Document number: PO059R0

Date: 2015-09-25

Project: Programming Language C++, LEWG, SG14
Reply-to: Guy Davidson, guy@hatcat.com

A proposal to add a ring adaptor to the standard library

Introduction

This proposal introduces a ring adaptor suitable for adapting arrays and vectors for use as
fixed size queues. The ring is an adaptor offering the same facilities as the queue adaptor
with the additional feature of storing the elements in contiguous memory

Motivation

Queues are widely used containers for collecting data prior to processing in order of entry to
the queue (first in, first out). The std::queue container adaptor acts as a wrapper to an
underlying container, typically deque or list. These containers are non-contiguous, which
means that each item that is added to the queue may prompt an allocation, which will lead to
memory fragmentation.

As stated in the introduction, the ring adapter stores elements in contiguous memory,
minimising the incidence and amount of memory allocation.

Impact on the standard

This proposal is a pure library extension. It does not require changes to any standard
classes, functions or headers.

Design decisions

Naming

The subject of naming this entity has been covered in private mails and on the SG14
reflector. There are several candidates. The most obvious one is circular_buffer, but such
an object exists in Boost; it is somewhat heavyweight, being bidirectional and supporting
random access iterators, which are unnecessary for a FIFO structure. Rolling_queue was
considered, but rolling seems like an unusual prefix. Finally, there was cyclic_buffer,
ring_buffer and ring. As this entity is an *adaptor* for a buffer in the form of an array or a
vector, rather than a buffer itself, the buffer suffix seemed inappropriate, thus the name ring
was the last candidate standing, although ring_queue has, very recently, also been
suggested as a candidate.

Look like std::queue

There is already an adaptor that offers FIFO support, std::queue. The queue grows to
accommodate new entries, allocating new memory as necessary. For ease of use the ring
interface should match this one as far as appropriate.

The interface for std::queue allows for unlimited addition of elements, which is not
appropriate for a ring. If elements are to remain contiguous it is impractical to allow a ring to
grow since this would involve moving the elements to another address in memory.



Therefore, the size of the ring needs to be decided either at compile time or at instantiation
time.

The ring interface can therefore be similar to that of the queue with the addition of try_push
and try_emplace functions: these must now fail if they are called when the ring is full, and
should therefore signal that by returning a success/fail value.

Adapt existing containers

There are two contiguous memory containers that can already be adapted to this purpose,
std::array and std::vector. The decision tradeoff to be made when deciding which to use is:
1. Is it known how many elements this ring should contain at compile time?
2. Is default-constructing that many elements at instantiation sufficiently cheap?
If both of those questions can be answered in the affirmative, then the std::array should be
used. Otherwise, the std::vector should be used, at the cost of an allocation at runtime. The
vector will not grow so there will be no further allocations.

This leads to the need for two separate ring classes: one class declares a template
parameter for the size of the ring, while the other class takes the size as a constructor
parameter. These shall be called fixed_ring and dynamic_ring.

Adapt custom containers

By declaring the container as a template parameter it is possible to adapt custom containers
for ring use. For example, a container which contains uninitialised memory could be used
instead of an array.

Destroy on pop()

Calling pop does not destroy the object. This is different behaviour from std::queue. pop
does not eliminate storage: the container is of a fixed size. At some point the ring will be
destroyed, which will cause the destruction of all the contained objects; if they have already
been destroyed by pop then double-destruction would take place.

Technical specifications
Header <ring> synopsis:
namespace std::experimental {
template<typename T, std::size t capacity, class Container =
std::array<T, capacity>> class fixed_ring {
public:
typedef Container container_type;
typedef typename container_type::value_type value_type;
typedef typename container_type::size_type size type;
typedef typename container_type::reference reference;
typedef typename container_type::const_reference const_reference;
typedef typename container_type::iterator iterator;
typedef typename container_type::const_iterator const iterator;
typedef typename container_type::reverse_iterator reverse_iterator;
typedef typename container_type::const_reverse iterator
const_reverse_iterator;



fixed_ring()
noexcept(std::is_nothrow default constructible<T>::value);

fixed_ring(const fixed_ring& rhs)
noexcept(std::is_nothrow_copy_constructible<T>::value);

fixed_ring(fixed ring&& rhs)
noexcept(std::is_nothrow move constructible<T>::value);

fixed_ring(const container_type& rhs)
noexcept(std::is_nothrow copy constructible<T>::value);

