
Document No: WG21 N4571
Date: 2015-05-08
References: ISO/IEC PDTS 19841, SC22/WG21 N4488
Reply To: Barry Hedquist <beh@peren.com>
 INCITS/PL22.16 International Representative

Record of Response: National Body Comments

ISO/IEC PDTS 19841

 Technical Specification: C++ Extensions for Transactional Memory
Attached is WG21 N4571, Record of Response to National Body Comments for ISO/IEC PDTS 19841,
Technical Specification – C++ Extensions for Transactional Memory. Also attached is WG21 N4488,
containing further details for the responses.

Document numbers referenced in this Record of Response are WG21 documents unless otherwise stated.

Record of Response: NB Comments, PDTS 19841, C++ Extensions for
Transactional Memory. See WG21 N4488. Date:2015-05-06 Document: SC22/N 5019

WG21/N4517 Project: PDTS 19841

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

JP 1 ge We are concerned that there could be a

performance degradation even in an environment
lacking of transactional memory feature by
adopting this technical specification, e.g. making
some standard libraries like <math.h>
transactional safe.
It is the reason for our disapproval. If we can
reasonably confirm that there's no degradation,
we will change our position to approval.

Please make us sure there’s no degradation. REJECT
See WG21 N4488 (Attch)

US 1 te Memory ordering requirements of transactions are
problematically strict. Even empty or purely local
transactions have observable synchronization
effects and can usually not be removed by an
optimizing compiler. This introduces a
performance penalty when transactional library
code is reused in a clearly thread-local context.

Consider weakening ordering requirements to allow
such optimizations.

ACCEPT
See WG21 N4488 (Attch)

CA 1 N/A N/A N/A ge Request to add a Feature Test Macro
__cpp_transactional_memory based on
http://isocpp.org/std/standing-documents/sd-6-
sg10-feature-test-recommendations

The value of the macro will be the year and month
of the release of the TS. It does not need any
experimental or TS tag.

ACCEPT
See WG21 N4488 (Attch)

CA 3 N/A 4.3
[conv.func]

Para 1 ge Make helper functions in 20.2 transaction-safe.
Here is an example where std::move is not
transaction-safe

template <class T>
 void safe_swap(T &a, T &b) transaction_safe
 {
 atomic_commit
 {
 using std::move;
 T temp = move(a); // Note that std::move is
not transaction-safe according to draft, but it
should be
 a = move(b);
 b = move(temp);

Add std::move and other utilities in 20.2 to be
transaction_safe.

ACCEPT
See WG21 N4488 (Attch)

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 1 of 4

http://isocpp.org/std/standing-documents/sd-6-sg10-feature-test-recommendations
http://isocpp.org/std/standing-documents/sd-6-sg10-feature-test-recommendations

Record of Response: NB Comments, PDTS 19841, C++ Extensions for
Transactional Memory. See WG21 N4488. Date:2015-05-06 Document: SC22/N 5019

WG21/N4517 Project: PDTS 19841

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

 }
 }

template <class T>
 void apply(T &a, T &b, void f(T&,&T))
 {
 f(a,b); // Ok
 assert(f == safe_swap<int>); // result
unspecified according to 5.10, paragraph 2, right?
 }

int main()
{
 int x = 2, y = 3;
 apply(x, y, safe_swap<int>); // Ok even though
transaction_safe is lost
}

CA 2 N/A 5.2.2
[expr.call]

Para 1 te This addition states:
A call to a virtual function that is
evaluated within a synchronized (6.9
[stmt.sync]) or atomic block (6.10 [stmt.tx]) results
in undefined behavior if the virtual function is
declared transaction_safe_noinherit and the final
overrider is not declared transaction_safe.
It is Undefined Behavior if you call into a virtual
function declared as tx_safe_noinherit but it is not
tx_safe in the final overrider. This ensures that the
dynamic call is safe, no matter what the dynamic
object is since tx_safe_noinherit gives no
such guarantee.

 Our concern is this is excessive for a

Please fix for synchronized block so that it is not
part of this requirement. Suggested wording:
A call to a virtual function that is evaluated within
a synchronized (6.9 [stmt.sync]) or an atomic block
(6.10 [stmt.tx]) results in undefined behavior if the
virtual function is declared
transaction_safe_noinherit and the final overrider is
not declared transaction_safe.

