Document Number: N4042

Date: 2014-05-23

Project: Programming Language C++, Library Working Group
Reply-to: Geoffrey Romer <gromer@google.com>

Safe conversions in unique_ ptr<T[]>

Introduction
This paper proposes to resolve LWG 2118 by permitting conversions to unique_ptr<T[]> if
they are known to be safe.

Motivation and Scope

The array specialization of unique_ptr imposes several related restrictions that do not apply to
the primary template:
e unique_ptr<T[], D> cannot be constructed from a plain pointer whose type is not
exactly unique_ptr<T[], D>::pointer or nullptr_t.
e unique_ptr<T[], D> cannot be constructed from a unique_ptr<U[], E>&& unless U
is exactly T and E is exactly D.
e unique_ptr<T[], D> cannot be move-assigned from a unique_ptr<U[], E>&& unless
Uis exactly T and E is exactly D.
e unique_ptr<T[], D>::reset cannot take an argument whose type is not exactly
unique_ptr<T[], D>::pointer or nullptr_t.
e default_delete<T[]> cannot be constructed from a default_delete<U[]> unless U
is exactly T.
e default_delete<T[]>::operator() cannot be called on a pointer whose type is not
exactly T*.
The intent of these restrictions is to prevent conversions from pointer-to-derived to
pointer-to-base, because it is unsafe to use the result of such a conversion in pointer arithmetic,
or pass it to delete[]. However, LWG 2118 observes that this also has the effect of forbidding
safe, useful conversions like qualification-conversion and user-defined conversions:

unique ptr<Foo const[]> ptrl(new Foo[10]); // ill-formed
unique_ptr<Foo[]> ptr2(new Foo[10]);

unique ptr<Foo const[]> ptr3 = move(ptr2); // ill-formed
unique_ptr<Foo const[]> ptr4;

ptrd.reset(new Foo[10]); // ill-formed

| propose to make such demonstrably-safe constructs legal C++, while continuing to forbid
conversions that are not known to be safe.

There are some cases in which these operations are demonstrably unsafe even in the primary
template (e.g. conversion from unique_ptr<Derived> to unique_ptr<Base> when Base does

mailto:gromer@google.com
http://www.google.com/url?q=http%3A%2F%2Fwww.open-std.org%2Fjtc1%2Fsc22%2Fwg21%2Fdocs%2Flwg-active.html%232118&sa=D&sntz=1&usg=AFQjCNEZNShGQlBGnjc4xOyrHllIz-L4Cw
http://www.google.com/url?q=http%3A%2F%2Fwww.open-std.org%2Fjtc1%2Fsc22%2Fwg21%2Fdocs%2Flwg-active.html%232118&sa=D&sntz=1&usg=AFQjCNEZNShGQlBGnjc4xOyrHllIz-L4Cw

not have a virtual destructor), and so perhaps ought to be disabled there as well as in the array
specialization. This paper focuses solely on LWG 2118 and on broadening the API of the array
specialization, so those problems are out of scope.

The wording changes in this paper highlight the difficulty of keeping [unique.ptr.single] consistent
with [unique.ptr.runtime] while avoiding unnecessary duplication. | believe [unique.ptr] would be
substantially improved by combining the two into a single section, with differences between
them specified at the level of individual members (N3920’s wording for shared_ptr shows the
feasibility and desirability of this approach), and at the Issaquah meeting, there was tentative
interest in making such a change as part of resolving LWG 2118. However, this paper does not
propose that, in order to focus on the normative content of the change. Once we have
consensus on that normative content, the restructuring of [unique.ptr] can be handled editorially,
and/or with a followup paper.

Design Decisions

Mechanics
Implementations generally have three options for disabling a constructor or function for certain
argument types:
1. Make it a template (if it isn’t already), and render it ill-formed for those argument type
(e.g. with a static_assert in the implementation)
2. Make it a template (if it isn’t already), and use SFINAE to remove it from the overload set
for those argument types.
3. Add a deleted template overload that can match the same arguments, and use SFINAE
to remove it from the overload set for the argument types we wish to permit.

