
Document number: P0051R2=yy-nnnn

Date: 2016-10-13

Project: ISO/IEC JTC1 SC22 WG21 Programming Language C++

Audience: Library Evolution Working Group

Reply-to: Vicente J. Botet Escribá <vicente.botet@nokia.com>

Experimental overload function for C++. This paper proposes one function that allow to overload lambdas
or function objects, but also member and non-member functions.

There will be another proposal to take care of grouping lambdas or function objects, member and non-
member functions so that the first viable match is selected when a call is done.

The overloaded functions are copied and there is no way to access to the stored functions. There will be
another proposal to take care state full function objects and a mean to access them.

1. Introduction
2. Motivation
3. Proposal
4. Design rationale
5. Open points
6. Proposed wording
7. Implementability
8. Acknowledgements
9. References

The 2nd revision of P0051R1 fixes some typos and takes in account the feedback from Oulu meeting. Next

C++ generic overload function (Revision 2)

Table of Contents

History

Revision 2

mailto:vicente.botet@wanadoo.fr
file:///Users/viboes/github/tags/doc/proposals/overload/P0051R2.md#introduction
file:///Users/viboes/github/tags/doc/proposals/overload/P0051R2.md#motivation
file:///Users/viboes/github/tags/doc/proposals/overload/P0051R2.md#proposal
file:///Users/viboes/github/tags/doc/proposals/overload/P0051R2.md#design-rationale
file:///Users/viboes/github/tags/doc/proposals/overload/P0051R2.md#open-points
file:///Users/viboes/github/tags/doc/proposals/overload/P0051R2.md#proposed-wording
file:///Users/viboes/github/tags/doc/proposals/overload/P0051R2.md#implementability
file:///Users/viboes/github/tags/doc/proposals/overload/P0051R2.md#acknowledgements
file:///Users/viboes/github/tags/doc/proposals/overload/P0051R2.md#references
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0051r1.pdf

follows the direction of the committee:

Add constexpr and conditional noexcept .
Confirmed the use universal references as parameters of the overload function.
Ensure that forward cv-qualifiers and reference-qualifiers are forwarded correctly.
Note that the use case for a final Callable is accepted.
Check the wording with an expert from the LGW before sending a new revision to LWG (Not done
yet).

The paper has been split into 3 separated proposals as a follow up of the Kona meeting feedback for
P0051R0:

overload selects the best overload using C++ overload resolution (this paper)
first_overload selects the first overload using C++ overload resolution (to be written).

Providing access to the stored function objects when they are state-full (to be written).

Experimental overload function for C++. This paper proposes one function that allow to overload lambdas
or function objects, but also member and non-member functions.

There will be another proposal to take care of grouping lambdas or function objects, member and non-
member functions so that the first viable match is selected when a call is done.

The overloaded functions are copied and there is no what to access to the stored functions. There will be
another proposal to take care state full function objects and a mean to access them.

As lambdas functions, function objects, can’t be overloaded in the usual implicit way, but they can be
“explicitly overloaded” using the proposed overload function:

This function would be especially useful for creating visitors, e.g. for variant.

Revision 1

Introduction

Motivation

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0051r0.pdf

 auto visitor = overload(
 [](int i, int j) { ... },
 [](int i, string const &j) { ... },
 [](auto const &i, auto const &j) { ... }
);

 visitor(1, std::string{"2"}); // ok - calls (int,std::string) "overload"

The overload function when there are only two parameters could be defined as follows (this is valid
only for lambdas and function objects)

 template<class F1, class F2> struct overloaded : F1, F2
 {
 overloaded(F1 x1, F2 x2) : F1(x1), F2(x2) {}
 using F1::operator();
 using F2::operator();
 };
 template<class F1, class F2>
 overloaded<F1, F2> overload(F1 f1, F2 f2)
 { return overloaded<F1, F2>(f1, f2); }

Instead of the previous example

auto visitor = overload(
 [](int i, int j) { … },
 [](int i, string const &j) { … },
 [](auto const &i, auto const &j) { … }
);

the user can define a function object

struct
{
 auto operator()(int i, int j) { … }
 auto operator()(int i, string const &j) { … }
 template <class T1, class T2>
 auto operator()(T1 const &i, T2 const &j) { … }
) visitor;

So, what are the advantages and liabilities of the overload function. First the advantages:

Why do we need an overload function?

