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Revision History This document supersedes N4397. It elaborates a low-level API for stackful context
switching.

Changes since N4397:

• std::execution_context presented as pure library facility.

• Motivation section added.

• std::execution_context no longer tracks parent relationships.

• Removed operator bool() and operator!().

Abstract

This paper proposes a low-level API for a stackful execution context, suitable to act as building-block for
high-level constructs such as stackful coroutines as well as cooperative multitasking (aka fibers/user-land
threads/green threads).

The most important features are:

• first-class object that can be stored in variables or containers

• symmetric transfer of execution control, i.e. suspend-by-call - enables a richer set of control flows than
asymmetric transfer of control (i.e. suspend-by-return as described in N44027 et al.)

• benefits of traditional stack management retained

• ordinary function calls and returns not affected

• working implementation in Boost.Context13

Motivation

Content This paper proposes std::execution_context. execution_context is the crucial founda-
tion on which a number of valuable higher-level facilities can be built using pure C++.

execution_context itself is, however, impossible to code in portable C++. Having it provided with
the runtime library will be enabling technology for both third-party libraries and user applications.

As a library-only facility, boost::context::execution_context13 is existing practice.
execution_context is used to implement Boost.Coroutine214 and the candidate Boost.Fiber library.15

This facility adds significant semantics beyond resumable functions. For instance, you cannot build co-
operative user-mode threads (such as those supported by Boost.Fiber) on resumable functions.

These libraries based on Boost.Context can seamlessly interoperate with Boost.Asio:12 Asio’s async_result
mechanism (proposed for standardization in N40453) supports adapters that can, using a natural syntax,
suspend the caller for the duration of an asynchronous network call. For instance, using Boost.Coroutine:

void read_msg(yield_context yield) {
try {

array< char, 64 > bf1;
async_read(socket, buffer(b1), yield);
header hdr(bf1);
std::size_t n = hdr.payload_size();
std::vector< char > b2(n, ’\0’);
async_read(socket, buffer(bf2), yield);
payload pld(bf2);
// process message ...
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} catch (exception const&) {
// ...

}
}

The same example recast using Boost.Fiber:

void read_msg() {
try {

array< char, 64 > bf1;
async_read(socket, buffer(b1), boost::fibers::asio::yield);
header hdr(bf1);
std::size_t n = hdr.payload_size();
std::vector< char > b2(n, ’\0’);
async_read(socket, buffer(bf2), boost::fibers::asio::yield);
payload pld(bf2);
// process message ...

} catch (exception const&) {
// ...

}
}

Libraries based on std::execution_context will similarly interoperate cleanly with the proposed stand-
ard Networking Library.9

The authors intend to bring future papers to propose a cooperative fiber library and “stackful” coroutines.
execution_context is foundational for all such evolutionary work.

Why Bother? Given N4402 resumable functions, why should we even consider a completely different
mechanism for suspending and resuming a function? Isn’t this completely redundant with that?

The answer is “no,” for several different reasons.∗

• With resumable functions, the markup to support suspension propagates virally through a code base.
Resumable functions suspend by returning. Every caller must therefore distinguish between “callee
returned value” and “callee suspended, you must also suspend.” The new await keyword makes
that distinction, suspending the containing function until the callee produces a value. Every call to a
resumable function must itself use await – which then imposes the same requirement on its caller, and
so on.

• Forgetting to annotate a call to a resumable function with await (perhaps because the caller is unaware
of its nature, perhaps because the callee changed its nature) can result in subtle timing bugs. Suppose
function f() returns a std::future<void>. The statement await f(); suspends the containing
function until the future returned by f() is fulfilled. Coding simply f(); merely discards that future.
Both forms are perfectly legal; both are likely to survive desk-checking and code review. It’s even worse
if f() usually fulfills its future by the time it returns, only occasionally taking longer. That way the
error will survive most QA as well, and escape into production.