#1 has has the advantage that it can produce better error messages: a static_assert can be
explicit and specific about why the call is disabled, whereas #2 will generally produce generic
errors about no function matching the given call, and #3 will produce generic errors about
ambiguous calls, or calling deleted functions. However, it causes is_constructible,
is_assignable, and related traits to give incorrect answers and, more generally, prevents
template metaprogramming constructs from inspecting the validity of expressions containing the
operation. It can also create ambiguity between disabled and non-disabled overloads, when both
match a given call.

#3 is largely equivalent to #2, but enables the operation to remain usable without an explicit
template argument, in cases where the argument cannot be deduced. However, it doesn’t apply
to members that already have to be expressed as member templates.

The consensus of discussions in Issaquah was to use SFINAE for constructors and
assignment operators, because the ability to condition on their availability is particularly
important. There was no clear consensus on the other operations, unique_ptr::reset() and
default_delete: :operator() (). | propose to use approach #2 in all cases, for consistency

http://www.google.com/url?q=http%3A%2F%2Fwww.open-std.org%2Fjtc1%2Fsc22%2Fwg21%2Fdocs%2Fpapers%2F2014%2Fn3920.html&sa=D&sntz=1&usg=AFQjCNEUtC7MwA748E9fs1rcyg1S5OIY-A

and simplicity. The additional uses enabled by approach #3 (e.g. initializing a
unique_ptr<Foo[]> from a proxy object) appear to be too marginal and speculative to justify
the additional complexity.

Multi-level qualification conversion

It seems clear that unique_ptr should allow usages like the above examples, which involve
only top-level qualification conversions. However, the situation is more complex when there are
multiple layers of qualifiers. Consider the following code, which is ill-formed under the current
standard:

unique_ptr<Foo const * const []> ptrl(new Foo*[10]);

It is tempting to argue that conversions of this kind are obviously safe, and in practice this is
probably true. However, the most closely analogous conversion for a plain pointer to an array,
from Foo*(*)[] to Foo const * const (*)[], is not a valid qualification-conversion (see
CWG 330). Furthermore, since the resolution of CWG 1504, the behavior of accessing a
Foo*[] through a Foo const * const * pointer has been technically undefined, which would
make the behavior of the above code undefined even if it were well-formed. This seems to be a
wording defect (see CWG 1865), and it's doubtful that implementations will give that code any
meaning other than the obviously correct one, but it seems unwise for the library to venture too
far out in front of the language in this respect.

Therefore, | propose to follow N3920 in appropriating the conversion rules for pointer-to-array
types: assuming unique_ptr<T[], D>::pointer is a pointer type, then the following
operations should be disabled if U(*) [] is not convertible to T(*)[]:

e unique_ptr<T[], D> construction from a U* argument
unique_ptr<T[], D> construction from a unique_ptr<U[], E> argument
unique_ptr<T[], D>::reset with a U* argument
default_delete<T[]> construction with a default_delete<U[]> argument
default_delete<T[]>::operator() with a U* argument
This effectively delegates the decision to the core language; qualification conversions below
top-level would be forbidden under the current language rules, but would become legal when and
if CWG 330 is resolved.

‘Fancy’ pointers

If unique_ptr<T[], D>::pointeris a class type (hereinafter referred to as a ‘fancy’ pointer), it
is more difficult to impose conditions like those above, because we can no longer determine the
input pointer’s element type U as a byproduct of template parameter deduction; we must extract
it using traits. However, the standard does not currently require std: :pointer_traits::
element_type or any comparable trait to be well-formed for fancy pointers, and still less for
types that are implicitly convertible to fancy pointer types, so we would have to either begin
requiring e.g. an element_type typedef (potentially invalidating some existing code) or have
fallback logic for cases where the element type cannot be determined.

