
Doc No: WG21 N4857

Title: WG21 Responses to National Body Comments, ISO/IEC PTDS 23619, C++ Extensions

for Reflection

Date: Mar 3, 2020

Reply to the Attention of: Barry Hedquist, beh@peren.com

Attached please find the WG21 Responses to National Body Comments for ISO/IEC SC22

N5315, PDTS 23619, Information Technology -- Technical Specification -- C++ Extensions for

Reflection.

Template for comments and secretariat observations Date:2018-05-14 Document: SC22 N5315 Project: 23619

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 1 of 18

CA 3

001

 02

Paragraph 1 ge The use of WG 21 document N4750 as the base
document implies that it, as modified by the

instructions contained in the document under
ballot, will be elevated in status to that of a

Technical Specification.

Separately ballot N4750 as a Technical
Specification if it would effectively be such.

Accept with Modification

Resolved by instead using
C++14 and the Coroutines
TS as base documents.

CA 2

002

 02

Paragraph 1 ed WG 21 document N4750 is a working draft. ISO
and IEC normatively referenced documents shall
have reached at least the enquiry stage (as per the
ISO/IEC Directives, Part 2:2018).

Rebase the Technical Specification on an
appropriate document. For example, the DIS for the
revision of ISO/IEC 14882 that is under way.

Accept with Modification

Resolved by instead using
C++14 and the Coroutines
TS as base documents.

US
003

 02

Paragraph 3 ed The technical specification should be referred to as
“this document” as opposed to “this Technical
Specification”.

Use “this document” in place of “this Technical
Specification”.

Accept

CH
004

7 04.03

 te No feature-testing macro has been provided to
allow code to test the availability of this feature.

Consider adding a feature-test macro. Accept with Modification

See P1390R1

CH
005

21 06

1 te Consider including namespace-alias in alias-

declaration, such that reflect::Alias matches alias-
declaration.

Include namespace-alias in alias-declaration.
Adjust all uses of alias-declaration denoting a type.

Rejected

An alias-declaration is not a
namespace-alias.

CH
006

6 06

1 te The newly introduced name “alias” is ambiguous
as it might include namespace aliases.

Consider renaming "alias" to "type alias" to clearly

disambiguate it from namespace aliases.

Rejected

The term alias can also refer
to variable aliases.

Clarified by modifying the
example.

See P1390R1

US
007

 06.02

Paragraph 1 ed The only normative use of “static variable” in
N4750 refers to a local static variable.

Use “variable of static storage duration” in place of
“static variable”.

Accepted

CA 4

008

 08

 te There is no update to the definition of “potentially

constant evaluated” even though constant
evaluation can be required for the determination of

whether the meta-object type associated with a
reflexpr-qualifier whose reflexpr-operand is an

expression would satisfy Constant.

Update the definition of “potentially constant
evaluated” to account for this situation, explaining
the behaviour of cases like the following:

struct A {

 A() = default;

 template <typename T>

Accept with Modification

See P1390R1

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1390r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1390r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1390r1.html

Template for comments and secretariat observations Date:2018-05-14 Document: SC22 N5315 Project: 23619

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 2 of 18

 constexpr A(T &) {

 static_assert(T::okay);

 }

};

constexpr int foo(A) {

 return 42;

}

auto *g(A a) {

 return static_cast<

 reflexpr(foo(a)) *

 >(0);

}

template <reflect::Constant T>

void f(T *);

void bar() { f(g({})); }

PL
009

 10.01.7.2

10.1.7.6

 te In [dcl.type.reflexpr]: "The type specified by the
reflexpr-specifier is implementation-defined." –

should we say "implementation-defined"? I
understand this to mean "implementations must

define what the type is", and that seems wrong.
Same in [dcl.type.simple]: "For a reflexpr-operand

x, the type denoted by reflexpr(x) is an
implementation-defined type [...]".

Change “implementation-defined” to “unspecified”. Accept with Modification

See P1390R1

CH
010

25 10.01.7.2

1 te The grammar seems to be missing a way to allow

reflexpr(A::template B<C>), which could otherwise
be valid and necessary if A is a dependent type

and the containing template can be instantiated
such that A is a class type and A::B names a static

data member template.

