
p0052r5 - Generic Scope Guard and RAII Wrapper for the
Standard Library

Peter Sommerlad and Andrew L. Sandoval
with contributions by Eric Niebler and Daniel Krügler

2017-07-13

Document Number: p0052r5 (update of N4189, N3949, N3830, N3677)
Date: 2017-07-13
Project: Programming Language C++
Audience: LWG

1 History

1.1 Changes from P0052R4
Wording reviewed and recommended on by LWG

— Add missing deduction guides

— Call expressions are OK.

— No consensus to re-add the implicit conversion operator to unique_resource

— clarification of wording in many places

1.2 Changes from P0052R3

— Take new section numbering of the standard working paper into account.

— require noexcept of f() for scope_exit and scope_fail explicitly

— implementation could be tested with C++17 compiler and class template constructor argument
deduction thus the paper no longer claims help or not being sure.

1.3 Changes from P0052R2

— Take into account class template ctor argument deduction. However, I recommend keeping the
factories for LFTS 3 to allow for C++14 implementations. At the time of this writing, I do
not have a working C++17 compliant compiler handy to run corresponding test cases without
the factories. However, there is one factory function make_unique_checked that needs to stay,
because it addresses a specific but seemingly common use-case.

1

2 p0052r5 2017-07-13

— Since scope_success is a standard library class that has a possible throwing destructor section
[res.on.exception.handling] must be adjusted accordingly.

— The lack of factories for the classes might require explicit deduction guides, but I need help to
specify those accordingly since I do not have a working C++17 compiler right at hand to test
it.

1.4 Changes from P0052R1
The Jacksonville LEWG, especially Eric Niebler gave splendid input in how to improve the classes
in this paper. I (Peter) follow Eric’s design in specifying scope_exit as well as unique_resource in a
more general way.

— Provide scope_fail and scope_success as classes. However, we may even hide all of the
scope guard types and just provide the factories.

— safe guard all classes against construction errors, i.e., failing to copy the deleter/exit-function,
by calling the passed argument in the case of an exception, except for scope_success.

— relax the requirements for the template arguments.

Special thanks go to Eric Niebler for providing several incarnations of an implementation that
removed previous restrictions on template arguments in an exception-safe way (Eric: "This is
HARD."). To cite Eric again: "Great care must be taken when move-constructing or move-assigning
unique_resource objects to ensure that there is always exactly one object that owns the resource and
is in a valid, Destructible state." Also thanks to Axel Naumann for presenting in Jacksonville and to
Axel, Eric, and Daniel Krügler for their terrific work on wording improvements.

1.5 Changes from P0052R0
In Kona LWG gave a lot of feedback and especially expressed the desire to simplify the constructors
and specification by only allowing nothrow-copyable RESOURCE and DELETER types. If a reference is
required, because they aren’t, users are encouraged to pass a std::ref/std::cref wrapper to the
factory function instead.

— Simplified constructor specifications by restricting on nothrow copyable types. Facility
is intended for simple types anyway. It also avoids the problem of using a type-erased
std::function object as the deleter, because it could throw on copy.

— Add some motivation again, to ease review and provide reason for specific API issues.

— Make "Alexandrescu’s" "declarative" scope exit variation employing uncaught_exceptions()
counter optional factories to chose or not.

— propose to make it available for standalone implementations and add the header <scope> to
corresponding tables.

— editorial adjustments

— re-established operator* for unique_resource.

— overload of make_unique_resource to handle reference_wrapper for resources. No overload
for reference-wrapped deleter functions is required, because reference_wrapper provides the
call forwarding.

p0052r5 2017-07-13 3

1.6 Changes from N4189

— Attempt to address LWG specification issues from Cologne (only learned about those in the
week before the deadline from Ville, so not all might be covered).

— specify that the exit function must be either no-throw copy-constructible, or no-throw
move-constructible, or held by reference. Stole the wording and implementation from
unique_ptr’s deleter ctors.

— put both classes in single header <scope>

— specify factory functions for Alexandrescu’s 3 scope exit cases for scope_exit. Deliber-
ately did’t provide similar things for unique_resource.

