
Document number: P0065
Date: 2015–09–27
To: SC22/WG21 EWG
Reply to: David Krauss

(david_work at me dot com)
Revises: N4166

Movable initializer lists, rev. 2
Elements must be copied, not moved, from std::initializer_list, as it provides read-only
“view” access to a const-qualified sequence. This causes a loss of performance and generality
which often renders it unusable. A new template own_initializer_list is proposed to
provide proper ownership of the initializer list sequence. It works like a move-only, fixed-length,
stack-allocated std::vector under an initializer_list-like class interface.

1. Background
std::initializer_list was introduced as part of the “generalized initializer lists” feature , 1

with the intent of providing an abstraction for aggregate initialization. From N2215 (Stroustrup
2007, emphasis added):

“ … we propose:

• To allow an initializer list (e.g., {1,2,3} or ={1,2,3}) wherever an initializer can appear
(incl. as a return expression, an function argument, a base or member initializer, and an
initializer for an object created using new). An initializer list appears to the programmer
as an rvalue.

• To introduce type std::initializer_list for the programmer to use as an argument
type when an initializer list is to be accepted as an argument. …

The status quo falls short of this goal because it does not support move semantics, which
developed concurrently (i.e., over the entire C++11 gestation) but independently. N2719 and
N2801 (Campos 2008) attempted unification, but they were considered officially “too late” for
the slipping C++0x.
In 2011, move-only types seemed exotic, and deep copies were the status quo. Today,
std::unique_ptr is a vocabulary type and it’s surprising if anything is needlessly copied.
When a sequence of move-only function parameters is needed, several alternatives do exist, such
as perfect forwarding, std::vector as an initializer list, arrays with move iterators, custom
reference wrappers, and illegal const_casting. These workarounds range from inefficient to
inconvenient to embarrassing. The preponderance of alternatives leads to inconsistency.
Compared to its predecessor N4166, this proposal renames the partial specialization as a new
class template, and fully elaborates the overloading rules and implementation details. Deduction
by auto has been changed to support and reflect ownership. The text has been rewritten.

 N2215, Initializer lists (rev. 3), N1493 Braces initialization overloading, N1509 Generalized initializer 1

lists, many other proposals, http://engineering.tamu.edu/media/728036/IAP_Initializers.pdf, etc.

���1

http://cpptruths.blogspot.com/2013/09/21-ways-of-passing-parameters-plus-one.html
http://engineering.tamu.edu/media/728036/IAP_Initializers.pdf

2. Proposal
A new class template is proposed, std::own_initializer_list<T>, implementing
ownership semantics similar to std::vector but using stack allocation. This class is derived
from std::initializer_list<T>, as ownership is a superset of observation. It implements
an empty moved-from state, and ownership in that its destructor destroys the sequence. The
iterator type is a non-const pointer, so that the user may apply std::move to its elements.
template< typename T >  
struct own_initializer_list

: initializer_list< T > {
typedef T & reference; // Inherit const_iterator, const_reference.
typedef T * iterator;

constexpr iterator begin() noexcept;
constexpr const_iterator begin() const noexcept; // As inherited.
constexpr iterator end() noexcept;
constexpr const_iterator end() const noexcept; // As inherited.

constexpr own_initializer_list() noexcept;
own_initializer_list

(own_initializer_list const &) = delete;
constexpr own_initializer_list

(own_initializer_list &&) noexcept; // Post: size() == 0.

~ own_initializer_list();
};

A braced-init-list may initialize ([dcl.init.list] §8.5.4) an own_initializer_list<T> as it 2

would an initializer_list<T>, including the case where T is deduced. For a given T, one of
these two classes is preferred, depending on whether own_initializer_list enables useful
move semantics. Specifically, own_initializer_list<T> is preferred if and only if T has a
nontrivial move constructor T::T(T&&). Most classes with a nontrivial move constructor also
have a nontrivial destructor (according to the “rule of five”), disqualifying them from the static
sequence storage optimization implemented by initializer_list. Note that a class defining
a copy constructor but no move constructor does not have a nontrivial move constructor; it has
no move constructor at all, so the preferred class remains initializer_list<T>. Likewise,
for const-qualified T, the relevant move constructor is T::T(T const &&), which seldom
exists, so initializer_list<T> will probably be chosen.
In function overloading, the conversion sequence representing initialization of
own_initializer_list<T> is a list-initialization sequence ([over.ics.list] §13.3.3.1.5/4).
Overload ambiguity is avoided by treating conversion to the preferred initializer list type as a
better conversion sequence in [over.ics.rank] §13.3.3.2/3.1, given a choice between two
initializer list types of the same T .3