http://www.google.com/url?q=http%3A%2F%2Fwww.open-std.org%2Fjtc1%2Fsc22%2Fwg21%2Fdocs%2Fcwg_active.html%23330&sa=D&sntz=1&usg=AFQjCNGxpRYAMs_HtL8fKOMfNjx463ADbg
http://www.google.com/url?q=http%3A%2F%2Fwww.open-std.org%2Fjtc1%2Fsc22%2Fwg21%2Fdocs%2Fcwg_defects.html%231504&sa=D&sntz=1&usg=AFQjCNHFOUwCYuuda6Eini9zuAB77P3LaA
http://www.google.com/url?q=http%3A%2F%2Fwww.open-std.org%2Fjtc1%2Fsc22%2Fwg21%2Fdocs%2Fcwg_active.html%231865&sa=D&sntz=1&usg=AFQjCNHGpa3K4_DR6bhHYUzW5lBdhEjqRQ
http://www.google.com/url?q=http%3A%2F%2Fwww.open-std.org%2Fjtc1%2Fsc22%2Fwg21%2Fdocs%2Fpapers%2F2014%2Fn3920.html&sa=D&sntz=1&usg=AFQjCNEUtC7MwA748E9fs1rcyg1S5OIY-A
http://www.google.com/url?q=http%3A%2F%2Fwww.open-std.org%2Fjtc1%2Fsc22%2Fwg21%2Fdocs%2Fcwg_active.html%23330&sa=D&sntz=1&usg=AFQjCNGxpRYAMs_HtL8fKOMfNjx463ADbg

On the other hand, in the fancy pointer case it’s less clear that these protections are needed in
the first place. In principle, fancy pointers can (and arguably should) be designed to disable
unsafe conversions themselves. In most cases, the deleter/fancy pointer pair already have to
be designed specifically for arrays, in order to support indexing and cleanup correctly, so the
necessary information is already available; the fancy pointer just has to take advantage of it. Of
course, that's no guarantee that it will do so, so we face a tradeoff between empowering the
fancy pointer and protecting its users.

Existing practice could give some indication of how to weight these priorities, but existing
practice is hard to come by. Boost.Interprocess’s managed_unique_ptr, arguably the canonical
use case for fancy pointers, does not appear to support arrays, and | am not aware of any other
uses of fancy pointers with arrays that would be suitable reference material. By the same token,
though, the existing restrictions are unlikely to do much harm in the fancy pointer case, at least
at present. | therefore propose the conservative option of retaining the status quo (all
conversions disabled) for fancy pointers.

Proposed Wording

Changes are relative to N3936.

Revise [unique.ptr.ditr.dfit1] as follows:

namespace std {
template <class T> struct default delete<T[]> {
constexpr default_delete() noexcept = default;
template <class U> default delete(const default delete<U[]>&) noexcept;
void operater{F*)const;
template <class U> void operator()(U*_ptr) const—=—delete;
s
¥

template <class U> default delete(const default delete<U[]>& other) noexcept;
Effects: constructs a default_delete object from another default delete<U[]> object.
Remarks: This constructor shall not participate in overload resolution unless U(*)[] is
convertible to T(*) [].

void operater{(Fr ptr)const;
template <class U> void operator()(U* ptr) const;
Effects: calls delete[] on ptr.

Remarks: H-s-anineomplete-type-the-program-is-i-fermed:_U shall be a complete type. This

function shall not participate in overload resolution unless U(*)[] is convertible to T(*) [].

http://www.google.com/url?q=http%3A%2F%2Fwww.boost.org%2Fdoc%2Flibs%2F1_55_0%2Fdoc%2Fhtml%2Fboost%2Finterprocess%2Fmanaged_unique_ptr.html&sa=D&sntz=1&usg=AFQjCNEfyxOUTCJxPavtoDc2vSg8WYGGRg
http://www.google.com/url?q=http%3A%2F%2Fwww.open-std.org%2Fjtc1%2Fsc22%2Fwg21%2Fprot%2F14882fdis%2Fn3936.pdf&sa=D&sntz=1&usg=AFQjCNGVBrTEJigeU4d3iIQL8ts2gicIoA

Revise [unique.ptr.single]/3 as follows:

If the type remove_reference<D>: :type: :pointer exists, then unique_ptr<T, D>::pointer
shall be a synonym for remove_reference<D>: :type: :pointer. Otherwise unique_ptr<T,
D>: :pointer shall be a synonym for ¥ element_type*. The type unique ptr<T,

D>: :pointer shall satisfy the requirements of NullablePointer (17.6.3.3).