— remove lengthy motivation and example code, to make paper easier digestible.

— Corrections based on committee feedback in Urbana and Cologne.

1.7 Changes from N3949

— renamed scope_guard to scope_exit and the factory to make_scope_exit. Reason for make_-
is to teach users to save the result in a local variable instead of just have a temporary that
gets destroyed immediately. Similarly for unique resources, unique_resource, make_unique_-
resource and make_unique_resource_checked.

— renamed editorially scope_exit::deleter to scope_exit::exit_function.

— changed the factories to use forwarding for the deleter/exit_function but not deduce a
reference.

— get rid of invoke’s parameter and rename it to reset() and provide a noexcept specification
for it.

1.8 Changes from N3830

— rename to unique_resource_t and factory to unique_resource, resp. unique_resource_-
checked

— provide scope guard functionality through type scope_guard_t and scope_guard factory

— remove multiple-argument case in favor of simpler interface, lambda can deal with complicated
release APIs requiring multiple arguments.

— make function/functor position the last argument of the factories for lambda-friendliness.

1.9 Changes from N3677

— Replace all 4 proposed classes with a single class covering all use cases, using variadic templates,
as determined in the Fall 2013 LEWG meeting.

— The conscious decision was made to name the factory functions without "make", because they
actually do not allocate any resources, like std::make_unique or std::make_shared do

4 p0052r5 2017-07-13

2 Introduction

The Standard Template Library provides RAII (resource acquisition is initialization) classes for
managing pointer types, such as std::unique_ptr and std::shared_ptr. This proposal seeks to
add a two generic RAII wrappers classes which tie zero or one resource to a clean-up/completion
routine which is bound by scope, ensuring execution at scope exit (as the object is destroyed) unless
released early or in the case of a single resource: executed early or returned by moving its value.

3 Acknowledgements

— This proposal incorporates what Andrej Alexandrescu described as scope_guard long ago and
explained again at C++ Now 2012 ().

— This proposal would not have been possible without the impressive work of Peter Sommerlad
who produced the sample implementation during the Fall 2013 committee meetings in Chicago.
Peter took what Andrew Sandoval produced for N3677 and demonstrated the possibility of
using C++14 features to make a single, general purpose RAII wrapper capable of fulfilling all
of the needs presented by the original 4 classes (from N3677) with none of the compromises.

— Gratitude is also owed to members of the LEWG participating in the Fall 2015(Kona),Fall
2014(Urbana), February 2014 (Issaquah) and Fall 2013 (Chicago) meeting for their support,
encouragement, and suggestions that have led to this proposal.

— Special thanks and recognition goes to OpenSpan, Inc. (http://www.openspan.com) for
supporting the production of this proposal, and for sponsoring Andrew L. Sandoval’s first
proposal (N3677) and the trip to Chicago for the Fall 2013 LEWG meeting. Note: this version
abandons the over-generic version from N3830 and comes back to two classes with one or no
resource to be managed.

— Thanks also to members of the mailing lists who gave feedback. Especially Zhihao Yuan, and
Ville Voutilainen.

— Special thanks to Daniel Krügler for his deliberate review of the draft version of this paper
(D3949).

— Thanks to participants in LWG in Toronto, especially Casey Carter and Marshall Clow for
help with phrasing the wording.

p0052r5 2017-07-13 5

4 Motivation

While std::unique_ptr can be (mis-)used to keep track of general handle types with a user-specified
deleter it can become tedious and error prone. Further argumentation can be found in previous
papers. Here are two examples using <cstdio>’s FILE * and POSIX<fcntl.h>’s and <unistd.h>’s
int file handles.

void demonstrate_unique_resource_with_stdio() {
const std::string filename = "hello.txt";
{ auto file=make_unique_resource(::fopen(filename.c_str(),"w"),&::fclose);

::fputs("Hello World!\n", file.get());
ASSERT(file.get()!= NULL);

}
{ std::ifstream input { filename };

std::string line { };
getline(input, line);
ASSERT_EQUAL("Hello World!", line);
getline(input, line);
ASSERT(input.eof());