1. With overload the user can use existing functions that it can combine, using the function object would
need to define an overload and forward to the existing function.

2. The user can group the overloaded functions as close as possible where they are used and don't need
to define a class elsewhere. This is in line with the philosophy of lambda functions.

3. Each overload can have its own captured data, either using lambdas or other existing function objects.
4. Any additional feature of lambda functions, automatic friendship, access to this, and so forth.

Next the liabilities:

1. The overload function generates a function object that is a little bit more complex and so would take
more time to compile.

2. The the result type of overload function is unspecified and so storing it in an structure is more difficult
(as it is the case for std::bind).

3. With the function object the user is able to share the same data for all the overloads. Note that that the
last point could be seen as an advantage and a liability depending on the user needs.

The previous definition of overload is quite simple, however it doesn't accept member functions nor
non-member function, as std::bind does, but only function objects and lambda captures.

As there is no major problem implementing it and that their inclusion doesn't degrade the run-time
performances, we opt to allow them also. The alternative would be to force the user to use std::bind

or wrap them with a lambda.

We could either provide a binary or a variadic overload function.

 auto visitor =
 overload([](int i, int j) { ... },
 overload([](int i, string const &j) { ... },
 [](auto const &i, auto const &j) { ... }
));

The binary function needs to repeat the overload word for each new overloaded function.

We think that the variadic version is not much more complex to implement and makes user code simpler.

Design rationale

Which kind of functions would overload accept

Binary or variadic interface

The function overload must store the passed parameters. If the interface is by value, the user will be
forced to move movable but non-copyable function objects. Using forward references has not this
inconvenient, and the implementation can optimize when the function object is copyable.

This has the inconvenient that the move is implicit. We follow here the same design than when_all and
when_any .

As with other functions that need to copy the parameters (as std::bind , std::thread , ...), the
user can use std::ref to pass by reference.

The user could prefer to pass by reference if the function object is state-full or if the function object is
expensive to move (copy if not movable) or even s/he would need it if the function object is not movable at
all.

The basic design use inheritance from the function object. However when the function object is a final class,
we cannot inherit from it. Nevertheless this final function object can be wrapped and the call be forwarded
to the wrapped object. Note that the wrapper will need to provide all combinations of cv-qualifiers.

Call the functions based on C++ overload resolution, which tries to find the best match, is a good
generalization of overloading to lambdas and function objects.

However, when trying to do overloading involving something more generic, it can lead to ambiguities. So
the need for a function that will pick the first function that is callable. This allows ordering the functions
based on which one is more specific.

As both cases are useful, and even if this paper proposes only overload, there will be a separated proposal
for first_overload .

overload selects the best overload using C++ overload resolution and
first_overload selects the first overload using C++ overload resolution.

Fit library name them match and conditional respectively. FTL uses match to mean
first_overload . Boost.Hana names them overload and overload_linearly respectively.

Passing parameters by value or by forward reference

reference_wrapper<F> to deduce F&

Final function objects

Selecting the best or the first overload

https://github.com/pfultz2/Fit
https://github.com/beark/ftl
http://boostorg.github.io/hana/

The proposed overload functions doesn't add any constraint on the result type of the overloaded
functions. The result type when calling the resulting function object would be the one of the selected
overloaded function.

However the user can force the result type and in this case the result type of all the overloads must be
convertible to this type (contribution from Matt Calabrese).

This can be useful in order to improve the compiling time of a possible match / visit function that
could take advantage when it knows the result type of all the overloads.

The result type of this function is unspecified as it is the result type of std::bind or std::mem_fn .

However when the function objects have a state it will be useful that the user can inspect the state. The
result type should provide an overload for std::get<F> / std::get<I> functions (contribution from
Matt Calabrese).