Consider allowing it. Accept

CA 5

011

 10.01.7.2

Paragraph 1 te The reflexpr-operand grammar is ambiguous

between the type-id production and the nested-
name-specifieropt identifier and nested-name-

specifieropt simple-template-id productions. For
example, an identifier may be a class-name and

thus also a type-id.

The latter two productions of reflexpr-operand are

Remove the latter two productions in favour of id-
expression. Adjust Table 12 accordingly.

Accept

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1390r1.html

Template for comments and secretariat observations Date:2018-05-14 Document: SC22 N5315 Project: 23619

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 3 of 18

additionally problematic in that they are not
established to be expression operands.

CH
012

20 10.01.7.6

 ed Paragraph numbers are missing. Add paragraph numbers. Accept with Modification

Added paragraph numbers
both here and
[reflect.general].

CH
013

19 10.01.7.6

 There is no “function prototype scope”. Replace “function prototype scope” by “function
parameter scope”

Accept

CH
014

12 10.01.7.6

 ed Use of free text where grammar term was
intended.

parenthisized expression, function call
expresion or functional type conversion
expression.

should use the grammar terms, thus hyphenated
and italics:

parenthesized expression, function-call-expression

or

functional-type-conv-expression

Accepted with modification.
Used the grammar term for
function-call-expression
and *functional-type-conv-
expression*, but not
parenthesized expression.
The latter has precedent for
not being used with italics.

CH
015

11 10.01.7.6

 ed parenthisized and expresion are misspelled. Fix the spelling. Accept

CA 12

016

 10.01.7.6

Paragraph 1 te There is no mention in the added subclause that a
reflexpr-operand that is a constant expression

produces a meta-object type that satisfies
Constant.

Add a sentence indicating this fact to the new

subclause in question.

Accept

CA 11

017

 10.01.7.6

Paragraph 1 te There is no mention in the added subclause that a
reflexpr-operand in the form of a decltype-specifier
produces a meta-object type that satisfies Alias.

Add a sentence indicating this fact to the new

subclause in question.

Accept

CA 10

018
 10.01.7.6

Paragraph 1 ed The last sentence refers to Alias without

qualifying it with reflect.

Replace “Alias” with “reflect::Alias”. Accept

Template for comments and secretariat observations Date:2018-05-14 Document: SC22 N5315 Project: 23619

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 4 of 18

CA 9

019

 10.01.7.6

Paragraph 1 te The following wording implies a restriction on
parenthesized expressions in general (without

sufficient qualification):

For a parenthesized expression (E), whether or

not itself nested inside a parenthesized
expression, the expression E shall be either a

parenthesized expression, a function-call-

expression or a functional-type-conv-expression;

otherwise the program is ill-formed.

Express the intended restriction using the following:

For a reflexpr-operand that is a parenthesized

expression (E), E shall be a function-call-

expression, functional-type-conv-expression, or an
expression (E′) that satisfies the requirements for

being an reflexpr-operand.

Accept with Modification

See P1390R1

CA 8

020

 10.01.7.6

Paragraph 1 ed There is a typo: “parenthisized expression”. Replace “parenthisized expression” with
“parenthesized expression”.

Accept

CA 7

021

 10.01.7.6

Paragraph 1 te The directionality of the reflection-related relation is
not consistent between the various bullets.

Transformations applied to A yield B (but not vice
versa) in at least the following cases:

 A: variable, B: the variable’s type

 A: enumeration, B: the underlying type

 A: class, B: a base class

 A: non-template alias, B: the designated
entity

Transformations applied to B yield A (but not vice

versa) in at least the following cases:

 B: parenthesized expression, A: the

subexpression within the parentheses

 B: functional-type-conv-expression, A: the

type specified

 B: function-call-expression, A: the function

called

 B: function, A: the return type

 B: function, A: the type of a parameter

Ensure that every bullet is consistently written such
that transformations applied to B yield A.

Accept with Modification

See P1390R1

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1390r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1390r1.html

Template for comments and secretariat observations Date:2018-05-14 Document: SC22 N5315 Project: 23619

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 5 of 18

 B: function, A: the type of the function

CA 6

022

 10.01.7.6

Paragraph 1 ed The added subclause should be referred to as a

subclause (as opposed to a section).