 References are to the working draft N4527 unless otherwise noted.2

 It may be useful to define initializer list types of T as a concept, perhaps including array types.3

���2

The non-preferred type may still be used explicitly. Therefore it is not appropriate to provide an
own_initializer_list overload without an initializer_list alternative, unless the
function will move from the sequence and the type is not copyable. The simplest approach for
container libraries is to always provide both overloads. Overloading initializer_list
against own_initializer_list && allows an lvalue own_initializer_list argument to
select the initializer_list overload by the derived-to-base conversion instead of accessing
the deleted copy constructor. Non-destructive algorithms such as std::min and std::max are
not affected by this proposal. (This proposal does not address the standard library, but it is
covered by the prototype.)
The preferred initializer list type is used when deducing auto from an initializer list. Whereas
[dcl.spec.auto] §7.1.6.4/7 currently says to pass the initializer list to an imaginary function
template with parameter type initializer_list<U>, the preferred type may be resolved by
passing it to an overload set including a parameter of type own_initializer_list<U>.
Assignability of initializer_list and own_initializer_list specializations must be
forbidden. C++14 leaves assignment unspecified. In practice it is allowed, but it only works
when the static sequence storage optimization applies (i.e., the sequence is trivially destructible,
the list initializers are all constant expressions, and the implementation chooses to use static
storage duration for the underlying array). Otherwise, the status quo is to assign dangling
pointers. Calling std::own_initializer_list::initializer_list::operator=
would lead to double deletion, so this is a good opportunity to completely stamp out assignment
altogether. This issue has also been filed as LWG DR 2432.
To support constant expressions, own_initializer_list<T> is a literal type when T is a
literal type. Specifically, the destructor of own_initializer_list<T> is ignored when T is
trivially destructible. The implementation could accomplish this, for example, by specializing
std::is_trivially_destructible. However, because initializer list types should support
incomplete sequence types (see LWG DR 2493), it is not appropriate to use partial specialization
to select a trivial destructor: Selecting the specialization would require T to be complete.
For the container to destroy the sequence, their lifetimes must end at the same time. Therefore,
own_initializer_list (or array types formed of it) are forbidden in cases where sequence
lifetime extension would fail: when used as the value of a return statement, as an exception
object, in a class definition as a subobject (i.e., as a base class or a nonstatic member), or as the
type in a new-expression. These restrictions do not apply to initializer_list, nor to
reference types to own_initializer_list where they would be applicable.

3. Examples
The implementation’s choice between the owning, modifiable own_initializer_list, or the
observing, read-only initializer_list, is based on the element type.
auto li = { 1, 2, 3 }; // li has type std::initializer_list< int >.
auto ls = { std::string("hello") };

// ls has type std::own_initializer_list< std::string >.
auto li2 = li; // OK: initializer_list is copyable.
auto ls2 = ls; // Error: own_initializer_list is not copyable.
auto ls3 = std::move(ls); // OK: own_initializer_list is movable.

���3

The user passes ownership through a function call by moving the list object. Read-only access
still applies in the unusual case that the list is named as an lvalue, if the function supports this.
std::vector< std::string > vsc = ls; // OK: slice to initializer_list and copy.
std::vector< std::string > vsm = std::move(ls); // OK: move from sequence.
assert (ls.size() == 0); // Moved-from sequence no longer exists.
std::vector< std::string > vs = { "yizzo" }; // OK: move from sequence.
std::vector< int > vim = std::move(li); // OK: move devolves to copy.
std::vector< int > vi = { 1, 2, 3 }; // OK: move devolves to copy.