ACCEPT
See WG21 N4488 (Attch)

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 2 of 4

Record of Response: NB Comments, PDTS 19841, C++ Extensions for
Transactional Memory. See WG21 N4488. Date:2015-05-06 Document: SC22/N 5019

WG21/N4517 Project: PDTS 19841

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

synchronized block because these can call
tx_unsafe functions.

FI 1 8 4 te It seems that the applicability of
transaction_safe_noinherit is likely going to be
wider in the future than just in virtual functions. If
that wider applicability appears, new keywords
need to be added. Generalizing the name
transaction_safe_noinherit would possibly avoid
that problem.

Rename transaction_safe_noinherit to
transaction_safe_dynamic. Transaction safety of
calls to such functions is ultimately a runtime
property, hence _dynamic seems like a suitable
suffix.

ACCEPT
See WG21 N4488 (Attch)

JP 2 8.4.4 1 te A function-local static variable initialization should
be transactional-unsafe. The initialization in an
atomic execution needs to be synchronized with
non-atomic executions.

Add "a function-local static variable initialization" in
the list of conditions for a transactional-unsafe
statement .

REJECT
See WG21 N4488 (Attch)

CA 4 n/a 8.4.4
[dcl.fct.def.t
x]

After Para
1, bullet 5

ge In the first sequence of dash bullets (--) indicating
transaction-unsafe expressions, the fifth one
states «an implicit call of a non-virtual function
that is not transaction_safe». I wonder why the
«implicit» call is being explicitly (sorry for the pun!
:)) specified, as it seems to me that an explicit
call to a non-virtual function would yield the same
consequences. Unless I'm missing out on
something, an implicit call could be something
like:

struct B
{
 int f(); // not transaction_safe, not virtual
 virtual ~B() = default;
};

struct D : B
{

This seems a possible confusion for other user,
please clarify.

REJECT
See WG21 N4488 (Attch)

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 3 of 4

Record of Response: NB Comments, PDTS 19841, C++ Extensions for
Transactional Memory. See WG21 N4488. Date:2015-05-06 Document: SC22/N 5019

WG21/N4517 Project: PDTS 19841

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

 int g()
 {
 return f() + // implicit call?
 this->f() + // explicit call?
 B::f(); // explicit call?
 }
};

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 4 of 4

ISO/IEC JTC 1/SC 22/WG 21 N4488
revises N4410
Jens Maurer
2015-05-07

N4488: Responses to PDTS comments on
Transactional Memory, version 2

Jens Maurer, jens.maurer@gmx.net
with other members of the transactional memory study group (SG5), including (in alphabetical
order):
Hans Boehm, hboehm@google.com
Victor Luchangco, victor.luchangco@oracle.com
Paul McKenney, paulmck@linux.vnet.ibm.com
Maged Michael, maged.michael@gmail.com
Mark Moir, mark.moir@oracle.com
Torvald Riegel, triegel@redhat.com
Michael Scott, scott@cs.rochester.edu
Tatiana Shpeisman, tatiana.shpeisman@intel.com
Michael Spear, spear@cse.lehigh.edu
Michael Wong, michaelw@ca.ibm.com (chair of SG5)

Introduction
This paper presents the proposed responses to N4396 "National Body Comments, ISO/IEC
PDTS 19841, C++ Extensions for Transactional Memory".

Changes compared to N4410
• fix a typo in the spelling of the feature test macro (two underscores in the middle)
• remove "L" suffix in value of feature test macro
• declval does not need to be transaction-safe, since it is never odr-used
• rework section CA 1

JP 1: Performance degradation
REJECT

The specification of transaction safety ensures that it is possible to compile code so that whether
a given function call is executed in transaction context or outside of transaction context can be
determined at compile time. Therefore, existing code that is executed outside of transactions and
that does not use any of the transactional memory constructs will execute as before. The

performance of code that actually uses transactions will depend on the available hardware
support, similar to the fact that the performance of mutexes vs. accesses to atomic variables
depends on a number of hardware and other factors.

