N4419 - Source-Information Capture Extensions

Authors: Robert Douglas
April 8th, 2015

Introduction

In Urbana, N4129 was discussed, generating a variety of requests for new features. This
paper details some of the design and implementation implications for the various requests.
The goal of this paper is solicit feedback as to how desirable various features are.

Offset from Start of File

Motivation

Tooling on output of logs and unit tests suffer from file/line reporting, where the tool is
required to scan the entire file to determine the caret by counting line endings. Tool authors
would prefer to have access to the offset from the beginning of file.

Previous Discussions

This feature was considered harmless by all of LEWG and desirable by some, but was
omitted from the initial form of std::source_context out of concern for keeping the initial feature
to a minimal feature-set.

Proposal
Add an accessor to std: : source context:
constexpr int offset from start of file() const noexcept;

Returns: Integer

Add a section for current source context ():
Created source context::offset from start of file () shall return
implementation-defined value representing the byte-offset from the start of the file.

Implementation-Defined Source Location Identifier

Proposal is to add an accessor to the source location class, to get an
implementation-defined identifier for the line of the source code. This would be an alternative
to requiring pieces of information that some vendors may not find useful.

Finer-Grained Source-Context Intrinsics

Some code bases may generate very large binaries, resulting from many named functions,
each using doing invariant checking which would want to use source location. As such, it
was noted that having the result of func__ generated in the binary for every single
function using source location, may itself be prohibitive to adoption of the feature, as the
amount of data would be too large, when function name is not needed.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4129.pdf

N4129, intentionally omitted the discussion of intrinsics for later design work, as it was a
larger issue than was needed to make progress, and N4129 was believed to in no way
prohibit the later specification of such intrinsics.

The following list gives possible examples of finer-grained intrinsics that could be supported.
That is, each grouping represents a different set of intrinsics, comma delimited. Intrinsics
returning a tuple of items are denoted by {}'s.

1. {File, Line}

2. {File, Line}, Function, Column

3. {File, Line}, File, Line, Function, Column

4. {File, Line, Column}, Function

5. File, Line, Function, Column
If desired, and with guidance, a follow-up proposal will specify the intrinsics by which
source location could be theoretically built, or an program could piecemeal consume a
subset of data.

Additional Magic Function(s) Specifying Capture Set

source location::current (File | Line | Column);

This proposal would define an overload of current, which uses tags to determine what is
(and thus what is not) captured. For simplification, we may consider having one overload with
a default argument.

User-Defined Data

A request was made to allow the user to decorate, in some fashion, the information stored in
source location, with additional user data. Since the data is stored in the binary, itself,
the user could presumably add in their own comments or other such insights.

Pretty Function

The result of function name () is presumed to be the same as func for the line
captured. Many compilers also provide a utility to get a demangled version of the function
name, or otherwise friendlier string for human consumption. This proposal is to define such an
extension to source location, that such an accessor would exist.

Acknowledgements

Thanks to Peter Sommerlad, John Lakos, Chandler Carruth, and many other Urbana
attendees for their suggestions and feedback.

