Botet C++ generic match function P0050

Document number: P0050
Date: 2015-09-24
Project: ISO/IEC JTC1 SC22 WG21

Programming Language C++,
Library Evolution Working Group
Reply-to: Vicente J. Botet Escriba <vicente.botet@wanadoo.fr>

C++ generic match function
Vicente J. Botet Escriba

Experimental match function for C++17.

Contents
INEEOAUCTION. ...ttt ettt et et et e et e e bt e et e e bt e enbeesseesabeesaeeenbeesseesnseennaaans 1
MOtIVALION ANA SCOPEC....iiutiiiiieiieeiieeiteet ettt ettt et e et e et e e e e e be e st e esbeessaessseesseassseeseessseenseesssennsens 2
TULOTIAL ...ttt ettt et e et e et e et e e bt e e abe e bt e enbeesseeenbeenbeeenbeeaseesnteennaaans 2
Customizing the MatCh fUNCHION.c.cociiiiiieiiecie et be e e b e 2
Using the match function to InSPECt ONE SUM LYPL....cveeueiriiiriiriiriiiniiiieetete ettt 3
Using the match function to visit several SUM tyPeS........ccueevueeriieiiieniieeieerie e e e 4
DESIZN TALIONALL.eiiiiiiieiie ettt ettt ettt et e et e bt e st e et e e eabe e bt e enbeenbeesabeenneeeneeeneeas 5
ReSULt type OF MALCHoceviiiiiiiiciiec ettt et e e esab e e beeseaeenneas 5
Multiple cases OF OVETIOA.ccuiiiiiiiieiieee ettt ettt e sbeeeaeeebeeeaeeens 6
Grouping With OVETIOAdc.oooiiiiiiiiiiie et e teesaeeensee e 6
Order of parameters and fUNCtION NAME........cccueriiriiriiiiirieeet e 6
CONSE AWATE TNATCHETS.eeuiiiieiieieeie ettt ettt et e bt et e et e s bt e beentesaeenbeennesanens 7
VTTAAICS. ..ottt ettt ettt et et e et e e bt e eat e e bt e e st e e bt e ea bt e nhteenbeebteenbe e bt eenbeenneeenbeens 7
CUSTOMIZALION POINL....eeutiiiiiiieeiiiieertieesteeesteeerteeestteeetteesteeeesseeessseeeasseeessseeasseeensseesnsseesssesssseeenns 8
Grouping With OVETIoadcc.coiuiiiiiiiiiii ettt 9
Considering any type as a sum type with a single alternative............ccceeeveereiienienciieniecie e 9
SUM_tYPE AlEETNATIVES. ...eieiiieiiieiie ettt ettt ettt ettt e et e e be e e abeebeeenbeenseesateenseeenee 10
OPEIN POINLS.oeiiiiiiiieeiee ettt ettt e et e ettt e s ta e e e taeeenseeeanseeesssaeensseeensseeessaesnsseesnnseenn 10
Technical SPECIIICAtION.c.ciiiiiiiiiieri ettt st 11
Header <experimental/functional™ SyNOPSIS.......cc.eecvieriiiiiieriieiieiie ettt esiee e saee e eseeeseneens 11
Header <experimental/optional™ SyNOPSIS........cceeueriiririeniininienteieetese ettt 13
Header <experimental/variant™ SYNOPSIS......cc.eecueiriieriierieeiierieeieesiieeeeesieeeaeesseessaeenseessseesseenens 13
550710) (5300153 017218 o) 1 DO OO USRI SUPRUSRPRO 14
FUIRET WOTK ...ttt ettt ettt b et eatesaeebeeneas 14
ACKNOWIEAZEIMENLS. ...ttt ettt ettt et e e bt et e et e e s beeeabeesseesnbeesneeenseenene 14
RETEIENCES. ...ttt et e sb e et b e st e sbt e et enaeesateas 14
Introduction

This paper presents a proposal for generic match functions that allow to visit sum types
individually or by groups (product of sum types). It is similar to boost: :apply visitor

mailto:vicente.botet@wanadoo.fr

Botet C++ generic match function P0050

[boost.variant] and std: :experimental: :visit from [N4542], but works for any model of
sum type.

Motivation and Scope

Getting the value stored in sum types as variant<Ts...>or optional<T> needs to know
which type is stored in. Using visitation is a common technique that makes the access safer.

While the last variant proposal [N4542] includes visitation; it takes into account only visitation of
homogeneous variant types. The accepted optional class doesn't provides visitation, but it can be
added easily. Other classes, as the proposed expected class, could also have a visitation
functionality. The question is if we want to be able to visit at once several sum types, as variant,
optional, expected, and why not smart pointers.

std: :experimental: :apply () [N3915] can be seen as a particular case of visitation of
multiple types if we consider that any type can be seen as a sum type with a single alternative type.

