
On unifying the coroutines and resumable
functions proposals

Revision 0

Document number: P0073R0
Date: 2015-09-25
Author: Torvald Riegel
Reply-to: Torvald Riegel <triegel@redhat.com>

1 The goals of this paper

I have argued in the past that there are commonalities between the different coroutine
proposals and that there are opportunities for a unified proposal. This paper is meant
to provide more detail about this.

So far, the proposals have been presented as separate vertical solutions, and it has
been claimed that there is no substantial common ground between them. However, I
believe we should be looking for commonalities, or we will both make future extensions
of the features presented in these proposals harder and will make all of them harder to
learn for programmers.

To me, the design of coroutines and resumable functions is not just in the space of
programming interfaces. A large part of it is also at the level of the abstract machine:
In particular, how we deal with concurrency beyond std::thread? While it’s easy for
programmers to use std::thread, they often don’t need a full-featured operating system
thread nor would want one because of additional, unnecessary overhead that might be
attached to it; a thread of execution from a thread pool, or something like a coroutine
would often be sufficient and better. I believe there is consensus in SG1 that we need
more kinds of threads of execution beyond those spawned by std::thread (see, for
example, the parallelism TS or P0072R0).

The main points I’m arguing for in this paper are:

• Executing coroutines, generators, etc. should be understood as representing threads
of execution, with certain execution properties. Note that I did not say that they
should be OS threads or similar to what std::thread spawns.



• Resumable functions enable a certain implementation of threads of execution, in
particular how the call stack is implemented. The so-called stackful coroutines use
a more traditional stack implementation.

• The compiler can bridge the gap between those two stack implementations un-
der certain conditions by providing the impression of a stackful implementation
(e.g., calling through normal non-resumable functions) but generating code that
is using resumable functions internally. The Transactional Memory TS is a prece-
dent for very similar compiler support, showing that it can be both specified and
implemented1.

In this paper I will not discuss interfaces of programming abstractions. Personally,
I am more concerned about the design at the conceptual level than about details of a
particular interface; my focus is on the internals, both design-wise and how it affects
implementations or enables certain ones.

2 Coroutines represent threads of execution

Let us first revisit what a thread of execution is according to the standard, and abbreviate
it with TOE instead of “thread” to avoid the confusion over what a “thread” is (e.g., an
operation system thread?). A TOE is defined in the standard as “a single flow of control
within a program” (see §1.10p1). sequenced-before is defined exactly for a TOE (see
§1.9p13). The standard seems not quite clear regarding whether a TOE is a static (e.g.,
a function) or dynamic entity (i.e., an instance of an execution of a single flow of control);
in this paper, I will assume the latter. See N4321 for a more detailed explanation of this
terminology (and of the existing terminology in the standard). N4321 and P0072R0 use
the term “execution agent” as name for TOEs that have specific execution properties
attached to them. The standard uses execution agents to describe lock ownership of
TOEs. P0072 argues for lighter-weight modes of execution provided through different
kinds of execution agents. “Execution context” was suggested as a different name instead
of execution agent, which might make it clearer that the intent is to model execution
properties and not primarily to describe the hardware or software resources used for
execution. Nonetheless, for simplicity, I will just use TOE in this paper, and associate
execution properties with TOEs.

I think that we should embrace parallelism and concurrency—not just by providing
programming abstractions in this area but also by being honest when and where par-
allelism or concurrency exist in a computation. We should not shy away from having
multiple TOEs exist at the same time in a running program. We do not need to be
afraid of this because we can still have simple forms of interleavings between TOEs;
not all forms of concurrency are of the hard-to-handle, low-level kind. Disjoint-access
parallelism (e.g., partitioning an array and processing the disjoint partitions in parallel)
is a good example of a case that has plenty of TOEs but is still easy to understand for

1While the TM TS has not been fully implemented yet, GCC already has support for the core func-
tionality for a couple of years now.

P0073R0 2



programmers. Another example is that for all of us, having a dialogue with another
person is a completely natural thing to do.

Applied to coroutines, this means in my opinion that we need to understand coroutines
as TOEs. On the level of program logic, there is concurrency in the sense of that a
coroutine is an individual flow of control in the program, so matching the standard’s
definition of a TOE. I do not think that it is helpful to try to hide this fact by taking
the mutual exclusion property of a coroutine and its callers and use it as a reason to
merge the coroutine and the caller into one TOE.

Thus, when creating a coroutine and calling it for the first time, we conceptually
spawn a TOE that will execute the separate flow of control that the coroutine is meant
to represent (or that even is the coroutine). Constructing a std::thread will also
spawn a TOE, but a TOE of a different kind with different execution properties (e.g., it
is guaranteed to execute steps eventually irrespective of what other TOEs do, which is
not the case for coroutines).

