
Document No: WG21 N4678

Date: 2017-07-29

Project: Programming Language C++

References: ISO/IEC PDTS 22277

Reply to: Gor Nishanov <gorn@microsoft.com>

Attached are responses to National Body Comments for ISO/IEC PDTS 22277, C++ Extensions for Coroutines

Document numbers referenced in the ballot comments are WG21 documents unless otherwise stated.

Responses to National Body Comments: PDTS 22277 Date:2017-07-30 Document: SC22/WG22 N4678 Project: 22277

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 2 of 6

CH
001

te This TS disallows stackful coroutines.
This is too restrictive and stackful
coroutines should be allowed as well.

Allow as suspension context functions that
were called from a top-level coroutine.

Reject. No consensus for
change.

US
002

na 05.03.8

4 Ed in

"The await-expression has the same type and value

category as the await-resume expression."

await-resume is marked up in bold, should be italics.

Change to italics. Accept

US
003

na 06.05.4

1 Te Update range based for statement after C++17 The range-based for statement

for co_awaitopt

 (for-range-declaration : for-range-initializer)
statement

is equivalent to

{

 auto &&__range = for-range-initializer ;

 auto __begin =
 co_awaitopt begin-expr ;

 auto __end = end-expr ;

 for (; __begin != __end; co_awaitopt ++__begin) {

 for-range-declaration = *__begin;

 statement

 }

}

Reject. Rebase will happen
prior to merging into the
working paper.

US na 06.06.3 all Ge There are many new cases of undefined behaviour No action for now. However, experience with TS Accept. No action for now.

http://eel.is/c++draft/stmt.iter#nt:for-range-declaration
http://eel.is/c++draft/stmt.iter#nt:for-range-initializer
http://eel.is/c++draft/stmt.stmt#nt:statement
http://eel.is/c++draft/stmt.iter#nt:for-range-initializer
http://eel.is/c++draft/stmt.iter#nt:for-range-declaration
http://eel.is/c++draft/stmt.stmt#nt:statement

Responses to National Body Comments: PDTS 22277 Date:2017-07-30 Document: SC22/WG22 N4678 Project: 22277

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 3 of 6

004

6.6.3.1

8.4.4

8.11.2.5

18.10

18.11.2.5

introduced by the TS which are somewhat easily

triggered by independent parts of the mechanisms,

e.g., the result type of the coroutine interacting

through the promise_type to allow flow of control to

run off the end of a coroutine.

In general it would be good to minimize undefined

behaviour.

implementation may allow reducing UB. This should

form part of any review for integrating coroutines as

part of a future standard.

US
005

na 06.06.3.1

 1 Te Simplify the grammar for

coroutine-return-statement:

co_return expression_opt_;

co_return braced-init-list;

coroutine-return-statement:
 co_return expr-or-braced-init-list opt ;

Reject. Rebase will happen
prior to merging into the
working paper.

US
006

na 08.04.4

12 Technical Stateful allocators (pmr) do not work this way, there's

no mechanism for allocator propagation to the

captured state.

Strike section 12, or provide mechanism for holding
allocator

Accept. Example in
paragraph 12 is removed

US
007

na 08.04.4

3 Ge Is unhandled_exception() a requirement for a

promise_type?

a) Call std::terminate if not present

or

b) Add unhandled_exception() to the complete example

of promise_type in 8.4.4 paragraph 11, the generator

example.

Accept. B) is correct.
Example was missing
unhandled_exception (and a
few other things) and now is
fixed.

http://eel.is/c++draft/dcl.init#nt:expr-or-braced-init-list

Responses to National Body Comments: PDTS 22277 Date:2017-07-30 Document: SC22/WG22 N4678 Project: 22277

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 4 of 6

US
008

4 08.04.4, p15

11 Ed Note about possibly undefined behaviour If a coroutine has a parameter passed by reference,
resuming the coroutine

after the lifetime of the entity referred to by that
parameter has ended is likely to result in

undefined behavior

Strike "likely to result in"

Reject. No consensus for
change.

CA
009

 18.01
[support.gene
ral]

Table 30 ed The entry for subclause 18.11 appears before the
entry for subclause 18.10.