Instead of a visit function, this proposal uses instead the match function that is used to inspect
some sum types.

Tutorial

Customizing the match function

The proposed match function works for sum types ST that have customized the following
overloaded function

template <class R, class F>
R match (ST consté&, F&&)

For example, we could customize boost: :variant as follows:

namespace boost {

template <class R, class F, class ...Ts >

R match(variant<Ts...> const& v, F&& f)

{ return apply visitor (std::forward<kF>(f), v); }
}

In addition we need to know the sum type alternatives if we want to use match with several sum
types. This must be done by specializing the meta-function sum type alternatives as
follows

template <class ...Ts >

struct sum type alternatives<variant<Ts...>>

{
using type = ...;
}

There must be defined specializations of the tuple-like helper meta-functions

std::tuple sizeand std::tuple element for the nested typedef t ype. In addition this
type must be a variadic template such as e.g.

Botet C++ generic match function P0050

template < class ...Ts >
struct type list {};

Using the match function to inspect one sum type

Given the boost: :variant sum type, we could just visit it using the proposed overload
function (See [P0051]).

boost::variant<int, X> a = 2;
boost::apply visitor (overload (
[](int 1)

{1},
[1(X consté& 1)

{

assert (false) ;

}

)y V)i

The same applies to the proposed std: :experimental::variant

std::experimental::variant<int, X> a = 2;
std: :experimental::visit (overload (
[](int 1)

{1,
[1(X consté& 1)
{

assert (false);

), a);

We can use in both cases the variadic match function

boost::variant<int, X> a = 2;
std: :experimental: :match(a,
[](int 1)

{1,
[1(X consté& 1)

{
assert (false);

}

)7

std::experimental::variant<int, X> a = 2;
std: :experimental: :match(a,
[](int 1)

{1,
[1(X consté& 1)

{

assert (false);
}
) 7

We can also use a single matcher

std::experimental::variant<int, X> a = 2;
std: :experimental: :match(a,

Botet C++ generic match function P0050

std: :experimental::overload (
[1(int 1)

{},
[1(X consté& 1)

{

assert (false);

}

))

Using the match function to visit several sum types

The variant proposal provides visitation of multiple variants.

std::experimental::variant<int, X> a = 2;
std::experimental::variant<int> b = 2;
std: :experimental::visit (overload (

[1(int i, int j)

14
auto i, auto J)

(
{
}
[1¢
{

assert (false);
}
), a, b);

The match function generalizes the visitation for several instances of heterogeneous sum types,
e.g. we could visit variant and optional at once:

std::experimental::variant<int, X> a = 2;

std: :experimental::optional<int> b = 2;

std::experimental::match(std::tie tuple(a, b),
[1(int i, int J)

14
auto const &i, auto j)

(
{
}
[1(
{

assert (false);

}
)7

Alternatively we could use a inspect factory that would wrap the tuple and provide two
functions match and first match

std: :experimental::inspect(a, b).first match(// or match
[](int i, int j)

14
auto const &i, auto j)

(
{
}
[1(
{

assert (false);

}
)7

but this first draft doesn't include it.

Botet C++ generic match function P0050
Design rationale

Result type of match

We can consider several alternatives:

* same type: the result type is the type returned by all the overloads (must be the same),
e common_type: the result type is the common_type of the result of the overloads,

» explicit return type R: the result type is R and the result type of the overloads must be
explicitly convertible to R,

Each one of these alternatives would need a specific interface:

* same type match
* common_ type match
* explicit type match

For a sake of simplicity (and because our implementation needed the result type) this proposal only
contains a match version that uses the explicit return type. The others can be built on top of this
version.

Let Ri be the return type of the overloaded functor for the alternative i of the ST.

* same type match: Check thatall Ri are the same, let call it R, and only then call to
the explicit match<R>(...),

e common_ type match: Letbe Rthe common type<Ri...>and only if it exists call
to the explicit match<R>(...).

Matt Calabrese has suggested a different approach:”

1. If match is given an explicit result type, use that.
2. Ifmatch is NOT given an explicit result type, use the explicit result type of the function
object if one exists.
3. Ifneither match nor the function object have an explicit result type type, but all of the
invocations would have the same result type, use that.
4. If none of the above are true, then we have a few final options:
1. Produce a compile time error
2. Return void or some stateless type
3. Try to do some kind of common type deduction

To be optimal with compile-times, which is something that becomes a serious consideration with
variants having many states and/or doing n-ary visitation for n > 1, users would prefer option 1 or
option 2, since otherwise the implied checking, especially if common type deduction is at play,
could be considerable.”

