Don’t Move: vector Can Have Your
Non-Moveable Types Covered

Document number: N4416

Date: 2015-04-09

Project: Programming Language C++, Library Evolution Working Group
Reply-to: Nevin “©” Liber, nliber@drw.com

Table of Contents

INErOAUCTION .ot —————————————— 2
Motivation and SCOPE.....ccuiririmsss s n s 2
Why can’t we store non-moveable types in a vector?...ns 2
WOTKATOUINAS wucccsinesessmssssssssssssssss s e 2
Impact On the Standard......... i ———————————————— 3
DeSIZN DECISIONSccieiiiisiserimssssssnsmssssssssss s a s a s a s a s e e n e 3
Essential FUNCHIONS ... ssssssses 4
Exceptions vs. Runtime Preconditions ... 4

B Y= 15 = (O T 5
Consistency with deque, 1list and vector<boOl> .. 5
1 01 o 6
Future Directions.....ssssssssssssssssssssss s 6
Technical SPecifications........oi i ——————————————————— 6
[VECLOT.OVETVIEW] 23.3.6. 1 w.orieeeeeeseireeseieeesetssesssssessssss e bbbt s s sb s bs s b bt 7
[VECLOT.CAPACILY] 23.3.6.3 ottt sttt ssses e bbbt bt e s b st 7
[VECtOT.MOAIfIErS] 23.3.6.5 ettt ettt s b et bs s b s 8
[VECLOT.DOOI] 23.3.7 oottt st seb st s s sss s bbb bbb b s 9
[AeqQUE.OVETVIEW] 23.3.3. T ceiiereeeieereeseesseisesse e st sessse s ssss s s b bbb s 10
[AeqUE.CAPACILY] 23.3.3.3 e seeset et et se s sss s bbb bbb 10
[deqUE.MOAIfIErS] 23.3.3.4 cucereeeeeeseereeeeireeeee st s ss s ss e b s bbb b e 11
[HIST.CAPACILY] 23.3.5.3 1t seeuectreeueesseesseesseesseses s st e sse s s ss s b bbb 12
[LISt.MOAIfIETS] 23.3.5.4 oot seesee ettt s s bs e s bbb s 13
[QUEUE.AEIN] 23.6.3. 1 oueeeeeeeeecereeetesseeseesseesetes e st s sssesss s b bbb 13
[PrIOTIEY.QUEUET 23.6.4 .o ceeeeeecereeeeeeseeseesseeset e s ese s s s es s b bbb 14
[Priqueue.MeMDETS] 23.6.4.3 ...t ssess s b s s bbb ss s 14
[STACK.AEENT 23.6.5.2 .ottt sttt sse s ss s b bbb s 14
ACKNOWIEdZEMENLS......cociicirnsscinsssssnssssssssssss s s s as s sas s sns s 15

Sy ()) 1 L e 15

Introduction

In C++03, the only types one could store in a vector were those that were copyable.
In C++11, that restriction was relaxed to being able to store move-only types (and in
some cases, default-constructible-only types). This paper proposes relaxing that
restriction further by allowing vectors to also store non-moveable types.

Motivation and Scope

We find ourselves implementing more and more classes with mutexes and atomics.
Because they are neither copyable nor moveable, any class which contains them will
also not be implicitly copyable nor moveable. Yet we would like to store objects
containing these and similar types inside a vector.

One recurring pattern is when configuring the number of threads to be used at run
time and the need for a synchronized data structure for each of those threads.

Why can’t we store non-moveable typesina vector?

We cannot store non-moveable types in a vector abecause some operations grow
the vector while it contains objects, which requires the ability to move or copy the
objects from one block of contiguously allocated space to another.

Those operations (such as emplace back ()) need to generate code to allow the
growth even if a specific run time call is otherwise guaranteed not to grow the
vector.

Workarounds

Because we cannot store these objects inside a vector directly, we end up falling
back on one of the following unsatisfying workarounds:

* std::vector<std::unique ptr<NonMoveableType>>.
o This wunnecessarily complicates code by requiring pointer
dereferencing to use the objects stored in the vector.
o Because an element might be equivalent to nullptr, it is is O(N) to
calculate the effective size () (or it must be tracked separately) and
iteration requires an extra check before dereferencing.

* std::array<std::experimental::optional<NonMoveableType
>>,
o The maximum size must be known at compile time.
o Because an element might be equivalent to nullopt, it is is O(N) to
calculate the effective size () (or it must be tracked separately) and
iteration requires an extra check before dereferencing.

