
Template for comments and secretariat observations Date:2017-11-24 Document: WG21 N4708 Project: 19216

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 1 of 10

US
001

 General The TS travels in terms of function objects rather

than Callable. The C++ 17 standard is moving

towards a more general specification. Rather than

a function object, anything that can be processed

by INVOKE with the appropriate signature should

be allowed.

Use invokable terminology throughout the TS

instead of function object.

Rejected.

There was no consensus to

adopt this change.

GB 1
002

 Ge The BSI would like to ensure that outstanding
issues on the issues lists are all considered before
the final TS is produced

 Accepted

CA1

003

 GE We do not have technical comments on the
document, however, we note that the format of the
document is inconsistent with the ISO IEC
Directives part 2, and with the ISO Online
Browsing Platform, which makes the following
clauses available publically, clauses 1, 2 and
three.

Restructure the document such that

Clause 1 is scope

Clause 2 is Normative References

Clause 3 is Terms and Definitions

Place other material in clauses 4, 5, 6, etc.

Accepted

FR1
004

 13.2.2

13.2.7

te Implementing asynchronous operations or

executors as described in paragraphs 13.2.2 and

13.2.7 could be perfomed with the use of

coroutines.

It would be necessary to clarify or assess the

complexity of this code if it was to use one or other

of the different proposals now faced (PDTS 22277

and P009R1)

 Rejected.

There was no consensus to

adopt this change.

US
005

 03

2 te The normative reference to the POSIX standard

should not be a non-normative note.

Either add another paragraph with a normative

reference to the POSIX standard, or remove the

[Note – end note] mark-up on this paragraph.

Accepted.

See P0728R0.

US
006

 13.02 ge The 'CompletionToken' mechanism used to

determine the return types of initiating functions

Make initiating functions use invokable callbacks Rejected.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0728r0.html

Template for comments and secretariat observations Date:2017-11-24 Document: WG21 N4708 Project: 19216

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 2 of 10

 has teachability drawbacks due to its complexity.

Also, there would be a high cost if users were to

replicate this kind of interface in medium and

higher-level libraries built upon the Networking TS.

A simpler interface whereby initiating functions

have invokable parameters is sufficiently

extendable, as they are, to work with futures.

instead of completion tokens as in Boost.ASIO. There was no consensus to

adopt this change.

GB 2
007

 13.02.1

 Te "No constructor ... shall exit via an exception" over-
specification.

This is probably a copy/paste error introduced

when this text was copied from the standard (I
believe from [allocator.requirements]).

The intent is only that copy and move constructors
shall not throw, and I think that is already covered
by "copy operation, move operation". Other
constructors not covered by the ProtoAllocator?
requirements should be allowed to throw.

Delete "constructor," so that the sentence reads
"No comparison operator, copy operation, move

operation, or swap operation on these types shall
exit via an exception."

Accepted.

See P0742R0.

GB 3
008

 13.02.2

 Te Reentrancy and run/dispatch.

In 17.6.5.8 [reentrancy] the C++14 standard says:

"Except where explicitly specified in this standard,
it is implementation-defined which functions in the

Standard C++ library may be recursively
reentered."

In the executor requirements, the intention is that
the dispatch() function may be recursively

reentered. A statement to this effect may need to
be added to the requirements. (All dispatch()

member functions provided by executors in the TS
itself should then by implication allow reentrancy.)

Explicitly specify that dispatch functions can be

recursively re-entered.

Accepted.

See P0748R0.

GB 4
009

 13.02.2

 Te "No constructor ... shall exit via an exception" over-

specification.

This is probably a copy/paste error introduced

when this text was copied from the standard (I
believe from [allocator.requirements]).

The intent is only that copy and move constructors
shall not throw, and I think that is already covered

Delete "constructor," so that the sentence reads

"No comparison operator, copy operation, move
operation, swap operation, or member functions

context, on_work_started, and on_work_finished on
these types shall exit via an exception."

Accepted.

See P0742R0..

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0742r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0748r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0742r0.html

Template for comments and secretariat observations Date:2017-11-24 Document: WG21 N4708 Project: 19216

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 3 of 10

by "copy operation, move operation". Other
constructors not covered by the Executor

requirements should be allowed to throw.

GB 5
010

 13.02.2

 Te Executor requirements table refers to undefined
name 'Func'.

The Executor requirements table entries for
'dispatch', 'post' and 'defer' refer to an undefined

name 'Func', in
'DECAY_COPY(forward<Func>(f))'. This name is

not listed in the paragraph preceding the table.

Fix the requirements table so that either the name
'Func' is defined, or so that the requirements for

'dispatch', 'post' and 'defer' are specified without
referring to this type.