fixed_ring(container_type&& rhs)
noexcept(std::is_nothrow_move_constructible<T>::value);

template<class InputIt> fixed ring(InputIt first, InputIt last);

fixed_ring& operator=(const fixed_ring& rhs)
noexcept(std::is_nothrow_copy assignable<T>::value);

fixed _ring& operator=(fixed_ring&& rhs)
noexcept(std::is_nothrow_move_assignable<T>::value);

void push(const value type& from_value)
noexcept(std::is_nothrow copy assignable<T>::value);

void push(value_type&& from_value)
noexcept(std::is_nothrow_move assignable<T>::value);

template<class... FromType> bool emplace(FromType&&... from value)
noexcept(std::is_nothrow_constructible<T, FromType...>::value &&
std::is_nothrow_move_assignable<T>::value);

bool try push(const value type& from_value)
noexcept(std::is_nothrow_copy_assignable<T>::value);

bool try push(value_type&& from_ value)
noexcept(std::is_nothrow _move assignable<T>::value);

template<class... FromType> bool try_emplace(FromType&&... from_value)
noexcept(std::is_nothrow_constructible<T, FromType...>::value &&
std::is_nothrow_move_assignable<T>::value);

void pop();

bool empty() const noexcept;

size type size() const noexcept;

reference front() noexcept;

const_reference front() const noexcept;

reference back() noexcept;

const_reference back() const noexcept;

void swap(fixed ring& rhs) noexcept;

};

template<typename T, class Container = std::vector<T,
std::allocator<T>>> class dynamic_ring {
public:
typedef Container container_type;
typedef typename container_ type::value type value_ type;
typedef typename container_type::size_type size type;



typedef typename container_type::reference reference;

typedef typename container_type::const_reference const_reference;

typedef typename container_type::iterator iterator;

typedef typename container_type::const_iterator const iterator;

typedef typename container_type::reverse_iterator reverse_iterator;

typedef typename container_type::const_reverse iterator
const_reverse iterator;

explicit dynamic_ring(size_ type initial capacity);

dynamic_ring(const dynamic_ring& rhs)

dynamic_ring(dynamic_ring&& rhs);

template<class InputIt> dynamic_ring(InputIt first, InputIt last,
const Alloc&);

template<typename Alloc> explicit dynamic_ring(const Alloc&);

template<typename Alloc> dynamic_ring(const dynamic_ring&, const
Alloc&);

template<typename Alloc> dynamic_ring(dynamic_ring&&, const Alloc&);

template<typename Alloc> dynamic_ring(const container_type&, const
Alloc&);

template<typename Alloc> dynamic_ring(container_type&&, const Alloc&);

dynamic_ring& operator=(const dynamic_ring& rhs);

dynamic_ring& operator=(dynamic_ring&& rhs);

void push(const value type& from_value);

void push(value type&& from value);

template<class... FromType> void emplace(FromType&&... from_value);

bool try push(const value type& from_value);

bool try push(value_ type&& from value);

template<class... FromType> bool try_emplace(FromType&&...
from_value);

void pop();

bool empty() const noexcept;

size type size() const noexcept;

reference front() noexcept;

const_reference front() const noexcept;

reference back() noexcept;

const_reference back() const noexcept;

void swap(dynamic_ring& rhs) noexcept;

}s
¥

Future work
The existence of two separate classes seems unsatisfactory but | am unable to conceive a
suitable interface which accepts both array and vector types and conveys the size
appropriately: | remain open to suggestions.



n3353 describes a proposal for a concurrent queue. The interface is quite different from
ring, and no guarantees about allocations are mentioned. A concurrent ring could be
adapted from the interface specified therein should n3353 be accepted into the standard.
If the ring were to handle its own memory rather than to adapt a container, then popping
could destroy the contained objects and a single class would be feasible.

Acknowledgements

Thanks to Jonathan Wakely for sprucing up the first draft of the fixed_ring interface.

Thanks to the SG14 forum contributors: Nicolas Guillemot, John McFarlane, Scott Wardle,
Chris Gascoyne, Matt Newport.

Thanks to the SG14 meeting contributors: Charles Beattie, Brent Friedman, Billy Baker, Bob,
Arthur, Sean Middleditch, Ville Voutilainen.

Thanks to Michael McLaughlin for commentary on the draft of the text.

Thanks to Lawrence Crowl for pointing me to his paper on concurrent queues, n3353.
Special thanks also to Michael Wong for convening and shepherding SG14.