Understanding coroutines as TOEs is important for three reasons. First, SG1 has
discussed many parallelism and concurrency abstractions that create TOEs: Parallel
algorithms from the Parallelism TS, executors, task regions, etc. Those TOEs have
execution properties that are often lighter-weight than threads, for example regarding
aspects such as forward progress guarantees, thread-specific state, or how call stacks
are implemented (see below for more details on these). Those potentially lighter-weight
properties can be common across TOEs spawned by very different high-level abstractions
(e.g., same weaker-than-std::thread forward progress guarantees for parallel-vector
loops and generators, see below for details).

Second, there often is no single right choice for what kind of TOE to spawn from a
higher-level abstraction. For example, which stack implementation does one really need
for a coroutine? Or which support for thread-local storage is required? This applies to
coroutines and generators as well.

Third, TOEs can be considered the basic entity of computation, when looking at the
implementation level and control over where something executes. The executor proposals
try to provide programmers with such control, and while it is not always obvious from
the programming interfaces, often this control happens by tuning or managing TOEs
(e.g., through thread pools). Thus, if coroutines are TOEs, it becomes cleaner to apply
executor features to them as well. Note that while often it may be most natural to
resume a coroutine using the same compute resource as the caller, this isn’t necessarily
always best: Imagine a generator that needs to access lots of data to provide a result;
this generator is most efficient to run on a CPU close to the accessed data in terms of
the memory hierarchy. A similar example can be made in the space of accelerators. Also
note that the basic scheme of interaction with the coroutine (e.g., the interleaving) is still
the same in this case, so where the coroutine’s TOE is executed is really an orthogonal
property.

Defining different kinds of TOEs thus gives use a foundation upon which higher-level
constructs can be specified and built, including constructs such as coroutines. Having
this common base makes it easier for us and easier to grasp for users.

Of course, coroutines are not just TOEs in the sense of the TOE being independent of

P0073R0 3



anything else. Like other abstractions such as parallel loops that spawn TOEs, coroutines
give additional guarantees such as mutual exclusion between the coroutine’s TOE and
the TOE represented by the caller of the coroutine.

2.1 Examples for specific properties of execution

Before looking at the stack implementation aspect in detail next, I want to give examples
using some of the other properties.

Forward progress guarantees of TOEs (or of execution agents) are discussed in P0072R0.
It is interesting to see that a lock-step execution of a vector-parallel loop and a typical
coroutine execution can both be characterized as non-preemptive, collaborative schedul-
ing. In terms of forward progress, the TOEs spawned by the loop and the TOE repre-
senting the coroutine all are weakly parallel TOEs as defined by P0072R0, with boost
blocking by either the TOE calling the loop or the coroutine. Thus, one set of properties
can describe the TOEs spawned from different abstractions.

Thread-specific state such as thread-local storage (TLS) or lock ownership are another
example: SG1 has been discussing how (and whether at all) TOEs used for parallelism
should support TLS (see P0072R0 for more background). There is no single right answer
because while TLS might not be easily supportable on an accelerator, it sometimes is
just required by code; yet seldomly does it seem necessary to run all TLS constructors
and destructors for such TOEs, as would be required by std::thread. Right now, the
coroutine proposals and the resumable function proposal make one specific choice, and
they state this rather implicitly (e.g., through stating that a thread used to execute code
could change, or just through leaving open which thread executes the code). It would be
better in my opinion to provide choice to programmers, so that they can pick the TLS
semantics they really need.

Lock ownership is a similar example to TLS. Should a generator inherit and modify
the lock ownership of the TOE that called it most recently, or should it have it’s own
set of lock ownerships? There does not seem to be one right answer to this because it
really depends on what the program tries to accomplish.

3 Call stack implementations

The major points that characterize a TOE with non-preemptive suspension are:

1. What happens before and after suspension,

2. How hand-off or hand-shake happen between this TOE and other TOEs on cre-
ation, suspension, and termination of this TOE, and

3. Whether there are any constraints on the code that is running in this TOE.

Such a TOE is then used by, say, a coroutine with a specific interface. In the discussions
I had so far on this topic, I got the impression that for some people, the coroutine

P0073R0 4



interface is tied to a specific choice regarding the three points above and vice versa—
which seems to match with the separate vertical coroutine proposals that we currently
have on the table.

I do not think this has to be the case. While I can agree that some combinations might
be easier to implement and allow one to optimize this or that slightly, all a coroutine
basically needs is a non-preemptively suspendable TOE.

Furthermore, and as the discussions in the committee show, there are different use
cases for coroutines that evaluate the choices made regarding the three points above
differently. For example, in some use cases it is more important to not rely on inter-
procedural compiler transforms whereas in others it could be vital to call functions
without having to duplicate and modify them at the source code level.

Thus, I think it would be helpful to users if they would have choice regarding how
the call stack and suspension implementation used for a coroutine looks like; the more
flexibility we have in the coroutine building blocks, the better.