Replace “section” with “subclause”. Accept

US
023

 10.01.7.6

Paragraph 1 ed In bullet 1.13, add “a” before “parameter type”. Say “[...] the return type, a parameter type, or the
function type [...]”.

Accept

US
024

 10.01.7.6

Paragraph 1 te The intended meaning of “entity [...] at block
scope” is unclear.

Use “local variable” and “local class”, etc. if the
intent is to refer to such.

Accept with Modification

See P1390R1

US
025

 10.01.7.6

Paragraph 1 te It is unclear whether the restriction on the reflexpr-
operand in relation to block scope is meant to be a

more general restriction that extends to entities
and aliases that are reflection-related to the
operand.

Add at least a note with an example that explains
the rule and its operation in cases like the following:

void f() {

 using namespace

std::experimental::reflect;

 enum class E : int { E0 };

 using MyEnum0 = reflexpr(E); //

ill-formed

 using MyEnum =

get_type_t<reflexpr(E::E0)>; //

perhaps meant to be ill-formed?

}

Accept with Modification

See P1390R1

CH
026

26 17.07.2.1

09.10

te A value-dependent constant expression is missing. Add “or a value-dependent constant expression” Accept

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1390r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1390r1.html

Template for comments and secretariat observations Date:2018-05-14 Document: SC22 N5315 Project: 23619

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 6 of 18

CA 13

027

 17.07.2.1

Paragraph 1 te The cases where the operand of reflexpr is a
function-call-expression or functional-type-conv-

expression are not addressed by the list.

Add a new bullet after 9.9:

 denoted by reflexpr(operand), where

operand is a type-dependent expression
or a (possibly parenthesized) functional-

type-conv-expression with at least one

type-dependent immediate subexpression,

or

 […]

Accept

CA 14

028

 20.05.1

 ge A freestanding implementation may claim
conformance to the document under review

without providing meaningful functionality.

Add <experimental/reflect> to the table of C++

headers for freestanding implementations.

Accept with Modification

See P1390R1

CH
029

1 21.12 te constexpr variables should be inline. Consider making all `constexpr auto` variables
inline constexpr variables.

Rejected

Inline is not needed

CA 16

030

 21.12 te The synopsis presents comments indicating that

certain concepts “refine” other concepts. These
comments imply subsumption relationships;

however, the definition of the concepts does not
always support the existence of the implied

subsumption relationships.

For example, Enumerator is said to refine

Constant and likewise Variable with respect to

ScopeMember; however, in both cases, the detailed

description does not indicate a subsumption
relation between the concept being defined and

the concept said to be refined.

The mathematical truth of one concept being

always satisfied when another concept is satisfied
is insufficient to establish a subsumption

relationship.

Make it so that the intended subsumption

relationships are expressed by the detailed
descriptions. Remove the comments or make it so

that they minimally express all of the subsumption
relationships. Note that the definition of Constant

does not admit the subsumption relationship with
Enumerator. An enumerator is not an expression

(and therefore not a constant expression).

Accept with Modification

See P1390R1

CA 15

031

 21.12 te Additional clarity is needed over whether member
using-declarations are reflected by meta-object

types satisfying Alias when applying

transformations like
get_public_member_functions upon a Class.

Add a statement to clarify. Accept with Modification

See P1390R1

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1390r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1390r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1390r1.html

Template for comments and secretariat observations Date:2018-05-14 Document: SC22 N5315 Project: 23619

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 7 of 18

Similarly, the same for an inherited constructor and
get_constructor on a

FunctionalTypeConversion.

CH
032

5 21.12.02

 te constexpr variables of operations should be
templated on the concept corresponding to the
operation, instead of `<class T>`

Change `template <class T> constexpr auto
is_public_v = is_public<T>::value;` to ` template

<Object T> constexpr auto is_public_v =
is_public<T>::value;`; similar for many others.

Accept with Modification

See P1390R1

CH
033

2 21.12.02

 ed The hierarchy of reflection concepts is not very
accessible, despite being a key ingredient in the
mental model.

Add a graphic representation of "inheritance" of

concepts.

Reject

No consensus for change.

CA 17

034

 21.12.02

 ed The synopsis presents “forward declarations” of

concepts, which is novel in the context of N4750.

Provide a definition of the concept in the synopsis

in the style of [concepts.syn] in WG 21 document
N4778.