Here "the explicit result type of the function” stands for a nested result_type of the function object.

Note that [N4542] std: :experimental: :visit requires that all the overloads return the

Botet C++ generic match function P0050

same type.

Multiple cases or overload

The matching functions accept several functions. In order to select the function to be applied we
have two alternatives:

* use overload to resolve the function to be called
* use first overload to do a sequential search for the first function that match.
The match function uses overloadandthe first matchuses first overload.

An alternative is to restrict the interface to single inspect function and let the user use either
matchor first match.

Grouping with overload

We could also group all the functions with the overload function and let the variadic part for the
sum types as std: :experimental::visit does.

boost::variant<int, X> a = 2;
boost::optional<int> b = 2;
match<void>(std::tie_ tuple(a, b), overload(

[](int i, int 3)

assert (false);

))

This has the advantage of been orthogonal, we have a single match function (no need to make the
difference between match and first match. The liability is much a question of style, we need
to type more.

Order of parameters and function name

The proposed visit function has as first parameter the visitor and then the visited variant.
visit(visitor, visited);

The proposed match function reverse the order of the parameters. The reason is that we consider
that it is better to have the object before the subject.

match (sumType, matcher);

Of course we can also reverse the roles of the object and subject and tell that the object is the
visitor.

std: :experimental: :apply function follows the same pattern

apply (fct, tpl);

Botet C++ generic match function P0050

If uniform function syntax is adopted we would have
visitor.visit(visited);
sumType.match (matcher) ;
visitor.accept (visited);

fct.apply (tpl);

const aware matchers

A matcher must match the exact type. The following will assert false

const boost::variant<int, X> a = 2;
std: :experimental: :match (a,

[](int& 1) { ++i; 1},

[1 (auto consté&) { assert(false); }

)

and the following will even not compile

const boost::variant<int, X> a = 2;
std: :experimental: :match(a,
[1(int& 1) { ++i; }

[1(X consté& 1)
{

assert (false);
b
)7

Variadics

The two parameters of the match function can be variadic. We can have several sum types and
several functions overloading a possible match.

If we had a language type pattern matching feature (see [PM]) the authors guess it would be
something like:

boost::variant<int, X, float> a = 2;
boost::optional<int> b = 2;
match (a, b) {

case (int i, int J)

/...

case (int i, auto j)
/...

default:

assert (false);

}
The sum types would be grouped in this case using the match (a, b) and the cases would be the
variadic part. The cases would be matched sequentially.

This is a major motivation to place the sum type variables as the first parameter and let the matchers
variadic since the second parameter.

Botet C++ generic match function P0050

In addition, the match statement would allow to const-aware cases on some of the types

const boost::variant<int, X, float> a = 2;
boost::optional<int> b = 2;
match (a, b) {

case (int i, int J)

/...

case (X& x, auto j)
/...

default:

assert (false);

This is not possible with the variadic interface proposed in [N4542] as all the variants must be
either const or not const. However the multiple sum types uses a const tuple as parameter, but the
tuple types can be const and non-const and can contain references or not depending on whether we
use std::make tupleorstd::tie tuple.

const boost::variant<int, X, float> a = 2;

boost::optional<int> b = 2;

std::experimental::match(std::tie tuple(a, b),
[1(int 1, int j)

14
auto const &i, auto j)

(
{
}
[1(
{

assert (false);

}
)7

Customization point

A customization point must be defined for any sum type ST as an overload of this function

template <class ST, class F>
match (ST & st, F&& f);

template <class ST, class F>
match (ST consté& st, F&& f);
It is required that any customization respect the following, but it can be more restrictive.

Requires: The invocation expression of £ with for all the alternative types of the sum type ST must
be a valid expression.

Effects: Calls f with the current contents of the sum type.
Throws: doesn't throws any other exception that the invocation of the callable.

Remark: While the std: :experimental: :visit function proposed in [] requires the
invocation of the callable must be implemented in O(1), i.e. it must not depend on
sum_type size<ST>, this proposal suggest to leverage this requirement and considered it as a

Botet C++ generic match function P0050

QOL

Grouping with overload

We could also group all the functions with the overload function and let the variadic part for the
sum types as std: :experimental: :visit does.

boost::variant<int, X> a = 2;

boost::optional<int> b = 2;

match<void>(std::tie_ tuple(a, b), overload(
[](int i, int 3)

assert (false);

))

This has the advantage of been orthogonal, we have a single match function (no need to have match
and first match. The liability is much a question of style, we need to type more.