Accepted.

See P0742R0.

US
011

 13.02.2

async.reqmts

.executor

Table 4 ge Without knowing more about what kind of executor

is being used, a user will have difficulty deciding

which of the three functions to use to add a task to

an executor. It is preferable to limit the options for

adding tasks to a generic executor. Concrete

executors can add additional functions if required.

Remove the defer function from executors, as that

is the least well-defined. This would match the

existing Boost ASIO implementation.

Accepted with modifications.

See P0746R0.

US
012

 13.02.3

async.reqmts

.executioncon

text

Table 5 te Missing ~ in row 2 x. X() should be x.~X() Accepted.

Editorial.

US
013

 13.02.4

async.reqmts

.service

paragraph 5 te "user-defined function objects" - user defined is

possibly over-specification. In other parts of the TS

it refers to types not specified by this TS. If there

are function objects defined in the standard, they

should also be destroyed.

remove "user-defined" Accepted.

See P0742R0.

US
014

 13.02.7.12

async.reqmts

.async.compl

etion

Para 2 te This seems to be respecifying INVOKE Reword using INVOKE Rejected.

There was no consensus to

adopt this change.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0742r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0746r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0742r0.html

Template for comments and secretariat observations Date:2017-11-24 Document: WG21 N4708 Project: 19216

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 4 of 10

GB 6
015

 13.07

 Te Reentrancy and use_service/make_service.

The intention is that both use_service and

make_service may make nested calls (from the
Service constructor) to use_service or

make_service. Obviously these nested calls will
require a different Service template argument. I am

uncertain if calling these function templates with
different template arguments counts as recursive

reentrance, but if it does then we may need to add
a sentence explicitly specifying that this is

permitted.

Decide if it's needed and add a suitable sentence. Accepted.

See P0748R0.

GB 7
016

 14.02.1

 Te run()/run_one() specification overly restrictive on
users.

Both the run() and run_one() functions include the

following statement:

"Must not be called from a thread that is currently
calling a run function."

This restriction was originally added as a way to

prevent users from entering a kind of "deadlock".
This is because run() and run_one() can block until

the io_context runs out of work. Since outstanding
work includes currently executing function objects,

if a function object makes a nested call to
run()/run_one() that nested call could block forever

as the work count can never reach zero.

However, it has been brought to Chris Kohlhoff's
attention by users that there are valid use cases

for making these nested calls. Deadlock can be
avoided if some other condition will cause

run()/run_one() to exit (e.g. an exception, explicit
call to stop, run_one finished running a single

function, etc). This condition can be known ahead
of time by the user.

Strike those sentences from both those places.
Make it the responsibility of the user to avoid the

conditions for deadlock.

Accepted.

See P0748R0.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0748r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0748r0.html

Template for comments and secretariat observations Date:2017-11-24 Document: WG21 N4708 Project: 19216

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 5 of 10

The existing implementation in asio does not make

any beneficial use of this restriction.

GB 8
017

 14.02.1

 Te Reentrancy and run functions.

The intention is that the run functions may be

recursively reentered. We may want add a
sentence explicitly specifying this.

Explicitly specify that run functions can be
recursively re-entered.

Accepted.

See P0748R0.

GB 9
018

 16 Te user-provided overloads of buffer_size intended?

Is it intended that users can provide overloads of

buffer_size for user-defined buffer sequence
types? Is it something we should consider? I'm

thinking about basic_streambuf and user defined
alternatives, it can compute buffer_size for its input

and output sequences in constant time.

Consider making buffer_size a customization point. Accepted.

See P0729R0

GB
10
019

 16.02

 Te Relax strict aliasing requirement for user-defined
buffer sequence iterators.

See LWG issue 2779.

See LWG issue 2779. Accepted.

See LWG DR 2779.

GB
11
020

 16.02, 16.7

 Te Consider adding noexcept to buffer sequence
requirements

[buffer.reqmts.mutablebuffersequence],
[buffer.reqmts.constbuffersequence],

[buffer.seq.access]

Adding "Shall not exit via an exception." to the the
requirements for net::buffer_sequence_begin(x)

and 'net::buffer_sequence_end(x).

Requiring that the conversion of the iterator value

type to const_buffer or mutable_buffer should not
exit via exception.

(And perhaps place the same requirement on the
iterator traversal and dereference too, although I'm

not sure if this is already implied elsewhere in the
standard?)

Adding noexcept to the buffer sequence access
functions.

The current implementation in asio assumes that
these never throw, and in general I think low level

buffer operations should not throw.

Accepted.

See P0742R0.