Accept

PL
035

 21.12.02

 te [reflect.synopsis],

Concept Constructor refines Callable and Record

Member.

This means that there is no supported operation
is_defaulted and is_implicitly_declared for
Constructor type The aforementioned operations
are defined for SpecialMemberFunction concept
and indirectly supported in Destructor

Thus current definition for Constructor looks
incomplete and it is proposed to add
SpecialMemberFunction to a list of refined concepts
to ad support for missing but valuable operations on
a reflected constructor.

Reject

See P1390R1

PL
036

 21.12.02

 te The fundamental concept in this document is
called Object. The term "object" has a defined
meaning in the c++ standard [intro.object] different
from that, and the proposal in the text part uses the
term meta-object.

Change the concept name Object to Metaobject Reject

See P1390R1

JP
037

 21.12.02

Para 1 ed In header contents for 21.12.4.2, the last
statement, “constexpr auto” for
“unpack_sequence_t” seems to be typo, because
it’s for “type”, not “value”.

It would be “using” instead of “constexpr auto” Accept

CH
038

14 21.12.02,
21.12.3.10

 ed Synopsis and defining sub-clause are inconsistent:
“// refines Named and Scope” versus “template

<class T> concept Namespace = Scope<T> &&
see below ;“

Depending on the outcome of CH13, correct the
defining sub-clause or correct the synopsis.

Accept

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1390r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1390r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1390r1.html

Template for comments and secretariat observations Date:2018-05-14 Document: SC22 N5315 Project: 23619

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 8 of 18

CH
039

15 21.12.02,
21.12.3.9

 te Decide whether `Typed` should refine `Named`, as
specified in the defining sub-clause, or `Object`, as
shown in the comment in the synopsis

Change
// refines Object
to
// refines Named
in the synopsis, unless the defining sub-clause
needs to be changed.

Accept

CH
040

8 21.12.03

 ed It is surprising and potentially confusing to see e.g.
`is_enum` which exists already in namespace
`std`.

Consider adding a Note as written rationale for
reusing the identifier, and their relation to the
operation in namespace `std`.

Accept with Modification

See P1390R1

CH
041

13 21.12.03.10

 te Namespace should refine Named: exposing their
name is a key feature for reflection.

Change the definition of Namespace to

template <class T> concept Namespace =
Named<T> && Scope<T> && see below ;

Accept

CH
042

3 21.12.03.18

 te A base class has a name. Consider making `Base` require `Named` instead of
just `Object`. `get_name` could return the injected
class name.

Reject

A ‘base’ in this case has a
class which is accessible
with get_class. This class
then has a name.

CH
043

17 21.12.03.6

 te Enumerator needs refinement regarding Constant
(see also current inconsistency with synopsis).

Change

template <class T> concept Enumerator = Typed<T> &&

ScopeMember<T> && see below ;

to

template <class T> concept Enumerator =

ScopeMember<T> && Constant<T> && see below ;

Accept

CH
044

16 21.12.03.7

 te While the synopsis (correctly) says that `Variable`
refines `Typed` and `ScopeMember`, the defining

sub-clause only mentions `Typed`.

Change
template <class T> concept Variable = Typed<T>

&& see below ;
to

template <class T> concept Variable = Typed<T>

Accept

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1390r1.html

Template for comments and secretariat observations Date:2018-05-14 Document: SC22 N5315 Project: 23619

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 9 of 18

&& ScopeMember<T> && see below ;

or adjust the synopsis.

CA 19

045

 21.12.04

 te Where NTBS is mentioned in the document under
ballot, the encoding used for the string’s value is

unspecified.

Specify that the strings are first formed using the
basic source character set (with universal-

character-names as necessary) then mapped in the

manner applied to string literals with no encoding

prefix in phases 5 and 6 of translation.

Accept with Modification

See P1390R1

CA 18

046

 21.12.04

 te Where NTBS is mentioned in the document under

ballot, it is preferable that the string is in the initial
shift state prior to the terminating NUL character.

Use NTMBS instead of NTBS. Accept with Modification

See P1390R1

PL
047

 21.12.04

 te regarding ill-formed
diagnostic should be required to fail early even if
this costs compilation time. Without this it would be
very easy to cause UB.