Considering any type as a sum type with a single alternative
We could try to apply the language-like match with types that have as single alternative, themselves

int a = 2;
boost::optional<int> b = 2;
match (a, b) {
case (int i, int jJ)
//... make use of i and j
case (int i, auto j)
assert (false);

}

This seems not natural as we are able to use directly the variable a inside each match case.

int a = 2;
boost::optional<int> b = 2;
match (b) {
case (int j)
//... make use of a and j
default:
assert (false);

}

Using the library solution each case is represented by a function and the function would not have
direct access to the variable a

int a = 2;
boost::optional<int> b = 2;
auto x = inspect(b) .match (
[al (int §)
return sum(a,j)

by

Botet C++ generic match function P0050

[a] auto const &7)
assert (false);
default:
assert (false);

}

Allowing types with a single alternative makes the code more homogeneous

int a = 2;
boost::optional<int> b = 2;
inspect(a, b) .match/(
[1 (int i, int j) |
return sum (i,)

b
[] (auto const &7)
assert (false);

[(1¢...) {

assert (false);}
);

sum_type alternatives

[N4542] variant proposal specialize tuple element and tuple size for
variant<Types...>. The author think that as variant is not a product type, specializing these
function is weird. However the alternatives of a sum type are a product type and so we can
specialize tuple element and tuple size on

sum type alternatives<ST>::type.

The current implementation uses a patter matching approach and it requires just
sum_type alternatives<ST>::type to be a variadic template instantiation. As for
example

template < class ...Ts >
struct type list {};

Note that his proposal doesn't proposes this class, this is just an example.

Open Points

The authors would like to have an answer to the following points if there is at all an interest in this
proposal:

* Which strategy for the match return type?

* Which complexity for the customization point?

* matchversus visit
N proposes a visit function to visit variants that takes the arguments in the reverse order.
What do we prefer visit ormatch?

Which order of arguments do we prefer?

10

Botet C++ generic match function P0050

Do we want a variadic function of overloads or just an overloaded visitor functor?
* Seen a type T as a sum type with a unique alternative.

Do we want to support this case?
* Matching several sum types

Do we want the inspect factory?
* Do wewant sum type alternatives?

* Do wewant type list?

Technical Specification

Header <experimental/functional> Synopsis

namespace std {
namespace experimental {
inline namespace fundamental v2 {

template <class ST>

struct sum type alternatives; // undefined
template <class ST>

struct sum type alternatives<ST&> : sum type alternatives<ST> ({}
template <class ST>

struct sum type alternatives<ST&&> : sum type alternatives<ST> {}
template <class ST>

struct sum type alternatives<const ST> : sum_type alternatives<ST> {}
template <class ST>

struct sum type alternatives<volatile ST> : sum type alternatives<ST> {}
template <class ST>

using sum type alternatives t = typename sum type alternatives<ST>::type;
template <class ST, int N>

using sum_ type alternative = tuple element<sum type alternatives<ST>, N>;
template <class ST>

using sum type size = tuple size<sum type alternatives<ST>>;

template <class T, class F>
'see below' match(const T &that, F && f);

template <class R, class ST, class... Fs>
'see below' match(const ST &that, Fs &&... fcts);
template <class R, class... STs, class... Fs>
'see below' match(const std::tuple<STs...> &those, Fs &&... fcts);

P}

Type trait sum_type_alternatives

The nested type sum_type alternatives<ST>::type must define the tuple-like helper
meta-functions std: :tuple sizeand std::tuple element and be a variadic template
instance.

11

Botet C++ generic match function P0050

Template function match

template <class R, class ST, class... Fs>

'see below' match (ST const& that, Fs &&... fcts);
template <class R, class ST, class... Fs>

'see below' match(ST& that, Fs &&... fcts);

Requires: Let Ri be decltype (overload (forward<Fs> (fcts)...)
(declval<sum type alternative<ST,i>()) for i in
1...sum type size<ST>. Ri mustbe explicitly convertible to R.

Returns: the result of calling the overloaded functions fcts depending on the type stored on the
sum type using the customization point match as if

return match (that, overload(forward<Fs> (fcts)...));

Remarks: This function will not participate in overload resolution if ST is a tuple type.

Throws: Any exception thrown during the construction any internal object or thrown by the call of
the selected overloaded function.

template <class R, class... STs, class... Fs>
'see below' match(const std::tuple<STs...> &those, Fs &&... fcts);

Requires: Let {1,7j, ..} one element of the cartesian product
1...sum type size<STs>....

decltype (overload (forward<Fs>(fcts)...)