• The need to await called functions means that we must evolve a whole new family of await-aware
STL algorithms.†

• Even if one is willing to accept the viral await markup of resumable functions, using normal encapsu-
lation to manage layers of abstraction could become expensive in runtime. Every entry to a resumable
function requires a heap allocation, freed on return. By contrast, once you have allocated a side stack,
function call and return on that side stack is just as efficient as function call and return on the original
application stack. It’s a classic time/space tradeoff. (If you determine to address that issue by drastically
pruning local variables from your resumable functions, note that the same tactic could allow you to use
a far smaller side stack – which would still be faster for nontrivial call chains.)

∗The authors are indebted to Christopher Kohlhoff for his excellent summary in N4453,8 sections 4.1 and 4.2.
†N44538 section 4.2 explains this more fully.
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Background

At the November 2014 meeting in Urbana the committee discussed proposals for stackless (N41344 and
N42445) and stackful (N39851) coroutines. The members of the committee concluded that stackless and stackful
coroutines have distinct use cases and decided to pursue both technologies.

The authors proposed N43976 at the May 2015 meeting in Lenexa, recognizing that the lower-level
execution_context API is a more powerful foundational abstraction than N3985 coroutines. For instance,
with a fiber library implemented on execution_context, the main() context (as well as each new thread)
can access the same library functionality as an explicitly-launched fiber.

This paper is an updated version of N4397.

Definitions

This section gives an overview about the wording used in this proposal.

Execution context environment in which program logic is evaluated (CPU registers, stack).

Activation record also known as activation frame or stack frame (a special activation record).
An activation record is a data structure containing the state of a particular function call. The following data are
part of an activation record:

• a set of registers (defined by the calling convention of the ABI,∗ e.g. the return address)

• local variables

• parameters to the function

• eventual return value

Stack frame an activation record allocated on the processor stack; stack frames are allocated in strict last-
in-first-out order - placed by incrementing/decrementing the stack pointer register on function call/return.

Heap-allocated activation record an activation record allocated in heap storage; every heap allocated
activation record holds a pointer to its parent activation record (parent pointer tree).

Processor stack is a chunk of memory into which the processor’s stack pointer register is pointing. The
processor stack might belong to:

• an application’s initial (or only) thread

• an explicitly-launched thread

• a sub-thread execution context (e.g. a coroutine or fiber)

Application stack The processor stack assigned to function main() is generally a linear stack. Often, the
memory management system is used to detect stack overflow and to allocate more memory. This stack is
ideally placed well away from any other data in the process’s address space so it can be extended as needed.

Thread stack The processor stack assigned to an explicitly-launched thread is generally a linear stack. In a
32-bit (or smaller) address space, the operating system cannot, in general, guarantee that such a stack can be
arbitrarily extended on overflow: the range of available addresses is constrained by the next adjacent allocated
memory block. Instead, stacks with a fixed size are used - usually 1MB (Windows) up to 2MB (Linux), but
some platforms use smaller stacks (64KB on HP-UX/PA and 256KB on HP-UX/Itanium).

∗Application Binary Interface
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Side stack is a processor stack that is used for stackful context switching. Each execution context gets its
own stack. The stack belonging to an inactive context remains unchanged, while function calls and returns
push and pop stack frames on the currently-active stack.
A side stack is generally allocated by the running process (library code) rather than by the operating system. It
might either be a linear stack or a linked stack.

Linear stack is a contiguous memory area into which the processor’s stack pointer register points. On a
processor with a stack pointer register, this is the traditional stack model for C++. Allocation and deallocation
of activation records (stack frames in this context) is performed by incrementing/decrementing the stack
pointer.

Linked stack also known as split stack10 or segmented stack.11 This is a linked list of contiguous memory
blocks of intermediate size, each of which might hold several function stack frames. The processor’s stack
pointer points into the head block on this list; normally a new stack frame is allocated by adjusting the stack
pointer, as usual. When compiler-generated code detects near overflow, it links on a new head block. Thus, the
effective stack space can grow arbitrarily without requiring a single contiguous address range.
This mechanism has a low performance penalty - typically adding around 5-10% overhead to the instruction
sequence implementing a function call. Only an application consisting solely of empty functions would see
that impact overall. Small functions would see the most overhead – but modern C++ compilers work really
hard to inline small functions, and of course the overhead vanishes entirely for inline functions.
Applications compiled with support for linked stacks can use (link against) libraries not supporting linked
stacks. (See GCC’s documentation,10 chapter ’Backward compatibility’.)

