Wording for [[maybe unused]] attribute.

Document No.: P0212R0

Project: Programming Language C++ - Evolution

Author: Andrew Tomazos <andrewtomazos@gmail.com>
Date: 2015-01-31

Summary

A wording for the [[maybe_unused]] attribute is proposed for application to the C++17 Working
Draft. The semantics of [[maybe_unused]] are the same as those described for [[unused]] in
P0068RO and presented to Kona EWG. Kona EWG voted SF=5, F=11, N=2, A=0, SA=0 in
favor of the attribute.

See PO068RO for detailed motivation/rationale.

Changes From POO68R0O

- The Kona EWG bikeshedding vote resulted in EWG guidance to change the name from
[[unused]] to [[maybe_unused]]. The wording includes this change.

- There was a feature that interacted with [[nodiscard]] that EWG guided was not desired.
This has been removed from the proposal (see P0189R0 for details).

Wording

7.6.6 Maybe unused attribute [dcl.attr.unused]

1. The attribute-token maybe_unused can be used to mark various names and entities
that may be intentionally not used. [Note: If an implementation would have otherwise
emitted a warning about an entity, so marked, not being used, they are encouraged not
to. -- end note] [Note: Implementations are discouraged from emitting a warning if an
entity marked maybe _unused, is used. -- end note] It shall appear at most once in each
attribute-list, with no attribute-argument-clause.

2. The attribute may be applied to the declaration of a class, a typedef-name, a variable, a
non-static data member, a function, an enumeration or a template specialization.

3. A name or entity declared without the maybe unused attribute can later be re-declared
with the attribute and visa-versa. An entity is considered marked after its first declaration

mailto:andrewtomazos@gmail.com

that is marked is analyzed, and for the remainder of translation of the current translation
unit.

Examples

Example 1

Compiled with an unused variables warning enabled in a release build (NDEBUG):

std::pair<int, int> plot to curve(int x, int z) {
int y = save and project(x,z); // WARNING: y unused
assert(y == 0);
return {x, z};

std::pair<int, int> plot to curve(int x, int z) {
[[maybe unused]] int y = save and project(x,z); // OK
assert(y == 0);
return {x, z};

Example 2

When compiled with USE_IMPL1 defined:

static void impll() { ... }
static void impl2() { ... } // warning: impl2 unused
void iface () {
#ifdef USE_IMPL1
impll () ;
#elif USE_IMPL2
impl2 () ;
#else

ferror set an implementation

#endif

}

[[maybe unused]] static void impll () { ... }

[[maybe unused]] static void impl2() { ... } // OK
void iface () {

#ifdef USE IMPL1
impll(); // OK

#elif USE IMPL2
impl2(); // OK
#else
#error set an implementation
#endif
}

FAQ

1. What constitutes an entity being used?

As per the existing appearance of the term “used” in [dcl.attr.deprecated], this is unspecified and
hence left as a quality of implementation issue. There are a spectrum of increasingly complex
algorithms an implementation could use to statically analyze a little-used entity in a given
program, and to take an educated guess as to whether it likely enough to be indicative of an
logic error to issue a warning. We feel it would be onerous and unnecessarily restrictive on
implementations to strictly specify a particular algorithm.

2. Why do you discourage implementations from emitting a
warning if an [[maybe unused]] entity is used?

This is in line with existing practice. It shows that many times the [[maybe_unused]] annotation
is used where a certain set of defines leads to an entity appearing unused for one preprocessed
translation unit, as typified by the assert-NDEBUG case. If the implementation warned when an
[[maybe_unused]]-marked entity was used, this would trigger warnings when the other set of
defines were used:

ie If an implementation warned about an [[maybe_unused]]-marked entity being used, then
without NDEBUG the following would generate a warning:

std::pair<int, int> plot to curve(int x, int z) {
[[maybe unused]] int y = save and project(x,z);
assert(y == 0); // WARNING: y used ?2°?
return {x, z};

}

This would of course defeat the purpose. The semantic of [[maybe_unused]] is that the entity
MAY appear unused, not that it MUST be unused.

It is prohibitively difficult for an implementation to statically analyze a translation unit under all
possible results of preprocessing.