}
::unlink(filename.c_str());
{

auto file = make_unique_resource_checked(::fopen("nonexistingfile.txt", "r"),
(FILE*) NULL, &::fclose);

ASSERT_EQUAL((FILE*)NULL, file.get());
}

}
void demontrate_unique_resource_with_POSIX_IO() {

const std::string filename = "./hello1.txt";
{ auto file=make_unique_resource(::open(filename.c_str(),

O_CREAT|O_RDWR|O_TRUNC,0666), &::close);
::write(file.get(), "Hello World!\n", 12u);
ASSERT(file.get() != -1);

}
{ std::ifstream input { filename };

std::string line { };
getline(input, line);
ASSERT_EQUAL("Hello World!", line);
getline(input, line);
ASSERT(input.eof());

}
::unlink(filename.c_str());
{

auto file = make_unique_resource_checked(::open("nonexistingfile.txt",
O_RDONLY), -1, &::close);

ASSERT_EQUAL(-1, file.get());
}

}

We refer to Andrej Alexandrescu’s well-known many presentations as a motivation for scope_-

6 p0052r5 2017-07-13

exit, scope_fail, and scope_success. Here is a brief example on how to use the 3 proposed
factories.

void demo_scope_exit_fail_success(){
std::ostringstream out{};
auto lam=[&]{out << "called ";};
try{

auto v=make_scope_exit([&]{out << "always ";});
auto w=make_scope_success([&]{out << "not ";}); // not called
auto x=make_scope_fail(lam); // called
throw 42;

}catch(...){
auto y=make_scope_fail([&]{out << "not ";}); // not called
auto z=make_scope_success([&]{out << "handled";}); // called

}
ASSERT_EQUAL("called always handled",out.str());

}

5 Impact on the Standard

This proposal is a pure library extension. A new header, <scope> is proposed, but it does not
require changes to any standard classes or functions. Since it proposes a new header, no feature
test macro seems required. It does not require any changes in the core language, and it has been
implemented in standard C++ conforming to C++17. Depending on the timing of the acceptance
of this proposal, it might go into a library fundamentals TS under the namespace std::experimental
or directly in the working paper of the standard. I suggest both shipping vehicles.

6 Design Decisions

6.1 General Principles
The following general principles are formulated for unique_resource, and are valid for scope_exit
correspondingly.

— Transparency - It should be obvious from a glance what each instance of a unique_resource
object does. By binding the resource to it’s clean-up routine, the declaration of unique_-
resource makes its intention clear.

— Resource Conservation and Lifetime Management - Using unique_resource makes it possible
to "allocate it and forget about it" in the sense that deallocation is always accounted for after
the unique_resource has been initialized.

— Exception Safety - Exception unwinding is one of the primary reasons that unique_resource
and scope_exit/scope_fail are needed. Therefore, the specification asks for strong safety
guarantee when creating and moving the defined types, making sure to call the deleter/exit
function if such attempts fail.

— Flexibility - unique_resource is designed to be flexible, allowing the use of lambdas or existing
functions for clean-up of resources.

p0052r5 2017-07-13 7

6.2 Prior Implementations
Please see N3677 from the May 2013 mailing (or http://www.andrewlsandoval.com/scope_exit/)
for the previously proposed solution and implementation. Discussion of N3677 in the (Chicago)
Fall 2013 LEWG meeting led to the creation of unique_resource and scope_exit with the general
agreement that such an implementation would be vastly superior to N3677 and would find favor
with the LEWG. Professor Sommerlad produced the implementation backing this proposal during
the days following that discussion.

N3677 has a more complete list of other prior implementations.

N3830 provided an alternative approach to allow an arbitrary number of resources which was
abandoned due to LEWG feedback

The following issues have been discussed by LEWG already:

— Should there be a companion class for sharing the resource shared_resource ? (Peter thinks
no. Ville thinks it could be provided later anyway.) LEWG: NO.