These functions should take in account that the overload can be a reference_wrapper<F> in order to
allow get<F&>(ovl) .

This paper doesn't include such access functions. Another paper will take care of this concern if there is
interest.

There is no reason the result of the function object couldn't be constexpr if the parameters are literals.

In addition this function shall be noexcept when the parameters are no throw move constructible.

The overloaded functions should preserve constexpr . However, CWG-1581 prevents the use of
constexpr functions in non-evaluated contexts.

There is some specific behavior for std::overload . The overloaded functions are in most of the cases
not declared, they are introduced via a using declaration and so no constexpr is needed in these
cases.

There is at least one case where we need to declare a forwarding functions, for pointer to non member
functions.

Result type of resulting function objects

Result type of overload

constexpr and noexcept

forward constexpr

http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1581

Declaring this case as constexpr will prevent to use a call to the result of std::overload (the
overloaded set) in non-evaluated contexts CWG-1581 when there are pointer to non member functions that
is non constexpr .

Not declaring it constexpr will prevent to call the result of std::overload (the overloaded set) in a
constexpr when there are pointer to non member functions even if the wrapped function is
constexpr .

For pointer to member functions, the current implementation uses std::mem_fn so it inherits the
std::mem_fn behavior. Nevertheless, a flat implementation declaring the forwarding functions could

choose whether the overloaded functions are constexpr or not.

We believe that adding constexpr is the best approach even if it has some liabilities. These liabilities
will be fixed when CWG-1581 will be resolved.

The overloaded functions can be conditionally noexcept depending on wether the stored functions are
noexcept .

Not adding the conditional noexcept could make the call less efficient and suggest to the user to write
directly a function object by hand.

For pointer to member functions, the current implementation uses std::mem_fn so it inherits the
std::mem_fn behavior. Nevertheless, a flat implementation declaring the forwarding functions could

make the overloaded functions conditionally noexcept .

This is why this proposal request to preserve the nonexcept of the stored functions.

The overloaded functions shall preserve cv and ref qualifiers.

The proposed changes are expressed as edits to N4564 the Working Draft - C++ Extensions for Library
Fundamentals V2.

Add the following declaration in experimental/functional.

forward noexcept

forward cv and ref qualifiers

Proposed wording

Header Synopsis

http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1581
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1581
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4564.pdf

namespace std
{
namespace experimental
{
inline namespace fundamental_v3
{
 template <class R, class ... Fs>
 constexpr 'unspecified' overload(Fs &&... fcts) noexcept('see below');
 template <class ... Fs>
 constexpr 'unspecified' overload(Fs &&... fcts) noexcept('see below');
}
}
}

 template <class R, class ... Fs>
 constexpr 'see below' overload(Fs &&... fcts) noexcept('see below');

"The expression inside noxcept is equivalent to:
is_nothrow_move_constructible<Fs>::value && ...

Requires: Each Fs_i in Fs shall satisfy the requirements of and MoveConstructible (Table 20
[moveconstructible]) and of a callable type ([func.def]). [Note: The result type of each one of the possible
calls to the overloaded functions shall be convertible to R , otherwise the program is ill formed -end Note]

Result type: A function object that behaves as if all the parameters were overloaded when calling it. The
result type will contain the nested result_type type alias R . The overloads shall preserve
constexpr , noexcept , cv-qualifiers and reference qualifiers.

The effect of calling to an instance of this type with parameters ti will select the best overload. If there is
not such a best overload, either because there is no candidate or that there are ambiguous candidates, the
invocation expression will be ill-formed.

If there is a best overload, lets say that is f ,
INVOKE(DECAY_COPY(f), forward<T1>(t1) ..., forward<T1>(tN), R) , where t1 , t2 ,

..., tN are values of the corresponding types in Ts... , shall be a valid expression. Invoking a decay
copy of f shall behave the same as invoking f .

Returns: An instance of the result type, that contains a decay copy of each one of the arguments fcts .

Thows: Any exception thrown during the construction of the resulting function object.