This part should sound like

“If subsequent specializations of operations on the
same reflected entity could give different constant
expression results(...), the program is ill-formed.”

Reject

It is unclear how (or if) such
a thing can be implemented.
At any rate, this is something
that can be added in the
future if we get
implementation experience
that suggests this is possible
and desirable.

CH
048

10 21.12.04

3 ed The comment has a line break. Change

// ill-formed,
no diagnostic required

to

// ill-formed,
// no diagnostic required

Accept

CA 20

049

 21.12.04.1

 te The wording refers to “most recent”. What is the
“most recent” declaration in the following?

#line 6

void g(char (*)[7]);

class A {

 static void f() {

 void g(char (*)[GLine]);

Replace the mentions of “most recent” with
something that is more well-defined (even if less

specific).

Accept with Modification

See P1390R1

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1390r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1390r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1390r1.html

Template for comments and secretariat observations Date:2018-05-14 Document: SC22 N5315 Project: 23619

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 10 of 18

 g(0);

 }

 static void h();

 static constexpr auto GLine =

reflect::get_source_line_v<reflect

::get_callable_t<reflexpr(::g(0))>

>;

};

void A::h() { f(); }

CH
050

32 21.12.04.10

1 te get_class_t<T> might satisfy Alias, because it is
“alias to reflexpr(X)” (thus an immediate reflexpr

invocation), as per 21.12.3.4/2. This was likely not
the intent.

Consider rewording to “type is an alias to a meta-
object type that reflects X”

Accept with Modification

See P1390R1

CA 37

051

 21.12.04.16

Paragraph 1 ed The statement regarding conditions that render the
program is ill-formed appears under the Remarks

element in the description of other operations

within the document under ballot.

Place the statement under a Remarks element. Accept

CA 36

052

 21.12.04.16

Paragraph 1 te Guaranteed copy elision should be mentioned. Mirroring the example in N4750 [dcl.init] paragraph
17 bullet 17.6.1, add an example clarifying that
get_constructor<get_subexpression_t<refle
xpr((T(T(T()))))>> is ill-formed because the

functional-type-conv-expression does not perform

overload resolution for a constructor.

Accept with Modification

See P1390R1

CA 35

053

 21.12.04.16

Paragraph 1 te It is unclear whether get_constructor is expected to
be a valid operation in cases where reference

binding involves overload resolution for a
constructor.

Clarify the status of the following:

struct S { S(const std::string &); };

template <typename T>

auto *f(T &&t) {

 return

(get_constructor_t<reflexpr(T{"Popeye"

Accept with Modification

See P1390R1

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1390r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1390r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1390r1.html

Template for comments and secretariat observations Date:2018-05-14 Document: SC22 N5315 Project: 23619

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 11 of 18

})> *)0;

}

bool g(const S &s) { return f(s); }

PL
054

 21.12.04.18

 te is_override is defined as true if the respective
member function is annotated with override and
not when it is an actual override. The latter
information seems unavailable. It seems more
rational to be asking whether a function is an
actual override.

Consider changing the meaning of is_override to
reflect on actual overrides or introducing a second
trait for that purpose.

Accept with Modification

See P1390R1

CH
055

31 21.12.04.2

3 ed Other sub-clauses mention “elements”, this one
does not.

Rephrse the defining sub-clause of
reflect::unpack_sequence to also use the word

"elements".

Accept

CH
056

18 21.12.04.2

3 te Unpack_sequence_t is a variable template
initialized by a type.

In [reflect.synopsis], the
template unpack_sequence_t is defined as follows:

template <template <class...> class Tpl,
ObjectSequence T>

constexpr auto unpack_sequence_t =
unpack_sequence<Tpl, T>::type;

but according to [reflect.ops.objseq] p3:

All specializations of unpack_sequence<Tpl, T>

shall meet the TransformationTrait requirements
(23.15.1). The nested type named type is an alias

to the template Tpl specialized
with the types in T.

So it seems that what unpack_sequence_t actually
defines would be a type alias instead of a variable

template and should be corrected to

template <template <class...> class Tpl,

ObjectSequence T>

using unpack_sequence_t = typename

unpack_sequence<Tpl, T>::type;

Accept with Modification

See P1390R1

CH
057

28 21.12.04.3

02.1

te Compilers generate “names” for unnamed entities,
such as "(lambda at main.cpp:7:14)".