— Should scope_exit() and unique_resource::invoke() guard against deleter functions that
throw with try deleter(); catch(...) (as now) or not? LEWG: NO, but provide noexcept
in detail.

— Does scope_exit need to be move-assignable? LEWG: NO.

— Should we make the regular constructor of the scope guard templates private and friend the
factory function only? This could prohibit the use as class members, which might sneakily be
used to create "destructor" functionality by not writing a destructor by adding a scope_exit
member variable.
It seems C++17’s class template constructor argument deduction makes the need for most
of the factory functions obsolete and thus this question is no longer relevant. However, I
recommend keeping the factories for the LFTS-3 if accepted to allow backporting to C++14.

— Should the scope guard classes be move-assignable? Doing so, would enable/ease using them
as class members. I do not think this use is good, but may be someone can come up with a
use case for that.
LEWG already answered that once with NO, but you never know if people change their mind
again.

The following issues have been recommended by LWG already:

— Make it a facility available for free-standing implementations in a new header <scope>
(<utility> doesn’t work, because it is not available for free-standing implementations)

8 p0052r5 2017-07-13

6.3 Open Issues (to be) Discussed by LEWG / LWG
The following issues have been resolved finally by LWG in Toronto. The shipping vehicle should be
a new version of the Library Fundamentals TS, however, I would not object to put it directly into
C++20.

— which "callable" definition in the standard should be applied (call expression (as it is now)
or via INVOKE (is_callable_v<EF&>). IMHO call expression is fine, since everything is
about side-effects and we never return a useful value from any of the function objects.

— Should we provide a non-explicit conversion operator to R in unique_resource<R,D> ?
Last time people seem to have been strongly against, however, it would make the use of
unique_resource much easier in contexts envisioned by author Andrew Sandoval. Please
re-visit, since it is omitted here.

p0052r5 2017-07-13 9

7 Technical Specifications

The following formulation is based on inclusion to the draft of the C++ standard. However, if it
is decided to go into the Library Fundamentals TS, the position of the texts and the namespaces
will have to be adapted accordingly, i.e., instead of namespace std:: we suppose namespace
std::experimental::.

A very recent draft of the standard already has the requested change below that was suggested by
Daniel Krügler:

7.1 Adjust 20.5.4.8 Other functions [res.on.functions]
Since scope_success() might throw an exception and we can not specify that in a required
behavior clause, we need to allow doing so for the standard library’s normative remarks section as
well.

In section 20.5.4.8 Other functions [res.on.functions] modify p2 item (2.4) as follows by adding "or
Remarks: "

(2.4) — if any replacement function or handler function or destructor operation exits via an
exception, unless specifically allowed in the applicable Required behavior: or Remarks:
paragraph.

However the following adjustment is missing, since the standard library promises that all library
classes won’t throw on destruction:

7.2 Adjust 20.5.5.12 Restrictions on exception handling
[res.on.exception.handling]

Change paragraph 3 as follows:
1 Except where explicitly specified, destructor operations defined in the C++ standard library shall

not throw exceptions. Every destructor without an exception specification in the C++ standard
library shall behave as if it had a non-throwing exception specification.

7.3 Header
In section 20.5.1.1 Library contents [contents] add an entry to table 16 (cpp.library.headers) for the
new header <scope>. Because of the new header, there is no need for a feature test macro.

In section 20.5.1.3 Freestanding implementations [compliance] add an extra row to table 19
(cpp.headers.freestanding) and in section [utilities.general] add the same extra row to table 34
(util.lib.summary)

Table 1 — table 19 and table 34

Subclause Header
23.nn Scope Guard Support <scope>

10 p0052r5 2017-07-13

7.4 Additional sections
Add a a new section to chapter 23 introducing the contents of the header <scope>.

7.5 Scope guard support [scope]
This subclause contains infrastructure for a generic scope guard and RAII (resource acquisition is
initialization) resource wrapper.

