
Destructive Move | N4034

Pablo Halpern phalpern@halpernwightsoftware.com

2014-05-27

1 Abstract

This paper proposes a function template for performing destructive move operations – a type of move
construction where the moved-from object, instead of being left in a “valid, but unspecified” state, is left in a
destructed state. I will show that this operation can be made non-throwing in a wider range of situations
than a normal move constructor, and can be used to optimize crucial operations, such as reallocations within
vectors. An array version of the destructive move template is proposed specifically for moving multiple objects
efficiently and with the strong exception guarantee.

The facilities described in this paper are targeted for a future library Technical Specification.

2 Motivation

2.1 Background

The main reason that rvalue references and move operations were introduced into the standard was to
improve performance by reducing expensive copy operations. The noexcept keyword was added in order
to support a number of important use cases where move operations could not otherwise be used. Because
move constructors modify the moved-from object, an operation that moves multiple elements, e.g., in a
container, could result in both containers being in a half-moved state if one of the move constructors throws
an exception. It is not possible to reliably reverse this half-moved situation without risking another exception
being thrown.

Using noexcept, an implementation can detect whether it is possible that a move constructor might throw
and, if so, can choose copy construction, instead. In fact, the standard provides the function template
move_if_noexcept specifically for this purpose. The following implementation of push_back for a simplified
vector uses this idiom to preserve the strong exception guarantee, whereby the moved-from vector remains
unchanged if an exception is thrown:

template <class T, class A = std::allocator<T>>
class simple_vec
{

A m_alloc; // allocator to obtain space for elements
T* m_data; // address of allocated storage (or null)
std::size_t m_capacity; // size (in elements) of allocate storage
std::size_t m_length; // number of elements in container

public:
...
void push_back(const T& v);

1

mailto:phalpern@halpernwightsoftware.com

};

template <class T, class A>
void simple_vec<T, A>::push_back(const T& v)
{

typedef std::allocator_traits<A> alloc_traits;

if (m_length == m_capacity) {
// Grow the vector by creating a new one and swapping.
simple_vec temp(m_alloc);
temp.m_capacity = (m_capacity ? 2 * m_capacity : 1);
temp.m_data = alloc_traits::allocate(m_alloc, temp.m_capacity);

T *from = m_data, *to = temp.m_data;
for (temp.m_length = 0; temp.m_length < m_length; ++temp.m_length)

alloc_traits::construct(m_alloc, to++,
std::move_if_noexcept(*from++));

temp.swap(*this);
// Destructor for 'temp' destroys moved-from elements.

}

alloc_traits::construct(m_alloc, &m_data[m_length], v);
++m_length;

}

2.2 Lost opportunities

Unfortunately, the requirement that move constructors leave the moved-from object in a valid (though
unspecified) state results in several important situations where a move constructor cannot be decorated with
noexcept. For example, some implementations of list, including at least one commercial implementation,
use a heap-allocated sentinel node in order to preserve the stability of the end() iterator when using swap
and splice. A moved-from list implemented this way must have a sentinel node in order to avoid an
“emptier than empty” violation of its class invariants. The default constructor and move constructor for
such a list might look like the following (m_begin and m_end are member variables pointing to the first and
past-the-end nodes in the list. Node is class representing a single list node.):

// default constructor for a simple list type (no allocator support)
template <class T>
simple_list<T>::simple_list()
{

m_begin = m_end = new Node(nullptr, nullptr); // might throw
}

// move constructor for a simple list type (no allocator support)
template <class T>
simple_list<T>::simple_list(simple_list&& other)
{

simple_list temp; // Default constructor might throw.
temp.swap(*this); // 'swap' never throws.

}

Since the sentinel node requires a memory allocation, which might throw, neither the default constructor nor
the move constructor can be decorated with noexcept. Such a type cannot benefit from the move_if_noexcept
optimization – it would need to be copied every time.

N4034 2

As you can see from the push_back code for simple_vec in the previous section, after all of the elements
have been moved from one place to the other, the moved-from elements are destroyed. It is not necessary in
this and many similar situations to leave the moved-from object in a valid state – it would be sufficient to
end its lifetime as part of the move (i.e., as if its destructor had been called).

Why is this important? Many, if not most, classes that cannot offer a nothrow move constructor can offer
a nothrow destructive move operation – a move combined with a destroy. In the case of our simple_list,
above, the destructive move operation would simply move the m_begin and m_end pointers from the list
being moved from to the list being moved to. Any attempt to use (or destroy) the moved-from object would
be undefined behavior. Thus, a destructive move operation could expand the set of cases that could benefit
from move_if_noexcept-like optimizations.