Move the insertion of the entry for subclause 18.11
to appear after the entry for subclause 18.10.

Accept

US
010

na 18.11.01.1

1 Te Is the template coroutines_traits intended to be a
user-extension point? If so, spell out the contract
for users to customize this trait. Otherwise, restrict
user specialization with the wording for all type
traits in the <type_traits> header. 18.11.1p2
suggests the former, while the latter is much
simpler to specify for the initial TS.

Specify the exact behaviour of user-customization of

coroutine_traits.
Accept.

US
011

na 18.11.02

all Ge The specification of each operation is not explicitly
clear whether it applied to the specialization of
coroutine_handle<void>, or the primary
coroutine_handle template.

Break this section into two, to clearly provide definitions

for both versions of the template.
Accept

US
012

na 18.11.02

 all Ge Coroutine handles have essentially raw pointer
semantics. Should there be a library type as part of
the TS that does destroy / set to nullptr ?

 If a library type is needed, please add it. Reject. No consensus for
change

US
013

na 18.11.02

 all Ge Promise types are required to implement either

return_value() or return_void(), but not both, and it is

undefined behaviour for a coroutine to run off the end,

where return_void would be called.

 Consider implementing both either_return() and

return_value() for promise types, and eliminate the

undefined behaviour.

Reject. No consensus for
change

Responses to National Body Comments: PDTS 22277 Date:2017-07-30 Document: SC22/WG22 N4678 Project: 22277

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 5 of 6

Why not allow both? It could make types that

implement the promise_type contract more reuseable.

US
014

na 18.11.02.5

6 Ed a concurrent resumption of a coroutine by multiple
threads may result in a data race

Possibly means concurrent destruction here, in the

destroy method.
Accept

US
015

na 18.11.02.7

all Te As coroutine_handle<void> is a literal type, should
the comparison operators be constexpr?

Add constexpr to the declaration/definition of

operator==, operator !=, operator<, operator<=,

operator>=, and operator> for arguments of type

coroutine_handle<>.

Accept

US
016

na 18.11.03

1 Te The names suspend_never and suspend_always
should be (inline) constexpr variables of type
suspend_never_t and suspend_always_t
respectively.

Change suspend_never and suspend_always as

appropriate.
Reject. No consensus for
change

US
017

na

2 [intro.refs] 1 Ge We are in the process of balloting the final text of the

next C++ standard, provisionally ISO/IEC 14882:2017.

We should hold back publishing this TS long enough to

rebase on the text of the new standard.

Other than updating this reference, the change is

almost entirely updating section numbers and cross-

references.

The normative changes would be

The following referenced document is
indispensable for the application of this document.
For dated references,
only the edition cited applies.
(1.1) — ISO/IEC 14882:20147, Programming
Languages – C++
ISO/IEC 14882:20147 is hereafter called the C++
Standard. ...

(Still to add a mapping of section numbers and
stable-refs)
(File separate comments on the noted list of issues
- such as range-for below)

Reject. Rebase will happen
prior to merging to the
working paper.

Responses to National Body Comments: PDTS 22277 Date:2017-07-30 Document: SC22/WG22 N4678 Project: 22277

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 6 of 6

updating the range based 'for' loop syntax;

the text for a 'return' statement would need adjusting;

the wording on restrictions with respect to longjmp

should be reviewed;

hash support for coroutine_handle should be updated

with the “enabled” terminology.

CA
018

 2 [intro.refs] ed The form required by ISO/IEC Directives, Part 2,
2016 subclause 15.5.1 is not followed.

Use the text provided by the Directives. Accept

US
019

na All all Ge The TS presents only low level mechanisms to

implement coroutines. For final release in a C++

standard, standard library implementations of

generators, futures from coroutines, guard types for

handles, etc. should also ship.

 Please consider adding standard library

implementations of generators, futures from

Coroutines, guard types for handles and any others that

may be needed when Coroutines are incorporated into

the C++ Standard.

Accept. No action for now.

US
020

na All all Ge Coroutines are invokable types, can they be stored
by a std::function? What about a
std::function<void()> that discards the result on
invocation?

Disallow storing coroutines in std::function objects
that discard their result.

Reject. No consensus for
change