7.5.1 Header <scope> synopsis
namespace std {
namespace experimental {
template <class EF>

class scope_exit;
template <class EF>

class scope_fail;
template <class EF>

class scope_success;

template <class R,class D>
class unique_resource;

// special factory function
template <class R,class D, class S=R>

unique_resource<decay_t<R>, decay_t<D>>
make_unique_resource_checked(R&& r, const S& invalid, D&& d) noexcept(see below);

}}

1 The header <scope> defines the class templates scope_exit, scope_fail, scope_success, unique_-
resource and the factory function template make_unique_resource_checked().

2 The class templates scope_exit, scope_fail, and scope_success define scope guards that wrap a
function object to be called on their destruction.

3 The following clauses describe the class templates scope_exit, scope_fail, and scope_success.
In each clause, the name scope_guard denotes either of these class templates. In description of the
class members scope_guard refers to the enclosing class.

p0052r5 2017-07-13 11

7.5.2 Scope guard class templates [scope.scope_guard]
template <class EF>
class scope_guard {
public:

template <class EFP>
explicit scope_guard (EFP&& f) ;
scope_guard (scope_guard && rhs) noexcept(see below);
~scope_guard () noexcept(see below);
void release() noexcept;

scope_guard (const scope_guard &)=delete;
scope_guard & operator=(const scope_guard &)=delete;
scope_guard & operator=(scope_guard &&)=delete;

private:
EF exit_function; // exposition only
bool execute_on_destruction{true}; //exposition only
int uncaught_on_creation{uncaught_exceptions()}; // exposition only

};

template <class EF>
scope_guard (EF &&ef) -> scope_guard <decay_t<EF>>;

1 scope_exit is a general-purpose scope guard that calls its exit function when a scope is exited. The
class templates scope_fail and scope_success share the scope_exit interface, only the situation
when the exit function is called differs.
[Example:

void grow(vector<int>&v){
scope_success guard([]{ cout << "Good!" << endl; });
v.resize(1024);

}

—end example]
2 Requires: Template argument EF shall be a function object type ([function.objects]), lvalue reference

to function, or lvalue reference to function object type. If EF is an object type, it shall satisfy the
requirements of Destructible (Table 27). Given an lvalue g of type remove_reference_t<EF>,
the expression g() shall be well formed and shall have well-defined behavior.

3 The constructor arguments f in the following constructors shall be a function object (23.14)[func-
tion.objects], lvalue reference to function, or lvalue reference to function object.

template <class EFP>
explicit
scope_exit(EFP&& f) ;

4 Remarks: This constructor shall not participate in overload resolution unless is_constructible_-
v<EF,EFP> is true.

5 Requires: Given an lvalue f of type remove_reference_t<EFP>, the expression f() shall be
well formed, have well-defined behavior, and not throw an exception.

6 Effects: If EFP is not an lvalue-reference type and is_nothrow_constructible_v<EF,EFP> is

12 p0052r5 2017-07-13

true, initialize exit_function with std::move(f) otherwise initialize exit_function with
f. If the initialization of exit_function throws an exception, calls f().

7 Throws: Nothing, unless the initialization of exit_function throws.

template <class EFP>
explicit
scope_fail(EFP&& f) ;

8 Remarks: This constructor shall not participate in overload resolution unless is_constructible_-
v<EF,EFP> is true.

9 Requires: Given an lvalue f of type remove_reference_t<EFP>, the expression f() shall be
well formed, have well-defined behavior, and not throw an exception.

10 Effects: If EFP is not an lvalue-reference type and is_nothrow_constructible_v<EF,EFP> is
true, initialize exit_function with std::move(f) otherwise initialize exit_function with
f. If the initialization of exit_function throws an exception, calls f().

11 Throws: Nothing, unless the initialization of exit_function throws.

template <class EFP>
explicit
scope_success(EFP&& f) ;

12 Remarks: This constructor shall not participate in overload resolution unless is_constructible_-
v<EF,EFP> is true.

13 Requires: Given an lvalue f of type remove_reference_t<EFP>, the expression f() shall be
well formed and shall have well-defined behavior.