Another benefit of destructive move is that it is often more efficient to perform a destructive move operation
than a non-destructive move construction. In the case of a string, for example, a destructive move would
simply copy pointers. Since pointers are trivially copyable, the entire move operation becomes a trivial copy
that can be implemented as a memcpy. This optimization is magnified when operating on arrays of strings:
the entire array can be destructively moved with a single memcpy. This optimization was implemented at
Bloomberg before move constructors were even invented and has yielded significant performance gains. It
turns out that a large number of classes, like string, can be destructively moved using byte copies. Such
classes model a concept I call trivially destructive-movable.

Note that trivially destructive-movable does not require or imply trivially copyable; unlike a copy, after the
destructive move is complete, the moved-from object must not be accessed, since any pointer members would
point to memory shared with the moved-to object.

3 Proposal summary

This proposal comprises two new function templates and two new traits. The first function template is called
destructive_move and looks like this:

template <class T>
void destructive_move(T* to, T* from) noexcept(/* see below */);

The preconditions are that from points to a valid object and to points to raw memory. The postconditions
are that to points to a valid object and from points to raw memory. The default implementation is simply:

::new(to) T(std::move(*from));
to->~T();

This default, however, can be overridden in two ways:

1. If the trait is_trivially_destructive_movable<T> is true, then the destructive move is implemented
using byte copies. This trait is always true for types that are trivially movable, but can also be
overridden for other types by class authors.

2. If destructive_move is overloaded for a specific type, then ADL will resolve to the overloaded version.
Thus, a class author can implement an efficient destructive move (with its own noexcept clause) for
his/her new type.

The noexcept specification for this function template is computed to be true for as many types as possible.
Only if a type has a throwing move constructor and does not override the default for destructive move is
the noexcept specification false. The is_nothrow_destructive_movable<T> trait is defined to be true if
destructive_move<T> has a true noexcept specification.

N4034 3

Note, however, that destructive move cannot be used with an idiom like move_if_noexcept. The
move_if_noexcept function guarantees that its argument remains valid whether an exception is thrown or
not. The destructive_move function, in contrast, invalidates its second argument on success and leaves it un-
changed if an exception is thrown. A hypothetical destructive_move_if_noexcept function could result in a
third possible end state: both to and from could be valid if the object is_nothrow_destructive_movable<T>
is false and the function were forced to make a copy. The usage idiom for such a function would be complex
and non-intuitive. Instead, this paper proposes a function template destructive_move_array, which
encapsulates the entire process of moving elements from one array to another and rolling back on failure.
Using destructive_move_array, the implementation of simple_vec::push_back would look as follows:

template <class T, class A>
void simple_vec<T, A>::push_back(const T& v)
{

typedef std::allocator_traits<A> alloc_traits;

using std::experimental::destructive_move_array;

if (m_length == m_capacity) {
// Grow the vector by creating a new one and swapping
simple_vec temp(m_alloc);
temp.m_capacity = (m_capacity ? 2 * m_capacity : 1);
temp.m_data = alloc_traits::allocate(m_alloc, temp.m_capacity);

// Exception-safe move from this->m_data to temp.m_data
destructive_move_array(temp.m_data, m_data, m_length);

// All elements of 'temp' have been constructed and
// all elements of '*this' have been destroyed.
temp.m_length = m_length;
m_length = 0;
temp.swap(*this);

}

alloc_traits::construct(m_alloc, &m_data[m_length], v);
++m_length;

}

4 Formal wording for the TS

4.1 Header <experimental/destructive_move> synopsis

namespace std {
namespace experimental {
inline namespace fundamentals_vX {

template <class T> struct is_trivially_destructive_movable;
template <class T> struct is_nothrow_destructive_movable;

template <class T>
void destructive_move(T* to, T* from) noexcept(/* see below */);

template <class T>

N4034 4

void destructive_move_array(T* to, T* from, size_t sz)
noexcept(is_nothrow_destructive_movable<T>::value);

}
}
}

4.2 Type trait is_trivially_destructive_movable

namespace std {
namespace experimental {
inline namespace fundamentals_vX {

template <class T>
struct is_trivially_destructive_movable :

integral_constant<bool, (is_trivially_move_constructible<T>::value &&
is_trivially_destructible<T>::value)>

{
};

}
}
}

A type t is trivially destructive-movable if, given two pointers to T, p1 and p2, where p1 points to an existing
object that is not a base-class subobject and p2 points to allocated storage of suitable size and alignment
for an object of type T, copying the underlying bytes from *p1 to *p2 has the same user-visible effect as
move-constructing *p2 from *p1 then destroying *p1. [Note: A type need not be trivially move-constructible
nor trivially destructible in order to be trivially destructive-movable – end note]

The is_trivially_destructive_movable template shall be a UnaryTypeTrait with a base characteristic
of true_type if it can be shown that T is trivially destructive-movable, otherwise false_type. [Note: False
negatives are acceptable, but false positives would result in undefined behavior. – end note] A program may
specialize is_trivially_destructive_movable for a user-defined class T. Such a specialization shall meet
all of the requirements for this template.

