
1 
 

 

Document number:  P0075R0 
Date: 2015-9-25 
Project:  Programming Language C++, Library Working Group 
Reply to:  

 
Arch D. Robison <arch.robison@intel.com> 
Pablo Halpern <pablo.g.halpern@intel.com > 
Robert Geva <robert.geva@intel.com> 
Clark Nelson <clark.nelson@intel.com> 

 

Template Library for Index-Based Loops 

1 Introduction 

Indexed-based loops are well established in programming languages.  Though C++ has language-level 

support for sequential forms of these loops, it has none for parallel or parallel-vector forms.  This paper 

proposes support for all aforementioned forms as a pure-library extension.  Our proposal is pure-library 

extension of the Parallelism TS, and adds support for indexed-based loops with reduction and induction 

variables.   

The proposal adds the following new function templates to the Parallelism TS: 

 for_loop and for_loop_strided implement loop functionality over a range specified by 

integral or iterator bounds.  For the iterator case, it resembles for_each from the Parallelism 

TS, but leaves to the programmer when and if to dereference the iterator.  

 reduction  provides a flexible way to specify reductions in conjunction with for_loop. 

 reduction_plus, reduction_mutiplies, ... etc. creating reduction descriptors for common 

cases such as addition, multiplication, etc. 

 induction provides a flexible way to specify indices or iterators that vary linearly with the 

primary index of the loop. 

Here is a short example: 

void saxpy_ref(int n, float a, float x[], float y[]) { 
    for_loop( seq, 0, n, [&](int i) { 
        y[i] += a*x[i]; 
    }); 
} 

The call to for_loop is equivalent to: 

void saxpy_ref(int n, float a, float x[], float y[]) { 
    for( int i=0; i<n; ++i ) 
        y[i] += a*x[i]; 
} 

The loop can be parallelized by replacing seq with par.  Our library interface permits the “loop index” to 

have integral type or be a random-access iterator.  As with the current Parallelism TS, the iterator case 



2 
 

 

does not require a random-access iterator.  For example, for_loop enables the following general 

implementation of for_each from the Parallelism TS. 

template<class ExecutionPolicy, 
class InputIterator, class Function> 
void for_each(ExecutionPolicy&& exec, InputIterator first, InputIterator last, 
              Function f) { 
    for_loop( exec, first, last, [&](InputIterator i){f(*i);} ); 
} 

When exec is not sequential_execution_policy, random-access iterators may yield better 

performance, because unaggressive implementations are likely to fall back to using a serial loop for 

other kinds of iterators.   

1.1 Strided Loops 

Our proposal also adds a function template for strided loops.  Though these can be expressed from unit-

stride loops and mathematical machinations, we think code is clearer when loops can be expressed in 

natural strided form.  To alleviate template overload trickiness and potential hazards, we the function 

template for strided loops has a different name.  The situation is somewhat akin to the motivations for 

giving for_each and for_each_n different names.  

The stride parameter follows the second bound on the index space.  The stride=3 example below sets 

c[10], c[13], c[16], c[19] to true. 

        for_loop_strided( par, 10, 20, 3, [&](int k) { 
            c[k] = true; 
        }); 

Negative strides are allowed.  The following sets the same elements of c to true as the previous 

example. 

        for_loop_strided( par, 19, 9, -3, [&](int k) { 
            c[k] = true; 
        }); 
 

1.2 Reductions 

The for_loop template also allows specification of one more reduction variables, with a syntax inspired 

by OpenMP, but done with a pure library approach.   Here is an example:  

float dot_saxpy(int n, float a, float x[], float y[]) { 
    float s = 0; 
    for_loop( par, 0, n, 
        reduction(s,0.0f,std::plus<float>()), 
        [&](int i, float& s_) { 
            y[i] += a*x[i]; 
            s_ += y[i]*y[i]; 
        }); 
    return s; 
} 

Here, reduction is a function that returns an implementation-specified reduction object that specifies 

three things: 



3 
 

 

 a reduction lvalue s 

 the identity value for the reduction operation 

 the reduction operation 

In the lambda expression, i is a value of the loop index, and s_ is a reference to a private partial sum.  