Remarks: This function as well as the overloaded operator() for each fcts on the resulting type

Function Template overload

shall be a constexpr functions. The overloaded operator() for each f in fcts... on the
resulting type shall be
noexcept(noexcept(INVOKE(DECAY_COPY(f), forward<T1>(t1) ..., forward<T1>(tN)))) .

The return type is a callable type that meets the MoveConstructible requirements. Let FV_i be
remove_reference_t< Fs_i> . If all FV_i in Fs satisfy the CopyConstructible requirements,

then the return type shall meet the CopyConstructible requirements.

 template <class ... Fs>
 constexpr 'see below' overload(Fs &&... fcts) noexcept('see below');

"The expression inside noxcept is equivalent to:
is_nothrow_move_constructible<Fs>::value && ...

Requires: Each Fs_i in Fs shall satisfy the requirements of and MoveConstructible
([moveconstructible]) and of a callable type ([func.wrap.func]).

Result type: A function object that behaves as if all the parameters were overloaded when calling it. The
overloads shall preserve constexpr , noexcept , cv-qualifiers and reference qualifiers.

The effect of calling to an instance of this type with parameters ti will select the best overload. If there is
not such a best overload, either because there is no candidate or that there are ambiguous candidates, the
invocation expression will be ill-formed.

If there is a best overload, lets say that is f ,
INVOKE(DECAY_COPY(f), forward<T1>(t1) ..., forward<T1>(tN)) , where t1 , t2 , ...,
tN are values of the corresponding types in Ts... , shall be a valid expression. Invoking a decay copy

of f shall behave the same as invoking f .

Returns: An instance of the result type, that contains a decay copy of each one of the arguments fcts .

Thows: Any exception thrown during the construction of the resulting function object.

Remarks: This function as well as the overloaded operator() for each fcts on the resulting type
shall be a constexpr functions. The overloaded operator() f in fcts... on the resulting
type shall be
noexcept(noexcept(INVOKE(DECAY_COPY(f), forward<T1>(t1) ..., forward<T1>(tN)))) .

The return type is a callable type that meets the MoveConstructible requirements. Let FV_i be
remove_reference_t< Fs_i> . If all FV_i in Fs satisfy the CopyConstructible requirements,

then the return type shall meet the CopyConstructible requirements.

Implementation

There is an implementation of the explicit return type version at https://github.com/viboes/std-
make/blob/master/include/experimental/fundamental/v3/functional/overload.hpp.

Thanks to Daniel Krügler who helped me to improve the wording and that pointe out to me the use case for
a final Callable.

Thanks to Scott Pager who suggested to add overloads for non-member and member functions.

Thanks to Paul Fultz II and Bjørn Ali authors of Fit and FTL from where the idea of the
first_overload function comes from.

Thanks to Matt Calabrese for its useful improvement suggestions on the library usability.

Thanks to Tony Van Eerd for championing the original proposal at Kona and for insightful comments.

Thanks to Stephan TL for pointing CWG-1581 "When are constexpr member functions defined?".

Thanks to Tomasz Kaminski helping me to refine the implementation for final function object .

Special thanks and recognition goes to Technical Center of Nokia - Lannion for supporting in part the
production of this proposal.

Boost.Hana - Louis Dionne http://boostorg.github.io/hana/

Fit - Paul Fultz II https://github.com/pfultz2/Fit

FTL - Bjorn Ali https://github.com/beark/ftl

N4564 N4564 - Working Draft, C++ Extensions for Library Fundamentals, Version 2 PDTS
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4564.pdf

P0051R0 C++ generic overload function http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2015/p0051r0.pdf

P0051R1 C++ generic overload function (Revision 1) http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2015/p0051r1.pdf

CWG-1581. When are constexpr member functions defined? http://www.open-
std.org/jtc1/sc22/wg21/docs/cwg_active.html#1581

Acknowledgements

References

https://github.com/pfultz2/Fit
https://github.com/beark/ftl
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1581
http://boostorg.github.io/hana/
https://github.com/pfultz2/Fit
https://github.com/beark/ftl
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4564.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0051r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0051r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1581