(declval<sum type alternative<STs,i>>(),
declval<sum type alternative<STs,3j>>(), ...) mustbe explicitly convertible to
R.

Returns: the result of calling the overloaded functions fcts depending on the type stored on the
sum types STs. . ..

Throws: Any exception thrown during the construction any internal object or thrown by the call of
the selected overloaded function.

Customization point match

A customization point must be defined for any sum type ST as an overload of this function

template <class ST, class F>
match (ST & st, F&& f);

template <class ST, class F>
match (ST consté& st, F&& f);
It is required that any customization respect the following, but it can be more restrictive.

Requires: The invocation expression of £ with for all the alternative types of the sum type ST must
be a valid expression.

Effects: Calls f with the current contents of the sum type.

12

Botet C++ generic match function P0050

Throws: doesn't throws any other exception that the invocation of the callable.

Remark: While the std: :experimental: :visit function proposed in [N4542] requires the
invocation of the callable must be implemented in O(1), i.e. it must not depend on

sum_type size<ST>, this proposal suggest to leverage this requirement and considered it as a
QOL.

Note: If we accept that any type can be seen as a sum type with it as single alternative we can add
the following overload:

template <class T, class F>
auto match (T &const that, F&& f) -> decltype(f (that))
{ return f (that); }

template <class T, class F>
auto match (T &that, F&& f) -> decltype(f(that))
{ return f (that); }

Header <experimental/optional> Synopsis

namespace std {
namespace experimental {
inline namespace fundamental v2 {
template <class T >
struct sum type alternatives<optional<T>>
{
using type = type list<nullopt t, T>; // implementation defined
}
template <class R, class F, class ...Ts >
R match (optional<T> const& v, F&& f)
{
if (v)
return f (*v);
else
return f(nullopt);
}
template <class R, class F, class ...Ts >
R match (optional<T>& v, F&& f)
{
if (v)
return f(*v);
else
return f (nullopt);

P}

Header <experimental/variant> Synopsis

namespace std {
namespace experimental {
inline namespace fundamental v2 ({
template <class ...Ts >
struct sum_type alternatives<variant<Ts...>> // implementation defined

{

13

Botet C++ generic match function P0050

using type = type list<Ts...>;
}
template <class R, class F, class ...Ts >
R match (variant<Ts...> const& v, F&& f)
{ return visit(std::forward<F>(f), v); }
template <class R, class F, class ...Ts >
R match(variant<Ts...> & v, F&& f)
{ return visit(std::forward<e>(f), v); }

P}

Implementation

There is an implementation at https://github.com/viboes/tags including a customization for
boost::variant and std: :experimental::optional.

Further work

The multiple sum type matching not only can be used with tuples created with
std: :make tuple, we should be able to use also std::tie tuple and
std::forward as tuple.

Acknowledgements

Many thanks to Matt Calabrese for its insightful suggestions on the result type approach.

References

* [boost.variant] apply visitor

http://www.boost.org/doc/libs/1_59_0/doc/html/variant/reference.html#header.boost.variant.
apply_visitor_hpp

* [N4542] N4542 - Variant: a type-safe union (v4) http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2015/n4542.pdf

* [N3915] N3915 - apply() call a function with arguments from a tuple (V3)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3915.pdf
* [P0051] PO0O51 - C++ generic overload function
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0051r0.pdf
* [PM] Open Pattern Matching for C++

http://www.stroustrup.com/OpenPatternMatching.pdf

14

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0051r0.pdf
http://www.stroustrup.com/OpenPatternMatching.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3915.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4542.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4542.pdf
http://www.boost.org/doc/libs/1_59_0/doc/html/variant/reference.html#header.boost.variant.apply_visitor_hpp
http://www.boost.org/doc/libs/1_59_0/doc/html/variant/reference.html#header.boost.variant.apply_visitor_hpp
https://github.com/viboes/tags

	Introduction
	Motivation and Scope
	Tutorial
	Customizing the match function
	Using the match function to inspect one sum type
	Using the match function to visit several sum types

	Design rationale
	Result type of match
	Multiple cases or overload
	Grouping with overload
	Order of parameters and function name
	const aware matchers
	Variadics
	Customization point
	Grouping with overload
	Considering any type as a sum type with a single alternative
	sum_type_alternatives

	Open Points
	Technical Specification
	Header <experimental/functional> Synopsis
	Type trait sum_type_alternatives
	Template function match
	Customization point match

	Header <experimental/optional> Synopsis
	Header <experimental/variant> Synopsis

	Implementation
	Further work
	Acknowledgements
	References