There is one such reference for each reduction argument to for_loop, and association is positional.  

(We suspect that in practice, most programmers will name the local reference just s.)  The example is 

equivalent, except with more relaxed sequencing and reduction order, to the following serial code: 

float serial_dot_saxpy (int n, float a, float x[], float y[]) { 
    float s = 0; 
    for( int i=0; i<n; ++i ) { 
        y[i] += a*x[i]; 
        s += y[i]*y[i]; 
    } 
    return s; 
} 

For convenience, we supply shorthand functions for common reductions.  For example: 

               reduction_plus(s) 

is equivalent to: 
 

reduction(s,0.0f,std::plus<float>()) 
 

1.3 Inductions (Linear Variables) 

The for-loop template also allows specification of induction variables, using a scheme somewhat similar 

to that for reduction variables.  Here is an example with three induction variables: 

float* zipper(int n, float* x, float *y, float *z) { 
    for_loop( par, 0, n, 
        induction(x), 
        induction(y), 
        induction(z,2), 
        [&](int i, float* x_, float* y_, float* z_) { 
            *z_++ = *x_++; 
            *z_++ = *y_++; 
        }); 
    return z; 
} 

Here induction is a function that returns an implementation-specified type that specifies two things: 

 a reference to an induction lvalue (e.g. x) 

 a optional stride for that lvalue.  Here the stride is implicitly 1 for x and y, and explicitly 2 for z. 

In the lambda expression, i is a value of the loop index, and x_, y_, z_ are initialized with x+i, y+i, and 

z+2*i respectively.  As with reduction arguments, association is positional.  A function can have both 

reduction and induction arguments.  When the for_loop finishes, x, y, z are set to the same live-out 



4 
 

 

values as if the loop had been written sequentially.  For example, the following serial code returns the 

same value as the previous example:   

float* zipper(int n, float* x, float *y, float *z) { 
    for( int i=0; i<n; ++i ) { 
        *z++ = *x++; 
        *z++ = *y++; 
    } 
    return z; 
} 

 

2 Alternative Designs 
It is possible to leave induction out and rely on users to write the equivalent math.   However, doing so 

complicates parallelizing codes.   We note that OpenMP has linear clauses for similar reason. 

The current Parallel STL has support for reductions.  However, these are tightly tied to specific 

algorithms and require “tuple-fying” values (and defining reduction operations on the tuples) for code 

that needs to perform more than one reduction.  Our approach brings the flexibility that OpenMP users 

have enjoyed from the start. 

3 C++ Proposed Wording 
The proposed edits are with respect to the current Parallelism TS. 

Reduction Support for for_loop [Addition to Non-Numeric Parallel Algorithms]  

Reduction objects add a flexible reduction capability to std::for_loop.  Reduction objects have 

implementation-specified types, and are created by the function template reduction.    

namespace std { 
namespace experimental { 
namespace parallel { 
inline namespace v2 { 
 
// General form for reduction 
template<typename T, typename Op> 
implementation-specified reduction( T& var, T&& identity, Op&& op ); 
 
// Shorthand for plus reduction 
template<typename T> 
implementation-specified reduction_plus( T& var ); 
 
// Shorthand for multiplies reduction 
template<typename T> 
implementation-specified reduction_multiplies( T& var ); 
 
// Shorthand for bit_and reduction 
template<typename J> 
implementation-specified reduction_bit_and( J& var ); 
 
// Shorthand for bit_or reduction 
template<typename J> 



5 
 

 

implementation-specified reduction_bit_or( J& var ); 
 
// Shorthand for bit_xor reduction 
template<typename J> 
implementation-specified reduction_bit_xor( J& var ); 
 
// Shorthand for min reduction 
template<typename T> 
implementation-specified reduction_min( T& var ); 
 
// Shorthand for max reduction 
template<typename T> 
implementation-specified reduction_max( T& var ); 
 
}}}} 

 