4.3 Type trait is_nothrow_destructive_movable

namespace std {
namespace experimental {
inline namespace fundamentals_vX {

template <class T> struct is_nothrow_destructive_movable;

}
}
}

The is_nothrow_destructive_movable template shall be a UnaryTypeTrait with a base characteristic of
true_type if the expression destructive_move<T>(p1, p2) is known not to throw exceptions for valid
arguments p1 and p2.

N4034 5

4.4 Function template destructive_move

template <class T>
void destructive_move(T* to, T* from) noexcept(/* see below */);

Requires: If is_trivially_destructive_movable<T>::value is false, then T shall be MoveConstructible.

Preconditions: to shall be a pointer to allocated memory of suitable size and alignment for an object of type
T; from shall be a pointer to an existing object that is not a base-class subobject.

Effects: If is_trivially_destructive_movable<T>::value is true, then equivalent to memcpy(to, from,
sizeof(T)); otherwise, equivalent to ::new(static_cast<void*>(to), move(*from)); from->~T();.
[Note: Overloads of this function for user-defined or library types may achieve the same postconditions by
other means. – end note]

Throws: nothing unless the move constructor or destructor for T throws. The expression within the noexcept
clause is equivalent to is_trivially_destructive_movable<T>::value ||
(is_nothrow_move_constructible<T>::value && is_nothrow_destructible<T>::value) Overloads of
this function for specific types may have different exception specifications.

Postconditions: *to (after the call) is equivalent to (i.e., substitutable for) *from before the call except that
it has a different address. The lifetime of *from is ended (but from still points to allocated storage). [Note:
To avoid invoking the destructor on the destroyed object, from should not point to an object with automatic
storage duration. – end note]

4.5 Function template destructive_move_array

template <class T>
void destructive_move_array(T* to, T* from, size_t sz)

noexcept(is_nothrow_destructive_movable<T>::value);

Requires: T shall be MoveConstructible. If is_nothrow_destructive_movable<T>::value is false, then T
shall also be CopyConstructible and the destructor for T shall not throw for any element in from.

Preconditions: to shall be a pointer to allocated memory of suitable size and alignment for an array of sz
elements of type T, from shall be a pointer to an existing array of sz elements of type T.

Effects: Constructs copies of the elements in from into the memory pointed to by to and destroys the
elements in from. If is_nothrow_destructive_movable<T>::value is true, the copies are constructed as if
by destructive_move, otherwise by copy construction.

Throws: Nothing unless the copy constructor for T throws. If an exception is thrown, the call shall have no
effect.

5 Implementation Experience

Source code for the traits and function templates proposed in this paper, as well as an implementation of
simple_vec and a test driver for the whole thing, is available at http://halpernwightsoftware.com/WG21/
destructive_move.tgz. The code is free to use and distribute for both commercial and non-commercial
purposes. Destructive move with specializations for trivially destructive-movable types has been in use in
Bloomberg LP’s BDE code base for well over 5 years and has resulted in significantly faster vector operations.

N4034 6

http://halpernwightsoftware.com/WG21/destructive_move.tgz
http://halpernwightsoftware.com/WG21/destructive_move.tgz
https://github.com/bloomberg/bde

6 Future work

The destructive_move function template can be useful not only for non-overlapping operations such as
vector reallocations, but also for overlapping array operations such as inserting and erasing elements. However,
destructive_move_array is not suited to those overlapping moves. There is an opportunity to add one or
two additional function templates for this purpose. Additionally, there may be use cases for a variant of
destructive_move_array that would work on arbitrary iterator ranges rather than specifically on arrays.

7 Acknowledgments

Thanks to my former colleagues at Bloomberg for encouraging me to write this paper and reviewing early
drafts.

8 References

BDE BDE Library, developed by Bloomberg LP. Source code available at https://github.com/bloomberg/bde

N3908 Working Draft, Technical Specification on C++ Extensions for Library Fundamentals, Jeffrey Yasskin,
editor, 2014-03-02

N4034 7

https://github.com/bloomberg/bde
https://github.com/bloomberg/bde
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2014/n3908.html

	Abstract
	Motivation
	Background
	Lost opportunities

	Proposal summary
	Formal wording for the TS
	Header <experimental/destructive_move> synopsis
	Type trait is_trivially_destructive_movable
	Type trait is_nothrow_destructive_movable
	Function template destructive_move
	Function template destructive_move_array

	Implementation Experience
	Future work
	Acknowledgments
	References

