
Document number: P0197R0

Date: 2016-02-11

Project: ISO/IEC JTC1 SC22 WG21 Programming Language C++

Audience: Evolution Working Group

Reply-to: Vicente J. Botet Escriba <vicente.botet@wanadoo.fr>

Abstract

Defining tuple-like access tuple_size , tuple_element and get<I>/get<T> for simple
classes is -- as for comparison operators (N4475) -- tedious, repetitive, slightly error-prone, and easily
automated.

I propose to (implicitly) supply default versions of these operation and traits, if needed. The meaning of
get<I> is to return a reference to the Ith member.

1. Introduction
2. Motivation
3. Proposal
4. Design Rationale
5. Alternative solutions
6. Proposed wording
7. Implementability
8. Open points
9. Acknowledgements

10. References

Defining tuple-like access tuple_size , tuple_element and get<I>/get<T> for simple
classes is -- as for comparison operators (N4475) -- tedious, repetitive, slightly error-prone, and easily
automated.

Default Tuple-like Access

Table of Contents

Introduction

mailto:vicente.botet@wanadoo.fr
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4475.pdf
file:///Users/viboes/github/std_make/doc/proposal/reflection/P0197R0.md#introduction
file:///Users/viboes/github/std_make/doc/proposal/reflection/P0197R0.md#motivation
file:///Users/viboes/github/std_make/doc/proposal/reflection/P0197R0.md#proposal
file:///Users/viboes/github/std_make/doc/proposal/reflection/P0197R0.md#design-rationale
file:///Users/viboes/github/std_make/doc/proposal/reflection/P0197R0.md#alternative-solutions
file:///Users/viboes/github/std_make/doc/proposal/reflection/P0197R0.md#proposed-wording
file:///Users/viboes/github/std_make/doc/proposal/reflection/P0197R0.md#implementability
file:///Users/viboes/github/std_make/doc/proposal/reflection/P0197R0.md#open-points
file:///Users/viboes/github/std_make/doc/proposal/reflection/P0197R0.md#acknowledgements
file:///Users/viboes/github/std_make/doc/proposal/reflection/P0197R0.md#references
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4475.pdf

I propose to (implicitly) supply default versions of these operation and traits, if needed. The meaning of
get<I> is to return a reference to the Ith member.

If the simple defaults are unsuitable for a class, a programmer can, as ever, define more suitable ones or
suppress the defaults. The proposal is to add the operations as an integral part of C++ (like the assignment
operator), rather than as a library feature.

The proposal follows the same approach as Default Comparison (N4475), that is, that having default
generated code for these basic operations only when needed and possible would make the language
simpler.

The concerned classes would be the same as the ones on which Structured Binding (P0144R0) can be
applied.

This paper contains no proposed wording. This is a discussion paper to determine EWG interest in the
feature, and if there is interest to get direction for a follow-up paper with wording.

Algorithms such as std::tuple_cat and std::experimental::apply work as well with tuple-
like types. There are many more of them; a lot of the homogeneous container algorithm are applicable to
heterogeneous containers and functions, see Boost.Fusion and Boost.Hana. Some examples of such
algorithms are fold , accumulate , for_each any_of , all_of , none_of , find ,
count , filter , transform , replace , join , zip , flatten .

Besides std::pair , std::tuple and std::array , aggregates in particular are good
candidates to be considered as tuple-like types. However defining the tuple-like access functions is tedious,
repetitive, slightly error-prone, and easily automated.

Some libraries, in particular Boost.Fusion and Boost.Hana provide some macros to generate the needed
reflection instantiations. Once this reflection is available for a type, the user can use the struct in algorithms
working with heterogeneous sequences. Very often, when macros are used for something, it is hiding a
language feature.

Proposals such as Structured Bindings P0144R0 would already provide positional access. This proposal
and structured binding should use the same restrictions on the types that can be applied.

I propose to generate default implementations for tuple_size , tuple_element and
get<I>/get<T> when needed. If the defaults are unsuitable for a type, the user may be explicitly delete

(=delete) them. If the default implementation is not suitable, the user may provide a definition (as
always). If an operation is already declared, a default implementation is not generated for it. This is exactly

Motivation

Proposal

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4475.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0144r0.pdf
http://www.boost.org/doc/libs/1_60_0/libs/fusion/doc/html/index.html
http://boostorg.github.io/hana/index.html
http://www.boost.org/doc/libs/1_60_0/libs/fusion/doc/html/index.html
http://boostorg.github.io/hana/index.html
file:///Users/viboes/github/std_make/doc/proposal/reflection/or%20its%20competitor%20%5BP0151R0%5D

the way assignment and constructors work today and as comparison operators would work if N4475 is
adopted.

A library solution could be an alternative once we have the necessary reflection traits.

A default implementation of tuple-like access for a class can be generated unless the class

contains protected or private non-static data members, or
contains protected or private or virtual base classes, or
contains a public base class that fulfills some of these restrictions.

We expect that a follow-up for P0144R0 will define the same restrictions but we are not sure the first
version would allow inheritance.