Consider allowing implementation-defined values
for get_display_name on unnamed entities.

Reject

Lambda objects are not
unnamed entities.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1390r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1390r1.html

Template for comments and secretariat observations Date:2018-05-14 Document: SC22 N5315 Project: 23619

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 12 of 18

See P1390R1

CH
058

29 21.12.04.3

02.X

te If get_name_v<reflexpr(n::A<int>)> is "A" for a

class template A, the same should probably apply
for an alias template or variable template A.

Consider specifying or clarifying the “name” of

template specializations, for functions and
variables.

Accept with Modification

See P1390R1

CH
059

9 21.12.04.3

5 ed Inconsistent indentation Adjust indentation to match the surrounding text. Accept

CA 32

060

 21.12.04.3

Paragraph 2 te There is no non-empty value specified for
get_name<T> in the case of a literal operator.

Add a bullet to provide the preferred format for the

case of a literal operator.

Accept with Modification

See P1390R1

CA 31

061

 21.12.04.3

Paragraph 2 te Unlike for specializations of class templates and

template functions, the case of an instantiated
variable is not similarly handled.

Add a bullet for variable template specializations. Accept with Modification

See P1390R1

CA 30

062

 21.12.04.3

Paragraph 2 ed Bullet 2.4.12 refers to the unqualified name of a
function parameter.

Replace “unqualified name” with “name” in said
bullet.

Accept

CA 29

063

 21.12.04.3

Paragraph 2 ed Bullet 2.4.6 refers to Table 9; however, the correct
table is Table 11.

Replace the reference to Table 9 with a reference
to Table 11.

Accept

CA 28

064

 21.12.04.3

Paragraph 2 te Bullet 2.4.6 refers to simple-type-specifiers (not the

grammar term, which does not end with an ‘s’) as a
kind of type.

Replace “all other simple-type-specifiers” with “a cv-

unqualified fundamental type other than
std::nullptr_t”.

Accept with Modification

See P1390R1

CA 27

065
 21.12.04.3

Paragraph 2 te Bullet 2.4.1 addresses neither the case of a
typedef declaration nor the case of an alias-

declaration. The spurious “alias” at the end of the

bullet indicates possible accidental truncation.

Replace “a type name introduced by a using-

declaration, alias” with “the type name introduced
by a using-declaration, alias-declaration, or a

typedef declaration”.

Accept with Modification

See P1390R1

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1390r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1390r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1390r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1390r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1390r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1390r1.html

Template for comments and secretariat observations Date:2018-05-14 Document: SC22 N5315 Project: 23619

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 13 of 18

CA 26

066

 21.12.04.3

Paragraph 2 te In bullet 2.4.1, a template type-parameter is not an

alias (see [basic]).

Split the template type-parameter case out to a

separate bullet.

Accept with Modification

See P1390R1

CA 25

067

 21.12.04.3

Paragraph 2 ed Bullet 2.4.1 for the case of “T reflecting an Alias”

is not meant for the case where T reflects a meta-

object type satisfying the Alias concept.

Replace “T reflecting an Alias” with “T reflecting an

alias ([basic])”.

Accept

CA 24

068

 21.12.04.3

Paragraph 2 te It is unclear what string is associated with

get_name as applied to a meta-object type
reflecting upon a specialization of a conversion

function template.

Add an example describing the string associated
with s in the following:

struct A { template <typename T>

operator T *(); };

const auto &s =

get_name_v<get_callable_t<reflexpr

(A().operator int *())>>;

Accept with Modification

See P1390R1

CA 23

069

 21.12.04.3

Paragraph 2 ed For bullet 2.4, the additional clarity of a string’s
value being a representation of an identifier would

be useful in the cases where that would be the

case.

Place the bullets that specify the string’s value to be
a representation of an identifier under a separate

bullet. Have that bullet indicate that the string’s
value is a representation of an identifier.

Reject

No consensus for this
change.

CA 22

070

 21.12.04.3

Paragraph 2 ed The sub-bullets under bullet 2.4 do not describe

disjoint cases and bullet 2.4 does not exclude
unnamed entities from its scope.

Reorganize the bullets in paragraph 2 to avoid

implicit ordering while minimizing the need to
introduce explicit ordering.