Revise [unique.ptr.runtime] as follows:

namespace std {
template <class T, class D> class unique_ptr<T[], D> {
public:
typedef see below pointer;
typedef T element_ type;
typedef D deleter_type;

// 20.7.1.3.1, constructors
constexpr unique_ptr() noexcept;
template <class U> explicit unique_ptr(peinterU p) noexcept;
template <class U> unique_ptr(peinterU p, see below d) noexcept;
template <class U> unique_ptr(peinterU p, see below d) noexcept;
unique ptr(unique_ptr&& u) noexcept;
constexpr unique_ptr(nullptr_t) noexcept : unique_ptr() { }
template <class U, class E>

unigue_ptr(unigue ptr<U, E>&& u) noexcept;

// destructor
~unique ptr();

// assignment
unique_ptr& operator=(unique_ptr&& u) noexcept;
template <class U, class E>

unique_ptr& operator=(unique_ptr<U, E>&& u) noexcept;
unique ptr& operator=(nullptr t) noexcept;

// 20.7.1.3.2, observers

T& operator[](size_t i) const;

pointer get() const noexcept;

deleter_type& get_deleter() noexcept;

const deleter type& get deleter() const noexcept;
explicit operator bool() const noexcept;

// 20.7.1.3.3 modifiers
pointer release() noexcept;

. E—— E——— =
void reset(nullptr_t_= nullptr) noexcept;
template <class U> void reset(U p)—=—delete;
void swap(unique_ptr& u) noexcept;

// disable copy from Lvalue
unique ptr(const unique ptr&) = delete;
unique_ptr& operator=(const unique_ptr&) = delete;
}s
}

A specialization for array types is provided with a slightly altered interface.

— Conversions between different types of unique_ptr<T[], D> that would be disallowed for
the corresponding pointer-to-array types-ef, and conversions to or from the non-array forms of
unique_ptr, produce an ill-formed program.

— Pointers to types derived from T are rejected by the constructors, and by reset.

— The observers operator* and operator-> are not provided.

— The indexing observer operator][] is provided.

— The default deleter will call delete[].

Descriptions are provided below only for memberfunections-thathave behaviordifferent
members that differ from the primary template.

The template argument T shall be a complete type.

unique_ptr constructors [unique.ptr.runtime.ctor]

template <class U> explicit unique_ptr(peinterU p) noexcept;

template <class U> unique_ptr(peinterU p, see below d) noexcept;

template <class U> unique_ptr(peinterU p, see below d) noexcept;

These constructors behave the same as the constructors that take a pointer parameter in the
primary template except that they de-retaceeptpeintertypes-which-are-cenvertiblete
peintershall not participate in overload resolution unless either

— U is the same type as pointer, or

— pointer is the same type as element_type*, U is a pointer type V*, and V(*)[] is

convertible to element_type(*) [] {Nete: One-implementation-technigue-is-to-create private
templated-overioads-of these-members—end-note}

template <class U, class E> unique_ptr(unique ptr<U, E>&& u) noexcept;

This constructor behaves the same as in the primary template, except that it shall not participate
in overload resolution unless all of the following conditions hold:

— Uis an array type V[]. and

— pointer is the same type as element_type*, and

— unigue_ptr<U, E>::pointer is the same type as V*, and

—V(*)[]is convertible to element_type(*)[]. and

— either D is a reference type and E is the same type as D, or D is not a reference type and E is
implicitly convertible to D.

unique_ptr assignment [unique.ptr.runtime.asgn]

template <class U, class E>
unique ptr& operator=(unique_ ptr<U, E>&& u) noexcept;
This operator behaves the same as in the primary template, except that it shall not participate in
overload resolution unless all of the following conditions hold:
— Uis an array type V[]. and
— pointer is the same type as element_type*, and
— unique_ptr<U, E>::pointer is the same type as V*, and
—V(*)[]is convertible to element_type(*)[]. and
— either D is a reference type and E is the same type as D. or D is not a reference type and E is
implicitly convertible to D.

unique_ptr observers [unique.ptr.runtime.observers]

T& operator[](size t i) const;
Requires: i < the number of elements in the array to which the stored pointer points.
Returns: get()[1i].

unique_ptr modifiers [unique.ptr.runtime.modifiers]

. E— EEeE—m =
void reset(nullptr_t p_= nullptr) noexcept;

Effects: getO—==nullptr-there-are-no-effects—Otherwise
get—deleter{get()-Equivalent to reset(pointer()).
Pesteondition-getO—==—p-

template <class U> void reset(U p);

This function behaves the same as the reset member of the primary template, except that it
shall not participate in overload resolution unless either

— U is the same type as pointer, or

— pointer is the same type as element_type*, Uis a pointer type V*, and V(*)[] is
convertible to element_type(*)[].