14 Effects: If EFP is not an lvalue-reference type and is_nothrow_constructible_v<EF,EFP> is
true, initialize exit_function with std::move(f) otherwise initialize exit_function with
f. [Note: If initialization of exit_function fails, f() won’t be called. —end note]

15 Throws: Nothing, unless the initialization of exit_function throws.

scope_guard (scope_guard && rhs) noexcept(see below);

16 Remarks: The expression inside noexcept is equivalent to
is_nothrow_move_constructible_v<EF> || is_nothrow_copy_constructible_v<EF>.

17 Effects: If is_nothrow_move_constructible_v<EF> move constructs otherwise copy con-
structs exit_function from rhs.exit_function. If construction succeeds, call rhs.release().
[Note: Copying instead of moving provides the strong exception guarantee. —end note]

18 Postconditions: execute_on_destruction yields the value rhs.execute_on_destruction
yielded before the construction.

19 Throws: Any exception thrown during the initialization of exit_function.

~scope_exit() noexcept(true);

20 Effects: Equivalent to:
if (execute_on_destruction)

exit_function();

p0052r5 2017-07-13 13

~scope_fail() noexcept(true);

21 Effects: Equivalent to:
if (execute_on_destruction

&& uncaught_exceptions() > uncaught_on_creation)
exit_function();

~scope_success() noexcept(noexcept(exit_function()));

22 Effects: Equivalent to:
if (execute_on_destruction

&& uncaught_exceptions() <= uncaught_on_creation)
exit_function();

23 [Note: If noexcept(exit_function()) is false, exit_function() may throw an exception,
notwithstanding the restrictions of [res.on.exception.handling]. —end note]

24 Throws: If noexcept(exit_function()) is false, throws any exception thrown by exit_-
function().

void release() noexcept;

25 Effects: Equivalent to execute_on_destruction=false.

14 p0052r5 2017-07-13

7.5.3 Unique resource wrapper [scope.unique_resource]
7.5.4 Class template unique_resource [scope.unique_resource.class]

template <class R,class D>
class unique_resource {
public:

template <class RR, class DD>
explicit
unique_resource(RR&& r, DD&& d) noexcept(see below);

unique_resource(unique_resource&& rhs) noexcept(see below);
~unique_resource();
unique_resource& operator=(unique_resource&& rhs) ;
void swap(unique_resource& other) noexcept(see below);
void reset();
template <class RR>

void reset(RR&& r);
void release() noexcept;
const R& get() const noexcept;
R operator->() const noexcept;
see below operator*() const noexcept;
const D& get_deleter() const noexcept;

private:
R resource; // exposition only
D deleter; // exposition only
bool execute_on_destruction{true}; // exposition only

};

template<typename R, typename D>
unique_resource(R &&r, D &&d)

-> unique_resource<decay_t<R>, decay_t<D>>;

template<typename R, typename D>
unique_resource(reference_wrapper<R> r, D &&d)

-> unique_resource<R &, decay_t<D>>;

1 [Note: unique_resource is a universal RAII wrapper for resource handles. Typically, such resource
handles are of trivial type and come with a factory function and a clean-up or deleter function that
do not throw exceptions. The clean-up function together with the result of the factory function
is used to create a unique_resource variable, that on destruction will call the clean-up function.
Access to the underlying resource handle is achieved through get() and in case of a pointer type
resource through a set of convenience pointer operator functions. —end note]

2 The template argument D shall be a Destructible (Table 27) function object type (23.14), for which,
given a value d of type D and a value r of type R, the expression d(r) shall be well formed, shall
have well-defined behavior, and shall not throw an exception. D shall either be CopyConstructible
(Table 24) or is_nothrow_move_constructible_v<D> shall be true.

3 R shall be a Destructible (Table 27) object type or an lvalue reference type. R shall either be
CopyConstructible (Table 24) or is_nothrow_move_constructible_v<R> shall be true.