Accept with Modification

See P1390R1

CA 21

071

 21.12.04.3

Paragraph 2 ed Bullet 2.3 has text reading: “an array, pointer,
reference of function type, or a cv-qualified type”.

This is presumably meant to cover cv-qualified
types and compound types aside from classes,

unions, and enumerations; in which case, the “of”
in “reference of function type” is a typographical

error, and pointer-to-member types should be

Bullet 2.3 can be made redundant with bullet 2.5 by
changing bullet 2.4 to specify cv-unqualified on
each case of T reflecting a type. Apply said change

to bullet 2.4 and remove bullet 2.3.

Accept with Modification

See P1390R1

Non-editorial

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1390r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1390r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1390r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1390r1.html

Template for comments and secretariat observations Date:2018-05-14 Document: SC22 N5315 Project: 23619

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 14 of 18

mentioned.

CH
072

23 21.12.04.5

 te The name of the operation is_class clashes with
many other usages, e.g. in namespace std.
is_class and is_struct suggest a difference in the
underlying C++ entity.

Rename the operations is_class, is_struct into
uses_class_key, uses_struct_key, respectively.

Accept with Modification

See P1390R1

US
073

 21.12.04.5

Paragraph 7 ed The description of is_enum and is_union contains
confusing text such as “an enumeration type (a
union)”.

Follow the style used for is_class and is_struct, i.e.:

If T reflects an enumeration type (for
is_enum<T>) or a union type (for
is_union<T>) the base characteristic is
[...].

Reject

No consensus for change.

CH
074

27 21.12.04.6

 te 10.1.7.6 states that a reflected template type-

parameter satisfies both reflect::Type and
reflect::Alias. Alias refines ScopeMember; but the

operation get_scope_t<X> for X reflecting a
template type-parameter is not specified.

Specify it, likely representing the template class

specialization of the reflected template type-
parameter.

Accept with Modification

See P1390R1

US
075

 21.12.04.6

Paragraph 2 te It is unclear whether the parenthetical “(for the
function’s parameters)” is intended to be restrictive.
In other words, it is unclear whether the function
scope is only to be considered when T reflects a
function parameter.

Remove the parenthetical. If it is the case that
get_scope would only yield a Scope reflecting a
function scope when applied to a meta-object type
reflecting upon a function parameter, then add a
clearly non-normative note to that effect.

Accept with Modification

See P1390R1

CA 34

076

 21.12.04.7

Paragraph 2 ed The description folds multiple cases together using

parentheses like in the following: “all data
(function, including constructor and destructor)

members”. This use of parentheses does not help
clarity.

Split the description (in all of the affected bullets) so

that the parentheses are not necessary.
Alternatively, formulate the description with the use

of “respectively”.

Reject

The text is clear as written.

CA 33

077

 21.12.04.7

Paragraph 2 ed It would be more clear to indicate that members

inherited from a base class are also considered.

Replace “subset of non-template members” with

“subset of (possibly inherited ([class.derived])) non-
template members”.

Accept with Modification

See P1390R1

CH
078

30 21.12.04.7
and many

others

 te "The nested type named type is an alias to an
ObjectSequence specialized with..." is incorrect,

since the meta-object types are not template
arguments to ObjectSequence.

Consider: "The nested type named type is an alias
to a meta-object type satisfying ObjectSequence,

containing elements which reflect..." The phrase
"containing elements" matches with the phrase

"element[s] in" used to define reflect::get_size and
reflect::get_element.

Accept with Modification

See P1390R1

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1390r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1390r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1390r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1390r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1390r1.html

Template for comments and secretariat observations Date:2018-05-14 Document: SC22 N5315 Project: 23619

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 15 of 18

CH
079

4 21.12.04.9

 te No interface exists to determine whether a
Variable has thread storage duration.

Consider adding `is_thread_local<Variable>`. Accept with Modification

See P1390R1

CH
080

24 21.12.04.9

4 te Is the following ill-formed?

Namespace A {

 int x;
 int& ref = x;

 using MetaRef = reflexpr(ref);
 constexpr auto val =

reflect::get_pointer_v<MetaRef>;

}

Specify what happens for reference types. Possibly,
to clarify this comment: “reflect::get_pointer<T> is

ill-formed if T reflects a reference and the name of
the reference in a context with no lvalue-to-rvalue

conversion would not be a constant expression.”

