract

This document proposes a change to N3989 (Technical Specification for C++ Extensions for Parallelism).

Introduction

At the Issaquah meeting in February 2014, Hans Boehm raised the following issue regarding N3850 (Working
Draft, Technical Specification for C++ Extensions for Parallelism):

It seems to me that the execution policies need to be a bit more precise about which calls to
parameter functions they can make. Something needs to specify that sort may make parallel
invocations to swap, but only if the arguments for concurrent calls don’t overlap. I didn’t quickly
find such text. In general, “non-racing” calls can be made concurrently, but “racing” ones cannot.

Upon further discussion, it was decided that the resolution of this issue warrants a separate paper that can
be presented for discussion in SG1 during the Rapperswil meeting.

Proposed Resolution

First, we introduce changes to 17.6.5.9 [res.on.data.races]/8 that state that an implementation cannot
introduce a data race on objects accessed during the execution of the algorithms.
Additionally, instead of talking about “applying user-defined function objects”, we define an umbrella
term “element access functions”, which includes the functions required by the specification, as well as
the user-provided function objects. We then define the behavior in terms of “invoking the element access
functions”.

Specification Changes

Wording Changes Relative to N3936

The wording changes proposed in this section are relative to the contents of N3936.
In 17.6.5.9, change paragraph 8 as follows:
A C++ standard library function with execution policy vec or par shall not introduce a data race on any
object accessible by the means described in paragraphs 2-5. Otherwise, Unless unless otherwise specified, C++
standard library functions shall perform all operations solely within the current thread if those operations
have effects that are visible (1.10) to users.

1



Wording Changes Relative to N3989

The wording changes proposed in this section are relative to the contents of N3989.

Add paragraph 3 to 1.3.1:

Parallel algorithms can access objects indirectly accessible via their arguments or via elements of its container
by invoking the following functions:

• Functions on those container elements that are required by its specification.
• User-provided function objects to be applied during the execution of the algorithm, if required by the

specification.

These functions are herein called the element access functions.

[Example: The sort function may invoke the following element access functions:

• Methods of the random-access iterator of the actual template argument, as per 24.2.7, as implied by
the names of the template parameters RandomAccessIterator.

• The swap function on the elements of the container (as per 25.4.1.1 [sort]/2)
• The user-provided provided Compare function object.

– end example]

Change 2.1 as follows:

This subclause describes classes that represent execution policies. An execution policy is an object that
expresses the requirements on the ordering of functions invoked as a consequence of the invocation of a
standard algorithm. Execution policies afford standard algorithms the discretion to execute in parallel affords
a standard algorithm the discretion to execute in parallel and expresses the requirements on the element
access functions.

Change 3.1 paragraph 2:

During the execution of a standard parallel algorithm, if the application of a function object invocation of an
element access function terminates with an uncaught exception, the behavior of the program is determined
by the type of execution policy used to invoke the algorithm:

...

All uncaught exceptions thrown during the application of user-provided function objects invocations of element
access functions shall be contained in the exception_list.

Change 4.1.1 as follows, starting from paragraph 1:

Parallel algorithms have template parameters named ExecutionPolicy which describe the manner in which
the execution of these algorithms may be parallelized and the manner in which they apply user-provided
function objects the element access functions.

The applications of function objects invocations of element access functions in parallel algorithms invoked
with an execution policy object of type sequential_execution_policy execute in sequential order in the
calling thread.

The applications of function objects invocations of element access functions in parallel algorithms invoked with
an execution policy object of type parallel_execution_policy are permitted to execute in an unordered
fashion in unspecified threads, and indeterminately sequenced within each thread.

[Note: It is the caller’s responsibility to ensure correctness, for example that the invocation does not introduce
data races or deadlocks. — end note]

Change paragraph 4 as follows:

N3993 2



The applications of function objects invocations of element access functions in parallel algorithms invoked with
an execution policy of type vector_execution_policy are permitted to execute in an unordered fashion in
unspecified threads, and unsequenced within each thread. [Note: as a consequence, function objects governed
by the vector_execution_policy policy must not synchronize with each other. Specifically, they must not
acquire locks. — end note]

N3993 3


	Abstract
	Introduction
	Proposed Resolution
	Specification Changes
	Wording Changes Relative to N3936
	Wording Changes Relative to N3989