US
021

 16.02.1

16.2.2

 te buffer.requirements.mutablebuffersequence

buffer.requirements.constbuffersequence

Please address LEWG 2779. Accepted.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0748r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0729r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-active.html#2779
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0742r0.html

Template for comments and secretariat observations Date:2017-11-24 Document: WG21 N4708 Project: 19216

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 6 of 10

 See LWG DR 2779.

GB
12
022

 16.05

 Te const_buffer is a view

const_buffer [buffer.const] is a non-owning type
that consists of a pointer and a size.

In the same vein, it would make sense to rename
mutable_buffer [buffer.mutable] to something like

buffer_span. While there is no naming precedence
for this in C++17, there are various span proposals

(e.g. P0122R1 and P0123R1.)

Consider renaming const_buffer to buffer_view

partly to indicate that users must keep the
underlying, owning buffer alive during operations

that involve const_buffer, and partly for naming
consistency with string_view.

Rejected.

There was no consensus to

adopt this change.

US
023

 16.05
[buffers.const
]

 ed const_buffer operator+= is missing from the index
of library names

Add const_buffer operator+= to the index of library
names.

Accepted.

GB
13
024

 18 Te The derived socket types basic_datagram_socket
and basic_stream_socket should specify that their

native_handle_type is the same as
basic_socket::native_handle_type.

Add such specification Accepted.

See P0742R0..

GB
14
025

 18.05

 Te Add integer_option helper.

When using socket options that are not defined by
[socket.opt], users have to create their own class

that follows the GettableSocketOption?
[socket.reqmts.gettablesocketoption] or

SettableSocketOption?
[socket.reqmts.settablesocketoption] concepts.

As the majority of socket options are integral, it
would ease the burden of using such socket

options if an integer_option helper class was
available (basically the same as

asio::detail::socket_option::integer.) Its use would
boil down to:

using maximum_segment_size_type =
net::integer_option<IPPROTO_TCP,

TCP_MAXSEG>;

maximum_segment_size_type mtu;

socket.get_option(mtu);

A similar helper class for boolean socket options

 Rejected.

There was no consensus to

adopt this change.

http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-active.html#2779
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0742r0.html

Template for comments and secretariat observations Date:2017-11-24 Document: WG21 N4708 Project: 19216

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 7 of 10

could also be added.

GB
15
026

 18.06, 18.9

 Te Consider adding release() member functions to
basic_socket and basic_socket_acceptor

Historically, Asio has not provided this facility as it
could not be portably implemented using the

preferred OS-specific mechanisms. Specifically, on
Windows, once a socket was associated to an I/O

completion port it could not be disassociated. This
means that the socket could not be truly released

for arbitrary use by the user. However, as of
Windows 8.1, the ability to disassociate a socket is

available (via the kernel API
NtSetInformationFile?). This means that release()

can be portably implemented.

Add the following member functions to both
basic_socket and basic_socket_acceptor:

native_handle_type release();

native_handle_type release(error_code& ec);

with effects that any pending asynchronous
operations are cancelled and ownership of the

native handle is transferred to the caller.

Accepted.

See P0747R1.

GB
16
027

 18.06, 18.9

 Te Consider adding constructors to basic_socket and

basic_socket_acceptor to move a socket to
another io_context

Historically, Asio has not provided this facility as it
could not be portably implemented using the

preferred OS-specific mechanisms. Specifically, on
Windows, once a socket was associated to an I/O

completion port it could not be disassociated. This
means that the socket could not be moved from

one io_context to another. However, as of
Windows 8.1, the ability to disassociate a socket is

available (via the kernel API
NtSetInformationFile?). This means that the ability

to move sockets between io_contexts can be
portably implemented.

Add constructors to basic_socket (and to derived

classes basic_stream_socket,
basic_datagram_socket), and to

basic_socket_acceptor, e.g.:

basic_socket(io_context& ctx, basic_socket&& rhs);

with effect that pending asynchronous operations
are cancelled on rhs, and then ownership of the

underlying socket is transferred to the newly
created socket object with the associated

io_context.

Rejected.

There was no consensus to
make this change.

GB
17
028

 18.09.1

 Te [socket.acceptor.cons] move ctor missing

postcondition.

The postconditions for the basic_socket_acceptor

move ctor don't have any postconditions on
native_handle().

Add "native_handle()} returns the prior value of

rhs.native_handle()."

Accepted.

See P0742R0..

GB
18
029

 19.01.1

 Te [socket.streambuf.cons] Add missing error()
postconditions.