Given a class C that doesn't define the tuple-like access get<I> and it is not restricted by the
previous conditions, let

N be the number of public non-static data members,
Ti the type of the ith data member (0 based).

The following could be defined

Common restrictions

Tuple-like access

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4475.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0144r0.pdf

namespace std {
 template <>
 struct tuple_size<C> : integral_constant<size_t, N> {}
 template <>
 struct tuple_element<i, C> { using type = Ti; } // for i in 0..N-1

 template <size_t I>
 constexpr tuple_element_t<I, C>& get(C& c) noexcept;
 template <size_t I>
 constexpr tuple_element_t<I, C> const& get(C const& c) noexcept;
 template <size_t I>
 constexpr tuple_element_t<I, C> && get(C && c) noexcept;

 template <class T>
 constexpr T& get(C& c) noexcept;
 template <class T>
 constexpr T const& get(C const& c) noexcept;
 template <class T>
 constexpr T && get(C && c) noexcept;
}

This definition would be in line with the tuple-like access as defined for std::tuple .

We could make any class C satisfying the constraints and having 2 data members of types T and U

to be explicitly convertible to std::pair<T,U> .

We could make any class C satisfying the constraints and having N data members of types T1 ...
Tn explicitly convertible to std::tuple<T1,..., Tn> .

We could generate the explicit conversions operator std::pair<T,U> and
operator std::tuple<Ts...> .

However the syntax would be less friendly than a non-member conversion functions to_pair and
to_tuple if P0091R0 is not adopted.

Given c++ TupleLike<int, string> tpl= ...;

compare

Explicit conversion to std::pair<T,U> and
std::tuple<Ts...>

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0091r0.html

f(std::tuple<int, string>(tpl)); // if [P0091R0] is not adopted
f(std::tuple(tpl)); // if [P0091R0] is adopted
f(std::to_tuple(tpl)); // complementary if [P0091R0] is adopted

If P0091R0 is not adopted, in addition of the explicit conversions we propose to overload the new
to_pair and to_tuple functions in the namespace of the class C .

namespace Cns {
 class C;
 auto to_pair(C const&);
 auto to_tuple(C const&);
}

The definition of the tuple-like access could be removed in the text of the standard for the following classes:

std::pair<T,U>

std::tuple<Ts...>

With the adoption of Extension to Aggregate Initialization [P0017R0], it is coherent to permit public
inheritance as we want the tuple-like access to be generated for aggregates.

P0017R1 considers the base classes as element of the aggregation.

We don't know yet what Structured Bindings P0144R0 will do, but suspect that it would consider base
classes as elements of the structured binding as P0017R1 does.

The tuple-like access to std::tuple is member oriented even if the order is not required. Having
coherent order of members and template parameters could permit conversion from a tuple to a tuple having
some of the last members removed.

Concerned classes in the standard

Design Rationale

What about inheritance?

Do we want to consider base classes or its data members
as elements of the tuple-like class ?

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0091r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0017r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0144r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0017r1.html

This is why this proposal gives recursive access to the member of the base classes.

We can consider std::tuple as the underlying type of such structures. It seems reasonable to have a
conversion to it.

Having this conversion will allow the user to use functions that work with std::tuple .

So what kind of conversions are desired? std tuple<T,U> is implicitly convertible to
std::pair<T,U> .

Note that the cost of the conversion means a copy and that this is more expensive. The cost of copying two
elements could be less expensive than copying more.

This wording is very “drafty” and has not gone through expert review. It is intended to reflect the design
decisions described above.

The author was not aware of the new wording for Default Comparison in N4532. There is a lot there that
should inspire the wording for this function.

The wording that follows is based on the wording of the current standard in particular (N4527), and on initial
wording in N4475.

Wording for explicit conversions to be added if the idea is retained.

Add a "Tuple-like access expression" section in 5

A tuple-like access expression is a particular case of a function call expression when the function name is
get<I> .

If an operand is of class type and no suitable function is found in the class namespace, the implicitly-
declared get<I> non-member operation as described in over.generate_get is used.

Add a "Special non-member tuple-like access operations" section after 13.6

Do we need conversions?

Why not implicit conversions?

Working paper wording

Tuple-like access expression [expr.get]

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4532.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4527.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4475.pdf
file:///Users/viboes/github/std_make/doc/proposal/reflection/if%20any

If no user-defined get operation is provided for a class type T (struct , class but not
union), and all of the following is true:

doesn't contain protected or private non-static data members, or
doesn't contain protected or private or virtual base classes, or
doesn't contain a public base class that fulfills some of these restrictions.

then the compiler will declare a get operation with the signature

template <size_t I>
requires I < tuple_size<T>{}
friend tuple_element<T, I> get(T&) noexcept(see below);

The generated implementation is not considered a function so it cannot have its address taken [Note: like
the = operator.].

The user cannot force the generation of the implicitly declared get operation declaring it with the
keyword default .

The implicitly-declared or defaulted get operation for class T is never defined as deleted.

The implicitly-declared get operation is always defined (that is, a function's body is generated and
compiled) by the compiler if odr-used. The get<I> non-member operation gets the Ith of the concerned
non-static data member of the object, in their initialization order.