Non-contiguous stack is a parent pointer tree-structure used to store heap-allocated activation records.
It is a stack with branches; an activation record can outlive the context in which it was created. With this
mechanism, the processor’s stack pointer register does not point to (or into) any of these activation records.
Compare to Linked stack.
A heap activation record is allocated on entry to a function and freed on return, as with N4402.7

This structure is also called cactus stack16 or spaghetti stack.

Parent pointer tree data structure in which each node has a pointer to its parent, but no pointer to its
children. Traversal from any node to its ancestors is possible but not to any other node.

Coroutine function that enables explicit suspend and resume of its progress by preserving execution state
(activation record), thus providing an enhanced control flow. Coroutines have the following characteristics:1

• values of local data persist across context switches

• execution is suspended as control leaves coroutine and resumed at certain time later

• symmetric or asymmetric control-transfer mechanism

• first-class object or compiler-internal structure

• stackless or stackful

Toplevel context function is a function executed as a coroutine (stackless or stackful). This term is
particularly useful when discussing library-supported context switching, as the execution context must be
constructed explicitly and passed a function.

Asymmetric coroutine provides two distinct operations for the context switch - one operation to resume
and one operation to suspend the coroutine.
An asymmetric coroutine is tightly coupled with its caller, i.e. suspending the coroutine transfers execution
control back to the point in the code from which the coroutine was last resumed. The asymmetric control-
transfer mechanism is usually used in the context of generators.
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Symmetric coroutine only one operation to resume/suspend the context is needed.
A symmetric coroutine does not know its caller; control can be transferred to any other symmetric coroutine
(which must be explicitly specified). The symmetric control-transfer mechanism is usually used to implement
cooperative multitasking.

Fiber/user-mode thread execute tasks in a cooperative multitasking environment involving a scheduler.
Coroutines and fibers are distinct (N40242).
Code running in a user-mode thread (or “fiber”) suspends by passing control to the scheduler, which selects
the next fiber to resume. Such code is not inherently coupled to the code that launched the fiber (as with an
asymmetric coroutine); nor must it explicitly select the next fiber (as with a symmetric coroutine).

Resumable function N44027 describes resumable functions as an efficient language-supported mechan-
ism for stackless context switching introducing two new keywords - await and yield. A resumable function
is a kind of asymmetric coroutine: suspending passes control back to its caller.
Characteristics of resumable functions:

• stackless

• uses heap allocated activation records (referred as activation frames in N4402)

• tight coupling between caller and resumable function (asymmetric control-transfer mechanism)

• implicit return-statement7 (code transformation)

Suspend by return The terms stackless and stackful may become confusing as different implementations
are discussed. An N44027 “stackless” resumable function might consume a bit of the current processor stack
on entry, cleaning it off on suspension. A cactus stack coroutine implementation might provide “stackful”
semantics while completely avoiding the processor stack.
We use the phrase suspend by return to discuss a mechanism such as described in N44027 and N4244,5 in which
suspending is implemented by returning from the function body.

Suspend by call describes a mechanism such as described in N3985,1 in which suspending is implemented
by calling some other (library) function.

Introduction

Traditionally C++ code is run on a linear stack, i.e. the activation records are allocated in strict last-in-first-out
order. This stack model allocates activation records on function call/return by incrementing/decrementing
the stack pointer.
But in the context of coroutines, that is, switching between different execution contexts, a linear stack introduces
problems. Calling a function creates an activation record on the stack which is removed if the function returns.
But for a suspended coroutine the activation record must not be removed!
Consider the following scenario:

• Assume the processor stack is built in descending order: that is, a PUSH instruction decrements the
stack pointer register. Call the stack pointer’s initial value SP0.

• Function main() enters coroutine C().

• C()’s prolog allocates a stack frame of size sizeof(C::frame) by decrementing SP. SP is now at SP1
= (SP0 - sizeof(C::frame)).

• C() suspends, returning control to main(). main() must find its stack frame at SP = SP0.