Algorithms iterating over an initializer list, including range-based for loops, may presume
std::move to be safe. If the list is not owning, then the iterator type is T const *, and
moving an element yields T const &&, which is safe (and typically just like T const &).
template< typename value, typename container >
void distribute(value const & v, container & c) {

auto it = c.begin();
// Transform v by functions foo, bar, and baz. Append results to initial elements of c.
for (auto && t : { foo(v), bar(v), baz(v) })

it ++ ->push_back(std::move(t)); // Harmless for immovable t.
}

3.1. Container classes
A pass-by-value own_initializer_list overload supports move-initialization from a
braced-init-list. For better or worse, this does not support copy-initialization from a named
object of type own_initializer_list.
class container {

container(std::initializer_list< std::string > il)
: container(il.begin(), il.end()) {} // Delegating constructor.

container(std::own_initializer_list< std::string > il)
: container(std::make_move_iterator(il.begin()),

 std::make_move_iterator(il.end())) {}
// Iterator-based constructors, etc.

};
container a = { "hello", "world" }; // OK
auto il = { std::string{ "hello" }, std::string{ "world" } };
container b = il; // Error: owning list passed as lvalue.

To copy when an own_initializer_list is passed as an lvalue, instead provide an
own_initializer_list&& constructor.
class container {

container(std::initializer_list< std::string > il)
: container(il.begin(), il.end()) {}

container(std::own_initializer_list< std::string > && ilref) {
auto il = std::move(ilref); // Move from the source object ASAP.
this->assign(std::make_move_iterator(il.begin()),

 std::make_move_iterator(il.end()));
}
// …

���4

4. Rationale

4.1. Naming
The previous revision of this proposal, N4166, used partial specialization to name the new class
as initializer_list<T&&>. This has been changed because it tended to create the
impression that begin and end would return std::move_iterator. The new name was
chosen to reflect when and how it should be used, and how it is different. A list received by a
function or constructor becomes its own. There are many alternatives:

• mutable_initializer_list (the name proposed in N2801): “Mutable” suggests an
overridden const, and suggests usage as scratch space for manipulating values. Users should
not be encouraged to do anything besides iterate over the list or pass it to a constructor.

• movable_initializer_list: “Movable” is a common term for rvalue semantic support,
but this colloquial usage is at odds with the standard terminology. Anything that is copyable is
also movable, though maybe not efficiently. The words also seem to be in a suboptimal order;
this name seems like an approximation of list_of_movable_initializers.

• unique_initializer_list: The most essential feature of the new class is that aliasing is
forbidden and object identity is guaranteed for sequence elements. Also, this name follows the
pattern of unique_ptr. However, most users are unaware of the aliasing issue and care little
about uniqueness of temporaries, making this name cryptic.

• temporary_list or sequence_literal: These are terse and descriptive of their own pure
functionality, but do not express the relationship to the original initializer_list.

Losing partial specialization sacrifices generic functions of the form template<class T>
void foo(initializer_list<T>), which would accept an owning (<T&&>) or non-owning
(<T>) list. However, it is better to write generic functions that accept any sequence type at all.

4.2. Deduction
N4166 avoided breakage by exactly preserving the rules for deducing auto from an initializer
list. On further consideration, the use cases outweigh the risks. Renaming the class and avoiding
partial specialization has also eliminated the danger of mistaking an owning list for a non-
owning one. The only routes to undesirable behavioral change from this proposal are:

• Sequence elements change from const to cv-unqualified. Overloaded functions that detect
const to opportunistically modify an argument may cause problems. However, such overloads
are terrible practice. It is not uncommon for reference wrappers to do something similar, but
one shouldn’t retain references to something as transient as an initializer_list sequence.

• The name of an owning list cannot be used to initialize a variable or parameter declared as
auto. An auto &&, auto &, or auto const & reference needs to be declared instead. This
sanitizes code, particularly parameters, as initializer_list implements reference
semantics.

• The type of a named owning list may be observed using decltype and passed to a
metafunction that only expects initializer_list. This is an edge case.

���5

Note that derived-to-base conversions are allowed during template argument deduction, so an
own_initializer_list<foo> argument will successfully select and deduce T in a generic
initializer_list<T> parameter:
template< typename elem >
int fun(std::initializer_list< elem >);

auto sl = { std::string("hello") }; // Owning list.
int q = fun(sl); // OK: slicing.