This would allow for unifying the coroutine proposals. To back up my claim that
this is possible, I will next outline how the call stack implementation can provide the
properties that the programmer is asking for and allow a programmer to combine them.
Stackful coroutines (e.g., N4232) allow the coroutine TOE to call arbitrary functions

and support suspension points in functions called by arbitrary functions. Thus, they
give the impression of a “normal” TOE that can just call any code. Suspension points
are transparent as far as the calleable code is concerned.2 Side stacks of various forms
or normal OS threads are valid implementations.
Resumable functions (e.g., N4499) are a lower-level mechanism because they require

suspension points to be treated specially in the calling code, including functions that
call other functions that may suspend. Thus, suspension is not transparent but requires
functions to be annotated and use the await keyword on all function calls that may result
in a suspension. The goal of this is to enable a specific call stack implementation, namely
one that compresses the space required for the stack by (1) keeping only the essential
live-variable information for each stack frame on the side, (2) rolling back all stack
frames before suspension (i.e., returning from those functions), and (3) reconstructing
stack frames after suspension using the live-variable information. Compiler support is
required, but only of the intra-procedural kind.

So, simplified, resumable functions have the advantage of a potential performance
improvement (depending upon use, however, they are not always faster), while stackful
coroutines have the advantage of minimizing impact on existing code and improving the
likelihood of code reuse.

3.1 Bridging the gap between stackful and resumable

Given that both options have their uses and advantages, it would be good if programmers
do not have to choose between those two extremes. We can make this happen through
relying on a bit more compiler support. In particular, we want the compiler to generate

2But they are not transparent regarding forward progress guarantees and thread-specific state, depend-
ing on which choices the specific coroutine feature makes regarding these execution properties.

P0073R0 5



code that uses the approach of resumable functions internally while putting as little
requirements on programmers as possible to actually change the source code.

Thus, what we need the compiler to do is to analyze the call graph starting at the
outermost function of the coroutine (i.e., the one that is called initially), and look for sus-
pension points (e.g., await keywords). This extends the intra-procedural analysis that
is already required by the resumable function proposal3 to an inter-procedural analysis.
Then, for all non-resumable functions that may be suspended, the compiler needs to
clone those functions and transform the clones into resumable ones. This basically is
similar to the compiler transformation already required by resumable functions, only
that the compiler needs to treat calls to analyzed-as-resumable functions like if they had
an await attached to them; additionally, the compiler needs to adapt the return type of
each clone.

Such compiler support needs to be implemented, but is not magic either. The Transac-
tional Memory TS is a precedent for requiring such support, so if a compiler implements
or wants to implement this TS, it does or will have to do something very similar al-
ready. For transactions, we require special code to be generated to enable the use of
software TM implementations. Because we do not want the programmer to have to do
this, and do not even want to require programmers to annotate all functions that may
be called from a transaction, we require the compiler to do this job as good as it can.
The optimized for synchronized attribute is an even closer analogy.

There are difficulties with inter-procedural analyses (e.g., if function bodies are not
available), but the TM TS shows how they can be dealt with. Furthermore, working
around these difficulties is even easier in our case because strictly speaking, using re-
sumable functions internally is an optimization—the implementation can always use a
side stack implementation or similar if it cannot analyze a part of the call graph. The
side stack can either be used for the whole coroutine, or even for parts of it so that any
runtime/space overheads due to side stacks only occur if the coroutine executes functions
in the unanalyzable part of the call graph. If the latter, the resumable function can hook
into the side stack suspension mechanism to also suspend the resumable function if the
side stack part of the coroutine is suspended.

We can make it even easier for the compiler by requiring an annotation for functions
that are meant to be used as resumable functions, so that the compiler doesn’t need to
do the inter-procedural analyses looking for await keywords. All it then has to do for
functions with such annotations is to treat all calls to annotated-as-resumable functions
as if they had an await attached to them.4

Besides the resumable-to-stackful calls already covered above, calling a resumable
from a normal or stackfil function is also straightforward. If the calling TOE is not a
coroutine TOE, it just blocks for completion of the resumable function. If it is a (non-
resumable, stackful) coroutine TOE, it can instead detect when the resumable functions

3Note that this depends on whether functions that contain await need to be annotated or not; in the
discussion of resumable functions in Lenexa, some people wanted the annotations whereas others
thought they were unnecessary.

4The rules for annotations can be specified so that the compiler will always be aware of whether a
function is annotated-as-resumable; see the TM TS for an example.

P0073R0 6



returns a future with an intermediate result after suspension, and suspend itself when
that happens; when resumed, the side stack part would be resumed first, followed by
the resumable part.

P0073R0 7


	The goals of this paper
	Coroutines represent threads of execution
	Examples for specific properties of execution

	Call stack implementations
	Bridging the gap between stackful and resumable

	Conclusion