* std::unique ptr<std::experimental::optional<NonMoveabl
eType>[]>.
o The capacity must be tracked separately.
o Because an element might be equivalent to nullptr, it is is O(N) to
calculate the effective size () (or it must be tracked separately) and
iteration isn’t obvious.

* std::deque<NonMoveableType>.

o While the algorithmic complexity is the same as vector, both
iteration and random access indexing are strictly slower than that of
vector.

o Less cache friendly than vector.

* std::list<NonMoveableType>.
o No random access to elements.
o Less cache friendly than vector.

Impact On the Standard

This enhancement is purely an addition to the standard. It requires additions to
vector, and if consistency between containers is desired, also to each of
vector<bool>, deque, list, queue and stack.

Design Decisions

In order to store non-moveable types, we need to add functions that do not generate
code to grow the vector when it already contains elements.

References, pointers and iterators to existing elements in the container are never
invalidated by calling any of these new functions (with the exception of
priority queue::emplace capped()).

By using only these new functions to modify the container, vector models “at most
N” elements, even for moveable and copyable types.

Even though the vector may contain a non-moveable type, the vector itself is
still moveable.

Nothing precludes the proposed functions being called on a vector with moveable
and/or copyable types.

Because other member functions are only instantiated when used, this proposal has
no impact on those functions (other than those functions may not be instantiated
when they have moveable or copyable requirements and the held type does not
meet those requirements, of course).

[For purposes of this proposal, please consider any proposed names, function
signatures and specific exceptions thrown to be for exposition purposes only and
subject to bike shedding by L(E)WG.]

Essential Functions

At a minimum, we need to add these functions to vector to allow for non-moveable
types:

* void reserve initially(size_type n).
o Reserves space for exactly n elements when the container is
empty ().

* template <class.. Args> void
emplace_back capped (Argsé&&.. args).
o Emplace construct an element in the back of the container when
size () < capacity/().
o lterators, pointers and references to existing elements within the
container are not invalidated.

As these functions model “at most N” elements, reserve initially() has
slightly different semantics than reserve (); namely, reserve () allocates space
for at least n elements, while reserve initially (n) reserves space for exactly
n elements.

Exceptions vs. Runtime Preconditions

Since these functions have prerequisites before performing their actions, there are
two choices on how to handle them: either throw exceptions when the
prerequisites aren’t met or make it a precondition on calling the function.

Exceptions are the way to go, for the following reasons:

* Attempting to add an element to a vector already filled to capacity () may
be expected and not be a programming error.

* reserve() and emplace back() have no preconditions and throw
exceptions when they cannot perform their actions; these new functions
would be consistent with that behavior.

resize ()

Seeing that the new size is determined at run time, resize() must generate code to
both grow the capacity as well as reduce the number of elements. In order to store
non-moveable types, that functionality must be split:

* template<class.. Args> void resize_ capped(size_ type n,
Argsé&é&.. args).
o If the container is empty (), reserve space for exactly n elements.
When the container is either empty () orn <= capacity (), resize
it to n elements, emplace constructing any elements using args.

* void resize_down(size_ type n).
o Whenn <= size (), resize it to n elements.

Consistency with deque, 1ist and vector<bool>

In order to be consistent with the other growable sequence containers (besides
forward list, as that has a sufficiently different interface),
emplace back capped(), resize capped() and resize down () should
be added to deque, 1ist and vector<bool>. reserve initially () should
also be added to vector<bool>.

It would be an undue hardship to require that deque and 1ist model “at most N”
semantics, as that would entail significant extra bookkeeping. deque, 1ist and
vector<bool> still maintain the other properties described in this proposal (such
as never invalidating references, pointers or iterators when using these functions).

While vector<bool> has a notion of capacity () and a reserve () call, it
would still take extra bookkeeping to model “at most N” semantics for the N that
was specified. vector<bool> only models “at most N” with respect to the
capacity () and not to the parameter provided to reserve initially ().

Adapters

It is useful to have a queue, priority_queue and stack with “at most N” elements
when the underlying container is a vector. Because the adapters have an
emplace () method which calls emplace back () in the underlying container,
there should be a corresponding emplace capped() function which calls
emplace back capped () inthe underlying container, as in:

* template<class.. Args> void
queue: :emplace_ capped (Argsé&&.. args).
* template<class.. Args> void
stack: :emplace_ capped (Argsé&é&.. args).
o c.emplace back capped(std::forward<Args>(args)..).