4 [Note: In case of R being an lvalue reference, an implementation should choose reference_-

p0052r5 2017-07-13 15

wrapper<R> as type for resource and adjust functionality accordingly by delegating to resource.get()
in appropriate places. —end note]

7.5.5 unique_resource constructors [scope.unique_resource.ctor]

template <class RR, class DD>
explicit
unique_resource(RR&& r, DD&& d) noexcept(see below)

1 Remarks: The expression inside noexcept is equivalent to
is_nothrow_constructible_v<R, RR> && is_nothrow_constructible_v<D, DD>.
Given the following exposition only variable template

template <class T, class TT>
constexpr auto is_nothrow_move_or_copy_constructible_from_v =

conditional_t<
is_reference_v<TT> || !is_nothrow_move_constructible_v<TT>,
is_constructible<T, TT const &>,
is_constructible<T, TT>>::value;

this constructor shall not participate in overload resolution unless
is_nothrow_move_or_copy_constructible_from_v <R, RR> is true
and
is_nothrow_move_or_copy_constructible_from_v <D, DD> is true.

2 Effects: If RR is not an lvalue-reference and is_nothrow_constructible<R,RR> is true,
initializes resource with std::move(r), otherwise initializes resource with r. Then, if DD
is not an lvalue reference and is_nothrow_constructible<D,DD> is true, initializes deleter
with std::move(d), otherwise initializes deleter with d. If initialization of resource throws
an exception, calls d(r). If initialization of deleter throws an exception, calls d(resource).
[Note: The explained mechanism ensures no leaking resources. —end note]

3 Throws: Any exception thrown during initialization.

unique_resource(unique_resource&& rhs) noexcept(see below)

4 Remarks: The expression inside noexcept is equivalent to
is_nothrow_move_constructible_v<R> && is_nothrow_move_constructible_v<D>.

5 Effects: If is_nothrow_move_constructible_v<R> is true,

—(5.1) initialize resource from std::forward<R>(rhs.resource),

—(5.2) otherwise initialize resource from rhs.resource.
6 [Note: If initialization of resource throws an exception, rhs is left owning the resource and

will free it in due time. —end note]
7 Then, if is_nothrow_move_constructible_v<D> is true,

—(7.1) initialize deleter from std::forward<D>(rhs.deleter);

—(7.2) otherwise initialize deleter from rhs.deleter.
8 If initialization of deleter throws an exception:

—(8.1) if !is_nothrow_move_constructible_v<R>,

16 p0052r5 2017-07-13

—(8.2) then rhs.deleter(resource) ; rhs.release();

—(8.3) otherwise rhs.resource and rhs.deleter are unmodified and rhs can be left owning
the resource.

9 Finally, execute_on_destruction is initialized with exchange(rhs.execute_on_destruction,false).
10 [Note: The explained mechanism ensures no leaking resources. —end note]

7.5.6 unique_resource assignment [scope.unique_resource.assign]

unique_resource& operator=(unique_resource&& rhs) ;

1 Requires:
(is_nothrow_move_assignable_v<R> || is_copy_assignable_v<R>) and
(is_nothrow_move_assignable_v<D> || is_copy_assignable_v<D>)

2 Effects: If this == &rhs no effect. Otherwise,

—(2.1) reset(); followed by

—(2.2) If nothrow_move_assignable_v<R>,

—(2.2.1) try to copy or move assign deleter from rhs.deleter first,

—(2.2.2) then resource=std::forward<R>(rhs.resource),

—(2.3) else if nothrow_move_assignable_v<D>,

—(2.3.1) try to copy or move resource from rhs.resource first,

—(2.3.2) then deleter=std::forward<D>(rhs.deleter),

—(2.4) otherwise try to copy the two members.

—(2.5) Then execute_on_destruction = exchange(rhs.execute_on_destruction, false).

[Note: If a copy of a member throws an exception this mechanism leaves rhs intact and *this
in the released state. —end note]

3 Throws: Any exception thrown during a copy-assignment of a member that can not be moved
without an exception.

7.5.7 unique_resource destructor [scope.unique_resource.dtor]

~unique_resource();
1 Effects: Equivalent to reset().