Based on a future reflection library (e.g. N4428 or N4451), we could define the tuple-like access instead of
generating it (of course, for classes satisfying the tuple-like access generation requirements).

Next follows a incomplete implementation when inheritance is not considered.

Special non-member get operation [over.generate_get]

Implicitly-declared get non-member operation

Explicitly defaulted get non-member operation

Deleted implicitly-declared get non-member operation

Implicitly-defined get non-member operation

Alternative solutions

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4428.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4451.pdf

namespace std {namespace experimental {namespace reflect { inline namespace v1 {

 template <class C>
 struct is_tuple_like_generation_enabled : bool_constant<
 is_class<C>{} &&
 // no private or protected non-static data members
 class_protected_non_static_data_members<C>::size==0 &&
 class_private_non_static_data_members<C>::size==0 &&
 // no base classes (this is the restriction of the draft - no inheritance)
 class_base_classes<C>::size==0
 > {};

 template <class C, class Enabler=void>
 struct tuple_size
 template <class C, class Enabler=enable_if_t<is_tuple_like_generation_enabled<C>{}> >
 struct tuple_size<C> : size_t_constant<class_public_non_static_data_members<C>::size>

 template <size_t N, class C, class Enabler=void>>
 struct tuple_element;
 template <size_t N, class C, class Enabler=enable_if_t<is_tuple_like_generation_enabled
 struct tuple_element<N, C> {
 using pointer = class_public_non_static_data_members<C>::get<N>::pointer
 using type = decltype(std::declval<C>().*declval<pointer>());
 };
}}}

// default definition for tuple_size changed
template <class C>
struct tuple_size : reflect::tuple_size<C> {}

// default definition for tuple_element changed
template <size_t N, class C>
struct tuple_element { using type = typename reflect::tuple_element<N, C>::type; }

// overloads of get when reflect::is_tuple_like_generation_enabled<C>
template <size_t N, class C, class Enabler=enable_if_t< N < tuple_size<C>{} and reflect::
 constexpr reflect::tuple_element_t<N,C>& get(C & that) noexcept
{
 typename reflect::tuple_element<N,C>::pointer pm;
 return that.*pm;
}

template <size_t N, class C, class Enabler=enable_if_t< N < tuple_size<C>{} and reflect::
constexpr const tuple_element_t<N,C>& get(const C & that) noexcept
{
 typename reflect::tuple_element<N,C>::pointer pm;
 return that.*pm;
}

template <size_t N, class C, class Enabler=enable_if_t< N < tuple_size<C>{} and reflect::
constexpr reflect::tuple_element_t<N,C>&& get(C && that) noexcept
{
 typename reflect::tuple_element<N,C>::pointer pm;
 return std::forward<reflect::tuple_element_t<N,C>&&>(that.*pm);
}

} // namespaces

Note that the default traits tuple_size and tuple_element have been redefined. Maybe using
Concepts this could be relaxed.

// default definition for tuple_size changed
template <class C>
requires reflect::is_tuple_like_generation_enabled<C>{}
struct tuple_size : reflect::tuple_size<C> {}

// default definition for tuple_element changed
template <size_t N, class C>
requires N < tuple_size<C>{} and reflect::is_tuple_like_generation_enabled<C>{}
struct tuple_element { using type = typename reflect::tuple_element<N, C>::type; }

This proposal needs some compiler magic, either by generating directly the tuple-like access or by
providing the reflection traits as e.g. in N4428 or N4451.

The authors would like to have an answer to the following points if there is any interest at all in this
proposal:

Do we want a default or a reflection solution?
Do we want an explicit conversions to std::pair / std::tuple ?

Thanks to Matthew Woehlke for championing this proposal during the C++ standard committee meetings
and its global review.

Thanks to all those that have commented the idea on the std-proposals ML better helping to identify the
constraints, in particular to Nicol Bolas and Matthew Woehlke.

Boost.Fusion Boost.Fusion 2.2 library

http://www.boost.org/doc/libs/1600/libs/fusion/doc/html/index.html

Boost.Hana Boost.Hana library

http://boostorg.github.io/hana/index.html

N4428 Type Property Queries (rev 4)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4428.pdf

N4451 Static reflection

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4451.pdf

N4475 Default comparisons (R2)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4475.pdf

Implementability

Open Questions

Acknowledgments

References

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4428.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4451.pdf
http://www.boost.org/doc/libs/1_60_0/libs/fusion/doc/html/index.html
http://boostorg.github.io/hana/index.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4428.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4451.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4475.pdf

N4527 Working Draft, Standard for Programming Language C++

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4527.pdf

N4532 Proposed wording for default comparisons

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4532.html

P0017R1 Extension to aggregate initialization

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0017r1.html

P0091R0 - Template parameter deduction for constructors (Rev. 3)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0091r0.html

P0144R0 Structured Bindings

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0144r0.pdf

P0151R0 Proposal of Multi-Declarators

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0151r0.pdf

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4527.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4532.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0017r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0091r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0144r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0151r0.pdf