* template<class.. Args> void
priority queue::emplace_ capped(Argsé&é&.. args).
o Callsemplace back capped() followedbypush heap ().
o push_heap() invalidates references (but not iterators) to elements and
requires that they be moveable.

Of course, the corresponding call to reserve initially () would have to take
place in a class which derives from the adapter, since neither it (nor reserve ()) is
exposed in the public interface.

Future Directions

Here are some other possibilities the author is open to adding but are not being
proposed at this time:

A constructor that constructs a vector with the initially reserved capacity. This is
very useful in vectors of moveable / copyable types as well.

A constructor that allows one to specify both the initially reserved capacity and how
to emplace construct the first few elements of that vector.

Add an emplace front capped () functionto deque and 1ist for symmetry.

Technical Specifications

These changes are relative to N4296:

[vector.overview] 23.3.6.1

// 23.3.6.3, capacity:

size type size() const noexcept;

size type max size() const noexcept;
void resize(size type sz);

void resize(size type sz, const T& c);

size type capacity() const noexcept;
bool empty () const noexcept;
void reserve(size type n);

void shrink to fit();

[.]

// 23.3.6.5, modifiers:
template <class... Args> void emplace back(Args&é&... args);

void push back(const T& x);
void push back(T&& x);
void pop back();

[vector.capacity] 23.3.6.3

void reserve(size type n);

Requires: T shall be MoveInsertable into *this.

Effects: A directive that informs a vector of a planned change in size, so that it can manage the
storage allocation accordingly. After reserve (), capacity () is greater or equal to the
argument of reserve if reallocation happens; and equal to the previous value of capacity ()
otherwise. Reallocation happens at this point if and only if the current capacity is less than the
argument of reserve (). If an exception is thrown other than by the move constructor of a non-
CopyInsertable type, there are no effects.

Complexity: It does not change the size of the sequence and takes at most linear time in the size of
the sequence.

Throws: length errorifn > max size () .266

Remarks: Reallocation invalidates all the references, pointers, and iterators referring to the
elements in the sequence. No reallocation shall take place during insertions that happen after a call
to reserve () until the time when an insertion would make the size of the vector greater than the
value of capacity ().

[..]

void resize(size type sz);

Effects: If sz <= size (), equivalent to calling pop back() size() - sz times. If
size () < sz,appends sz - size () default-inserted elements to the sequence.

Requires: T shall be MoveInsertable and DefaultInsertable into *this.

Remarks: 1f an exception is thrown other than by the move constructor of a non-
CopyInsertable T there are no effects.

voild resize(size type sz, const T& c);

Effects: If sz <= size (), equivalent to calling pop back() size() - sz times. If
size () < sz,appends sz - size () copies of c to the sequence.

Requires: T shall be CopyInsertable into *this.

Remarks: If an exception is thrown there are no effects.

[vector.modifiers] 23.3.6.5

iterator insert (const iterator position, const T& x);
iterator insert (const iterator position, Té&& x);
iterator insert (const iterator position, size type n, const Té& x);

template <class InputlIterator>

iterator insert (const iterator position, Inputlterator first, Inputlterator last);
iterator insert (const iterator position, initializer 1ist<T>);

template <class... Args> void emplace back(Args&é&... args);

template <class... Args> iterator emplace(const iterator position, Argsé&&... args);
void push back(const T& x);

void push back(T&& x) ;e

Remarks: Causes reallocation if the new size is greater than the old capacity. If no reallocation
happens, all the iterators and references before the insertion point remain valid. If an exception is
thrown other than by the copy constructor, move constructor, assignment operator, or move
assignment operator of T or by any InputIterator operation there are no effects. If an
exception is thrown while inserting a single element at the end and T is CopyInsertable or
is nothrow move constructible<T>::value is true, there are no effects.
Otherwise, if an exception is thrown by the move constructor of a non-CopyInsertable T, the
effects are unspecified.