• main() now calls function F().

• F()’s prolog allocates a stack frame of size sizeof(F::frame) by decrementing SP. SP is now at SP2
= (SP0 - sizeof(F::frame)).

• Unless either (sizeof(C::frame)== 0) or (sizeof(F::frame)== 0), any data written by F()
to its own stack frame will necessarily overwrite any data saved by C() in its stack frame.
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• F() returns. SP is back to SP0.

• main() resumes C(). SP is set to SP1.

• C() attempts to access data in its stack frame – which has been overwritten by F(). We are now in the
realm of Undefined Behavior.

In order to prevent stack corruption, a stackless coroutine uses a heap-allocated activation record (N44027),
while stackful coroutines use a side stack (N39851).
Since an N4402 stackless resumable function uses suspend by return, when it suspends, the stack pointer is
restored to its value before the resumable function was called. While executing, a resumable function can
consume additional space in the linear processor stack; it can call traditional functions. But they must all
return before the resumable function suspends. If resumable function A() calls function B(), and B() wishes
to suspend, B() must also be a resumable function. Thus the term stackless: a suspended resumable function
leaves no activation record on the linear processor stack. A single linear stack can be reused by an arbitrary
number of suspended resumable functions.
Using a side stack permits stackful coroutines to use suspend by call. An arbitrary number of ordinary stack
frames can be left on the side stack for a suspended coroutine context; arbitrary stack frames can be pushed or
popped on the currently-active stack, independently of any suspended stack.
This is the fundamental difference between stackless and stackful coroutines.

Traditional stack management – a single linear stack per thread – is inadequate for coroutines because
coroutines must outlive the context in which they were created.
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Discussion

Calling subroutines The advantage of stackless coroutines is that they reuse the same linear processor
stack for stack frames for called subroutines. The advantage of stackful context switching is that it permits
suspending from nested calls.

If a resumable function calls a traditional function (rather than another resumable function), then the ac-
tivation record belonging to the traditional function is allocated on the processor stack (so it is called a stack
frame). As a consequence, stack frames of called functions must be removed from the processor stack before
the resumable function yields back to its caller.
In other words: the calling convention of the ABI dictates that, when the resumable function returns (sus-
pends), the stack pointer must contain the same address as before the resumable function was entered.
Hence a yield from nested call is not permitted – unless every called function down to the yield point is also a
resumable function.
The benefit of stackless coroutines consists in reusing the processor stack for called subroutines: no separate
stack memory need be allocated.

Of course even a stackless resumable function might fail if its called functions exhaust the available stack.

In stackful context switching, each execution context owns a distinct side stack which is assigned to the
stack pointer (thus the stack pointer must be exchanged during each context switch).
All activation records (stack frames) of subroutines are placed on the side stack. Hence each stackful execution
context requires enough memory to hold the stack frames of the longest call chain of subroutines. Therefore,
to support calling subroutines, stackful context switching has a higher memory footprint than resumable
functions.
On the other hand, it is beneficial to use side stacks because the stack frames of active subroutines remain
intact while the execution context is suspended. This is the reason why stackful context switching permits
yielding from nested calls.

// P0099: stackful execution context
// access current execution context l1
auto l1=std::execution_context::current();
// create stackful execution context l2
std::execution_context l2(

[&l1](){
std::printf("inside l2\n");
// suspend l2 and resume l1
l1();

});
// resume l2
l2();

Variable l1 is passed to stackful execution context l2 via the capture list of l2. The stack frames of std::printf()
are allocated on the side stack owned by l2.

Asymmetric vs. symmetric As a building block for user-mode threads, symmetric control transfer is
more efficient than the asymmetric mechanism.

Asymmetric coroutines provide two operations for context switching. The caller and the coroutine are
coupled, that is, such a coroutine can only jump back to the code that most recently resumed it.

8



main

f1

f2

f1()

f2()

yield

yield

For N asymmetric coroutines, 2N context switches are required. This is sufficient in the case of generators, but
in the context of cooperative multitasking it is inefficient.