7.5.8 unique_resource member functions [scope.unique_resource.mfun]

void reset();

1 Effects: Equivalent to:
if (execute_on_destruction) {

execute_on_destruction=false;
deleter(resource);

}

p0052r5 2017-07-13 17

template <class RR>
void reset(RR && r) ;

2 Given the exposition-only function
template <class T>
constexpr conditional_t<

(!is_nothrow_move_assignable_v<T> &&
is_copy_assignable_v<T>),

const T &,
T &&>

move_assign_if_noexcept (T &x) noexcept
{

return std::move(x);
}

3 Remarks: The function reset shall not participate in overload resolution if the expression
resource = move_assign_if_noexcept (r) is ill-formed.

4 Effects: Equivalent to:
reset();
resource = move_assign_if_noexcept (r);
execute_on_destruction = true;

If copy-assignment of resource throws an exception, deleter(r).

void release() noexcept;

5 Effects: Equivalent to execute_on_destruction = false.

const R& get() const noexcept ;
R operator->() const noexcept ;

6 Remarks: The operator shall not participate in overload resolution unless
is_pointer_v<R> &&
(is_class_v<remove_pointer_t<R>> || is_union_v<remove_pointer_t<R>>) is true.

7 Returns: resource.

see below operator*() const noexcept ;

8 Requires: The return type is equivalent to add_lvalue_reference_t<remove_pointer_t<R>>.
9 Remarks: This operator shall not participate in overload resolution unless is_pointer_v<R>

&& !is_void_v<remove_pointer_t<R>> is true.
10 Effects: Equivalent to:

return *resource;

const D & get_deleter() const noexcept;

11 Returns: deleter

18 p0052r5 2017-07-13

7.5.9 Special factory for unique_resource [scope.make_unique_resource]

template <class R,class D, class S=R>
unique_resource<decay_t<R>,decay_t<D>>
make_unique_resource_checked(R&& r, const S & invalid, D && d)
noexcept(is_nothrow_constructible_v<decay_t<R>, R> &&

is_nothrow_constructible_v<decay_t<D>, D>);

1 Requires: If s denotes a value of type remove_reference_t<S> and r denotes a value of type
remove_reference_t<R>, the expressions s == r and r == s are both valid, both have the
same domain, both have a type that is convertible to bool, and bool(s == r) == bool(r ==
s) for every r and s. If S is the same type as R, R shall be EqualityComparable(Table 17).

2 Effects: Equivalent to:
bool mustrelease = bool(r == invalid);
unique_resource ur{std::forward<R>(r), std::forward<D>(d)};
if(mustrelease) ur.release();
return ur;

3 [Note: This factory function exists to avoid calling a deleter function with an invalid argument.
The following example shows its use to avoid calling fclose when fopen failed and returned
NULL. —end note]

4 [Example:
auto file = make_unique_resource_checked(

::fopen("potentially_nonexisting_file.txt", "r"),
(FILE*) NULL, &::fclose);

—end example]

8 Appendix: Example Implementation

See https://github.com/PeterSommerlad/SC22WG21_Papers/tree/master/workspace/P0052_scope_
exit/src

https://github.com/PeterSommerlad/SC22WG21_Papers/tree/master/workspace/P0052_scope_exit/src
https://github.com/PeterSommerlad/SC22WG21_Papers/tree/master/workspace/P0052_scope_exit/src

	1 History
	1.1 Changes from P0052R4
	1.2 Changes from P0052R3
	1.3 Changes from P0052R2
	1.4 Changes from P0052R1
	1.5 Changes from P0052R0
	1.6 Changes from N4189
	1.7 Changes from N3949
	1.8 Changes from N3830
	1.9 Changes from N3677

	2 Introduction
	3 Acknowledgements
	4 Motivation
	5 Impact on the Standard
	6 Design Decisions
	6.1 General Principles
	6.2 Prior Implementations
	6.3 Open Issues (to be) Discussed by LEWG / LWG

	7 Technical Specifications
	7.1 Adjust 20.5.4.8 Other functions [res.on.functions]
	7.2 Adjust 20.5.5.12 Restrictions on exception handling [res.on.exception.handling]
	7.3 Header
	7.4 Additional sections
	7.5 Scope guard support [scope]

	8 Appendix: Example Implementation