Complexity: The complexity is linear in the number of elements inserted plus the distance to the
end of the vector.

|"|

[vector.bool] 23.3.7

// capacity:
size type size() const noexcept;
size type max size() const noexcept;

void resize(size type sz, bool c = false);

size type capacity() const noexcept;
bool empty () const noexcept;
void reserve(size type n);

void shrink to fit();

[...]
// modifiers:

template <class... Args> void emplace back(Args&é&... args);

void push back(const boolé& x);

void pop back();

template <class... Args> iterator emplace(const iterator position, Argsé&&... args);
iterator insert (const iterator position, const bool& x);

iterator insert (const iterator position, size type n, const boolé& x);

template <class Inputlterator>

iterator insert (const iterator position,

InputIterator first, Inputlterator last);

iterator insert (const iterator position, initializer list<bool> il);

[..]

Unless described below, all operations have the same requirements and semantics as the primary vector

template, except that operations dealing with the bool value type map to bit values in the container storage
and allocator_traits::construct (20.7.8.2) is not used to construct these values.

There is no requirement that the data be stored as a contiguous allocation of bool values. A space
optimized representation of bits is recommended instead.

reference is a class that simulates the behavior of references of a single bit in vector<bool> . The
conversion operator returns true when the bit is set, and false otherwise. The assignment operator sets the
bit when the argument is (convertible to) true and clears it otherwise. flip reverses the state of the bit.

void flip() noexcept;
Effects: Replaces each element in the container with its complement.

[deque.overview] 23.3.3.1

//23.3.3.3, capacity:

size type size() const noexcept;
size type max size() const noexcept;
void resize(size type sz);

void resize(size type sz, const T& c);

void shrink to fit();
bool empty () const noexcept;

[..]

// 23.3.3.4, modifiers:
template <class... Args> void emplace front (Argsé&&... args);
template <class... Args> void emplace back(Args&é&... args);

template <class... Args> iterator emplace(const iterator position, Argsé&&... args);

[deque.capacity] 23.3.3.3
void resize(size type sz);

Effects: If sz <= size(), equivalent to calling pop_back() size() - sz times. If size() < sz, appends sz
- size() default-inserted elements to the sequence.

Requires: T shall be Movelnsertable and DefaultInsertable into *this.
void resize(size type sz, const T& c);

Effects: If sz <= size(), equivalent to calling pop_back() size() - sz times. If size() < sz, appends sz
- size() copies of ¢ to the sequence.

Requires: T shall be Copylnsertable into *this.

void shrink to fit();

Requires: T shall be Movelnsertable into *this.
Complexity: Linear in the size of the sequence.

Remarks: shrink to fit is a non-binding request to reduce memory use but does not change the
size of the sequence. [Note: The request is non-binding to allow latitude for implementation
specific optimizations. —end note]

[deque.modifiers] 23.3.3.4

iterator insert (const iterator position, const T& x);

iterator insert (const iterator position, Té&& x);

iterator insert (const iterator position, size type n, const Té& x);
template <class Inputlterator>

iterator insert(const iterator position,

InputIterator first, Inputlterator last);

iterator insert (const iterator position, initializer 1ist<T>);

template <class... Args> void emplace front (Argsé&&... args);
template <class... Args> void emplace back(Args&é&... args);
template <class... Args> iterator emplace(const iterator position, Argsé&&... args);

void push front (const T& x);
void push front (T&& x);
void push back(const T& x);
void push back(T&& x);

Effects: An insertion in the middle of the deque invalidates all the iterators and references to elements of
the deque. An insertion at either end of the deque, Other than by emplace back capped()l invalidates all the
iterators to the deque, but has no effect on the validity of references to elements of the deque.

Remarks: If an exception is thrown other than by the copy constructor, move constructor, assignment
operator, or move assignment operator of T there are no effects. If an exception is thrown while inserting a
single element at either end, there are no effects. Otherwise, if an exception is thrown by the move
constructor of a non-Copylnsertable T, the effects are unspecified.

Complexity: The complexity is linear in the number of elements inserted plus the lesser of the distances to
the beginning and end of the deque. Inserting a single element either at the beginning or end of a deque
always takes constant time and causes a single call to a constructor of T.

[list.overview] 23.3.5.1

//23.3.5.3, capacity:

bool empty () const noexcept;

size type size() const noexcept;

size type max size() const noexcept;
void resize(size type sz);

void resize(size type sz, const T& c);

[...]