The proposed stackful execution context (std::execution_context) provides only one operation to
resume/suspend the context (operator()()). Control is directly transferred from one execution context to
another (symmetric control transfer) - no jump back to the caller. In addition to supporting generators, this
enables an efficient implementation of cooperative multitasking: no additional context switch back to caller,
direct context switch to next task.
The next execution context must be explicitly specified.

ctxm ctx2 ctx1
ctx2() ctx1()

mctx()

Resuming N instances of std::execution_context takes N+1 context switches.

Passing data Because of the asymmetric resume/suspend operations of N4402, the proposal works well
for generator examples, returning data from the resumable function.

Passing data into the body of resumable functions (N4402) requires helper classes like channel<>.

// N4402: stackless resumable function
goroutine pusher(channel<int>& left, channel<int>& right){

for(;;){
auto val=await left.pull();
await right.push(val+1);

}
}

int main(){
static const int N = 1000*1000;
std::vector<channel<int>> c(N+1);
for(int i=0;i<N;++i){

goroutine::go(pusher(c[i],c[i+1]));
}
c.front().sync_push(0);
std::cout<<c.back().sync_pull()<<std::endl;

}

In this case, the way data are passed into the body is not intuitive and introduces some problems.
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Experience with execution_context from Boost.Context13 turned up a common pattern: to pass a lambda
to the execution_context, using its capture list to transfer data into and to return data from the body.
Parameters (input/output) are accessed via captured references or pointers.

// P0099: stackful execution context
class X{
private:

int* inp_;
std::string outp_;
std::exception_ptr excp_;
std::execution_context caller_;
std::execution_context callee_;

public:
X():

inp_(nullptr),outp_(),
caller_(std::execution_context::current()),
callee_([=](){

try {
outp_=lexical_cast<std::string>(*inp_);

} catch (...) {
excp_ = std::current_exception();

}
caller_(); // context switch to main()

})
{}

std::string operator()(int i){
inp_=&i;
callee_(); // context switch to coroutine (lambda)
if (excp_) {

std::rethrow_exception(excp_);
}
return outp_;

}
};

int main(){
X x;
try{

std::cout<<x(7)<<std::endl;
}catch(const std::exception& e){

std::cout<<"exception: "<<e.what()<<std::endl;
}

}

Class X (rudimentary coroutine) demonstrates how input and output parameters are transferred between
contexts. Member variable callee_ represents a new execution context and captures the this-pointer of X. The
body converts an integer variable (input) into a string (output). Any exception thrown by the conversion is
transported and re-thrown in main().

Stack strategies For stackful coroutines two strategies are typical: a contiguous, fixed-size stack (as used
by threads), or a linked stack (grows on demand).
The advantage of a fixed-size stack is the fast allocation/deallocation of activation records. A disadvantage is
that the required stacksize must be guessed.
The benefit of using a linked stack is that only the initial size of the stack is required. The stack itself grows on
demand, by means of an overflow handler. The performance penalty is low. The disadvantage is that code
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executed inside a stackful coroutine must be compiled for this stack model. In the case of GCC’s split stacks,
special compiler/linker flags must be specified - no changes to source code are required.
When calling a library function not compiled for linked stacks (expecting a traditional contiguous stack),
GCC’s implementation uses link-time code generation to change the instructions in the caller. The effect is that
a reasonably large contiguous stack chunk is temporarily linked in to handle the deepest expected chain of
traditional function stack frames (see GCC’s documentation10).

Design

Class std::execution_context is derived from Boost.Context.13 It provides a small, basic API on which
to build higher-level APIs such as stackful coroutines (N39851) and user-mode threads (cooperative multi-
tasking).
In effect, execution_context is a copyable handle to an underlying noncopyable capture record.
execution_context::operator() preserves the CPU register set∗ + stack pointer: the content of those re-
gisters is stored in the capture record associated with execution_context::current(). Then operator()
loads the CPU register set and stack pointer from the capture record associated with *this.
Finally, execution_context::operator() makes *this become current().

Class std::execution_context is like a handle to a capture record of an execution context.