This ensures compatibility of own_initializer_list with legacy interfaces.

4.3. Class derivation
own_initializer_list inherits publicly from initializer_list so that the derived-to-
base conversion enables passing it to existing functions. This is also the simplest and most
efficient implementation, with no need for additional temporary objects. “Slicing” by a user-
defined conversion does not produce a workable implementation, because there is only one user-
defined conversion slot in an implicit conversion sequence, and it is already occupied by any
initializer_list constructor ([over.ics.list] §13.3.3.1.5/6).
The class initializer_list<T> intrinsically has the semantics of a const& reference, and
own_initializer_list is like its non-const referent. Conversion of own_initializer_-
list to initializer_list is thus analogous to binding a non-const lvalue or an xvalue to a
const& reference. The derived-to-base conversion is the nearest step on the implicit conversion
ladder to cv-qualification conversion, which is really the most appropriate. (It may also be noted
that if users had been prohibited from declaring or modifying initializer_list objects in
the first place, as with std::type_info, this proposal would be much shorter — we’d only
have to define semantics for initializer_list&& and no new class would be needed.)

4.4. Ownership
Already in current implementations, an initializer_list object and its sequence have equal
lifetimes unless the static storage optimization applies (or sequence lifetime extension fails to
apply, which is usually an error). Fortunately, this optimization is inapplicable to classes with
nontrivial destructors, including most with move semantics. The existence of move semantics is
sufficient to surmise that the optimization is inapplicable and to remove the unnecessary const
qualification from the sequence. The intent is that the user should only leverage the modifiable
access to move from the sequence, so it is framed as ownership.
The sequence is destroyed by the own_initializer_list destructor — of the object
currently owning the list — to free resources at the earliest opportunity. There are several
advantages to this, over the status quo of a scoped array object:

• Moved-from values are not necessarily resource-free. This depends on the class’ allocation
scheme, whether the sequence elements have the same type as the target objects at all, and
whether move semantics have been implemented for all subobjects of the elements.
Destructors free resources more reliably than move constructors or assignment operators.

���6

• Unwinding (e.g., from a bad_alloc exception) should free resources as soon as possible, not
when an arbitrary outer caller is reached. Note, in this case, some or all sequence elements
may not be moved-from.

• Destroying the sequence is more like the behavior of std::vector, which is one of the better
existing workarounds. Preserving the sequence is only reasonable from the perspective of the
array object, but that is supposedly a hidden implementation detail.

• Eliminating moved-from values also removes the temptation to reuse them. A user who really
wants to, may pass std::move_iterator to preserve the sequence as a scratch space.

Moved-from own_initializer_list objects do not provide access to the sequence. It is
disallowed to pass ownership to a new list, then destroy it and continue with the old list. Shared
apparent ownership and aliasing between lists are prevented.
Overloads such as standard container constructors, which accept and copy from an lvalue
initializer_list, may preserve this functionality while adding rvalue semantics by adding
an own_initializer_list&& overload. To apply the moved-from state to the parameter, such
a function should move-construct a local variable from it before iterating over the sequence. List
lvalues are seldom used, and libraries may choose not to support the functionality. A pass-by-
value parameter overloaded over initializer_list and own_initializer_list will
correctly and optimally handle all arguments that are braced-init-lists or rvalues.
In addition to the static storage optimization, there exists subtler a loop hoisting variant, which
moves the sequence to an outer scope rather than to a global object. It is similarly only applicable
when sequence construction and destruction lack side effects. The same principle of inspecting
movability applies. Usually this optimization is applied to numeric types which are trivially
movable. Under this optimization, the sequence only backs one unique list object at a time, so it
is actually compatible with ownership, as long as the sequence contains correct values at the start
of each loop iteration.

4.4.1. Usage restrictions

It is ill-formed to return, throw, or new-allocate an own_initializer_list or to have one as
a subobject. These cases are already broken for initializer_list, and although it is
technically possible to avoid using any dangling references, such technique is esoteric. The
community has formed a strong consensus that “initializer_list is not a container.”
The restrictions are intended to balance maintenance of the status quo against teachability and
usability: To maintain the status quo, own_initializer_list is a drop-in replacement for
valid use cases, including move-construction. It is forbidden by diagnosable rules in exactly the
cases where the weakness of initializer_list must already be taught. It is allowed in
function signatures, and only prohibited in return statements, to facilitate uniformity in type
system. Prohibiting return types would cause the infection to spread to the type system as well.