// 23.3.5.4, modifiers:

template <class... Args> void emplace front (Argsé&&... args);
void pop front();

template <class... Args> void emplace back(Args&é&... args);

void push front (const T& x);
void push front (T&& x);

void push back(const T& x);
void push back(T&& x);

void pop back();

[list.capacity] 23.3.5.3

void resize(size type sz);
Effects: 1f size() < sz, appends sz - size() default-inserted elements to the sequence. If sz <= size(),
equivalent to
1ist<T>::iterator it = begin();
advance (it, sz);
erase (it, end());

Requires: T shall be DefaultInsertable into *this.

void resize(size type sz, const T& c);
Effects:

if (sz > size())
insert (end(), sz-size(), c):

else 1f (sz < size()) {
iterator i = begin();
advance (i, sz);
erase (i, end());

}

else

; // do nothing

Requires: T shall be Copylnsertable into *this.

[list.modifiers] 23.3.5.4

iterator insert (const iterator position, const T& x);

iterator insert (const iterator position, Té&& x);

iterator insert (const iterator position, size type n, const Té& x);
template <class Inputlterator>

iterator insert(const iterator position, Inputlterator first,
Inputlterator last);

iterator insert (const iterator position, initializer 1ist<T>);

template <class... Args> void emplace front (Argsé&&... args);
template <class... Args> void emplace back(Args&é&... args);
template <class... Args> iterator emplace(const iterator position, Argsé&&... args);

void push front (const T& Xx);
void push front (T&& x);
void push back(const T& x);
void push back(T&& x);

[queue.defn] 23.6.3.1

bool empty () const { return c.empty(); }

size type size() const { return c.size(); }

reference front() { return c.front(); }

const reference front() const { return c.front(); }
reference back() { return c.back(); }

const reference back() const { return c.back(); }

void push(const value type& x) { c.push back(x); }

void push(value type&& x) { c.push back(std::move(x)); }
template <class... Args> void emplace (Argsé&é&... args)

{ c.emplace back(std::forward<Args>(args)...); }

void pop() { c.pop front(); }
void swap (queue& g) noexcept (noexcept (swap(c, g.c)))
{ using std::swap; swap(c, g.c); }

[priority.queue] 23.6.4

priority queue (const Compareé& x, const Containers);

explicit priority queue(const Compare& x = Compare(), Container&s& = Container());
template <class InputlIterator>

priority queue (InputlIterator first, Inputlterator last,

const Compareé& x, const Containerég);

template <class InputlIterator>

priority queue (InputlIterator first, Inputlterator last,

const Compare& x = Compare (), Container&& = Container());

template <class Alloc> explicit priority queue(const Allocé);

template <class Alloc> priority queue(const Compare&, const Allocé&);
template <class Alloc> priority queue(const Compareg,

const Containeré&, const Allocé&);

template <class Alloc> priority queue(const Compareg,

Container&&, const Allocé&);

template <class Alloc> priority queue(const priority queueé&, const Allocé&);
template <class Alloc> priority queue(priority queueé&&, const Alloc&);
bool empty () const { return c.empty(); }

size type size() const { return c.size(); }

const reference top() const { return c.front(); }

void push(const value typeé& x);

void push(value type&é& x);

template <class... Args> void emplace (Argsé&é&... args);
void pop();

void swap (priority queue& q) noexcept (
noexcept (swap(c, g.c)) && noexcept (swap (comp, g.comp)))
{ using std::swap; swap(c, g.c); swap(comp, g.comp); }

[prigueue.members] 23.6.4.3

template <class... Args> void emplace (Argsé&é&... args)

Effects:

c.emplace back(std::forward<Args>(args)...);
push heap(c.begin(), c.end(), comp);

pop_heap(c.begin(), c.end(), comp);
c.pop_back() ;

void pop();

Effects:

[stack.defn] 23.6.5.2

bool empty () const { return c.empty(); }

size type size() const { return c.size(); }

reference top() { return c.back(); }

const_reference top() const { return c.back(); }

void push(const value type& x) { c.push back(x); }

void push(value type&& x) { c.push back(std::move(x)); }
template <class... Args> void emplace (Argsé&é&... args)

{ c.emplace back(std::forward<Args>(args)...); }

void pop() { c.pop back(); }
void swap (stack& s) noexcept (noexcept (swap(c, s.c)))
{ using std::swap; swap(c, s.c); }

Acknowledgements

Thanks to Matt Godbolt, Andrew Hryckowian, Brian Adams and Brian Mehaffey for
reviewing the initial draft. As always, if you like this, thank them; if you don’t, blame
me.

References

N4296 - Working Draft, Standard for Programming Language C++