Each function returns a “reduction object” that specifies a var, an identity value for the reduction, and a 

reduction-op.  See description of for_loop for how these are used. The implicit identity and reduction-

op are as follows: 

function identity reduction-op 

reduction_plus T() x+y 

reduction_multiplies T(1) x*y 

reduction_bit_and ~(T()) x&y 

reduction_ bit_or T() x|y 

reduction_ bit_xor T() x^y 

reduction_min std::numeric_limits<T>::max() std::min(x,y) 

reduction_max std::numeric_limits<T>::lowest() std::max(x,y) 

 
[Example: 

The following code updates each element of y and sets s to the sum of the squares. 

    float s = 0; 
    for_loop( vec, 0, n, 
        reduction(s,std::plus<float>()), 
        [&](int i, float& t) { 
            y[i] += a*x[i]; 
            t += y[i]*y[i]; 
        } 
    }); 
 
--end example] 

 

Induction objects  

Induction objects add a flexible capability to specify secondary index variables to std::for_loop. 

namespace std { 
namespace experimental { 
namespace parallel { 



6 
 

 

inline namespace v2 { 
 
template<typename T> 
implementation-specified induction( T& var ); 
 
template<typename T, typename S> 
implementation-specified induction( T& var, S stride ); 
 
}}}} 
 

Each function returns an “induction object” that specifies a var, and optionally a stride.  See description 

of for_loop for how these are used. 

For loop [Addition to Non-Numeric Parallel Algorithms] 

namespace std { 
namespace experimental { 
namespace parallel { 
inline namespace v2 { 
template<typename Policy, typename I, typename... Rest> 
void for_loop ( Policy&& policy, I first, I last, Rest&&... rest ); 
 
template<typename Policy, typename I, typename S, typename... Rest> 
void for_loop_strided( Policy&& policy, I first, I last, S stride, Rest&&... rest ); 
}}}} 
 

Requires: The parameter pack rest shall have at least one element; the last element shall be an 

invocable object, f, with an argument list composed as described below.  Every other element of the 

parameter pack shall be the result of invoking an instance of one of the reduction or induction 

function templates. 

stride shall be non-zero. 

The type of f shall meet the requirements of MoveConstructible if Policy is 

sequential_execution_policy, otherwise it shall meet the requirements of CopyConstructible.  For 

for_loop, I shall be an integral type or meet the requirements of an input iterator.   For 

for_loop_strided, S shall be an integral type and: 

 I shall be an integral type or  

 I shall meet the requirements of an input iterator if stride is positive or 

 I shall meet the requirements of a bidirectional iterator if stride is negative.  

Effects:  Applies f to a sequence of argument lists.  For for_loop, the value of the first argument is 

successive values in the range [first,last).  For for_loop_strided with a positive stride, the value of the 

first argument is successive values in the range [first,last) starting with first and advancing by stride.  

For for_loop_strided with negative stride, the value of the first argument is successive values in the 

range (last,first], starting with first and advancing (backwards) by stride. 

Each argument list contains an additional iteration-local value corresponding, by positional order, to 

each parameter in rest, except the last.   



7 
 

 

For a reduction object, its iteration-local value is a reference to a temporary of its reduction type.  Each 

temporary is copy-constructed from the reduction’s identity value.  The reduction object’s var is 

updated with the result of applying reduction-op to var and any temporaries that were generated. When 

these updates occur is implementation specific. 

For induction object with no stride, its iteration-local value for the ith iteration is original + i and its final 

value is var + n, where n s the number of times that f was applied.  For an induction object with a stride, 

its iteration-local value for the ith iteration is original + i*stride and its final value is var + n*stride. The 

var is set to the final value. All applications of f are sequenced before var is set. 

If Policy is sequential_execution_policy, the application shall start with the first argument list in 

the sequence and proceed to the last one.   

Complexity: for_loop applies f exactly last-first times. for_loop_strided applies f exactly (last-

first-1)/stride+1 if stride is positive, and (first-last-1)/stride+1 times if stride is negative. 

Remarks: If f returns a result, the result is ignored. 

[Note: When i and j are iterators, for_loop(policy,i,j,f) differs from for_each(policy,i,j,f) in 

that the latter dereferences elements in [first,last) --note] 

 