4.4.2. Implementation model

The sequence is allocated on the stack, and hence deallocated at the end of some scope.
However, if ownership is transferred, it is destroyed before it is deallocated. Users are

���7

encouraged to take own_initializer_list at face value. Accept that it offers the best of both
worlds (the heap and the stack). Let the compiler worry about making it work.
Several models are viable to describe or implement the details, for example, an optional array
object, or an aligned_storage buffer used with placement new. The prototype works by
creating a bona fide T[N] array, but removing its destructor from the AST.

4.4.3. Predynamic storage

Nontrivial destructors may soon be compatible with constant expressions. An initializer list of
literal, but nontrivially-movable objects could be used to initialize a constexpr container
object. Move semantics would still be appropriate, and applicable within the constexpr
evaluation context. Although such a sequence would be forbidden the static storage optimization,
its entire lifetime would be contained within the evaluation of a constant expression, so it would
not exist at runtime.
If ever this proposal does prevent allocation of a sequence in ROM, the optimization may be
restored by explicitly specifying std::initializer_list<T> instead of relying on
deduction.

4.5. Isn’t one class enough?
The fundamental problem with initializer_list is that it implements const& reference
semantics without mentioning const or references in its type. If it had a const somewhere, we
could define the non-const version and be done, without adding a new class.
Replacing initializer_list with a reference type comes close to being a good solution:
template< typename elem >
using initializer_list = own_initializer_list< elem > const &;

This would break the initializer_list::iterator member type, and the reference
wouldn’t behave the same the class when used as a nonstatic member. Close, but no cigar.
The next best one-class alternative is to deprecate (or discourage) initializer_list in favor
of own_initializer_list const &, which is functionally equivalent except that it provides
const_iterators, not iterators. In this case, the name own_initializer_list seems
lengthy and overspecific. Something like sequence_literal would be better. A little further
refinement would be needed to enable the static storage optimization when binding an initializer
list to a sequence_literal const & reference.
Mass migration away from std::initializer_list may be overkill, but perhaps users
should be given std::sequence_literal and std::sequence_literal const& as an
alternative, uniform, compatible, coexisting style. For example, own_initializer_list
could be an alias template to sequence_literal. 

���8

5. Conclusion
std::initializer_list support for non-copyable types has been sorely missed. An
extensive body of literature teaches various workarounds to the problem, which all involve bad
techniques that defeat the ownership semantics at the foundation of C++. The proposed solution
is the optimal compromise, surgically designed and prototyped within the original model.
Not only is std::own_initializer_list good for its own use cases, it improves upon its
foundation. Treating initializer_list as a value type for a return statement or a class
member is a common mistake, leading to frequently-asked questions. Although this proposal
does not directly address the classic initializer_list, it officially establishes the limitations
in a way that compilers must diagnose poor usage of own_initializer_list, and might as
well extend the courtesy to initializer_list as well.

5.1. Future work
N4166 has been prototyped in GCC, with standard library support. The incompatible changes in
this proposal, specifically, renaming the “<T&&>” specialization to “own_,” and supporting auto
deduction, remain to be done at this date.
Normative wording has yet to be forged for this proposal.
The static sequence storage optimization should not be particular to initializer_list
elements. It should be allowed for all prvalues that do not bind to (mutable) rvalue references. In
fact, the optimization is not conforming to the letter of [dcl.init.list] §8.5.4/6 except when the
initializer_list already has static storage duration, because the user may observe the
addresses of sequence elements. A proposal should comprehensively address the storage and
uniqueness of constant objects. The problem scope even extends to linkage of constant globals.

5.2. Acknowledgements
Rodrigo Campos, the author of N2719 and N2801, provided helpful feedback and kind
encouragement.
Ville Voutilainen, Andrzej Krzemieński, and Tomasz Kamiński provided valuable review.

���9