The basic_socketstreambuf constructors do not

Add "and !error()" to paragraphs 2 and 4. Add
"error() == rhs_p.error()" and "!rhs_a.error()" to

paragraph 6.

Accepted.

See P0742R0.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0747r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0742r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0742r0.html

Template for comments and secretariat observations Date:2017-11-24 Document: WG21 N4708 Project: 19216

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 8 of 10

 give any postconditions for the ec_ member.

GB
19
030

 19.01.1

 Te [socket.streambuf.cons] Cover changes to rhs in
operator= effects.

The assignment operator for
basic_socketstreambuf doesn't state the effects on

the RHS.

Change "*this has the observable state it would
have had if it had been move constructed from rhs"

to "*this and rhs have the observable state they
would have had if *this had been move constructed

from rhs"

Accepted.

See P0742R0.

US
031

 20.01

socket.algo.c

onnect

para 1 and 2 te template parameter InputIterator not used in

declaration, but EndpointSequence is.

change class InputIterator to class
EndpointSequence in error code versions.

Accepted.

Editorial.

US
032

 20.02

socket.algo.a

sync.connect

Para 1 te The second version of async_connect also uses

InputIterator as the template parameter, where it

should be EndpointSequence.

change class InputIterator to class

EndpointSequence
Accepted.

Editorial.

GB
20
033

 21.01

 Te Shorten ip::resolver_errc enumerator names.

These enumerator names predate enum classes

as a language feature and were so named to
eliminate likely name clashes with other entities in

the same namespace. The enumerator
"host_not_found_try_again" is particularly long and

could be shortened.

Rename the enumerator
"host_not_found_try_again" to "try_again".

Rejected.

There was no consensus to

adopt this change.

GB
21
034

 21.04.3,
21.6.3

 Te Consider ip::address::is_loopback() and

ip::address_v6::is_loopback() behaviour for IPv4-
mapped IPv6 addresses

Currently the ip::address_v6::is_loopback() and
ip::address::is_loopback() functions return false for

an IPv4-mapped IPv6 address that maps IPv4
loopback. This behaviour follows the

implementation of the IN6_IS_ADDR_LOOPBACK
macro and RFC 4291.

An Asio user has proposed that these functions
should return true for IPv4 loopback addresses

that are mapped to IPv4-mapped IPv6 address.

Consider whether to alter the specification of

ip::address::is_loopback() and
ip::address_v6::is_loopback() such that they

additionally return true if passed an IPv4 loopback
address as an IPv4-mapped IPV6 address.

Rejected.

There was no consensus to

adopt this change.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0742r0.html

Template for comments and secretariat observations Date:2017-11-24 Document: WG21 N4708 Project: 19216

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 9 of 10

US
035

 21.11
[internet.netw
ork.v4]

 ed The argument name in operator<< is not
consistent with the argument name in operator<<
in [internet.network.v4.io]

Change the argument name from “addr” to “net” Accepted.

US
036

 21.12
[internet.netw
ork.v6]

 ed The argument name in operator<< is not
consistent with the argument name in operator<<
in [internet.network.v6.io]

Change the argument name from “addr” to “net” Accepted.

US
037

 21.12,
21.12.04
[internet.netw
ork.v6]

 ed There is a cut-and-paste error in in the declaration
of make_network_v6. “string_v6” has been used
instead of “string_view”.

Change the occurrences of “const string_v6&” to
“string_view”

Accepted.

US
038

 21.21.01
[internet.multi
cast.outboun
d]

 ed There is a cut-and-paste error in the description of
the name() member function. The document says
“*_MULTICAST_HOPS” where “*_MULTICAST_IF”
is intended.

Change “IPV6_MULTICAST_HOPS” to
“IPV6_MULTICAST_IF”, and
“IP_MULTICAST_HOPS” to “IP_MULtiCAST_IF”

Accepted.

D:\ISO\data\prod_iso_comment-collation\work\temp\ISO_IEC PDTS 19216_AFNOR.docx: Collation successful

D:\ISO\data\prod_iso_comment-collation\work\temp\ISO_IEC PDTS 19216_ANSI.docx: Collation successful

D:\ISO\data\prod_iso_comment-collation\work\temp\ISO_IEC PDTS 19216_BSI.doc: Collation successful

D:\ISO\data\prod_iso_comment-collation\work\temp\ISO_IEC PDTS 19216_SCC.doc: Collation successful

Collation of files was successful. Number of collated files: 4

SELECTED (number of files): 4

PASSED TEST (number of files): 4

FAILED TEST (number of files): 0

Template for comments and secretariat observations Date:2017-11-24 Document: WG21 N4708 Project: 19216

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 10 of 10

CCT - Version 4.0/2015