A conservative approach was chosen for mandating the transaction-safety of standard library
functions. Functions that conceivably access global state are not touched. In particular, the
functions in the header <math.h> were intentionally not made transaction-safe in this Technical
Specification, because the interaction of transactional memory with accesses to a potentially
global rounding mode setting was deemed to require further study. As an exception, based on
early user feedback, memory allocation is mandated to be transaction-safe, although it might
access the global free store. Implementation experience shows that this does not negatively
impact the performance of non-transactional executions.

US 1: Relax synchronization to allow optimizations on local
transactions
ACCEPT

In section 1.10 intro.multithread, change the added paragraph 9 as follows:

There is a global total order of execution for all outer blocks. If, in that total order,
T1 is ordered before T2,

• no evaluation in T2 happens before any evaluation in T1 and
• if T1 and T2 perform conflicting expression evaluations, then the end

of T1 synchronizes with the start of T2.

CA 1: Feature Test Macro
ACCEPT
Change in section 1.3 [general.references]:
... Beginning with section 1.4 1.10 below, all clause and section numbers, titles, and symbolic
references in [brackets] refer to the corresponding elements of the C++ Standard. Sections 1.1
through 1.3 1.5 of this Technical Specification are introductory material and are unrelated to the
similarly-numbered sections of the C++ Standard.
Change in section 1.4 [intro.compliance]:
Conformance requirements for this specification are the same as those defined in section 1.4
[intro.compliance] of the C++ Standard. [Note: Conformance is defined in terms of the
behavior of programs. -- end note]
Add a new section 1.5 [intro.features]:

1.5 Feature testing [intro.features]

An implementation that provides support for this Technical Specification shall define the
feature test macro in Table 1.

Table 1 -- Feature Test Macro

Name Value Header
__cpp_transactional_memory 201505 predeclared

CA 3: Make helper functions transaction-safe
ACCEPT

Add the following to the appropriate sections:

Add in 20.2 [utility] after the synopsis:
A function in this section is transaction-safe if all required operations are
transaction-safe.
In 20.2.4 [forward], add "transaction_safe" to the declaration of all
functions.

CA 2: Virtual function calls in synchronized blocks
ACCEPT

Change the added text in 5.2.2 [expr.call] paragraph 1:

A call to a virtual function that is evaluated within a synchronized (6.9
[stmt.sync]) or an atomic block (6.10 [stmt.tx]) results in undefined behavior if
the virtual function is declared transaction_safe_noinherit
transaction_safe_dynamic and the final overrider is not declared
transaction_safe.

FI 1: Rename transaction_safe_noinherit to transaction_safe_dynamic
ACCEPT

Change all mentions of transaction_safe_noinherit to transaction_safe_dynamic,
including sections 2.11 [lex.name], 5.2.2 [expr.call] (see also CA 2, above), clause 8 [dcl.decl],
8.3.5 [dcl.fct], 10.3 [class.virtual], 18.6.2.1 [bad.alloc], 18.6.2.2 [new.badlength], 18.7.2
[bad.cast], 18.7.3 [bad.typeid], 18.8.1 [exception], 18.8.2 [bad.exception], and 19.2
[std.exceptions].

JP 2: Initialization of function-local static variables
REJECT

We agree that initialization of function-local statics should be atomic with respect to both
transactional and non-transactional uses. We do not believe that the specification as drafted,
taking into consideration the requirements on transaction safety, necessitates any additional
overhead on the non-transactional code path once the initialization is complete.

CA 4: Redundant case for transaction-unsafe expressions
REJECT

The specification is carefully crafted to ensure that calls through function pointers or member
function pointers fall into the sixth bullet. Omitting "implicit" in the fifth bullet would (arguably)
defeat that purpose.

	N4517
	N4488.pdf
	N4488: Responses to PDTS comments on Transactional Memory, version 2
	Introduction
	Changes compared to N4410
	JP 1: Performance degradation
	US 1: Relax synchronization to allow optimizations on local transactions
	CA 1: Feature Test Macro
	CA 3: Make helper functions transaction-safe
	CA 2: Virtual function calls in synchronized blocks
	FI 1: Rename transaction_safe_noinherit to transaction_safe_dynamic
	JP 2: Initialization of function-local static variables
	CA 4: Redundant case for transaction-unsafe expressions