// P0099: stackful execution context
std::execution_context l1=std::execution_context::current();
std::execution_context l2(

std::allocator_arg,
fixedsize(4048),
[&l1](){

...
});

std::execution_context l3(
std::allocator_arg,
protected_fixedsize(4048),
[&l2](){

...
});

Because of the symmetric context switching (only one operation transfers control), the target execution context
must be explicitly specified.
Exchanging data between different execution contexts requires the use of lambda captures.

First-class object As first-class object the execution context can be stored in a variable or container.

Capture record Each instance of std::execution_context owns a toplevel activation record, the
capture record. The capture record is a special activation record that stores additional data such as stack
pointer and instruction pointer. That means that during a context switch, the execution state of the running
context is captured and stored in the capture record while the content of the resumed execution context is
loaded (into CPU registers etc.).

Active context The static member function current() returns a std::execution_context pointing
to the current capture record. The current active capture record is stored in an internal, thread local pointer.

Toplevel capture records On entering main() as well as the entry-function of a thread, an execution
context (capture record) is created and stored in the internal pointer underlying current(). (In practice, this
could be lazily instantiated.)

∗defined by ABI’s calling convention
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Suspend-on-call std::execution_context is designed to suspend on call of operator()(). The
prologue of operator()() captures (preserves) the active execution context and loads the data from the
capture record of the resumed context (*this) into the CPU.

Termination If the toplevel context function returns, std::exit(0) is called.

Exceptions If an uncaught exception escapes from the toplevel context function, std::terminate is
called.

Stack allocators are used to create stacks.

protected_fixedsize Constructs a linear stack of specified size, appending a guard page at the end of
each stack to protect against overflow. If the guard page is accessed (read or write operation) a segmentation
fault/access violation is generated by the operating system.

member functions

(constructor) constructs new stack allocator

protected_fixedsize(std::size_t size=default_stacksize) (1)

1) fixed size stack, size determines the stack size (default_stacksize is platform dependent)

Notes
At the end of the protected stack a guard page is appended.

fixedsize Constructs a linear stack of specified size. In contrast to protected_fixedsize, it does not
append a guard page at the end of each stack. The memory is simply managed by std::malloc() and
std::free().

member functions

(constructor) constructs new stack allocator

fixedsize(std::size_t size=default_stacksize) (1)

1) fixed size stack, size determines the stack size (default_stacksize is platform dependent)

segmented Creates a segmented stack with the specified initial size, which grows on demand.

member functions

(constructor) constructs new stack allocator

segmented(std::size_t size=default_initial_stacksize) (1)

1) stack grows on demand, size determines the initial stack size (default_initial_stacksize is plat-
form dependent)
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synopsis declaration of class std::execution_context

class execution_context {
public:

static execution_context current() noexcept;

template<typename StackAlloc, typename Fn, typename ... Args>
execution_context(std::allocator_arg_t, StackAlloc salloc,

Fn&& fn, Args&& ... args);

template<typename Fn, typename ... Args>
explicit execution_context(Fn&& fn, Args&& ... args);

execution_context( execution_context const&)=default;
execution_context( execution_context &&)=default;

execution_context& operator=( execution_context const&)=default;
execution_context& operator=( execution_context &)=default;

void operator()() noexcept;
};

member functions

(constructor) constructs new execution context

template<typename StackAlloc, typename Fn, typename ... Args>
execution_context(std::allocator_arg_t, StackAlloc salloc,
Fn&& fn, Args&& ... args) (1)

template<typename Fn, typename ... Args>
explicit execution_context(Fn&& fn, Args&& ... args) (2)

execution_context(const execution_context& other)=default (3)

execution_context(execution_context&& other)=default (4)

1) this constructor takes (e.g.) a lambda as argument, stack is constructed using salloc

2) takes (e.g.) lambda as argument, stack is constructed using either fixedsize or segmented. An imple-
mentation may infer which of these best suits the code in fn. If it cannot infer, fixedsize will be
used.

3) copies std::execution_context, i.e. underlying capture record is shared

4) moves underlying capture record to new std::execution_context

Notes
When an execution_context is constructed using either of the constructors accepting fn, control is not
immediately passed to fn. Resuming (entering) fn is performed by calling operator()() on the new
execution_context instance.