Accept with Modification

See P1390R1

US
081

 21.12.04.9

Paragraph 4 ed There are no normative uses of “member variable”
in N4750.

Use “non-static data member” in place of “member
variable”.

Accept

CH
082

22 Annex C te The new keyword needs to be mentioned in Annex
C.

Edit paragraph 1 in C.5.1 Clause 5: lexical
conventions [diff.cpp17.lex]

After "The concept keyword is added to enable the

definition of concepts

(12.6.8)."

append " The reflexpr keyword is added to
introduce meta-data through a

reflexpr-specifier."

And

s/Valid ISO C++ 2017 code using concept or

requires as an identifier/Valid

ISO C++ 2017 code using concept , requires, or

reflexpr as an identifier/

Accept with Modification

See P1390R1

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1390r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1390r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1390r1.html

Template for comments and secretariat observations Date:2018-05-14 Document: SC22 N5315 Project: 23619

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 16 of 18

GB
083

 Annex C 05.1

Ge Add the new keyword, reflexpr, to the list in C.5.1
in the base document

Add an edit for paragraph 1 in C.5.1 Clause 5:
lexical conventions [diff.cpp17.lex]

After "The concept keyword is added to enable the
definition of concepts (12.6.8)."

append " The reflexpr keyword is added to
introduce meta-data through a reflexpr-specifier."

And

s/Valid ISO C++ 2017 code using concept or

requires as an identifier/Valid ISO C++ 2017 code
using concept, requires, or reflexpr as an identifier/

Accept with Modification

See P1390R1

GB
084

 Classes 10.1.7.6 Te The final paragraph 10.1.7.6 (final paragraph)

If the reflexpr operarand … or function prototype
scope (6.3.4)"

The base document does not describe “function
prototype scope” but 6.3.4 [basic.scope.param] but

it does describe "function parameter scope".

Replace "function prototype scope" with "function

parameter scope"

Accept with Modification

See P1390R1

CA 1

085

 General te Whether the ability to reflect upon
std::align_val_t without including <new> is

intended or not should be made clear.

Explicitly address cases like the following:

#include <experimental/reflect>

#include <stdio.h>

#include <stdlib.h>

struct A { template <typename T>

operator T(); };

template <typename T>

A::operator T() {

 using

std::experimental::reflect;

 printf("%s\n",

get_name_v<get_scope_t<get_aliased

_t<reflexpr(T)>>>);

 exit(0);

}

int main(void) {

 (void) ::operator

new(sizeof(int), A());

}

Accept with Modification

See P1390R1

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1390r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1390r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1390r1.html

Template for comments and secretariat observations Date:2018-05-14 Document: SC22 N5315 Project: 23619

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 17 of 18

GB
086

 General 04.2

Te The TS should define a feature test macro. I propose __cpp_reflect as a suitable name and
201811 as a suitable value.

Insert new 4.3 between 4.2 and 4.3:

4.3 Feature-testing recommendations

[intro.features]

1 An implementation that provides support for this

Technical Specification shall define the feature test

macro(s) in Table 2.

Table 2 — Feature-test macro(s)

Macro name Value

__cpp_reflect 201811

Accept with Modification

See P1390R1

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1390r1.html

Template for comments and secretariat observations Date:2018-05-14 Document: SC22 N5315 Project: 23619

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 18 of 18

ISO_IEC PDTS 23619 - JTC001-SC22-N5315_ANSI.docx: Collation successful

ISO_IEC PDTS 23619 - JTC001-SC22-N5315_BSI.doc: Collation successful

ISO_IEC PDTS 23619 - JTC001-SC22-N5315_JISC.doc: Collation successful

ISO_IEC PDTS 23619 - JTC001-SC22-N5315_PKN.doc: Collation successful

ISO_IEC PDTS 23619 - JTC001-SC22-N5315_SCC.doc: Collation successful

ISO_IEC PDTS 23619 - JTC001-SC22-N5315_SNV.doc: Collation successful

Collation of files was successful. Number of collated files: 6

SELECTED (number of files): 6

PASSED TEST (number of files conformed to CCT table model): 6

FAILED TEST (number of files conformed to CCT table model): 0

CCT - Version 2018.2