If an instance of std::execution_context is copied, both instances share the same underlying capture
record.

(destructor) destroys an execution context

~execution_context() (1)
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1) destroys a std::execution_context. If associated with a context of execution and holds the last
reference to the internal capture record, then the context of execution is destroyed too. Specifically, the
stack is unwound.

operator= copies/moves the context object

execution_context& operator=(execution_context&& other) (1)

execution_context& operator=(const execution_context& other) (2)

1) assigns the state of other to *this using move semantics

2) copies the state of other to *this, state (capture record) is shared

Parameters

other another execution context to assign to this object

Return value

*this

operator() jump context of execution

execution_context& operator()() (1)

1) suspends the active context, resumes the execution context

Exceptions

1) calls std::terminate if an exception escapes toplevel fn

Notes
The prologue preserves the execution context of the calling context as well as stack parts like parameter list and
return address.∗ Those data are restored by the epilogue if the calling context is resumed.
If an uncaught exception escapes from the execution context, std::terminate is called.
If the toplevel context function returns (reaches end), std::exit(0) is called.
The only way to leave an execution_context without terminating the calling process is to call another
execution_context’s operator()().
A suspended execution_context can be destroyed. Its resources will be cleaned up at that time.
The behaviour is undefined if operator() is called while current() returns *this (attempting to resume an
already running context).

current accesses the current active execution context

static execution_context current() (1)

1) construct an instance of std::execution_context pointing to the capture record of the current, active
execution context

Notes
The current active execution context is thread-specific, e.g. for each thread (including main()) an execution
context is created at start-up.

∗required only by some x86 ABIs
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A. recursive descent parser using std::execution_context

This example (taken from Boost.Context13) uses a recursive descent parser for processing a stream of characters.
The parser (a SAX parser or other event-dispatching framework would be equivalent) uses callbacks to push
parsed data to the user code. With std::execution_context the user code inverts the control-flow. In this
case, the user code pulls data from the parser.

// P0099: stackful execution context
// grammar:
// P ---> E ’\0’
// E ---> T {(’+’|’-’) T}
// T ---> S {(’*’|’/’) S}
// S ---> digit | ’(’ E ’)’
class Parser{

int level;
char next;
istream& is;
function<void(char)> cb;

char pull(){
return char_traits<char>::to_char_type(is.get());

}

void scan(){
do{

next=pull();
}
while(isspace(next));

}

public:
Parser(istream& is_,function<void(char)> cb_) :

level(0),next(),is(is_),cb(cb_)
{}

void run() {
scan();
E();

}

private:
void E(){

T();
while (next==’+’||next==’-’){

cb(next); // callback; signal new symbol
scan();
T();

}
}

void T(){
S();
while (next==’*’||next==’/’){

cb(next); // callback; signal new symbol
scan();
S();

}
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}

void S(){
if (isdigit(next)){

cb(next); // callback; signal new symbol
scan();

}
else if(next==’(’){

cb(next); // callback; signal new symbol
scan();
E();
if (next==’)’){

cb(next); // callback; signal new symbol
scan();

}else{
throw std::runtime_error("parsing failed");

}
}
else{

throw std::runtime_error("parsing failed");
}

}
};

int main(){
std::istringstream is("1+1");
char c;
std::exception_ptr excp;
// access current execution context
auto m=std::execution_context::current();
std::execution_context l(

std::allocator_arg,
segmented(1024),
[&is,&m,&c,&excp](){

Parser p(is,
// callback, used to signal new symbol
[&m,&c](char ch){

c=ch;
m(); // resume main-context

});
try {

p.run(); // start parsing
} catch (...) {

excp = std::current_exception();
}

});
try {

// inversion of control: user-code pulls parsed symbols from parser
while(l()){

if (excp) {
std::rethrow_exception(excp);

}
std::cout<<"Parsed: "<<c<<std::endl;

}
} catch(const std::exception& e){

std::cerr<<"exception: "<<e.what()<<std::endl;
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}
}

You cannot use resumable functions for this example without transforming all functions in the call chain into
resumable functions - which is impossible for closed source code, impractical at best for a large, complex code
base.
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